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ASML is a world leading supplier of complex lithography machines
for the semiconductor industry. A lithography machine consists of
many subsystems, e.g., Light Source, Lens, Reticle handler, Reticle
stage, Wafer handler and Wafer stage, which synchronize together
to make the machine work. The Reticle stage holds the circuit pat-
tern, also known as reticle and the Wafer stage module holds the
wafer. The UV light from the light source is projected on the circuit
pattern, which is then passed through the lens to imprint the pattern
on the wafer. Since the circuit pattern has to be imprinted on the
wafer, the movement of the modules; Reticle stage and Wafer stage
should be synchronized in six degrees of freedom (DoF) with nanome-
ter accuracy. To employ the movement of the subsystems, motion
controllers are used in ASML, and Long Stroke and Short Stroke
controllers are responsible for the movement of a part of the Wafer
stage subsystem. It has been envisioned that future lithography ma-
chines, because of its high precision mechatronic requirements, will
need motion control algorithms, that run at higher sampling frequen-
cies with a severely reduced IO latency budget. Current hardware
architectures will not be able to meet the demands of these future
motion control algorithms. In this thesis, we propose an architec-

ture, that uses a multi-ASIP in FPGA as an accelerator in conjunction with a CPU, which acts as a master
to run the motion control applications. The proposal of using multi-ASIP FPGA in conjunction with CPU
is based on the analysis carried out previously in ASML. It was observed that a sampling frequency exceed-
ing 100 KHz can be obtained after deploying the Long Stroke controller and Short Stroke controller on a
multi-ASIP platform in FPGA. However, this work considered only the data flow and not the supervisory
control. After carrying out detailed analysis, we could predict that a sampling frequency of 40 KHz could be
achieved by offloading the compute intensive blocks present in the Long Stroke and Short Stroke controller
from the CPU to FPGA. The sampling frequency of 40 KHz can be achieved by considering, both the data
flow and supervisory control, and the communication between the CPU and FPGA. Finally, after offloading
the compute intensive blocks from the CPU on the multi-ASIP FPGA, and after implementing the data
flow and supervisory control and communication mechanism between the CPU and FPGA, we can justify
that the sampling frequency of 40 KHz can be achieved.
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handler, Reticle stage, Wafer handler and Wafer stage, which synchronize together to make
the machine work. The Reticle stage holds the circuit pattern, also known as reticle and the
Wafer stage module holds the wafer. The UV light from the light source is projected on the
circuit pattern, which is then passed through the lens to imprint the pattern on the wafer. Since
the circuit pattern has to be imprinted on the wafer, the movement of the modules; Reticle
stage and Wafer stage should be synchronized in six degrees of freedom (DoF) with nanometer
accuracy. To employ the movement of the subsystems, motion controllers are used in ASML,
and Long Stroke and Short Stroke controllers are responsible for the movement of a part of
the Wafer stage subsystem. It has been envisioned that future lithography machines, because
of its high precision mechatronic requirements, will need motion control algorithms, that run
at higher sampling frequencies with a severely reduced IO latency budget. Current hardware
architectures will not be able to meet the demands of these future motion control algorithms.
In this thesis, we propose an architecture, that uses a multi-ASIP in FPGA as an accelerator in
conjunction with a CPU, which acts as a master to run the motion control applications. The
proposal of using multi-ASIP FPGA in conjunction with CPU is based on the analysis carried
out previously in ASML. It was observed that a sampling frequency exceeding 100 KHz can be
obtained after deploying the Long Stroke controller and Short Stroke controller on a multi-ASIP
platform in FPGA. However, this work considered only the data flow and not the supervisory
control. After carrying out detailed analysis, we could predict that a sampling frequency of 40
KHz could be achieved by offloading the compute intensive blocks present in the Long Stroke
and Short Stroke controller from the CPU to FPGA. The sampling frequency of 40 KHz can
be achieved by considering, both the data flow and supervisory control, and the communication
between the CPU and FPGA. Finally, after offloading the compute intensive blocks from the
CPU on the multi-ASIP FPGA, and after implementing the data flow and supervisory control
and communication mechanism between the CPU and FPGA, we can justify that the sampling
frequency of 40 KHz can be achieved.
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Introduction 1
ASML is a world leading supplier of complex lithography machines for the semi-conductor
industry. The lithography machines in ASML are photo-lithography machines which use
light as a source to imprint a circuit pattern on a wafer. Creation of an integrated
circuit (IC) involves many steps, and photo-lithography is one of the most important
steps involved. The photo-lithography machines consist of many subsystems, e.g., light
source, reticle handler, lens, wafer handler and wafer stage. A reticle is a circuit pattern
that is to be imprinted on a wafer, and is placed between the light source and the lens. A
wafer, on which a circuit pattern is to be imprinted, is covered by a thin layer of photo-
resist material. In order to imprint a circuit pattern on a wafer, the UV light from the
light source is projected on the retilcle (circuit pattern), which is then passed through
the lens, and is finally projected on a photo-resist material present on a wafer. The UV
light reacts with a photo-resist material and imprints the circuit pattern on a wafer. The
photo-lithography step is repeated many times during the creation of integrate circuit
(IC), where in each of the steps, a layer of the circuit pattern is imprinted on top of the
previous layer. Figure 1.1 shows the photo-lithography process, where a circuit pattern
is imprinted on a wafer by exposing it to the UV light. This entire photo-lithography
process can be realized by either moving the light source, or by moving the reticle and
wafer stages. Since the effort required in moving the light source is costly, it is kept
constant, and the reticle and wafer stages are synchronized to imprint a circuit pattern
on a wafer. Since, each of the layers on a wafer must be synchronized with the previous
layers, the wafer and reticle stages should be moved in six degrees of freedom (DoF) with
nanometer accuracy. The movement of the subsystems in six degrees of freedom and
the desired nanometer accuracy is satisfied by employing the motion controllers. The
motion controllers, accept input from the sensors, processes these inputs to minimize
the errors and actuate the susbsystem (plant) accordingly. The Long Stroke controller
and Short Stroke controller are the controllers that are used in the movement of the
Wafer Stage subsystem present in the lithography machine. The controllers receive the
input periodically, calculate the output and send the output to the actuators. Sampling
frequency can be defined as the rate at which the new samples arrive and IO-delay can
be defined as the delay between sensing and actuating.

1.1 Problem Description

The motion control applications in ASML are currently running on the general purpose
processors (GPPs), as shown in the Figure 1.2. The figure shows the control blocks
(CB), accepting the inputs from the sensors (S), processing these inputs and sending
the outputs to the actuators (A). Figure 1.2 also introduces Supervisory Control and an
ATCA rack. From the Figure 1.2, it can be observed that the control blocks are mapped

1
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UV Light Source

Reticle

Silicon Wafer

Figure 1.1: Exposure of a UV light on a wafer

on an ATCA rack, that consist of Host and the HPPCs. HPPC is an abstraction of a pro-
cessor. Host is responsible for communicating with the HPPCs during initialization and
run-time. Host is connected to the HPPCs via ethernet, and the HPPCs are connected
to one another via serial Rapid IO connectivity. The HPPCs are general-purpose proces-
sors which run the control blocks. The maximum sampling frequency at which the Long
Stroke and the Short Stroke controller can be executed on the general purpose processors
is 20 KHz. It has been predicted that future lithography machines, because of their high
mechatronic requirements, will require motion control algorithms which are complex [5].
It has also been envisioned that the architectures currently employed by ASML would
no longer be able to meet the requirements of the future motion control applications.
To meet the demands of the future motion control applications, high performance ar-
chitectures, which can run the motion control applications at a higher sampler rate and
with the reduced IO delay are required. There are many such architectures that can be
employed to meet the demands of the future motion control applications.
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Supervisory 
contol

S

S

S

A

A

CB

CB

CB

CB

CB

Host

Serial RapidIO

Workers

HPPC1 HPPC2 HPPC3 HPPC4

ATCA Rack

Mapping

Ethernet connectivity

Figure 1.2: Motion control application deployed on the general purpose processors run
at a sampling frequency up to 20 KHz

Figures 1.3 [1] and 1.4 [1] shows the benchmark application; Long Stroke (LoS)
and the Short Stroke (SS) controllers, that is envisaged to be used in the future. The
benchmark application was developed in close collaboration with the ASML mechatronics
research group. The Long Stroke and the Short Stroke controllers are responsible for
actuating the Wafer Stage in six degrees of freedom with a nanometer accuracy.

Figure 1.3: Long Stroke controller [1]

The Long Stroke controller provides a coarse positioning of the Wafer Stage with
a micrometer accuracy, whereas, a Short Stroke controller fine tunes the Wafer Stage
position with a nanometer accuracy. Since a Short Stroke controller positions a Wafer
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Stage with a nanometer accuracy, the information processed by a Short Stroke controller
is more when compared to the Long Stroke controller. Hence, it can be seen from Figure
1.4 that, the Short Stroke controller consist of large state-space blocks, which have
220 states, 11 inputs and 11 outputs. The Short Stroke controller that is currently
present in the machine, do not contain the state-space blocks, and the Long Stroke
controller currently present in the machine, is more or less the same as that present in
the benchmark application.

Figure 1.4: Short Stroke controller [1]

Previous work [5] has shown that, it is possible to run the motion control applications
at high sample frequencies and small IO-delays on an FPGA. In this work, the benchmark
application was deployed on a heterogeneous platform in FPGA. It was observed from
this previous work that using FPGA as a hardware platform provided a good trade-
off between the flexibility and performance, and a sampling frequency of 133 KHz was
achieved. However, this sampling frequency was achieved by considering only the data
flow and supervisory control was not taken into consideration. Figure 1.5 shows the
benchmark application deployed on an FPGA. It can be observed from the figure that
only the data flow was taken into consideration. It can also be seen that there was no
communication bottleneck as CPU was not considered and the benhcmark application
was deployed only on the FPGA.

Deploying the entire benchmark application on an FPGA, considering both the data
flow and the supervisory control, as shown in the Figure 1.6, is too big a step to achieve,
and involves, lot of time and effort. Moreover, since the architecture currently used
in the software framework in ASML differs completely with the FPGA architecture,
it is difficult to predict whether the FPGA arachitecture fits in the current software
framework.

Since deploying the complete benchmark application on an FPGA, including the
data flow and the supervisory control, is too big a step, in this project, we employ an
intermediate step, where, FPGA would be used as an accelerator in conjunction with the
general purpose processor, as shown in Figure 1.7. In our work, we deploy the compute
intensive blocks present in the benchmark application from CPU on the FPGA, and we
also take supervisory control into consideration. Despite the communication between
CPU and FPGA, and despite considering the supervisory control, we envision that a
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ployed on an FPGA run at a sampling fre-
quency of 100 KHz
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Figure 1.6: Motion control application de-
ployed on an FPGA including both the data
flow and the supervisory control

sampling frequency of 40 KHz could be achieved after using this intermediate step.
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Figure 1.7: FPGA used as an accelerator in conjunction with general purpose processor
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1.2 Project Goal

The goal of the project is to:

1. Investigate whether a multi-ASIP FPGA can be integrated within the current
software framework.

2. Investigate whether using multi-ASIP FPGA in conjunction with GPP increases
the sampling frequency of the benchmark application.

1.3 Approach

In the initial phase of the project, a detailed study was carried out to thoroughly un-
derstand the control architecture reference model (CARM), various terminologies used
in the CARM model, software architecture and the hardware architecture. In the next
phase, using the CARM tool chain, the execution times of all the blocks present in the
Short Stroke controller and Long Stroke controller were obtained. A block which has
the highest execution time and from which the data-level parallelism could be exploited
was chosen for deployment on a multi-ASIP FPGA. An analysis was then carried out on
the chosen block, and it was predicted that the sampling frequency of the benchmark
application can be increased to 40 KHz. In the next phase, the hardware architecture
was studied in detail. Previous work carried out at ASML on the FPGAs was studied
thoroughly. An analysis was then carried out on different hardware architectures, and
based on the analysis, a hardware architecture that could best fit for our project was
chosen. In the final phase, the implementation increments were defined in detail.

1.4 Research Hypothesis

The sampling frequency of the benchmark application can be increased to 40 KHz by
offloading the compute intensive blocks from GPP to FPGA. The sampling frequency
of 40 KHz can be achieved by considering the communication between GPP and FPGA
and also considering the supervisory control.

Following are the research questions that are to be answered in the thesis:

1. Which part of the motion controller should be deployed on an FPGA?

2. Which part of the software architecture should be modified?

3. What are the different hardware architectures that are feasible?

1.5 Report Organization

This report is organized as follows: Chapter 2 provides the background and the termi-
nologies used in CARM in detail. Chapter 3 explains in detail the benchmark application
used in the project. Chapter 4 discusses in detail the previous work carried out in ASML.
Chapters 5 and 6 describe in detail the software analysis and architecture and hardware
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analysis and architecture respectively. In chapter 7 the steps carried out in implementa-
tion are described in detail. Chapater 8 discusses the measurements and the results and
finally, in chapter 9, the conclusion and the future work are presented.
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CARM background
information 2
In this chapter, a detailed description is provided about the various terminologies used
in the current software framework. A detailed description of the current software and
the hardware architecture is also presented. All the information provided in this chapter
would be a foundation for the rest of the chapters.

2.1 Control Architecture Reference Model (CARM)

The controllers used in ASML are modeled using Control Architecture Reference Model
(CARM). Time and again it has been proven that the model based approach is efficient
and advantageous. The model based approach identifies the errors made in the design
much earlier in the process and helps in saving both time and money [2]. The CARM
model is divided into 3 layers: Application layer, Mapping layer and Platform layer.
The Application layer describes the behaviour and the control logic, the Platform layer
describes the hardware such as processors, IO boards and so on and Mapping layer
describes the mapping of the control blocks on the platform [6]. Figure 2.1 [2] shows the
different CARM domain specific languages (DSLs) and their positioning in the Y-chart
paradigm.

Figure 2.1: CARM Domain Specific Languages [2]

9



10 CHAPTER 2. CARM BACKGROUND INFORMATION

2.2 Modeling controllers in CARM

In this section, we describe in detail, the different terminologies used in CARM.

2.2.1 Control loop structure

Controllers are employed to control the behaviour of the system, generally known as
plant. A typical control loop, as shown in the Figure 2.2, consist of a plant that is to be
controlled, a controller that controls the plant, sensors and actuators.

Controller Plant

Sensor

Reference Error Plant input Plant ouput

Measured ouput

Figure 2.2: Diagram showing the control loop

A reference is the desired signal that a system (plant) must follow, and the measured
output is the position of the plant sensed by the sensor. The difference between the
reference and the measured output is calculated, and is given as an error to the controller.
The controller tries to minimize this error signal and actuates the plant accordingly. Since
the next state of the plant depends on the previous state, this kind of control loop is also
known as the feedback control or servo control. The Long Stroke controller and Short
Stroke controllers, explained previously, are examples of a closed loop control.

2.2.2 ServoGroup

In CARM, controllers are modelled by so called ServoGroups. A ServoGroup [7], which
is a closed loop, is a collection of control blocks, that is responsible for actuating a part of
a sub-system. There are many ServoGroups present in the system which work together
to actuate a physical entity such as the wafer stage. Every ServoGroup has a sampling
frequency and all the WorkerBlocks present in the ServoGroup have the same sampling
frequency as that of a ServoGroup.

Figure 2.3 shows the graphical representation of a ServoGroup. A typical ServoGroup
consists of a sensor interface (SI), a measurement system block (MS), control blocks
(WB1, WB2 and WB3), an actuator system (AS) and the motor interface blocks (MI1
and MI2).

2.2.2.1 WorkerBlock

A WorkerBlock [7] models a control block, and is a smallest entity that can be accessed
in the ServoGroup. The examples of WorkerBlocks are filter block, matrix block, gain
block, summation block. A WorkerBlock performs the calculations, based on the inputs
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SI MS WB2 AS

MI1

MI2

WB1

WB3

Figure 2.3: Graphical representation of a ServoGroup

and the parameter sets, and produces the output. The WorkerBlocks are connected to
one another via data ports to form the ServoGroup. Figure 2.4 shows the graphical
representation of a WorkerBlock. Below are some of the concepts that are associated
with a WorkerBlock.

IDT_1

IDT_n

IJT_1

IJT_n

IET_1

IET_n

ODT_1

ODT_n

OET_1

OET_n

Figure 2.4: Graphical representation of a WorkerBlock

Property: Every WorkerBlock has properties [7] which are fixed at design time. The
properties of a WorkerBlock are defined in the network definition file. The number of
parameter sets a WorkerBlock can have is one of the examples of a WorkerBlock property.

Parameters and Parameter Sets: Apart from the input data, the output of a
WorkerBlock is also dependent on its parameters [7]. A parameter set is a collec-
tion of all the parameters of a block, whose initial value is known at design time. A
WorkerBlock can change its active parameter set at run-time. The number of parameter
sets a WorkerBlock can have is fixed and is known at design time. The format of a
parameter set is shown in the Figure 2.5.
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parameterSetName
{

string id;
double P;
double I;
double D;

}

Parameter Set 
Definition

Figure 2.5: Graphical representation of a parameter set

An example of 3 parameter sets; ”PS1”, ”PS2” and ”PS3” are shown in the Figure
2.6.

PS 1
{

id = “PS 1”,
P = 2.0,
I  = 1.0,
D = 1.5

}

PS 2
{

id = “PS 2”,
P = 1.0,
I  = 1.0,
D = 1.0

}

PS 3
{

id = “PS 3”,
P = 0.0,
I  = 0.0,
D = 0.0

}

Figure 2.6: Figure showing the parameter sets of a WorkerBlock

Terminals: A WorkerBlock consists of 3 types of input terminals and 2 types of output
terminals [7]. The types of input terminals of a WorkerBlock are input data terminal,
input inject terminal and input event terminal. The types of output terminals of a
WorkerBlock are output data terminal and output event terminal. A WorkerBlock re-
ceives the input data and input inject data every sample and produces output data every
sample. The input event data is received only when a Control Mode switch has to be
performed. The result is the change in the Control Mode. WorkerBlocks receive their
input data from other WorkerBlocks on which they are dependent. The input data is
received by a control block from the blocks in a ServoGroup which it is dependent on.
The input inject data received by a WorkerBlocks is used for diagnostic purposes.
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Calculations of a WorkerBlock: A WorkerBlock has a function fullCalc() that per-
forms the calculations for that WorkerBlock. In order to minimize the IO delay (delay
between the sensors and actuators), a fullCalc() function can be divided into preCalc()
function and postCalc() function [7]. The preCalc() is invoked in the non-time critical
part of the sample and the postCalc() is invoked in the time-critical part of the sample.
Whether a WorkerBlock should operate in the time-critical or nontime-critical part of
the sample, is a property of a WorkerBlock, and can be configured at design time. Most
of the WorkerBlocks present in the servo-group fall into the category of the time-critical
section, and the WorkerBlocks such as error-checker and so on, fall into the category of
non-time-critical section.

Time critical part of the sample: In order to minimize the IO delay between the
sensors and the actuators, the calculations of the blocks might be divided into post-
Calc() and preCalc() functions. The time critical part of the sample consists of all the
postCalc() functions of the blocks, which are needed to compute the output sample of
the servogroup. The time critical part of the sample might also consist of the fullCalc()
function if it is not further divided into postCalc() and preCalc() functionalities. Figure
2.7 shows the time critical part of the sample.

Non-time critical part of the sample: The non-time critical part of the sample
consist of all WorkerBlock functionality that is not time-critical. Figure 2.7 describes
the non-critical part of the sample.

WorkerBlock state: Every WorkerBlock can be in one of the two states: On or Off
[7]. In an On state, the WorkerBlock performs its calculations and produces its output.
In an Off state, the output of a WorkerBlock is either zero or is same as the input of
a WorkerBlock. The block state concept is used to set a controller in an open loop or
closed loop.

2.2.2.2 Schedule

A schedule is an execution order of blocks on a Worker. Since the schedule is static,
the execution order of the blocks is known at compile time and does not change at run-
time. Figure 2.7 shows the graphical representation of a schedule. Apart from the blocks
that perform the calculations, a schedule also consist of a control mode switch block, a
ServoGroup Queue block and the blocks which perform the background activities.

2.2.2.3 Control Mode

A Control Mode [7] is a specific combination of a parameter set of every WorkerBlock
present in a ServoGroup. A Control Mode selects for each WorkerBlock of a ServoGroup,
the active parameter set. A ServoGroup behavior can be changed by switching from
one ControlMode to another. Figures 2.8 and 2.9 show five WorkerBlocks and two
control modes, where each of the control modes have a specific parameter set of every
WorkerBlock.
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postCalcA() fullCalcB() postCalcC() postCalcD() background CMS SGQ preCalcA() preCalcC() preCalcD()

Data sent to the actuator

Non-time critical part of the 
sample

Time critical part of the sample

Figure 2.7: A schedule showing the execution order of the blocks

si: SensIF ms: MeasSys ctrl: PidCtrl as: ActSys ai: ActIF

Control Mode: PS 1 

si:  PS 1                              
ms: PS1                       
ctrl:    PS 2                   
as: PS 2  
ai: PS 3

PS 1 PS 3PS 2 PS 1 PS 2 PS 1 PS 3PS 2 PS 1 PS 3PS 2 PS 1 PS 3PS 2

Figure 2.8: Graphical representation of control mode one

2.2.2.4 BlockGroup

A BlockGroup [7] is a subset of the WorkerBlocks present in a ServoGroup on which
the state behaviour can be performed. Figure 2.10 shows a ServoGroup consisting of
multiple BlockGroups.

2.3 Modeling execution platforms in CARM

This section describes the physical platform, logical platform and platform mapping
domain specific languages in detail.

2.3.1 Physical platform

The physical platform domain specific language describes in detail the underlying plat-
form present in the lithoscanner. The concepts involved in the physical platform language
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si: SensIF ms: MeasSys ctrl: PidCtrl as: ActSys ai: ActIF

Control Mode: PS 2   
si:       PS 2       
ms:  PS 2 
ctrl:    PS 1               
as: PS 3 
ai: PS 1

PS 1 PS 3PS 2 PS 1 PS 2 PS 1 PS 3PS 2 PS 1 PS 3PS 2 PS 1 PS 3PS 2

Figure 2.9: Graphical representation of control mode two

SI1 MS1 WB1 AS1

MI1

MI2

SI2 MS2 WB2 AS2

MI3

MI4

SI3 MS3 WB3 AS3

MI5

MI6

BlockGroup 2

BlockGroup 1

Figure 2.10: Figure showing a ServoGroup consisting of multiple BlockGroups

are the HPPCs (an abstraction of the processor), transducers, switches, ATCA racks and
so on [2]. The physical platform language does not describe the configuration informa-
tion of the platform, the configuration data of the platform is present in the platform
mapping language.
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2.3.2 Logical platform

The logical platform language is an abstraction of the physical platform language [2].
The concepts involved in the logical platform language are Worker (an abstraction of the
HPPCs), processing unit (an abstraction of the processor/core), channels (an abstraction
of the connectivity) and so on.

2.3.3 Platform mapping language

The platform mapping DSL describes the mapping of the logical platform language
on the physical platform language [2]. The platform mapping language consist of the
configuration data, such as the sampling frequency. The platform mapping language also
consist of the mapping information of the logical platform language to physical platform
language. Some of the examples of platform mapping are the mapping of Workers to
HPPCs and channels to network connectivity.

2.4 Controller mapping

As explained earlier, the application consists of the entire servo controllers, which are
described by the application DSLs, and the platform consists of the underlying hardware
of the lithoscanners, which are desribed by the platform DSLs. The mapping of the
servo controllers on the execution platform are described using the mapping DSLs[2].
Figure 2.11 shows an example of the mapping of a single control application on an
execution platform. It can be seen from the figure that, the WorkerBlocks are mapped
on the Workers and the WorkerBlock communication is mapped on the network. The
lithography machine consists of hundreds of sensors, actuators and many ServoGroups,
which have to be deployed on the execution platform.

The mapping language also consist of the information about which control block
should be deployed on which processor. Since a processor executes more than one con-
trol block, the processor should know in advance, the order of execution of the control
blocks. The schedule DSL is responsible for generating the schedule, according to which
the processor executes the blocks [2]. As a first step, the schedule DSL extracts the
information about the applications from the application DSLs and the deployment infor-
mation from the deployment DSL. Out of the information obtained from the application
and deployment DSLs, a block dependency graph is created, as shown in the Figure 2.12
[2]. This is done using model-model transformation. A block dependency graph consists
of the control blocks and the dependencies between them. The information present in
the block dependency graph is used to generate the schedule of the processors, as shown
in the Figure 2.12 [2].

2.5 Runtime reconfiguration

In this section, the concepts; control mode switch and Host, are described in detail.
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Figure 2.11: Controller mapping on the execution platform

Figure 2.12: Block dependency graph creation [2]

2.5.1 Supervisory Control

Supervisory control is responsible for performing the state-change behaviour and Control
Mode Switches on WorkerBlocks. Host is an entity that is responsible for communica-
tion with the Workers, both during the initialization and run-time. Host is connected to
the Workers via ethernet, whereas, the Workers are connected to each other via serial
rapidIO. Figure 2.13 shows the graphical representation of the Host. During initializa-
tion, a Host is responsible for deploying the WorkerBlocks present in a ServoGroup on
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a Worker and connecting them, enforcing the execution order on the WorkerBlocks ac-
cording to the static schedule generated, loading the Parameter Sets in the non-cachable
memory and performing a Control Mode Switch to choose the initial parameter set on
which a WorkerBlock must operate. At run-time, the Host communicates with the Work-
ers to communicate the run-time change in the value of parameter sets, performing the
state-change behaviour and performing a Control Mode Switch.

Host

Serial RapidIO

Workers

HPPC1 HPPC2 HPPC3 HPPC4

ATCA Rack

Ethernet connectivity

Figure 2.13: Figure showing a Host and the Workers in an ATCA rack

2.5.2 Control Mode Switch

Control Mode Switch is performed by the Host when there is a need to operate a physical
entity (plant) in a different mode. As mentioned earlier, a Control Mode is a specific
selection of active parameter sets of all WorkerBlocks present in a ServoGroup. As soon
as the Control Mode Switch is signalled, the Host communicates this information to a
ServoGroup present on the Worker. As a result, all the parameter sets that constitute
the Control Mode that should be made active, are realized by fetching the all memory pa-
rameter values from non-cachable memory to cachable memory. Once all the parameter
sets are fetched, a Control Mode Switch is performed to activate the Control Mode.

2.5.3 Control Mode Switch Block

The Control Mode Switch Block is a special block present in the schedule. The Control
Mode Switch Block is responsible for switching the Control Mode of a subsystem. For
the change in the Control Mode to be reflected on the subsystem, two steps needs to be
performed: retrieval of the parameter sets from the non-cachable memory to the cachable
memory, and switching to the newly obtained parameter set. Certain number of samples
are reserved in advance to perform the Control Mode Switch. The Control Mode Switch
Block, in the first step, communicates with a subset of the WorkerBlocks, and requests
them to retrieve the new parameter set. The communication between the Control Mode
Switch Block and the WorkerBlocks is synchronous (blocking call), i.e., the Control Mode
Switch Block is blocked until the control is returned from the WorkerBlocks. Once all
the WorkerBlocks retrieve their parameter sets from the non-cachable to the cachable
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memory, the Control Mode Switch Block in the second step, communicates with all
the WorkerBlocks, and requests them to switch from an active parameter set to the
parameter set that is to be made active. The result of this step is the change in the
Control Mode. The communication between the Control Mode Switch Block and all the
WorkerBlocks in this step is blocking as well.

2.6 Current Software Architecture

The software architecture consists of an Application layer, Host and multiple Workers
as shown in the Figure 2.14. Application is an entity that lets the multiple ServoGroups
operate together to achieve a higher level goal. For example, an application implements
a scan action by controlling the lens, reticle and wafer stage ServoGroups to operate
together. Application consists of per ServoGroup, the ServoGroupConfiguration file and
Network Definition File. Host is reponsible for control mode switching and imposing the
state-change behaviour on the WorkerBlocks present on the Worker. The Host consists
of a Process Control Manager and multiple ServoGroups. Each of the ServoGroups can
be deployed on a single Worker, and hence, cannot be shared among the Workers. Host
communicates with the Workers, both during initialization and run-time. Every Worker
consist of a Block Factory module, a Sequencer module and all the blocks present in a
ServoGroup.

Application

Host

HPPC HPPC

Process Control Manager ServoGroup

Process Control Worker Process Control Worker

SEQ
U

EN
C

ER

B
LO

C
K

 FA
C

TO
R

Y

Deployment manager ServoGroup manager

Figure 2.14: Software architecture

The Host consists of a process control manager and multiple ServoGroups. The
Deployment Manager present in the Process Contol Manager is responsible for de-
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ploying the ServoGroups on the Worker. The Deployment Manager reads the Net-
work Definition file of every ServoGroup, and communicates with the Block Factory
module, the WorkerBlocks to be created on the Worker and the connection between
the WorkerBlocks, as shown in the Figure 2.15. The Block Factory module present
on the Worker, creates the WorkerBlocks and establishes the connection between the
WorkerBlocks, according to the information received from the Deployment Manager.

Application

Host

HPPC HPPC

Process Control Manager ServoGroup

Process Control Worker Process Control Worker

SEQ
U

EN
C

ER

B
LO

C
K

 FA
C

TO
R

Y

wbC()

wbA()

wSGQ

wbB()

CMS

Deployment manager ServoGroup manager

Figure 2.15: Deployment manager communicating with the Block Factory module

The Deployment Manager, also communicates with the Sequencer module present on
the Workers. The Sequencer module, after receiving the schedule information, enforces
the execution order on the WorkerBlocks as shown in the Figure 2.16. The communica-
tion between the Deployment Manager, Block Factory and Sequencer modules happens
through Remote Procedure Call (RPC).

Once all the WorkerBlocks are created on the Workers, the ServoGroup Manager
present in the ServoGroup, receives the addresses of the blocks from the Deployment
manager, and creates the proxies of the blocks present on the Worker. The proxies of
the blocks are created to communicate with their counterparts present on the Worker.
Apart from the creation of the proxies, the ServoGroup Manager also creates the Control
Modes according to the information received from the ServoGroup configuration file.
Figure 2.17 shows the creation of the ServoGroup contents by the ServoGroup manager.

Figures 2.18 and 2.19 shows the message sequence diagrams of the communication
between the Host, and Block Factory and Sequencer modules, and, the creation of the
proxies by the Servo Group manager respectively.

Apart from the creation of different modules in the ServoGroup, the ServoGroup
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Figure 2.16: Deployment manager communicating with the Sequencer module

Manager also creates the parameter sets for each WorkerBlock. The ServoGroup Man-
ager reads the ServoGroup Configuration file present in the Application, and creates the
parameter sets per WorkerBlock on the proxies on the Host. The WorkerBlock proxies
then load the parameter sets on their counterpart on the Workers, as shown in the Figure
2.17. Proxies on the Host communicate with the WorkerBlocks only during the initializa-
tion via Remote Procedure Call (RPC). Once all the parameter sets are communicated
with the WorkerBlocks, the initial value of the parameter sets is loaded. Figure 2.20
shows the message sequence diagram of loading the parameter sets on the WorkerBlocks
from the Host.

After the initial values of all the parameter sets are loaded on the WorkerBlocks,
the Host signals all the WorkerBlocks to perform a Control Mode Switch. The Control
Mode Switch is performed, by letting all the WorkerBlocks switch to the new parameter
set. As soon as the Host receives the change in the Control Mode signal from the
layer above it, the ServoGroup manager present on the Host maps the parameter set
to the WorkerBlock, i.e., the ServoGroup manager identifies the parameter set that the
WorkerBlock must choose to switch to the new Control Mode. Once the mapping of the
parameter set to the WorkerBlock is done, the ServoGroup manager collects the mapping
data, and communicates it with the Proxy ServoGroupQueue in the form of a packet.
The Proxy ServoGroupQueue communicates the packet received from the ServoGroup
manager with the Worker ServoGroupQueue asynchronously, via Remote Procedure Call
(RPC), as shown in the Figure 2.21.

The Worker ServoGroupQueue decrypts the packet received and communicates this
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Figure 2.17: ServoGroup manager creates the contents of the ServoGroup

Application Dep Mgr SG Mgr

createBlocks(
types, conn)

Block Factory Sequencer

createBlocks(types, conn)

createBlocks(
types, conn)

enforceExecOrder(block, execOrder)

enforceExecOrder(b
lock, execOrder)

Host HPPC

Figure 2.18: Initialization

information with the Control Mode Switch block. The Control Mode Switch block,
after receiving the data from the Worker ServoGroupQueue block, communicates with
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Application Dep Mgr SG Mgr Block Factory Sequencer

Host HPPC

createBlockProxies
(blocks, blockAddr)

createBlockProxies
(blocks, blockAddr)

Figure 2.19: ServoGroup manager creates the proxies on the Host

Application Dep Mgr SG Mgr Worker Block A Worker Block B

Host HPPC

ProxyBlock A Proxy Block B

createParaSets(block, 
ParaSets)

createParaSets(ParaSets)

createParaSets(ParaSets)

createParaSets(ParaSets)
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loadValue(value)

loadValue(value)

loadValue(value)

Figure 2.20: Creation of Parameter Sets

the WorkerBlocks, and signals to load the parameter set that is to be made active,
from non-cachable memory to cachable memory. Figure 2.22 shows the communication
of Control Mode Switch block with the WorkerBlocks. Parameter Sets loading from
non-cachable memory to cachable memory happens during the background part of the
sample. After certain number of samples, all the WorkerBlocks load the parameter sets
from the non-cachable memory to the cachable memory. Number of samples fixed to load
the parameter sets from non-cachable memory to cachable memory is 49. During the
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Figure 2.21: Asynchronous communication between Proxy ServoGroupQueue and
Worker ServoGroupQueue

50th sample, the Control Mode Switch block, calls all the WorkerBlocks synchronously,
to switch from the active parameter set to the parameter set that is to be made active,
as a result of which, the subsystem switches to the new Control Mode.

Figure 2.23 shows the message sequence chart of the Control Mode Switching be-
haviour.

2.7 Current Hardware Architecture

The hardware architecture currently used in ASML consists of an ATCA rack, as shown
in Figure 2.24 [3]. An ATCA rack consists of ATCA blades, which can be either pro-
cessor blades, or communication blades. An ATCA rack generally consists of a single
communication blade and multiple processor blades. All the blades in an ATCA rack
are connected to one another via serial Rapid IO connectivity.

Every ATCA blade consists of a number of slots into which Advanced Mezzanine
Cards (AMCs) can be placed, which contains one or more processors. The ATCA rack,
as shown in Figure 2.24 consists of the following AMCs: Host, HPPCs and QHA. The
Host/HPPCs are PowerPC based MPC8548E single-core processor and the QHA module
is responsible for the communication between the AMCs and Sensors/Actuators. The
Host connects to all the HPPCs via ethernet, however, all the HPPCs are connected to
one another via serial Rapid IO connection. The serial Rapid IO connectivity consists
of 4 lanes operating at a frequency of 2.5 GBaud/sec [8].
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Figure 2.22: Control Mode Switch block signalling the WorkerBlocks to perform the
Control Mode Switch
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Figure 2.23: Control Mode Switch Behaviour

build 0.18



26 CHAPTER 2. CARM BACKGROUND INFORMATION

QHA

Linux Host

HPPC

Figure 2.24: ATCA rack [3]
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Previous Work 3
This chapter describes in detail the experiments carried out by Frijns et al [5] using
FPGA as a platform for digital control applications.

The benchmark application discussed earlier was chosen for deployment on an FPGA.
The hardware platform consisted of a high end Altera Stratix V GX FPGA and the
benchmark application chosen was deployed on a multi-ASIP platform in FPGA. The
performance of the benchmark applications obtained after deploying them on an FPGA
were compared with the performance obtained after mapping them on a high-end 1.2GHz
Freescale P4080 octo-core GPP.

An ASIP is abbreviated as an application specific instruction set processor, whose
instruction set is tuned towards a certain class of applications. An ASIP provides a
good trade-off between the flexibility offerred by general-purpose processors and per-
formance offerred by ASICs (application specific integrated circuits). Vector processing
units (VPUs), Scalar processing units (SPUs) and Look-up units (LUs) are examples of
ASIPs. In case of multi-ASIP FPGA implementation, the control blocks are mapped on
the ASIPs, connected to one another via switch as shown in the Figure 3.1. Every ASIP

CB CB

CB

CB

Switch Switch

CB
CB

CB CB

ASIP type 1 ASIP type 2 ASIP type 3

Mapping

Figure 3.1: Control Blocks Deployed On ASIPs

has its own input memory, state memory and parameter memory as described in the
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Figure 3.2. The presence of the separate memories decouples the communication from
computation. ASIPs are mapped on an FPGA and are connected to each other using a

Sync

Input 
Mem

State 
Mem

Param 
Mem

ASIP

Figure 3.2: Application-specific instruction-set processor

switch as described in the Figure 3.3. The sampling frequency and IO delay obtained in
case of multi-ASIP FPGA technique was 133 KHz and 10 µs respectively [5].

Sync

Input 
Mem

State 
Mem

Param 
Mem

ASIP

Mapping

FPGA

Figure 3.3: ASIP mapped on an FPGA

In case of spatial mapping approach, an application is deployed directly on an FPGA.
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Figure 3.4 shows the mapping of the control blocks directly on an FPGA. The sampling
frequency and IO delay obtained in case of spatial mapping approach was 154 KHz
and 8.7 µs respectively [5]. Although the spatial mapping technique performed better
than the multi-ASIP technique, the FPGA resources utilized by the spatial mapping
technique was found out to be much more than the multi-ASIP technique. This means
that the spatial mapping technique performs better, but at the cost of resources, whereas
the multi-ASIP FPGA offers a better trade-off between the performance and resource
utilization.

CB CB

CB

CB

Mapping

FPGA

Figure 3.4: Control blocks mapped on an FPGA
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Analysis 4
This chapter discusses software analysis and hardware analysis in detail. Based on
the results obtained from software analysis, the decision of the part of the benchmark
application that is to be offloaded on the FPGA is taken. Based on the results obtained
from hardware analysis, the decision of the hardware development kit to be considered
for the project is taken.

4.1 Software Analysis

As mentioned earlier, since the Short Stroke controller provides nano-meter accuracy
and fine tunes the position of the wafer, it processes more data compared to the Long
Stroke controller, and hence consists of control blocks of larger dimensions. One such
block present in the Short Stroke controller is the state-space block, which is shown in
the Figure 4.1 [4].

Figure 4.1: Block diagram representation of State-space model [4]

The matrix dimensions of a state-space block with X internal states, I inputs and O
outputs is: A(X,X), B(X, I), C(O,X), D(O, I). It has been envisioned that the future
Short Stroke controller will consist of state-space blocks with the 220 states, 12 inputs
and 12 outputs. Hence, the matrix dimensions of the state-space block in the future
Short Stroke controller will be: A(220, 220), B(220, 12), C(12, 220), D(12, 12).

As mentioned earlier, every control block has a fullCalc() function, which can be
divided into preCalc() and postCalc() to reduce the IO delay between the sensors and
the actuators. The fullCalc() of the state-space block is described as below:[

Xk+1

Ok

]
=

[
A B

C D

][
Xk

Ik

]
(4.1)
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The preCalc() function of the state-space block can be written as:

Xk+1 = AXk +BIk (4.2)

prek = CXk+1 (4.3)

The postCalc() function of the state-space block can be written as:

Ok = prek−1 +DIk (4.4)

In the previous work carried out at ASML, it was found out that the state-space
block present in the benchmark application consumed 91.87% of the execution time [1].
The execution time of the state-space block was measured both on a General Purpose
Processor (GPP) and a Vector ASIP on an FPGA separately. Table 4.1 [1] shows the
execution time of the preCalc() and the postCalc() functions of the state-space block on
a GPP and Vector ASIP on an FPGA.

Pre Execution Time Post Execution Time

GPP 51.7 µs 0.403 µs
Vector ASIP on FPGA 7 µs 0.8 µs

Table 4.1: state-space block execution time [1]

It can be observed from the table that the preCalc() function takes more time on
a GPP when compared to the FPGA, whereas, the postCalc() takes more time on the
FPGA when compared to that on the GPP. The performance of the benchmark ap-
plication can be increased by either offloading both the preCalc() and the postCalc()
functions, or by only offloading the preCalc() function. Offloading preCalc() function
can definitely improve performance, however, offloading the postCalc() will certainly not
improve the performance, as it takes longer time to execute on an FPGA. Both the op-
tions are taken into consideration and a detailed analysis is carried out to estimate the
time left to communicate the inputs and the outputs of the preCalc() and the postCalc()
functions respectively.

The time left for the communication of the input and the output data in the non-time
critical section, if preCalc() function is offloaded on an FPGA can be calculated as:

timefreeP re = timepreGPP − timepreFPGA = 51.8 − 7 = 44.7µs (4.5)

The calculation shows that the time left in the non-time critical section is 44.7 µs.
Offloading the preCalc() on the FPGA requires the communication of both the in-

puts and the outputs, whereas, offloading the postCalc() on an FPGA does not require
the communication of the input, as, the postCalc() function is dependent on a preCalc()
function for its input. However, offloading the postCalc() function requires the com-
munication of output data back to the GPP. It can be seen from the above obtained
timings that the communication of the output data of the postCalc() in the time critical
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part of the sample would prove to be costly, as the IO delay is directly affected, whereas,
communicating the input and the output data in the non-time critical part of the sample
can improve the performance.

The amount of data that can be sent in the non-time critical part of the sample
can be estimated by knowing the link delay between the two AMC cards and the link
bandwidth. It has been estimated that the link latency between the two AMC cards is 1
µs and the link bandwidth is 250MB/s, which is equal to 250B/µs.The amount of data
that can be transferred conisdering the above calculations is:

(timefreeP re − 2 ∗ 1µs) ∗ 250B/µs = (44.7 − 2 ∗ 1) ∗ 250 (4.6)

The value obtained from the above equation must be greater than the amount of input
and output data communicated between the GPP and FPGA. So, the above equation
leads to the figure of 10675 bytes, which is equivalent to 2668 32-bit values.

If the preCalc() function is offloaded on the FPGA, the input and the output data
has to be communicated every sample between the GPP and FPGA. The maximum size
of the input data in the benchmark application is 11 and the biggest output size is 12.
It can be observed from the equation of the postCalc() function that it requires only
one vector which is of the size of the output from preCalc(). Hence, the time saved per
sample in the non-time critical section is:

((2668−inputdata−outputdata)∗4)/250bytes/µs = ((2668−11−12)∗4)/250bytes/µs = 42.32µs

(4.7)

However, if both preCalc() and postCalc() functions are offloaded on an FPGA, the
time saved per sample in the non-time critical sections is:

((2668− inputdata)∗4)/250bytes/µs = ((2668−11)∗4)/250bytes/µs = 42.51µs (4.8)

Offloading both preCalc() and postCalc() functions on an FPGA requires communi-
cating the output of the postCalc() function in the time critical part of the sample. The
time taken to communicate the output data per sample in the time critical part is:

(timefreeP ost−1µs−outputdata/250bytes/µs = −0.4−1µs−(11∗4)/250bytes/µs = −1.576µs

(4.9)

The time lost in the time critical part of the sample is: 1.57 µs. This means that there is
a delay in communicating the data in the time critical part of the sample, which affects
the IO delay.

Hence, from the above obtained results, it can be concluded that offloading only the
preCalc() function leads to the saving of 42.32µs in the non-time critical part of the
sample. However, offloading both preCalc() and the postCalc() functions leads to the
saving of 42.51µs per sample in the non-time critical part, whereas, in the time critical
part, a penalty of 1.57µs has to be paid, which affects the IO delay.
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4.2 Hardware platform analysis

A hardware development kit is chosen based on the following factors:

The resources offered by the development kit should be more than that required by
the benchmark application. The estimation of the amount of resources required by the
benchmark application is shown in the section below.

The processing units are placed on a carrier blade, and all the processing units are
connected to one another via serial Rapid IO connectivity, at a speed of 4*2.5 GBaud.
The development kit under consideration should be at par with this to maintain the IO
delay between the 2 processing units.

The development kit to be considered should be feasible with the existing CARM
architecture. Currently, all the processing units are placed on the AMC cards on a carrier
blade, where each of the AMC cards are connected via Rapid IO. Hence, the kit should
be chosen such that should be possible to place it on an AMC cards on a carrier blade.

Finally, the development kit to be considered should be available in the market.

4.2.1 Hardware Platforms under consideration

Following are the hardware platforms that can be considered:

1. Graphics Processing Units (GPUs).

2. System on Chip (SoC), with a GPP and FPGA on it.

3. A separate FPGA.

A Graphics Processing Unit consists of many processors and hence can execute the
data in parallel [9]. GPU can be considered as a development kit if the benchmark
application consists of embarassingly parallel parts. Our benchmark application certainly
consists of the blocks such as the state-space blocks which are embarassingly parallel.
However, the latency to get data to GPU is huge, and moreover, GPUs consume more
power. Also, choosing GPU as a development kit is not feasible with the existing CARM
architecture, as it cannot be placed on an AMC card. All the above mentioned factors
makes GPU a bad choice as a development platform.

System On Chip (SoC), with a General purpose processor and an FPGA on it can
definitely be considered as an option [10]. Since, both the FPGA and the GPP are
present on the same chip, the memory between the GPP and the FPGA is shared [11],
and can be used for many purposes. The resources offerred by an SoC is estimated
to be sufficient. However, it was estimated that the SoCs that can be used are out of
stock, and that is one of the reasons, SoC is not chosen for the project. Using SoC as a
development kit is left for the future work.

A separate FPGA as a development kit is another option that can be considered.
Choosing FPGA as a development kit satisfies all the conditions listed above. An FPGA
can be confiured to exploit the right mix of task-level and data-level parallelism. To
this end it can be loaded with a mix of soft cores such as Vector ASIPs, Scalar ASIPs,
Look-up ASIPs that can exploit task-level parallelism. The Vector ASIPs in turn can
exploit data-level parallelism present in the control blocks. Typical mid-end to high-end
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FPGAs have sufficient resources to map the required number of ASIPs to execute the
application within its time constraints. The analysis of the resource estimates is shown
in the section below. An FPGA is feasible with the CARM architecture, as it can be
placed on an AMC card. These considerations make FPGA the platform of choice for
this project.

4.2.2 FPGA - SoC Resource Estimates

The number of resources required depends on the number of processing units used. Below
are the processing units that are required for our project:

1. 4 vector ASIPs for the calculation of 4 state-space blocks.

2. 1 SRIO unit for communication between the GPP and FPGA.

3. 1 Switch unit for the communication between ASIP cores within the FPGA.

4. 1 ASIP that controls the loading of the parameter sets from DDR3 SDRAM to
parameter memory.

Since a state-space block is chosen to be deployed on a multi-ASIP FPGA, the resources
required depends on the number of parameter sets and the size of each of parameter
set. A state-space block consists of 4 matrices as parameters: Size of each parameter set
would be:

((220 × 220) + (220 × 12) + (12 × 220) + (12 × 12))×
32(single− precisionfloating − point) = 1, 722, 368bits

Size of two parameter sets would then be equal to: 3,444,736 bits.
The number of BRAM bits required by each of the processing units are estimated as
below:

1. Vector ASIP:

4(V ectorASIPs) × 4, 489, 216(BRAMbits) = 17, 956, 864bits (4.10)

2. SRIO: 127,776 bits

3. Switch: 1,792 bits

4. ASIP to load the parameter sets: 192,000 bits

Hence, the total number of BRAM bits required are:

17, 956, 864 + 127, 776 + 1, 792 + 192, 000 = 18, 278, 432bits (4.11)

Table 4.2 compares the number of BRAM bits required for the project with the resources
offerred by the Altera development kit. The table shows that the Altera development
kits will not satisfy the resource requirements of the project.
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Our Appli-
cation

Altera Ar-
ria

Altera Cy-
clone

Altera
Stratix

Altera
Arria-SoC

Altera
Cyclone-
SoC

BRAM bits 18,278,432 4,477,824 8,211,456 9,383,040 Not avail-
able

6,191,000

Table 4.2: Comparing the benchmark application with Altera FPGAs and SoCs

Our Appli-
cation

Xilinx
Spartan-6

Xilinx
Artix-7

Xilinx
Kintex-7

Xilinx
Virtex-7

Xilinx
Zynq-SoC

BRAM bits 18,278,432 4,800,000 13,000,000 34,000,000 68,000,000 27,180,000

Table 4.3: Comparing the benchmark application with Xilinx FPGAs and SoCs

In the table 4.3, the memory requirements of our project are compared with the memory
resources offerred by the Xilinx development kits. The table shows that Xilinx Kintex-7,
Xilinx Virtex-7 and Xilinx Zynq-SoC satisfy our demands. Since Xilinx Zynq-SoC is not
stock in the near future, the choices left are Xilinx Kintex-7 and Xilinx Virtex-7 FPGAs.
We make use of Xilinx Virtex-7 FPGA as a hardware development kit in our project.

4.3 Implementation approaches

There are two options to implement the communication functionality between the CPU
and FPGA:

1. Communication of the parameter sets during initialization.

2. Communication of the parameter sets during run-time.

The analysis performed in the previous section show that the time taken to commu-
nicate one parameter set of a state-space block, which is 215,296 bytes takes 5259.87
µs. The time taken to communicate one parameter set of the four state-space blocks is
4*5259.87, which is equal to 21039.48 µs. Obviously, the time required to communicate
the parameter sets during run-time, is much more. In this case, the communication time
of the parameter sets (21039.48) exceeds the execution time of the state-space block on
the CPU (308 micro seconds). Hence, this approach was not considered for implemen-
tation.

The analysis also shows that the round-trip time required to communicate the input
data (48 bytes) and output data (48 bytes) is 1 µs, which is acceptable for implementa-
tion. Hence, the approach of communication of the parameter sets during initialization
is chosen for implementation.
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Implementation 5
This chapter describes the approach taken to implement the control mode switch func-
tionality and the communication functionality between the CPU and FPGA. Every in-
crement described in this chapter, is a small step that leads to the final implementation of
the control mode switching functionality and the communication functionality between
the CPU and FPGA. The test set-up used is shown in the Figure 5.1.

Host

Ethernet

HPPC1 HPPC2 FPGA

Rapid IO

Figure 5.1: Test SetUp

5.1 Increment one

In this increment, all the blocks, present in the benchmark application are run on the
Power PC, and the execution times of all the blocks are measured as a baseline for
comparison.
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5.2 Increment two

This increment involves programming the ASIP, communication of parameter set with
the FPGA and also, the communication of data with the FPGA. No control mode switch-
ing is performed in this increment. In order to program an ASIP, the configuration data
has to be written to the corresponding configuration address. The configuration data
is generated by a code generator; which takes a specification of the platform, memory
and application as inputs, and generates the configuration data. The configuration data
obtained for the state-space block is read from the file generated by the code generator,
and is written to the configuration address of the ASIP on the FPGA during initializa-
tion, as shown in the figure 5.2. The parameter sets communicated are written to the
local memory of an ASIP. The message sequence diagram of communication of data is
shown in the Figure 5.3.

Application
ServoGroup

Manager
Proxy Block Proxy SGQ Worker SGQ CMS Block Worker Block RIO Unit ASIP

createMemoryMap(Variables, 
MemoyLocations)

createMemoryMap(Variables, 
MemoyLocations)

createParameterSet(ParameterSet)

createParameterSet(ParameterSet)

createMemoryMap(Variab
les, MemoyLocations)

createParameterS
et(ParameterSet)

Host HPPC FPGA

DDR3

DDR3

Param Switch
Unit

Figure 5.2: Increment Two - Initialization

5.3 Increment three

In this increment, a state-space block with 4 parameter sets is chosen for implementation.
Hence, during initialization, one parameter set is written into the ASIP memory, and all
the 4 parameter sets are written into the DDR3. Control mode switching is performed in
this experiment. Since the parameter set of a state-space block is too large, it is difficult
to accommodate all the parameter sets in ASIP memory. Hence, a single parameter
sets is stored in ASIP memory and all 4 parameter sets in DDR3. Figure 5.4 shows
the sequence diagram which describes the steps involved in the initialization. In this
increment, 2 tasks are created for every block offloaded on the FPGA. Both the tasks
include the same functionality, however, the parameter memory and the task addresses
are unique. To simplify the control mode switching functionality, two tasks are created.
When the control mode switch is signalled by the Host, one of the tasks still runs with the
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Application
ServoGroup

Manager
Proxy Block Proxy SGQ Worker SGQ CMS Block Worker Block RIO Unit ASIP

BlockInputs

BlockInputs

Host HPPC FPGA

ParamSwitch
Unit

DDR3

DDR3

Proce
ss 

data
BlockOutputs

BlockOutputs

Figure 5.3: Increment Two - RunTime

old parameter set and inputs, while the parameter switch unit is loading a parameter set
from DDR3 to the local memory on ASIP. When the parameter set is being loaded, no
input data is communicated with that task. Once the task finishes loading the parameter
set from DDR3 to local memory on ASIP, an acknowledgement is sent, and the input data
is communicated with this task. Figure 5.5 shows the sequence diagram that describes
the control mode switching functionality.

Application
ServoGroup

Manager
Proxy Block Proxy SGQ Worker SGQ CMS Block Worker Block RIO Unit ASIP

createMemoryMap(Variables, 
MemoyLocations)

createMemoryMap(Variables, 
MemoyLocations)

createParameterSet(ParameterSet)

createParameterSet(ParameterSet)

createMemoryMap(Variab
les, MemoyLocations)

createParameterS
et(ParameterSet)

Host HPPC FPGA

DDR3

DDR3

createParameterSets(ParameterSets)
createParameterSets(ParameterSets)

Param Switch
Unit

Figure 5.4: Increment Three - Initialization

At run-time, as explained in the increment two, input data is communicated with
the FPGA, as shown in the Figure 5.5. Since a state-space block has 4 parameter sets,
control mode switching functionality is performed at run-time. Once the WorkerBlock on
the HPPC receives the Control Mode Switch command, the WorkerBlock communicates
the parameter set Load command with the FPGA, as a result of which, the parameter
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set is loaded from DDR3 into the memory in ASIP.

Application
ServoGroup

Manager
Proxy Block Proxy SGQ Worker SGQ CMS Block Worker Block RIO Unit ASIP

BlockInputs

BlockInputs

Host HPPC FPGA

ParamSwitch
Unit

DDR3

DDR3

Proce
ss 

data
BlockOutputs

BlockOutputs

Figure 5.5: Increment Three - Run Time Scenario One

Once the parameter set is loaded from DDR3 into ASIP memory, an acknowledgement
is sent to the WorkerBlock. After receiving the acknowledgement, the WorkerBlock starts
sending the input data to the newly specified address on the FPGA, as shown in the
figure 5.6.

Application
ServoGroup

Manager
Proxy Block Proxy SGQ Worker SGQ CMS Block Worker Block RIO Unit ASIP

Host HPPC FPGA

ParamSwitch
Unit

DDR3

DDR3

changeControlMode(Co
ntrolMode)

changeControlMode(Co
ntrolMode)

changeControlMode(Co
ntrolMode)

ParameterSetLoad(Para
meterSet)

ParameterSetLoad(Para
meterSet)

ParameterSetLoad(Para
meterSet)

ParameterSetLoad(Para
meterSet)

Ack
Ack

Ack
Ack

BlockInput
BlockInput

BlockOutput

Process 
data

BlockOutput

Figure 5.6: Increment Three - Run Time Scenario Two
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Experiments 6
This chapter discusses the various experiments and the results in detail. All measure-
ments are carried out on a MPC8548E PowerPC single-core processor clocked at 1.33
GHz. Section 6.1 discusses the measurements of a benchmark application on a Pow-
erPC, Section 6.2 describes the measurements on a single core processor when used in
combination with the VPEs. Similarly, Sections 6.3 to 6.7 shows the measurements on
various cores on combination with the VPEs. In Section 6.8, experiments are performed
by varying the number of inputs, outputs and states, and finally in Section 6.9, control
mode switching measurements are described in detail.

6.1 Benchmark application measurements on PowerPC

The execution times of the blocks in the benchmark application are shown in Table 6.1.
The execution times are measured using clock gettime() function present in the time.h
library. Each of the control block is executed 1 million times and the total execution
time is recorded using clock gettime(). The total time recorded is then divided by 1
million to obtain the average execution time of the block. This procedure is repeated 10
times and the final execution time is divided by 10 to obtain the execution time of the
block. The data communication time is obtained by communicating the data with the
second processing unit and not an FPGA. This is because the FPGA implementation
was not completed when these experiments were performed. An FPGA was replaced by
a processing unit and a functional simulator is created. The job of the simulator is to
receive the data, verify the contents of the data and write back the output to the sending
processing unit.

In the first experiment, all blocks are executed on a single core PowerPC without any
FPGA acceleration, then the sum of all block execution times obtained is 620,022 ns.
The achievable sampling frequency is the reciprocal of the total execution time, which
is 1.61 kHz.

6.2 Single core PowerPC + VPEs

In this experiment, a number of vector processing units in FPGA are used to offload the
state-space blocks from the PowerPC. The issue width of these processing units can be
32 or 64, and upto 4 of these can be used.

The execution time of a state-space block on a 32 wide VPE is 11.30 µs and on
a 64 wide VPE is 8.08 µs. In order to measure the execution time and the sampling
frequency of the benchmark application, we have to first calculate the execution time of
the benchmark application without considering the preCalc functionality of the state-
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Blocks Execution time (ns)

CO SPG FF(6) 518.04
CO PID LP(6) 258
FLT 8(12) 938.88
MAT 6x2 27.21
AS GS 6x6 143.51
AS LOS DC 36.94
MAT 8x6 144.96
MS LOS2BM COMBI 246.28
MS LOS2BM VER 89.47
MS LOS2BF COMBI 75.83
SS 220 preCalc(4) 612,714
SS 220 postCalc(4) 3011.44
CO VAR GAIN 9.92
SATURATION 318.44
AS SS EMDC 159.22
AS SS GS 428.46
MAT 13x11 455.64
MAT 12x12 446.70

Total time 620,022 ns

Table 6.1: Profiling results of the constituent blocks of the benchmark application mea-
sured on a 1.33 GHz single-core PowerPC

space block, which is described in the equation below.

ExecT imeNoSSBlock = ExecT ime− (4 ∗ ExecT imeOfSSBlock)

ExecT imeNoSSBlock = 620, 022.94 − (4 ∗ 153, 178.5)

ExecT imeNoSSBlock = 7308ns = 7.30 µs = 0.007ms (6.1)

6.2.1 1 VPE32 and 1 VPE64

In this case a single 32 wide VPE and a single 64 wide VPE is used to offload all four
state-space blocks on the VPE. These blocks are executed sequentially on the VPE.
In order to calculate the execution time, we have to consider the communication time
between the CPU and FPGA, and the time required for the data to reach from the
RIO unit of the receiving data to the VPE and back from VPE to the RIO unit of the
receiving end. The round-trip communication time between the CPU and FPGA, for the
number of inputs and number of outputs of the state-space block present in the current
benchmark application is 1 µs, and the additional time required for the data to travel
from RIO unit to VPE and back from VPE to RIO unit is 0.164 µs. The execution time
of the benchmark application obtained in this case is shown below. We do not show the
calculations for VPE64 here, as it is similar to the calculations shown for VPE32. The
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sampling frequency obtained in case of VPE64 can be seen in the Table 6.2.

ExecT imeOneV PE32 = (ExecT imeNoSSBlock) + (4 ∗ round− triptime)+

(4 ∗ TimeFromRIOUnitToV PE) + (4 ∗ SSBlockExecT imeOnV PE32)

ExecT imeOneV PE32 = 7.30 + (4 ∗ 1) + (4 ∗ 0.164) + (4 ∗ 11.30)

ExecT imeOneV PE32 = 56.74 µs = 0.056ms (6.2)

SampFreqOneV PE32 = 1/ExecT imeOneV PE32 = 1/0.056 = 17.85kHz (6.3)

6.2.2 2 VPE32 and 2 VPE64

This scenario considers two 32 wide and two 64 wide VPEs, and we deploy 4 state-space
blocks on 2 VPEs. Since we have 2 VPEs, we deploy and execute 2 state-space blocks
in parallel. Since there is only one communication unit between the CPU and FPGA,
the input data have to be communicated with both the blocks on the VPE32 separately.
The execution time and the sampling frequency of the benchmark application is shown
below. Similarly, the sampling frequency of the benchmark application when the state-
space blocks are deployed on 64 wide VPEs can be seen in the Table 6.2.

ExecT imeTwoV PE32 = (ExecT imeNoSSBlock) + (4 ∗ round− triptime)+

(4 ∗ TimeFromRIOUnitToV PE) + (2 ∗ SSBlockExecT imeOnV PE32)

ExecT imeTwoV PE32 = 7.30 + (4 ∗ 1) + (4 ∗ 0.164) + (2 ∗ 11.30)

ExecT imeTwoV PE32 = 34.53 µs = 0.034ms (6.4)

SampFreqTwoV PE32 = 1/ExecT imeTwoV PE32 = 1/0.034 = 29.41kHz (6.5)

6.2.3 4 VPE32 and 4 VPE64

Finally, we consider four 32 wide and four 64 wide VPEs, and we deploy all the 4 state-
space blocks on the VPEs parallely. However, as explained above, the data has to be
communicated with all the 4 state-space blocks on the VPE separately. Since, all the
4 state-space blocks can be scheduled on the VPE in parallel, the blocks on the CPU
can continue with their execution without waiting for the reply from the state-space
block on VPE. In the calculations below we consider the best case approximations when
deploying the state-space blocks on the VPEs. The execution time of the benchmark
application and the sampling frequency respectively is described below. The sampling
frequency obtained when 64 wide VPEs used are shown in the Table 6.2.

ExecT imeFourV PE32 = max(ExecT imeNoSSBlock, ((4 ∗ round− triptime)+

(4 ∗ TimeFromRIOUnitToV PE) + (1 ∗ SSBlockExecT imeOnV PE32)))

ExecT imeFourV PE32 = max(7.30, ((4 ∗ 1) + (4 ∗ 0.164) + (1 ∗ 11.30)))

ExecT imeFourV PE32 = max(7.30, 15.956)

ExecT imeFourV PE32 = 15.956 µs = 0.015ms (6.6)
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SampFreqFourV PE32 = 1/ExecT imeFourV PE32 = 1/0.015 = 66.67kHz (6.7)

Table 6.2 shows the sampling frequency of the benchmark application when deployed
on a single core processor and VPEs. It can be observed from the table that the hy-
pothesis can be justified when the state-space blocks are deployed on 4 VPE32 and 4
VPE64.

No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

1.61 17.85 29.41 66.67 22.72 35.71 83.33

Table 6.2: Sampling frequency of the benchmark application after deploying the state-
space blocks on a single core processor and VPEs

Figure 6.1 shows the sampling frequency of the benchmark application after deploying
the state-space blocks on VPE32 and VPE64 units.
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Figure 6.1: Sampling frequency of the benchmark application after deploying the state-
space block on VPE32 and VPE64
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6.3 Dual-core PowerPC + VPEs

In the previous sections, we performed the experiments on a single-core processor along
with 32 wide and 64 wide VPEs. In this section, we perform the experiments on a
dual-core processor along with 32 wide and 64 wide VPEs.

6.3.1 Dual-core

Here, we consider a PowerPC with 2 cores and perform the experiments. Since there
are 2 cores, the benchmark application can be split among the cores for execution. On
one of the cores, the Long Stroke controller is deployed, and since, the execution time of
the Long Stroke controller is significantly smaller than the execution time of the Short
Stroke controller, the Short Stroke controller can be deployed on both the cores, i.e.,
the core, on which the Long Stroke controller is deployed can be used to run the blocks
present in the Short Stroke controller. The four state-space blocks in the Short Stroke
controller can be split across the cores, i.e., two state-space blocks can be executed on
one core and the other two state-space blocks can be executed in parallel on the second
core. We do not consider the communication time between the cores, as it is negligible.
The execution times on the first and second core can be calculated as shown below.

ExecT imeFirstCore = ExecT imeLongStroke + (ExecT imeShortStroke)/2

ExecT imeFirstCore = 2.479 + 308, 771.5

ExecT imeFirstCore = 308, 773.97ns (6.8)

ExecT imeSecondCore = ExecT imeShortStroke/2

ExecT imeSecondCore = 308, 771.5ns = 308.77 µs (6.9)

The execution time and the sampling frequency of the benchmark application after
executing it on 2 cores is as shown below. The sampling frequency obtained in this
scenario is double the sampling frequency of that obtained in case of single core processor.
This is because, the two cores can now be utilized to run the blocks parallely, i.e., we
equally distribute the blocks on the cores.

ExecT imeDualCore = max(ExecT imeFirstCore, ExecT imeSecondCore)

ExecT imeDualCore = max(308, 773.97, 308, 771.5)

ExecT imeDualCore = 308.773 µs = 0.308ms (6.10)

SampFreqDualCore = 1/ExecT imeDualCore = 1/0.308 = 3.24kHz (6.11)
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6.3.1.1 32 wide and 64 wide VPEs

In this scenario, the experiments are performed by deploying the state-space blocks on 32
wide and 64 wide VPEs. In the first experiment, the benchmark application is deployed
on 2 cores; Long Stroke controller on first core and Short Stroke controller is split across
the first and second core, and further, the 4 state-space blocks are deployed on a single
32 wide VPE or a single 64 wide VPE for execution. The Long Stroke controller and the
Short Stroke controller are executed in parallel, and the 4 state-space blocks are executed
sequentially on a VPE, as there is only one VPE considered for this experiment.

In the second experiment, two cores and two 32 wide VPEs or two 64 wide VPEs are
considered. The 4 state-space blocks are deployed in parallel on 2 VPEs, and the other
blocks are executed in parallel on the 2 cores.

In the final experiment, two cores and four VPEs are considered. We deploy the
four state-space blocks in parallel on four VPEs, and the other blocks can be executed
in parallel on the two cores. The sampling frequencies obtained after performing all the
above mentioned experiments can be seen in the Table 6.3.

No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

3.24 18.51 31.25 66.67 24.39 40 83.33

Table 6.3: Sampling frequency of the benchmark application after deploying the state-
space blocks on a dual core processor and VPEs

It can be observed from the above table that the hypothesis can be justified by using
4 VPE32, 2 VPE64 and 4 VPE 64 respectively. Figure 6.2 shows the sampling frequency
of the benchmark application when the state-space blocks are deployed on VPE32 and
VPE64.

6.4 Tri-core PowerPC + VPEs

In this section, we carry out the experiments by considering 3 cores and VPEs 32 wide
and 64 wide. The execution time and sampling frequencies are obtained by varying the
number of VPEs from 1 to 4.

6.4.1 Tri-core

Here, in this case, we deploy the Long Stroke controller on one core and the Short
Stroke controller is split across the three cores. The four state-space blocks present in
the Short Stroke controller can now be executed on the three cores in parallel. Two
state-space blocks can be executed on one core, and the other two state-space blocks can
be executed in parallel on the other two cores. The execution time and the sampling
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Figure 6.2: Sampling frequency of the benchmark application after deploying the bench-
mark application on two cores and state-space block on VPE32 and VPE64

frequency obtained in this case can be calculated as shown below. The execution time
and sampling frequency of the benchmrk application after deploying it on a tri-core
processor is as shown below. From the calculations, it can be observed that there is no
much difference when compared to the sampling frequency obtained in case of dual core
processors. The reason behind that is explained in the calculations below.

ExecT imeTriCore = max(ExecT ime(SSBlockOn1stCore + ExecT imeLongStroke),

(ExecT imeSSBlockOn2ndCore + (ExecT imeOtherBlocks)/2),

(ExecT imeSSBlockOn3rdCore + (ExecT imeOtherBlocks)/2))

+ ExecT imeSSBlock

ExecT imeTriCore = max(153180.97, 153180.64, 153180.64) + 153178.5

ExecT imeTriCore = 153180.97 + 153178.5

ExecT imeTriCore = 306.359 µs = 0.306ms (6.12)

SampFreqTriCore = 1/ExecT imeTriCore = 1/0.306 = 3.267kHz (6.13)

6.4.1.1 32 wide and 64 wide VPEs

Here, we consider 3 cores along with 32 wide and 64 wide VPEs for experiments. In
the first experiment, 3 cores and one 32 wide VPE and one 64 wide VPE is considered.
The state-space blocks present in the Short Stroke controller can now be deployed on
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the VPE in a sequential manner. Since all the other blocks present in the Short Stroke
controller are executed in parallel, their execution times are not considered in the formula.
The sampling frequency of the benchmark application when the state-space blocks are
deployed on VPE32 and VPE64 can be seen in the Table 6.4.

In the second experiment, we consider three cores and two 32 wide and two 64 wide
VPEs. Two of the four state-space blocks can be executed at a time on 2 VPEs. The
sampling frequency obtained in this case is shown in the Table 6.4.

In this experiment, we consider three cores along with four 32 wide and four 64 wide
VPEs. All the four state-space blocks can be executed on four VPEs in parallel. The
sampling frequency obtained in this case is shown in the Table 6.4.

No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

3.26 20.40 37.03 66.67 27.77 50 83.33

Table 6.4: Sampling frequency of the benchmark application after deploying the state-
space blocks on a tri core processor and VPEs

It can be seen from the above experiments that, the combination of three cores +
4 VPE32, three cores + 2 VPE 64 and three cores + 4 VPE64 justifies the hypothesis
claimed. Figure 6.3 shows the sampling frequency of the benchmark application obtained
graphically.

6.5 Quad-core PowerPC + VPEs

In this section, we perform the experiments on a dual-core processor in combination
with the 32 wide and 64 wide VPEs. We vary the number of VPEs from 1 to 4 in these
experiments.

6.5.1 Quad-core

The benchmark application is deployed across the four cores in this experiment. The
Long Stroke controller is deployed on one core and since, the execution time of the
Long Stroke controller is significantly smaller than the Short Stroke controller, the Short
Stroke controller is split across all the cores, including the one, on which the Long Stroke
controller is deployed. The four state-space blocks present in the Short Stroke controller
are executed in parallel on all the four cores. The execution time and the sampling
frequency of the benchmark application after deploying it on all the four cores can be
calculated as shown below. From the calculations it can be seen that the sampling
frequency obtained in this case is double the sampling frequency obtained in case of dual
core and tri core processors.
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Figure 6.3: Sampling frequency of the benchmark application after deploying the state-
space blocks on tri cores, VPE32 and VPE64

ExecT imeQuadCore = max(ExecT imeSSBlockOn1stCore + ExecT imeLongStroke,

ExecT imeSSBlockOn2ndCore + (ExecT imeOtherBlocks)/3,

ExecT imeSSBlockOn3rdCore + (ExecT imeOtherBlocks)/3,

ExecT imeSSBlockOn4thCore + (ExecT imeOtherBlocks/3))

ExecT imeQuadCore = max(153180.97, 154608.16, 154608.16, 154608.16)

ExecT imeQuadCore = 154.60 µs = 0.154ms (6.14)

SampFreqQuadCore = 1/ExecT imeQuadCore = 1/0.154 = 6.49kHz (6.15)

6.5.1.1 32 wide and 64 wide VPEs

Here we consider four cores, VPE32 and VPE64 for experiments. The sampling frequency
of the benchmark application obtained when a state-space block is deployed on a VPE32
and VPE64 can be seen in the Table 6.5.

It can be observed from the above table that the hypothesis can be justified when
a quad core processor is used in combination with 4 VPE32, 2 VPE64 and 4 VPE64
respectively.

Figure 6.4 shows the sampling frequency of the benchmark application after deploying
it on four cores, VPE32 and VPE64.
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No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

6.49 20.40 37.03 66.67 27.77 50 83.33

Table 6.5: Sampling frequency of the benchmark application after deploying the state-
space blocks on a quad core processor and VPEs
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Figure 6.4: Sampling frequency of the benchmark application after deploying the bench-
mark application on four cores and state-space blocks on VPE32 and VPE64

6.6 Penta-core PowerPC + VPEs

In this section, we consider a penta-core processor and 32 wide and 64 wide VPEs for our
experiments. The execution time and sampling frequencies are obtained after deploying
the benchmark application on five cores.

6.6.1 Penta-core

The benchmark application is deployed on a penta-core processor. The Long Stroke
controller is deployed on one core and the Short Stroke controller is split across four
cores. The four state-space blocks present in the Short Stroke controller can now be
executed in parallel on the four cores and hence, the execution time of the Short Stroke
controller is nothing but the execution time of one state-space block plus some other
blocks.
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ExecT imeShortStrokeOnPentaCore = ExecT imeShortStroke/4

ExecT imeShortStrokeOnPentaCore = 617, 543/4

ExecT imeShortStrokeOnPentaCore = 154.385 µs = 0.154ms (6.16)

The execution time and the sampling frequency of the benchmark application is as
shown below. It can be seen from the calculations that the sampling frequency obtained
in this case is almost same as that obtained in case of quad core processors because of
the below mentioned calculations.

ExecT imePentaCore = max(ExecT imeLongStroke, ExecT imeShortStrokeOnPentaCore)

ExecT imePentaCore = max(2.479, 154, 385.75)

ExecT imePentaCore = 154.385 µs = 0.154ms (6.17)

SampFreqPentaCore = 1/ExecT imePentaCore = 1/0.154 = 6.49kHz (6.18)

6.6.1.1 32 wide and 64 wide VPEs

In this experiment, we consider five cores in combination with VPE32 and VPE64. The
sampling frequencies obtained when VPE32 and VPE64 are used in combination with a
penta core processor are shown in the Table 6.6.

No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

6.49 20.40 37.03 66.67 27.77 50 83.33

Table 6.6: Sampling frequency of the benchmark application after deploying the state-
space blocks on a penta core processor and VPEs

From the table it can be observed that the hypothesis is justified when 4 VPE32,
2 VPE64 and 4 VPE64 are used in combination with a penta core processor. Figure
6.5 shows the sampling frequencies of the benchmark application when the state-space
blocks are deployed on VPE32 and VPE64.

6.7 Octa-core PowerPC + VPEs

The execution time and the sampling frequency of the benchmark application running
on an octa-core processor is double the sampling frequency obtained in case of quad core

build 0.18



52 CHAPTER 6. EXPERIMENTS

1 2 4
0

10

20

30

40

50

60

70

80

90

Sampling frequency with FPGA acceleration

VPE32 
VPE64 

Number of VPEs

S
am

p
lin

g
 f

re
q

ue
n
cy

 in
 k

H
z

Figure 6.5: Sampling frequency of the benchmark application after deploying the bench-
mark application on five cores and state-space blocks on VPE32 and VPE64

or penta core processors. This is because the state-space blocks can be executed across
eight cores and all the other blocks can be run on 8 cores in parallel. The sampling
frequencies obtained in this experiment can be seen in the Table 6.7.

No
VPE

1
VPE32

2
VPE32

4
VPE32

1
VPE64

2
VPE64

4
VPE64

Max achievable
frequency (kHz)

13 20.40 37.03 66.67 27.77 50 83.33

Table 6.7: Sampling frequency of the benchmark application after deploying the state-
space blocks on a octa core processor and VPEs

From the above table it can be once again observed that the hypothesis is justified by
using octa core processor in combination with 4 VPE32, 2 VPE64 and 4 VPE64 respec-
tively. Figures 6.6 and 6.7 shows the sampling frequencies of the benchmark application
when the state-space blocks are deployed on VPE32 and VPE64 respectively.

6.8 Experiments by varying number of inputs and by vary-
ing number of states

In this section, various experiments are performed by varying the number of inputs and
by varying the number of states.
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Figure 6.6: Sampling frequency of the benchmark application after deploying the bench-
mark application on cores and 32 wide VPEs

6.8.1 Varying number of inputs

In this section, we perform experiments by varying the number of inputs and outputs
from 32 to 320 in steps of 20, and keeping the number of states constant to 220. The
execution time of the state-space block is obtained by executing it on the PowerPC,
32 wide VPE and 64 wide VPE. The purpose of this experiment is to show that, the
communication time between the CPU and FPGA plus the execution time on the FPGA,
is significantly smaller than the execution time on PowerPC.

Table 6.8 shows the execution time of the state-space block on the PowerPC, 32 wide
VPE and 64 wide. Figures 6.8 and 6.9 compares the execution time of state-space block
on PowerPC with the execution time on 32 wide VPE and 64 wide VPE. It can be seen
from the tables and the figures that, the execution time on FPGA is significantly smaller
than the execution time on the PowerPC.
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Figure 6.7: Sampling frequency of the benchmark application after deploying the bench-
mark application on cores and 64 wide VPEs

Number of in-
puts

Exec time on
PowerPC

Exec time on 32
wide VPE

Exec time on 64
wide VPE

32 186.41 µs 15.73 µs 11.99 µs
64 235.4 µs 24.49 µs 16.46 µs
96 284.13 µs 31.4 µs 24.36 µs
128 334.21 µs 38.26 µs 28.69 µs
160 399.55 µs 45.3 µs 34.97 µs
192 560.04 µs 52.16 µs 39.3 µs
224 685.07 µs 59.16 µs 45.53 µs
256 773.07 µs 66.07 µs 49.91 µs
288 986.44 µs 72.92 µs 56 µs
320 1067.75 µs 79.96 µs 60.51 µs

Table 6.8: Execution time of state-space block on PowerPC, 32 wide VPE and 64 wide
VPE after varying the number of inputs
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Figure 6.8: Execution time of state-space block on PowerPC and 32 wide VPE after
varying the number of inputs
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Figure 6.9: Execution time of state-space block on PowerPC and 64 wide VPE after
varying the number of inputs

6.8.2 Varying number of states

In this section, we perform the experiments by varying the number of states from 220
to 20 in steps of 20, and keeping the number of inputs and outputs constant to 64. The
purpose of this experiment is also to show that, the execution time on FPGA plus the

build 0.18



56 CHAPTER 6. EXPERIMENTS

communication time between CPU and FPGA is smaller than the execution time on
PowerPC.

In the Table 6.9 the execution time of the state-space block on PowerPC, 32 wide
VPE and 64 wide VPE are shown. Figures 6.10 and 6.11 shows the graph that compares
the execution time of state-space block on PowerPC, 32 wide VPE and PowerPC, 64
wide VPE respectively. It can be seen from the table and the figures that, the execution
time on FPGA is much smaller than the execution time on the CPU.

Number of
states

Exec time on
PowerPC

Exec time on 32
wide VPE

Exec time on 64
wide VPE

220 235.4 µs 24.49 µs 16.46 µs
200 202.34 µs 22.73 µs 15.5 µs
180 172.03 µs 20.55 µs 14.12 µs
160 143.84 µs 18.95 µs 13.32 µs
140 117.99 µs 17 µs 12.52 µs
120 94.02 µs 15.11 µs 11.27 µs
100 72.8 µs 13.83 µs 10.63 µs
80 53.62 µs 12.17 µs 9.99 µs
60 36.38 µs 10.57 µs 8.87 µs
40 17.93 µs 9.61 µs 8.39 µs
20 7.75 µs 8.31 µs 8.09 µs

Table 6.9: Execution time of state-space block on CPU, 32 wide VPE and 64 wide VPE
after varying the state matrix

6.9 Control mode switching

It has been estimated that the total time taken on an FPGA to load a single parameter
set from DDR3 to ASIP memory is 0.2 ms. Since there are four state-space blocks
in the benchmark application, the total time taken to load all the four parameter sets
from DDR3 to ASIP memory would be 0.8 ms. If we consider 40 kHz as the sampling
frequency, the sample time can be calculated as shown below.

SampleT ime = 1/SampFreq = 1/40000 = 0.025ms (6.19)

In the current software architecture, there are 50 samples reserved to load the pa-
rameter sets of all the blocks from DDR3 to ASIP memory, and to perform the control
mode switch. Hence, the total time required for 50 samples can be calculated as shown
below:
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Figure 6.10: Execution time of state-space block on PowerPC and 32 wide VPE after
varying the state matrix
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Figure 6.11: Execution time of state-space block on PowerPC and 64 wide VPE after
varying the state matrix

TotalT imeFor50Samples = SampleT ime ∗NoOfSamples
TotalT imeFor50Samples = 0.025 ∗ 50

TotalT imeFor50Samples = 1.25ms (6.20)
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Hence, the control mode switch time, i.e., the time taken to send the parameter set
load command to the FPGA, loading the parameter sets from DDR3 to ASIP memory
on FPGA and sending back the acknowledgement, should be less than 1.25 ms. The
control mode switch time can be calculated as shown below:

CMSTime = CmdFromCPUToFPGA+ ParameterSetLoadT imeOnFPGA+

AckFromFPGAToCPU

CMSTime = (0.5 µs) + (0.8ms) + (0.5 µs)

CMSTime = 0.8ms (6.21)

It can be seen from the calculations that, the total control mode switch time is less
than the total time taken for 50 samples, i.e., 0.8 ms is less than 1.25 ms. However, it
should be ensured that the command to load the parameter set to the FPGA, should
be given in the first 10 samples out of the 50 samples reserved. Finally, we conclude by
saying that, the sampling frequency of 40 kHz can be achieved despite the communication
between the CPU and FPGA, and despite the control mode switching functionality.
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In this chapter, the conclusion is drawn on the work carried out, and present recommen-
dations for further continuation of this work.

7.1 Conclusions

In this thesis, we hypothesized that a sampling frequency of 40 KHz could be achieved, by
using an FPGA as an accelerator in conjunction with a CPU. With a detailed analysis,
parts of the software architecture, that should be deployed on the hardware platform
in order to achieve this projected sampling frequency were identified. Based on our
analysis, the hardware platform was selected, that would be best suitable for this project.
The analysis carried out also confirmed that the sampling frequency of 40 KHz can be
achieved.

Various experiments were performed in order to justify the hypothesis. In the first
phase, measurements of all the blocks present in the benchmark application were ob-
tained by executing them on a 1.33 GHz Power PC processor. The execution time of
the entire benchmark application obtained was 621.67 µs and the sampling frequency
obtained was 1.61 KHz.

In the second phase, a design space exploration was carried out where compute
intensive blocks were offloaded from single core, dual core, tri core, quad core, penta
core and octa core processors to 32 wide and 64 wide vector processing units (ASIP),
on an FPGA. The maximum number of inputs of state-space blocks and the maximum
number of outputs of state-space blocks in the current benchmark application is 12.
Initially, single core and only one 32 wide vector processing unit was chosen, and 4
state-space blocks present in the benchmark application were deployed sequentially on
the VPE. We could observe that the total time obtained (execution time of blocks other
than the state-space blocks on CPU + communication time between CPU and FPGA +
execution time of state-space block on FPGA) was 61.8 µs, and as a result, the sampling
frequency obtained in this case was 17.85 KHz. Then, two and four 32 wide VPEs were
chosen respectively, and the sampling frequency obtained were 29.41 KHz and 66.67 KHz
respectively. Hence, it was observed that the hypothesis can be justified by considering
four VPEs. Similar experiments were performed for the rest of the cores, and it was
observed that the hypothesis can be justified by considering four 32 wide VPEs. The
experiments were also carried out on 64 wide VPEs, and in this case, we could observe
that the hypothesis can be justified two and four 64 wide VPEs respectively.

Various other experiments were carried out in order to prove that, the execution time
of the state-space block on the CPU supersedes the communication time between the
CPU and FPGA plus the execution time of the state-space block on an FPGA. Intially,
the number of inputs and outputs wre varied starting from 32 till 320, in steps of 32, and
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keeping the number of states constant to 220. The execution times of the state-space
block was obtained for the above mentioned inputs and outputs, by executing them
on the Power PC. The time taken to communicate the data with the FPGA was also
obtained. We could also get the measurements of the state-space block with the above
mentioned inputs and outputs on the FPGA. We observed that, the execution time of
the state-space block on the CPU, exceeded the communication time between CPU and
FPGA and the execution time of the state-space block on the FPGA, by greater margin.
The above conclusion was drawn for both the 32 wide VPE and 64 wide VPE.

Also, the number of inputs and outputs were kept constant to 64, and number of
states were varied from 220 to 20, in the steps of 20. The rationale behind carrying
out this experiment was to prove that, the execution time of a state-space block on
CPU exceeds the communication time between the CPU and FPGA plus the execution
time on the FPGA. First, the execution time of the state-space blocks on the CPU were
obtained, by varying the number of states, and keeping the number of inputs and outputs
constant. Then, the communication time between the CPU and FPGA was calculated,
and finally, the execution time of the state-space block on an FPGA was measured, by
varying the number of states, and keeping the numnber of inputs and outputs constant.
It was observed that, the execution time of the state-space block on the CPU exceeds the
communication time between the CPU and FPGA plus the execution time of the state-
space block on the FPGA. Based on all the experiments performed, it was concluded
that, using FPGA as an accelerator in conjunction with the CPU, benefits by greater
margin.

The experiments on control mode switching were also performed, and it was found out
that, the control mode switch time on an FPGA plus the communication of parameter
set load command between CPU and FPGA was less than the sample time reserved
for control mode switching. From this experiment, it can be concluded that control
mode switchng can be easily performed on an FPGA. However, the parameter set load
command to load the paramter sets from DDR3 to local memory on an ASIP, should be
given within the first 10 samples out of the 50 samples reserved. Failure to do so would
result in the failure of control mode switching on an FPGA.

7.2 Future work

In this section, we recommend some of the ideas that could be used in the future projects.
Following are the ideas that we recommend:

Xilinx Zynq-7000 SOC as a hardware platform: In our thesis, we make use of
Xilinx Virtex-7 FPGA as a hardware development kit, as it satisfies all the conditions
required for our project. We also thought of considering Xilinx Zynq-7000 SOC [12] as a
development platform, as it provides sufficient resources for our project. However, there
were other reasons, that compelled us to not to go with Xilinx Zynq-7000 SOC platform.
Some of the reasons are as follows: The SOC consists of an ARM architecture along
with the FPGA. Since the Wafer Stage motion control application runs on PowerPC
processor, porting the entire Wafer Stage to run on an ARM architecture was too big a
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step to achieve in the time window of this project. The Zynq-7000 SOC was not available
at the start of the project.

For the continuation of this work, we strongly recommend the use of the Zynq-7000
SOC as hardware development platform. This would reduce the communication time
between the CPU and FPGA, as both are present on the same chip. We also recommend
to compare the performance of our work with that of SOC, and then decide on the best
platform out of SOC and FPGA, that could be used in long term in the future.

Deploying more blocks on ASIPs on FPGA: In our project, we carried out exper-
iments by offloading only the state-space blocks. However, there might be other blocks
in the benchmark application, that could be accelerated by deploying them on the other
ASIPs, such as, Scalar processing units (SPU) and Look-up units (LUs). We recommend
the usage of these ASIPs in the near future, as this might further increase the sampling
frequency of the entire benchmark application.

Deploying the entire ServoGroup on an FPGA: Currently, in this thesis, FPGA
is employed as an accelerator in conjunction with the CPU. In our project, we deploy the
blocks present in the benchmark application on an FPGA, however, the other blocks in
the benchmark application run on the CPU. The interface of the block that is deployed
on an FPGA is present on the CPU, however, the functionality of the block is offfloaded
on the FPGA. Hence, the entire control network still remains on the CPU, i.e., the Host
can communicate with the FPGA, only through the Worker. In the future projects,
we recommend to port the entire control network on an FPGA, so that the Host could
communicate with the FPGA directly. This might increase the sampling frequency, as
the communication between the CPU and FPGA, would no more be a bottleneck.

Deploying the entire motion control application on an FPGA: Finally, once it
is proved that, either an FPGA or an SOC could perform better than the existing hard-
ware architecture, a project can be carried out to port the entire Wafer stage application
on an FPGA or an SOC. This could improve the performance of the applications.
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