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Detection and Classification of Sleep Apnea and
Hypopnea Using PPG and SpO2 Signals

Remo Lazazzera , Margot Deviaene , Carolina Varon , Bertien Buyse, Dries Testelmans ,
Pablo Laguna , Eduardo Gil , and Guy Carrault

Abstract— In this work, a detection and classification
method for sleep apnea and hypopnea, using photopletys-
mography (PPG) and peripheral oxygen saturation (SpO2)
signals, is proposed. The detector consists of two parts:
one that detects reductions in amplitude fluctuation of PPG
(DAP)and one that detects oxygen desaturations. To fur-
ther differentiate among sleep disordered breathing events
(SDBE), the pulse rate variability (PRV) was extracted from
the PPG signal, and then used to extract features that
enhance the sympatho-vagal arousals during apneas and
hypopneas. A classification was performed to discriminate
between central and obstructive events, apneas and hypop-
neas. The algorithms were tested on 96 overnight signals
recorded at the UZ Leuven hospital, annotated by clinical
experts, and from patients without any kind of co-morbidity.
An accuracy of 75.1% for the detection of apneas and hy-
popneas, in one-minute segments,was reached. The classi-
fication of the detected events showed 92.6% accuracy in
separating central from obstructive apnea, 83.7% for cen-
tral apnea and central hypopnea and 82.7% for obstructive
apnea and obstructive hypopnea. The low implementation
cost showed a potential for the proposed method of being
used as screening device, in ambulatory scenarios.

Index Terms—Apnea detection, apnea classification,
PPG, SpO2, PRV, DAP.
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I. INTRODUCTION

S LEEP disordered breathing events (SDBE) detection and
classification are presented in this work, focusing on apnea

and hypopneas. Sleep apnea is the absence of air flow during
sleep, while hypopnea is a sleep airflow reduction [1]. Both
can be obstructive or central: obstructive if the breathing ef-
fort continues, while there is a mechanical obstruction of the
airways, resulting in interruptions of the airflow; central if no
breathing effort is present. This disorder disrupts the normal
sleep pattern and is associated with daytime sleepiness and
fatigue [2]. The stress that the heart and brain undergo with
each apnea/hypopnea, can lead to long-term complications: high
blood pressure, cardiovascular disease, stroke and diabetes [3],
[4]. For this reason its detection, diagnosis and treatment are
important.

Benjafield et al. in 2019, published the first study to report
global prevalence of obstructive sleep apnea, showing that al-
most 1 billion people are globally affected, with prevalence
exceeding 50% in some countries. The number of affected
individuals was highest in China, followed by the USA, Brazil,
and India. The study estimated that, globally, 936 million adults
aged 30-69 years (men and women) have mild to severe obstruc-
tive sleep apnea and 425 million adults aged 30-69 years have
moderate to severe obstructive sleep apnea [5].

The diagnosis of sleep apnea and hypopnea is done using ei-
ther polysomnography or polygraphy. Polysomnography (PSG)
is the gold standard procedure for its diagnosis. It consists of
an overnight recording of different electrophysiological signals
such as electroencephalogram, electromyogram, electrooculo-
gram, electrocardiogram, airflow, peripheral oxygen saturation
(SpO2) and photoplethysmogram (PPG), chest and abdominal
movements. The acquisition and analysis of these signals re-
quire human expertise and specialized equipment, being a very
uncomfortable and costly procedure. This is why sleep disorders
are often under-diagnosed. Polygraphy is a less restrictive exam-
ination only measuring (cardio-)respiratory parameters usually
including airflow, respiratory movement and oxygen saturation.
This technique can more easily be performed at home and
requires the use of a nasal cannula, which is cumbersome and
could interfere with the natural sleep. So different techniques
for home sleep apnea/hypopnea monitoring were extensively
developed [6], minimizing the equipment used. It motivated
multiple studies focused on developing low cost and unobtru-
sive systems for sleep apnea/hypopnea detection, based on few
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physiological signals. Pulse oximetry, which exploits the PPG
and SpO2 signals recorded at the level of peripheral parts of the
body, would be less invasive and more convenient.

The PPG signal is obtained by means of a pulse oximeter,
which illuminates the skin, and measures changes in light ab-
sorption of the blood volume [7]. The SpO2 signal, furthermore,
is computed by combining the information of two PPG signals,
acquired at different wavelengths: infrared and red light, usually
at the level of the index finger [8].

From the PPG signal, reductions in blood flow can be ob-
served. These fluctuations in the amplitude are markers of sym-
pathetic discharge [9], [10] that produces vasoconstriction [11]–
[13], possibly related to transient arousals. Movements and deep
inspiratory gasps produce sympathetic activation and besides
them, the same effect is also caused by apneas and hypopneas
[14]. This activation occurs because after the manifestation of
SDBE, the ANS tries to restart the normal breathing with a
discharge of the sympathetic activity. In addition, hypoxia plays
a key role during apneas and hypopneas [15], [16], and it can
be quantified using the SpO2 signal. Therefore, these effects
can be detected using pulse oximeter systems, by combining the
information of PPG and SpO2 signals [9], [10], [17]–[19].

Heart rate variability (HRV) represents fluctuations in the
heart rate, related to autonomic nervous system (ANS) control.
High frequency (HF) components between 0.15 and 0.4 Hz
represent the vagal tone, while frequencies from 0.04 to 0.15 Hz
manifest the activation of both parasympathetic and sympathetic
nervous systems, and these are labeled low-frequency (LF)
components. The ratio between LF and HF is defined as the
sympatho-vagal balance [20]. The pulse rate time series, or
so-called pulse rate variability (PRV), can be derived from the
PPG and is a surrogate of the heart rate time series. Its usefulness
was for instance demonstrated in [21], during tilt table tests,
when the sympathetic activation significantly influences the
heart rate modulation.

Multiple studies investigated the diagnosis of obstructive
sleep apnea syndrome (OSAS) based on the detection of vaso-
constriction, using peripheral arterial tonometry [13], [22], [23].
The relationship between autonomic nervous system and PPG
was also studied in [12], [24]. Detection of sleep apnea and
hypopnea, from PPG [25] and HRV were already explored in
literature [26]–[29]. The decreases in the amplitude fluctuation
of PPG (DAP) detector was tested for detecting obstructive
hypopnea events in [25] and combined with HRV analysis in
[30], [31], thereby demonstrating the usefulness of DAP to
diagnose OSAS in children.

Since studies [9], [10], [14], [17]–[19] already showed that
DAP and oxygen desaturation information are linked to ap-
neas/hypopneas, the aim of this work is to test the DAP detector
on adults, combining it with oxygen desaturation events for
detecting SDBE. The performances of the proposed method are
then compared with other methods, tested on the same database.
In literature several studies also explored the possibility of de-
tecting apneas and hypopneas by investigating the oxygen desat-
uration signal. The most promising techniques used a machine
learning approach [32], [33]. In [32], Deviaene et al. reached an
averaged desaturation classification accuracy of 82.8% using a

random forest classifier, over different test sets of the Sleep Heart
Health Study containing 8052 subjects in total. Mostafa et al.
in [33] implemented a Deep Belief Network and used a 10-fold
cross validation on two public databases: one with 8 subjects and
other with 25 subjects. They achieved, respectively, an accuracy
of 85.26% and of 97.64%.

Finally, another hypothesis tested in the present paper, is
whether the use of sympatho-vagal balance and oxygen desatu-
ration information could be significant to classify the different
types of apneas and hypopneas. Besides the detection, a respi-
ratory event classification was performed per apneic/hypopneic
SDBE detected, comparing different classifiers. Classification
in central or obstructive apnea is as relevant as the distinction
between apnea and hypopnea, to discover the nature of the event.

The aim of this study is to detect and later classify SDBEs
from a PPG and a SpO2 signal, both acquired at the level of the
index finger. Events of Central Apnea (CA), Central Hypopnea
(CH), Obstructive Apnea (OA), Obstructive Hypopnea (OH)
and Mixed Apnea (MA) were all initially considered as Sleep
Disruptive Breathing Events (SDBE). First, SDBE detection
is performed without identifying the SDBE nature. Next, a
classification is performed by including features derived from
PRV, for separating Central (C) from Obstructive (O) SDBEs
and Apneic from Hypopneic SDBEs.

The system proposed in this work is designed for feasible
ambulatory monitoring, based on oximetry devices providing
both SpO2 and PPG signals. It would be of great interest for
an ambulatory sleep monitoring system, not intended as an
alternative to the PSG but as a first screening step.

This paper is organized as follows: at first, the DAP detector
and the oxygen-desaturation detector, used to discriminate be-
tween apneic and non-apneic SDBEs, are described; next, the
classification of the SDBEs as apneic or hypopneic, central or
obstructive is presented. This classification was performed by in-
troducing indexes of the PRV spectral-analysis that give relevant
information about the ANS activity. Both detection and classi-
fication results are then introduced. In the discussion section,
a comparison of the proposed algorithms, with those present
in literature and those implemented on the same database, is
presented; the final conclusions and further improvements close
the paper.

II. MATERIALS AND METHODS

A. Data

A database consisting of 96 overnight recordings of patients
suspected to suffer from sleep apnea-hypopnea syndrome and
without any cardiovascular co-morbidity, was provided by the
Sleep Laboratory of the University Hospitals Leuven (UZ Leu-
ven, Belgium). Each record contains a PPG and an SpO2 signal
sampled at 500 Hz, and the apnea-hypopnea index (AHI) was
calculated as the amount of respiratory events per hour of sleep,
scored according to the AASM 2012 rules [34]. The average
AHI in the dataset is 31.3 and 39% of the subjects had an AHI
larger than 30; 53% of them had an AHI between 5 and 30 and
the remaining 8%, an AHI less or equal to 5. The annotations
contain the beginning and duration of CA, CH, OA, OH and
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TABLE I
TOTAL NUMBER OF SLEEP DISORDERED BREATHING EVENTS, PER

CATEGORY, IN THE DATABASE

Fig. 1. Apneic and hypopneic events detection flowchart.

MA. Table I shows the total number of annotations per SDBE
category, in the database.

B. Apnea and Hypopnea Detection

The algorithm for sleep apnea and hypopnea detection was
based on the detection of DAP and desaturation events. This
whole detection process is summarized in the flowchart depicted
in Fig. 1.

1) Pre-Processing: Both the PPG (x(n)) and SpO2

(xSpO2
(n)) signals, acquired at 500 Hz, were down-sampled

at 100 Hz. After that, the SpO2 samples were rounded to the
nearest integer. These two operations aim at simulate signals ac-
quired with low time resolution acquisition devices: this makes
it possible to test the usability of the proposed algorithm, to
a wider range of acquisition hardware. The PPG signal x(n)
was then detrended by removing the time-varying mean value,
obtained with a moving average filter: the resulting detrended
signal was referred to as xd(n). Then, the mean PPG cardiac
cycle length, T, was estimated using a zero-crossing detector
applied toxd(n). An artifact detector based on Hjorth parameters
[35] was implemented and the artifact signal segments were
rejected as in [25].

2) Envelope and Adaptive Threshold Estimation: In or-
der to follow the amplitude fluctuations of the PPG, its envelope
was analyzed. It was computed from xd(n), by using the root
mean square series method as in [25]:

xe(n) =

√
1

Np

∑n

k=n−(Np−1)
x2
d(k), (1)

where Np is the number of samples in two cardiac cycles.
A DAP event was identified when xe(n) was lower than an

adaptive threshold ζ(n), [25], computed as a percentage (Up) of

Fig. 2. The DAP detection method applied on a PPG signal. The
threshold was computed with Up = 70%.

the mean of the last Lp non-artifact samples of the envelope:

ζ(n) =

⎧⎪⎨
⎪⎩

Up

100Lp

n∑
k=n−(Lp−1)−TLp,n

xe(k) n, k ∈ {
na

}
ζ

ζ(n− 1) n ∈ {
nc

}
ζ

(2)

where
{
na

}
ζ

is the sample set eligible for the computation of the

adaptive threshold and Lp is the number of samples in
{
na

}
ζ
.

Then,
{
nc

}
ζ

is the sample set not eligible for the computation

and TLp,n is the number of samples in
{
nc

}
ζ
.

The ineligibility condition of a sample (n ∈ {
na

}
ζ
), for the

adaptive threshold computation, keeping constant ζ(n), is any
of the following:

� the sample belongs to a DAP event, xe(k) < ζ(n− 1)
� the sample belongs to an artifact according to the Hjorth

parameters artifact detector
� the sample belongs to an abrupt change in thexe(n) signal.

A change was considered abrupt when

|xe(n)− xe(n− 1)| > α

fs
Ae (3)

where Ae is half of the mean oscillation amplitude range
of xd(n) in the recording, fs is the sample frequency and
α was experimentally chosen equal to 5 on accuracy basis.

3) DAP Detector: A DAP event was identified when the
PPG envelope was lower than the predefined adaptive threshold
ζ(n), for a minimum time duration (ΔnDAP ), set a priori. Fig. 2
shows an example of DAP detection from a PPG signal.

4) Oxygen-Desaturation Detector: At first, an artifact de-
tector was applied to the whole SpO2 signal. A signal segment
was annotated as artifact when xSpO2

(n) < 50%: if so, the
segment was excluded from the analysis. SpO2 values lower
than 50% are usually indication of PPG signal degradation.
Afterwards, the oxygen-desaturation detector receives as input
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Fig. 3. Apneic and hypopneic events detection. Starting from the top:
the first figure shows the nasal pressure signal, where the red portion
highlights an annotated obstructive hypopnea event; the second plot
visualizes the PPG signal with DAP detections; in the last figure, an
oxygen-desaturation was detected in the SpO2 signal.

the time instants, at which the i-th DAP event starts ni
o (named

the onset), and ends ni
e. Then, an enlarged window around the

DAP event was used, by considering Δno = 5 ∗ fs samples
before the DAP onset and Δne = 15 ∗ fs after the DAP ends.
The parameters Δno and Δne were defined a priori, taking
in consideration the delay the SpO2 signal has over the PPG
[8]. In these new enlarged DAP temporal windows, the oxygen-
desaturation detector analyzes if a drop in SpO2,ΔSpO2% takes
place. A SDBE was detected, when to the i-th DAP event was
associated a drop in amplitude between the maximum value of
the SpO2 (within the enlarged window) and its minimum, equal
or higher than different ΔSpO2 tested levels (from 1% to 3%):

max[xSpO2
(n)]− min[xSpO2

(n)] ≥ ΔSpO2

with n ∈ [ni
o −Δno, n

i
e +Δne]

(4)

This computation does not consider a deviation from a SpO2

predefined reference baseline, since the baseline oxygenation
level can vary throughout the night. Moreover, the first part of
each SpO2 signal segment could not either be used as reference
since, in case of consecutive SDBE, the normal oxygenation
values can be present at the end of the DAP instead of the
beginning.

Fig. 3 presents a detection example of obstructive-hypopnea:
the three plots show respectively the nasal pressure signal, DAP
detections and oxygen-desaturation detections.

5) Performance Evaluation: For the overnight sleep ap-
nea/hypopnea detection, each recording was divided in segments
of one-minute. This segmentation represents the field standard in
literature and was used, in the present work, for state-of-the-art
comparison. In addition, splitting data into 60s epochs, gave the

possibility to take into account the delay between the SDBE
occurrence in the airflow signal (annotated manually by experts
[34]) and its manifestation in the PPG and SpO2 signals. This
delay depends on the subject physiological characteristics and
lasts approximately 30s [36].

The DAP detector is event-based and a SDBE was defined
apneic/hypopneic if a desaturation event was associated to the
corresponding DAP. Each segment was labeled as true positive
(TP) if it contained both: an apneic/hypopneic reference an-
notation and a detected apneic/hypopneic SDBE. Otherwise, if
the segment contained none of them, the segment was labeled
as true negative (TN). In case the segments contained only an
apneic/hypopneic SDBE, then it was assigned the label false
positive (FP). On the contrary, if only the apneic/hypopneic
reference annotation was present, it was labeled as false negative
(FN). No overlap was considered neither between one minute
windows, nor between the annotations and the one minute win-
dows. However, if an apneic/hypopneic SDBE was crossing the
border of two one-minute windows, it was considered present
in both windows. A receiver operating characteristic (ROC)
analysis was performed and the sensitivity (Se), specificity (Sp)
and accuracy (Acc) indexes were computed. To get the best
classification, it was necessary to maximize Se and Sp, by
varying the parameters of the proposed detectors. Finally, in the
ROC curve, the combination of parameters that gave the pair
(1-Sp, Se) closer to the point (0, 1), was selected.

To get the best parameters for the DAP and oxygen-
desaturation detectors, a 3-fold cross-validation (CV) [37] was
used. At each fold, 2/3 of the patients present in database
were used to train the detectors and 1/3, to test the trained
detectors. The 3-fold CV was performed per patient without
re-substitution. Since PPG features can be patient specific, it
was taken into account that each patient should be either in the
detection test set or in the detection training set, in order to
ensure a good generalization on new subjects. Data balancing
was not performed for SDBE detection because at this stage, no
separation of SDBE was considered.

The parameters modified during the Se and Sp maximization
procedure were, for the DAP detector, the percentage of the
adaptive threshold Up (from 30% to 80% of the PPG enve-
lope) and DAP minimum duration ΔnDAP (from 0 to 3 s).
In the oxygen-desaturation detector, the desaturation threshold
ΔSpO2 was varied from 1% to 3%. The detector sensitivity
lowered as the desaturation threshold increased: for this reason,
results for a desaturation threshold larger than 3% were not taken
into account.

C. Sleep Disordered Breathing Events Classification

The method used to classify SDBEs involved the imple-
mentation of three binary classifications (C-O, CA-CH, OA-
OH), instead of one classification with five predictors (CA,
CH, OA, OH, MA). Using 5 predictors would result in sepa-
rating SDBEs that are not completely independent, with less
performant classifiers (e.g. CA and CH have both a central
origin). SDBEs classification was accomplished in a two steps
process. First central versus obstructive SDBEs were classified,
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Fig. 4. For classification, three binary DAP identification problems
were defined: 1) centralversus obstructive apneic SDBEs; 2) central
apneic SDBEs versus central hypopneic SDBEs; 3) obstructive apneic
SDBEs versus obstructive hypopneic SDBEs.

as they have independent causes. Then apnea and hypopnea
were independently discriminated for central and obstructive
SDBEs. From the original database, a subset was selected by
extracting all the true positive apneic/hypopneic SDBEs whose
duration was falling inside any SDBE annotation. In this way
all normal activity was removed and all FP DAP, whose link
to the SDBE was not directly visible, were discarded. At first,
central SDBEs were separated from the obstructive ones and
then, within each category, apneic DAP were separated from hy-
popneic. Finally, three binary DAP identification problems were
defined for classification: central versus obstructive apneic DAP,
central apneic DAP versus central hypopneic DAP, obstructive
apneic DAP versus obstructive hypopneic DAP. The proposed
classification is presented in Fig. 4. Each SDBE was labeled as
central or obstructive, apneic or hypopneic, in correspondence
to the respiratory event that occurred during the DAP event.
According to the AASM 2012 rules, an event labeled as apneic
should last at least 10s [34]; for this reason, in the database it
never occurred that, during a DAP, different SDBE were present.
The classification was performed using right-shifted windows
around the DAP events, and not per one minute windows: this
because, within one minute, there could be multiple DAP events
corresponding to different irregular respiratory events.

A set of features was extracted from the PPG and SpO2 signals
for each apneic/hypopneic SDBE. A time-frequency analysis,
on the PRV signal, was used to quantify the sympatho-vagal
response due to a respiratory event. From the ensemble of
the features, only those that minimized the misclassification
error (MCE) were selected for the classification. The MCE is
defined as the number of misclassified observations divided by
the number of observations. Finally, a 10-fold CV classification
was performed.

In order to have more generalization power, the ap-
neic/hypopneic SDBE classification was not performed per pa-
tient. In fact, in some patients, the number of samples for a certain
SDBE sub-type was too low and it would cause a classifier
overfitting [37]. The underlying conception was based on the

idea of letting the detection task to recognize apneic/hypopneic
SDBEs and the classifier to label them.

1) Features Extraction and Features Set: A total of 37
features were extracted from both the PPG and the SpO2 signals.
These include PPG features, SpO2 features, pulse rate time do-
main features and pulse rate frequency domain features; the latter
computed by using the smooth pseudo Wigner-Ville distribution
(SPWV) [38] and the Lomb periodogram [39], [40].

All features were extracted from an enlarged temporal anal-
ysis window right-shifted around the apneic/hypopneic SDBE:
the temporal DAP windows were enlarged to 15s before the
apneic/hypopneic DAP starts and 50s after the apneic/hypopneic
DAP finishes. The duration of the temporal analysis window was
at least 65 s, limiting the minimum computed spectral power
frequency to 0.03 Hz.

In this temporal DAP window, the PPG signal xd(n) was
considered. Each peak of the PPG signal represents the pulse
occurrence time. To detect the pulse, a search rule was imple-
mented by using the MATLAB&reg; Signal Processing Toolbox
[41]: it detects peaks with a minimum prominence, fixed by
empirical analysis on the database. The peak prominence is
an adimensional parameter that measures how much the peak
stands out, due to its intrinsic height and its location, relative
to other peaks. This strategy was chosen to discriminate among
pulses, discarding some pronounced dicrotic notches of the PPG
signal that, otherwise, could be detected as single pulses. A
further analysis to discover and handle ectopic pulses was imple-
mented following the works in [42], [43], under the assumption
that the pulse rate time series is a surrogate of the heart rate time
series.

By analyzing the pulse-to-pulse time instants, the same in-
dexes, that usually are exploited in the RR (or NN if normal
beats) intervals of the electrocardiogram, were computed. These
indexes belong to the time domain features.

For the time-frequency analysis, the inverse interval function
diif (ti) [44], [45], resampled at 2 Hz by cubic spline interpo-
lation, was used. The resulting time series was then centered
by subtracting the mean value. The spectral information of the
pulse rate time series was then obtained, by both applying the
SPWV [46], [47] and the Lomb periodogram [48]. The spectral
analysis was performed by using two mathematical functions,
in order to test if the Lomb periodogram would be enough
for a low cost computation of the spectral information, or a
higher time-frequency resolution was needed. Before applying
the SPWV distribution, the Hilbert transform was applied to the
diif (ti) in order to get its analytic function. The parameters of
the quadratic time-frequency distribution were then selected on
the basis of recommendations and experimental results reported
in the studies [30], [49], [50]. For smoothing in time, a Ham-
ming window of 10.5 s was selected, whereas for smoothing in
frequency, a Hamming window of 64.5 s was used.

Using the spectral analysis, the high frequencies power (PHF )
was extracted, as well as the low frequencies (PLF ) and the very
low frequencies power (PV LF ). The sympatho-vagal informa-
tion is quantified by the power ratio RLF/HF = PLF /PHF : a
value of RLF/HF higher than the unity reveals a sympathetic
activation. This activation, caused by an obstructive hypopnea is
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Fig. 5. This figure shows a sympatho-vagal arousal in the LF/HF,
linked to an obstructive hypopnea occurrence.

TABLE II
CLASSIFICATION FEATURES

presented in Figure 5. Once the main LF/HF peak was detected
in the DAP enlarged window, thanks to the quadratic energy
distribution, it was possible to compute the VLF, LF and HF
spectral power in correspondence to the time instant of the
LF/HF main peak.

The SPWV high resolution in the frequency domain, allows
also to determine which frequency was carrying the most energy,
per frequency band (e.g. LF, HF) in the PRV signal. For each
of the frequencies present in the selected band, the total spectral
power was computed and compared to the spectral power evalu-
ated for the adjacent frequencies. Finally the frequency carrying
the most power was selected.

The list of the extracted feature is reported in Table II. For a
detailed description, please refer to the original papers.

Fig. 6. Feature selection schematics: from the hold-out validation,
the classification training set was used to perform the 10-fold CV for
sequential features selection, and the classification test set was used to
evaluate the performance of the best subgroup of features.

2) Data Balancing: For the binary classifiers, it was nec-
essary that both classes were well represented by the same
amount of data. The imbalanced data problem was solved by
both generating additional data for the least represented class and
by removing data from the most represented one. As first step, the
ADASYN algorithm proposed in [54] was used. The ADASYN
method allows to improve class balance by synthetically creating
new samples, via linear interpolation between existing minority
class samples. ADASYN is an extension of SMOTE method
[55], creating more samples in the vicinity of the boundary
between the two classes, than in the interior of the minority
class. After applying this oversampling method, if still a class
disparity exists, samples from the more represented class were
randomly removed, until the equality was reached.

3) Features Selection: The objective of features selection
was to reduce the data dimension by finding a small subset of
important features which could result in a good classification
performance. To help interpretability, two filter and a wrapper
method were used [56].

Specifically, at this point, the database was split for a 10%
hold-out validation. The 90% of the database was used to dis-
cover the best features subset (classification training set) and
the remaining 10% of it (classification test set) was used to test
the classifier performance with the best subset of features. On
the classification training set, the 10-fold CV was then used, for
sequential feature selection. The overall procedure for feature
selection is shown in Fig. 6.

A t-test was computed on all the features of the classification
training set, to discard any interaction among them. So the
p-value of each feature was compared, as a measure of how
effective the feature was at separating groups, and only those
having p-values smaller than 0.05 were kept.

Features selected from the list, based on their individual
ranking, may also contain redundant information. Following this
reasoning, as second filter method, the correlation matrix among
all the features was calculated. For each couple of features, if the
absolute value of the linear correlation coefficient was equal to or
higher than 0.9, only the feature that was the least correlated with
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Fig. 7. ROC curves for sleep apneas/hypopneas detection. The curves were built by varying thedesaturation threshold from 1% (blue) to 2% (red)
until 3% (green). The DAP minimum duration scales from 0 to 3s and is represented by the size of the marker. The DAP threshold percentage,
instead, was varied of 30% (+), 40% (o), 50% (square), 60% (diamond), 70% (star), 80% (x).

others was kept. In case none of the two had other correlations,
one of them was randomly discarded.

To further reduce the number of features, a backwards wrapper
method was used. Different classifier methods were tested:
decision trees, discriminant analysis, logistic regression clas-
sifiers, naive Bayes classifiers, support vector machines, nearest
neighbor classifiers and ensemble classifiers, with all features
included. Finally, thek-Nearest Neighbor (k-NN) with euclidean
distance metric was chosen, because it showed the best balanced-
class accuracy. To decide the number of features, the MCE
was computed implementing the 10-fold CV in the backwards
wrapper method, on the classification training set, as a function
of the number of features used to fit the model. As first step,
all features were taken into consideration for 10-fold CV, and
the MCE was computed; in the second iteration one feature was
discarded from the group and the remaining ones were used to
compute the MCE in the 10-fold CV. This process was iterated
until a minimum was reached. Finally, the selected best subgroup
of features for classification, was the one that corresponded to
the first local minimum of the MCE.

When the best subgroup of features was obtained, these
features were used to compute the MCE on the classification
test set, from the hold-out validation.

4) Model Selection and Evaluation: At this point, the best
subgroup of extracted features was obtained and it was possible
to find the best binary classifiers for the dataset. In this step,
the entire original dataset for classification, with balanced data,
was partitioned for a 10-fold CV. All the classifiers present in
Table VII were then trained and evaluated. The evaluation of

TABLE III
APNEA AND HYPOPNEA DETECTION RESULTS

each of these classifiers was performed by computing the Se, Sp
and Acc indexes, using MATLAB&reg; Classification Lerner.

III. RESULTS

A. Apnea and Hypopnea Detection Results

ROC curves in Fig. 7 show the performance of the proposed
algorithm for the detection training set of each of the three CV.
The best results were highlighted with a circle. Se, Sp and Acc
results for the detection training and test set of each CV fold,
using the best detection parameters, are shown in Table III. For
all the 3-fold CV, the best parameters resulted to be: Up = 70%,
ΔnDAP = 0s and ΔSpO2 = 2%. The same identical values,
obtained for the tested parameters in the validation, show a robust
generalization of the method.

An overall 75.1% accuracy was reached in detecting all sleep
apneas and hypopneas from a PPG and a SpO2 signal on the
UZ Leuven database. In Table III are reported the CV results
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Fig. 8. Sequential Feature Selection with 10-fold Cross-Validation. The MCE was minimized by 7 features for central and obstructive classification,
7 for central apnea and central hypopnea, 8 for obstructive apnea and obstructive hypopnea.

TABLE IV
APNEA/HYPOPNEA DETECTION RESULTS ON PATIENTS WITH AHI≤5

for apnea/hypopnea detection. In addition, the results obtained
by testing the detector on the whole detection database, using
the best subset of parameters, are expressed in the row Total of
the table. Finally, the last row contains the total Se computed in
the CV, by grouping the SDBE in apnea or hypopnea, central or
obstructive: it is possible to notice, that hypopnea was the most
difficult to detect.

To test the detector performances on those patients with low
AHI index, the best detection parameters earlier obtained, were
used for apnea/hypopnea detection on patients with AHI≤5.
These results are presented in Table IV. In these results, consid-
ering for example the central apnea detection, a FP event was
considered when an apneic/hypopneic SDBE did not correspond
to a central apnea annotation, even if other apnea types were
present.

B. Classification Results of Sleep Disordered
Breathing Events

Fig. 8 shows three plots (one per binary classification), visual-
izing the MCE versus the number of features used for the 10-fold
CV on the classification training set. In the plots is visible that
after an initial phase in which the MCE decreases as the number
of features increases, follows a phase in which the MCE starts
increasing. This can be explained by the fact that an overfitting
was reached. To avoid overfitting and generalize the model, a
subgroup of features was used. From the overall 37 features used
for the classification, the first 7 ones were selected for C versus
O classification: the selection was arrested before entering the
MCE plateau. Also, for CA - CH classification, 7 features were
selected, by having the MCE lower than 0.2. Instead, for the
OA - OHA classification, 8 features were selected in order to
get closer to the 0.2 value of MCE and also by not entering the

TABLE V
BEST CLASSIFICATION FEATURES

TABLE VI
FEATURES SELECTION MCE

following MCE plateau. All the selected features are reported
in Table V. Finally, Table VI details the MCE, corresponding
to the classifications performed by the best subset of features,
computed on the classification test and training set using the
10-fold CV.

After the selection and evaluation performance of the best
subgroup of features, this subset was used to perform a 10-fold
CV on the whole classification dataset, using different classifiers
for each of the three binary classifications. The performances of
each of these classifiers were reported in Table VII. The best
classifier for the three classifications, revealed to be the Fine
Gaussian Support Vector Machines (SVM) classifier with Gaus-
sian kernel with 0.56 scale. The overall accuracy reached with
the classification was 92.6% for central and obstructive apnea,
83.7% for central apnea and central hypopnea and 82.7% for
obstructive apnea and obstructive hypopnea. The True Positive
rate (TPr = Se) and False Positive rate (FPr = 1-Sp), as well
as the Acc and ROC area under the curve (AUC) are shown
in Table VIII. For comparison, on the same database, no other
works were performed, in classifying the SDBE types.

In conclusion to the results section, it is possible to assert that
the detection and classification methods showed to be consistent
for being implemented in a smart device, for sleep monitoring.
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TABLE VII
CLASSIFIERS ACCURACY PERFORMANCES

TABLE VIII
RESPIRATORY EVENTS CLASSIFICATION PERFORMANCES FOR FINE

GAUSSIAN SVM

The detection task recognizes apneic/hypopneic SDBEs and the
classifier labels the events.

IV. DISCUSSION

A. Apnea and Hypopnea Detection

The DAP detector was designed to highlight PPG signal
shape variations and then those detections were discriminated,
by verifying if a desaturation occurred in those time instances.
The desaturation detector was then essential, in order to lower the
FP detections performed by the DAP. In this case, the SDBE that
were left out corresponded to those that were not accompanied
by desaturation but that were annotated as apneas/hypopneas
because they were characterized by an arousal. The 3-fold

CV, for SDBE detection, was performed per patient, without
re-substitution or data balancing. Similar detection results were
obtained for all the the 3-fold CV. The DAP signal processing
technique for apnea and hypopnea detection improved the in-
terpretability of the recognition algorithm. However, the per-
formance did not outperform the detection method, recently
presented in [57]. The proposed detection method used the same
DAP detector already applied in [25], [30], [31], for detecting
apneas in 26 children with OSAS. In this work, the DAP detector
was adapted to detect different kinds of SDBE in adults. Finally,
results between this work and the others implementing the DAP
detector, are not directly comparable because no apneic events
annotations existed in children database and the reference was
based on airflow signal and the final clinical diagnosis.

A results comparison can be performed with the work of
Lazaro et al. [58], where a similar database collected in UZ
Leuven was analyzed. An accuracy of 72.66% in detecting
obstructive sleep apneas using PPG signals, in one minute
segments of 26 polysomnographic recordings, was reported.
This study used a least squares SVM classifier with an RBF
kernel to classify apneic and not apneic one minute recordings
by extracting features of amplitude and width variability, pulse
up-slopes and slope transit time. A comparison with this work,
reveled that the DAP detector performances were better than
those in [58].

Other SDBE detection algorithms present in literature, that
were tested on the same database than the one used for this paper,
also including other patients with cardiovascular comorbidities,
are those in [32], [57], [58]. The best performances were reached
by Deviaene et al. in [57] using the classifier implemented
in [58], on PPG and SpO2 signals. In this case, the database
consisted of 102 patients and the results showed an accuracy
of 83.4%, with 73.7% Se and 86.6% Sp in detecting sleep
apnea/hypopnea minutes; while only using SpO2, already an
accuracy of 82% was obtained. These results confirmed the im-
portance of using both PPG and SpO2 information to increases
the overall accuracy. The Acc reached in the work [32], [57] out-
performed the Acc obtained in the present work, indicating that
a classification method for apnea/hypopnea detection performs
better than the DAP signal processing technique.

The database used in this work, presented also patients with
AHI≤5 (8% of the database subjects) and these detections
can validate the detector performances in subjects whose sleep
health condition was almost normal. The performance on this
group revealed to be consistent with the results obtained on
the overall database. In particular, the lowest Se was obtained
for obstructive hypopnea while the highest (Se=100%) was
obtained for central apnea. The lowest Sp was computed for
obstructive apnea, indicating a higher number of FP. From these
evidences we can conclude that the detector revealed to be robust
also for persons with low AHI.

A point of reflection would be the use of the time-frequency
analysis of the PRV in the SDBE detection algorithms. For this
purpose, a time-frequency algorithm was implemented to verify
if, in a temporal windows of 60s right-shifted around the DAP
event, the peak of LF/HF signal overpass the unity. If so, the
SDBE was labeled as apneic/hypopneic. Adding this processing
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step to the presented detector and re-optimizing the different
hyper-parameters of the detector, the best results for all SDBE,
gave an accuracy of 68.9%. Replacing, instead, the desaturation
detector by the time-frequency algorithm, the results were not
better: they reached a 61.3% in Acc. If the DAP detector was
used alone, the best hyper-parameter value in the ROC curve
gave an accuracy of 64.6%. The desaturation detector instead, if
not combined with the others, showed a result of 67.1% in Acc
and the LF/HF detector a 57.4%.

Finally, it can be concluded that the presented detection tool,
exploiting PPG and SpO2 signals, can be used as first screening
for apnea/hypopnea monitoring. This can validate the possibility
to implement the method in a non-invasive, home sleep moni-
toring device.

B. Sleep Disordered Breathing Events Classification

For each apneic/hypopneic SDBE, a classification was per-
formed by extracting the features connected to the DAP. This
reached 92.6% accuracy in classifying central and obstructive
apnea, 83.7% for central apnea and central hypopnea and 82.7%
for obstructive apnea and obstructive hypopnea. The Fine Gaus-
sian SVM was chosen, respect to other classifiers, for its better
performances in SDBE classification.

The best set of selected features, confirms the importance of
PRV time-frequency analysis and highlights the role of the heart
rate modulation and ANS activity, during SDBE. It can be said
that DAP amplitude, NNmedian, lfhf and LFn were the most
relevant features in all classification problems. Additionally, the
frequency analysis performed with the SPWV distribution added
an important contribution, along with the Lomb periodogram,
in discriminating the SDBE classes.

For the classification, all the SDBE events, from all the
patients, were collected and then separated for CV. Differently
from what performed with SDBE detection, during classifica-
tion, patients were not separated for validation. This choice
was motivated by the fact that the distribution of SDBE, over
different patients, was unbalanced. In fact, to CV on patients, it
is necessary to balance data at every fold, for training and test
data-sets; hence removing data at each fold, would result in a
model with less variance, but higher bias.

In the paper of Lazaro et al. [58], no classification in different
SDBE types was performed, but a classifier was used for obstruc-
tive apnea detection. In the present work, features extracted from
the pulse rate time series were used more than those extracted
from the PPG morphology as in [58]. This was motivated by the
fact that the pulse rate was easier to detect than the morphological
features, because the last ones were more affected by noise.

Others literature works worth mentioning are those presented
in [59] and [60]. The first one uses ECG signals for apnea
classification, while the second one PPG and SpO2, but not a
direct comparison can be performed due to the different dataset
used. In [59], Gubbi et al. differentiate central sleep apnea and
obstructive sleep apneas using wavelet packet analysis and SVM
applied to ECG signals. An advantage of ECG signals is that
they are are less affected by noise than the PPG. The algorithm
showed an overall classification Acc of 91.08%, Se of 91.02%

and Sp of 91.09%, respectively using wavelet packet analysis
on the test set. The study proposed in [60], explains a method
for automatically classifying sleep apnea and hypopnea events
using PPG and SpO2 signals, acquired from a pulse oximeter.
The PPG was used to classify sleep state, while SpO2 to classify
the sleep-disordered breathing events exploiting a SVM. The
classification results showed sensitivity performances and posi-
tive predictive values of 74.2% and 87.5% for apnea, 87.5% and
63.4% for hypopnea.

As suggested in [60], it would be interesting to extend the pre-
sented SDBE analysis, to the classification of sleep staging from
PRV and PPG signals. This might lead to an improvement in the
results and enhance the possibility of ambulatory information
extraction.

V. CONCLUSION

The aim of this study was to validate the hypothesis to detect
and classify sleep disordered breathing events from a PPG and
a SpO2 signal, both acquired at the level of the index finger.
The detection and classification results show this method to
be suitable for a first sleep screening. Because an oximetry
device implements two PPG sensors for computing the oxygen
desaturation, it would be enough to both acquire PPG and
SpO2 signals. In this context, developing a new device that
implements this sensor, would be of great interest for a home
sleep monitoring system. However, the present study showed
that it would not replace clinical devices (like those based on
the nasal pressure signal), due to the noisy nature of the PPG
signal. Nevertheless, the results suggest that such approach can
be used as an initial report to better select patients at home,
before clinical sleep center observation. This perspective, lights
the way for an embedded system for sleep apnea/hypopnea home
monitoring, in a Medical of Things (MoT) device.
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