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1. Introduction

The transformation of certain parameters of an incident random wave train
across the surf zone has been the subject of much study and modelling effort.
In recent literature, two classes of models have been developed, which are
both based on the wave energy balance or the wave action equation, but use

markedly different approaches.

In the first, parametric, class of models (Battjes and Janssen, 1978; Thornton
and Guza, 1983), a shape of the breaking wave height distribution is assumed,
with parameters that are a function of local, time-averaged wave parameters.
The dissipation per breaking wave is modelled using the analogy between fully
breaking waves and bores, which was first pointed out by Le Mehaute (1962). By
combination of the breaking wave height distribution and the dissipation
function, the average dissipation as a function of local wave parameters is
obtained. By solving the wave energy balance equation, these local wave
parameters can be computed over an arbitrary profile, given the conditions at

a seaward boundary.

The second, probabilistic, class of models takes the probability density
function of wave height (and sometimes wave period) at a seaward boundary,
schematizes it to a discrete number of wave height (period) classes, and
assumes that each class behaves like a periodic sub-group that propagates
independently of the others. (Mizuguchi, 1982; Mase and Iwagaki, 1982; Dally
et al, 1984). The wave energy balance equation is then solved separately for
all waves. As a result, at each point along the profile, the wave height
distribution can be determined. All models in this class separate the

description for each wave into its behaviour before and after its breakpoint.




Both classes of models, when calibrated, may serve well to predict the
transformation of certain properties of the wave height distribution across
the surf zone. Also, wave-averaged parameters such as radiation stress and
mass flux, required for the prediction of the mean set-up and the undertow are

predicted satisfactorily by both classes of models.

Recently, there has been a growing recognition of the importance of variations
in short-wave properties on the time-scale of wave groups. Such variations can
force long-wave motions that may be important in themselves or through their
interaction with wave groups (Symonds et al, 1982; Symonds and Bowen, 1984;
List, 1990; Schaeffer et al, 1990). A new class of dynamic models (Sato,1991;
Roelvink, 1991; Symonds and Black, 1991) takes into account variations on this
time-scale. The dissipation of the short-wave motion in this class of models
is slowly-varying on the time-scale of the wave groups. Although the
propagation and decay of wave groups, and hence the excited long-wave motions,
often depend critically on the formulation of this dissipation term, a

satisfactory formulation has not yet been presented.

The main goal of this study is to develop a suitable formulation for the
time-varying dissipation due to wave breaking. As it is impossible to measure
the time-varying dissipation directly, the formulation can only be checked by
building it into models that predict measurable parameters, such as the
average dissipation, the fraction of breaking waves and the mean wave energy,

and by verifying these models both externally and internally.

For this purpose, one wave propagation model of the probabilistic class and
three models of the parametric class were formulated, calibrated and verified
in this study, all based on the same dissipation formulation. Although it has
not been the primary goal of the study, these models are an interesting

by-product in themselves.

The main product, however, is a calibrated formulation for the dissipation of
short-wave energy as a function of energy and water depth, which can be easily
implemented in models that are time-dependent on the wave-group scale.

2. Dissipation model

Basic concept

In a random wave train, the process of energy dissipation due to wave breaking

is extremely complex. If it were possible to plot a time series of the

instantaneous dissipation rate at a given location, this would show




intermittent peaks with random height and spacing, which cannot be described
in a deterministic way. Even when a moving average is applied over some
short-wave periods, the slowly-varying dissipation rate will still have a
random component. However, we can expect this slowly-varying dissipation rate
to also have a systematic component which depends on slowly-varying
characteristics of the short waves, in particular the wave energy. This
systematic component, which is the expected value of the dissipation rate per

unit area, D, can itself be seen as the product of two components:
D=P D 1]

where Pbis the probability that a wave is breaking and Db the expected value
of the dissipation rate in a breaking wave, given that its energy density is

E. Both Pb and Db vary on the time-scale of the wave groups.
Dissipation in a breaking wave

In order to model the dissipation Db in a breaking wave, we use the well-known
analogy between breaking waves and bores, which results in the following

approximate expression (Battjes & Janssen, 1978):
_a H

where f is the frequency, H is the height of the breaking wave, h the water
depth and « a calibration coefficient. Battjes & Janssen assume all breaking
waves to have the maximum wave height Hm; as this maximum wave height is of

the order of the water depth, the expression reduces to:

D =

2
N pg f Hm [3]
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As in our case the height of breaking waves is allowed to be considerably
smaller than the maximum wave height, expression [2] should be used in
principle. However, it can be argued (Stive & Dingemans, 1984), that the water
depth in equation [2] should rather be seen as a 'penetration depth’, which is
of the order of the wave height. In this case, the dissipation can be written

as a simple function of the energy of the breaking waves:
D =2af E [4]
b p

where the peak frequency fp has been taken as a characteristic

measure of the frequency.




Probability of breaking

In general, waves break when locally the wave front becomes too steep. For
irregular waves this may be the result of several mechanisms, such as
interaction between short waves, interaction between wave and bottom or
between wave and current or wind. For simplicity, we shall not consider the
effects of current or wind on wave breaking. Even then, the processes involved
are extremely complex and no accurate model is available to predict the
probability of breaking in irregular waves. Therefore, a simple empirical

approach is chosen, based on some crude assumptions.
These assumptions are:

1. The probability of breaking depends only on local and instantaneous wave
parameters. In reality, it also depends on the history of the individual
waves, but the breaking process, especially in random waves, has a time-scale
which is short compared to the wave group scale, so this effect can be

neglected.

2. The basic parameters governing the probability of breaking are the local

and instantaneous wave energy and the water depth.

3. In principle, waves of any energy may be breaking or non-breaking. However,
the probability of breaking should increase monotonically towards 1 for

increasing energy or decreasing water depth.

Thornton and Guza (1983) propose the following empirical ’'weighting

function’, which can be interpreted as the probability of breaking:

n

Hrms H 2
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According to this expression, the probability that a particular wave in an

1A
[y

(5]

irregular wave train is breaking not only depends on the height of this wave
relative to the water depth, but also on a characteristic height parameter of
the whole wave train (i.c. Hrms). This would imply that the breaking process
in a given wave group is influenced by events on a much greater time-scale,
which seems unlikely and is in contradiction with our assumption 1. We

therefore propose a different form:




E n/2
P (E,h) =1 - exp |- (—) [6]
b 20
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with: Eref =5 P8 h
where y and n are coefficients. In Figure 1 this function is plotted for
several values of n. It can be seen that the steepness of the function
increases with increasing n. The two coefficients ¥y and n will have to be

determined empirically.
Conditional expected dissipation rate for waves with given energy

The expected dissipation rate, given a specific value of E, is now simply

found by substituting equations [4] and [6] into equation [1], which leads to:

E n/2
D= |1 -exp |- (—) *2af E {71
ZE P
L4 ref
This equation describes the dissipation rate for a given (random) wave energy
and water depth, as is the the main goal of this study. The calibration of the
coefficients «, ¥ and n and the verification of the formulation as such is

described in the following Sections.




3 Transformation of wave energy distribution
3.1 Probabilistic model

The formulation for the probabilistic approach can be derived readily from the
wave action equation by assuming that the slowly-varying cross-shore velocity
small compared to the group velocity C . This is a reasonable assumption,
except for a limited area near the swaih zone, where the group velocity goes

to zero and the long-wave velocities increase.

Under this assumption, the wave action equation reduces to the wave energy

balance:
oE 8 _
3t + 5§(E Cg) = -D [8]

Assuming Cg to be constant in time, the rate of change of the energy flux of a

(part of a) wave group as it travels towards the shore is described by:
d
a(EC) =D )

The dissipation rate D depends on local wave parameters and the slowly-varying
water depth. Except, again, for the swash zone, the slow fluctuations in the
water level can be neglected. In this case, the time-dependence vanishes from
the equation, so it can be solved for any given (seaward) boundary value of E.
In other words, we can follow any part of a wave group through the surf zone
using this equation. As a result, we can also compute the transformation of
the energy distribution through the surf zone, starting from a given

distribution of E in deep water.

In deep water, it is reasonable to assume a Rayleigh-distribution for the wave

height; this is equivalent to an exponential distribution for the wave energy:

P(E<E) =1 - exp (- —) [10]

E

where E is the time-averaged wave energy and P is the probability of

non-exceedance.

In order to compute the transformation of this distribution, the distribution
at deep water is given as a number of energy levels with decreasing
probability of exceedance. For each deep water energy level, equation (9] is

solved by explicit numerical integration. The result is a number of wave




energy decay lines, which cannot cross each other. This is due to the
assumptions made in this model, namely a constant group velocity and a

dissipation model which is monotonically dependent on the local wave energy.

As a result, a line which starts at an energy level with a certain probability
of exceedance will represent this probability throughout the surf zone. At any
computation point along the profile, the distribution of the wave energy can
be reassembled from these lines. The mean wave energy can be computed from
this distribution. Also, the total fraction of breaking waves can be deduced

from the model.

' The distribution of wave energy can be used to predict the wave height
distribution by means of a suitable non-linear local wave model, which uses
energy, peak frequency and water depth as input. Here, we apply the high-order
stream function method as described by Rienecker & Fenton (1981). Results are

presented below.




3.2 Parametric models
Basic concept

In the parametric class of models, the energy balance equation [8] is averaged

over a time scale which is large compared with the wave group time scale:

8E & _
3t * 3x(E cg) = -D [11]

Assuming a stationary wave field and no correlation between wave energy and

group velocity, this equation reduces to:

(EC)=-D [12]
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The mean dissipation can be described as the weighted average of the

dissipation function:

0
D = [ p(E) D(E) dE [13]
0

where p(E) is the local probability density function (pdf) of the wave energy.
In order to close the equations, an assumption must be made regarding the
shape of this function, depending on the local wave parameters. The scaling of
the function then follows from the requirements that the function is a pdf:

00

J p(E) dE = 1 [14]
0

and that the first moment equals the mean energy:

0

J p(E) EJE = E [15]
0

In the following, three parametric probability density functions are
discussed, viz. a depth-limited Weibull-distribution, the Rayleigh-
distribution and the clipped Rayleigh-distribution according to Battjes and
Janssen (1978).

The following parameters will be used in order to simplify the equations:

o]
Qb = zl; Pb(E) p(E) dE

E =

ref
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Weibull distribution

Klopman and Stive (1989) propose a wave height distribution, based upon a
shape originally proposed by Glukhovskiy (1966), which degenerates to a
Rayleigh-distribution in deep water, but has a depth-limitation resulting in a
gradual deformation of the distribution for decreasing water depth. In terms

of wave energy, this distribution can be written as:

P(E<E) =1-exp{-AGE") [16]
E

Here, m is a free parameter for which Klopman and Stive propose a formulation,

which is rewritten here in terms of energy:

1 V/% - 2 Mo
> ; E ) =1+ 0.7 tan (z :3—' ) [17]
2 ref 2

m=1+0.7 tan® (

The value of ¥, as given by Klopman and Stive is the theoretical maximum of
the wave height over depth ratio, 0.833. The maximum value for the
energy-related o-value as defined above is in the order of 30 % lower, due to
the non-linearity of depth-limited waves. Therefore a value of 0.65 has been

used here,

The parameter A is linked to m through the requirement given by equation [15]:

1 m
A = [ F 1+l ] (18]
m

The probability density function is found by differentiating equation [16]:

m-1 E
) exp { -A ") [19]
E

The mean dissipation is now found by integration of equation [13]:

2]
D = J p(E) Pb(E) Db(E) dE =
0
o0 m-1 n/2
= J E:é (E) exp { -A (E)m Y} {1 - exp |- (—%— ) * 2 o f EdE
o E E E v E P
ref
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=2 fp E fl(o,w,n) [20]

The result is that the mean dissipation is the dissipation in waves with the
mean energy, times a function of the wave energy relative to the water depth.
This function f1 is less than or equal to 1, and depends on the local wave

height to water depth ratio ¢ and on the empirical coefficients ¥ and n.
Rayleigh distribution

The Rayleigh distribution is a special case of equation [16] for m equal to 1.
It has been used by Thornton and Guza (1983}, in combination with a slightly
different formulation for the dissipation. The mean dissipation follows

immediately from equation [20] and is given by:

[+ ] 2
_ - o n/2
D=2« fp E J E, exp(- E) |1-exp —(—ZE*) dE,
o Y
=2af E f_(¢,7,n) [211]
p 2

Clipped Rayleigh distribution

The clipped Rayleigh distribution as proposed by Battjes and Janssen (1978) is
based on the assumptions that the wave heights are Rayleigh-distributed up to
a maximum wave height, that all higher waves are simply cut off to this
height, that all waves having this maximum height are breaking and that only
these waves are breaking. This can be translated to our concept by letting the
value of n in the probability of breaking go to infinity, in which case the
function becomes a step function: zero for E/Eref< 72, unity for E/Erefz

yz.The maximum wave energy is defined by:

E =+ E [22]

m ref
Since the probability density function has a ’'spike’ at E=Em, with an area
equal to the fraction of breaking waves Qb, and since the probability of

breaking equals unity at this energy, we get for the mean dissipation:

jw]]
1]

o
J p(E) Pb(E) Db(E) dE = Qb Db(Em)

(23]
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In the clipped Rayleigh distribution, the fraction of breaking waves is

defined by the implicit relation:

1—Qb

E/E
m

Q = exp [- ] [24]

b

This relation yields a unique function of E/E = 02/12, SO
m

D= 2af E f (o,7) [25]
P 3

For the three parametric energy distributions, we get similar expressions for
the mean dissipation. For given values of the calibration parameters 7 and n
the functions fl, f2 and f3 depend only on ¢. Therefore it is easy to generate
tables of these functions and to interpolate from these tables when solving

the mean energy balance equation.
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4. Calibration of the models

Three datasets, containing a total of 11 tests, were used to calibrate the

probabilistic model and the parametric models, viz. those reported in Batt jes
& Janssen (1978}, Stive (1985) and Hotta & Mizuguchi (1980). A summary of the
characteristics of the profile and incident wave conditions is given in Table
1. All sets pertain to irregular waves incident perpendicular to a beach. The

letter L under ’'Type' stands for laboratory test, F stands for field test.

Table 1. Experimental parameters calibration sets

Test Source Type ho(m) HE’O(m) fp(Hz)
MS10 Stive(1985) L,plane | 0.70 .142 .341
MS40 Stive(1985) L,plane 0.70 .135 .633
BJ2 Batt jes&Janssen (1978) L,plane 0.70 . 144 . 511
BJ3 Batt jes&Janssen (1978} | L,plane { 0.70 .122 .383
BJ4 Batt jes&Janssen (1978) L,plane | 0.70 .143 .435
BJ11 Batt jes&Janssen (1978) L,barred} 0.70 .137 . 450
BJ12 Batt jes&Janssen (1978) L,barred| 0.70 .121 . 443
BJ13 Batt jes&Janssen (1978) L,barred; 0.70 .104 . 467
BJ14 Batt jes&Janssen (1978) L,barred| 0.70 .118 .481
BJ15 Batt jes&Janssen (1978) L,barred| 0.70 .143 . 498
HotMiz Hotta8Mizuguchi (1980) F,barred| 1.65 .527 . 113

The parameter for which the calibration was performed is the overall
energy-based wave height often (confusingly) referred to as Hrms. Here it will
be termed HE:

SE

=v = 26
H =V o8 (26]

In deep water, HE is equal to the root-mean-square wave height Hmm; in
shallow water, due to non-linearity of the waves, the parameters deviate from

each other.

The seawardmost data point, having a wave height HE,o’ is used as a boundary
condition for the models. For a given set of calibration points, the energy
distribution across each profile is computed and compared to the measured
distribution. Two indicators of the overall accuracy of the models are
computed, viz. the root-mean-square relative error erms and the relative

bias (mean error) ¢ :
mean
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/1 HE comp HE mea : 1 HE

_ 1 , _ , s 1 ,mens

e = Y| g i /§ X [27]
E,O E,O E,O

HE com, HE m HE m
» ymea smea
= 7 L 2l /x = [28]

mean
E,O E,O E,0
As is apparent from the formulae, the errors were scaled with the incident
wave height; this is to give data points comparable weights regardless of the

scale of the tests or the incident conditions.

From preliminary computations, it turned out that the results were not very
sensitive to the value of n, which indicates the steepness of the curve which
describes the probability of breaking. Realistic results were obtained both

for n=10 and for n=20.

The optimum combination of the coefficients « and ¥ was obtained by drawing
isolines of the error indicators in the «,y plane, for both values of n, and
visually determing the approximate location of zero mean error and minimum rms
error. Plots of these isolines are given in Figures 2a to 2g. By refining the
«,y grid locally and looking at the numerical output, a more accurate location

of this optimum was then found.

In all cases the optimum «,y-combination is found close to the line a=1. As a
constant value of a facilitates the comparison of the different models, the
value of « was fixed at 1, and optimum y-values were determined for each model

and n-value. The results are given in Table 2.

Table 2. Optimum y-values and relative rms error for o=1 and n=10,20
11 datasets, 159 points
Model n o ¥ € Fig.
rms

Probabilistic 10 1.0 0.55 0.045 2a
20 1.0 0.53 0.054 2b

Weibull 10 1.0 0.54 0.057 2c
20 1.0 0.52 0.057 2d

Rayleigh 10 1.0 0.57 . 0.062 2e
20 1.0 0.57 0.063 2f

Clipped Rayleigh - 1.0 0.66 0.056 2g
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Apparently, all models can be calibrated to give reasonably accurate
predictions of the spatial wave energy variation for a fixed combination of
calibration coefficients. The probabilistic model seems the most accurate,
whereas the parametric Rayleigh model with n set at 10 or 20 gives the

greatest error.

The clipped Rayleigh model (n = o) seems to do well with a constant
a,y-combination. Battjes and Stive (1985) used an expression for the maximum
wave height which includes the effect of wave steepness; consequently they
found that the calibration coefficient y showed a dependence of the deep water
steepness. It seems that using the simpler relation [22] removes this
dependence. The optimum y-values for the Weibull parametric model and the
probabilistic model agree closely, which indicates that the energy
distributions resulting from the probabilistic model are similar to the shape

assumed beforehand in the parametric model.

In the Rayleigh model with finite n, higher wave energy is possible than in
the Weibull model, so the probability of breaking for a given energy must
decrease in order to get the same mean dissipation. This results in a higher

optimum value of 7.

In the clipped Rayleigh model, it is assumed that all breaking waves have the
maximum wave energy. The ¥-value in this case indicates the level where most
dissipation takes place. The optimum value of 0.66 is not in contradiction

with the other models.

A value of n equal to 10 gives slightly better results than n equal to 20; for
the probabilistic model a value of 5 was tried but produced no better results.

The value of n was kept at 10 in all further computations.

In Figures 3a through 3i, the wave height profiles as computed with the
probabilistic model, for n equal 10, are compared with the measured wave
height profiles, for all calibration tests. The agreement is quite good,
especially considering that all computations were performed with the same set

of coefficients.
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5. Verification

The primary goal of this study is to formulate the time-varying dissipation as
a function of local wave parameters. As this is only one of the internal
parameters in the models described above, the fact that the mean wave energy
(the external parameter) is predicted accurately is not sufficient; errors in

internal parameters may be cancelled out by each other.

The dependence scheme in Figure 4. indicates which other internal parameters
must be checked in order to gain confidence in the formulation of the expected

value of the slowly-varying dissipation.

s 4q

dissipation in probability wave energy
breaking waves of breaking distribution
L, R ] L_>__‘

[ I 3 2
expected fraction of statistical
slowly-varying breaking waves distribution
dissipation of wave heights

l AN v

I

average
dissipation

Figure 4. Dependence scheme dissipation model

In the following Sections, the numbered items in the dependence scheme will be
discussed seperately; afterwards, conclusions are drawn on the accuracy of the

model of the expected slowly-varying dissipation.

5.1 Average dissipation

As has been shown in the previous Section, the average dissipation is modelled
accurately. An independent verification is given by two additional datasets,

viz. those reported by Ebersole and Hughes (1987) and by Van der Meer (1990).

The incident wave conditions are given in Table 3.
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Table 3. Experimental parameters verification sets
Test Source Type h (m) H {m) f (Hz)
0 E,O p

D41400C Ebersole&Hughes (1987) F,barred| 1.75 .600 .089
D41510 Ebersole&Hughes (1987) F,barredj 1.49 . 706 .089
D50955 Ebersole&Hughes (1987) F,barred| 2.14 .431 .088
D51055 Ebersole8&Hughes (1987) F,barred| 1.80 . 353 .089
D51352 Ebersole&Hughes (1987) F,barred| 2.19 .452 . 092
D51525 Ebersole&Hughes (1987) F,barred| 1.94 .374 .090
D60915 Ebersole&Hughes (1987) F,barred| 1.40 .360 .078
D61015 Ebersole&Hughes (1987) F,barred| 2.14 .296 .076
D61300 Ebersole&Hughes (1987) F,barred| 2.43 . 346 .099
T0O07 van der Meer (1990) | L,step 0.56 .049 .403
TO1S van der Meer (1990) L,step 0.56 .071 .438
T110 van der Meer (1990) L,step 0.56 .099 .513
T12 van der Meer {(1990) | L,step 0.71 .059 . 488
T13 van der Meer (1990) L,step 0.66 .109 . 488
T212 van der Meer (1990) | L,step 0.61 .072 .645
T216 van der Meer (1990) | L,step 0.61 .068 .403
T322 van der Meer (1990) L,step 0.66 .121 .513

The dataset by Ebersole and Hughes was obtained in the field during the DUCK85
campaign. It concerns long-period swell incident perpendicular to an almost
prismatic beach. The measurements were carried out with the photopole
technique (Hotta and Mizuguchi, 1980). The measurements have been studied in
detail by Dally (1990). A problem with hindcasting these experiments with the
present model is that the wave height distributions at the outermost measuring
point deviate significantly from either Rayleigh or Weibull distributions; ‘
therefore we cannot expect very good agreement. Still, the measurements have
been included as a severe test case. The models were applied with their
pre-calibrated coefficient values: a=1, n=10 and ¥ as in Table 2. Model
performance was reasonable for all models: for the 9 experiments, the mean
error was less than 2% for all models and the rms error was in the order of
13%. The probabilistic model was not significantly better than the parametric

models.

The dataset by Van der Meer concerns laboratory cases of waves incident on a
profile with a steep step followed by a very gently sloping bottom. Here, the
parametric models show a mean error in the order of 1% and a rms error in the
order of 11% over a total of 8 tests. The probabilistic model shows a mean
error of almost 5%, but a lower rms error of 8%. The general shape of the
energy distributions over the profile is represented best by the probabilistic

model; hence the lower rms error.
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The error indicators were also computed over all tests considered in this

study; the results are given in Table 4.

Table 4. Relative mean and rms error
28 tests, 389 points
Model n o Y € €
mean rms

Probabilistic 10 1.0 0.55 0.013 0.088
Weibull 10 1.0 0.54 0.000 0.099
Rayleigh 10 1.0 0.57 0.011 0.099
Clipped Rayleigh [ 1.0 0.66 0.000 0.096

All models can be used to predict the variation of the mean wave energy over
the profile; the probabilistic model is slightly more accurate in this
respect. A comparison between the measured wave height profiles and those

computed with the probabilistic model is given in Figures 3a to 3z.
5.2 Statistical distribution of wave heights

At present, no data are available on the probability distribution of the wave
energy; data on wave height probability distributions are available. With the
help of non-linear theory, wave heights can be estimated from wave energy
levels. If the variation of statisstical wave height parameters over the
profile is predicted correctly, the underlying energy probability

distributions are likely to be correct as well.

The statistical wave height parameters are deduced from the predicted wave
energy probability distribution by the following method. The distribution of

the linear estimate of the wave height, H,, was derived from the wave energy

1 1
;= v (8E/pg). The statistical parameters Hl,rms' Hl,slg

and Hl 1y Vere computed from this distribution, using the usual definitions.

y 3

distribution, where H

The matching non-linear crest-to-trough heights were then computed with the

help of Rienecker & Fenton’s (1981) stream function method.

The dataset used is from Stive (1985), tests MS10 and MS40. In Figures 5a and
Sb, the distributions of the rms wave height Hrms, the significant wave height
Hslg and the wave height exceeded 1% of the time, H1%, as measured and as
computed, are given. Qualitatively, the agreement is quite good;
quantitatively, the values of H1% are underestimated within the surf zone.

This may be due to the presence of long waves; the higher waves are limited in
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the model by the mean depth, whereas in reality they are limited by the
slowly-fluctuating depth. Also within the surf zone, as can be expected, the
values of the rms wave height are overpredicted by non-linear theory, due to
the decoupling of the higher harmonics. Still, the wave height distributions
are predicted well enough to lend some confidence to the computed energy

distributions. Further study is required to confirm this.
5.3 Fraction of breaking waves

The fraction of breaking waves, Qb, is the integral of the product of the
energy distribution and the probability of breaking at a given energy.
Therefore, if the energy distribution is modelled correctly, the fraction of
breaking waves can only be correct if the probability of breaking is correct
too. In the same two tests from Stive (1985), the fraction of breaking waves
was counted visually; measured and predicted values are shown in Figures 5a
and Sb. For test MS10, the agreement is quite good, although well inside the
surf zone Q is somewhat underpredicted, by up to 30%. For test MS40, the
underprediction is much more serious: up to a factor 3. This seems strange

since the dissipation is modelled so well.

A possible explanation is that the peak period during this test was twice as
short as during test MS10. The waves therefore tended to be spilling, whereas
the bore model only really applies to fully breaking waves with a roller over
the whole wave front. In such a case, the criterion that a breaking wave is 'a
wave with foam on it’ will overestimate the fraction of bore-like breaking

waves.

The question is, whether this analysis should lead to an adjustment of the
definition of ’breaking wave’ or to an adjustment of the model of the
dissipation in a breaking wave. This should be resolved in further study; for
now, the computed fraction of breaking waves should be interpreted as the

fraction of fully-breaking, bore-like waves.
5.4 Probability of breaking

The probability of breaking as a function of wave height has been investigated
by some authors (Thornton and Guza, 1983; Dally, 1990). This gives a
qualitative check on the shape of this probability as a function of energy.
However, the available data do not enable a direct plot of the probability of
breaking against the wave energy, for given water depths, so a direct
quantitative check cannot be made. As is also apparent from the previous

Section, further study is required on this aspect of the model.
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5.5 Dissipation in breaking waves

An interesting verification of the formulation of the dissipation in breaking

waves is obtained from the measurements of Stive (1984), for regular waves. On
page 109 of his paper, he presents graphs of a non-dimensional dissipation Ae,
defined as the ratio of the dissipation rate derived from measured energy flux
gradients and the dissipation according to a hydraulic jump:

D =A :pgfH

b e [29]

h
d d
12

F-N R

where d1 is the depth in front of the breaker and d2 is the depth at the

crest. The values of Ae are in the range of 1.5 to 2.5. If we now assume:

- =7 [30]

we get a similar expression to our equation [4] if « = A8 7, With the order
of magnitude estimates H/h = 0.5, d1/h ~ 0.8 and dz/h =z 1.3, v, is in the
order of 0.5, which leads to an «-value in the order of 1. This is in

agreement with the optimum value found in the calibration.
5.6. Conclusions on verification

From the verification presented here we may draw the conclusion that the mean
dissipation is modelled correctly and that there are indications that the wave
energy distribution is also modelled correctly; therefore, the expected
time-varying dissipation must be reasonably accurate. This term is again
composed of two terms, viz. the time-varying dissipation in breaking waves and
the probability of breaking. There is an indication that the first of these
terms is modelled correctly; on the probability of breaking there is still
some uncertainty. Qualitatively, there is agreement between measured and
predicted fractions of breaking waves; quantitatively, they are somewhat

underpredicted, although of the right order of magnitude.
6. Conclusions

The existing parametric model according to Battjes and Janssen has been
improved in the sense that the internal parameters are more realistic; also,
the dependence of the calibration coefficients on wave steepness has vanished.
A parametric model based on a Weibull distribution has been added to this
class of models, for which the distributions closely resemble those resulting

from the probabilistic model. All three parametric models can be used to
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predict with reasonable accuracy the spatial distribution of the mean wave
energy; the one based on a Weibull distribution is the most accurate, and the

model based on the Rayleigh distribution the least accurate.

The probabilistic model presented has been shown to follow from the wave
action equation if the group velocity is assumed to be constant in time and
effects of surfbeat can be neglected. These restrictions are less severe than
those for the earlier models in this class, which require a negligible
variation of the propagation velocity of individual waves. One set of
equations is used throughout the shoaling and breaking region, as opposed to
earlier models in this class. The model can be used to predict the
transformation of the probability distribution of the wave energy through the
surf zone. With the help of a non-linear wave theory, wave height

characteristics can be derived from the energy distributions.

The calibrated and verified equation {7] for the expected time-varying
dissipation can be readily used in wave propagation models that take into

account variations on the time-scale of wave groups.
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