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Abstract
Type-checkers are used to verify certain attributes
of programs are correct. Avoiding bugs in type-
checkers is especially important when accept-
ing faulty programs has serious real-world con-
sequences. Correct-by-construction programming
aims to prevent such bugs by embedding proofs of
a program’s correctness within the program itself.
However, this approach introduces different chal-
lenges, such as added complexity. Whether the ben-
efits of correct-by-construction type-checkers out-
weigh these challenges for more complex language
features remains uncertain. This paper investigates
correct-by-construction type-checking for a toy lan-
guage with polymorphic algebraic data types and
pattern matching. We do this by implementing
a type-checker in the dependently typed language
Agda. We show that this approach guarantees a
type-checker that does not accept ill-typed terms.
Furthermore, we reflect on the challenges of this ap-
proach and argue that this approach should be used
when a guarantee of correctness is required.

1 Introduction
Static type systems are a form of (lightweight) formal veri-
fication for software systems [1]. They allow the program-
mer to specify their intention regarding computation, which
is then validated at compile time. One example is annotating
a function’s argument with its expected type, preventing in-
correct function application, e.g., integer multiplication with a
boolean. More advanced examples include preventing out-of-
bound indexing using dependent types or restricting resource
use using substructural types [2]. Static type systems can pre-
vent a wide range of software bugs. Because of this, many
popular programming languages use them, which shows their
significance in software engineering.

Type-checkers used for validating type systems can con-
tain bugs themselves. Ideally, type-checkers are complete and
sound, meaning they do not incorrectly reject a correct pro-
gram and always reject ill-typed programs [3]. While incom-
pleteness merely annoys the developer, unsoundness could
lead to critical system failure. Avoiding bugs in type-checkers
is important, especially for fields where accepting a faulty pro-
gram can have serious real-world consequences, e.g., military
or aerospace.

One area aiming to solve these problems is correct-by-
construction (CbC) programming. This is a style of program-
ming that allows intrinsic verification. Intrinsic verification
is obtained by defining properties the program must adhere to
at the type level [4], and then writing a program that satisfies
these properties by construction. If the program compiles, it
is correct for the properties that were defined. Encoding in-
variants in types is a well-known feature of dependent types
[5], meaning languages with this feature, e.g. Agda, are well-
suited for this line of research.

There are existing resources on CbC programming with
type systems. Wadler et al. [3] use this style of program-
ming to formalize the simply-typed lambda calculus (STLC),

and they extend it with further features such as let constructs
and sum types. Casamento [5] presents a CbC type-checker
for a language based on the STLC with a module system using
scope graphs. Sozeau et al. [6] implement a CbC type-checker
for the proof assistant Coq in Coq. They highlight the impor-
tance of the CbC approach, noting that every year at least one
critical bug is found in the implementation of Coq.

It remains uncertain whether the benefits CbC program-
ming introduces outweigh the challenges for more complex
language features. One feature worth exploring is algebraic
data types (ADTs), which expand expressive power by allow-
ing programmers to declare and use common data types such
as lists, trees, and more. While Coq supports inductive types
which can be used as ADTs, Sozeau et al. focus on Coq as
a whole, whereas we focus on ADTs and the challenges we
encounter for them specifically.

This paper answers the following research question: How
can correct-by-construction programming be used to increase
the trustworthiness of type-checkers for algebraic data types?
To do this, we first introduce a toy language involving ADTs,
pattern matching, and polymorphism. After this, we translate
the syntax and typing rules into Agda, which serves as the
meta language. Then, we explain the implementation of the
CbC type-checker. Following that, we reflect on the value of
the CbC approach and discuss any challenges we encountered.

We present the following contributions:
1. The syntax and typing rules of a toy language with ADTs,

pattern matching, and polymorphism.
2. An implementation for a CbC type-checker in Agda writ-

ten for the toy language.
3. A discussion on the benefits and challenges the CbC ap-

proach brings.
The paper begins by giving some relevant background infor-
mation in Section 2. Section 3 introduces the toy language
used for the type-checker. Section 4 outlines the implemen-
tation of the CbC type-checker. Section 5 discusses the type-
checker and reflects on the CbC approach. In Section 6, we re-
flect on the ethical aspects of our research. Section 7 presents
the conclusions and suggestions for future work. Finally, Sec-
tion 8 marks the end of this paper with the acknowledgments.

2 Background
This section briefly discusses some background knowledge
that is required to understand the further sections. We first
discuss type systems in Section 2.1. After that, we go over
what ADTs are in Section 2.2. Finally, we discuss Agda in
Section 2.3.

2.1 Type Systems
Type systems dictate what type each value within a program-
ming language has and how these types can interact. They can
enforce rules statically (at compile-time), dynamically (at run-
time), or using a combination of both. Statically typed lan-
guages are checked using a type-checker. While static checks
mainly serve to prevent execution errors at run-time [7], they
can also increase the efficiency of a program by eliminating
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many of the dynamic checks that would otherwise have to be
performed [1; 7].

Type inference is when the compiler automatically deduces
the types of certain terms based on the context surrounding the
term. This has the advantage that explicit annotations can be
omitted while still ensuring type safety. Excluding explicit an-
notations makes the code more concise and removes the pro-
grammer’s burden of specifying types manually.

2.2 Algebraic Data Types
ADTs are types composed of other types. This can be done
through sum and product operations, hence the name alge-
braic. Product types combine multiple types into one, such as
pairs. Sum types allow a type to be one of more types. This is
useful for representing types that can take more forms, such as
the tree ADT in Figure 1. These product and sum types can be
arbitrarily combined to create more complex types, and they
can also be recursive.

ADTs can be polymorphic by parametrizing the type over
a type variable. This type variable can be replaced with any
specific type. For example, in Figure 1, we instantiate a tree
of integers by replacing the type variable with Int. Polymor-
phism increases the flexibility and reusability of ADTs, as it
removes the need to declare them for each type individually.
This allows for more concise and maintainable code, as we
can adapt the ADT to the context in which it is used.

Pattern matching can be used to deconstruct and manipulate
ADTs. It allows us to access the different variants within an
ADT and use its underlying values to perform calculations.
Continuing with the tree example from before, we define a
height function that is dependent on the form the ADT takes.
Leaves are the end of the tree and, therefore, have a height of
1. For nodes, we can calculate the height by accessing their
subtrees and recursively calling the height function.

data Tree a = Leaf a
| Node (Tree a) (Tree a)

−− example of a tree parameterized by Int
intTree :: Tree Int
intTree = Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)

−− example of pattern matching
height :: Tree a → Int
height (Leaf _) = 1
height (Node l r ) = 1 + max (height l ) (height r )

Figure 1: Algebraic data type in Haskell.

2.3 Agda
Agda is a purely functional, dependently typed, and total pro-
gramming language. Dependent types allow us to use arbi-
trary values within types [8], which enables embedding prop-
erties the program must adhere to within the program itself.
Dependent types also allow us to construct formal proofs in
Agda [9] through the Curry-Howard correspondence, which
means that aside from being a programming language, Agda
serves as a proof assistant. Agda being a total language means
programs are guaranteed to terminate.

One popular example [8; 10] showcasing the power of de-
pendent types is that of Vec A n as seen in Figure 2. This is

a polymorphic list which is dependent on its own length. Vec
allows us to use the length of the list as a property on the type
level. One specific use case is that of head, which returns the
first element in the list. Without knowing the length of a list,
we would have to wrap the result type of head in the Maybe
data type since performing head on an empty list would fail.
With Vec, we can reason that the list must be at least of length
1, which allows us to return the value directly.

data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_::_ : {n : ℕ} → A → Vec A n → Vec A (suc n)

head : {A : Set} {n : ℕ} → Vec A (suc n) → A
head (x :: xs) = x

Figure 2: An implementation of head using Vec in Agda.

We can also use dependent types to encode relations be-
tween values at a type level. Figure 3 shows an inductively
defined relation [3] for natural numbers. Its constructors form
the base case and inductive case. We construct an instance of
this relation by providing proof the relation holds. If it does
not hold, we cannot construct this proof since the type has no
inhabitants. Later, we will show that we can model the typing
rules of our language as a relation.

data _<_ : ℕ → ℕ → Set where
z<n : ∀ {n} → zero < suc n – base case
s<s : ∀ {m n} → m < n → suc m < suc n – inductive case

proof : 1 < 2
proof = s<s z<n – constructing a proof

Figure 3: Inductive relation between natural numbers.

3 Toy Language
This section discusses the toy language used for the later im-
plementation of the type-checker. We start by giving the syn-
tax in Section 3.1. Then we discuss de Bruijn indices in Sec-
tion 3.2. Finally, we discuss the type system in Section 3.3.

3.1 Language Syntax
The toy language used for this project includes ADTs, pattern
matching, and polymorphism. The language itself is an ex-
tension of Girard’s System F [11], which extends the STLC
with explicit type abstractions and applications. We added
case expressions and ADTs based on the Haskell syntax, as
well as some minor language constructs such as naturals so
that we can write an actual program. The syntax can be seen
in Figure 4.

There are certain constraints on the declarations of new
types, much like in Haskell. All type variables in 𝛼 in a type
constructor 𝑇𝛼 must be unique to avoid ambiguity. Further-
more, since all type variables in a data constructor’s argu-
ments are bound through the type constructor, we cannot use
type variables as arguments that are not present in 𝛼. Finally,
we reserve capitalized names for type and data constructors
and require all types and data constructors to be unique.
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Variables 𝑥, 𝑦, 𝑧
Type variables 𝛼, 𝛽
Type constructors 𝑇
Data constructors 𝐶

Programs prog ∶∶= 𝑑 𝑡
Type Declaration 𝑑 ∶∶= data 𝑇 𝛼 where 𝐶 𝜎
Atoms 𝑣 ∶∶= 𝑥 | 𝐶
Terms 𝑡, 𝑢, 𝑒 ∶∶= 𝑣 | 𝜆 𝑥∶𝜎.𝑡 | Λ𝛼.𝑡 | 𝑡 𝑢 | 𝑡 𝜎

| zero | suc 𝑡 | true | false
| case 𝑡 of [ 𝑝 ]

Patterns 𝑝 ∶∶= 𝐶 𝑥 → 𝑡

Types 𝜎, 𝜏, 𝜉, 𝜙 ∶∶= ∀𝛼.𝜎 | 𝜎 → 𝜏 | 𝑇 𝜎 | 𝛼 | Bool | 𝐍
Context Γ,Δ ∶∶= ∅ | Γ, 𝑣 ∶ 𝜎 | Γ, 𝜎
Substitutions [𝛼 ↣ 𝜙]

Figure 4: Syntax of the toy language.

3.2 De Bruijn Indices
We use de Bruijn indices [12] to represent variable bindings
in our language. De Bruijn indices are a common way of rep-
resenting bindings namelessly. They remove the need to con-
sider variable freshness constantly, as indices point directly to
their corresponding binder. They also enforce 𝛼-equivalence,
e.g., 𝜆𝑥.𝑥 is equivalent to 𝜆𝑦.𝑦 even though the variables’
names differ. More importantly, they allow us to implement
capture-avoiding substitution, which in our language is rele-
vant for type variables in type applications.

Original expression
𝑒1 : ∀𝛼.∀𝛽.𝛼 → 𝛼

Type application (applied 𝛽 is free before being substituted)
𝑒1 𝛽 : (∀𝛽.𝛼 → 𝛼) [𝛼 ↣ 𝛽 ]

Resulting expression (𝛽 is bound by the remaining type abstraction)
𝑒2 : ∀𝛽.𝛽 → 𝛽

Figure 5: Variable capture through type application.

Variable capture occurs when a variable becomes bound by
a different binder upon substitution due to name clashes. An
example can be seen in Figure 5 using notation from Figure 4.
When a variable is captured, applications to its original binder
will no longer replace this variable, as it is now bound else-
where. This can cause subtle bugs in programs, and while
they may not arise often, they pose a problem in the system.
De Bruijn indices address this problem by eliminating name-
wise comparisons between type variables, allowing for a sub-
stitution algorithm that does not require variable names to be
unique.

One disadvantage of de Bruijn indices is that they can be
hard to interpret. Since names are removed and only an index
remains, finding where a variable is bound consists of count-
ing back individual binders. This makes a complex program
unreadable for humans. When we discuss term-level bindings
in Section 4.1 we introduce a variation of de Bruijn indices
which solves this problem.

𝑥 ∶ 𝜏 ∈ Γ
VAR

Γ ⊢ 𝑥 ∶ 𝜏

Γ ⊢ 𝑒 ∶ 𝑇 𝜉 Γ ⊢𝑝𝑠 𝑝 ∶ 𝑇 𝜉 → 𝜏
∀𝐶 ∈ constructors(𝑇 ),∃ 𝑝𝐶 ∈ 𝑝

CASE
Γ ⊢ case 𝑒 of [ 𝑝 ] ∶ 𝜏

Γ, 𝑥 ∶ 𝜎 ⊢ 𝑒 ∶ 𝜏 Γ ⊢𝑘 𝜎
ABS

Γ ⊢ 𝜆𝑥 ∶ 𝜎.𝑒 ∶ 𝜎 → 𝜏

Γ ⊢ 𝑒1 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑒2 ∶ 𝜎
APP

Γ ⊢ 𝑒1𝑒2 ∶ 𝜏
Γ, 𝛼 ⊢ 𝑒 ∶ 𝜏

T-ABS
Γ ⊢ Λ𝛼.𝑒 ∶ ∀𝛼.𝜏

Γ ⊢ 𝑒 ∶ ∀𝛼.𝜏 Γ ⊢𝑘 𝜎
T-APP

Γ ⊢ 𝑒 𝜎 ∶ 𝜏[𝛼 ↣ 𝜎]

Γ ⊢𝑝 𝑝 ∶ 𝑇 𝜉 → 𝜏
Γ ⊢𝑝𝑠 𝑝 ∶ 𝑇 𝜉 → 𝜏

PCONS
Γ ⊢𝑝𝑠 𝑝, 𝑝 ∶ 𝑇 𝜉 → 𝜏

PEMPTY
Γ ⊢𝑝𝑠 ∅ ∶ 𝑇 𝜉 → 𝜏

(𝐶 ∶ ∀𝛼𝑡.𝜎𝑐 → 𝑇 𝜉
𝑡
) ∈ Γ 𝜃 = {𝛼 ↣ 𝜙}

𝜃(𝜉) = 𝜉𝑝 Γ, 𝑥 ∶ 𝜃(𝜎)
𝑐
⊢ 𝑒 ∶ 𝜏

PAT
Γ ⊢𝑝 𝐶 𝑥𝑐 → 𝑒 ∶ 𝑇 𝜉𝑝 → 𝜏

Figure 7: Typing rules of the toy language.

3.3 Type System
The typing rules relevant to this paper can be seen in Figure 7.
Most of the rules are taken directly from System F and are
therefore not explained here. We exclude rules for type dec-
larations as these only prepopulate the context with the con-
structors. Data constructors are function types that map their
arguments to the newly declared type. If the type is polymor-
phic, we include type abstractions over all its type variables
for every data constructor as seen in Figure 6. When there are
multiple declarations the contexts are appended.

Declaration
data List a where Nil | Cons a (List a)

Context
∅, List a, Nil ∶ ∀a.List a, Cons ∶ ∀a.a→ List a → List a

Figure 6: Declaration and conversion to a context.

Programmers may introduce types when annotating lambda
arguments or applying a type to a type abstraction. We re-
quire these types to be well-kinded, which is enforced using
the auxiliary judgment Γ ⊢𝑘 𝜎 taken from Jones et al. [13]
Kinds are the types of type constructors, and just like terms
need to be well-typed, types need to be well-kinded. Con-
cretely, this means that type variables need to be in scope.
Also, ADTs must be declared and saturated, and their param-
eters must also be well-kinded. Saturation means the number
of parameters matches the type constructor’s arity.

The rules for pattern matching use the auxiliary judgments
Γ ⊢𝑝𝑠 𝑝 ∶ 𝜎 → 𝜏 and Γ ⊢𝑝 𝑝 ∶ 𝜎 → 𝜏 based on Jones et al.
[13], Chen and Erwig [14] and Jones et al. [15]. The PCONS
rule works by iterating over a sequence of patterns, ensuring
all patterns are valid and have the same return type. The PAT
rule first asserts that 𝐶 is a data constructor belonging to a
type constructor 𝑇 . A function 𝜃 replaces all free type vari-
ables in the constructor’s arguments with their corresponding
parameter from the scrutinee type of the case expression. Fi-
nally, we extend the context with the pattern variables bound
to the transformed argument types and assert that the pattern
body is well-typed in this context.
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4 Implementation
Here, we present the implementation of the CbC type-checker
for the toy language from the previous section. We first ex-
plain the required data types in Section 4.1. After that, we
present the type-checker in Section 4.2.

4.1 Prerequisite Data Types
We first explain how we represent the syntax and how we split
up the context. Finally, we combine these two and show how
we modeled our typing rules as an inductive relation.

Representing Syntax
Our type-checker takes our program in the form of an abstract
syntax tree. Agda’s Unicode support allows us to write the
different terms in a format that closely resembles our syntax.
The most relevant syntax definitions can be seen in Figure 8.

data _∈_ (x : String) : Scope → Set where – ← membership relation
here : {xs : Scope} → x ∈ (x :: xs)
there : {y : String} {xs : Scope} → x ∈ xs → x ∈ (y :: xs)

data Type : Set where – ← types of terms
TVar : ℕ → Type – ← variable using de Bruijn indices
– ↓ ADT parameterized by a list of types
T : String → List Type → Type
– ...other types

mutual
data Term (𝛼 : Scope) : Set where
– ↓ variable using well-scoped names
‘_#_ : (x : String) → x ∈ 𝛼 → Term 𝛼
– ↓ lambda extends scope
𝜆_:_⇒_ : (x : String) → Type → (v : Term (x :: 𝛼)) → Term 𝛼
‘case_of[_] : Term 𝛼 → List (Pattern 𝛼) → Term 𝛼
– ...other terms

data Pattern (𝛼 : Scope) : Set where
– ↓ pattern extends scope
‘_#_:_→_ : (x : String) → x ∈ 𝛼 → (ns : List String)

→ Term (reverse ns ++ 𝛼) → Pattern 𝛼

Figure 8: A subset of the syntax definitions in Agda.

We use a variation of de Bruijn indices with names for term-
level bindings. Since we have more ways of creating bind-
ings for terms (constructors, lambda expressions, patterns),
using regular de Bruijn indices can make the program hard
to interpret. This is solved by adding names. We achieve
well-scoped names [16] by providing the Scope1 as a param-
eter and providing proof of membership when we access this
scope. While this approach means we have to construct proofs
manually, it provides the additional guarantee that there are no
free variables by construction. An example program showcas-
ing the difference between de Bruijn indices and well-scoped
names can be seen in Figure 9.

term : Term Φ
term = Λ {-a-} Λ {-b-}

(𝜆 "f" : ({-a-} TVar 1 ⇒ {-b-} TVar 0) ⇒
𝜆 "x" : {-a-} TVar 1 ⇒

‘ "f" # there here · ‘ "x" # here)

Figure 9: Example with de Bruijn indices and well-scoped names.

1Scope is a type alias of List String.

Contexts
We split the context into two as seen in Figure 10. The
Context holds all term-level bindings and associates them
with their type. It is indexed on scope similarly to the terms
discussed previously. The TyContext stores all declared
types and is indexed on the number of type variables cur-
rently in scope. This second context is used to check well-
kindedness, as defined in Section 3.3.

data Context : Scope → Set where
∅ : Context Φ
– ↓ adding variable extends scope
_,_:_ : {𝛼 : Scope} → Context 𝛼

→ (x : String) → Type → Context (x :: 𝛼)

data TyContext : ℕ → Set where
∅ : TyContext 0
– ↓ adding new type to list of valid types
_,_ : {n : ℕ} → TyContext n → Type → TyContext n
– ↓ extending context with a type variable
_,· : {n : ℕ} → TyContext n → TyContext (suc n)

Figure 10: Declaration of Context and TyContext.

Typing Rules
An essential component for our type-checker is the typing re-
lation as defined in Figure 11. This data type is parametrized
by the two contexts that were previously discussed and in-
dexed over terms and types. It forms an inductive relation that
states that a term evaluates to a valid type under a given con-
text. We assume this context has been pre-populated with all
declarations as described in Section 3.3, i.e., Context con-
tains all data constructors, and TyContext contains all de-
clared types. For the sake of conciseness, we omit the details
of the implementation for converting declarations to a context
and focus on type-checking terms.

data _⨾_⊢_:_ {n : ℕ} {𝛼 : Scope} (Γ : Context 𝛼) (Δ : TyContext n)
: Term 𝛼 → Type → Set where
– ...other rules
⊢‘ – ↓ variable rule

: {x : String}
→ (p : x ∈ 𝛼)
→ Γ ⨾ Δ ⊢ ‘ x # p : lookupVar Γ x p

⊢𝜆 – ↓ lambda rule
: {x : String} {t1 t2 : Type} {e : Term (x :: 𝛼)}
→ Γ , x : t1 ⨾ Δ ⊢ e : t2
→ Δ ⊢𝑘 t1
→ Γ ⨾ Δ ⊢ (𝜆 x : t1 ⇒ e) : t1 ⇒ t2

⊢◦ – ↓ type application rule
: {t1 t2 : Type} {e : Term 𝛼}
→ Γ ⨾ Δ ⊢ e : ‘∀ t1
→ Δ ⊢𝑘 t2
→ Γ ⨾ Δ ⊢ e ◦ t2 : t1 [ t2 ]

⊢case – ↓ case expression rule
: {ts : List Type} {ps : List (Pattern 𝛼)} {t : Type}

{e : Term 𝛼} {x : String}
→ Γ ⨾ Δ ⊢ e : T x ts
→ Γ ⨾ Δ ⊢𝑝𝑠 ps : T x ts → t
– ↓ make sure there is a pattern for all constructors
→ (contextToConstructors Γ x) ↭ (patternsToConstructors ps)
→ Γ ⨾ Δ ⊢ ‘case e of[ ps ] : t

Figure 11: A subset of the typing rules implemented in Agda.
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The constructors in Figure 11 are the typing rules as out-
lined in Figure 7. They take derivations of strict subexpres-
sions to construct a new derivation. They can also take ad-
ditional properties, such as the auxiliary judgments that were
introduced in Section 3.3. These auxiliary judgments are sim-
ilarly translated into Agda from their definition in Figure 7 and
are therefore not discussed here.

ADTs form one additional challenge for checking well-
kindedness. The TyContext is a list of the declared types,
and to check whether a data type is in scope and saturated, we
must traverse the TyContext until we find the respective type.
However, by traversing it, we discard types that are earlier in
the list than the type we are looking for. If we then check that
the parameters are also well-kinded, they could incorrectly be
rejected if they reference a type that was earlier in the list. That
is why we define an auxiliary data type that copies the original
TyContext, as seen in Figure 12. The left copy is preserved
for checking parameters, while the right copy is traversed in a
style similar to that of the membership relation in Figure 8.

mutual
data _⊢𝑘_ {n1 : ℕ} (Δ : TyContext n1) : Type → Set where
– ...other rules

⊢𝑘T – ↓ copies original context into one for traversing
: {x : String} {ts : List Type}
→ Δ ⨾ Δ ⊢𝑘 T x ts
→ Δ ⊢𝑘 T x ts

data _⨾_⊢𝑘_ {n1 n2 : ℕ} (Δ : TyContext n1)
: TyContext n2 → Type → Set where

⊢𝑘T’
: {Δ’ : TyContext n2} {x1 x2 : String} {ts1 ts2 : List Type}
→ x1 ≡ x2
– ↓ verifies type is saturated
→ length ts1 ≡ length ts2
– ↓ checks parameters (applies ⊢𝑘 to each parameter)

→ Δ ⊢𝑘𝑠 ts2
→ Δ ⨾ Δ’ , T x1 ts1 ⊢𝑘 T x2 ts2

⊢𝑘there – similar definition for ,·
: {Δ’ : TyContext n2} {t1 t2 : Type}
→ Δ ⨾ Δ’ ⊢𝑘 t1
→ Δ ⨾ (Δ’ , t2) ⊢𝑘 t1

Figure 12: Auxiliary data type for kind-checking ADTs.

4.2 Type-Checking Algorithm
Our type-checker constructs an instance of the typing relation
introduced in Section 4.1, proving the relation holds. How-
ever, we cannot create an instance if the relation does not hold.
Since Agda does not allow raising exceptions, we must handle
ill-typed terms differently. We can use a monad to simulate the
effect of raising an exception [17].

We use the Evaluator monad to handle programs for
which our type-checker cannot construct a proof. It is an eval-
uator in the sense that it can evaluate whether the relation
that is passed to it as a parameter holds. The Evaluator has
two smart constructors, evalError which takes a string, and
evalOk which takes the parameter type. This monad allows
for continuous computation as long as no error is encountered.
If an error is thrown, it stops computation and propagates the
error message to the end. The return and bind operations
for this monad are defined in Figure 13.

return : a → Evaluator a
return x = evalOk x

bind : Evaluator a → (a → Evaluator b) → Evaluator b
bind (evalError err ) _ = evalError err
bind (evalOk x) f = f x

Figure 13: Pseudo-code of the return and bind functions for the
Evaluator monad.

We use type inference to simultaneously reconstruct the
type from a given term and verify that the constraints of the
type system are adhered to. As mentioned in Section 2.1, type
inference allows for fewer explicit type annotations. For ex-
ample, instead of annotating the return type of a lambda ex-
pression and checking that the lambda body indeed returns
that type, we can infer the body’s type directly. Sometimes,
we do need to check a term against a given type, for example,
in function applications. We first infer the function type and
then check that the supplied argument matches the function’s
expected argument type. This is done using checkTerm. The
signatures for inferTerm and checkTerm can be seen in Fig-
ure 14. While both return a derivation for the given term,
inferTerm returns it paired with the inferred type.

inferTerm : ∀ {𝛼 : Scope} {n : ℕ} (Γ : Context 𝛼) (Δ : TyContext n)
(u : Term 𝛼) → Evaluator (Σ[ t ∈ Type ] Γ ⨾ Δ ⊢ u : t)

checkTerm : ∀ {𝛼 : Scope} {n : ℕ} (Γ : Context 𝛼) (Δ : TyContext n)
(u : Term 𝛼) (ty : Type) → Evaluator (Γ ⨾ Δ ⊢ u : ty)

Figure 14: Sigatures of inferTerm and checkTerm.

The majority of the implementation can be found in
inferTerm. For each term, we add a case that constructs
an instance of its accompanying typing rule. The cases of
inferTerm for the constructors from Figure 11 can be seen
in Figure 15. Each case first constructs proofs of all relations
that are required for its respective constructor. It does this by
(recursively) calling evaluators that construct these relations.
Then, it instantiates the typing relation by supplying its re-
spective constructor with these proofs.

– ...other cases
inferTerm ctx tyCtx (‘ x # index ) = do

return (lookupVar ctx x index , ⊢‘ index )
inferTerm ctx tyCtx (𝜆 x : aTy ⇒ body) = do

bTy , btd ← inferTerm (ctx , x : aTy) tyCtx body
kind ← checkKind tyCtx aTy
return (aTy ⇒ bTy , ⊢𝜆 btd kind)

inferTerm ctx tyCtx (body ◦ t) = do
(‘∀ ty) , ltd ← inferTerm ctx tyCtx body

where _ → evalError "invalid application"
kind ← checkKind tyCtx t
return (ty [ t ] , ⊢◦ ltd kind)

inferTerm ctx tyCtx (‘case sc of[ ps ]) = do
scTy@(T adt _) , sctd ← inferTerm ctx tyCtx sc

where _ → evalError "can not pattern match on non-adt"
t , pstd ← inferPatterns ctx tyCtx ps scTy
eq ← evalSetEquiv

(contextToConstructors ctx adt) (patternsToConstructors ps)
return (t , ⊢case sctd pstd eq)

Figure 15: Different cases of the type inference algorithm.
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Due to intrinsic typing, each valid implementation for the
evaluators is sound with respect to the typing relation. As
mentioned in Section 2.3, we cannot construct a proof for a
relation if the relation does not hold. Therefore, an evaluator
constructing an instance of the relation can also never cre-
ate one for a term that does not adhere to the typing rules.
This also means that if we were to make a mistake that would
make the type-checker unsound, the type-checker would not
compile. For example, if we compare the implementation
of inferTerm for a lambda expression to the definition of
the lambda rule in Figure 11, we see that the recursive call
correctly extends the context with the argument before call-
ing inferTerm on the lambda body. If we had not done
this, the resulting proof would have been for a different re-
lation than required by the constructor, preventing the type-
checker from compiling. This is what we refer to as correct-
by-construction. The type definitions effectively guide us in
providing a valid implementation.

checkKind : ∀ {n : ℕ} (Δ : TyContext n) (t : Type) → Evaluator (Δ ⊢𝑘 t)
checkKind’ : ∀ {n n’ : ℕ} (Δ : TyContext n) (Δ’ : TyContext n’) (t : Type)

→ Evaluator (Δ ⨾ Δ’ ⊢𝑘 t)
inferPattern : ∀ {𝛼 : Scope} {n : ℕ} (Γ : Context 𝛼) (Δ : TyContext n)

(p : Pattern 𝛼) (s : Type) → Evaluator (Σ[ t ∈ Type ] Γ ⨾ Δ ⊢𝑝 p : s → t)
inferPatterns : ∀ {𝛼 : Scope} {n : ℕ}

(Γ : Context 𝛼) (Δ : TyContext n) (ps : List (Pattern 𝛼)) (s : Type)
→ Evaluator (Σ[ t ∈ Type ] Γ ⨾ Δ ⊢𝑝𝑠 ps : s → t)

Figure 16: Function signatures for the other evaluators.

Similarly to how we defined an evaluator for inferType,
we define evaluators for the auxiliary judgments and rela-
tions we require, as seen in Figure 16. The checkKind
evaluator takes the current TyContext and a type. The
inferPatterns and inferPattern take the current con-
text, the pattern(s) to check, and the inferred scrutinee type
of the case expression, as seen in Figure 15. The implementa-
tions of these evaluators are similar to that shown in Figure 15,
and therefore, they are not discussed in detail here.

5 Discussion
This section discusses the findings of this paper. We first dis-
cuss the type-checker in Section 5.1 and refer back to sound-
ness and completeness as defined in the introduction. After
that, we reflect on the challenges of the CbC approach in Sec-
tion 5.2. Finally, we discuss challenges specific to Agda in
Section 5.3.

5.1 Soundness and Completeness
In the previous section, we demonstrated how to translate the
formalization of the language in Section 3 into Agda and con-
struct a type-checker for it. An example of how the type-
checker is called can be seen in Figure 17. We demonstrated
that due to intrinsic typing, the implementation of the algo-
rithm is sound with respect to the typing relation, with the
proof being embedded in the program itself. Additionally, due
to the nature of Agda, the algorithm is guaranteed to termi-
nate, and no run-time exceptions can occur when executing
the type-checker. Assuming that the typing rules were cor-
rectly translated into Agda and that auxiliary functions, such

ctx : Context ("Cons" :: "Nil" :: [])
ctx = (∅

, "Nil" : ‘∀ (T "List" (TVar 0 :: [])))
, "Cons" : ‘∀ (TVar 0 ⇒ T "List" (TVar 0 :: []) ⇒ T "List" (TVar 0 :: []))

tyCtx : TyContext 0
tyCtx = ∅ , T "List" (TVar 0 :: [])
– indices are replaced with {–} for the sake of conciseness
term : Term ("Cons" :: "Nil" :: [])
term =

(Λ
(𝜆 "x" : TVar 0 ⇒
‘ "Cons" # {–} ◦ TVar 0 · ‘ "x" # {–} · (‘ "Nil" # {–} ◦ TVar 0)
)) ◦ ‘ℕ · ‘zero

singleton : Evaluator (ctx ⨾ tyCtx ⊢ term : T "List" (‘ℕ :: []))
singleton = checkTerm ctx tyCtx term (T "List" (‘ℕ :: []))

Figure 17: Example of type-checking a well-typed term.

as the substitution algorithm, are correct, our type-checker
cannot accept ill-typed terms. While this assumption could be
proven, it was deemed outside this project’s scope. Nonethe-
less, the type-checker successfully handled all 19 test cases,
which included 6 well-typed terms and 13 ill-typed terms.

Some might argue that a similar guarantee of soundness can
be achieved through testing. However, the guarantee provided
by the CbC approach is fundamentally different. As Dijkstra
famously said, “Program testing can be used to show the pres-
ence of bugs, but never to show their absence” [18]. One study
showed that typing bugs are prevalent in JVM compilers, with
some being attributed to soundness issues [19]. While exten-
sive testing might not uncover all these bugs, the previous sec-
tion demonstrated that intrinsic typing prevents us from con-
structing an unsound implementation altogether. Therefore,
when soundness is required, the CbC approach offers guaran-
tees traditional testing cannot.

One limitation of the type-checker presented in this paper is
that correct programs might incorrectly get rejected. i.e., the
type-checker may be incomplete. As Wadler et al. mentioned,
“nothing prevents us from writing a function that always re-
turns an error, even when there exists a correct derivation” [3].
While this mostly requires deliberate decisions, it could also
happen by mistake. A stronger guarantee of correctness could
be achieved by also providing a proof in the negative case, i.e.,
proof that a program cannot be well-typed. This can be done
by returning a decidable instance of the relation instead of an
evaluator, as shown in Figure 18. Due to time constraints, it
was decided that adding completeness to the type-checker was
outside this project’s scope.

– ↓ incomplete but sound implementation for eval<
eval< : (m n : ℕ) → Evaluator (m < n)
eval< m n = evalError "Something went wrong"

– ↓ complete and sound implementation for decidable _<_
dec< : (m n : ℕ) → Dec (m < n)
dec< zero (suc n) = yes z<n
dec< (suc m) (suc n) with dec< m n
... | yes p = yes (s<s p)
... | no ¬p = no 𝜆 {(s<s p) → ¬p p}
dec< (suc m) zero = no 𝜆 ()
dec< zero zero = no 𝜆 ()

Figure 18: Incomplete implementation of an evaluator and imple-
mentation for decidable for the relation defined in Section 2.3.
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5.2 Challenges of CbC Programming
The CbC approach’s main challenge is the added complexity
due to using dependent types. When we index a type, this may
introduce dependencies that the programmer needs to main-
tain, which makes extending the system and refactoring more
complex. For example, with well-scoped names, we need to
ensure the context and terms are compatible and each extends
the scope appropriately. This requires additional complexity
at a type level in the Agda program when declaring these data
types and using them alongside each other. In this case, we
argue that the added complexity is worth it. It ensures no free
variables by construction, and that context and terms are ap-
propriately combined in the judgment data type. However, it
is a consideration to keep in mind.

Additionally, encoding the full behavior for all functions
within their signature can be challenging, meaning some parts
of the program may still require a separate proof of correct-
ness. An example of this in our project is the substitution al-
gorithm for type variables, which is not intrinsically verified.
While the algorithm is correct as it is based on existing so-
lutions, a mistake could still be made while translating it to
Agda. To still provide a stronger guarantee of correctness than
traditional testing can offer, we can use Agda to prove that the
function is correct. However, this would then not be encoded
within the function itself. As mentioned in Section 5.1, prov-
ing the correctness of all auxiliary functions was considered
outside this project’s scope.

5.3 Challenges of Agda
A consideration specific to Agda is that the termination
checker can feel restrictive at times. Agda guarantees termi-
nation by requiring recursive calls to operate on strict subex-
pressions of the arguments [9]. However, certain programs
fail the termination check when equivalent programs are ac-
cepted. One such example can be seen in Figure 19. The first
program does not pass the termination check, while the second
one does. The solution here was to implement a specialized
map function, which violates the DRY principle [20], stating
that we should not repeat ourselves in code. Problems with
termination checking can also arise when using with abstrac-
tions [9]. These restrictions can be hard to work around and
frustrating if the programmer is certain programs terminate.

– ↓ does not pass the termination check
show : Type → String
show (T n ts) = n ++ " " ++ (concat $ map show ts)

– ↓ does pass the termination check
show : Type → String
show’ : List Type → List String

show (T n ts) = n ++ " " ++ (concat $ show’ ts)

show’ [] = []
show’ (t :: ts) = show t :: show’ ts

Figure 19: Two equivalent programs, lower terminates, upper does
not.

We used the Agda standard library to speed up develop-
ment, which contains definitions for commonly used con-

structs like lists, monads, and more. One disadvantage of the
standard library is that it can be hard to navigate. The docu-
mentation [21] of the standard library lacks search functional-
ity, and with hundreds of modules, it can be challenging for a
developer to find the desired item. Furthermore, many defini-
tions reference types and functions from other modules, which
forces programmers to go through multiple modules before
understanding how to use a certain item. Another considera-
tion when using the standard library is that it was not created
with computation in mind but rather for ease of proof. If com-
putational performance is important, developers may have to
look for a different solution.

6 Responsible Research
All code produced for this research is available in a public
repository2. While we believe this paper discussed all relevant
concepts to understand the findings of this research, many de-
tails of the implementation were omitted for the sake of con-
ciseness. By providing the full source code, we ensure trans-
parency of the work and allow for reproducibility. Alongside
the source code, the reader can find documentation on how
to install and run the program, as well as more documenta-
tion on the specifics of the implementation and some example
programs in the toy language.

All content of this paper was produced by the author, with
proper citations and acknowledgments for external contribu-
tions. While ChatGPT3 assisted in rewriting some parts of
the paper for clarity, this was done in accordance with the TU
Delft’s policy on LLMs. The typical query that was used was:
“Rewrite this paragraph/sentence such that it is easier to un-
derstand.” Results produced by ChatGPT were never directly
put in the paper. Instead, they served as inspiration for im-
proving certain paragraphs, and the rewriting was always done
manually in the author’s words.

7 Conclusions and Future Work
This section gives the conclusions of this paper in Section 7.1.
After that, we suggest some areas for future work in Sec-
tion 7.2.

7.1 Conclusions
This paper presents a CbC type-checker written in Agda. It
was written for a toy language with ADTs, pattern matching,
and polymorphism. The type-checker constructs a proof of
well-typedness for any given term using typing rules taken
directly from the language’s formalization. Since it cannot
construct a proof for ill-typed terms, the type-checker is con-
sidered to be sound with respect to the typing rules.

We have shown that using the CbC approach offers signifi-
cant benefits. Due to intrinsic typing, the proof of soundness
is embedded in the implementation of the type-checker itself.
This also means that the types effectively guide the imple-
mentation since an implementation that does not conform to
the typing rules will not compile. Other benefits of the CbC
approach in Agda are that no run-time errors can occur when
2https://github.com/MilosRistic02/cbc-adt-type-checker
3https://chatgpt.com/
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executing the type-checker, and the execution is guaranteed to
terminate.

Nonetheless, some challenges accompany the CbC ap-
proach in Agda. Encoding properties at a type level intro-
duces added complexity, making the code harder to maintain.
Furthermore, finding ways to encode behavior within a func-
tion’s signature can be challenging, meaning some parts of the
program may still require a separate proof of correctness. A
consideration specific to Agda is that the termination checker
can be restrictive since it requires recursive calls to be made
on strict subexpressions. This means that some programs that
are known to terminate are incorrectly rejected, and working
around this can be challenging. Finally, the current documen-
tation for the standard library of Agda can be hard to navigate.

7.2 Future Work

This paper is centered around the toy language presented in
Section 3, which includes interesting features such as poly-
morphism, ADTs, and pattern matching. However, it lacks
support for many features that are required to make the lan-
guage more practical. Examples of such features include re-
cursion, let bindings, modules, and many more. It is worth
exploring how the type-checking algorithm could be extended
to accommodate more complex languages by incorporating
these features incrementally.

One closely related feature to those discussed in this paper
is that of generalized algebraic data types (GADTs). GADTs
are available as a language extension in Haskell and offer
interesting functionality. Although their syntax differs only
slightly from the ADTs presented in this paper, their type
inference becomes significantly more complex. The typing
rules in Section 3 were based on research on type inference for
GADTs [13; 14; 15], and so extending this work for GADTs
seems like a logical next step.

The type-checker itself is only part of a broader system that
includes the parser and compiler. Implementing a complete
system using the CbC approach could be beneficial, as it offers
similar guarantees to the ones presented in this paper. Rou-
voet [10] explored CbC implementations for compilers and
interpreters, but there remains a gap in merging these imple-
mentations with the style of type-checking presented in this
paper. It would be worth exploring whether a complete im-
plementation could be achieved and whether the benefits of
such a system justify the additional challenges it may bring.
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