TU Delft

Anatomy of a Fix: Analyzing Solution Patterns in Public IT Incident Reports

Insights from Postmortems on Mitigations and Fixes in Production Systems

Supervisors: Diomidis Spinellis', Eileen Kapel!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2025

Name of the student: Martin Georgiev
Final project course: CSE3000 Research Project
Thesis committee: Prof.dr.ir. D. (Diomidis) Spinellis PhD, Eileen Kapel, Benedikt Ahrens

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

This study examined common remediation strate-
gies by analysing publicly available IT incident re-
ports. A six-category taxonomy (“Software Fix”,
“Rollback™, “Traffic Switch”, “Hardware/Infras-
tructure Repair or Operation”, “Self-Resolved”,
and “Undisclosed/Not Specified”) was developed
to classify implemented solutions. Subsequently,
a corpus of 1268 recent public incident reports
sourced from the VOID community database was
collected, from which the solution description
of each report is classified utilising a prompt-
based approach with the LLaMA3.3-70B-Versatile
large language model (LLM). The LLM classifier
demonstrated substantial agreement (with Cohen’s
k =71.4%, Macro F1 = 80.6%) with manual anno-
tations on a ground truth subset of 127 reports. The
primary findings revealed that a significant majority
(76%) of the reports do not disclose specific tech-
nical solutions. Among reports with identifiable
fixes, software fixes (5.5% of total) were the most
common. Exploratory analysis also showed a sta-
tistically significant but small relationship between
solution category and incident duration. This re-
search highlights the utility of LLMs for analysing
incident reports and powering AIOps and under-
scores the need for improvement in incident report-
ing.

1 Introduction

Software-driven services play a crucial role in critical sec-
tors such as finance, healthcare, and retail [1]. These services
are inevitably prone to incidents for various reasons. Conse-
quently, such incidents and a lack of effective incident man-
agement can affect service quality, customer trust [2], and
business reputation [3].

To prevent incidents and improve service reliability, or-
ganisations often conduct post-incident analyses, commonly
documented in incident reports or postmortems. These doc-
uments capture valuable information on the causes, impacts,
and resolutions of operational failures [4]. However, these in-
cident reports are typically written in free-text format. There-
fore, the quality of the data represented in these reports is
varied and inconsistent. Inconsistencies in the quality and
structure of incident report data present a significant natural
language processing (NLP) challenge, especially as modern
advancements in artificial intelligence (Al) increasingly rely
on data to power AlOps (artificial intelligence for IT opera-
tions), with numerous studies advocating for improvement in
training data quality [5; 6; 7]. That is because, although not
always stated directly, the effectiveness of AIOps platforms
implicitly depends on the availability of high-quality, well-
structured data [5]. Consequently, overcoming the challenge
of analyzing these varied reports to systematically identify
resolution patterns is crucial. Doing so would provide in-
sights into prevalent resolution techniques which can subse-
quently inform better system design, guide the development

of automated mitigation/resolution strategies, and improve
operational training.

Furthermore, when studying incident reports, previous
work has examined the complete life cycle of incidents [8]
but despite that, few methods are tailored to recognise, ex-
tract and analyse “solution statements” (e.g. “rolled back to
version X.X”, “patched the configuration file”’) across hetero-
geneous report formats and organisational styles.

This need for further investigation into implemented solu-
tions aimed at resolving incidents, along with the need for im-
provement of AIOps incident data quality, directly motivate
the present study. In this paper, 1268 real-world incidents in
large online systems are systematically analysed through their
publicly available postmortems. This research aims to sys-
tematically classify and analyze them in the context of opera-
tional issues in information technology to review the primary
solutions employed to address the issues. More concretely, it
is structured around the following research questions:

* RQ1: How can solution descriptions be effectively iden-
tified and extracted from incident reports with nonstan-
dardised structures?

* RQ2: What classification scheme or taxonomy best cat-
egorises the types of solutions found in incident reports?

* RQ3: What is the frequency distribution of different so-
lution categories in the incident reports analyzed?

The methodology employed web scraping techniques to
gather reports, followed by natural language processing and
text classification methods, utilising an LLM and prompt en-
gineering, to categorise the described solutions. The study
culminated in a statistical analysis of the classified solutions
to identify the most common remediation patterns. The main
contributions are a practical analysis of how common faults
are typically resolved based on a range of real-world incident
reports as well as a framework for classification of incident
solutions.

2 Background and Related Literature

This section reviews foundational work in IT incident man-
agement, relevant classification taxonomies, and the applica-
tion of AI/ML and NLP techniques to incident report process-
ing across various domains, with a focus on identifying gaps
in solution classification automation.

2.1 Manual IT Incident management

In the area of IT incident management, significant work has
been done examining the causality chain of incidents, along
with the incident’s characteristics and correlations with re-
cently done changes to the system. It is important to mention
that in the context of systems and software engineering, the
term “changes” is defined as the modification of an existing
application comprising additions, changes, and deletions [9].
Additionally, an incident is defined as an unplanned interrup-
tion to a service or a reduction in the quality of a service
at a specific time [9]. Y. Wu et al. manually examined 161
postmortem reports from Ant Group and identified prevalent
incident characteristics and mitigation strategies [10]. Some



works also directly provided software solutions aimed at sim-
plifying and automating the process of managing information
security incidents [11]. Furthermore, Zhao et al. have con-
ducted a broader study on the entire life cycle of incidents
and provide important findings such as effectiveness of inci-
dent detection options [8]. More importantly, they presented
a detailed analysis of mitigation strategies, their commonal-
ity, their time efficiency, and the impact of mitigation strategy
failures. Zhao et al. also argued that different strategies are
most common for different primary causes and that some so-
lutions (namely those that employ multiple resolution strate-
gies and hotfixes) are more time-costly, primarily because of
higher amounts of manual efforts [8]. These aforementioned
works, as well as most of the literature, focus on exclusively
change-induced incidents. Consequently, the discussion of
incident management typically extends only as far as inci-
dent detection prior to and following the change, with limited
attention given to the exploration or analysis of incident mit-
igation strategies.

2.2 Common Taxonomies

Several taxonomies have been proposed in the literature, as
well as in industrial settings, to categorise aspects of IT inci-
dents, with varying degrees of focus on incident characteris-
tics versus their implemented solutions.

Guo and Wang briefly discussed the prevalence of the ITIL
(Information Technology Infrastructure Library) [12] frame-
work as an industry standard in the world of IT service man-
agement [13]. ITIL itself does not define a detailed “solu-
tion taxonomy”’, but when it is implemented in practice, com-
mon resolution categories are sometimes recorded as “reso-
lution codes” [14]. ITIL’s taxonomy is therefore operational
and process-driven. Due to its nature, it is also very coarse-
grained and the resolution categories (e.g. patch, training,
hardware fix) vary between organisations and tools, and ITIL
itself offers little analytical guidance on choosing among
them. While ITIL focuses primarily on incident resolution
from a service management perspective, other taxonomies
have attempted to address the classification of the incidents
themselves in more technical contexts.

For instance, Truong and Halper highlighted the need for
better understanding of IoT (Internet of Things) data analytics
to more adequately deal with potential incidents in these sys-
tems [15]. Consequently, they also suggested a classification
taxonomy that focuses mainly on the context of each incident.
In it, incidents are classified based on where in the software
stack the incident occurred, what capacity of the overall sys-
tem it affected, and when it occurred. However, this taxon-
omy remains relatively vague and lacks robust, well-defined
categories that strike an effective balance between general-
isation and granularity, limiting its practical applicability in
heterogeneous systems and their postmortem reports. In ad-
dition, it is concerned with categorising the incidents them-
selves rather than their mitigation solutions used.

In contrast, Zhao et al. [8] and Y. Wu et al. [10] proposed
taxonomies that are notably more precise and practically ap-
plicable for the purposes of the present study. Both offer sim-
ilar classification schemes for incident mitigation strategies
that provide a more effective mix of generalisation and speci-

ficity, making them better suited. These two taxonomies form
the basis of the classification framework used in this paper,
with only minor adjustments to fit the specific context of this
work.

2.3 Use of ML and NLP in Incident Report
Processing

Substantial research has been done, including systematic re-
views, on the topic of using ML/NLP for text classification
of reports in domains such as aviation [16; 17] and health-
care [18; 19]. In particular, R. Dillon et al. explored the diffi-
culties and consequences of applying AI/ML and NLP in the
context of learning from near-miss events’ reports [20]. They
did so by compiling information on past work utilising these
techniques in analyzing incident datasets and then providing
recommendations for usages as well as highlighting that the
main challenge is training these models to reliably distinguish
meaningful near misses from inconsequential events.

2.4 IT Incident Management via ML and NLP

To date, only a small number of studies have directly explored
the area of employing modern Al approaches to classify in-
cidents and their solutions based on postmortem reports. For
example Sufi [21] proposed a novel approach to extracting cy-
ber threat features from textual descriptions of cyber events
by harnessing the capabilities of GPT. They concluded that
such a paradigm can be beneficial for critical decision mak-
ing during a cyber attack, make the identification of incidents
more precise, and improve the understanding of attack pat-
terns. In a broader context, Chen et al. conducted quantita-
tive analysis of cloud service incidents at Microsoft, identi-
fied key insights into the difficulty of incident management
and suggested an AIOps framework aimed at increasing the
efficiency at different incident managements phases [22].

3 Methodology

In order to achieve the aforementioned objective of the re-
search, a quantitative approach was employed. It combines
automated data extraction, text classification, and statistical
analysis to investigate the types of solutions commonly used
to fix primary faults. The main stages of the work were as
follows.

3.1 Data Acquisition and Formatting

The primary data sources for this study was the VOID com-
munity database [23]. The dataset used in this study con-
sists of the latest 1500 report entries available as of May 23,
2025. This amount was deemed a sufficient collection of ac-
cessible reports from the targeted source. It is aimed to cap-
ture a broad range of publicly documented IT incidents to al-
low for a comprehensive exploration of common solution pat-
terns. The volume was determined to be manageable within
the project’s time frame and resource constraints for auto-
mated analysis and subsequent manual validation. For the
primary analysis, a subset of 1301 reports published within
the last four years (2022-2025) was selected. This tempo-
ral filtering ensures the findings reflect modern and relevant
operational practices and technologies, which have notably



evolved in recent years, partly influenced by accelerated dig-
ital transformation and shifts in working patterns spurred by
events such as the COVID-19 pandemic. Of these, 33 re-
ports were discarded due to being dead/invalid entries in the
database. Out of the remaining 1268, a subset of 127 reports
(10%) were chosen via a pseudo-random number generator
with fixed seed and were utilised to create a manually la-
beled ground truth set. The data was gathered via a custom
Python-based “Incident Report Management Script” (IRMS).
This script manages several key stages of the data pipeline
through an interactive command-line interface, leveraging a
modular architecture composed of specialised processing and
scraping components. It collects the data by calling the back-
end API endpoint of the VOID database, eliminating the need
to scrape the front-end. After collection, the reports get for-
matted into JSON objects containing all the necessary and
relevant information about them.

3.2 Solution Classification

The core of the paper is concerned with classifying the ex-
tracted solution texts into relevant categories in order to ag-
gregate types of employed solutions and analyse them later
on.

Taxonomy Development

One of the key objectives of this research was to establish a
classification scheme that effectively categorises the types of
solutions found in the dataset of reports. The development of
this scheme was an iterative data-driven process, informed by
a combination of existing literature, standards in the IT inci-
dent management field, and qualitative analysis of a sample
of the gathered reports.

First, an initial review of academic works related to IT inci-
dent management and postmortem analysis was done to iden-
tify existing taxonomies or classification frameworks for inci-
dent causes and resolutions (as mentioned in subsection 2.2).
Based on this review and common IT operational practices, a
preliminary set of broad solution categories was formulated.
These initial categories aimed to cover common high-level
actions such as code-related fixes, configuration changes, in-
frastructure operations, and data interventions. Next, a ran-
domly selected subset of 20 incident reports from the dataset
were manually examined. The goal was to understand how
applicable the initial draft of classes was to the data at hand.
Based on this analysis, the initial taxonomy was iteratively re-
fined. This involved merging categories that were too similar,
removing categories not relevant to the dataset, adding cate-
gories for frequently observed solution types, and rephrasing
category names to improve clarity and robustness.

This process resulted in the six-category taxonomy (SW:
“Software Fix”, RB: “Rollback™, TS: “Traffic Switch”, HW:
“Hardware/Infrastructure Repair or Operation”, SR: “Self-
Resolved”, ND: “Undisclosed/Not Specified”) that is central
to this study. For each category, a precise definition was
established, along with examples of typical keywords and
phrases encountered in the reports that would indicate a so-
lution belonging to that category. The detailed description of
the taxonomy, including the comprehensive definitions and

keywords is the subject of RQ1 and is presented in subsec-
tion 4.1.

Classifier model

To perform this classification, a publicly available pre-trained
model was used to classify the texts based on a given tax-
onomy without specific tuning of hyperparameters for the
dataset at hand. The chosen model was Meta’s LLaMA3.3-
70B-Versatile which is optimised for a wide range of nat-
ural language processing tasks. The model was accessed
through a commercially available third-party API provided by
GROQ [24]. The IRMS interacted with this API by sending
the incident report text and receiving the predicted solution
category. To ensure as deterministic outputs as possible and
enhance the reproducibility of the classification process, the
temperature parameter of the large language model (LLM)
was set to 0.

Although recent studies such as the one done by Bucher
and Martini [25] demonstrate that fine-tuned small LLMs can
outperform large generative models in highly specific classifi-
cation tasks such as sentiment analysis from news articles, the
applicability of these findings must be examined with respect
to the task at hand. The present work involves extracting and
classifying relatively objective technical descriptions of inci-
dent mitigation actions from postmortem reports. These texts
are typically factual, procedural, and minimally subjective in
nature. Unlike sentiment classification or nuanced opinion
mining (where subjective interpretation is central), the current
task deals with identifying well-defined categories (e.g., roll-
back, patch deployment) based on relatively formulaic lan-
guage. This reduces the need for domain-specific fine-tuning,
as the linguistic cues involved are typically straightforward.
Finally, utilising a fine-tuned model involves additional com-
plexity such as data curation, compute resources for tuning,
and accounting for risk of overfitting. More specifically, cu-
rating a balanced training dataset is infeasible for this paper,
since the preliminary set is already highly unbalanced, and
manually extracting a balanced subset would not only leave
too few samples, but would also be impractical given the 10-
week timeline.

The prompt used as the system prompt for the classifier
was manually developed in accordance to common prompt
engineering practices[26]. Each of the six solution categories
was clearly defined, accompanied by examples and lists of
“Keywords/Phrases often associated”. This aims to provide
the LLM with concrete anchors. Emphasis was placed on
identifying the primary fix and distinguishing it from preven-
tative measures or secondary actions. The prompt mandated
a specific two-part output: a quoted solution snippet which
aims to serve as justification for the chosen class followed by
a single categorical letter. The entire prompt can be seen in
Appendix A

To assess the effectiveness and reliability of the LLM in
classifying incident report solutions, a comprehensive per-
formance evaluation was conducted. This evaluation used
a manually annotated ground truth dataset comprising 127
incident reports. The LLM’s predicted categories for these
reports were compared against the ground truth labels. The
following metrics were calculated to quantify the classifier’s



performance:

e Absolute Accuracy and Cohen’s Kappa: Done to cap-
ture overall performance and agreement with the ground
truth set. These metrics were interpreted in conjunction
with class-specific measures due to potential class im-
balances.

e Per-Class True Positive (1 P), False Positive (F'P), and
False Negative (F'N) Rates: Derived from the confu-
sion matrix, these rates were examined for each indi-
vidual solution category to understand the classifier’s
strengths and weaknesses at a more granular level.

e Per-Class Precision, Recall, and F1-Score: Precision
measured the proportion of correctly classified reports
per category, recall measured the proportion of actual
instances correctly identified, and F1-score provided the
harmonic mean of both metrics for balanced perfor-
mance assessment.

3.3 Statistical Analysis

Following the classification of incident reports into the de-
veloped solution taxonomy (as described in section 3.2, a
series of statistical analyses were performed to quantify the
findings and explore patterns within the data. These anal-
yses primarily utilised Python libraries such as Pandas [27;
28], Seaborn [29], NumPy [30], and SciPy [31; 32]

» Frequency Distribution of Solution Categories: The
primary analysis involved calculating the frequency dis-
tribution of the classified solution types. For each of the
solution categories, both the absolute number of inci-
dents falling into that category and its relative frequency
(percentage of the total analyzed reports) were com-
puted. These distributions were then visualised using
bar charts to clearly illustrate the prevalence of different
solution strategies, directly addressing the main research
question regarding commonly employed fixes.

o Word Frequency Analysis within Quoted Solutions
(per Category): To gain deeper insight into each solu-
tion category, a word frequency analysis was conducted
on the “quoted solution” snippets extracted by the LLM
during the classification process. For each solution cat-
egory, common NLP preprocessing steps (e.g., lower-
casing, stop word removal, punctuation removal) were
applied to the texts. Subsequently, the frequency of in-
dividual words (unigrams) was calculated. This aimed
to identify distinctive terminology and action verbs as-
sociated with each solution type, further validating and
distinguishing the categories.

* Relationship between Solution Category and Incident
Duration: To examine the potential statistical relation-
ship between an incident’s duration and the implemented
solution, a compilation of every report that has disclosed
its incidents duration was created. From there, key char-
acteristics per class such as mean and median duration
per class, along with standard deviations were calcu-
lated. Additionally, the eta coefficient (1), a measure of
association appropriate for relationships between nom-
inal categorical variables and continuous variables was

calculated to quantify the proportion of variance in the
duration of an incident explained by the class member-
ship of its solution.

Zszl ng (T — 7)*
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Unlike correlation coefficients such as Pearson’s r,
which assume linear relationships, the eta coefficient
makes no assumptions about the functional form of the
relationship and can capture non-linear associations be-
tween variables.

4 Results

This section details the empirical findings of the study. It
first describes the solution classification taxonomy developed
from the analysis of incident reports. After that is the evalua-
tion of the automated classification methodology, followed by
the frequency distribution of the identified solution categories
within the studied corpus.

4.1 A Taxonomy for Classifying Incident Report
Solutions

The taxonomy used in this paper was adapted from Zhao et
al. [8] and Y. Wu et al. [10], as mentioned in subsection 2.2
and section 3.2. It was employed due to its practical appli-
cability, balance between granularity and generalisation, and
direct focus on categorising mitigation actions based on real-
world postmortem analyses of change-induced incidents. The
full taxonomy is listed in Table 1

This taxonomy serves as the foundation for classifying so-
lution texts extracted from incident reports and allows for a
structured quantitative analysis of the frequency and distribu-
tion of each mitigation strategy. It should be noted that these
classes are derivative of Zhao et al. and Y.Wu et al.’s previous
work with some key differences:

* The classification used in this paper omits the “Fallback-
/Degraded service” category that is present in the work
of Zhao et al. but also missing in the taxonomy used
by Y.Wu et al. This is because any fallback-type miti-
gation can reasonably be ascribed to either “Infrastruc-
ture Change” or “Software Fix”, as fallback mechanisms
typically rely on pre-configured infrastructure behavior
or code-level logic designed to degrade cleanly under
some failure conditions.

e The “Hybrid” class from Zhao et al.’s work was also
omitted from this paper’s taxonomy. This was to avoid
loss of granularity and unwanted ambiguity in thresh-
olding. The definition of what constitutes a “Hybrid”
case can very which can consequently complicate clas-
sification logic and risk inconsistency in labeling. Not
including a “Hybrid” class prioritises action specificity
over response sequence bundling.

* Neither of the aforementioned previous studies provide
a specific category for vague or undisclosed fixes. Based
on an initial manual review of the dataset, the intro-
duction of an “Undisclosed/Not Specified” category was



Table 1: Incident resolution categories and associated keywords

Software Fix

RB: Rollback

TS: Traffic Switch

HW: Hardware/
Infrastructure
Repair or
Operation

This implies a change to the existing codebase that
moves it forward, rather than reverting.

The solution involved reverting a recent deployment
(code, configuration, or feature flag) to a previously
known good state. This refers specifically to undoing a
recent change.

The solution involved rerouting user traffic or data
flow, typically by failing over to a standby
system/region, bypassing a problematic component or
environment, or updating load balancer/DNS settings.

The solution involved rebooting, scaling, and/or
isolating faulty containers or physical machines. It
could also include performing operational actions on
infrastructure services (e.g., restarting a core service,
scaling resources, rebooting hosts).

Resolution Definition Keywords/Phrases Often Associated
Category
The solution involved deploying a new piece of code, a | .. o o .
SW: Hotfix/ patch, or a hotfix to correct a software bug or issue. deployed a paich, “released hotfix”, "fixed the bug in

LEIYS

code”, “merged fix and deployed”, “applied code
change”

“rolled back deployment”, “reverted to previous

version”, “undid change”, “restored prior
configuration”, “disabled feature flag that was just
enabled”

“failed over to secondary”, “switched traffic to new

cluster”, “rerouted users”, “updated DNS to point to”,
“diverted traffic”

CLITS

“replaced faulty disk/server”, “rebooted host machine”,

CLNT3

“restarted critical infrastructure service”, “scaled up

VM resources”, “network device repair”

SR: Self-Resolved

from scheduled maintenances.

Undisclosed/Not
Specified

fix is mentioned.

The issue resolved itself without direct manual
intervention by the reporting team, often due to
transient conditions. Issues in this category often stem

This category includes cases where: (1) the specific

ND: fixing action is not clearly stated, omitted, or too
vague; (2) the resolution involved an external

dependency fixed by a third party; or (3) no identifiable

“issue self-resolved”, “transient network glitch
cleared”, “system automatically recovered”,
“scheduled maintenance”

CLINTS

“vendor resolved upstream issue”, “no specific action
detailed”, “monitoring and investigation ongoing”

necessary to account for a significant portion of incident
reports that lacked sufficient detail about the mitigation
strategies employed. As a result, categorising these en-
tries under specific technical solution types would re-
quire an undue degree of inference and risk introducing
noise or misclassification into the dataset.

4.2 Automated Classification Accuracy

The model LLaMA3.3-70B-Versatile was tasked with clas-
sifying solution descriptions extracted from incident reports
into one of six classes (SW, RB, TS, HW, SR, ND). Its per-
formance was then evaluated against a manually annotatted
set of 127 incident reports

The overall accuracy achieved was 87.4%. To account for
agreement occurring by chance, Cohen’s Kappa coefficient
(k) was calculated, yielding a value of 71.4%, indicating sub-
stantial agreement between the LLM’s predictions and the
ground truth set. Furthermore, the classifier achieved a macro
F1 score of 80.6%.

A detailed breakdown of the classification performance is
presented in the confusion matrix (Figure 1) and per-class
metrics (Table 2).

4.3 Solution Strategies Analysis

The primary analysis focused on the prevalence of each of
the six defined solution categories. Figure 2 illustrates the
frequency of each solution type, and Table 3 provides the ab-
solute and relative counts. As most reports had little to no ex-

Table 2: Classification Metrics

SW | RB | TS | HW | SR | ND
TP 7 2 5 5 5 87
FP 2 0 1 0 0 13
FN 1 1 1 0 12 1
Prec. | 0.78 | 1.00 | 0.83 | 1.00 | 1.00 | 0.87
Recall | 0.88 | 0.67 | 0.83 | 1.00 | 0.29 | 0.99
F1 0.82 | 0.80 | 0.83 | 1.00 | 0.46 | 0.93

planation regarding the implemented solution, the classes are
largely imbalanced. Consequently, class ND has been omit-
ted in Figure 2 for visualisation and clarity purposes.

In terms of word frequency, the top 5 most frequently oc-
curring content words, excluding common function words
(e.g.,’a’, ’the’, ’of”), also known as stop words, are presented
below in Table 4

Lastly, the existence of a statistical relationship between an
incident’s solution and its duration was examined. In order to
do that, an additional filtering for report entries that do not
contain the incident’s duration needed to be done. Addition-
ally, the class of undisclosed solutions (ND) was excluded
from this analysis and comparative testing due to its unde-
fined nature. Out of the 1268 total reports, only 1156 had dis-
closed the duration of their respective incidents. Following
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Figure 2: Bar graph of report distribution among the five solution
classes, ND class excluded

Table 3: Distribution of reports by class

Category Count | Percentage
Reports in class SW 70 5.52%
Reports in class RB 59 4.65%
Reports in class TS 59 4.65%
Reports in class HW 61 4.81%
Reports in class SR 50 3.94%
Reports in class ND 969 76.42%
Total 1268 100.00%

that, a total of 876 belonged to the ND class and were there-
fore excluded. The analysis was ultimately done over 280
entries spanning the SW, RB, TS, HW, and SR classes. The
breakdown of key information regarding the durations asso-
ciated with each class can is presented in Table 5. The data
show classes SW and HW have significantly longer mean du-
rations (1300.1 and 1657.5 minutes) compared to RB, TS, and
SR, although their medians (210 and 283 minutes) are only

Table 4: Top 5 Most Frequent Non-stop Words by Class

Category | Top 5 Words (with Frequencies)
SW fix (40), deployed (24), issue (21), monitoring (9),
identified (8)
RB back (31), change (27), issue (20), rolled (19), con-
figuration (10)
TS traffic (44), temporarily (30), rerouted (29), differ-

ent (8), region (7)

HW issue (18), engineers (10), manually (9), mitigated
(9), traffic (9)

SR maintenance (35), scheduled (34), completed (33),
resolved (7), issue (6)

ND monitoring (366), fix (364), implemented (354), re-
sults (330), issue (88)

modestly higher. In contrast, classes RB and TS have similar
moderate durations (medians of 185 and 199, and means of
316 and 357 respectively) with relatively smaller variability
(standard deviations of 396 and 457), while the SR class has
a relatively low median (60) but moderate mean (613.8).

A formal test confirmed these differences are statistically
significant. A Kruskal-Wallis nonparametric ANOVA on
ranked durations yielded p ~ 1.05 - 1075, allowing to re-
ject the null hypothesis of equal distributions across solu-
tion types. However, the effect size was small: ~ 0.215
(m? =~ 0.046), meaning only about 4.6% of the total vari-
ance is explained by solution category.

Table 5: Descriptive statistics regarding duration in minutes for each
class

Class | Count Mean | Med | Std Dev | Min Max
SW 63 1300.10 210 | 3582.78 25920
RB 57 356.98 185 456.70 8 2100
TS 57 316.23 199 395.52 7 2441
HW 57 1657.54 283 | 3522.07 22 | 19616
SR 46 613.76 60 | 2074.05 1 | 10080

5 Responsible Research

This research was carried out according to principles of re-
sponsible research practice. To allow for replicability, a repli-
cation package containing the used code, the dataset, the
ground truth set, and all environmental specifications will be
made available [33]. All data utilised consists of publicly
available incident reports sourced from established online
repositories such as the VOID Community database. Data
collection scripts were designed to respect website terms of
service and employed rate limiting to minimise server load.
The study focused solely on the technical content of these
reports pertaining to incident causes and solutions, and no at-
tempt was made to collect or analyze personally identifiable
information.

The methodology, including data preprocessing, classifi-
cation techniques, and analytical procedures, is described



transparently to facilitate reproducibility and critical review.
The random sampling for the ground truth set was done
via a seeded randomness generator to ensure reproducibility.
In addition, the visualisations presented in section 4 utilise
colorblind-friendly color palettes in order to ensure accessi-
bility for readers with color vision deficiency.

It is important to acknowledge that no Al classifier is per-
fect and misclassifications could influence the precise fre-
quency distribution of solution types. LLMs are often black
boxes” in the sense that understanding why a particular cat-
egory was chosen for a given data instance can be difficult.
This lack of transparency can be a concern if significant de-
cisions are made based on the LLM’s output without under-
standing the underlying reasoning. The requirement for the
LLM to output a quoted solution can be viewed as a localised
explainability, providing evidence for the classification which
can then be used by a human to verify the classification
decision. Additionally, LLMs require significant computa-
tional resources, which has an environmental impact [34].
This study employed LLaMA3.3-70B-Versatile, utilising pre-
existing scaled infrastructure. By avoiding the need to train a
model from scratch, the study significantly reduced its poten-
tial environmental footprint.

In a more broader context, an emerging concern in the lit-
erature is an over-reliance on automated tools [35], and more
specifically Al models, without sufficient human oversight,
which can potentially lead to new issues or a general “de-
skilling” of human operators [36]. This research aims to pro-
vide insights that inform human understanding and can assist
in the development of better tools and practices. It is not in-
tended to suggest a complete replacement of human expertise
in incident analysis or resolution but rather to augment it with
data-driven patterns.

Finally, the usage of AI/LLMs throughout the conducting
of the study is described in Appendix B

6 Discussion

This study aimed to develop a practical taxonomy for classi-
fying solutions in IT incident reports, evaluate an automated
approach for classification of said reports’ solutions, and de-
termine the prevalence of different solution types. The results
presented provided valuable insights into these areas, while
also highlighting the complexities associated with examining
unstructured public incident data.

6.1 The Taxonomy and its Utility

The overall analysis required balancing granularity of cate-
gories against practical constraints. The six-category taxon-
omy in this study was developed based on Zhao et al. [8] and
Wu et al. [10], but some nuanced classes were intentionally
omitted, as mentioned in subsection 4.1. This streamlining
improves consistency but means certain strategies are lumped
into broader groups. The findings echo this. In practice,
the “Self-Resolved” (SR) class includes both routine sched-
uled maintenance and incidental recoveries, which are qual-
itatively different but grouped together. The decision to in-
troduce the “Undisclosed/Not Specified” (ND) class was also
validated by the data as it was the most represented class by

far (76% of all reports). It allowed for accommodating for
the significant number of reports lacking detailed resolution
information.

The word frequency analysis (Table 4) further supported
the distinctiveness of the disclosed solution categories (SW,
RB, TS, HW, SR), with terms like “deployed” for software
fixes (SW), “rolled” and “back” for rollbacks (RB), “traf-
fic” and “rerouted” for traffic switches (TS), “engineers” and
“manually” for hardware repairs (HW), and “maintenance”
and “scheduled” for self-resolved (SR) incidents largely
aligning with their definitions. Interestingly, the word fre-
quencies of reports in the ND class were significantly higher
than those in the other classes. The observed higher level
of homogeneity is likely because, in the case of deliberate
lack of disclosure about the way the issue was resolved, the
subsequent reports likely follow a pre-defined format that su-
perficially describes the characteristics of the issue without
elaborating on the solution. This also aligned with the lack of
specificity in the most common words for the class.

6.2 Performance of Automated Classification

The LLaMA3.3-70B- Versatile model demonstrated substan-
tial agreement (Cohen’s Kappa = 71.4%) with manual anno-
tations and a strong macro F1 score (80.6%), indicating its ef-
fectiveness in automating the classification of solution types.
The performance is weaker than the one reported by Sufi [21]
regarding using LLMs for identifying characteristics of at-
tacks from historical cyber incident reports. However, that
study was specifically aimed at optimising model accuracy
for the task, whereas the present work prioritised generalis-
ability and minimal fine-tuning. As such, the stronger perfor-
mance observed in Sufi’s study is to be expected. Neverthe-
less, the overall accuracy of 87.4% is promising for applying
such models to larger datasets. The confusion matrix (Fig-
ure 1) revealed generally good performance, especially for
well defined actions like hardware or infrastructure changes
(HW). The lower recall in “Self-Resolved” incidents suggests
the LLM struggled with these cases and misclassified them
regularly as “Undisclosed/Not Specified”. This is likely due
to the nature of self-resolved incidents and the subtle linguis-
tic cues that differentiate them from an omitted resolution
statement.

6.3 Prevalence of Solution Strategies

The most frequent solution category overall was ND, ac-
counting for 76% of reports, reflecting that many of the re-
ports omit explicit fixes or describe only monitoring. The
prevalence of undisclosed solutions highlights a significant
characteristic of public incident reporting: the frequent lack
of detailed disclosure regarding the specific technical actions
taken to resolve incidents. This observation aligns with the
decision to include class ND in the proposed taxonomy and
suggests that some companies, for reasons such as confi-
dentiality or reputational risk, may limit the technical depth
of their public-facing postmortems. However, this finding
should be interpreted with caution, as companies with less
transparent disclosure practices may publish a disproportion-
ate number of reports.



Among the five disclosed-solution classes (SW, RB, TS,
HW, SR), software fixes were the most common (70 inci-
dents, 5.5%) and self-resolved (SR) the least common (50
incidents, 3.9%). Rollbacks (RB), traffic switches (TS), and
hardware repairs (HW) each appear in roughly 4.7-4.8% of
cases. Therefore, among the actionable solutions, implement-
ing a patch or code update is slightly more common. This
finding may reflect the complexity of modern software sys-
tems, where issues often require targeted code changes rather
than simpler operational maneuvers. The results contrast with
the findings of Zhao et al. [8], who observed that rollbacks
were the most common mitigation strategy. Importantly, that
study examined exclusively change-induced incidents, poten-
tially biasing the distribution toward fixes like rollbacks that
directly reverse recent changes. Overall, the reported mitiga-
tion solutions are relatively balanced. This reveals that the
challenge the industry is facing lies not in a lack of diverse
solutions but in the frequent non-disclosure in public reports.

6.4 Incident Duration and Solution Types

The findings of the exploratory analysis largely align with
prior research on mitigation strategies. In particular, Zhao
et al. found that solutions involving hotfixes or multi-step
manual interventions tend to be more time-consuming due to
greater manual effort [8]. Consistent with that, classes SW
and HW have the longest resolution times on average. Con-
versely, simpler, pre-planned strategies like rollbacks or traf-
fic failsafes (RB and TS) have shorter times, which is to be
expected for more automated fixes. The discrepancy between
mean and median in SW and HW suggests a heavy “long
tail”, meaning a few complex cases took extremely long to
resolve. This may reflect that some hotfixes required signif-
icant debugging or that certain hardware fixes encountered
supply or scheduling delays.

6.5 Implications of the Study

The high prevalence of “Undisclosed/Not Specified” solu-
tions suggests a critical challenge for researchers and prac-
titioners relying on public incident reports for AIOps model
training or understanding operational patterns. Additionally,
it also creates barriers for cross-organisational learning and
knowledge transfer. Without access to comprehensive inci-
dent resolution data, organisations must rely primarily on in-
ternal knowledge and trial-and-error approaches, perpetuat-
ing suboptimal response strategies across the industry. Lastly,
even though the employed taxonomy was effective for the re-
ports containing detailed solutions, the overwhelming num-
ber of undisclosed mitigation strategies limits the generalis-
ability of the quantitative findings to the broader set of all
publicly reported incidents. The potential link between solu-
tion type and incident duration deserves further investigation,
as understanding these relationships could help in predicting
resolution times or prioritising certain types of fixes based on
urgency.

7 Limitations and Future Work

While this study provides valuable insights into common so-
lution types documented in public incident reports, several

limitations should be acknowledged, which also point to-
wards directions for future research.

7.1 Limitations Regarding Data Collection

The primary dataset was drawn exclusively from the VOID
community database. Although it is a rich resource, relying
on a single aggregator may not capture the full diversity of
publicly available incident reports hosted on individual com-
pany blogs not added to the database or other repositories/-
databases.

It should also be mentioned that the nature of publicly
available incident reports is subject to inherent reporting bias.
It is reasonable to assume that larger companies, due to their
scale and resources, are more likely to have comprehensive
infrastructure for incident handling and are therefore more
inclined to publish detailed postmortems. Due to the fact that
the findings are based only on publicly available reports, gen-
eralising to all reports should be done with caution as the
types of solutions common in highly secure, proprietary, or
non-web-facing systems might differ.

7.2 Reporting Characteristics

The analysis focused on reports from the last three years
to capture contemporary practices. While this ensures rel-
evance, it cannot capture more long-term trends in solution
types or reporting methodologies that might have evolved
over a more extended period. Additionally, given how broad
and varied IT incidents can be, the snapshot of 1500 (1268
used for primary analysis) reports, although appropriate for
the scope of this study, may still be too limited to support firm
pattern emergence, or commonality among solution types.

7.3 Classification Limitations

This study utilised a single large language model for auto-
mated classification. This approach does not allow for a com-
parative analysis of different models, which could provide
insights into the general applicability of LLMs for incident
report analysis or reveal model-specific biases. Every model
comes with a certain amount of bias inherited from training
data which can potentially manifest in specific error patterns
(e.g. mistaking two particular classes for one another) which
might not be as prevalent or present at all in other models.
Furthermore, due to the use of an LLM model, the quantita-
tive findings of the research are extremely dependent on its
performance. As such, generalisations drawn from the results
should take into account the limitations of the method used.

7.4 Taxonomy Limitations

The developed taxonomy aimed to strike a balance between
granularity and generalisability, preserving the nuances of the
data while also ensuring that the classes were broad enough
to allow scalable observation and analysis. Despite efforts for
objectivity, some degree of subjectivity can remain in defin-
ing the boundaries between categories. More broadly, any
taxonomy is an abstraction. Incident mitigation can be mul-
tifaceted, involving a primary action accompanied by several
secondary or supporting actions. Forcing a complex resolu-
tion into a single category inevitably leads to a loss of some
detail and nuance.



7.5 Future Work

Future work could focus on expanding the dataset’s scope and
depth through more sophisticated data acquisition strategies.
This includes incorporating a wider range of public sources -
such as company engineering blogs, status pages, and other
incident repositories, still adhering to ethical data collection
practices of course. Additionally, with appropriate permis-
sions, future studies could explore private, anonymised inci-
dent report datasets to compare findings with public data and
mitigate publication bias. Collecting data over a longer his-
torical period would also enable analysis of temporal trends
in incident response strategies and reporting practices. To fur-
ther enhance classification accuracy, techniques for identify-
ing and extracting solution statements from full reports could
be improved using advanced NLP models tailored for infor-
mation extraction or question answering. Exploring multi-
label classification approaches and hierarchical taxonomies
might offer more granular categorisation. Finally, conducting
comparative evaluations of different large language models
such as various open-source or commercial APIs, as well as
fine-tuned variants could yield valuable insights into their ef-
fectiveness for solution classification tasks.

8 Conclusion

This study set out to extract and analyze common solution
patterns in public IT incident reports. Using a prompt-based
LLM classifier, the primary fix action in each report was au-
tomatically identified and categorised. It was revealed that
a single category—undisclosed solutions (ND)—dominates
most reports, but among explicit solutions, hotfixes/software
fixes (class SW) were the most frequent. Statistical tests
showed that solution category is significantly associated with
incident duration (p<0.001), yet the effect is small (only
4.6% variance explained). Results also revealed that some
fix types (e.g., hotfixes or hardware repairs) tend to require
longer work, while rollbacks and traffic switches were typ-
ically quick. This study highlights the potential value of
clearer reporting standards. If incident reports consistently
recorded and disclosed the exact solution employed to deal
with the incident, future analyses could provide more pre-
cise insights. With respect to the AI/NLP community, this
work shows promising results in utilising LLMs for report
analysis, while also noting the importance of human reviews
of the output of said models. The importance of combining
automated pattern mining with expert knowledge should not
be understated. Although trends emerge from data, human
expertise remains crucial to interpret and act on them. Ulti-
mately, while modern tools like LLMs can greatly enhance
the speed and consistency of incident analysis, human over-
sight must remain the final arbiter.
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A Appendix A - System Prompt for

Automatic Classification

You are an expert IT incident analyst tasked
with analyzing full incident reports (
postmortems) to identify and categorize the
primary solution implemented to resolve the
core issue.

**Your Goal:**

1. Read the entire incident report provided below.

2. Identify the section(s) or statement(s) that
describe the *primary corrective action* or *
implemented fix* that resolved the main problem

3. Based *only* on this identified solution,
classify it into one of the following six
categories.

-.‘::“:Focus : %

%

%

Prioritize the action that directly restored
service or fixed the underlying fault.
Distinguish between immediate corrective
actions and longer-term preventative measures
or lessons learned (we are interested in the *
immediate fix*).

If multiple actions were taken, identify the *
most critical or impactful one* that led to
resolution.

**Categories for the *Implemented Solution®:**

**A: Software Fix:** The solution involved
deploying a *new* piece of code, a patch, or a
hotfix to correct a software bug or issue. This

implies a change to the existing codebase that
moves it forward, rather than reverting.

*Keywords/Phrases often associated:* "

deployed a patch", "released hotfix", "fixed
the bug in code", "merged fix and deployed", "
applied code change"

**B: Rollback:** The solution involved
reverting a recent deployment (code,
configuration, or feature flag) to a previous
known-good state. This is specifically about
undoing a recent change.
* *Keywords/Phrases often associated:*
rolled back deployment", "reverted to previous
version", "undid change", "restored prior
configuration", "disabled feature flag that was
just enabled"

#**C: Traffic Switch:** The solution involved
rerouting user traffic or data flow, typically
by failing over to a standby system/region to
bypass a problematic component or environment,
changing load balancer configurations or DNS
settings.
* *Keywords/Phrases often associated:*
failed over to secondary", "switched traffic to
new cluster"”, "rerouted users", "updated DNS
to point to", "diverted traffic"

**D: Hardware/Infrastructure Repair or
Operation:** The solution involved rebooting,
scaling and/or isolating faulty containers or
physical machines. It could also include
performing operational actions on
infrastructure services (e.g., restarting a
core service, scaling infrastructure resources,
rebooting hosts).

*Keywords/Phrases often associated:* "

*

replaced faulty disk/server", "rebooted host
machine", "restarted critical infrastructure
service", "scaled up VM resources", "network

device repair"

**E: Self-Resolved:** The issue resolved itself

without direct manual intervention by the
reporting team, often due to transient
conditions. Issues in this category mostly stem
from scheduled maintenances.

*Keywords/Phrases often associated:* "issue
self-resolved", "transient network glitch
cleared", "system automatically recovered",
scheduled maintenance"

%

**F: Undisclosed/Not Specified/Other:** This
category is for situations where:

1. The specific fixing action is not clearly
stated, entirely omitted, or is too vague in
the report.

2. The solution was an external dependency
being fixed by a third party (and not detailed)

3. If no clear single fixing action can be
identified from the report.
* *Keywords/Phrases often associated:* "
vendor resolved upstream issue", "no specific
action detailed", "monitoring and investigation
ongoing (if no fix)"
**Qutput Instructions:**

1. First, on a new line, briefly **quote the exact
key sentence(s) or phrase(s)** from the report
that best describe the implemented solution

you are classifying. If the solution is
described across multiple sentences, try to
pick the most concise and representative part.
Limit this to 1-3 sentences. If no clear
solution statement is found, write "
SOLUTION_NOT_FOUND".

2. Second, on the next new line, provide **ONLY
the single letter** (A, B, C, D, E, or F)
corresponding to the category for the
identified solution.

**Example Output Format:**

Quoted Solution: "We successfully rolled back the
new feature deployment to the previous stable
version (v2.1.5)."

Category: B

Quoted Solution: "A patch was developed and
deployed to address the null pointer exception
in the billing module."

Category: A



Quoted Solution: "Traffic was immediately failed
over to our DR site in us-west-2."
Category: C

Quoted Solution: "The issue appears to have been
transient and resolved itself after
approximately 15 minutes."

Category: E

Quoted Solution: "SOLUTION_NOT_FOUND"
Category: F

**Incident Report to Analyze:

B Appendix B - usage of Al

Al tools were also used as an aid to the writing process by cre-
ating initial drafts on paragraphs, improving text conciseness
and sentence rephrasing. Additionally, Al was also used for
automation of creating tables in I£TX, as well as generating
scripts for creating chart visualisations and data type conver-
sions via Python. Finally, Al was also queried for explana-
tions on different topics needed throughout the study such as
navigating Excel functionalities, I[gXand Python error out-
puts, machine learning terminology and providing summaries
on package documentations. All content generated by Al was
manually reviewed and thoroughly examined for quality as-
surance purposes and ensure proper functionality/correctness.
At no point throughout the project was Al intended to be used
as a substitute for critical thinking or human expertise.
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