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Abstract

Decision tree learning is widely done heuristically, but advances in the field of optimal
decision trees have made them a more prominent subject of research. However, current
methods for optimal decision trees tend to overlook the metric of robustness. Our research
wants to find out whether the robustness of optimal decision trees can be improved by
incorporating randomization. To achieve this, we added randomization to the existing
MurTree algorithm, and performed experiments to compare the robustness. The results show
that adding randomization improves the robustness of the decision tree but lowers the out of
sample accuracy.

1 Introduction
Decision tree learning is a machine learning method that produces tree models, which are called
decision trees. The goal of these decision trees is to label and classify data. In every internal node
of this tree, a query gets made to determine whether a data-point goes to the left or right side of
the tree. When it reaches a leaf node, the data-point gets assigned a label corresponding to that
leaf node. The major benefit of this model is that it is easy to interpret for humans, and does not
necessarily require technical knowledge to understand. This makes them especially attractive to
use in contexts where interpretability and readability are important, such as in healthcare.
Creating decision trees that are optimal, however, has been shown to be NP-Complete [8], which
leads them to be very computationally expensive to compute.
For that reason, decision tree learning has historically been implemented using heuristic algorithms,
e.g. CART [5] or ID3 [9]. Heuristic approaches use a heuristic to approximate a good split at
every node, these approaches have fast runtimes, which enables them to solve the problem in a
reasonable amount of time. The drawback is that these approaches do not guarantee that the
resulting decision tree has the least amount of misclassifications, and thus are not always able to
create decision trees that are optimal from a global perspective.
The benefit of optimal trees compared to heuristic trees is that they generally offer greater
accuracy outside the training data and are seen as a better representation of the data. Computing
these optimal decision trees was first considered to be computationally intractable, but through
advances in research, multiple viable approaches to constructing optimal decision trees have been
found.
One approach is to pose the problem as a mixed integer optimization problem [2] and use MIO
techniques to produce optimal trees. Other methods such as DL8.5 [1] and MurTree [6] make
use of dynamic programming to construct optimal decision trees. Dynamic programming uses
memoization, where you store solutions to subproblems in a cache to improve runtime.
Most common algorithms for calculating decision trees have a deterministic rule for splitting the
dataset at predicate nodes, but Blanquero et al. [4] proposed a different approach, the Optimal
Randomized Classification Tree (ORCT). In an ORCT, every instance in a dataset has its own
probability to branch left or right when in an internal node depending on the value of the
associated feature. As a result, each instance has its own individual probabilities to be assigned
a certain label. So instead of ending up in a single leaf node, each leaf node now has a certain
probability to be reached.
One potential benefit that the randomization could have, is that it can improve the robustness of
the model. Robustness means that a model is more resistant to malicious attacks and noise in
the data. These things can impact the accuracy of the classification significantly, such as in the
one pixel attack [11], where changing one pixel changes the classification result entirely.
Despite the benefits that robustness provides, this metric does not get investigated in the paper
by Blanquero et al. [4]. Furthermore, the effects of randomization on decision trees has only
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scarcely been studied in the literature.
So the question we strive to answer in this work is how the incorporation of randomization affects
the robustness of decision trees.
To answer this question, we made a modified version of the MurTree [6] algorithm and added
randomized splits as in ORCT [4].
More specifically, our contributions are as follows:

• The addition of discrete feature values to dynamic programming methods. Current dynamic
programming methods only use binary feature values for creating decision trees.

• A way to randomize the splits within a decision tree.

• An experimental study to determine the effects of randomization on the robustness of
optimal decision trees.

The rest of this paper is structured as follows. The second section gives an overview of different
decision tree learning approaches in the literature. The third section explains the definitions and
notations that are used in this work. The fourth section describes the contributions this paper has
made. The fifth section covers the experimental setup used and the results that were obtained.
The sixth section discusses the reproducibility of our paper. In the last section, we conclude the
paper and go into depth about limitations of our method and possible further research.

2 Related works
The decision tree learning method is diverse and has many different variations and approaches. In
this section, we give an overview of the relevant decision tree learning approaches in the literature.

Heuristic decision trees
Among decision tree learning algorithms, heuristic approaches are popular for their scalability
and fast runtimes. They start off with one node and keep expanding the tree based on some
heuristic to evaluate the quality of the split. Examples of heuristic decision tree algorithms are
CART [5], ID3 [9] and C4.5 [10].

Optimal decision trees
An optimal decision tree is the best possible decision tree given a certain metric, such as accuracy.
Making optimal decision trees has been proven to be NP-complete [8], and their scalability and
runtimes are generally inferior to their heuristic counterparts. One benefit that Bertsimas and
Dunn [2] has shown is that optimal decision trees have higher out of sample accuracy than
heuristic methods. There are multiple approaches to creating optimal decision trees, we will
describe some of them in the following paragraphs.

Mixed integer programming
One way to create optimal decision trees is to apply Mixed Integer Optimization (MIO) methods.
These methods create decision trees by formulating the problem in a specific manner. They
specify a target to minimize, such as a misclassification score, and a set of constraints which the
decision tree must adhere to. Then they use a generally available MIO solver such as Gurobi to
solve the formulated problem. Some examples of decision trees methods with MIO are papers by
Bertsimas and Shioda [3] and Bertsimas and Dunn [2].
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Dynamic programming
Another approach for creating optimal decision trees is to make use of dynamic programming.
These methods store optimal subtrees in a cache to avoid redundantly recalculating subtrees that
were encountered before. Methods that apply dynamic programming include DL8 [7], DL8.5 [1]
and MurTree [6].

MurTree
The MurTree [6] algorithm uses exhaustive search to find optimal decision trees. It applies
multiple optimizations to improve the runtime. One of the optimizations is that they use dynamic
programming to cache optimal subtrees. It also uses upper and lower bounds similar to DL8.5
[1] to prune the search space. Additionally, it introduced a specialized algorithm specifically for
trees of depth two, which improved the runtime significantly.

Optimal randomized classification trees
Blanquero et al. [4] use a continuous-optimization method to create optimal decision trees. Integer
values in mixed-integer optimization problems typically are slower than continuous values. To
remove the integer decision variables in the MIO methods, it introduces randomization to their
approach. Instead of deterministically going to the left or right of the tree, instances now have a
probability that determines which side of the tree it goes to.

3 Preliminaries
In this section, the necessary theoretical background and the notations used throughout the paper
are given.
A feature f is an encoding of information, this can take many forms such as binary, discrete or
continuous. When a number of features relate to the same instance, they can be grouped together
in a vector called a feature vector. An instance I is a pair composed of a feature vector and a
label that represents the class of the instance. A dataset D is a collection of these instances. In a
dataset, the order of the features is the same for all instances, i.e. the value of the i-th feature of
every instance corresponds to the same property.
Every feature that occurs in a dataset get stored in a set F , and all the possible labels that can
be achieved in a dataset, get stored in a set C.
A binary tree is a tree model with the constraint that every node can have at most two children.
Every tree model consists of two types of nodes: internal and external nodes (also called non-leaf
and leaf nodes). Internal nodes are nodes that have at least one child, and in the context of
decision trees are called predicate nodes, while external nodes have no children and are called
classification nodes.
A decision tree is a machine learning model that makes use of tree models to label and classify
data. It does so by checking the value of a feature at every predicate node, and comparing that
to a threshold, the outcome of which determines whether they go to the left or right side of the
tree. When it eventually reaches a classification node, it assigns that instance a label. If the label
assigned by the classification node does not correspond to the label associated with the instance,
a misclassification occurs. Given a decision tree and a dataset, the misclassification score is the
amount of instances the decision tree misclassifies in that dataset.
One goal of decision tree learning is to minimize this misclassification score, only if this misclassi-
fication score has the lowest amount possible can the decision tree be called optimal. Decision
trees have a depth d, which is the maximum number of ancestors that occur, or in other words,
the maximum number of predicate nodes one can encounter when going down the tree. They

4



also have a size n, which is the amount of predicate nodes inside the tree. The size of a binary
decision tree has an upper bound of 2d − 1, because each node can only have 2 children.
Each decision tree learning approach has different constraints and limitations. In our approach,
only discrete features are supported, and any continuous features have to be discretized beforehand.
This is done to make it possible to exhaustively construct every possible decision tree, given a
constraint on the maximum depth and size.
Dynamic programming uses memoization to improve the runtime. Memoization is the process
of storing the results of running a function with certain parameters in a cache. When those
parameters occur again, the results of the cache gets retrieved instead of running the whole
function again.
In this paper, we have a cache that stores optimal decision trees and one that stores lower bounds.
The results from the cache gets retrieved based on branch information. This branch B is a set of
internal nodes it passed through and can be divided into two sets: BL and BR, which contains
the nodes that went to left and to the right respectively.
Randomized trees have probabilistic splits instead of deterministic. The probability to go down the
left side of a tree is given by the formula: pIt = F (µ, σ, fI). Here I is the instance in the dataset,
t is the internal node, F is the randomization function, µ is the center of the randomization
function, σ is the standard deviation of the function and fI is the value of the feature inside
instance I that gets evaluated.
The probability of an instance reaching a certain leaf node can be calculated by taking the product
of all the parent probabilities. This probability is denoted as: PI = Πt∈BL

(pIt)Πt∈BR
(1− pIt)

In this formula, I is the instance, PI is the probability that this instance reaches that leaf node,
BL is a set of parents which branched left, and BR is a set of parents that branched right.

To prune the search space, upper and lower bounds are used. When the misclassification
score or the lower bound of a tree exceeds the upper bound, we determine the decision tree to be
infeasible and prune that part of the search space.

Figure 1: An example of a randomized decision tree.

4 Method
Our algorithm for building optimal decision trees uses the MurTree algorithm as a base, but
some modifications were made to it. We added support for discrete feature values instead of just
binary. This change is important because the randomization is not possible on binary features.
We also introduced randomized splits, which uses a step function to determine the probability of
going down a certain branch.
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In the following sections, we will be giving a high-level overview of the algorithm, and also go
more in depth about the workings of the new functionalities.

4.1 High level overview
In Eq. 1 we give a dynamic programming formulation of the problem. Where T (D, B, d, n) is the
misclassification score when using those parameters.

T (D, B, d, n) =


T (D, B, d, 2d − 1) n > 2d − 1

T (D, B, n, n) d > n∑
I∈D PI −max{

∑
I∈D PI ∗ (class(I) = c) : c ∈ C} n = 0 ∨ d = 0

min{T (D,BL + f, d− 1, n− 1− i) + T (D,BR + f, d− 1, i)
: f ∈ F, k ∈ [0, fmax], i ∈ [0, n− 1]} n > 0 ∧ d > 0

(1)

There are 4 possible cases that can happen.
In the first case we limit the amount of nodes by taking advantage of the binary tree structure.
When the amount of nodes is higher than what is possible given the depth, we set n to the
maximum possible nodes in a full binary tree which is 2d − 1.
In the second case, we limit the depth by using another property of binary trees, namely that it
is impossible for the depth to exceed the number of nodes. Thus, in this case we limit the depth
to the amount of nodes.
In the third case, either the depth or the amount of nodes equals zero, which means it is no longer
possible to expand the tree. So we create a classification node and have to choose which label to
give to that node. This is done by choosing the label which gives the lowest expected value of
the misclassification score. We do this by iterating over every instance in the dataset and every
possible label to give to the classification node. The term (class(I) = c)) equals 1 if the label
of the instance equals label c, otherwise it equals 0. So it sums the probability of reaching the
classification node for every instance, but the probability only gets added to the sum if the label
of the instance and the node match. When the label with the highest probability gets determined,
it subtracts that probability from the total probability to obtain the misclassification score for
that leaf node.
In the fourth case, both the number of nodes and the depth is larger than 0. This means we can
expand the tree and add another split. It checks every possible split it can make, and selects the
one that results in the lowest possible misclassification score. So for every possible feature, for
every possible value that feature can take, and for every way to distribute the budget of nodes, it
checks the misclassification score by recursively calculating the left and right side of the tree and
adding them together.

4.2 Algorithm
We use the MurTree [6] algorithm and implemented changes to support discrete feature values and
randomized splits. These changes, however, were not compatible with some of the optimizations
that the MurTree algorithm uses and thus had to be removed. One example of this is the removal
of the specialized depth two solver. This solver requires that the dataset can be divided, but in
our algorithm the dataset can not be altered for the randomization to work.
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4.2.1 Discrete feature values

One of the changes we have made to the MurTree algorithm is shown in algorithm 1. The
algorithm is identical to the MurTree version except for an additional loop that takes place to
iterate over every possible value that a feature can take on.

Algorithm 1 MurTree.GeneralCase(D,B,d,n,UB), this algorithm corresponds to the fourth case
in Eq. 1. For the most part identical to the MurTree version.
1: Tbest ← ClassificationNode(D)
2: if LeafMisclassification(D) > UB then
3: Tbest ← ∅
4: LB ← RetrieveLowerBoundFromCache(D,B, d, n)
5: RLB ←∞
6: nmax ← min{2(d−1), n− 1}
7: nmin ← (n− 1− nmax)
8: for splitting feature f ∈ F do
9: for k ∈ [0, fmax] do

10: if Misclassifications(Tbest) = LB then
11: break
12: if Misclassifications(Tbest) = LB then
13: break
14: for nL ∈ [nmin, nmax] do
15: nR ← n− 1− nL

16: UB′ ← min{UB,Misclassifications(Tbest − 1}
17: (T, LBlocal)←MurTree.SolveSubTreeGivenRootFeature(D,B, f(k), d, nL, nR, UB′)
18: if T ̸= ∅ then
19: Tbest ← T
20: else
21: RLB ← min{RLB,LBlocal}
22: if Misclassifications(Tbest) ≤ UB then
23: StoreOptimalSubtreeInCache(Tbest, D,B, d, n)
24: else
25: LB ← max{LB,UB + 1}
26: if RLB <∞ then
27: LB ← max{LB,RLB}
28: StoreLowerBoundInCache(D,B, d, n, LB)

29: ReplaceDatasetForSimilarity(D,B, d)
30: return Tbest

An in depth explanation of the algorithm can be found in the MurTree [6] paper. The changes
we have made is the addition of the for loop on line 9, and on line 17 the splitting feature now
gets passed along with a feature value k.

4.2.2 Randomization function

The function that we use to calculate the probabilities is a cumulative logistics distribution.
Figure 1 and 2 shows examples of this function. This function is centered around a specific value

and the standard deviation determines how spread out the function is. When the standard
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deviation equals zero the function is equivalent to a split in a deterministic decision tree.

Figure 2: An example of a randomized function with a center of 5 and standard deviation of 1.
The y axis gives the probability of going to the left side of the tree, and the x axis gives the input

value for the randomization function.

Figure 3: An example of a randomized function with a center of 5 and standard deviation of 0.5.
The function is less spread out than the previous figure, which means the randomization effect is
weaker.

With the addition of randomization, the misclassification cost has to be calculated in a
completely different way. Algorithm 2 shows how the new misclassification cost gets calculated.
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Algorithm 2 MurTree.leafMisclassification(D,B,σ), this algorithm corresponds to the third case
in Eq. 1. Calculates the lowest misclassifications possible for a single leaf node.
1: // Keep track of the probability of each label
2: for label c ∈ C do
3: labelProbability[c]← 0

4: // Calculate for every instance the probabilty of reaching the node
5: for instance I ∈ D do
6: // leafProbability becomes the probability to reach the leaf node, to calculate it we

multiply each probability of the parent nodes in the branch.
7: leafProbability ← 1
8: BL ← LeftBranch(B)
9: BR ← RightBranch(B)

10: // All the splitting features that went left in the tree multiply the probability with p
11: for splitting feature f ∈ BL do
12: // The randomization function centers at splitting feature f, has a standard deviation

of σ and evaluates with the corresponding feature in instance I
13: predicateProbability ← RandomizationFunction(f, σ, I.getFeature(f))
14: leafProbability ← leafProbability ∗ predicateProbability

15: // All the splitting features that went right in the tree multiply the probability with (1-p)
16: for splitting feature f ∈ BR do
17: predicateProbability ← (1−RandomizationFunction(f, I.getFeature(f))
18: leafProbability ← leafProbability ∗ predicateProbability

19: labelProbability[I.getLabel()]← labelProbability[I.getLabel()] + leafProbability

20: highestProbability ← 0
21: totalProbability ← 0
22: for label c ∈ C do
23: totalProbability ← totalProbability + labelProbability[c]
24: highestProbability ← max{highestProbability, labelProbability[c]}
25: return totalProbability − highestProbability

In line 3-11, for every possible label we sum the probabilities of the instances with that label to
reach this node. Then in line 12-16 we determine which label has the highest chance of reaching
that node, and calculate the probability of reaching that node regardless of label. In line 17 it
returns the misclassification score by subtracting the probability of reaching that node by the
probability of correctly classifying the node.

5 Results/Experiment
In this section, we will compare the robustness of our algorithm when using different parameters
for the randomization. With the aim of finding out whether increasing the randomization also
results in a more robust decision tree.

5.1 Datasets and processing
The datasets used for training and experimentation are publicly available datasets gathered from
the UCI machine learning repository. There are multiple processing steps applied to make the
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datasets compatible with our algorithm.
First of all, missing values were handled by removing any feature that has a missing value for any
of the instances in the dataset (the column gets removed). Secondly, for any nominal feature,
binary dummy features are created that correspond to each possible value it can take on. Lastly,
both ordinal and continuous values are discretized using equal width discretization, in this method
values get divided into bins. The size of these bins is (max −min)/n, where n is the desired
number of bins and each bin is the same size. The runtime of the algorithm is greatly affected by
the number of bins that features can take on, so a trade-off has to be made between accuracy
and speed. For this paper, we have decided to restrict the number of bins to ten.
For the experiments, the datasets get split in two. The first part constitutes 75 percent of the
dataset and is used for the training of the decision tree. The second part constitutes the remaining
25 percent and is used for doing the experiments.

5.2 Robustness metric
To measure robustness, we assume that there is an attacker who has knowledge about the
underlying decision tree model and tries to alter the classification result by modifying feature
values. The attacker can perturb the value either up or down, and will try to change a correct
classification into a wrong one. We measure the most misclassifications that an attacker can
cause in the out of sample part of the dataset.

5.3 Results
Table 1 contains information about the datasets that were used in the experiments.

Table 1: Datasets that were used, along with dataset size, amount of features and amount of
labels
Dataset |D| |F| |C|
anneal 199 11 6
abalone 1044 10 28
crx 172 13 2
haberman 76 3 2

The following graphs show the results of the experiments. The y-axis measures the accuracy,
which is the proportion between the correct classifications and the size of the dataset, and the
x-axis shows the randomization in the form of the standard deviation that was used to train the
decision tree. These graphs contain two lines, the full line is the overall out of sample accuracy
and the dashed line is the accuracy after an adversary performed an attack. All the experiments
are performed on trees of depth two.
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Figure 4: Experiment run on the anneal dataset

Figure 5: Experiment run on the abalone dataset

Figure 6: Experiment run on the crx dataset

11



Figure 7: Experiment run on the haberman dataset

6 Responsible research
In this section, we describe which measures we took to ensure that our work is reproducible and
done responsibly.

Datasets
The original datasets that were used in this paper are all publicly available. We also described
the processing steps applied to the datasets, such that people can obtain the same dataset.

Algorithm
We describe our contributions in the method section, furthermore the source code for MurTree
algorithm is available online. Which makes it possible to recreate this algorithm.

Hardware
All the experiments are run on a regular desktop pc, so the algorithm should be able to run on
most devices. The results of the experiments are also not affected by variations in hardware,
which is the case for measuring runtime, for example.

These facts combined means that people should be able to reproduce the experiments if they
so desire.

7 Conclusion
In our research we noticed that adding randomization generally improved the robustness, however
the out of sample accuracy drops as a result. So a trade-off has to be made between accuracy
and robustness.
Despite these results, some major drawbacks have to be noted. First of all, the randomization is
a detriment to the interpretability. The clear-cut decisions of a regular decision tree are replaced
with a plethora of probabilities. People can no longer follow how a specific instance reaches a
certain leaf node.
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Secondly, the runtime and scalability have worsened significantly in comparison to the MurTree
algorithm. A lot of optimizations had to be removed to accommodate for the addition of
randomization. How to reimplement these optimizations or how to add new ones can be
investigated in future work.
Furthermore, the depth of the trees used in the experiments are rather small due to time
constraints. More research can be done on how the size of a tree affects robustness.
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