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Optimal Threat-Based Radar
Resource Management for
Multitarget Joint Tracking and
Classification

MAX IAN SCHÖPE
HANS DRIESSEN
ALEXANDER YAROVOY

The Radar Resource Management problem in a multitarget joint

tracking and classification scenario is considered. The problem is

solved using a previously introduced dynamic budget-balancing algo-

rithm that models the sensor tasks as Partially Observable Markov

Decision Processes. It is shown that tracking and classification tasks

can be considered as a single task type. Furthermore, it is shown how

the task resource allocations can be jointly optimized using a carefully

formulated cost function based on the task threat variance. Multiple

two-dimensional radar scenarios demonstrate how sensor resources

are allocated depending on the current knowledge of the target po-

sition and class. In contrast to previous approaches, the novelty of this

paper lies in combining tracking and classification performance into a

single cost function, preventing heuristic trade-offs.

I. INTRODUCTION

Due to the recent developments in multifunction
radar (MFR), such systems have become more flexible
and allow an automatic adjustment of many of their pa-
rameters during runtime [18]. Possible situations where
such an adaptation is desirable are, e.g., quickly changing
weather conditions, target maneuvers, or interference.
This automatic control of the radar parameters or re-
sources is often named Radar Resource Management
(RRM). It is generally considered as a part of so-called
cognitive radar (see, e.g, [11], [14], [18], [23], [32]). Pos-
sible applications can be found in many domains, such
as traffic monitoring, autonomous driving, air traffic con-
trol, or (maritime) surveillance.

A. Radar Resource Management

Many different overviews of RRM approaches are
available, for instance, by Moo and Ding in [45], Hero
and Cochran in [25], or Hintz in [26]. Most RRM re-
search focuses on a single task, e.g., guaranteeing con-
sistent track quality even under target maneuvers. This
commonly means that the available time budget has to
be scheduled for a specific task.However,MFR systems
are usually considered to operate at their resource limit
(w.r.t., e.g., time or energy) and deal with a large num-
ber of different tasks. This means that increasing the re-
source budget for one task automatically reduces it for
the others and inevitably deteriorates their performance,
making the RRM problem a balancing problem.

As a solution for multitask RRM problems, several
heuristic solutions have been presented in the past (see,
e.g., the overview in [29]). Applying heuristics too early
in the designmakes it difficult to understandwhich prob-
lem is supposed to be solved.Additionally, it is challeng-
ing to judge the optimality of that solution. Moreover,
the heuristic solutions frequently schedule tasks based
on different priorities (as shown, e.g., in [42] and [53]).
Such approaches usually assume that each task has a
specific fixed resource need, which frequently leads to
a situation where tasks need to be dropped. If different
tasks have the same fixed priority, then this can poten-
tially lead to tasks being dropped at random. Addition-
ally, prioritizing tasks is usually tricky, and often it is not
clear how many priority levels are necessary.

It should be noted that RRM algorithms are not
identical to multitarget tracking algorithms. In this ap-
proach, a multitarget tracker is applied to process the
radar measurements and provide the estimated tracks to
the RRM algorithm, which then optimizes future radar
transmissions. Although the proposed RRM approach
comprises computing expected track accuracies, it does
not represent the actual multitarget tracking andwill not
automatically lead to maximized track accuracies for ev-
ery task.

This paper approaches the RRM problem as a re-
source balancing procedure and as an optimal stochastic
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control problem. This strategy relies on an explicit for-
mulation of

� the sensing problem that the radar needs to solve w.r.t.
dynamic and measurement models,

� the control actions that the radar sensor has available,
reflecting the degrees-of-freedom of the MFR men-
tioned earlier,

� a cost function that expresses the system performance
that the user would like to optimize w.r.t. the sensing
aim.

To the authors’ best knowledge, an overall solution
to the RRM problem based on such a problem solution
approach has not been presented so far. A genuinely
optimal solution could supposedly lead to a significant
performance improvement of adaptive sensors [24], but
that still needs to be illustrated.However, an optimality-
based approach using a modular framework could sig-
nificantly reduce the design effort for newMFR systems
compared to heuristic solutions, even if the performance
does not improve.

B. RRM for Tracking and Classification

For a successful radar application, it is often neces-
sary to distinguish between different types of targets.
Therefore, classification is a vital task for every mod-
ern radar system and needs to be considered in RRM.A
general high-level overview of classification techniques
in CR and RRM is shown by Brüggenwirth et al. in
[14]. Furthermore, Kreucher and Hero presented a very
generic framework that is potentially capable of doing
joint detection, tracking, and classification [34]. The ex-
planation of the approach stays at a very high level and
is only demonstrated through a detection and tracking
scenario.

Most RRM approaches for classification are myopic
and focus on a simple waveform or sensor mode se-
lection, often for a single object. In [55], Sowelam and
Tewfik present such an approach where the Kullback–
Leibler information is maximized for the subsequent
measurement. Based on this, the algorithm can decide if
another measurement is necessary and which waveform
must be chosen from a predefined library. Another ex-
ample has been shown by Bell et al. and considers both
tracking and classification [2]. The system is assumed to
have separate tracking and classification modes, which
each have a predefinedwaveform library to choose from.
The proposed algorithm decides the following sensor
action to be executed. As for objective functions, both
task-driven and information-driven possibilities are dis-
cussed. While the task-driven approach requires differ-
ent objective functions for the two sensing modes, the
information-driven approach can compare the two dif-
ferent task types through information gain.

A popular approach is to introduce a measure of risk
or threat. The idea is to summarize the interesting task

quantities into a single scalar number that is easy to com-
pare. In [39], Martin introduces a risk-based approach
where the risk depends on the probability of making a
wrong classification and the possibility of track loss mul-
tiplied with predefined cost values. The approach finds
a solution for both tracking and classification in a my-
opic fashion. The measurements are always taken the
same way, but the algorithm decides which target will
be sensed. In [22] and [47], similar approaches are pre-
sented. From the perspective of this paper, such a cost
function definition is not preferred, as predefined cost
values cannot easily represent the risk in all possible sit-
uations. Such a formulation leads to a lack of flexibility
in the approach. Bolderhij et al. present an approach for
military radar applications that relies on a large amount
of expert knowledge to decide the risk level [12]. Al-
thoughmany different situations are considered, this ap-
proach does not automatically balance the resources and
cannot flexibly adapt to different situations. A more in-
teresting approach is shown by Katsilieris et al. in [30]
where joint tracking and classification are performed by
running a tracking filter per target class in parallel. The
classification is done by comparing the likelihood of a
measurement belonging to the different tracks. The next
sensing action is then chosen by evaluating the threat’s
uncertainty based on the target state.

Additionally, some authors have introduced RRM
approaches with a hierarchical structure. This is usu-
ally done for two main reasons. Firstly, such a structure
can decrease the computational complexity and increase
the efficiency of an algorithm. Two notable examples of
such approaches are the ones by Wintenby and Krish-
namurthy in [60] and Castãnón in [15], which both use
a hierarchical structure to solve the RRM problem us-
ing Lagrangian relaxation (LR). Secondly, a hierarchical
structure can also be used to emulate the cognitive be-
havior of the human brain in order to improve radar per-
formance. An example for such an approach has been
proposed by Mitchell et al. in [44] and Mitchell in [43].

This paper treats the RRM problem as an optimal
control problem. It is not the intention to mimic the
behavior of human or animal brains. Furthermore, the
functional performance is the focus of the proposed ap-
proach rather than a computationally efficient imple-
mentation. However, the RRM approach in this pa-
per can potentially be applied in a hierarchical fashion,
whichmight lead to improvements that are beneficial for
practical implementation.

C. Markov Decision Processes in RRM for Tracking and
Classification

Many RRM approaches for tracking and classifica-
tion of multiple targets assume a Markov Decision Pro-
cess (MDP) or Partially Observable MDP (POMDP)
framework.

Wintenby and Krishnamurthy have presented an in-
teresting RRM approach for tracking scenarios in [60]
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where a Markov chain consisting of performance states
is applied for each tracking task. The problem is then
solved using a combination of LR and approximate dy-
namic programming. Furthermore, White and Williams
assume a discretized state space and solve a fully ob-
servableMDPby applying dynamic programming [59] in
combination with LR. Similar to LR, some approaches
also apply the Quality of Service resource allocation
method (Q-RAM) with POMDPs to solve the RRM
tracking problem. Two examples of such an approach
can be found in [17], [19].

For simple classification problems, it is relatively easy
to implement a solution assuming underlying MDPs or
POMDPs, as the number of considered states is usu-
ally relatively low. An advantage of using such a frame-
work is the possibility of taking the expected future
into account. Chong et al. present a straightforward gen-
eral example of how to use classification in RRM with
POMDPs [20]. Castãnón applies a nonmyopic POMDP
approach for a classification scenario of almost 10 000
objects where the algorithm chooses from a set of sen-
sor modes [15]. This approach does not take the position
and velocity of the objects into account. Another inter-
esting approach has been presented by La Scala et al. in
[37] and nonmyopically solves the underlying POMDP
in a detection and classification scenario. The algorithm
selects the best waveforms froma predefined library.The
authors promise that an extension to tracking can be
achieved without much effort, but do not demonstrate
that explicitly. Two other classification approaches that
assume an MDP or POMDP framework are shown in
[22], [27]. Since the number of states is relatively low in
most classification problems,alsomachine learning tech-
niques have been suggested for solving the underlying
(PO)MDPs, e.g., by Langford and Zadrozny in [36] and
Blatt and Hero in [10].

D. The Cost Function

An optimization-based RRM approach is preferred
over a heuristic approach. However, this requires an ex-
plicit definition of a cost function that determines the
sensor system’s performance. It has been suggested pre-
viously that generic measures, such as the Information
Gain or the Renyi divergence, applied to the posterior
density of the full state, could be applied (see, e.g., [35],
[58]). Unfortunately, one single cost function will not
meet the expectations of different users in different ap-
plications using different sensor systems in different en-
vironments and for different targets (see, e.g., [21]).

Developing a useful cost function is critical for the
good performance of the RRM algorithm. The develop-
ment of specific cost functions requires close coopera-
tion with future users and is an intricate development
process on its own. Since the focus of this paper is to il-
lustrate how the underlying framework and algorithmic
solution can be applied in an example scenario, the de-
velopment of a user-specific cost function is out of scope.

Therefore, it is not claimed that the presented cost func-
tion formulation is necessarily leading to the best perfor-
mance possible.

An example of amore specific operationally relevant
cost function can be found in the approach by Narykov
et al. in [46] where the adversarial risk is introduced as a
cost function in a military impact assessment scenario.

E. Proposed Approach

This paper is based on the framework and algorith-
mic solution presented in [51] and [50], which was previ-
ously mainly illustrated in multitarget tracking scenario,
i.e., without classification. Here, the framework and ap-
proach are applied to a joint tracking and classification
problem.

Most approaches that focus on RRM for classifi-
cation are concrete and apply heuristic rules to com-
pare different task types, such as tracking and classifi-
cation tasks. In most proposed approaches, the different
tasks are assumed to be independent or very weakly de-
pendent. This paper specifically focuses on cases where
the tasks are joint. In addition to that, most available
approaches are myopic and do not consider MDP or
POMDP frameworks. The introduction of risk or threat
measures is widespread and seems promising as it en-
ables the objective comparison of different task types.
In this paper, it is shown that the generic algorithm in-
troduced in previous publications can be used to ad-
dress the shortcomings of previously published litera-
ture. It is explained how the approach can easily be ad-
justed to include joint tracking and classification, using a
single cost function for both task types. The underlying
POMDP is solved nonmyopically, and the resulting pol-
icy is achieved by balancing all the considered actions in
the action space.

The purpose of this paper is to introduce as few as-
sumptions and simplifications as possible and formu-
late the RRMproblem as a single optimization problem.
However, the techniques shown here could potentially
be applied in a hierarchical algorithm as well, taking into
account higher and lower levels of optimization.

F. Novelty

This paper shows that it is possible to solve the RRM
problem for multiple task types by using only a single
cost function based on a definition of a mission threat.
Such an approach has been suggested previously but has
never been fully developed and demonstrated with the
help of practical simulation scenarios.

G. Structure of the Paper

The remainder of this paper is structured as follows:
Section II defines the general RRM problem, and Sec-
tion III introduces the proposed solution for a track-
ing and classification scenario. Furthermore, Section IV
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introduces the applied threat and cost function, while
SectionV gives details about the assumed radar scenario
for the simulations. The results of those simulations are
discussed in Sections VI–IX. Finally, Section X contains
the conclusions.

II. GENERAL RRM PROBLEM DEFINITION

A. Motion Model

Each target can be described by a state based on
its position and velocity in x and y directions in a two-
dimensional Cartesian coordinate system. For Target n
at time t, this state is defined as

snt = [xnt ynt ẋnt ẏnt ]
T

, (1)

where xnt , y
n
t , and ẋ

n
t , ẏ

n
t are the position and velocity of

Target n in x and y, respectively. The future target state
at time t + �t can be calculated following a function:

snt+�t = f�t (snt ,w
n
t ) , (2)

where snt+�t is the next state at time t + �t and wn
t ∈ R

4

is the maneuverability noise for Target n at time t. The
state evolution equation (2) directly defines the evolu-
tion probability density function (PDF), which is given
as

p
(
snt+�t |snt

)
. (3)

B. Measurement Model

It is assumed that the considered sensor is taking
noisy measurements of the state snt by executing a sen-
sor action ant ∈ R

m, where m denotes the amount of ad-
justable action parameters. The measurement znt of Tar-
get n at time t is expressed by the measurement function
h as

znt = h (snt , v
n
t ,a

n
t ) , (4)

where vnt ∈ R
q is the measurement noise for Target n,

and q is the amount of measurement parameters. The
measurement equation (4) directly defines the measure-
ment PDF, which can be written as

p (znt |snt ,ant ) . (5)

C. Tracking Algorithm

As this paper considers joint tracking and classifi-
cation scenarios, a tracking filter needs to be chosen
that aims at computing the posterior density. A sim-
ple Kalman filter (KF) would be the exact solution for
a linear system. In contrast, nonlinear systems require
approximate solutions given by, e.g., an extended KF
(EKF) or a particle filter.

D. Budget Optimization Problem

The radar sensor has a limited maximum budget
�max of any kind. For action ant that is executed for each
task n, a specific amount of budget (such as time or en-
ergy allocations) is required. An overload situation oc-
curs when the current tasks require more of the total
budget than is available. In such a situation, the available
budget needs to be allocated to all tasks by minimizing
the cost (e.g., related to the uncertainty of the current
situation).

At time t, the optimization problem for N different
tasks can be written as

minimize
at

N∑
n=1

c(ant , s
n
t )

subject to
N∑
n=1

�n
t (a

n
t ) ≤ �max,

(6)

where �n
t ∈ [0, 1] is the budget for task n at time t, c(·) is

the applied cost function, and �max ∈ [0, 1] is the maxi-
mum available budget (0: no budget assigned, 1: all bud-
get assigned). It is critical for the performance of the al-
gorithm to define a relevant cost function.However, this
is not the focus of this paper.An example of another op-
erationally relevant cost function has been discussed by
Katsilieris et al. [31].

III. PROPOSED APPROACH FOR THE RRM PROBLEM

A. Joint Tracking and Classification

This paper assumes that each target is of a specific
predefined class that is initially unknown to the radar
system.A Bayesian classifier will be applied to make the
classification decision. Suppose a class feature could be
measured directly and the features were independent of
each other. In that case, the classification problem can
be solved, e.g., by applying a naive Bayes classifier using
these class measurements directly.

If the class features cannot be observed directly, then
the behavior of the target often contains information
about the underlying target type. In that case, joint track-
ing and classification can be applied. Similar approaches
have been presented, e.g., in [1], [40]. Based on the mea-
surements taken by the radar sensor, a track can be cre-
ated with the help of a tracking filter (e.g., EKF or parti-
cle filter).The track then describes themovements of the
observed objects. The problem that needs to be solved
contains both discrete (class) and continuous variables
(e.g., position and velocity) of the targets are considered.
The following equations are based on Bayesian theory
(see, for instance, [4], [49], [57]).

Taking into account the class of the target, the state
evolution equation in (2) changes to

snt+�t = f�t (snt , c
n,wn

t ) , (7)
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where cn ∈ C is a scalar and denotes the class of Target n,
which is not changing over time.Themeasurement func-
tion is defined similarly to (4):

znt = h (snt , v
n
t ,a

n
t , f

n
c ) , (8)

where f nc is a directly measurable feature of Target n,
represented as a scalar value. The PDF function for fea-
ture f nc can explicitly be written as

p
(
znt, f |SNR, cn

)

= √
2πσ 2

f (SNR)
exp

(
−

(znt, f − f nc )
2

σ 2
f (SNR)

)
,

(9)

where znt, f is the measurement of the feature of Tar-
get n at time t, and σ 2

f (SNR) is the feature measure-
ment variance which depends on the signal-to-noise ra-
tio (SNR). One could think, for instance, of the RCS or
the micro-Doppler spectrum. For simplicity, the values
used in this paper do not have any physical origin and
are merely chosen for demonstration purposes. This fea-
ture is assumed to be directly connected to the object’s
class and not dependent on the state of the target.There-
fore, themeasurement znt consists of a state (position and
Doppler) and a class (feature) component. The PDFs
of state, process, or maneuverability noise and measure-
ment noise can then depend on the underlying target
class:

p
(
snt+�t |cn

)
,

p (wn
t |cn) ,

p (vnt |cn)
p ( f nc |cn) .

(10)

The goal of this joint tracking and classification approach
is to recursively calculate the posterior joint PDF

p (snt , c
n|Zn

t ) = p (snt |cn,Zn
t )P(c

n|Zn
t ), (11)

where Zn
t = [znt , z

n
t−�t , z

n
t−2�t , . . . , z

n
0] are all measure-

ments taken for Target n until time t and P(cn|Zn
t ) are

the prior class probabilities, which are known from the
last iteration. Using the Bayesian evolution and update
equations, the conditional posterior density can be writ-
ten as

p
(
snt+�t |cn,Zn

t

) =
∫
S
p

(
snt+�t |snt , cn

)
p (snt |cn,Zn

t )ds
n
t ,

(12)
where

p (snt |cn,Zn
t ) = p (znt |snt , cn) p

(
snt |cn,Zn

t−�t

)
p

(
znt |cn,Zn

t−�t

) . (13)

The normalizing constant in the denominator is calcu-
lated with

p
(
znt |cn,Zn

t−�t

) =
∫
S
p

(
znt |snt , cn,Zn

t−�t

)
p (snt |cn,Zn

t )ds
n
t .

(14)

Figure 1. Joint tracking and classification process.

As the measurement consists of a state dependent and a
state independent part, which is based only on the class,
this expression can also be written as

p
(
znt |cn,Zn

t−�t

) = p
(
zn,s,ct |cn,Zn,s

t−�t

)
p (zn,ct |cn) , (15)

where zn,s,c denotes the state and class dependent mea-
surements and zn,c the class dependent measurement of
feature f nc for Target n at time t.The posterior class prob-
ability is calculated via

P (cn|Zn
t ) = p

(
znt |cn,Zn

t−�t

)
P

(
cn|Zn

t−�t

)
p

(
znt |Zn

t−�t

) . (16)

The likelihood of the current measurement given all the
previous measurements is defined as

p
(
znt |Zn

t−�t

) =
C∑
c=1

p(znt |cn,Zn
t−�t )P

(
cn|Zn

t−�t

)
, (17)

where C is the number of assumed target classes. The
recursive process that is described through (7)–(17) re-
quires C different tracking filters, each conditioned to
a specific class. Based on the likelihood of the current
measurement being associatedwith one of the tracks, the
class probability is updated. The process is summarized
in Fig. 1.

B. Distribution of the Sensor Budgets Using LR

The approach presented here is based on the algo-
rithmic solution presented in [51] and [50]. It applies LR
to relax the problem by including the constraint into the
cost function. This results in the so-called Lagrangian
dual (LD). The original optimization problem is then
decoupled into suboptimization problems, one for each
task. This leads to the Lagrangian dual problem (LDP),
which can be formulated as

ZD=max
λt

(
min
at

(
N∑
n=1

(c(ant , s
n
t ) + λt · �n

t )

)
− λt · �max

)
,

(18)
where λt ∈ R is the Lagrange multiplier for the resource
budget constraint. The sum in the LDP allows the algo-
rithm to solve the minimization problem in parallel for
each Target n before updating the Lagrangian multiplier
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in an iterative process using the subgradient method.
This process is explained following,where an internal in-
dex l is used for the iterations within the LR process:

1) l = 0: Set the initial Lagrange multiplier (λ = λ0).
2) For every task n,minimize the LDwith respect to the

actions. Keep the resulting anl and �n
l .

3) Choose the subgradient for the Lagrange multiplier
as μλ

l = ∑N
n=1 �n

l − �max.
4) Is μλ

l ≈ 0 reached with desired precision? If yes, then
stop the process. The current λl , anl and �n

l are the
LR solution for λt at time t.

5) Set λl+1 = max{0, λl + γlμ
λ
l }, where γl is the LR step

size at time l. In this step, the LD is iteratively maxi-
mized with respect to λ.

6) Go to step 2 and set l = l + 1.

Further information regarding LR can be found in
Appendix A, as well as in [50]–[52].

C. Definition of a POMDP

A POMDP is defined as an MDP whose state can-
not be observed directly. Instead, the state can be ob-
served through noisy measurements, leading to a proba-
bility distribution over the possible states called the be-
lief state. Knowing the structure of the underlying MDP
and having noisy measurements available, the POMDP
framework allows solving optimization problems non-
myopically,whichmeans calculating the expected cost in
future time steps. For the following equations, the time
is assumed to be discretized in intervals k with length
T , the time between two consecutive measurement
operations.

A POMDP is commonly defined by the following pa-
rameters (see, e.g., [48] and [20]):

State space S:All possible states that can be reached
within the process, see (1). At time step k the state is
defined as sk. The belief-state defines a probability dis-
tribution over all possible states based on the previous
measurements and is defined as bk.

Action space A:All possible actions within the pro-
cess.Each executed action leads to a certain cost defined
by the cost function. The action at time step k is written
as ak.

Observation space Z:All possible observations that
can be made within the process. An observation at time
step k it is defined as zk.

Transition probability �(sk, sk+1,ak): The probabil-
ity function p(sk+1|sk,ak) that defines the probability of
transitioning from state sk to state sk+1 given action ak.
Note: In this paper, the transition probability does not
depend on the action.

Probability of observationO(zk, sk+1,ak):The prob-
ability function p(zk|sk+1,ak) that defines the probabil-
ity to make a certain observation zk when action ak is
executed with the resulting state being sk+1.

Cost function c(sk,ak): The immediate cost of exe-
cuting action ak in state sk.

Discount factor γ : A possible factor that discounts
future costs. Note: in this paper, the discount factor is al-
ways set to γ = 1.

D. Policy Rollout for POMDPs

A variety of different POMDP solution methods ex-
ist. A short general discussion of possible approaches
can be found in Appendix B, or the overviews by Ross
et al. in [48] and Chong et al. in [20].

In this paper, the policy rollout (PR) technique is ap-
plied, which takes Monte Carlo samples of the expected
future.This means that it stochastically explores the pos-
sible future actions and their related costs. Per possi-
ble action a in the action space A, a so-called rollout is
used to evaluate the expected cost. Expected observa-
tions and belief states are generated from a given ini-
tial belief state and a given candidate action within such
a rollout. The candidate action is executed first, while a
so-called base policy (BP) πbase is used for every follow-
ing step in the rollout, until the horizon H is reached.
The cost of all steps within a rollout is summed up. This
procedure is repeatedM times, and finally, the cost of all
rollouts is averaged. The resulting number is then called
the expected cost of the evaluated action. The candidate
action with the lowest expected cost is chosen to be ex-
ecuted in the next time step. It has been shown that PR
leads to a policy that is at least as good as the BP with a
very high probability if enough samples are provided [6].
Choosing a good BP and a large enough number of sam-
ples is therefore crucial to the algorithm’s performance.
In this case, the number of samples is equivalent to the
number of rolloutsM per action. Therefore, one sample
is the evaluation of one possible future. It is no trivial
task to find a good BP for the considered scenario. As
an example, previously experienced situations could be
used for it, e.g., as a lookup table. Additionally, the BP
could also be improved with new information over time,
which could be considered in RL, for instance. Unfortu-
nately, it is not very likely to experience the exact same
situation multiple times if a huge state space is assumed,
so the usefulness of RL techniques is questionable for
typical radar scenarios. Another straightforward choice
of the BP could be an equal resource allocation to all the
tasks.PRhas been covered extensively,e.g.,byBertsekas
in [5]–[7].

The PR can be expressed as shown in (19) and (21).
The Q-value is defined as

Qπbase (bk,ak) = CB(bk,ak) + E [Vπbase (bk+1)|bk,ak] ,
(19)

where CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk, E[·] is the expectation
andVπbase (·) is the so-called value function assuming the
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Figure 2. High-level block scheme of the AODB algorithm [50].

chosen BP. The value function can be expressed as

Vπbase (bk0 ) = E

⎡
⎣k0+H∑

k=k0
CB(bk,ak)|bk0

⎤
⎦ . (20)

The best policy can then be found by applying

πk(bk) = argmin
ak∈A

(Qπbase (bk,ak)). (21)

PR does not necessarily lead to the optimal policy. It in-
stead aims at improving the chosen BP πbase.

E. Approximately Optimal Dynamic Budget Balancing

This paper uses the Approximately Optimal
Dynamic Budget Balancing (AODB) algorithm as
introduced in [51] and [50], which applies a combination
of PR and LR. The general structure of our proposed
algorithm is illustrated in Fig. 2. The outputs of the
algorithm are the converged budgets for each task. The
PR is applied per task, which in this paper means that
for each observed object, the expected cost for each
action is calculated, taking into account the current class
probabilities for all possible classes.

IV. FORMULATION OF THE COST FUNCTION

The assumed cost function in this paper is based on
a definition of threat. This definition depends heavily on
the considered scenario and the wishes and expectations
of the user.There are practically an unlimited amount of
possibilities for constructing such a function. In this sec-
tion, it is considered that the threat φ(c, s) depends on
the class and the state of a target. The cost function will
be defined by the variance in the threat knowledge of
a target. This means that the cost will be very high for
unclassified targets, as all class-dependent threat values
are equally likely.Once the knowledge of the target class
increases, this variance in threat will decrease also. An
explicit example formulation of the threat and the cost
function will be introduced later, together with the sim-
ulation scenarios. First, the focus is on transforming the
PDF from the state domain to the threat domain.As the
cost calculation is done for each target separately, the

target-related superscript n is dropped to simplify the
notations in the following subsections.

A. Unscented Transform

The running target tracks supply a PDF of the tar-
get state. Since the transformation of the state PDF to
the threat PDF is nonlinear, a sampling approach is cho-
sen. A possible implementation is to sample the threat
PDF with a certain number of random samples in the
state PDF. For an accurate result,many samples are nec-
essary, which can make this approach very slow. There-
fore, in this paper, the samples in the state space of the
target are chosen with the help of the unscented trans-
form that is also applied in the unscented KF [28]. For
a D-dimensional PDF, 2D + 1 sigma points are neces-
sary. The procedure for calculating the current threat at
a certain moment in time is as follows:

1) Calculate the Cholesky decomposition of the belief
state covariance matrix of the target:

LLT = P, (22)

where P is the belief state covariance matrix of the
target.

2) Calculate the so-called sigma points:

X
0 = ŝ,

X
i = ŝ+ √

D+ κ coliL i = 1, . . . ,D,

X
i+D = ŝ− √

D+ κ coliL i = 1, . . . ,D,

(23)

where ŝ is the belief state mean of the target,
κ = 3−D and coliL denotes the i-th column ofmatrix
L.

3) Now, each of these samples has to be transformed
into the threat domain by using the threat function
φ(c, s).

Y
i
c = φ(ĉ, X

i)) i = 0, . . . , 2D, (24)

where ĉ is the believed class of the target.
4) From the samples in the threat domain, the threat

PDF is defined by the mean and covariance:

φ̂c =
2D∑
i=0

wi
Y
i
c,


φ,c =
2D∑
i=0

wi(Yi
c − φ̂c)(Yi

c − φ̂c)T ,

(25)

where φ̂c is the mean and 
φ,c the covariance of the
threat PDF based on class c and wi are weights for
the samples given as

wi =
⎧⎨
⎩

κ
D+κ

, if i = 0

2(D+κ ) , otherwise
. (26)
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B. Combination of Threat PDFs

Since the threat PDF depends on the class c, is has
to be calculated for each class separately. Based on the
resulting PDFs for C different classes, a total PDF can
be constructed. The total mean of the threat φ̂tot for the
target is defined as

φ̂tot =
∫

�

φp(φ|z)dφ

=
∫

�

φ

C∑
c=1

N (φ; φ̂c, 
φ,c)P(c|Z)dφ

=
C∑
c=1

P(c|Z)
∫

�

φN (φ; φ̂c, 
φ,c)dφ

=
C∑
c=1

P(c|Z)φ̂c,

(27)

where z is a recent measurement of the target state,
N (φ; φ̂c, 
φ,c) denotes a normal distribution with mean
φ̂c and variance 
φ,c, and P(c,Z) is the posterior class
probability based on all previous measurements Z. The
variance can be calculated using


φ,tot =
∫

�

(φ − φ̂tot)2p(φ|z)dφ

=
∫

�

(φ2 − 2φφ̂tot + φ̂c)2)p(φ|z)dφ

=
∫

�

φ2p(φ|z)dφ − φ̂2
tot.

(28)

Using

∫
�

φ2p(φ|z)dφ =
∫

�

φ2
C∑
c=1

N (φ; φ̂c, 
φ,c)P(c|Z)dφ

=
C∑
c=1

P(c|Z)
∫

�

φ2N (φ; φ̂c, 
φ,c)dφ

=
C∑
c=1

P(c|Z)(
φ,c + φ̂2
c ),

(29)
it can also be written as


φ,tot =
C∑
c=1

P(c|Z)(
φ,c + φ̂2
c ) − φ̂2

tot. (30)

C. Variance of Threat

The previous subsection described transforming the
PDF from the state and class domain to the threat do-
main by considering multiple possible target classes.
Given this threat PDF, a different cost function could
be constructed. A simple and unambiguous choice is to
simply evaluate the total threat variance 
φ,tot. The un-
derlying assumption is that the radar system cannot in-

fluence the target state but only the uncertainty about
the knowledge of the target state by adjusting its sensing
actions. Following this cost function, the most resources
will be assigned to the targets where the biggest decrease
in uncertainty (decrease in threat variance) is expected.

The hypothesis is that this will lead tomore resources
being assigned to objects of an uncertain class. Once all
the objects are classified, the uncertainty in the threat
will drop significantly and only depend on the uncer-
tainty in the track. This emphasizes the jointness of the
proposed tracking and classification approach, as the un-
certainty in both the tracking and classification classes
is directly taken into account through this cost function.
For the remainder of this paper, the cost function will
thus be defined as

C(a, sk|k−1,Pk|k−1, c) = 
φ,tot, (31)

where sk|k−1 is the predicted state and Pk|k−1 is the pre-
dicted error-covariance for the considered target given
by the tracking filter. Therefore, the predicted belief
state is used as input for the cost calculation.

V. ASSUMED RADAR SCENARIO

For the following simulation sections, a simplified
radar scenario for tracking and classification is assumed.
An EKF is applied as a tracking algorithm and similar
definitions are used as already shown in [50]. As men-
tioned in (1), the targets move in a two-dimensional
Cartesian coordinate system.The algorithm is jointly op-
timizing the revisit interval T and the dwell time τ . The
former is the time between two consecutive measure-
ments, and the latter is the time the radar sensor spends
on a target. For a Target n, a pair of Tn and τn defines a
budget allocation, also called action an ∈ R

2.The actions
influence both the classification and the tracking perfor-
mance. The outcome of the algorithm is budget alloca-
tions per target that theoretically fit into the time frame.

Furthermore, as the situation changes over time, the
resource allocation needs to be adjusted to it. In this pa-
per, this is done in regular predefined update intervals.

A. Assumed Radar System

The assumed radar system is able to take measure-
ments in range r and angle θ . Additionally, it can take
measurements of a certain target feature f . There exists
a measurement noise with variances σ 2

r,0, σ
2
θ,0, and σ 2

f,0,
which refer to a referencemeasurement.The parameters
of that reference measurement are shown in Table I.

B. Target Dynamics

The targets are assumed to move with a constant ve-
locity in x and y directionwith an addedmaneuverability
noise, which is class-dependent. Instead of (2), the next
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TABLE I
Parameters of the Reference Measurement

Parameter Value

SNR (SNR0) 1
RCS (ς0) 10 m2

Dwell time (τ0) 1s
Range (r0) 50 km
σ 2
r,0 625 m2

σ 2
θ,0 4×10−4 rad2

σ 2
f,0 4

state can therefore be written as

snkn+1 = Fnsnkn + wn,c
kn

, (32)

with Fn ∈ R
4×4 defined as

Fn =

⎡
⎢⎢⎣
1 0 Tn 0
0 1 0 Tn
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (33)

and the maneuverability noise wn,c with covariance

Qn,c =

⎡
⎢⎢⎣
T 3
n /3 0 T 2

n /2 0
0 T 3

n /3 0 T 2
n /2

T 2
n /2 0 Tn 0
0 T 2

n /2 0 Tn

⎤
⎥⎥⎦ σ 2

w,c, (34)

where σ 2
w,c is themaneuverability noise variance for class

c.

C. SNR Model

As previously mentioned, measurements are taken
in range r and angle θ . Due to the nonlinearity between
measurements and target states, at snkn a measurement
transformation function h(snkn ) ∈ R

3 is defined.Themea-
surement equation in (4) therefore becomes

znkn = h(snkn , c
n) + vnkn , (35)

with

h(snkn ) =[√
(xnkn )

2 + (ynkn )
2 , atan2

(
ynkn , x

n
kn

)
, f (cn)

]T
,

(36)

and vnkn ∈ R
3 being the measurement noise for Target n.

The feature of class cn is denoted as f (cn) and atan2(·)
denotes the two-argument arctangent as commonly used
in programming languages.

The range and azimuth components of vnkn are con-
sidered to be independent:

vnkn = [vr,nkn vθ,n
kn

v
f,n
kn

]T , (37)

with variances σ 2
r,n, σ

2
θ,n, and σ 2

f,n.
Since the relationship between the measurements

and the states is nonlinear, an EKF is applied in the fol-
lowing simulations. The observation matrix Hn

kn is de-

fined as the Jacobian of the measurement transforma-
tion function h:

Hn
kn = ∂h

∂s∂ f

∣∣∣∣
snkn , f n

. (38)

For the assumed radar systems, it has dimensions Hn
kn ∈

R
3×5.
In line with the radar scenario described [50], the

SNR is calculated by using (39), which is based a paper
by Koch [33]:

SNRkn (ςn, τn, r
n
kn ) = SNR0·

(
ςn

ς0

)
·
(

τn

τ0

)
·
( rnkn
r0

)−4

·e−2�α.

(39)
where�α is the relative beam positioning error,ςn is the
constant radar cross section (RCS) of the Target n, rnkn is
the distance of Target n at time step kn and ς0, τ0 and r0
are the corresponding values for a reference target. The
dwell time is used equivalently to the transmitted energy
mentioned by Koch.The relative beam positioning error
is calculated as

�α =
(
θkn − θ̂kn

)2
�2

, (40)

where θkn is the real target angle and θ̂kn is the predicted
target angle in azimuth at time kn and � is the one-sided
beam-width in azimuth.

The variance of the range and azimuth measurement
noise for Target n can then be defined as (see, e.g., [41])

σ 2
•,n = σ 2

•,0
SNRkn (ςn, τn, r

n
kn
)
, (41)

where • ∈ (r, θ, f ) and σ 2
•,0 is the measurement noise

variance for a reference target 0 as defined in Table I.
Assuming independent measurements, the measure-

ment covariance can be written as

Rn
kn =

⎡
⎣σ 2

r,n 0 0
0 σ 2

θ,n 0
0 0 σ 2

f,n

⎤
⎦ . (42)

D. Target Classes

Each target is assumed to belong to a specific class.
The class is defined before the simulation scenario starts
and cannot be changed. Therefore, it stays the same dur-
ing the entire scenario. The measurement variance re-
garding the class feature f n of object n is calculated
as shown in (41). The corresponding variance value for
the reference measurement f0 is shown together with
the other simulation parameters in the specific subsec-
tion. For the simulations discussed below, different tar-
get classes are considered that influence the maneuver-
ability of the targets. These maneuverabilities are imple-
mented in the trajectory simulations of the targets and
are also considered in the resource optimization algo-
rithm.As discussed earlier, one tracking filter per target
class is applied, each tuned to one of the classes.
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D. Optimization Problem

There are N tracked targets in the environment.
Based on the general definition in (6), the RRM prob-
lem can thus be expressed as

min
T,τ

N∑
n=1

E
[
C

(
snkn|kn−1(Tn, τn),P

n
kn|kn−1(Tn, τn), c

n
)]

s. t.
N∑
n=1

τn

Tn
≤ �max,

(43)
where E[·] denotes the expected value. The cost that is
optimized is therefore based on the current prediction
of the tracking filter,which is based on the measurement
actions Tn and τn for Target n. Both the revisit times Tn,
as well as the dwell times τn are optimized. The state
measurements are influenced by both T and τ , while
the state independent feature measurement is only in-
fluenced by the dwell time.

For all shown simulations, the implemented BP is
simply to apply the evaluated action in every step of the
PR. Therefore, πbase = a.

F. Threat Definition

Since a two-dimensional scenario is assumed, the di-
mension parameter in the unscented transform isD = 2.
As mentioned before, the choice of the “correct” threat
definition depends on the scenario and the user’s wishes.
As an example, in the following, the threat φ is defined
as

φ(c, s) =
ρc ·

(
0.1 + exp

(
− r−r′

η

))
1 + exp

(
− r−r′

η

) , (44)

where ρc is a scalar factor unique for each class, r =√
x2 + y2 is the range of the target from the sensor, r′ =

18 km is a reference range and η = 5000 is a parameter
to fine-tune the threat function slope. A possible exam-
ple of such a threat is shown in Fig. 3. This formulation
assumes that targets at a long distance pose a very low
threat,while the threat increases the closer the target ad-
vances toward the sensor location.At a certain distance,
themaximum threat value is reached. In addition to that,
some classes generally pose a higher threat than others.
One could think of an automotive scenario where a ve-
hicle is moving toward the sensor location.When it is far
away, the threat would be low as it would probably turn
away at some point. However, once it comes closer, the
threat increases until it is not very likely to turn away
anymore, which means that the maximum threat level is
reached,and a collision is almost inevitable.For instance,
regarding the different classes, one could think of a truck
having a higher base threat level than a cyclist.
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Figure 3. Example threat function for three different targets. The
reference range r′ is 18 km and the tuning parameter η is 5000. The

class parameters ρ are set to values 1, 2, and 3, respectively.

TABLE II
Simulation Parameters for Simulation Scenario A

Parameter Value

Precision of solution (δ) 0.01
Action space discretization steps (�T ,�τ ) Adaptive
Action space limits revisit interval (Tmin,Tmax) T ∈ [0.1s . . . 5 s]
Action space limits dwell time (τmin, τmax) τ ∈ [0.1 s . . . ∞]
Number of rollouts (M) 10
Rollout horizon (H ) 10
Maximum available budget (�max) 1
Budget update interval (tB) 5 s
Beam positioning error (�α) 0
Probability of detection (PD) 1
Threat reference range (r′) 18 km
Threat slope parameter (η) 5000

VI. SIMULATION SCENARIO A

In this section, the dynamic tracking example as pre-
sented in [50] is used to show the impact of the chosen
cost function based on the threat.Essentially, theAODB
algorithm from [50] is applied with the cost function as
defined in (31). The radar sensor is placed at the origin
of the coordinate system. Initially, there are four targets
in the scene. After 25 s, a fifth target is detected, and a
new track is started. All targets move with constant ve-
locities. Here, it is assumed that the class of the targets
is not of interest, so no classification is applied during
the simulation scenario. The simulation parameters are
summarized in Table II, while the target parameters are
shown in Table III. The trajectories of the targets during
the simulation scenario are shown in Fig. 4, and the re-
sulting budget allocation of the simulations is shown in
Fig. 5.

Since classification is not considered in this example,
the uncertainty in threat comes directly from the track-
ing accuracy.This is reflected in Fig. 5 by the fact that the
budgets overall show very similar behavior to the dashed
lines. Those lines indicate the results from [50], where
the error-covariance of the tracking filter was used di-
rectly to optimize the resource allocation. For example,
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TABLE III
Initial Target Parameters for Simulation Scenario A

Parameter
\\
Target n 1 2 3 4 5

xn0 [km] 12 12 7 19 7.9
yn0 [km] 10 15 11 2 8.3
ẋn0 [m s−1] 9 −30 45 −35 −20
ẏn0 [m s−1] −15 15 30 0 −25
ςn [m2] 25 25 64 64 64
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Figure 4. Trajectories of the targets for Simulation Scenario A. The
symbols mark the starting positions.

Target 4 receives the largest budget allocation during the
first 70% of the scenario, while Target 5 always receives
the smallest, which is in line with the previous results. It
should be noted that the algorithm decides the resource
allocations on the expected threat variance reduction
rather than the actual threat variance values. Neverthe-
less, the target with the highest threat variance will offer
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Figure 5. Resulting budget distribution for Simulation Scenario A.
The dashed lines denote the results for tracking without classification

as shown in [50].
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Figure 6. The PDFs of the class features given different SNR values.
The solid lines correspond to SNR = 1 and the dashed lines to

SNR = 50.

the biggest opportunity to reduce this threat variance in
most cases.

VII. SIMULATION SCENARIO B

In this section, a dynamic joint tracking and classifi-
cation scenario are presented.The radar sensor is placed
at the origin of the coordinate system.There are two pos-
sible classes and two observed targets. The first target is
of Class 1, and the second one of Class 2. The radar sen-
sor is aware of all possible target classes, but it does not
know which target is of which class. Therefore, the ini-
tial class probabilities are equal for both classes for each
target. The available budget is set to 1, implying that the
radar system fully focuses on these two tracking tasks.
Aspects like false alarms are not taken into account.
However, even if ambiguities in the measurement-to-
track assignment were considered, it would still be nec-
essary to compute the joint posterior of the state vari-
ables that are used for the optimization. Therefore, the
approach would not be significantly different from what
is presented here. For future use in a real radar system,
those aspects certainly need to be taken into account.

The targets move with a class-typical maneuverabil-
ity noise,which can be seen from trajectories in Fig. 7(a).
The simulation parameters are identical with the ones
for simulation A as mentioned in Table II. The target
and class parameters are shown in Tables IV and V, re-
spectively. As mentioned before, the values used in this
section do not have any physical origin and are merely
chosen for demonstration purposes. Figure 6 shows the
PDFs of the features given two different SNR values.
The simulation results are presented in Fig. 7(b)–(e).

In the beginning, Target 2 gets a larger amount of
dwell time assigned than Target 1,which leads to a quick
classification. Target 2 is closer to the radar sensor than
Target 1, which means that not knowing the class leads
to a higher threat variance. Additionally, the feature
measurements for Target 2 are more accurate than for
Target 1 due to the smaller distance and, therefore,
higher SNR. Subsequently, after 5 s, the dwell time and
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Figure 7. Simulation results for Simulation Scenario B. (a) Trajectories of the targets for Simulation Scenario B. The symbols mark the
starting positions. (b) Resulting budget distribution. (c) Resulting dwell time and revisit time distribution. (d) Resulting optimized cost (threat

variance). (e) Resulting class probabilities. A value of 1 means that a target was correctly classified.
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TABLE IV
Initial Target Parameters for Simulation Scenario B

Parameter
\\
Target n 1 2

xn0 [km] 14.8 9.2
yn0 [km] 13.9 15.9
ẋn0 [m s−1] 2 2
ẏn0 [m s−1] −1 1
ςn [m2] 5 5
cn 1 2

with it the relative budget for Target 2 drops, while Tar-
get 1 gets significantly more dwell time and budget as-
signed. During the bigger part of the scenario, the sen-
sor focuses on classifying Target 1,which is more difficult
due to its larger distance from the sensor. While Target
1 gets slowly classified, its budget starts to decrease af-
ter about 45 s. The budget for Target 2 increases at the
same time. After both targets are successfully classified
at about 70 s, the assigned budgets for both targets stay
around 0.5, although Target 1 still gets a higher dwell
time.The targets are both classified and theoretically de-
serve a similar amount of attention. However, as Target
1 was classified later, there is still slightly more uncer-
tainty left about its class, leading to a higher dwell time
allocation. This behavior emphasizes that the resource
allocation is based on the expected threat variance re-
duction. Figure 7(d) shows how the early classification
of Target 2 leads to a significant direct decrease in threat
variance,while the classification of Target 1 takes longer,
and the cost therefore also drops slower.

VIII. SIMULATION SCENARIO C

This simulation scenario is similar to Scenario B.The
radar sensor is again placed at the origin of the coordi-
nate system, and the available maximum budget is set to
�max = 0.5. The reason for a lower maximum budget
could be, e.g., that an operator of the radar system man-
ually assigned some of the total budget to other tasks.
Additionally, the length of the simulation is 500 s, which
is longer than in Scenario B.All other general simulation
parameters are the same as shown in Table II. The class
parameters are summarized in Table VII, and the initial
target parameters are shown in TableVI.This time, there
are three targets in the environment, and the targets can
be of three possible classes. Figure 8(a) shows the trajec-

TABLE V
Class Parameters for Simulation Scenario B

Parameter
\\
Class 1 2

Class feature fc 1 2
Threat parameter ρc 1 9
Maneuverability σw,c [m s−2] 2 5

TABLE VI
Initial Target Parameters for Simulation Scenario C

Parameter
\\
Target n 1 2 3

xn0 [km] 10.1 12.3 12.1
yn0 [km] 17.1 17.5 15.3
ẋn0 [m s−1] 1 −2 1
ẏn0 [m s−1] 2 2 −2
ςn [m2] 5 5 5
cn 1 2 3

tories of the simulated targets.The simulation results are
shown in Fig. 8(b)–(e).

At the beginning of the scenario, it can be seen that
Target 3 gets the largest relative budget assigned. Subse-
quently, it gets classified very quickly. It can be seen that
the algorithm makes a wrong decision about the class
of Targets 1 and 2. Figure 7(d) shows that making the
first classification decisions leads to a large reduction of
the calculated threat variance for all targets within the
first 100 s. It can be seen that while the algorithm slowly
classifies Target 2 between about 100 s and 300 s, the
threat variance increases and then drops again. The rea-
son is that the class probabilities are shifting during that
phase, and there has no clear decision been made yet.
The same happens to Target 1, as its class probability val-
ues are also changing at that time. Between about 320 s
and 420 s Target 1 is classified correctly, which also leads
to an increased threat variance. After 400 s, all targets
are correctly classified, and the threat variances decrease
rapidly.

In Fig. 8(b), it can be seen that the budget alloca-
tions roughly follow the threat variances.The target with
the highest threat variance usually receives the largest
budget. Similarly, the dwell times are assigned approxi-
mately proportional to the threat variance.

IX. SIMULATION SCENARIO D

This simulation is similar to Simulation C, except for
all targets being of the same class. The available bud-
get is set to �max = 0.7. The length of the simulation is
100 s.All other simulation parameters are identical with
Simulation A as shown in Table II. The target and class
parameters for this simulation scenario are shown in
Tables VIII and IX. The simulation results are shown in
Fig. 9(a)–(d).

Table VII
Class Parameters for Simulation Scenario C

Parameter
\\
Class 1 2 3

Class feature fc 1 2 3
Threat parameter ρc 1 9 19
Maneuverability σw,c [m s−2] 2 5 9
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Figure 8. Simulation results for Simulation Scenario C. (a) Trajectories of the targets for Simulation Scenario C. The symbols mark the
starting positions. (b) Resulting budget distribution. (c) Resulting dwell time and revisit time distribution. (d) Resulting optimized cost (threat

variance). (e) Resulting class probabilities. A value of 1 means that a target was correctly classified.

Figure 9(c) shows that the closer the targets, the ear-
lier they get classified. This has to do with the higher
SNR at shorter ranges and the fact that the proposed
algorithm assigns larger budgets to “dangerous” targets
to classify them quickly. This can be seen in Fig. 9(b),

where Target 2 receives the largest budget between 5
and 10 s. After the classification of the targets is com-
pleted, the budget distribution in Fig. 9(b) shows a clear
influence from the distance of the targets. The reason
is that there is no significant uncertainty in the class
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TABLE VIII
Initial Target Parameters for Simulation Scenario D

Parameter
\\
Target n 1 2 3

xn0 [km] 4 8 12
yn0 [km] 4 8 12
ẋn0 [m s−1] −1 −1 −2
ẏn0 [m s−1] 1 −1 −2
ςn [m2] 5 5 5
cn 3 3 3

anymore, so the position uncertainty becomes more
important.

Additionally, Fig. 9(d) shows that the proposed ap-
proach delivers the lowest expected cost compared to
three other resource allocation methods. It can also be
seen that once the target classes are determined, the
costs of the different approaches are relatively small.
The reason, therefore, is that the cost function heavily
depends on the assumed class probabilities, especially
when the target class is not determined yet. The differ-
ences between the approaches depend on the cost func-
tion and feature definition.

TABLE IX
Class Parameters for Simulation Scenario D

Parameter
\\
Class 1 2 3

Class feature fc 1 2 3
Threat parameter ρc 1 9 19
Maneuverability σw,c [m s−2] 2 6 10

X. CONCLUSION

This paper introduced a novel RRM approach for
joint tracking and classification using a previously in-
troduced framework. In contrast to most available ap-
proaches, two different task types are combined into one.
It is shown that it is possible to solve the RRM prob-
lem for multiple task types by using only a single cost
function based on a definition ofmission threat.Such ap-
proaches have been suggested previously but have never
been fully developed and demonstrated with the help of
fully worked out practical simulation scenarios.

Firstly, the joint tracking and classification frame-
work have been introduced, which builds on the previ-
ous RRM framework as shown in [50].
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Figure 9. Simulation results for Simulation Scenario D. (a) Trajectories of the targets. The symbols mark the starting positions. (b) Resulting
budget distribution. (c) Resulting class probabilities. A value of 1 means that a target was correctly classified. The box on the bottom middle
shows the class probabilities zoomed in on the first 15 s. (d) Comparison of the expected optimized cost for different resource allocation

methods. The values are averaged over 10 different runs.
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Secondly, it has been explained how to move from
the state to the threat domain and combine the costs of
different target classes. The idea of threat is to transform
the state of each task into an easily comparable scalar
number.

Finally, an explicit definition of a possible mission
threat has been introduced. The presented threat defini-
tion is based on the position and a class-dependent pa-
rameter. It has been shown how the threat looks like for
multiple classes in a two-dimensional environment.

Through an analysis of the dynamic tracking Scenar-
ios A–D, it has been shown that the algorithm works in
different situations. It calculates the resource allocations
based on the class probabilities and the tracking state ac-
curacy.The algorithm tries to classify targets of unknown
classes faster, especially when they are close to the radar
sensor.On the other hand, the classification is done over
time while tracking if the targets are further away and
have a smaller threat variance.Once the targets are clas-
sified, the resource allocations depend primarily on the
track uncertainty. This means that the target tracks get
the resources assigned based on the expected decrease
in uncertainty. Compared to other approaches, the pre-
sented approach leads to a quicker classification of dan-
gerous objects. Within the presented simulations, a sin-
gle measurable feature was chosen for demonstration
purposes. In a practical implementation of the approach,
multiple features (e.g.,RCS and velocity) could be taken
into account to further accelerate the classification pro-
cedure. Nevertheless, the presented simulations confirm
the applicability of the proposed algorithm.

The proposed algorithm fills the timeline on aver-
age, leading to some overlap of tasks. Specifically, this
can happen when predefined start or end times are re-
quired,or the tasks cannot be split up intomultiple parts.
A possible defensive solution to this problem is to as-
sume a lower available budget for the tasks to keep a
part of the timeline free. However, this would lead to a
less optimal result. For practical implementation, the im-
pact of these overlaps would need to be investigated,and
an explicit scheduler would need to be implemented at
a lower level, but this is out of the scope of this paper.

Future research has to be conducted w.r.t. the def-
inition of the threat and cost function. Additionally, it
has to be investigated further how these different threat
and cost formulations influence the budget allocations.
It will be especially interesting to look at how the clas-
sification process exactly depends on the different input
parameters, such as the measurement variance. Finally, a
practical implementation of the algorithm requires the
investigation of an explicit scheduler and its impact on
the results.

APPENDIX A
LAGRANGIAN RELAXATION PRINCIPLE

LR simplifies complicated constrained optimization
problems by removing constraints and adding them as

penalty terms into the original problemmultiplied by so-
called Lagrange multipliers. Consequently, a new opti-
mization problem is created with fewer constraints than
the original problem.LRmaximizes the minimum of the
cost function by adjusting the Lagrange multipliers. This
problem is called the LDP, which is usually a lower esti-
mate of the original problem if the initial Lagrange mul-
tipliers are chosen properly (see, for example, [8]).

LR and Lagrange multipliers have been extensively
covered in literature (for example, in [5], [8], [9], [13], or
[38]). As an example of how LR is applied, we consider
the general optimization problemwithN input variables
that is shown below:

minimize
x

f (x)

subject to g(x) ≤ A

h(x) ≥ B,

(45)

where

x = [x1, . . . , xN]T ∈ R
N,

g(x) = [g1(x), . . . , gm(x)]T ∈ R
m,

h(x) = [h1(x), . . . ,hp(x)]T ∈ R
p,

A = [A1, . . . ,Am]T ∈ R
m,

B = [B1, . . . ,Bp]T ∈ R
p.

Including the constraints into the optimization prob-
lem is done by adding a penalty term for each removed
constraint, multiplied by Lagrange multipliers, which
are defined as λ = [λ1, . . . , λm]T ∈ R

m and μ =
[μ1, . . . , μN]T ∈ R

p. The Lagrangian is defined as

L(x,λ,μ) = f (x) +
m∑
i=1

λi(gi(x) −Ai)

+
p∑
j=1

μ j(Bj − hj(x)). (46)

The relaxed problem is then called Lagrangian dual
function and can be expressed as

d(λ,μ) = minimize
x

L(x,λ,μ). (47)

The meaning of this expression is to find the maxi-
mum of the Lagrangian dual function with respect to the
Lagrange multipliers, as

ZD = maximize
λ,μ

d(λ,μ). (48)

Therefore, the objective function is minimized over x
while also being maximized over the Lagrange multipli-
ers. The goal is to come as close to the original problem
as possible. Iterative approaches are typically used to
find the optimal Lagrange multipliers and, consequently,
the tightest lower bound to the original problem. One
of those techniques, the subgradient method, will be ex-
plained in the following subsection.
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A. Subgradient Method

The subgradient method is an iterative process,
which starts with an initial value for the Lagrange
multipliers (e.g., 1). At each iteration k, the minimum
of the relaxed problem is calculated using that value
(Lagrangian dual function, see (46)). Then, subgradi-
ents are chosen for each of the constraint as skλ =
[sk

λ,1, . . . , s
k
λ,m]

T ∈ R
m and skμ = [sk

μ,1, . . . , s
k
μ,p]

T ∈ R
p.

Assuming the constraints mentioned in (45), the subgra-
dients are defined as

skλ = (g(xk) −A)

skμ = (B− h(xk)).
(49)

Next, the Lagrange multipliers are updated with a step
size γ k. If an inequality constraint is given, then the
penalty term may not become negative. The updated
Lagrange multipliers are therefore calculated as

λk+1 = max{0,λk + γ kskλ}
μk+1 = max{0,μk + γ kskμ}.

(50)

There are many possible step size approaches, such as
constant or decreasing step sizes like γ0/k or /γ k, for
example. The procedure started again with the new
Lagrange multipliers. A new Lagrangian dual function
is found, and afterward, new subgradients are again cal-
culated. The exact result is found when the gradients skλ
and skμ reach 0. Since this value can never be reached ex-
actly using this method, the process is repeated until the
gradient reaches 0 with the desired precision.

To summarize, a short overview of the subgradient
algorithm for the above mentioned optimization prob-
lem is given here:

1) k = 0: Set the Lagrangian multipliers to initial value
(λ0 = λ0,μ0 = μ0).

2) Calculate solution for d(λ,μ) and save xk.
3) Choose subgradients for Lagrangian multipliers skλ

and skμ (see (49)).

4) Check if skλ ≈ 0 and skμ ≈ 0 with desired precision. If
it is, then stop the process.

5) Adjust Lagrangian multipliers as shown in (50).
6) Go to step 2 and set k = k+ 1.

APPENDIX B
SOLUTION METHODS FOR POMDPS

POMDPs can be solved for finite or infinite horizons.
In order to reduce complexity, limited horizons H are
often considered. The value of H represents the num-
ber of measurement time steps into the future that are
considered in the optimization.Once a new budget allo-
cation is calculated, the horizon H will be moved to the
current moment in time. This approach is therefore also
called a receding horizon.

In [16], Charlish and Hoffmann have presented an
excellent summary of the general solution of a POMDP.
The following equations are based on their explanations.
The goal is to find the actions thatminimize the total cost
(valueVH over horizonH ).Starting at time step k0, this
can be expressed as

VH = E

⎡
⎣k0+H∑

k=k0
c(sk,ak)

⎤
⎦ . (51)

Using CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk,VH can be written as
a so-called value function of the belief state bk0 at time
step k0:

VH (bk0 ) = E

⎡
⎣k0+H∑

k=k0
CB(bk,ak)|bk0

⎤
⎦ . (52)

For belief state b0 and taking action a0, the optimal value
function is defined according to Bellman’s equation [3]
as

V∗
H (b0) = min

a0∈A
(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(53)
For very long or infinite horizons, the discount factor can
be set to γ < 1. Using this equation, the optimal policy
can be expressed as

π∗
0 (b0) = argmin

a0∈A

(
CB(b0, a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(54)
For each bk and ak, the optimal so-called Q-value is then
defined as

QH −k(bk, ak) = CB(bk, ak)+γ ·E [
V∗

H −k−1(bk+1)|bk,ak
]
.

(55)
Another way to find the optimal policy is to find the ac-
tion ak that minimizes the optimal Q-value:

π∗
k (bk) = argmin

ak∈A
(QH −k(bk,ak)). (56)

Therefore, it is necessary to calculate the Q-value for all
possible actions, which is generally infeasible.

Generally, POMDPs can be solved both online as
well as offline. Which type of solution is applied de-
pends on the size of the state space. The so-called state-
space explosion limits the usefulness of exact offline
techniques.

Many offline methods are based on the so-called
value iteration (VI).This technique iteratively calculates
the cost/reward values of all possible states.An exact ap-
proach is, e.g., the One-Pass algorithm [54]. Examples
for approximate point-based algorithms are PBVI, or
Perseus [56]. Exact methods often lead to highly com-
plex optimization problems, while approximate point-
based methods require many grid points within the state
space to converge toward the exact solution. The ad-
vantage of offline solutions is that the POMDP is fully
solved only once. Unfortunately, this type of method is
already infeasible for a very small state space.
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Contrary to that, online algorithms only solve a small
currently relevant part of the POMDP.This makes them
less accurate but much easier and faster to compute.
Some of the online approaches involve approximate
tree methods (see, for example, the overview in [48]) or
Monte Carlo sampling (e.g., PR).
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