<]
TUDelft

Delft University of Technology

HTTPScout
A Machine Learning based Countermeasure for HTTP Flood Attacks in SDN

Mohammadi, Reza; Lal, Chhagan; Conti, Mauro

DOI
10.1007/s10207-022-00641-3

Publication date
2022

Document Version
Final published version

Published in
International Journal of Information Security

Citation (APA)

Mohammadi, R., Lal, C., & Conti, M. (2022). HTTPScout: A Machine Learning based Countermeasure for
HTTP Flood Attacks in SDN. International Journal of Information Security, 22 (2023)(2), 367-379.
https://doi.org/10.1007/s10207-022-00641-3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10207-022-00641-3
https://doi.org/10.1007/s10207-022-00641-3

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

International Journal of Information Security (2023) 22:367-379
https://doi.org/10.1007/s10207-022-00641-3

REGULAR CONTRIBUTION l‘)

Check for
updates

HTTPScout: A Machine Learning based Countermeasure for HTTP
Flood Attacks in SDN

Reza Mohammadi® - Chhagan Lal? - Mauro Conti%3

Published online: 3 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2022

Abstract

Nowadays, the number of Distributed Denial of Service (DDoS) attacks is growing rapidly. The aim of these type of attacks
is to make the prominent and critical services unavailable for legitimate users. HTTP flooding is one of the most common
DDoS attacks and because of its implementation in application layer, it is difficult to detect and prevent by the current defense
mechanisms. This attack not only makes the web servers unavailable, but consumes the computational resources of the network
equipment and congests communication links. Recently, the advent of Software Defined Networking (SDN) paradigm has
enabled the network providers to detect and mitigate application layer DDoS attacks such as HTTP flooding. In this paper, we
propose a defense mechanism named HTTPScout which leverages the benefits of SDN together with Machine Learning (ML)
techniques to detect and mitigate HTTP flooding attack. HTTPScout is implemented as a security module in RYU controller
and monitors the behavior of HTTP traffic flows. Upon detecting a malicious flow, it blocks the source of the attack at the
edge switch and preserves the network resources from the adversarial effects of the attack. Simulation results confirm that
HTTPScout brings a significant improvement of 64% in bandwidth consumption and 80% in the number of forwarding rules
compared to normal SDN.

Keywords SDN - DDoS - Flooding attack - Machine learning

1 Introduction

In the last few decades, the number of users of the Inter-
net has remarkably increased [1]. Consequently, companies
and enterprises deliver their various services to the people
around the world over the Internet. Most of these services
are delivered to consumers using HTTP protocol, which is
a well-known application layer protocol [2], and users take
use of it for web surfing, electronic shopping, researching
and so forth. Unfortunately, this protocol has some vulnera-
bilities which are exploited by attackers to make the servers
unavailable for legitimate users. HTTP flooding attack is one

B<I Reza Mohammadi
r.mohammadi @basu.ac.ir

Chhagan Lal
c.lal@tudelft.nl

Mauro Conti

conti@math.unipd.it

Bu-Ali Sina University, Hamedan, Iran

2 TU Delft, Delft, The Netherlands

3 University of Padua, Italy/TU Delft, Padua, Italy

of the most important Distributed Denial of Service (DDoS)
attacks in which a group of attackers sends a huge number
of HTTP requests to overwhelm a targeted server [3]. As a
result, the targeted server can not deliver services to legiti-
mate users, and finally causes users dissatisfaction. Another
critical issue regarding the HTTP flooding attack is that, in
some cases, the attackers perform the attack at a slow rate,
which makes it difficult to detect. In addition to the adver-
sarial effect on the web servers, this attack also consumes
network bandwidth and resources. Unfortunately, due to this
attack is being launched in the application layer, most of the
current defense mechanisms which are implemented in the
network or transport layers are unable to detect it. Besides,
most of these mechanisms can detect the attack at the servers’
sides [4], [5], which only preserves the web servers and can
not prohibit network bandwidth saturation.

Recently, the advent of Software Defined Networking
(SDN) paradigm has enabled network administrators to
implement their own security mechanisms to defend against
attacks [6]. As a matter of fact, the separation between the
control and data planes in SDN facilitates network pro-
grammability and makes it convenient to leverage the benefits

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00641-3&domain=pdf

368

R. Mohammadi et al.

of intelligent algorithms [7], [8]. For this reason, in recent
years, applying Machine Learning (ML) techniques to detect
security attacks in SDN has attracted much attention by the
researchers [9], [10],[11]. Since in SDN, the controller has
a global view of the network, it can gather various statistics
about the network traffic flows. By applying ML techniques
to these statistics, it can be possible to distinguish abnormal
traffic flows from the normal ones [12]. After the detection
of the abnormal traffic flow, the SDN controller can block the
origin of the malicious behavior, and in this way, it mitigates
the adversarial effects of the attack on the targeted servers as
well as network equipments.

In this paper, we aim to propose HTTPScout as anew secu-
rity mechanism which leverages the benefits of SDN together
with ML algorithms to detect and mitigate HTTP flooding
attack. HTTPScout is implemented in the SDN controller
and makes use of supervised ML algorithms to train both
normal and abnormal behaviors from a dataset. It also mon-
itors all on-the-fly HTTP flows on the network, and extracts
some important features of each flow. Then, it applies the
ML algorithms to the extracted features. With respect to its
knowledge learned from the dataset, if it detects an HTTP
flow as an attack, it first identifies and then blocks the origin
of the attack by installing rules on the edge switch connected
to the attacker(s). HTTPScout not only preserves the targeted
web servers from the attack, it also mitigates adverse impact
on network bandwidth consumption. In particular, our main
contributions can be summarized as follows.

— We propose a new ML based security module named
HTTPScout in SDN to detect and mitigate HTTP flood-
ing attacks. In particular, we implement and investigate
different ML algorithms for HTTPScout to choose the
best suited for detecting the HTTP flooding attack.

— We implement HTTPScout as a security module on RYU
controller to make it more secure against HTTP flooding
attacks. We also test HTTPScout performance over the
different rate of attacks.

The rest of this paper is organized as follows. In Section
2, we review ML techniques related work for HTTP flood-
ing in SDN. Section 3 presents some preliminaries about
HTTP flooding attacks and ML algorithms used in HTTP-
Scout. Section 4 presents our proposed solution and explains
HTTPScoutin detail. In Section 5, simulation settings and the
performance evaluation are presented and discussed. Finally,
the paper is concluded in Section 7.

2 Related work

In this section, some state-of-art related work in ML based
defense mechanisms in SDN are reviewed. Lingfeng and Hui

@ Springer

proposed an SDN framework which makes use of ML tech-
niques such as Support Vector Machine (SVM) for detecting
and defending against HTTP flood attack [13]. Their frame-
work first collects some features of traffic characteristics and
then uses SVM to identify the attack. Finally, the controller
adjusts the forwarding policy to resist the DDoS attack’s
source. One of the weaknesses of their method is that, they
have only used DoS and normal items of KDD99 dataset [14]
to train SVM algorithm. Generally, in most situations, DoS
does not perfectly reflect the behavior of areal and distributed
HTTP flooding attack. Moreover, they have only investigated
the accuracy of their method and other important metrics
such as F1-Score, attack detection time and so forth. are not
studied. In [15], Santos et al. have implemented four ML
algorithms (SVM, MLP, Decision Tree, and Random Forest)
to classify DDoS attacks in SDN. They have produced their
own dataset in a test-bed network with 6 clients. Their simu-
lation results showed that among 23 features of traffic flows,
only 11 of them are important for ML algorithms. Moreover,
they concluded that the Decision Tree algorithm has better
performance in general, because of its lowest time to process
and good accuracy. However, their proposed method only
detects the DDoS attack and can not identify and block the
source of the attack for future. Moreover, because their pro-
posed a general solution to detect some other DDoS attacks,
itis unclear the accuracy of their solution for HTTP Flooding
attack.

Sahoo and Igbal have proposed a security mechanism
which leverages seven different ML techniques to classify
and predict DDoS attacks such as Smurf, UDP flood, and
HTTP flood [16]. Their proposed method consists of three
modules for monitoring, extracting features and classifying
the flows, respectively. Simulation results confirmed that in
their solution, Linear Regression (LR) algorithm achieves
better accuracy compared to other algorithms. However, they
have not implemented the solution on an SDN based test-
bed, and only applied the algorithms on a dataset. Sen et
al. introduced a DDoS attack detection mechanism using
AdaBoosting algorithm [17]. They first generated a dataset
comprising various attacks and normal traffic, and then
applied different ML techniques. They have concluded that
AdaBoosting algorithm outperforms other ML algorithms in
terms of accuracy. Nevertheless, they have only used a sim-
ple test-bed with a single switch and controller. Furthermore,
their method only detects the presence of DDoS attack and
does not recognize and block the attacker.

Perez Diaz et al. have introduced a modular and flexi-
ble architecture to Identify and Mitigate Low-Rate DDoS
Attacks using Machine Learning in SDN [18]. They have
trained 6 different ML algorithms with the Canadian Institute
of Cybersecurity (CIC) DoS dataset [19], and then imple-
mented the algorithms in a separate Intrusion Detection
System (IDS). In their proposed architecture, the SDN con-

HTTPScout: A Machine Learning based...

369

troller sends the feature of suspicious traffic flows to the IDS
using JSON requests. If the IDS detects an anomaly for the
request, it responds the flow is anomalous. Then, the con-
troller increases the probability of blocking for that flow’s
origin. Finally, if the probability of a source is 100%, the
controller installs a rule to block the source of the attack. Sim-
ulation results showed that Multi-Layer Perceptron (MLP)
achieves better accuracy compared to other ML algorithms
in their architecture. Although the architecture of [18] is mod-
ular and mitigates the HTTP flooding attack, the number of
blocked flows and attack detection time have not been studied
in their work. In [20], Li et al. proposed a new model to detect
DDoS attack in SDN using SVM algorithm. Their proposed
method first extracts several key features from the incoming
traffic flows to the controller, and measures the distribution of
each feature using Shanon’s entropy. Then, SVM algorithm
is used to detect the DDoS attack. They also implemented
other ML algorithms such as Decision Tree, Naive Bayes,
KNN and Random Forest. But, simulation results showed
that SVM outperforms other ML algorithms. Nonetheless,
they have not clearly explained how their method mitigates
the attack. Polat et el. proposed a machine learning schema
for detecting DDoS attack in SDN [21]. They first generated a
new dataset comprising the important features of normal and
DDoS attack flows to train the ML algorithms. After train-
ing the algorithms, they applied the algorithms on the SDN
controller. Simulation results confirmed that KNN algorithm
achieves better performance compared to the other ML algo-
rithms. However, the authors have not discussed how their
method can locate the source of attack and blocks it. More-
over, some metrics such as attack detection time have not
been studied in their work.

In [22], Dong and Sarem proposed an improved KNN
algorithm to detect the DDoS attack in SDN. They have
implemented their solution on FloodLight controller on an
SDN-based test-bed network and concluded that the perfor-
mance of KNN is better than other ML techniques such as
SVM and Naive Bayes. Nonetheless, their proposed method
only detects DDoS attack without any mitigation mecha-
nism. Sanjeetha et al. have introduced a DDoS detection and
mitigation mechanism which leverages CatBoost classifier
in SDN [23]. Their proposed method not only detects the
DDoS attacks, but also can identify and block the source
of the attacks. Simulation results confirmed that CatBoost
outperforms other ML algorithms. However, their proposed
method uses source and destination MAC addresses to block
the attacker, which can be discarded by using MAC spoofing
technique. Jayasri et al. proposed a DDoS attacks detection
mechanism for SDN using Naive Bayes and K-means algo-
rithms [24]. The main drawback of their work is that the
proposed method has not been investigated for SDN-based
test-bed.

We summarize the aforementioned related works in Table
1. We observe that few works have been proposed to both
detect as well as mitigate HTTP flooding in SDN. Therefore,
we propose HTTPScout as a security module which not only
detect, but also identifies and blocks the source of the attack.
Moreover, unlike the existing research works, in addition to
accuracy, precision and F-measure metrics, we also evaluate
HTTPScout for metrics such as attack detection time and
Switch Flow table size, which are important to evaluate the
effectiveness of such solutions.

3 Preliminaries

In this section, we first describe HTTP flooding attack in
detail. Then, we briefly explain four ML algorithms which
we have used for HTTPScout in 3.2.

3.1 HTTP flooding attack

HTTP flooding is a well-known application layer volumetric
attack which can be launched by sending a huge number of
GET or PO ST requests toward a targeted web server [4]. In
most cases, this attack is performed by a group of attackers or
compromised hosts to make the web server crash. Generally,
the attack can be performed against the victim in various
ways. For example, Slowloris [28], is a popular slow rate
HTTP flooding attack in which the attackers establish many
HTTP connections to the targeted web server and endeavor to
hold the connections open for a long time. To prevent closing
the connections, upon sending P O ST or GET requests, the
attackers do not complete the header of these requests [29].

If the number of such incomplete requests is high, the
server will be crashed, and also network resources will be
exhausted.

3.2 ML algorithms

Selecting a suitable ML algorithm to achieve the best per-
formance for detection of a specific attack is a challenge.
HTTPScout has been implemented with four popular and
well-known ML algorithms which are briefly explained
below.

3.2.1 KNN

k-Nearest Neighbor is a type of supervised ML algorithm
used to classify a set of data with different labels into various
classes [30]. It is a simple and non-parametric classifier in
which an object is assigned to the majority of K nearest
neighbors. The important parameters in this algorithm are K
value and distance metric. Considering large values for K,
decreases the side effects of the noise on the classification. On

@ Springer

R. Mohammadi et al.

370

JIea[oun sI UOIP
Yoene Surpooy

dLLH Jo Aoenooe oy -
PIssNISIp udaq A[Iea[d
jou 9ARY UOTESHIW
pue yoe)e oY)

(s1oyne
o) £q padofoaap)

NN

Jo ursuo oty Suneso - (91100100 XOd) SPA 109%0(A[UO Paq-1s9) B Ul pajelauany PUB ‘NNV ‘AN ‘NAS 0c0¢ (12l
Yoene
Ay} Jo urSuo ay) Jo0[q
pue 9Je00][0 9[qeu() -
Ie9[oUNn ST UOTIIAIIP (s10yIne
Yoene 3urpooy (19[[01U0D o) £q padofaarap) WAS
dLLH Jo Aorndoe oy, - WYSTIPOOL]) Sox 10919 ATUO P9Q-1$9) B UI pajeIouan) ‘sokeg ATEN ‘NN 610C [z
Yoene
Ay Jo urSuo ay) Jo0[q
pue 9Jed0][0) 9[qeu() -
18910
wopuey pue ‘9a1],
J10m)au uoisag ‘NNV ‘WAS
P9g-1s9) paseq NS ‘UOISSAIZAY Teaur]
ue ur pajuewardur JoN - ON 109%0(LU0 [9c]1esereq ‘sokeq OATEN ‘NN 810C (911
Yoene
Ay jo uISuo ay) Jo0[q
pue 9Jed0][0) 9[qeu() -
Ie9[ouNn ST UONIIIP
Yoene 3urpooy
dLLH Jo Aorndoe oy, -
PoIe3NSoAUT Udq
JOU Sey dUIT} UOT)O)IP (s10yIne 15910,
YoerNe Sk yons soLaw oy Aq padofaap) wopuey pue ‘oa1],
jueyrodwr owos - (391[01U0D) XOd) SeA 19939 ATUO P9Qg-1$9) B UL pajeIouan) uors1q ‘d'IN ‘NAS 020¢ [s1]
yoene 3ugoods DVIA Qa1],
£q popreasip aq ued uoIsTOR(YT ‘NN
WSIUBYIIW UONESIIA - (01100100 NAY) SPA 3}o01q pue 3o [zl 2133ey 1800gDX 1800q1RD) 120c [ec]
paleSnsaAUl Udeq
JOU SEy AUIT} UOT)I)IP INAS Pue ‘TN
JoeNE Se Yons soLaw [611L102)S910,] WOpUEY ‘917,
Jueyrodur ouog - (19170MU0D SONO) SPA 32019 pue 19919 JeseIep Sod DID dAY 9911, wopury ‘g [0c0c (811
uIsrio yoepne
sagejueapesiq P9q-1s9) paseq NS Y} I0[g/19939(jasere(q (s)uyrrodry R(:5) § SIUAIIPY

NQS ur Sutpooy 4.1.LH I0J soyoeoidde TN Sunsixa jo uostedwo)) | 3a|qel

pringer

Qs

371

HTTPScout: A Machine Learning based...

JorAeyeq SuIpoor
dLLH 19921 J0U S90p
yorym Sururen 10y
Pasn uaaq 2AeY S[aqe|
[BWION pue SO(J A[UQ -
paje3nsaaur
ST WYJLIO3[e
Jo Koeanooe AfuQ -
ordwurs AI1oA st
OLIBUQDS Paq-1$d) YT, -
yoene
Ay Jo uISuo ay) Jo0[q
pue 9Jed0][0) 9[qeu() -
Ie9[oun ST UONIAIP
yoene Surpooy
d1LLH Jo Aoemooe oy, -
PoIe3NSaAUT Udq
JOU Sey dUIT} UOIOAIP
YorNE e Yons saInjeay
jueptodwr swog -
yoene
) Jo uILIo Y} Jo0[q
pue 9)800] 0} J[qeu() -
JIomiou
Paq-1s91 paseq NS
ue ur pajuaweldur JoN -
Jea[oun St uonIIIP
yoene Surpooy
dLLH Jo Aoenooe oy, -

Apreapd poure[dxo
jou ssao01d uonesnI -

(191100U0D NAY) SK

(191100U0D NAY) SK

(IY-mO48) S9K

ON

(1[101U0D
WSITPOO) SOX

Jo0[q pue 30319

J00[q pue 30319

10919 ATUO

10919 ATUO

00[q pue 30910

le1]
L10T 19s'Iep Sod DID

[¥1] 66aa

(s1oyne
) Aq padoreaap)
P9g-159) B Ul PajeIouan)

[92] [+1] 66dno Ay

[L2]
198 BIBp 6661 VAIVA

sokeq
QATEN1SQI0] Wopuey
991, UOISIOR(T ‘NNY

NAS

15910, Wopuey

pue ‘JoN sokeg

‘a1, UOIS1Od(8P [
soogepy dTN ‘NAS

sueow-y| pue
wILIoS[e sokeq 9AIBN

15210 WOpUERY pue
91, UOISIOA ‘NN
INAS ‘seheg oAteN

70T (poyrew pasodoid) ModSd LLH

810¢C (er]

0c0¢ [L1]

12c0¢ vzl

810¢C loz]

sagejueapesi(q

Paq-159) paseq NAS

uIsLIo yoeye
9} }20[d/3991d

jasere(q

(Symyprao3ry

Jedx SUIIYY

ponunuod | 9|qel

pringer

As

372

R. Mohammadi et al.

the other hand, it blurs the distinction between classes [31].
For the distance metric, in most cases the Euclidean distance
is chosen, because of its popularity. KNN is a widely used ML
algorithm in network traffic classification to detect abnormal
behaviors [32], [33].

3.2.2 Naive bayes

It is a type of supervised ML algorithms based on the Bayes
theorem in the probability [34]. In fact, it’s goal is to make
use of conditional probability to predict the belonging of an
object or data point to a certain class. The assumption of
Naive Bayes algorithm for a given class variable is that the
value of a specific feature is unrelated to the value of any
other feature for that class [30].

3.2.3 Decision tree

It is a type of supervised ML algorithm that uses a tree to
classify data [30]. In the tree, leaf nodes are the classes of
the dataset and each internal node expresses an attribute. The
incoming edge for each internal node determines the value
of the parent node of that internal node. To make an efficient
tree in terms of resource consumption, one solution is to
create the tree as small as possible. It is commonly used
in the classification of the network traffic to find anomaly
behaviors [35], [36].

3.2.4 Random forest

This algorithm is an ensemble learning ML technique in
which a combination of multiple decision trees is used to
provide the solution [37]. In classification problems, the out-
come of this algorithm is the class which is selected by most
of the decision trees in the forest. In some cases, the outcome
is obtained by taking the average of the output of the decision
trees. The goal of random forest is to increase the precision
by reducing the overfitting in decision trees. Similar to the
aforementioned ML algorithms, it is also widely used in the
classification and detection of attacks in the computer net-
works [38], [39].

4 HTTPScout implementation

In this section, we explain HTTPScout in detail. As HTTP-
Scout is using ML algorithms, we first describe about the
dataset, data preprocessing, and feature selection phases.
Then, we present the architecture of HTTPScout in section
4.2.

@ Springer

4.1 Machine learning in HTTPScout

As mentioned in Section 3, most of the research works
have used Kdd99 [14] as a dataset for training their mod-
els. Although this dataset is a well-known and popular for
training ML models to classify DDoS attacks, it focuses on
general DDoS attacks and slow rate HTTP flooding has not
been included in this dataset. For this reason, we use CIC
DoS dataset [19] to train the ML models as it comprises the
most common types of application layer DoS attacks includ-
ing slow rate HTTP flooding.

Before training the ML models, we perform preprocess-
ing on the dataset to remove some unnecessary data. First,
we only keep benign and slow rate HTTP flooding data and
removed other types of DDoS attacks from the dataset. Then,
we use Gini index method to calculate information gain to
find the most important features. Among 76 features in CIC
dataset, we selected 33 features to train the models and other
non-significant features were removed from the dataset. The
removed features are related to other non-HTTP protocols
such as UDP and some flag fields of TCP. Table 2 shows the
selected features in our proposed work.

After preprocessing, we first train and then generate the
ML models described in Section 3 in Scikit-learn [41],
a well-known Python machine learning library. After the
model creation, we stored them in separate model files.
Upon activating HTTPScout, an administrator determines
which model should be used to detect the attack. HTTP-
Scoutimports the specified model file and uses it for detecting
HTTP flooding attack. This mechanism increases the modu-
larity of HTTPScout and helps to add more ML models to it
in the future.

4.2 Architecture

As aforementioned, HTTPScout is implemented as a security
module on SDN controller and enables network administra-
tors to defend against HT TP flooding attack. For this purpose,
HTTPScout consists of two separate phases as follows.

4.2.1 Attack detection phase

To detect the presence of an attack, the network administra-
tor first determines two parameters: Time window and ML
algorithm. The prior denotes the period of the investigation
of attack by HTTPScout, and the latter determines the ML
algorithm taken by HTTPScout to detect the attack. During
each period, HTTPScout monitors the HTTP connections in
the network and records the specifications of each connection
in a table named LogTable. This periodical observance has
two benefits: First, it causes less overhead, because instead
of checking each HTTP flow separately upon receipt at the
controller, HTTPScout checks all flows together at the end

HTTPScout: A Machine Learning based...

373

Table 2 List of the selected features from CIC dataset for training [40]

Number Feature Description

1 Flow duration Duration of the flow in Microsecond

2 Packet Length Max Maximum length of a packet

3 total Fwd Packet Total packets in the forward direction

4 total Bwd packets Total packets in the backward direction

5 total Length of Fwd Packet Total size of packet in forward direction

6 total Length of Bwd Packet Total size of packet in backward direction

7 Fwd Packet Length Min Minimum size of packet in forward direction

8 Fwd Packet Length Max Maximum size of packet in forward direction

9 Fwd Packet Length Mean Mean size of packet in forward direction

10 Fwd Packet Length Std Standard deviation size of packet in forward direction

11 Bwd Packet Length Min Minimum size of packet in backward direction

12 Bwd Packet Length Max Maximum size of packet in backward direction

13 Bwd Packet Length Mean Mean size of packet in backward direction

14 Bwd Packet Length Std Standard deviation size of packet in backward direction

15 Flow Bytes/s Number of flow bytes per second

16 Flow Packets/s Number of flow packets per second

17 Flow IAT Mean Mean time between two packets sent in the flow

18 Flow IAT Std Standard deviation time between two packets sent in the flow

19 Flow IAT Max Maximum time between two packets sent in the flow

20 Flow IAT Min Minimum time between two packets sent in the flow

21 Fwd IAT Min Minimum time between two packets sent in the forward direction
22 Fwd IAT Max Maximum time between two packets sent in the forward direction
23 Fwd IAT Mean Mean time between two packets sent in the forward direction

24 Fwd IAT Std Standard deviation time between two packets sent in the forward direction
25 Fwd IAT Total Total time between two packets sent in the forward direction

26 Bwd IAT Min Minimum time between two packets sent in the backward direction
27 Bwd IAT Max Maximum time between two packets sent in the backward direction
28 Bwd IAT Mean Mean time between two packets sent in the backward direction

29 Bwd IAT Std Standard deviation time between two packets sent in the backward direction
30 Bwd IAT Total Total time between two packets sent in the backward direction

31 FWD Packets/s Number of forward packets per second

32 Bwd Packets/s Number of backward packets per second

33 Packet Length Min Minimum length of a packet

of a time window to detect the presence of the attack. Sec-
ond, as described in Table 2, some features of the dataset are
related to the time elapsed from the beginning of the flow.
Hence, considering the time window in HTTPScout helps to
compute accurate values for the features of each HTTP flow.

Typically, in SDN, upon receiving a packet which is not
matched with any of the installed forwarding rules on a
switch, the switch encapsulates it in an OpenFlow message
named PACKET IN and forwards it to the SDN controller
[42]. This behavior notifies the controller about incoming
packets from a new flow in the network. As shown in Fig.
1, HTTPScout leverages the benefits of SDN capabilities to
detect and prevent HTTP flooding attacks. Upon receiving

a new packet, it first checks whether the packet is an HTTP
request or response. If it is neither, then HTTPScout com-
putes and installs a bidirectional path for that flow on the
relevant switches. Otherwise, some important header fields
such as input port of the connected switch, source and des-
tination IP addresses, source and destination layer 4 port
addresses, and the size and arrival time of the packet are
extracted and stored as a record (In_Port, Switch, Src_IP,
Dst_IP, Src_port, Dst_port, Size, Time) in the LogTable. For
example, (3, S5, 10.0.0.1, 10.0.0.5, 9653, 80, 52, 12:36:72.5)
means that an HTTP packet with source IP address (10.0.0.1),
destination IP address (10.0.0.5), source transport layer port
number (9653), destination transport layer port number (80),

@ Springer

374

R. Mohammadi et al.

and length (52 byte) at time 12:36:72.5 has been received in
input physical port 3 of switch S5. Later it is forwarded by
the switch toward HTTPScout module in the SDN controller.
Then, HTTPScout computes and installs a bidirectional path
for this flow on the relevant switches. The installed for-
warding rules on the edge switches of each path have two
actions. One action determines the output port of the switch
for the flow, and the other enforces the switch to send a copy
of the incoming packets of that flow toward the controller.
This policy enables the HTTPScout to pursue all the packets
belonging to a specific HTTP flow. In fact, in addition to the
first packet of each HTTP flow, the consequent packets of
that flow will be received by the controller. Once the timer
expired, HTTPScout extracts the mentioned features in the
Table 2 from the LogTable for each flow, and then executes
the ML model which is previously determined by the admin-
istrator for the extracted features. If the ML model detects
the attack, HTTPScout starts the mitigation phase.

4.3 Attack mitigation phase

In this phase, HTTPScout identifies the source of the attack.
To do this, it retrieves the input port number of the switch
which is connected to the source of the attack from LogTable.
Then, it removes all the relevant forwarding rules belonging
to the source of the attack from all network switches. This
mechanism empties the useless forwarding rules from the
flow tables of the network switches. Thus, it avoids wast-
ing of TCAM memory on the switches. Finally, HTTPScout
installs a new rule to block the origin of the attack at the edge
switch. As a matter of fact, by applying this policy, HTTP-
Scout prohibits the network resources consumption by the
attacker hosts. It is worth emphasizing that, the block rule
contains MAC, IP and physical input port number of the
attacker. Considering these three match fields in the block
rules has two benefits. First, in situations in which the attack-
ers and benign hosts access the same gateway, it correctly
distinguishes the attackers. Second, it disarms the attackers
if they use spoofing techniques because in this case they only
can spoof MAC or IP address, and will not be able to spoof
or change their physical input port which is connected to
the edge SDN switch. Algorithm 1 shows the pseudocode of
HTTPScout.

4.4 Computational and space complexity of
HTTPScout

The time complexity of HTTPScout depends on the num-
ber of malicious hosts and the number of HTTP requests of
each host. According to algorithm 1, if we consider n is the
number of malicious hosts, m is the number of the request
of each host, and k is the number of network switches, with
the assumption that all the hosts are attacker. Then, the com-

@ Springer

Algorithm 1 HTTPScout: Detection and Prevention Phase

Input: PACKET_IN(P)
PACKET_IN(P): New packet arrived to the
controller

1: LogTable < []; //A table for logging the features of incoming
packets

2: while true do

3: P < New_Packet()

4: if P==HTTP then

5: LogTable < LogTable U Extract_Packet_Features();

6: Install_BiDirectional Path(P.SrclP, P.DstIP) // On
edge switches, it installs two rules

7: endif

8: if T exceeded then // Timer Expiration

9: for each f € LogTable do

10: FE; < Extract_Flow_Features(f)

11: RES <~ ML_Algorithm(FEy);

12: if RES is Attack then

13: In_Port < Find_Connected_Port(f_Switch)
14: RemoveRules FromAllSwitches(f_Srcl P)
15: Install BlockRule(In_port, f_SrclP)

16: end if

17: end for

18: endif

19: end while

putational complexity of HTTPScout at the worst case is
O(mnm.(1 +nm +k + 1)) ~ On*m? + nmk). This implies
that HTTPScout has polynomial complexity and applying it
to defense against HTTP flooding does not lead to consider-
able overhead on SDN controller. As mentioned in Section
4, HTTPScout stores the important header fields and other
related information for each HTTP request as a record in
LogTable. If we consider each record is s byte, the space
complexity of HTTPScout at the worst case will be O (nms).
It is worth to mention that although the space and time com-
plexity of HTTPScout is polynomial, in some circumstances
where the computational capacity of the SDN controller is
limited, and the number of malicious hosts or their requests
is high, the overhead might be significant.

5 Performance evaluation

In this section, we conduct a comprehensive simulation
study, and analyze the results to evaluate the performance
of HTTPScout with different ML algorithms. We compare
the performance of HTTScout to normal SDN in the cases
with/without the presence of attack. In normal SDN, there
is no defense mechanism in place against HTTP flooding
attacks, and we will show that how the use of HTTPScout
can improve the security of normal SDN.

HTTPScout: A Machine Learning based... 375
T= Initial_Value IsT For each HTTP flow Extract features from LogTable
- - A Expired? in LogTable for each HTTP Flow
A Run ML model for the flow
NO
Is HTTP Request o ::232;3
or HTTP Response? Install Bi-directional path !
S Frvention Mecharism =~ =TT T T oSS Tt :
H) Find the edge switch connected |1
H Install blocking rule for to the source host of the flow H
Extract Src.IP, Dst.IP, Src.Port, H the source host H
Dst.port, Byte_count and store in LogTable H A i H
-l Install Bi-directional path : Remov.e el preitars :
7 (Two rule on the edge switches) : forwardmg [l 1or. i :
' source host in all switches !
Fig.1 Detection and Prevention phases in HTTPScout
. BotNet _——
5.1 Emulation setup <
i
We implement HTTPScout as a security module upon the ——
RYU controller [43], and to emulate the data plane of the test- %/ T\
.. . N
bed network, we use Mininet [44], a popular SDN emulation Jf \‘
. . . Web Server r— |
tool. We run our experiments on a PC with four processing 7 e\
cores and 3GB RAM. To achieve accurate evaluation, we | - /
applied K-fold cross validation [45] with k=10 in the training \ |
phase of ML models. Moreover, we considered the 30% of \XQ_‘\' A //

the dataset for test, and 70% of the data to train the ML
models.

Simulations are performed on the test-bed network which
is shown in Fig. 2. The test-bed network consists of six Open-
Flow switches, three legitimate hosts (H1-H3), six attackers
(H4-H9), and two flash crowds (H10, H11). We have con-
sidered 10 different HTML files, each of which has 51Byte
size. Benign hosts send complete HTTP GET requests for
one of these HTML files to a web server randomly between
10 and 15 seconds. To investigate the reaction of HTTPScout
against flash crowd hosts, we set these hosts to send incom-
plete HTTP requests for a short time (10 seconds). We have
used SlowHTTPtest [46] to perform HTTP flooding attack.
The attacker hosts use this tool to send incomplete HTTP
requests with different rates. In order to evaluate the perfor-
mance of HTTPScout in different load of attacks, we have
configured five different scenarios in which the attacker hosts
send from 10 to 50 incomplete HTTP requests per second.
Moreover, we have considered time window T=30 seconds.
Simulation time for all scenarios is set to 600 seconds, and
the attack begin time in all scenarios is set to 220 seconds.

s3 e N
N f

H10)

_H10, H|1/7/

Flash Crowd

Fig.2 The test-bed network

5.2 Result analysis

In this section, we evaluate the experimental results using the
following performance metrics.

5.2.1 Attack detection time

It denotes the time between sending the first incomplete
HTTP request by an attacker and detecting the attack by
HTTPScout. Fig. 3 shows that RF method detects the
presence of HTTP flooding attack sooner than other ML
algorithms. It is because of using multiple decision trees
by RF. This mechanism also fortifies RF to be accurate
in detection of the attack. Moreover, Fig. 3 shows that by
increasing the rate of the attack, detection time decreases. It
is because in high rate of the attack, HTTPScout monitors
more incomplete HTTP connections for each period of time,

@ Springer

w
~
(o)}

R. Mohammadi et al.

%)
S

ENB ®KNN ®RF ®mDCT

=)
S

%
S

o
S

'S
=

1)
S

Attack Detection Time (sec)

10 20 30 40 50
Attack Rate (PPS)

Fig.3 Attack detection time vs. different attack rates

=NB mKNN = RF =DCT = Normal Normal_NoAttack

o
3

7
=)

IS
S

w
S

)
=3

5

Bandwidth Consumption (MByte)

o

10 20 30 40 50
Attack Rate (PPS)

Fig.4 Average bandwidth consumption vs. different attack rates

thus the attack is detected sooner. One of the most significant
parameter that affects the attack detection time is 7 because
HTTPScout checks the presence of the attacks each T sec-
onds. For this reason, considering low value for T decreases
the attack detection time and leads to sooner protection of
network from adversary effects of the attacks. On the other
hand, it imposes more overhead for the SDN controller or
might lead to inaccurate results in attack detection.

5.2.2 Bandwidth consumption

As mentioned in Section 1, one of the main adverse effect of
HTTP flooding attack is the bandwidth consumption. In this
paper, we have considered this metric to denote the amount
of traffic traversed via OF switches during the emulation run
time. As shown in Fig. 4, for the Normal scenarios in which
there is no defense mechanism, the bandwidth consump-
tion is considerably high. Contrary, by using HTTPScout,
the bandwidth consumption is significantly decreased. Fig.
4 illustrates that when using HTTPScout as a security mech-
anism, the bandwidth usages are nearly similar to Normal
scenario. As a matter of fact, the figure shows that HTTP-
Scout decreases the adverse impacts of HTTP flooding on the
network resources. Moreover, from Fig. 3 and Fig.4, we can
conclude that sooner detecting the attack in RF method and
consequently blocking the attack leads to prohibiting more
network bandwidth consumption by the attackers.

@ Springer

10000

=NB =KNN mRF uDCT
9000

8000
7000
6000
5000
4000
3000
2000
1000

Number of Blocked Rules

10 20 30 40 50
Attack Rate (PPS)

Fig.5 Number of blocked malicious flows vs. different attack rates

5.2.3 Number of Blocked Malicious flows

It is the number of incomplete HTTP connections that are
detected and blocked by HTTPScout. In other words, this
metric denotes the number of incomplete requests after the
origins of the attack have been blocked at the edge switches.
According to Fig. 5, it can be concluded that the best results
are achieved when using RF method in HTTPScout. As
shown in Fig. 3, we conclude that RF outperforms other
ML methods in terms of the attack detection time. It blocks
more malicious flows compared to the others. Hence, using
RF also improves the performance of HTTPScout in terms
of the number of blocked malicious HTTP flows. Conse-
quently, the result of this behaviour preserves the data plane
switches from TCAM saturation, which leads to install for-
warding rules for benign traffic flows without memory space
constraints.

5.2.4 Accuracy, F1-Measure and AUC

Since HTTPScout uses ML algorithms to detect HTTP flood-
ing attack, we investigate the performance of ML algorithms
which have been chosen for HTTPScout in terms of three key
measures used in machine learning. This includes accuracy,
F1-Measure, and Area Under the Curve (AUC). Accuracy
focuses on the proportion of correct predictions and defined
as follows:

| TP+TN 0
ccuracy =
YT TPYTNYFP+FN

where T P is True Positive, TN is True Negative, F' P is False
Positive and F N is False Negative, respectively.

F1-Measure tests the accuracy of a defense mechanism in
detection of an attack, especially when the False Negatives
and False Positives are critical. As a matter of fact, higher val-
ues for F1-Score denote higher correctness in classification.
F1-Score is defined as follows:

TP

F1 — Measure = ————— 2
FP+FN
TP+ =

HTTPScout: A Machine Learning based...

377

98%

=NB EKNN = RF = DCT

96%

94%

92%

90%

Accuracy (%)

88%

86%

84%

82%
10 20 30 40 50

Attack Rate (PPS)

Fig.6 Accuracy vs. different attack rates

92%

=NB mKNN ®RF =DCT

F1-Measure(%)

10 20 30 40 50
Attack Rate (RPS)

Fig.7 F-Measure vs. different attack rates

Figures 6 and 7 show the accuracy and F1-Measure values
for HTTPScout with different ML algorithms, respectively.
According to these two figures, it can be concluded that RF
outperforms other ML algorithms because of its ensemble
nature. In contrast to the other ML techniques in HTTPScout,
only RF is ensemble which means it constructs multiple DCT
which considerably improves its performance in the detection
of HTTP flooding attack.

AUC for an ML algorithm in network security is a mea-
sure that determines the ability of the algorithm to distinguish
between the normal and abnormal network traffics. In a nut-
shell, AUC is used as a summary for Receiver Operator
Characteristic (ROC), and higher values for it mean higher
capability in correct attack detection. Table 3 shows AUC
for different ML algorithms in HTTPScout for various rates
of attack. It confirms that using RF method in HTTPScout
increases its ability to detect attacks compared to KNN, NB,
and DCT.

5.2.5 Number of installed forwarding rules

This metric denotes the total number of remained forward-
ing entries on the OF switches at the end of emulation. In
fact, this metric shows whether a defense mechanism can
effectively remove unnecessary forwarding rules from the
relevant switches. Moreover, it is a useful metric to esti-

Table3 AUC of ML algorithms in HTTPScout for different attack rates

Algorithm NB KNN RF DCT
10 84% 84% 85% 84%
20 85% 85% 85% 85%
30 85% 85% 86% 85%
40 86% 85% 86% 86%
50 86% 86% 87% 86%

80000

ENB ®KNN ®RF ®DCT ®Normal ®Normal NoAttack

70000
60000

v
S
=3
=]
S

40000

30000

20000

Number of Forwarding Rules

10000

0

Fig. 8 Number of forwarding rules at the end of simulation time vs.
different attack rates

mate the amount of TCAM memory exhaustion caused by
the HTTP flooding attack. As it can be seen in Figure 8§,
using ML techniques to detect and prevent the attack signif-
icantly reduces the number of installed forwarding rules. It
is because after detection of attack, HTTPScout blocks the
source of the attack at the edge switch and prohibits them to
send further HTTP packets. Moreover, Figure 8 confirms that
among ML algorithms, RF achieves better results compared
to others. The reason is that because it achieves more accu-
racy according to Figure 6, thus it removes more unnecessary
rules from the switches.

5.2.6 Training time

It is a useful metric to show the quickness of an ML algo-
rithm in training phase. In Section 5, we showed that the
time complexity of HTTPScout is low. In addition to the
time complexity, since the HTTPScout takes use of ML algo-
rithms, it is essential to investigate the training time of the
ML algorithms used by HTTPScout. Table 4 illustrates that
RF algorithm has the highest training time among other ML
algorithms. The reason is that it uses multiple Decision Trees
to solve a classification problem, and thus consumes more
time compared to other non-ensemble algorithms. It is worth
mentioning that although RF has the highest training time,
it has superiority over other ML algorithms investigated in
this paper for HTTPScout. Moreover, as we mentioned in
Section 4, each ML model is created once and then used by
HTTPScout. To update the model, for example, with a newer
version of the dataset, the administrator can train the model
again and then HTTPScout loads the model at the initiation

@ Springer

378

R. Mohammadi et al.

Table 4 Training time for ML

algorithms used in HTTPScout Algorithm

NB KNN RF DCT

Training time in Milliseconds

610 ms 2540 ms 15570 ms 1850 ms

phase. Therefore, it is not required to train the model every
time HTTPScout begins to detect the attack. In nutshell, the
training time does not affect the performance of HTTPScout
in attack detection.

6 Discussion

Emulation results in Section 5 showed that using HTTP-
Scout is beneficial in the mitigation of HTTP flooding attack.
However, the success of HTTPScout depends on the accurate
output of ML algorithms. In other words, if an ML algorithm
correctly detects an attack, then HTTPScout can identify the
origin of that attack and block it. For this reason, to achieve
more accurate results, a network administrator should use
suitable ML algorithms and datasets which cover different
patterns of HTTP flooding attack. Moreover, as the results
show in table 4, using ML algorithms imposes some compu-
tational overheads for training that needs to be considered in
the environment which faces computational resources con-
straints. The other issue with HTTPScout is that it cannot
be used to mitigate HTTPS attacks. Because HTTPS packets
are encrypted at the source, HTTPScout is unable to decrypt
them in the controller to distinguish between complete and
incomplete HTTP requests.

7 Conclusion

In this paper, we introduce HTTPScout as an ML-based secu-
rity module for SDN controllers to mitigate one of the popular
application layer attack called HTTP flooding. HTTPScout
observes ongoing HTTP flows and extracts important fea-
tures from them, and later it checks their behavior using ML
algorithms. Upon detecting an abnormal HTTP request, it
first eliminates useless forwarding rules related to the ori-
gin of the attack, and then blocks the attacker at the edge
switch. HTTPScout not only preserves the targeted web
servers from HTTP flooding, but it also reduces the waste
memory space of OpenFlow switches, and prohibits network
resource exhaustion. One of the benefits of HTTPScout is
that, it is implemented in a modular fashion, and it allows
more ML models to be added in the future. To investigate
the performance of HTTPScout, we carried out a compre-
hensive evaluation with various ML algorithms in different
attack scenarios. Experimental results show that HTTPScout
with Random Forest ML algorithm achieves better accuracy

@ Springer

and F1-measure compared to KNN, Decision Tree, and Naive
Bayes algorithms.

Declarations

Compliance with Ethical Standards Disclosure of potential conflicts
of interest Research involving Human Participants and/or Animals
Informed consent

Research Data Policy and Data Availability Statements Data sharing
not applicable to this article as no datasets were generated or analysed
during the current study.

References

1. https://ourworldindata.org/internet. Last visited 9 Mar, 2021

2. https://www.baeldung.com/cs/popular-network-protocols. ~ Last
visited 27 Mar, 2021

3. Sreeram, I., Vuppala, V.P.K.: Http flood attack detection in appli-
cation layer using machine learning metrics and bio inspired bat
algorithm. Appl. Comput. inform. 15(1), 59-66 (2019)

4. Verma, A., Xaxa, D.K.: A survey on http flooding attack detection
and mitigating methodologies. Int. J. Innov. Adv. Comput. Sci. 5,
5(2016)

5. Jaafar, G.A., Abdullah, S.M., Ismail, S.: Review of recent detection
methods for http ddos attack. J. Comput. Netw. Commun. 2019
(2019)

6. Chica, J.C.C., Imbachi, J.C., Vega, J.E.B.: Security in sdn: a com-
prehensive survey. J. Netw. Comput. Appl. 159, 102595 (2020)

7. Benzekki, K., El Fergougui, A., Elbelrhiti Elalaoui, A.: Software-
defined networking (sdn): a survey. Secur. Commun. Netw. 9(18),
5803-5833 (2016)

8. Xu,G.,Mu, Y., Liu,J.: Inclusion of artificial intelligence in commu-
nication networks and services. ITU J. ICT Discov. 1, 1-6 (2017)

9. Sultana, N., Chilamkurti, N., Peng, W., Alhadad, R.: Survey on sdn
based network intrusion detection system using machine learning
approaches. Peer-to-Peer Netw. Appl. 12(2), 493-501 (2019)

10. Xie, J., Yu, ER., Huang, T., Xie, R., Liu, J., Wang, C., Liu, Y.: A
survey of machine learning techniques applied to software defined
networking (sdn): research issues and challenges. IEEE Commun.
Surv. Tutor. 21(1), 393430 (2018)

11. Nikoloudakis, Y., Kefaloukos, I., Klados, S., Panagiotakis, S., Pal-
lis, E., Skianis, C., Markakis, E.K.: Towards a machine learning
based situational awareness framework for cybersecurity: an sdn
implementation. Sensors 21(14), 4939 (2021)

12. Singh,J., Behal, S.: Detection and mitigation of ddos attacks in sdn:
a comprehensive review, research challenges and future directions.
Comput. Sci. Rev. 37, 100279 (2020)

13. Yang, L., Zhao, H.: Ddos attack identification and defense using sdn
based on machine learning method. In: 15th International Sympo-
sium on Pervasive Systems, Algorithms and Networks (I-SPAN).
IEEE 2018, pp. 174-178 (2018)

14. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Last
visited 3 Sep, 2021

https://ourworldindata.org/internet
https://www.baeldung.com/cs/popular-network-protocols
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

HTTPScout: A Machine Learning based...

379

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Santos, R., Souza, D., Santo, W., Ribeiro, A., Moreno, E.: Machine
learning algorithms to detect ddos attacks in sdn. Concurr. Comput.
Pract. Exp. 32(16), €5402 (2020)

Sahoo, K.S., Igbal, A., Maiti, P., Sahoo, B.: A machine learning
approach for predicting ddos traffic in software defined networks.
In: 2018 International Conference on Information Technology
(ICIT), pp. 199-203. IEEE (2018)

Sen, S., Gupta, K.D., Ahsan, M.M.: Leveraging machine learning
approach to setup software-defined network (sdn) controller rules
during ddos attack. In: Proceedings of International Joint Confer-
ence on Computational Intelligence, pp. 49-60. Springer (2020)
Pérez-Diaz, J.A., Valdovinos, I.A., Choo, K.-K.R., Zhu, D.: A flex-
ible sdn-based architecture for identifying and mitigating low-rate
ddos attacks using machine learning. IEEE Access 8, 155859—
155872 (2020)

Cic dos dataset (2017). https://www.unb.ca/cic/datasets/dos-
dataset.html. Last visited 3 Sep, 2021

Li, D, Yu, C., Zhou, Q., Yu, J.: Using svm to detect ddos attack
in sdn network. IOP Conf. Ser. Mater. Sci. Eng. 466(1), 012003
(2018)

Polat, H., Polat, O., Cetin, A.: Detecting ddos attacks in software-
defined networks through feature selection methods and machine
learning models. Sustainability 12(3), 1035 (2020)

Dong, S., Sarem, M.: Ddos attack detection method based on
improved knn with the degree of ddos attack in software-defined
networks. IEEE Access 8, 5039-5048 (2019)

Sanjeetha, R., Raj, A., Saivenu, K., Ahmed, M.I., Sathvik, B.,
Kanavalli, A.: Detection and mitigation of botnet based ddos
attacks using catboost machine learning algorithm in sdn environ-
ment. Int. J. Adv. Technol. Eng. Explor. 8(76), 445 (2021)
Jayasri, P, Atchaya, A., Sanfeeya Parveen, M., Ramprasath, J.:
Intrusion detection system in software defined networks using
machine learning approach. Int. J. Adv. Eng. Res. Sci. 8, 4 (2021)
https://www.kaggle.com/datasets. Last visited 3 Sep, 2021
Alkasassbeh, M., Al-Naymat, G., Hassanat, A., Almseidin, M.:
Detecting distributed denial of service attacks using data mining
techniques. Int. J. Adv. Comput. Sci. Appl. 7(1), 436-445 (2016)
https://www.1l.mit.edu/r-d/datasets/1999-darpa-intrusion-
detection-evaluation-dataset. Last visited 3 Sep, 2021

Sabri, S., Ismail, N., Hazzim, A.: lowloris dos attack based simu-
latio. IOP Conf. Ser. Mater. Sci. Eng. 1062(1), 012029 (2021)
Suroto, S.: A review of defense against slow http attack. JOIV Int.
J. Inf. Visual. 1(4), 127-134 (2017)

Alpaydin, E.: Introduction to Machine Learning. MIT Press, New
York (2020)

Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Miscellaneous clus-
tering methods. Clust. Anal. 215-255 (2011)

Kachavimath, A.V., Nazare, S.V., Akki, S.S.: Distributed denial of
service attack detection using naive bayes and k-nearest neighbor
for network forensics. In: 2020 2nd International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA), pp.
711-717, IEEE (2020)

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.
44,
45.

46.

Elbaghdadi, A., Mezroui, S., El Oualkadi, A.: K-nearest neighbors
algorithm (knn): an approach to detect illicit transaction in the
bitcoin network. In: Integration Challenges for Analytics, Business
Intelligence, and Data Mining, pp. 161-178. IGI Global (2021)
Berrar, D.: “Bayes’ theorem and Naive Bayes classifier. In: Ency-
clopedia of Bioinformatics and Computational Biology: ABC
of Bioinformatics; Elsevier Science Publisher: Amsterdam, The
Netherlands, pp. 403—412 (2018)

Chen, Y., Pei, J., Li, D.: Detpro: a high-efficiency and low-latency
system against ddos attacks in sdn based on decision tree. In: ICC
2019-2019 IEEE International Conference on Communications
(ICC), pp. 1-6. IEEE (2019)

Lakshminarasimman, S., Ruswin, S., Sundarakantham, K.: Detect-
ing ddos attacks using decision tree algorithm. In: 2017 Fourth
International Conference on Signal Processing, Communication
and Networking (ICSCN), pp. 1-6. IEEE (2017)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
Chen, L., Zhang, Y., Zhao, Q., Geng, G., Yan, Z.: Detection of
dns ddos attacks with random forest algorithm on spark. Procedia
Comput. Sci. 134, 310-315 (2018)

Idhammad, M., Afdel, K., Belouch, M.: Detection system of http
ddos attacks in a cloud environment based on information theoretic
entropy and random forest. Secur. Commun. Netw. 2018 (2018)
https://github.com/ahlashkari/CICFlowMeter/blob/master/
ReadMe.txt. Last visited 27 Mar, 2021

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825-2830 (2011)

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peter-
son, L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling
innovation in campus networks. ACM SIGCOMM Comput. Com-
mun. Rev. 38(2), 69-74 (2008)

https://ryu-sdn.org/. Last visited 27 Mar, 2021
http://mininet.org/. Last visited 27 Mar, 2021

Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learn-
ing: An Atrtificial Intelligence Approach. Springer, Berlin (2013)
https://github.com/shekyan/slowhttptest. Last visited 27 Mar, 2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

https://www.unb.ca/cic/ datasets/dos-dataset.html
https://www.unb.ca/cic/ datasets/dos-dataset.html
https://www.kaggle.com/datasets
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://ryu-sdn.org/
http://mininet.org/
https://github.com/shekyan/slowhttptest

	HTTPScout: A Machine Learning based Countermeasure for HTTP Flood Attacks in SDN
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 HTTP flooding attack
	3.2 ML algorithms
	3.2.1 KNN
	3.2.2 Naive bayes
	3.2.3 Decision tree
	3.2.4 Random forest

	4 HTTPScout implementation
	4.1 Machine learning in HTTPScout
	4.2 Architecture
	4.2.1 Attack detection phase

	4.3 Attack mitigation phase
	4.4 Computational and space complexity of HTTPScout

	5 Performance evaluation
	5.1 Emulation setup
	5.2 Result analysis
	5.2.1 Attack detection time
	5.2.2 Bandwidth consumption
	5.2.3 Number of Blocked Malicious flows
	5.2.4 Accuracy, F1-Measure and AUC
	5.2.5 Number of installed forwarding rules
	5.2.6 Training time

	6 Discussion
	7 Conclusion
	References

