

Delft University of Technology

Unit Tests for SQL

Spinellis, Diomidis

DOI
10.1109/MS.2023.3328788
Publication date
2024
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2024). Unit Tests for SQL. IEEE Software, 41(1), 31-34.
https://doi.org/10.1109/MS.2023.3328788

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2023.3328788
https://doi.org/10.1109/MS.2023.3328788

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E JANUARY/FEBRUARY 2024 | IEEE SOFTWARE 31

ADVENTURES CODE
Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

ADVENTURES IN CODE
Editor: Diomidis Spinellis
dds@aueb.gr

I LEARNED TO program in an age
where testing meant prodding a pro-
gram (larger software systems were
rare at the time) with various inputs
to see whether it failed. We have come
a long way since that time.

The first testing code I saw was in
the BIOS (basic input/output system)
of the original IBM personal com-
puter in the early 1980s. More than
1,000 lines of assembly language in-
structions tested all the computer’s
hardware, starting with the Intel 8088
processor (flags, registers, and con-
ditional jumps) and continuing with
memory and peripherals.1 Undoubt-
edly, decades of hard-earned experi-
ence had instilled into IBM’s DNA the
understanding that anything can fail
and nothing should be assumed.

A few years later, when compiling
the first release of the Perl scripting
language2 (a precursor of Python),
I encountered another concept that
amazed me: a program that contained
code to test itself. A series of 51 tests
verified many aspects of the language
and its built-in functions. I realized
their value in delivering a reliable prod-
uct but didn’t see their direct relevance
in everyday software development.

For that I’d have to wait some
more years for JUnit to popularize
unit testing,3 and for opportuni-
ties for me to work with teams that
followed and valued the practice.
Getting myself to write unit tests, es-
pecially outside established projects
that used them, took effort. I had to
learn to write testable code, find how
to install and run a testing frame-
work in each language I used, and es-
tablish the discipline of unit testing
all the tricky code. Once these things

were in place, I got hooked, wonder-
ing how I could ever work without
unit tests in place.

Consequently, when I found my-
self writing dozens of database que-
ries for software analytics tasks, I
looked for a way to unit test them. I
could not find a corresponding solu-
tion, so I developed RDBUnit (rela-
tional database unit testing), a unit

testing framework for relational da-
tabase queries. It is available as an
installable Python package on PyPI
(Python package index) (https://pypi.
org/project/rdbunit/) and as open
source software on GitHub (https://
github.com/dspinellis/rdbunit/).

Writing SQL Unit Tests
The unit tests for RDBUnit consist
of three parts, following the com-
mon Arrange-Act-Assert pattern: a
setup block that defines the names

and contents of some database ta-
bles, the query to be tested, and a
block providing the expected result.
The input and output are specified
as table contents. The input starts
with a line containing the words BE-
GIN SETUP, while the results start with
a line containing the words BEGIN RE-
SULT. The input and output are speci-
fied by first giving a table’s name,

Unit Tests for SQL
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2023.3328788
Date of current version: 20 December 2023

Unit tests for RDBUnit consist of
three parts, following the common

Arrange-Act-Assert pattern.

mailto:dds@aueb.gr
https://pypi.org/project/rdbunit/
https://pypi.org/project/rdbunit/
https://github.com/dspinellis/rdbunit/
https://github.com/dspinellis/rdbunit/
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

followed by a colon. The name may
be prefixed by the name of a database
where the table is to reside, followed
by a dot. The next row contains the
table’s field names, separated by one
or more spaces. Then come the simi-
larly formatted table’s data, which
are terminated by a blank line if an-
other table’s definition will follow, or
by the word END at the end of the cor-
responding section. RDBUnit auto-
matically determines the type of each
table field (integer, real number, date,
time, time stamp, or Boolean value)
based on its contents.

In the “Results” section, the ta-
ble name is not specified if the tested
query is a selection statement rather
than a table or view creation. Note
that both the input tables and the re-
sults need not contain all fields of the
production database tables; all that is
needed are the fields that appear in
the query. The setup-query-results se-
quence can be repeated multiple times
within a test file (each starting with a
new BEGIN SETUP line) to test several as-
pects of the query, such as duplicate
input or output records, an empty re-
sult set, or diverse join scenarios.

The following is a complete ex-
ample of an SQL unit test:

BEGIN SETUP
sales:
month revenue
March 130
April 50
END

BEGIN SELECT
SELECT MAX(revenue) AS max_revenue
 FROM sales;
END

BEGIN RESULT
max_revenue
130
END

This sequence defines the contents
of the sales table, provides a query
to obtain the largest monthly vol-
ume of sales from it, and finishes
with the result’s queried name and
expected value.

The query to test is either speci-
fied inline, as in the preceding
example, with a BEGIN SELECT (for se-
lection queries) or a BEGIN CREATE (for
view and table creation queries)
statement, or, more commonly, by
including an SQL source code file
through a corresponding INCLUDE
SELECT or INCLUDE CREATE statement. For
instance, the following statement
will include the table creation query
residing in the file named leader_
comments.sql:

INCLUDE CREATE leader_comments.sql

The included file’s name also forms
the test’s name. The queries stored in
files can be easily loaded and run by
the production system (often also as
prepared SQL statements for achiev-
ing performance gains), thus en-
suring that the tested code exactly
matches the one used in production.
This approach satisfies NASA’s valu-
able lesson: “Test as You Fly, Fly as
You Test.”4

Test Execution
RDBUnit is a command-line tool that
allows its use in the widest possible
set of cases, such as diverse operat-
ing systems and headless continuous-
integration environments. Its typical
use involves specifying on the com-
mand line the database engine to use
(SQLite, mySQL, and PostgreSQL
are currently supported) and one or
more unit test files. When invoked in
this way, RDBUnit will produce on
its standard output SQL statements
that, when fed into the correspond-
ing database engine, will produce the

test results formatted according to the
Test Anything Protocol (TAP).5 TAP
is a tool and language-agnostic for-
mat that allows any test output pro-
ducer, such as RDBUnit, to produce
output that many existing consum-
ers, such as test report generators
and test result browsers, can use. The
following is what a typical execution
might look like− for successfully ex-
ecuting the three unit tests in the file
cc.rdbu through the PostgreSQL data-
base. (The –t –q psql command argu-
ments configure it to output tuples
without any adornments.)

$ rdbunit --database=postgresql cc.rdbu |
> psql –U db_user –t –q testdb
 ok 1 – cc.rdbu: tl.nl_commits_l_comments
 ok 2 – cc.rdbu: tl.l_commits_nl_comments
 ok 3 – cc.rdbu: tl.commits_with_comments
 1..3

RDBUnit also offers the -- results op-
tion to list the results of a unit test
query on its standard output. These
can then be manually verified and
integrated into the unit test as the
expected results.

By default, RDBUnit creates a test
database to run the tests in isolation.
The --existing-database option can be
used to run the tests in the context
of the database engine’s current da-
tabase, thus allowing the fetching of
data from existing populated refer-
ence tables.

Under the Hood
RDBUnit is a Python script of roughly
500 lines of code. Its implementa-
tion’s key ideas are a simple pars-
ing mechanism, a class hierarchy for
managing database engine differ-
ences, and the evaluation of test re-
sults through SQL code.

RDBUnit’s input is a domain-
specific language (DSL): a language
geared toward a particular purpose

ADVENTURES IN CODE

 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE 33

(unit tests in this case), rather than
general purpose computing. When
dealing with expert users, DSLs can
be a powerful software architecture
element because they enable the flex-
ible and extensible expression of
sophisticated structures. However,
implementing a DSL can be a tricky
balancing act.6

At one extreme of implementa-
tion choices lies the adoption of an
existing flexible data format, such
as XML, YAML, JSON, or INI
(initialization file). Following this
data-centric approach minimizes the
implementation effort through the
use of existing parsing libraries at
the expense of usability, which is hurt
by the format’s lack of flexibility. For
example, in the case of RDBUnit,
none of the corresponding choices
would allow the readable expression
of tabular data.

At the other extreme lies the im-
plementation of a full-fledged lan-
guage front end through a lexical
analyzer and a parser based on a
specified formal grammar. This ap-
proach demands a substantial imple-
mentation effort but rewards with a
robust front-end furnished with solid
error handling.

Given that a working good-enough
tool is, in most cases, superior to a
perfect one that is too hard to build,
RDBUnit takes a middle ground be-
tween the two extremes employing
three tricks to parse the unit test input
specifications.

First, it uses regular expressions to
recognize the input elements it reads.
For example, RDBUnit identifies dates
expressed in the yyyy-mm-dd format
through the regular expression “\d{4}-
\d\d-\d\d” (four digits, followed by a
dash followed by two digits, followed
by another dash, followed by another
two digits). The approach isn’t perfect
(for example, it allows the invalid date

2023-13-32), but it’s good enough for
writing unit tests.

Second, RDBUnit employs a line-
based input format, a simple state ma-
chine, and a single-element stack to
keep track of what input it is process-
ing and what should come next. The
initial state, changes into setup, sql,
or result when it encounters the corre-
sponding BEGIN lines. A separate ta-
ble_columns state handles the parsing
of each input or result table’s columns.

Third, RDBUnit outsources the
handling of SQL code to the data-
base engine. Specifically, after issu-
ing SQL statements for creating and
populating the required tables, it cre-
ates an SQL view whose contents are
defined to be the result of the tested
query statement. Thus, the following
SQL code is generated for the pro-
vided unit test example:

-- BEGIN SETUP
DROP TABLE IF EXISTS sales;
CREATE TABLE sales(month VARCHAR(255),
 revenue INTEGER);
INSERT INTO sales VALUES (‘March’, 130);
INSERT INTO sales VALUES (‘April’, 50);
-- BEGIN SELECT
CREATE VIEW test_select_result AS
 SELECT MAX(revenue) as max_revenue
 FROM sales;
-- BEGIN RESULT
DROP TABLE IF EXISTS test_expected;
CREATE TABLE test_expected(max_revenue
INTEGER);
INSERT INTO test_expected VALUES (130);

RDBUnit handles the three sup-
ported database engines through a
simple two-level class hierarchy. A
class for each engine inherits a ge-
neric Database class that provides
default implementations shared by
multiple subclasses. Each class con-
tains methods for tasks such as cre-
ating and dropping the temporary
test database or schema where tests
will run, using an existing database,
and representing some data types.

Although many (mainly object rela-
tional mapping) packages exist with
the aim of abstracting database en-
gine differences, none of them could
handle all the required tasks. It was
thus easier to simply express the
tasks as tiny sub-class methods.

Finally, RDBUnit, rather than
reading the query’s result and com-
paring it with the expected one,
generates standard SQL code that
performs the comparison, yielding
directly the TAP-conforming result.
The following query compares the
number of records in the union of the
computed results and the expected
results against the actual number of
records in the computed results and
the expected results. If these num-
bers differ, then one of the two ta-
bles will have fewer or more records
than the other, and therefore, the
test should fail. Communicating the
test’s failure is accomplished by ob-
taining the appropriate TAP result:
“ok 1” or “not ok 1.”

A working good-enough tool is, in
most cases, superior to a perfect

one that is too hard to build.

ADVENTURES IN CODE

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

SELECT CASE WHEN
 (SELECT COUNT(*) FROM (
 SELECT * FROM test_expected
 UNION
 SELECT * FROM test_select_result
) AS u1) = (SELECT COUNT(*) FROM
test_expected)
AND
 (SELECT COUNT(*) FROM (
 SELECT * FROM test_expected
 UNION
 SELECT * FROM test_select_result
) AS u2) = (SELECT COUNT(*) FROM
test_select_result)
THEN ‘ok 1 - <stdin>’
ELSE ‘not ok 1 - <stdin>’ END;

This approach ensures that testing
is performed using purely mecha-
nisms natively provided by the speci-
fied database engine, without having
Python’s interpretation of the results
influencing the unit test’s outcome.

Lessons Learned
I’ve used RDBUnit to write tens of
SQL unit tests for tasks involving
the identification of enterprise open
source software contributions,7 re-
pository deduplication,8 document
processing, and citation analysis. In
some cases, RDBUnit helped me un-
cover subtle bugs, which might have
otherwise resulted in erroneous find-
ings. In several other cases, express-
ing the unit test in terms of very simple
input and expected results allowed me
to concentrate on the essence of the

query, quickly experimenting with
several approaches to find the one that
was correct, rather than wasting time
waiting for the query to run on the full
dataset and then painstakingly comb-
ing the obtained results for errors. If I
had to write a complex SQL query on
big data without RDBUnit at hand, I
would quickly whip up a similar tool
to work with the peace of mind of-
fered by unit testing’s guardrails.

References
1. IBM Personal Computer Hardware

Reference Library: Technical

 Reference, Revised ed. IBM

 Corporation, Boca Raton, FL,

USA, Apr. 1984, pp. 5-33–5-49.

 [Online]. Available: https://archive.

org/details/IBMPCIBM5150-

TechnicalReference6322507APR84/

page/n125

2. L. Wall, “Perl, a ‘replacement’ for

awk and sed,” USENET Newsgroup

Comp.sources.unix, vol. 13, no. 1,

Feb. 1, 1988. [Online]. Available:

https://groups.google.com/g/comp.

sources.unix/c/Njx6b6TiZos/m/

X-JaOCXhPrsJ

3. K. Beck and E. Gamma, “Test in-

fected: Programmers love writing

tests,” Java Rep., vol. 3, no. 7, pp.

37–50, 1998.

4. “Test as you fly, fly as you test, and

demonstrate margin (1998),” NASA

Public Lessons Learned System, JPL,

Pasadena, CA, USA, Lesson Number

1196, Jan. 24, 2002. [Online]. Avail-

able: https://llis.nasa.gov/lesson/1196

5. G. Szabo. TAP - Test Anything

Protocol. (2013). Perl Maven.

[Online] https://perlmaven.com/

tap-test-anything-protocol

6. D. Spinellis, “Notable design pat-

terns for domain-specific languages,”

J. Syst. Softw., vol. 56, no. 1, pp.

91–99, Feb. 2001, doi: 10.1016/

S0164-1212(00)00089-3.

7. D. Spinellis, Z. Kotti, K. Kravva-

ritis, G. Theodorou, and P. Louri-

das, “A dataset of enterprise-driven

open source software,” in Proc.

17th Int. Conf. Mining Softw. Re-

positories (MSR), New York, NY,

USA, Jun. 2020, pp. 533–537, doi:

10.1145/3379597.3387495.

8. D. Spinellis, Z. Kotti, and A. Mockus,

“A dataset for GitHub repository dedu-

plication,” in Proc. 17th Int. Conf. Min-

ing Softw. Repositories (MSR), New

York, NY, USA, Jun. 2020, pp. 523–

527, doi: 10.1145/3379597.3387496.

RDBUnit helped me uncover subtle
bugs, which might have otherwise

resulted in erroneous findings.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology at the Athens University of Economics and

Business, Greece, and a professor of software analytics in the Department

of Software Technology in the Department of Software Technology at the

Delft University of Technology, The Netherlands. He is a Senior Member of

IEEE. Contact him at dds@aueb.gr.

https://archive.org/details/IBMPCIBM5150TechnicalReference6322507APR84/page/n125
https://archive.org/details/IBMPCIBM5150TechnicalReference6322507APR84/page/n125
https://archive.org/details/IBMPCIBM5150TechnicalReference6322507APR84/page/n125
https://archive.org/details/IBMPCIBM5150TechnicalReference6322507APR84/page/n125
https://groups.google.com/g/comp.sources.unix/c/Njx6b6TiZos/m/X-JaOCXhPrsJ
https://groups.google.com/g/comp.sources.unix/c/Njx6b6TiZos/m/X-JaOCXhPrsJ
https://groups.google.com/g/comp.sources.unix/c/Njx6b6TiZos/m/X-JaOCXhPrsJ
https://llis.nasa.gov/lesson/1196
https://perlmaven.com/tap-test-anything-protocol
https://perlmaven.com/tap-test-anything-protocol

	031_41ms01-adventurescode-3328788

