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1
Introduction

In today’s world, the Internet is the backbone of our society: without the World Wide Web, money and
electricity simply cannot flow. Although certain protocols like the Internet Protocol (IP), Transmission
Control Protocol (TCP) and Domain Name Service (DNS) are widely known, the Border Gateway Proto-
col (BGP) is relatively unknown. However, being the Internet’s default interdomain routing protocol, its
functioning is crucial in ensuring worldwide interconnectivity, given the fact that it interconnects Inter-
net Service Providers (ISPs) and allows for engineering of Internet traffic. What is also virtually unknown
is the fact that BGP lacks security [21].

Cyber security is only as strong as its weakest link: a company can have the most secure network, but if all
employees have access to the server room, security is compromised. When BGP is used with malicious intent,
Internet traffic is rerouted in such a way that it gives malicious parties access to data that is not intended for
them.

BGP in a nutshell All communicating electronic devices over the Internet need an IP address. The routing
between IP addresses is carried out by Internet Service Providers (ISPs). A customer pays an ISP to perform
this routing. On the Internet, IP addresses are clustered in IP ranges. Each ISP has one or more Autonomous
Systems (ASes) over which the IP ranges are divided. An AS is a collection of network devices that operate as
a single network entity. ASes are interconnected and provide each other with routes to their own IP ranges.
Consequently, it is possible to send data from one device to another device. BGP ensures that ISPs stay in-
terconnected, and that data packets, being sent from and to devices in different ISPs, end up at the intended
destinations.

1.1. Societal Relevance of BGP
While BGP is crucial in enabling world wide connectivity through the Internet, its vulnerability gives mali-
cious parties an opportunity for abuse, such as rerouting of data, sending spam, or allowing Internet censor-
ship.

BGP and rerouting data
The Internet is highly dynamic: the distribution of IP addresses by ISPs is constantly changing. BGP ensures
that these changes propagate from AS to AS. Unfortunately, BGP has no built-in verification methods [39], and
as a consequence, malicious changes are also propagated. This means that an AS can announce IP ranges it
does not own, resulting in the unwanted rerouting of data over the Internet. An example of this unwanted
rerouting was caused by the government-controlled ISP Rostelecom in 2017:

• Confidential networking traffic of MasterCard, Visa, and other large financial services was briefly rerouted
through the Russian government-controlled ISP Rostelecom. Although unwanted rerouting of data
caused by BGP-related misconfigurations can occur, the sudden rerouting of a dozen of IP ranges for
important financial services is, to say the least, suspicious [1].
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BGP comprises over 20 decision criteria that determine whether a new learned route, used to interconnect
ASes and direct Internet traffic, will be accepted by an AS. Very few people understand BGP and are able
to configure the hardware for it. Moreover, adding new IP ranges, for expanding connectivity, is a manual
process which can easily cause misconfigurations leading to unintentional BGP hijacks. As a result of these
unintentional BGP hijacks, the malicious actor performing the hijack can simply state that it was a miscon-
figuration. A few months after the Rostelecom hijack, another suspicious incident occurred where popular
American IP ranges were hijacked. This was again picked up by the media in late 2017.

• Traffic sent to and from Google, Facebook, Apple, and Microsoft was briefly rerouted through a pre-
viously unknown Russian AS, again under circumstances researchers say were suspicious and inten-
tional. Between 40 and 80 separate IP ranges were affected in two hijacks and the AS responsible for
the hijack, which received terabytes of data, was only active during the hijack [2].

BGP and spam
BGP is also misused for sending spam. In 2018, Bitcanal, a Portugees company, hijacked IP ranges and used it
to send spam. With the help of the Internet community and publicly available BGP data, the large ISP Hurri-
cane Electric and Portugal’s IPTelecom managed to disconnect Bitcanal from the Internet. Bitcanal hijacked
a total of 130 IP ranges comprising over 240k IP addresses [3].

BGP and Internet censorship
The interdomain routing protocol is sometimes used for applying Internet censorship. Again, given the com-
plexity of the protocol, and the way ISPs are interconnected, neighboring ASes can also experience uninten-
tional negative effects. The way in which Pakistan knocked YouTube offline and how Iran imposed a ban on
the messaging app Telegram serve as prime examples.

• In February 2008 Pakistan’s state-owned ISP managed to cut YouTube off the Internet. The ISP, after
receiving a censorship order from the telecommunications ministry, began announcing Youtube’s IP
ranges to black hole all traffic destined for Youtube servers from Pakistan citizens. While they were
meant to stay within country borders, BGP announcements reached ISPs in neighboring countries re-
sulting in a world-wide outage of the Youtube website [4].

• To tighten the state-imposed ban on the Telegram messaging app, an Iranian ISP temporarily rerouted
Telegram app traffic in July 2018. For one hour, BGP traffic destined for Telegram was black holed
rendering the app unusable. By altering the routing of Telegram traffic, the Iranian ISP also rendered
the app useless for other users in neighbouring countries [5].

As the incidents above demonstrate, route leaks, the forwarding of BGP messages to ASes that are not sup-
posed to receive them, are a great risk to the stability of the Internet [4] [5]. The largest route leak related inci-
dent occured in August 2017 where large parts of Japan could not reach the Internet for a couple of hours be-
cause of route leaks of over 135.000 IP ranges by Google. Consequently, the largest ISP of Japan used Google’s
AS to reach other parts of the Internet. However, because Google is not an ISP, the AS could not handle all the
traffic and caused the outage [10] [11].

BGP and security
Back in the days when BGP was developed, not many ASes existed, and relationships between ASes were
mostly built on trust. Consequently, BGP did not need authentication measures for announcing routing in-
formation. Nowadays, trust alone is not sufficient and the absence of proper security measures makes BGP
more vulnerable to hijacking attacks. A security extension called BGPSec exists. BGPSec implements path
validation and ensures that information about the path, taken by the BGP announcement, cannot be altered.
Unfortunately, BGPSec is hardly implemented because new hardware is required. Also, the security extension
only works if everyone in the path supports it.

The last 3 years there have been around 200-250 BGP-related incidents per month [12] [13]. There are two
main reasons why these numbers do not drop:
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• For ISPs, there is a lack of awareness: the tendency of not sharing BGP traffic does not help to solve
the hijacking problem. Of the 70k plus ASes that exist, only about 500 ASes share their BGP traffic with
forums that are open to all parties with an interest in increasing visibility and stopping hijacks. As a
consequence, the impact of hijacks is only partly visible. Moreover, configuring BGP is a challenging
task, making it a specialty.

• For an Internet user, BGP is not visible and the impact of hijacks is not always immediately clear. But,
the consequences of a hijack can be severe as shown earlier: in the case of the Rostelecom hijacks in
2017, confidential data was compromised by a Russian ISP. When Internet users have no knowledge
about the impact of hijacks, ISPs are less motivated to address this problem.

This lack of visibility concerning BGP-related information gives malicious actors free rein. A hijack on an
IP range far from its source, most likely will not be mitigated if detected. To increase awareness about the
importance of sharing BGP-related information, there should be more insight into how hijacks are affecting
Internet routing. Given that the currently available BGP routing data does not cover all regions, simulating the
impact of hijacks can provide insight about where coverage is lacking and about who is affected. To be able
to perform accurate simulations, the simulation database should resemble the Internet topology as much as
possible.

Finally, around 20% of the hijacks last less than ten minutes, and some can pollute 90% of the Internet in
less than two minutes [40]. This means that the real-time detection of BGP anomalies is required to be able
to act accordingly. But, just detecting them is not enough: operators need to still mitigate the attack.

1.2. State of the Art
The research presented in this thesis will mainly focus on correctly mapping the Internet: this is a prerequisite
for running a better simulation and for improving the coverage. Relevant organisations, services and methods
that aim to a) improve the classification of ASes, b) collect BGP routing data and c) detect hijacks, are listed
below. Route collectors, that collect BGP data, and types of relationships between ASes, that are used for BGP
routing, play an important role.

Route Collectors A BGP Route Collector (RC) is an AS that is configured to forward all the received BGP data
from peers to a storage node. If a peered AS sends all its BGP data to the RC, the RC has full insight into which
paths that peered AS is using to reach IP ranges. In the case of multiple peers, all the received routes enable
the RC to create a local map of the Internet, and as a result, the RC can detect hijacks locally.

AS relations There are 4 types of relations between ASes as defined by L. Gao [21]: Peer-to-Peer (p2p) where
both ASes do not differ much in size. Provider-to-Customer (p2c) and Customer-to-Provider (c2p) relations
concern ASes that provide and receive transit while Sibling-to-Sibling (s2s) relations connect two ASes in an
ISP. These relations are important because they determine how BGP messages are sent through the Internet.

RouteViews Project, RIPE, BGPMon, BGPStream.com are organisations, services, or databases that all either
detect hijacks or provide BGP data. Although they all serve their purpose, each service or data source has its
limitations which are set forth below.

RouteViews Project
The University of Colorado’s RouteViews Project owns 18 RouteViews Route Collectors (RRCs) and also pro-
vides real-time access to BGP routing data. The 733 number of ASes that are peered with them are relatively
small, resulting in less visibility. Of the 733 ASes, 95 provide all their BGP data to the route collectors of Route-
Views.

RIPE
The French Réseaux IP Européens (RIPE), European IP Networks in English, is an organisation that aims to
maintain and support the development of the Internet. RIPE’s most prominent activity is to act as the Re-
gional Internet Registry (RIR) providing assignment of IP ranges and AS numbers. Their most relevant re-
sources for this research are their 21 RIPE Route Collectors (RRCs) in which they are peering with 296 large
ASes of which only 124 ASes provide all their routes.
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BGPMon and BGPStream.com
The service BGPMon monitors the routing of IP ranges and, in case of relevant path changes, notifies the
user. The service is not free and it only shows alerts for the IP ranges the user has selected. In the back-
ground, around 200 ASes are peered with BGPMon and provide BGP data. These ASes are based in the United
States and are all relatively small. This clustering of ASes will not provide world coverage, and due to their
small size, less BGP data is captured compared to the ASes that are peered with the RIPE RRCs. Moreover,
BGPMon gives little insight in how it detects anomalies. BGPStream.com, a website of BGPMon, presents a
selection of hijacks that have been found with BGPMon.

Out of the over 70k ASes, only 1029 are peered with either RouteViews RCs or RIPE RCs. This is not enough
for monitoring all paths between ASes. Moreover, only 219 ASes provide all their BGP data, further reducing
the monitoring capabilities. RouteViews Project, RIPE, BGPMon, BGPStream.com all either store BGP related
data or detect hijacks. However, without a correct and complete AS topology, detecting and mitigating hijacks
is a challenging task. Therefore, two algorithms and a service that provide mappings of the Internet are next
described, since correctly mapping the Internet is the main goal of this research.

Currently, methods to expand and verify the AS-relations data set assume that ASes that provide the core con-
nectivity of the Internet are peered with more ASes than their smaller counterparts [26], [37], [14]. Although
this might seem a good assumption and it is valid most of the time, the number of connections an AS has
does not always say something about its location in the Internet graph. Some algorithms expect that BGP
paths have a particular order of c2p, p2c, p2p and s2s links. These so-called valley-free paths will be further
discussed in the next chapter.

Gao’s and IMC’ 13’s algorithms, both described below, infer AS relations using data from route collectors.
Next, Caida’s AS Rank, an Internet service where AS relations can be retrieved, is briefly touched. The next
chapter will explain the two algorithms and the service in more detail. Gao, besides being the first to develop
an AS classification which is still used today, also created an algorithm that has been improved on over the
years by others. The IMC’ 13’s algorithm is included because it is used by AS Rank, the largest up-to-date
database of AS relations, and also uses elements from Gao’s algorithm.

Gao’s algorithm
In 2001, Lixin Gao introduced a method to extract the 4 types of relations between ASes using data from route
collectors [26]. The algorithm assumes that all paths are valley free and she validated and found that 99.1% of
the links were inferred correctly. c2p and p2c links are often wrongly inferred as p2p [7]. However, the biggest
shortcoming is that Gao’s algorithm only works with data from route collectors. Given the limited coverage of
the route collectors, not all links between ASes are visible and will be inferred.

IMC’ 13’s algorithm
In 2013, Luckie et al. presented a new improved algorithm to infer c2p, p2c and p2p links [37]. The IMC’ 13’s
algorithm filters misconfigurations, route leaks and paths that will affect the inferring of links in a negative
way. The algorithm does not rely on valley free paths. The algorithm does not infer s2s links. IMC’ 13’s
algorithm inferred c2p and p2c links with 99.6% and p2p links with 98.7% accuracy. IMC’ 13’s algorithm, just
as Gao’s algorithm, only works with data from route collectors.

Caida’s AS Rank
Caida’s goal is to provide insights into Internet infrastructure, behaviour, usage, and evolution as well as fos-
tering a collaborative environment in which data can be acquired, analysed, and shared. One of their services,
called AS Rank, derives the relationships between ASes using two different methods. Their first method infers
relationships with the IMC’ 13’s algorithm utilising BGP routing data from route collectors [37]. Their second
method enriches the AS relation data set created in the first method using a) BGP looking glasses, real-time
sources of routing and BGP related information at IXPs and b) using trace routes, which contain information
on how traffic flows through the Internet [27]. Of the 4 types of relationships, both methods are only able to
derive p2p, p2c and c2p link relations. As of 2018, AS Rank has the most up-to-date database of AS relations
in the world [7].
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Because both Gao’s algorithm and IMC’ 13’s algorithm only use data from route collectors, they have a limited
view resulting in only a limited number of AS relations that is inferred. This results in a partial view of the
Internet topology. Without a complete and correct view it is not possible to accurately analyse BGP-related
anomalies. Also, AS Rank is not able to infer s2s links. Although the amount of s2s links is limited, this small
amount of wrongly inferred links will affect the inferring of other links. Furthermore, the way in which Caida’s
AS Rank set using traces routes works, is not documented.

Trap’s BGP simulator
In a study done by the TU Delft, C.H. Trap simulated the 2008 Pakistan YouTube incident. The involved data
set consisted of 5624 ASes and 9 IP ranges and was capable of running distributed over multiple servers in
real-time. However, Trap used a topology generated with 2018 routing data instead of a topology generated
with 2008 routing data. Furthermore, many AS configurations were not known. As a result, analysis con-
cerning the availability of YouTube.com during the incident differed from the analysis carried out by Dyn [6]
[43].

1.3. Research Questions
Gao’s algorithm and IMC’ 13 algorithm only use data from route collectors, resulting in an incomplete view
of the structure of the Internet. The lack of knowledge on how AS Rank uses trace routes does not allow for
proper validation. Furthermore, the simulator created by the TU Delft is not capable of simulating a large
amount of IP ranges. But even if this would be possible, the simulator would still require a more complete
Internet topology to generate accurate simulation results.

This thesis therefore proposes a new algorithm that uses data from route collectors, AS Rank, and trace
routes to generate a more complete and correct Internet topology. With this more complete Internet topology,
a new developed BGP simulator will attempt to simulate more BGP traffic better and faster compared to
the TU Delft’s simulator. With a more accurate topology in combination with a better BGP simulator, BGP
anomalies can be better detected and regions where route collectors provide no coverage can be pinpointed
with more accuracy. Compared to the current topology generating algorithms, the newly proposed topology
generating algorithm only expects that BGP paths are valley-free: these paths have a particular order of c2p,
p2c, p2p and s2s links.

Research Question 1: Can the currently known AS Internet topology be improved with a topology gen-
erating algorithm that uses data from route collectors, AS Rank’s serial-2 data set, and trace route data
in such a way that more relationship types are inferred and the percentage of correctly inferred relation-
ship types is higher using only the condition that BGP paths need to be valley-free?

Research Question 2: Can BGP traffic be simulated in such a way that the simulated BGP routes match
actual used BGP routes in an efficient way when a large number of ASes and IP ranges are involved?

1.4. Outline
Chapter 2 will give a more detailed description of the state-of-the-art methods and data sets presented in
this chapter. Next, chapter 3 will presents Kastelein’s algorithm: a new topology generating algorithm, a
mock graph generator which is used to validate the algorithm, and the the way in which the BGP simulator
functions. After the methodology has been presented, chapter 4 will validate Kastelein’s algorithm and the
new BGP simulator. Moreover, the new BPG simulator’s scalability is going to be measured. Finally, chapter 5
will provide a conclusion and work to be done in the future.





2
Related Work

The preceding chapter has shown the importance of simulating BGP traffic and improving the underlying
AS relations, as this enables establishing exactly where hijack coverage is lacking. This chapter first ex-
plains how BGP works and lists methods that have been developed for detecting BGP anomalies. Next, two
algorithms are described that are capable of predicting and improving AS relations, and which will be used
in the following chapter to introduce a new algorithm that uses trace routes. Following this, a description
is given of AS Rank, which uses one of these two algorithms and has the largest database of AS relations
in the world. Finally, this chapter will explain how the Trap’s BGP simulator, developed by the TU Delft,
works. This will serve as a reference for the third chapter of this thesis, where a new BGP simulation tool
is presented.

In order to explain the workings of AS topology generating algorithms and Mininet, background knowledge
of BGP is first presented. Based on the survey paper of Al-Musawi et al., the working of BGP, the types of
AS relations, the types of BGP anomalies, and different BGP anomaly detecting methods are explained in
sections 2.1, 2.2, 2.3, and 2.4 [21].

2.1. Border Gateway Protocol (BGP)
The Internet consists of many interconnected networks, called Autonomous Systems (ASes). BGP is a proto-
col that interconnects ASes. An AS has its own network agenda that operates on behalf of a single adminis-
trative entity or domain. Each AS has a unique identifier called an AS number. Originally, an AS number was
stored in a 2 byte field, resulting in only 65k unique ASes. But, with the growth of the Internet and number of
ASes, 4 byte AS numbers were introduced to extend this limit. As of 2018, 70k ASes exist.

An AS provides access to one or more prefixes and exchanges Network Reachability Information (NRI),
information on how to reach IP prefixes. Two BGP routers, also called BGP speakers, communicate through
Internal BGP (IBGP) with each other if they are located in the same AS. Two routers from different ASes use
External BGP (EBGP). In this thesis, BGP will refer to EBGP. IBGP does not lie in the scope of this research.

IP addresses and prefixes
Each AS takes care of traffic between groups of continuous IP addresses, so-called IP prefixes. Two types of IP
addresses exist: IPv4 and IPv6 addresses. An IPv4 address is a 32 bit number, resulting in 232 IPv4 addresses,
and is denoted as X.X.X.X where X is an integer in the range of 0 to 256. An IPv6 address can be denoted as
XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX where each X is a hexadecimal number. Every 2 hexadeci-
mals represent a byte making an IPv6 address 128 bits long which results in 2128 IPv6 addresses.

IP addresses are bundled in IP prefixes. An IPv4 prefix takes the form X.X.X.X/Y where Y lies in the range
between 0 and 32. The number of IPv4 addresses in an IPv4 prefix is 232−Y −1. The same /Y notation is used
for IPv6 prefixes where Y lies between 0 and 128, with the number of IPv6 addresses contained by the IPv6
prefix equal to 2128−Y −1. Y determines the size of the prefix and the smaller the Y, the larger the prefix. The
example on the next page shows how the first and last IP address of an IP prefix are calculated.

7
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Example: calculating the first and last IPv4 address of the IPv4 prefix 192.168.2.0/22 The method pre-
sented below can also be used for calculating the first and last IPv6 addresses of IPv6 prefixes. 192.168.2.0/22
first needs to be written in its binary representation:

192.168.2.0/22 = 11000000 10101000 00000010 00000000 / 22

To calculate the first IP address of a prefix, the binary presentation of the IP address is taken and the AND
operation is performed with the subnet mask. The subnet mask consists of a sequence of 1s with the length
equal to Y, in this case 22, followed by a sequence of 0s with the length 32−Y and is used to divide an IP prefix.
If it concerns an IPv6 prefix, there are 128−Y 0s. The first IPv4 address in 192.168.2.0/22 is:

length = 22︷ ︸︸ ︷
11111111 11111111 111111

32-22 = 10︷ ︸︸ ︷
00 00000000

AND 11000000 10101000 00000010 00000001 = 192.168.2.0

11000000 10101000 00000000 00000000 = 192.168.0.0

To calculate the last IP address of a prefix, again the binary presentation of the address is taken and the OR
operation is performed with a sequence of 0s with a length equal to Y, in this case 22, followed by a sequence
of 1s with the length 32 − Y . If it concerns an IPv6 prefix, there are 128 − Y 1s. The last IPv4 address in
192.168.2.0/22 is:

length = 22︷ ︸︸ ︷
00000000 00000000 000000

32-22 = 10︷ ︸︸ ︷
11 11111111

OR 11000000 10101000 00000010 00000001 = 192.168.2.0

11000000 10101000 00000011 11111111 = 192.168.3.255

BGP Messages
BGP is an incremental protocol. After a complete exchange of the Routing Information Base (RIB) - a data
table stored in a BGP router that lists the routes to IP prefixes - only the changes to the RIB are communi-
cated through new announcement messages, withdrawal messages or update messages concerning an exist-
ing route attribute. A RIB consists of Adj-RIBs-In, Loc-RIB, and Adj-RIBs-Out tables:

• The Adj-RIBs-In table contains routing information learned from neighbouring ASes, which has not
yet been processed.

• The Loc-RIB table stores routes that will be used to perform routing based on the Adj-RIBs-In table
content and local policies.

• The Adj-RIBs-Out table has routing information that is ready for advertisement to peered ASes.

In order to send and receive routing information, BGP uses Transmission Control Protocol (TCP) with port
number 179 to exchange OPEN, UPDATE, NOTIFICATION, and KEEPALIVE messages. An OPEN message
is the first message sent after establishing a TCP connection between two BGP peers. When the other side
accepts this message, KEEPALIVEs are periodically transmitted to confirm that the two BGP peers are still
interconnected. A NOTIFICATION message supplies information regarding a terminated session. However,
the most important message is the UPDATE message which is used to announce a new route, withdraw a
route that was advertised previously, or update an existing route with new parameters.

BGP Attributes
BGP attributes are a set of properties stored in a BGP UPDATE message and are used to determine the best
route among many possible routes to an IP prefix. Attributes are divided in four types and are sent from BGP
router to BGP router if the type allows for it:

• Well-known mandatory: attributes which should be recognised and included by BGP routers.

• Well-known discretionary: attributes which should be recognised but may be included by BGP routers.

• Optional transitive: attributes which may be recognised by BGP routers but should be included even if they are not recognised.

• Optional non-transitive: attributes which may be recognised by BGP routers and may be included.

The most well-known and used attributes are: ORIGIN, AS_PATH, LOCAL_PREF, AGGREGATOR, and
Multi Exit Discriminator (MED).
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• ORIGIN is a well-known mandatory attribute created by the BGP router starting the announcement,
also called the originator AS. The attribute indicates how an AS has learned a particular route and can
have the values 0, 1, or 2. The value 0 is used for routes to prefixes where the originator AS provides the
final routing. The value 1 indicates that the route is learned via the - now obsolete - Exterior Gateway
Protocol. The value 2 tells that the origin of the route is unknown or learned using a different protocol
[14].

• AS_PATH is a well-known mandatory attribute that stores all the ASes that the UPDATE message has
traversed as a result, prevents routing loops. The AS_PATH attribute is updated while moving from
AS to AS. For example, AS1 starts announcing a route and the route flows through AS2, AS3 and AS4.
The resulting AS_PATH in AS4 is [1,2,3,4]. The next AS that processes and sends the announcement is
appended at the end of the AS_PATH. The route that the actual data takes equals the inverted AS_PATH
list.

• LOCAL_PREF is a well-known discretionary attribute and represents the degree of preference for routes
coming from a peered AS where a high value of this attribute shows a strong preference. If the attribute
is not provided in the BGP message, the BGP router will use its own locally stored LOCAL_PREF given
to the AS from which it receives the route.

• AGGREGATOR is an optional transitive attribute. It contains information about the BGP speaker that
aggregates the route. Although the aggregation helps to reduce the number of advertising routes, it can
hide AS_PATH and other attributes of the aggregated prefixes.

• Multi Exit Discriminator (MED) is an optional non-transitive attribute and is used to suggest to peered
ASes which route to the same prefix they should use. For example, AS1 is peered with AS2 via two BGP
routers and prefers, for a particular route, that the route sent from the second BGP router is used. By
giving this announcement a lower MED value than the announcement sent from the first BGP router,
AS1 can give AS2 its preferred used path.

When announcements are received by a BGP router, it uses the following sequence of comparisons to find
the best route to a prefix. More criteria exist, however, those presented below are the most relevant ones.

1. Highest LOCAL_PREF value

2. Lowest AS_PATH length

3. Lowest ORIGIN type

4. Lowest MED value
. . .

14. Lowest BGP router ID

BGP messages are sent to reflect changes in the topology and policy of Ases. When a BGP router receives
a BGP message that changes its routing table it will propagate that message to all or a group of its neighbors
based on its local policies.

The fact that a route is stored in the Loc-RIB table does not mean it that is going to be used. For redun-
dancy reasons, multiple routes to the same prefix are stored in a BGP router. To determine the best path to an
IPv4 or IPv6 address, the BGP router first determines the smallest prefix that will fit the address. If only one
route remains, this route will be used. If there are multiple routes to the same prefix, the BGP router uses the
sequence of comparisons presented above. When the first criteria results in a single route, this route is used.
If this is not the case, the next criteria are tested one by one until only one route remains. When, finally, there
are still multiple routes to choose from, the BGP router picks the route learned from the peered BGP router
with the lowest ID.
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2.2. AS relations
The propagation of a BGP message depends on the relation between ASes. There are 4 types of relations
between ASes according to the definition by L. Gao [26]:

• p2p - Peer-to-Peer

• p2c - Provider-to-Customer

• c2p - Customer-to-Provider

• s2s - Sibling-to-Sibling

An AS must pay for data that is sent to parts of the Internet that are not in the customer cone of the AS.
The customer cone of an AS is the set of IPv4 and IPv6 addresses that are either owned by the AS or can be
reached by visiting its customers, and also include the customers of the customers. A c2p link connects a
customer with a provider that will provide the customer access to the part of the Internet that is not in the
customer’s customer cone. A c2p link between ASX and ASY concerns the same link as the p2c link between
ASY and ASX.

Two ASes that have agreed to exchange traffic data coming from each other’s customer cones on a quid
pro quo basis, use a p2p link. The two ASes can be seen as mutual upstream providers. The customer cones
and data rates of the two ASes have to be more or less equal. This results in the fact that a c2p link can be
followed by a p2p link.

However, when data originating from an upstream AS is sent over a p2p link, the upstream AS does not
have to pay for the data transfer. Consequently, the smaller downstream AS has to bear the cost for data not
originating from its customer cone. Therefore, a p2c link cannot be followed by a p2p link.

To summarise, BGP learned routes first consist of zero or more c2p links, then zero or one p2p link, fol-
lowed by zero or more p2c links. Finally, an s2s link can appear anywhere in the path. This is called a valley-
free path since a c2p link can never appear between two c2p links and vice versa. An s2s link interconnects
two ASes in the same orginasation or ISP.

Giotsas et al. showed that as many as 13% of all the links between ASes have different relationships, also
called hybrid relationships, for IPv4 and IPv6 prefixes. Also, 13% of all the IPv6 paths do not follow the valley-
free rule. The authors claim that this is done to maintain IPv6 reachability. Giotsas et al. suggest that the
inferring of AS relations should be separated for IPv4 and IPv6 prefixes [28]. The following section elaborates
on the different types of anomalies when BGP is (unintentionally) misused.

2.3. Types of BGP Anomalies
Al-Musawi et al. [21] refer to anomalies as harmful changes in BGP behaviour [21]. They have constructed a
taxonomy of BGP anomalies in four categories:

• Direct intended: Intentional BGP hijacks which can appear in different scenarios such as prefix hijacks
and sub-prefix hijacks which both can also include AS hijacks.

• Direct unintended: Unwanted BGP traffic generated because of misconfigurations. For example, cre-
ating route leaks by forwarding BGP messages to ASes that are not supposed to receive them, or by
announcing used or not-used prefixes. Note that announcing used IP prefixes is the same as a prefix
hijack, however, in this case the AS performing the hijack has no harmful intentions.

• Indirect: Although BGP is a routing protocol for managing Internet reachability information between
ASes, it can experience periods of instability caused by, for example, viruses, botnets or Distributed
Denial of Service (DDoS) attacks.

• Link failure: Many ASes are interconnected via so-called Internet Exchange Points (IXPs). When, for
example, there is an outage in an IXP, all the peering sessions can be terminated. This sudden drop of
links will result in the rerouting of BGP traffic and in the overusing of still available links between ASes.
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Direct intended anomalies
As above, there are different types of direct intended anomalies. Since these are the most relevant for this
research, they will be elaborated on more in depth.

• Prefix Hijack: During a prefix hijack, an malicious party uses a BGP router to announce a prefix that is
not owned by the AS. BGP allows any BGP router to announce any prefix.

• Prefix and Its AS Hijack: In this scenario, an adversary again announces a prefix that is not owned by
the AS. In order to avoid a Multiple Origin AS (MOAS) conflict, the adversary also changes the AS_PATH
attribute in such a way that it appears that the prefix in the announcement comes from the AS that has
registered the prefix.

• Sub-Prefix Hijack: A sub-prefix hijack works in the same way as a prefix hijack. but the difference is
that here the adversary uses a so-called more-specific, a sub-prefix that fits in the original prefix the
adversary wants to hijack. For example, the IPv4 prefix 10.0.0.0/24 is a more specific of the IPv4 prefix
10.0.0.0/16: the IPv4 range 10.0.0.0 - 10.0.0.255 fit in 10.0.0.0 - 10.0.255.255 and contains less IPv4 ad-
dresses. If the sub-prefix is not registered, an MOAS conflict is avoided. As mentioned earlier, a BGP
router uses the route with the smallest prefix for an IPv4 or IPv6 address it needs to forward. Thus,
when an attacker announces new routes to a more-specific of the prefix he or she wants to hijack, these
newly learned routes are going to be preferred by other ASes.

• Sub-Prefix and Its AS Hijack: The attacker combines the strength of the sub-prefix hijack and disguises
himself as the origin AS. Consequently, there is no MOAS conflict.

2.4. Detecting BGP Anomalies
Although this research is not going to create a new BGP hijacking detection method, an overview of BGP
anomaly detecting methods is provided to give insight on existing BGP hijacking detection methods and the
resulting findings. To better compare the different methods, Al-Musawi et al. [21] has organised them in five
categories: time series analysis, machine learning, statistical pattern recognition, validation of BGP updates
based on historical BGP data, and reachability checks.

Time Series Analysis
By applying time series analysis to detect BGP anomalies, Bloomfield [33] and Al-Musawiet et al. [20] showed
interesting BGP routing properties. Bloomfield applied the Fast Fourier Transform (FFT) to BGP routing up-
date rates using data from large ISPs. The technique does not provide a way to identify the cause or source of
routing instability, possibly caused by direct intended anomalies. However, Bloomfield and Al-Musawiet et
al. showed that rapid changes in routing updates correlate with instability.

BGP updates sent from BGP routers have the characteristics of determinism, recurrence, and non-linearity
based on Recurrence Quantification Analysis (RQA), an advanced non-linear analysis technique that uses
BGP volume and average length of AS-PATH as BGP features extracted every second [20]. Both methods have
not been tested for detecting direct intended anomalies.

Machine Learning
Li et al. presented an Internet Routing Forensic (IRF) framework to detect BGP anomalies based on using the
machine learning algorithm C4.5 [44] [36]. The IRF framework, which has not been validated, is based on the
control plane using the RouteViews and RIPE RRC data. An IRF-related framework, which can use different
data mining algorithms, was used by Cazenave et al. and showed that the Support Vector Machine (SVM)
gives better performance than decision tree and Naive Bayes, a vector-based classifier construction technique
[23]. Furthermore, Cazenave et al. showed that the IRF-related framework is able to detect misconfiguration,
blackout, and worm attacks.

A new machine learning mechanism was introduced by Al-Rousan and Trajkovic [22]. It consists of two
main phases: an advance features extraction from BGP updates and a classifier for classifying BGP updates
as normal or abnormal.

Lutu et al. presented a system to detect BGP anomalies at an early stage based on prefix visibility, the
occurrence of a prefix in the global routing table at every sampling moment, at the AS level [38]. The proposal
can only detect direct unintended anomalies.

None of these approaches address detecting direct intended anomalies or are able to identify the source
cause of he anomaly. Just as the time series analysis techniques, all these machine learning approaches only
use control plane data.
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Statistical Pattern Recognition
A technique to detect BGP node, link, and peer failure using a form of Principal Component Analysis (PCA),
a dimension-reduction tool that can be used to reduce a large set of variables to a small set without losing
relevant information, was presented by Huang et al. [32]. The method detects and differentiates between
the three failures. It requires information of router configuration and it takes between 10 and 100 minutes
making it unsuitable for real-time detection.

Deshpandeet et al. [24] presented a BGP anomaly detection approach based on the Generalized Like-
lihood Ratio Test (GLRT), a standard statistical technique used in hypothesis testing. The authors showed
that using AS-PATH and rare AS in AS-PATH features with message volume improved the false positive rate
compared with using message volume alone.

A data-mining approach used to produce relevant information from BGP updates, called Higher-Order
Path Analysis (HOPA) presented by Ganiz et al. [25], was used to detect BGP anomalies. It is able to differen-
tiate between indirect BGP anomalies and link failure. HOPA has not been evaluated with direct anomalies.

Theodoridis et al. [42] introduced an unsupervised mechanism to detect BGP hijacking using control
plane BGP raw data. This mechanism is based on observing the geographic changes of intermediate AS in
the AS-PATH between the competing routes.

Techniques based on statistical pattern recognition can detect different types of BGP anomalies and iden-
tify the source causes.

Validation of BGP based on historical BGP data
This approach to BGP anomaly detection uses a history of RIB table and/or BGP updates to validate new
BGP updates, assuming that the Internet topology does not frequently change. Pretty Good BGP (PGBGP)
is a detection and mitigation system against BGP attacks [34]. PGBGP uses the history of both RIB and BGP
updates downloaded from the RouteViews project to validate new updates. Moreover, old unused routes are
automatically deleted and new suspicious routes, where the prefix and origin AS pair is not yet known, are
propogated with a low LOCAL_PREF. As described earlier, the LOCAL_PREF attribute may be included in BGP
UPDATE messages. All the approaches rely on prefix origin change in order to validate BGP updates.

Lad et al. developed the Prefix Hijack Alert System (PHAS). PHAS analyses BGP data in real-time and
detects when a prefix hijacking event occurs [35]. The system requires users to register their prefixes includ-
ing which ASes are allowed to announce them. There is no secure mechanism for differentiating between a
legitimate owner and an attacker.

NetReview, presented by Haeberlen et al., is prototype that detects BGP faults at the AS level by keeping
logs containing BGP updates from and to ASes [30]. NetReview is capable of spotting link failures, miscon-
figurations, BGP hijacks and cases where ASes violate policies. The drawback of NetReview is that additional
policy data from ASes as well as one year window of BGP updates are required. As a Consequence, there are
scalability issues, especially for large ISPs.

Argus is a system for detecting prefix hijacking and identifying the attacker in real-time using BGP up-
dates, the Internet Routing Registry (IRR) and trace routes. With over 2 months of historical BGP data, the
system classifies new BGP updates as normal or suspicious. Afterwards, it checks the reachability using trace
routes to verify the suspicious updates. Argus cannot detect sub-prefix hijacking, indirect anomalies and link
failures [40], [45].

Reachability Checks
This type of approach uses the BGP data plane to check reachability to a certain prefix using different types of
tools such as hping, a free packet generator and analyzer for the TCP/IP protocol, Nmap, a network mapper,
and also trace routes. Multiple approaches exist [47], [31], [41], [46] of which [47], [31], and [41] are capable
of detecting direct intended anomalies.

Zhang et al. iSPY’s ability is limited to detecting regular prefix hijacking only: other types of hijacking
such as sub-prefix hijacking cannot be detected by iSPY. The system uses the observation that connectivity to
victim hosts is lost during hijacking attempts [46]. All approaches use data plane data with the exception of
the approach by Hu and Mao [31] that also uses control plane data.

The assumption that the network location for a prefix remains unchanged over time and that a significant
change in the hop count between source and destination AS can be a sign of a possible anomaly was made
by Zheng et al. The hop count refers to the number of ASes through which BGP announcements must pass
between source and destination AS. Zheng et al. proposed a light-weight distributed scheme for detecting IP
prefix hijacks where a vantage point to a certain IP may be used as an indicator of hijacking [47]. Tahara et al.
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[41] proposed a method to detect prefix hijacks by using a ping test. Assuming that a hijack will not affect all
ASes, pings ending up at different BGP routers could be a sign of a hijack.

In [31], X. Hu et al. used a set of fingerprints such as host OS properties, IP identifier, TCP time stamp,
and ICMP time stamp to identify the attackers. The system is difficult to deploy since it relies on complicated
probing and requires installation of customised software at its BGP routers.

2.5. Topology Generating Algorithms
As presented in the introductory chapter, route leaks, the forwarding of BGP messages to ASes that are not
supposed to receive them, can have severe consequences [4] [5] [10] [11]. Any system designed to detect
route leaks needs to have an accurate and complete AS-relations database to correctly distinguish between
customers and providers. In the case of BGP hijacks, knowledge of the way in which the AS topology changes
over time helps to improve the analysis of BGP-related incidents.

Gao, besides being the first to develop an AS classification which is still used today, also created an al-
gorithm that has been improved on over the years by others. This section will first describe the algorithm
presented by Gao [26], followed by the algorithm of Luckie et al. [37]. The IMC’ 13’s algorithm is included be-
cause it is used by AS Rank, the largest up-to-date database of AS relations, and because it uses elements from
Gao’s algorithm. The differences between the two algorithms are also presented. Finally, the limitations and
benefits of the two state-of-the-art algorithms are presented and substantiated. Both algorithms derive p2p,
p2c and c2p links with Goa’s algorithm also including s2s links. Both algorithms can only use BGP control
plane data, thereby limiting the number of possible inferred relations.

2.5.1. Gao’s Algortihm
In 2001, Lixin Gao distinguished four types of relations between ASes: p2p, p2c, c2p and s2s. She also in-
troduced a method to extract these four types from BGP control plane data. Gao’s algorithm is based on the
assumption that a provider is larger than his customers and that the size of an AS is proportional to the AS’
node degree, i.e., the number of links with other ASes. The algorithm can be split in six stages:

• Stage 1: Extracting AS_PATH information from BGP control plane data and the initialisation of variables
The algorithm first takes all BGP control data and adds the AS_PATH information to a list. The first
AS in every path should always be the AS announcing the prefix. Next, stage 1 removes sequences of
recurring ASes in the paths: the algorithm does not support AS path prepending. Stage 1 then initialises
the transit counter to zero and sets the not_p2p flag to false for each unique link. The transit counter
counts the number of paths indicating that the link is possibly a c2p or p2c link while the not_p2p flag
is used, as the name suggests, to indicate that a link cannot be p2p. Gao’s algorithm next creates an
empty list of neighbours for each AS which will be used in stage 2 to compute the node degree. Finally,
this stage initialises the state variable which is going to be used to store the link type between ASes in
later stages.

Algorithm Goa’s 1st stage

1: create an AS path list l with BGP control plane data
2: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in l do
3: for i = 1, . . . , n −1 do . remove AS path prepending
4: if ASi = ASi+1 then
5: remove the ith AS from p.

6: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
7: for i = 1, . . . , n −1 do
8: state[ASi , ASi+1] ←−1
9: state[ASi+1, ASi ] ←−1

10: transit[ASi , ASi+1] ← 0
11: transit[ASi+1, ASi ] ← 0
12: not_p2p[ASi , ASi+1] ← false . link can or cannot be p2p
13: not_p2p[ASi+1, ASi ] ← false
14: neighbors[ASi ] ← [] . empty list, used for the node degree
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• Stage 2: Computing the node degree for each AS
Using each path in the list constructed in stage 1, the second stage counts and stores the node degree,
the number of unique links, for each AS. The algorithm is based on the assumption that a provider has
a larger size compared with his customers and that the size of an AS is proportional to its degree.

Algorithm Goa’s 2nd stage

1: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
2: for i = 1, . . . , n −1 do
3: if ASi+1 not in neighbors[ASi ] then
4: add ASi+1 to neighbors[ASi ]

5: if ASi not in neighbors[ASi+1] then
6: add ASi to neighbors[ASi+1]

7: for each AS u in neighbors do
8: degree[u] ←|neighbors[u]| . the unique number of neighbors

• Stage 3: Counting the number of paths that could infer a c2p link for each link.
Assuming that each path is valley-free and that a provider has a larger node degree than its customer,
the AS in the path with the highest degree is the top AS. All links leading up to the top AS can be c2p
and all links starting from the top AS can be p2c. In other words, for each path in the list constructed
in stage 1, the third stage first selects the AS with the highest degree, and in the case of multiple ASes,
chooses the first AS with the highest degree of the path. Next, the third stage increments the transit
counter for the links leading up to the highest degree AS and increments the transit counter for the
reversed links starting at the highest degree AS.

Algorithm Goa’s 3rd stage

1: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
2: find the smallest j such that degree[AS j ] = max1≤i≤n degree[ASi ]
3: for i = 1, . . . , j −1 do
4: transit[ASi , ASi+1]++

5: for i = j , . . . , n −1 do
6: transit[ASi+1, ASi ]++

• Stage 4: Inferring of s2s, p2c, and c2p relationships
When two ASes provide transit to each other, the link can concern an s2s link. In the case that only one
AS provides transit and not vice versa, this link may be inferred as c2p or p2c. In this stage, the link type
cannot be detected if no more than L paths infer transit for a link in one direction and more than L in
the other direction. Gao sets L to 1. The fourth stage first selects a number L larger than zero. Next, for
each link in each path in the list constructed in stage 1, stage 4:

– Marks a link s2s when the link’s transit counter and the reversed link’s transit counter are either
a) both higher than L or b) both higher than 0, and at most, L.

– Marks a link p2c when the link’s transit counter is higher than L and the reversed link’s transit
counter is 0.

– Marks a link c2p when the reversed link’s transit counter is higher than L and the link’s transit
counter is 0.
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Algorithm Goa’s 4th stage

1: choose integer L larger than zero
2: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
3: for i = 1, . . . , n −1 do
4: if transit[ASi , ASi+1] > L and transit[ASi+1, ASi ] > L then
5: state[ASi , ASi+1] ← s2s
6: state[ASi+1, ASi ] ← s2s
7: else if 0 < transit[ASi , ASi+1] ≤ L and 0 < transit[ASi+1, ASi ] ≤ L then
8: state[ASi , ASi+1] ← s2s
9: state[ASi+1, ASi ] ← s2s

10: else if transit[ASi+1, ASi ] > L and transit[ASi , ASi+1] = 0 then
11: state[ASi , ASi+1] ← p2c
12: state[ASi+1, ASi ] ← c2p
13: else if transit[ASi , ASi+1] > L and transit[ASi+1, ASi ] = 0 then
14: state[ASi , ASi+1] ← c2p
15: state[ASi+1, ASi ] ← p2c

• Stage 5: Identification of possible p2p links
Given the valley-free constraint, links leading up to but not including and starting from and not includ-
ing the top AS cannot be inferred as p2p. The algorithm uses the heuristic that the top AS is more likely
to peer with an AS of the same node degree. Consequently, when two ASes are both linked with the top
AS, the AS linked AS that has a higher degree cannot be inferred as p2p. This reasoning does not hold
when either of the links to and from the top AS are already inferred as s2s. In other words, for each
path in the list constructed in stage 1, the fifth stage:

– Selects the AS with the highest degree. In the case of multiple ASes, the one listed first is chosen.

– Sets the not_p2p flag to true for the links leading up to, but not containing, the highest degree
AS.

– Sets the not_p2p flag to true for the reversed links starting at, but not containing, the highest
degree AS.

– Sets the not_p2p flag to true for the link starting in the highest degree AS if both following con-
ditions hold:

¦ the links starting and ending in the highest degree AS are both not assigned as s2s
¦ the degree of the AS before the highest degree AS is higher than the degree of the AS after

the highest degree AS

– Sets the not_p2p flag to true for the link ending in the highest degree AS if both following condi-
tions hold:

¦ the links starting and ending in the highest degree AS are both not assigned as s2s
¦ the degree of the AS after the highest degree AS is higher than the degree of the AS before

the highest degree AS

Algorithm Goa’s 5th stage

1: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
2: find the smallest j such that degree[AS j ] = max1≤i≤n degree[ASi ]
3: for i = 1, . . . , j −2 do
4: not_p2p[ASi , ASi+1] ← true
5: for i = j +1, . . . , n −1 do
6: not_p2p[ASi , ASi+1] ← true
7: if state[AS j−1, AS j ] 6= s2s and state[AS j , AS j+1] 6= s2s then
8: if degree[AS j−1] > degree[AS j+1] then
9: not_p2p[AS j , AS j+1] ← true

10: else
11: not_p2p[AS j−1, AS j ] ← true
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• Stage 6: Inferring of p2p links
Stage 5 determined links that cannot be inferred as p2p. The sixth stage infers links that can be inferred
as p2p given that the node degree between the ASes in the link does not differ more than R times:
ASes interconnected via p2p links usually do no differ much in size. In other words, this stage selects a
number R between 0 and 1 and assigns a p2p relationship to each link if the two following conditions
hold:

– The link and the reversed link are not both identified as non-p2p links in stage 5. The reversed
link of {ASx , ASy } is defined as {ASy , ASx }.

– The ratio between the degree of the two ASes in the link is not more than R.

Algorithm Goa’s 6th stage

1: choose the real number R between 0 and 1
2: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in l do
3: for i = 1, . . . , n −1 do
4: if not not_p2p[ASi , ASi+1] and not not_p2p[ASi+1, ASi ] then
5: if degree[ASi ] / degree[ASi+1] < R and degree[ASi+1] / degree[ASi ] < 1

R then
6: state[ASi , ASi+1] ← p2p
7: state[ASi+1, ASi ] ← p2p

2.5.2. IMC’ 13’s algorithm
In 2013, Luckie et al. presented a new improved algorithm to infer c2p, p2c and p2p links [37]. The IMC’ 13’s
algorithm can, compared to Gao’s algorithm, filter out poisoned paths. Poisoned paths are paths that prevent
the sending of data destined for IP prefixes. Also, the IMC’ 13’s algorithm does not rely on valley-free paths.
The authors state that, because it is difficult to distinguish between route leaks and s2s links, s2s links are
not inferred by the algorithm.

The algorithm uses RIBs from RouteViews RRCs and RIPE RRCs and double listings of ASes in paths are
removed. Paths that contain unassigned ASes are removed. The authors also inferred p2c links using the RIPE
WHOIS database where routing policies are stored using the Routing Policy Specification Language (RPSL).
Given the scope of this thesis, the inferring of p2c links using the RIPE’s WHOIS database will not be further
discussed. The validation AS relations data set, used to validate of the algorithm, consists of RSPL, BGP com-
munities, and email exchange data combined with two older data sets generated by older - not specified -
algorithms.

The node degree, the number of unique neighbours of an AS, and transit degree, the number of unique
paths traversing through an AS, are the two metrics the algorithm uses. The transit degree is first used to sort
the ASes where next the node degree serves as a tie braker. Inferred tier-1 ASes are always placed at the top. As
mentioned earlier, an tier-1 ASes are the largest ASes located at the core of the internet with many p2c links
to lower-tier customers. The final presented algorithm consists of 14 stages.

• Stage 1: Extracting of AS_PATH information from BGP control plane data and the initialisation of vari-
ables
The algorithm first takes all BGP control data and adds the AS_PATH information to a list. The first AS
in every path should always be the AS announcing the prefix. Next, stage 1 removes sequences of re-
curring ASes in the paths: the algorithm does not support AS path prepending. Finally, stage 1 creates
an empty list of neighbours for each AS which is going to compute the node degree in stage 2.

Algorithm IMC’ 13’s 1st stage

1: create an AS path list lcomplete with BGP control plane data
2: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
3: for i = 1, . . . , n −1 do . remove AS path prepending
4: if ASi = ASi+1 then
5: remove the ith AS from p.

6: for i = 1, . . . , n −1 do
7: neighbors[ASi ] ← [] . empty list, used for node degree
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• Stage 2: Discard paths with artefacts
The second stage removes a path in the list computed in stage 1 if an AS in the path has an artefact: it
is listed twice or more and is separated by one or more other AS(es). These so-called poisoned paths
will lead to ASes preferring each other to reach a prefix. If an AS in the path is unassigned [DEF], stage
2 also removes the path from the list computed in stage 1.

Algorithm IMC’ 13’s 2nd stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
2: for i = 1, . . . , n do . remove duplicate ASes in a path
3: for j = i +1, . . . , n −1 do
4: if ASi = AS j then
5: remove p from lcomplete

6: for i = 1, . . . , n do
7: if ASi not assigned then
8: remove p from lcomplete

• Stage 3: Computing the node and transit degree and, next, sorting ASes in decreasing order of computed
transit degree, then node degree
For all filtered AS paths in the list computed in stage 2, the third stage stores the unique neighbours for
each AS and increases the transit degree for each AS that is not listed first or last in the path. The transit
degree of an AS is the number of AS paths where this AS is used for transferring data from other ASes.
Finally, this stage initialises the state variable which is going to be used to store the link type between
ASes in later stages.

Algorithm IMC’ 13’s 3rd stage

1: sorted ← []
2: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
3: state[ASi , ASi+1] ←−1
4: state[ASi+1, ASi ] ←−1
5: for j = 1, . . . , n −1 do
6: if AS j+1 not in neighbors[AS j ] then
7: add AS j+1 to neighbors[AS j ]
8: add AS j+1 to sorted

9: if AS j not in neighbors[AS j+1] then
10: add AS j to neighbors[AS j+1]
11: add AS j to sorted

12: for j = 2, . . . , n −1 do
13: transit[AS j ]++ . transit degree

14: for each AS u in neighbors do
15: degree[u] ←|neighbors[u]| . node degree

16: sort the ASes in sorted in decreasing order of transit degree, then node degree

• Stage 4: Inferring the clique at top of the AS topology
The fourth stage first finds the maximum clique, the largest set of ASes that are all interconnected with
each other, C1 for the group of ten ASes that have the largest transit degree. Next, stage 4 determines for
every other AS, in decreasing order of transit degree and then node degree, if it is peered with all ASes
in C1. If so, stage 4 adds the AS to C1. When the AS is peered with all but one ASes in C1, it is added to
C2. The final inferred clique is the maximum clique of the ASes in C1 and C2.
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Algorithm IMC’ 13’s 4th stage

1: C1, C2 ← []
2: for i = 1, . . . , 10 do . the ten ASes with the largest transit degree, then node degree
3: add sorted[i ] to C1

4: C1 ← maximum_clique(C1)
5: for i = 11, . . . , len(sorted) do
6: counter ← len(C1))
7: for j = 1, . . . , 10 do
8: if C1[ j ] not in neighbor[i ] then
9: counter ← counter−1

10: if counter = len(C1) then . AS is peered with all ASes in the clique C1

11: add sorted[i ] to C1

12: else if counter = len(C1)−1 then . AS is peered with all but one ASes in the clique C1

13: add sorted[i ] to C2

14: Cfinal ← maximum_clique(C1 ∪C2)
15: for i = 1, . . . , len(Cfinal) do . links between ASes in the clique are inferred as p2p
16: for j = i +1, . . . , len(Cfinal) do
17: state[ASi , AS j ] ← p2p
18: state[AS j , ASi ] ← p2p

• Stage 5: Removal of poisoned paths
A clique AS in Cfinal is by definition transit-free: it has no c2p links since it is located at the core of the
Internet. As a result, any path indicating that a clique AS is not transit-free is poisoned. Thus, AS paths
where two ASes in the clique are separated by an AS not in the clique are poisoned and are removed in
this stage.

Algorithm IMC’ 13’s 5th stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
2: for i = 1, . . . , n −2 do
3: if ASi in Cfinal and ASi+1 not in Cfinal and ASi+2 in Cfinal then
4: remove p from lcomplete

• Stage 6: Generating a list of all stub ASes
Stub ASes are ASes that do not appear in the middle of any path. This classification is used in later
stages.

Algorithm IMC’ 13’s 6th stage

1: lpossible stubs ← []
2: lnon-stubs ← []
3: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
4: if AS1 not in lnon-stubs then
5: add AS1 to lpossible stubs

6: if ASn not in lnon-stubs then
7: add ASn to lpossible stubs

8: for i = 2, . . . , n −1 do
9: if ASi not in lnon-stubs then

10: add ASi to lnon-stubs

11: if ASi in lpossible stubs then
12: remove ASi from lpossible stubs

13: lstubs ← lpossible stubs
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• Stage 7: Generating a list of only AS path triplets
The authors use AS path triplets, a path containing only three ASes. These triplets provide the necessary
information, shown in the next stages, for inferring c2p and p2c links.

Algorithm IMC’ 13’s 7th stage

1: ltriplets ← []
2: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
3: if n ≥ 3 then
4: for i = 1, . . . , n −2 do
5: add [ASi , ASi+1, ASi+2] to ltriplets

• Stage 8: Inferring of c2p links top-down using the above ranking.
Stage 8 visits all ASes in decreasing order of transit degree, then node degree. For each visited AS, the
AS path triplets which refers to the visited AS are selected and processed. Given the AS path triplet
[AS1, AS2, AS3] where AS3 is the selected AS, the link between AS2 and AS3 is inferred as p2c if the link
between AS1 and AS2 is p2c or p2p.

Algorithm IMC’ 13’s 8th stage

1: for i = 1, . . . , len(sorted) do
2: for each AS path p as [AS1, AS2, AS3] in ltriplets do
3: if sorted[i ] = AS3 then
4: if state[AS1, AS2] = p2p or state[AS1, AS2] = p2c then
5: state[AS2, AS3] ← p2c
6: state[AS3, AS2] ← c2p

• Stage 9: Inferring of c2p links from VPs inferred not to be announcing provider routes.
The algorithm assumes that partial vantage points (VPs), ASes that are peered with route collectors
which provide provide routes to fewer than 2.5% of all ASes, either only export customer routes or have
their connections to the route collector configured as p2c and have a default route to their providers.

In other words, the path [AS1, AS2, AS3] where AS1 is a VP assumes that the link between AS1 and AS2

is either p2c or p2p. The link cannot be c2p because the VP does not export its BGP traffic to its provider
or has a default route to its provider. Consequently, the link between AS2 and AS3 has to be p2c given
the fact that p2c and p2p links can only be followed by p2c links.

Algorithm IMC’ 13’s 9th stage

1: for each AS path p as [AS1, AS2, AS3] in ltriplets do
2: if AS1 is a partial vantage point then
3: state[AS2, AS3] ← p2c
4: state[AS3, AS2] ← c2p

• Stage 10: Inferring of c2p links for ASes where the provider has a smaller transit degree than the customer.
The algorithm assumes that c2p relations where the transit degree, the number of AS paths where this
AS is used for transferring data from other ASes, of the customer is larger than the transit degree of the
provider are rare, but exist. Given a path [AS1, AS2, AS3] where a) the link between AS1 and AS2 is p2c,
and b) the transit degree of AS3 is larger than the transit degree of AS2, the link between AS2 and AS3

has to be p2c when the path is not poisoned.

In order to filter out possible poisoned paths, the AS path triplet has to be the terminated triplet. For
example, of the two possible triplets in [AS1, AS2, AS3, AS4], only [AS2, AS3, AS4] can be used. Segments
of poisoned paths do not announce prefixes, and therefore only appear in the middle of the path.
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Algorithm IMC’ 13’s 10th stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
2: if state[ASn−2, ASn−1] = p2p and transit[ASn] > transit[ASn−1] then
3: state[ASn−1, AS1] ← p2c
4: state[ASn , ASn−1] ← c2p

• Stage 11: Inferring p2c links for ASes with no c2p links
When an AS has no provider(s), or its provider(s) are not visible for route collectors, it can only be seen
via p2p links. To find these provider-less ASes, a path needs to be found where an unknown link follows
after a sequence of c2p links or the unknown link is the first link in the path. As described earlier, a
valley-free path first consists of zero or more c2p links, followed by zero or one p2p link, and finishes
with zero or more p2c links. The unknown link cannot be the last link of the path. Luckie et al. do not
give a explanation why this should hold. The links after the first unknown link can all be inferred as p2c
given the valley-free constraint. This stage is possible since stages 8 and 10 already inferred c2p and
p2c links.

Algorithm IMC’ 13’s 11th stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
2: index ← 1
3: stopped ← false
4: for i = 1, . . . , n −1 do
5: if not stopped and state[ASi , ASi+1] = c2p then
6: index ← index+1
7: else
8: stopped ← true
9: if state[ASindex, ASindex+1] =−1 then

10: state[ASindex, ASindex+1] ← p2p
11: state[ASindex+1, ASindex] ← p2p
12: for i = index+1, . . . , n −1 do
13: state[ASindex, ASindex+1] ← p2c
14: state[ASindex+1, ASindex] ← c2p

• Stage 12: Inferring of c2p links between stubs and clique ASes
Stage 8 required AS path triplets. Consequently, the links between a stub AS - that does not appear in
the middle of any path - and clique AS could not be inferred with a path of length 2. The authors of the
algorithm state that stub ASes are very unlikely to share a p2p link with clique ASes. Therefore, all paths
with length 2, where a) the first AS in the path is a clique AS and the second a stub AS, and b) the link
between the two ASes has not yet been inferred, are inferred as p2c.

Algorithm IMC’ 13’s 12th stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in lcomplete do
2: if len(p) = 2 then
3: if AS1 in Cfinal and AS2 in lstub and state[AS1, AS2] =−1 then
4: state[AS1, AS2] ← p2c
5: state[AS2, AS1] ← c2p
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• Stage 13: Inferring of c2p links where adjacent links have no relationship inferred
Just as stage 8, this stage also visits ASes in decreasing order of transit degree, then node degree. How-
ever, in this stage the requirement is dropped that the first link of the AS path triplet already has to be
inferred. This is done to prevent sequences of p2p when remaining links are inferred as p2p in stage
14. For each visited AS, AS path triplets [ASa , ASb , ASc ] where ASb is the visited AS are located where
all the links have not yet been inferred. These links would otherwise both be inferred as p2p in stage
14. Next, for each triplet [ASa , ASb , ASc ], if at least one triplets [ASa , ASb , ASx ] is located where ASx is
a provider of ASb , it is possible to infer ASb as a provider of ASa .

Algorithm IMC’ 13’s 13th stage

1: for i = 1, . . . , len(sorted) do
2: ASx ← sorted[i ]
3: for each AS path p as [AS1, AS2, AS3] in ltriplets do
4: if ASx = AS2 and state[AS1, AS2] =−1 and state[AS2, AS3] =−1 then
5: for each AS path p as [AS4, AS5, AS6] in ltriplets do
6: if ASx = AS2 and AS1 = AS4 and state[AS5, AS6] = c2p then
7: state[AS1, AS2] ← c2p
8: state[AS2, AS1] ← p2c

• Stage 14: Inferring of remaining links as p2p
All links between ASes that have not been inferred in previous stages are inferred as p2p.

Algorithm IMC’ 13’s 14th stage

1: for i = 1, . . . , len(sorted) do
2: for j = 1, . . . , len(sorted) do
3: ASx ← sorted[i ]
4: AS y ← sorted[ j ]
5: if i 6= j and state[ASx , AS y ] =−1 then
6: state[ASx , AS y ] ← p2p

2.5.3. Validation, strong and weak points of Gao’s and IMC’ 13’s algorithms
In 2001, Gao validated her algorithm with data from AT&T, a large ISP, and WHOIS data and found that 99.1%
of the links were inferred correctly. In 2016, Luckie et al. validated Gao’s algorithm and found that it inferred
links as c2p and p2c with 84.7% and links as p2p with 99.5% accuracy. The makers of the IMC’ 13’s algo-
rithm, showed that their algorithm inferred c2p and p2c links with 99.6% and p2p links with 98.7% accuracy.
Although the accuracy of both algorithms is high, this still will result in many wrongly inferred links when
considering thousand of links [7].

While both algorithms are not difficult to implement given the clearly described stages, the number of re-
lations they can infer is limited because of the limited coverage the route collectors provide. It is not possible
to add additional BGP routes in the form of trace routes. In the end, all BGP paths, either retrieved from RIBS
or using trace routes, should be valley-free. There are special hybrid cases where an AS can have multiple type
of relationships with another AS, but these cases are rare [29].

The assumption made by Gao and Luckie et al. that the customer cone of a customer is smaller than its
provider is not always valid, resulting in possibly wrong inferred links. Also, IMC’ 13’s algorithm assumes that
stub ASes, ASes that do not appear in the middle of any path, are very unlikely to share a p2p link. This may be
the case, however, given the lack of coverage of the route collectors, it is not sure if these ASes are really stub.
Finally, IMC’ 13’s algorithm does not infer s2s links. A possible s2s link, which most of the time is inferred as
a p2p, can appear anywhere in a BGP path. This free placing changes the inferring of other links.

The final stage of both algorithms is to infer all as yet unknown links as p2p. If previous stages have not
inferred all c2p and p2c links, some links will be marked p2p while they are not.

To conclude, aside from these assumptions, the largest drawback is the fact that both algorithms only
work with BGP routes from RIBs. For the limited amount of links they infer both algorithms perform well, but
at the end of day, a complete map of the Internet is needed.



22 2. Related Work

2.6. Caida’s AS Rank
Caida’s mission with AS rank is to create a map of the Internet that is as accurate as possible. AS Rank contains
two types of AS data sets: serial-1 and serial-2 [17] [18] [27]. In a presentation in May 2016, Matthew Luckie
explains how the serial-1 data set is created with the IMC’ 13’s algorithm using data from RIPE and RouteViews
route collectors [7]. Currently, there are 296 ASes peering with these route collectors of which 124 provide
their full routing table. The serial-2 data set contains:

• AS relationships in the serial-1 data set.

• Inferred relationships using BGP looking glasses, real-time sources of routing and BGP related infor-
mation at IXPs, and BGP control plane data.

• Inferred relationships using Ark trace route data

Inferring link types using BGP looking glasses and control plane data Many Internet Exchange Points
(IXPs) provide public Looking Glass (LG) interfaces that provide reading access to their BGP routing table
data. In order infer relationships using a LG of an IXP, the algorithm first obtains a list of all ASes connected
to that IXP including the IP addresses the ASes have with the IXP. Next, the algorithm saves which prefix is an-
nounced by which AS that is connected to the IXP. Using a subset of prefixes, the algorithm then determines,
based on community values stored provided by the LG, which ASes are peered with each other and infers p2p
links accordingly. BGP control plane data is also used to infer relationships. In a nutshell, every BGP path is
analysed and when two or more ASes appear that are connected to the same IXP, relationships are inferred
based on community values [27].

How the trace route data is used to infer relationships for the serial-2 data set is not documented. Of the 4
types of relationships, the serial-1 and serial-2 data sets only contain p2p, p2c and c2p relationships. As of
2018, AS Rank has the most up-to-date database of AS relations in the world [7].

2.7. Trap’s BGP simulator
In a study done by the TU Delft, C.H. Trap simulated the 2008 Pakistan YouTube incident [43]. Initially Mininet
and Quagga were used for this. Mininet, which interconnected the involved ASes, is a program that can create
a realistic virtual network, running real kernel, switch and application code. It can be run on a single machine
or be distributed over multiple servers if necessary. Quagga is a routing software suite that can simulate
ASes. The involved data set counted 5624 ASes. After a custom optimised version of Mininet was written and
the computation was distributed over multiple servers, the memory and CPU bottleneck was solved. The
simulator was capable of running the 5624 ASes in real-time with 9 involved prefix announcements. The
simulator used 32.5 GB of memory of which half was used to store all the BGP routes.

Although AS Rank has archived the serial-1 data set every month from 1998 to the present day, the authors
did not use the 2008 serial-1 data set: instead a topology generated in 2018 was chosen. Since many ASes use
configurations that are not known. As a result, the simulated availability of YouTube.com during the incident
differed from the analysis done by Dyn [6]. Actual BGP routes generated by the simulator were not compared
with BGP routes captures by the RIPE route collectors.
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Methodology

The previous chapter described how BGP works, explained the different kinds of hijacks and what has
been done so far to detect them. It continued with listing two AS inferring algorithms, of which one is used
in AS Rank, and also showed that both algorithms did not generate a complete AS data set, since they only
use BGP control plane data. Trap’s BGP simulator, which lacks scalability, was also explained. This chapter
will first present an improved method, using trace routes, for inferring additional AS relations by making
use of existing data sets. Generated results are then used to simulate traffic using the new, improved BGP
simulator which is further described in more detail. To validate the new AS topology generating algorithm
and the BGP simulator in the next chapter, an AS graph generator that mimics the structure of the real In-
ternet, also called a mock graph generator, is used and presented in this chapter. When relationship types
are removed from or changed in a mock graph, the new algorithm should infer all the removed or changed
relationship types.

3.1. Kastelein’s algorithm
The previous chapter described Gao’s algorithm and IMC’ 13’s algorithm. Both algorithms only use BGP
control plane data, resulting in a limited number of inferred relationships. AS Rank’s serial-2 data set contains
more relationships and uses trace routes, but, how this is achieved is not documented.

To also infer relationships that are not visible for route collectors, trace routes can be used. A trace route
from router A to router B should follow the inverted BGP path from the announced prefix from the AS in
which router B is located to the AS in which router A is located. Consequently, a single device that performs
trace route measurements can find the BGP paths used to reach all available IP prefixes from its AS. Although
a BGP router peered with a route collector can also provide all its routes, route aggregation limits the number
of visible paths seen by the AS. Trace routes, originating in ASes that are not peered with route collectors, can
enlarge the AS relations data set. In order to use trace routes, they need to be converted to BGP paths because
they follow the inverted BGP path and do not yet contain AS numbers.

Converting trace routes to BGP paths A trace route operation is performed resulting in the path [10.0.0.55,
20.0.4.22, 30.8.0.1]. Carrying out a reversed look-up shows that the IP addresses are part of the IP prefixes
10.0.0.0/8, 20.0.4.0/24, and 30.8.0.0/16 respectively. The prefixes are registered at ASes AS1, AS2, and AS3 re-
spectively. As a result, it is possible to infer that AS path [3, 2, 1] is used.

Kastelein’s algorithm improves on an already existing AS relations data set by making use of trace routes
which contain additional information compared to the available BGP control plane data. Examples of existing
AS relations data sets are Caida’s AS Rank relations and relations inferred by using Gao’s or the IMC’ 13’s
algorithm using BGP control plane data. The first assumption the algorithm makes, it that most found BGP
paths are valley-free. Based on this assumption, missing AS relations can be inferred. When multiple trace
routes infer multiple relationships for the same link, the relationship with the highest occurrence is chosen.

23



24 3. Methodology

Kastelein’s algorithm can be split in 6 stages. In the first stage, trace routes and AS relations are loaded, the
trace routes are converted to BGP paths, and AS path prepending is removed. The second stage is used to add
known correct s2s links since the algorithm is not inferring s2s links. Because not all ASes in an organisation
are interconnected by default, s2s links are only added when they are found in either the trace routes or the
existing AS relations. The third stage finds links using the converted trace routes that do not follow the valley-
free constraint or are not yet inferred. These wrong and missing links are grouped in the fourth stage to be
inferred in fifth stage. To counter poisoned paths, the fifth stage stores all the possible inferred types per link.
The sixth and final stage selects the most inferred type for each link. In the case that not all the links have
been inferred, the fifth and sixth stages need to be repeated until no further changes are detected.

• Stage 1: Initialising data and variables
Trace routes first need to be translated to BGP paths, after which AS prepending is removed because
the algorithm does not support it. The not_p2p flag is initialised and will be used in later stages to
determine whether a link can be inferred as p2p.

Algorithm Kastelein’s 1st stage

1: create a trace route list ltrace routes

2: create an AS relations list lAS relations

3: lBGP paths ← [] . contains converted trace routes
4: for each trace route [IP1, IP2, . . . , IPn−1, IPn] in ltrace routes do . list of IP addresses
5: p ← []
6: for i = n, . . . , 1 do
7: find the smallest IP prefix x that contains I P i

8: find the AS ASx that holds IP prefix x
9: add ASx to p

10: add path p to lBGP paths

11: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in in lBGP paths do
12: for i = 1, . . . , n −1 do
13: not_p2p[ASi , AS j ] ← false
14: not_p2p[AS j , ASi ] ← false
15: if ASi = ASi+1 then . remove AS path prepending
16: remove the ith AS from p.

• Stage 2: Finding wrong and missing links
For each converted trace route, first determine if the links are present in the AS relation database. If not,
mark them missing. For all the links, verify if the inferred types are in line with the valley-free approach
using the converted trace routes. BGP learned routes first consist of zero or more c2p links, then zero
or one p2p link, followed by zero or more p2c links. Finally, an s2s can appear anywhere in the path.
When a path does not follow this valley-free constraint, one or more links have been wrongly inferred
according to that path. In other words, a c2p link after a p2c or p2p link is, according to that path,
not inferred correctly. The same holds for p2c links before c2p and p2p links. Finally, when there are
multiple p2p links in a path, all the p2p links are marked as wrong.
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Algorithm Kastelein’s 2nd stage

1: for each AS path p as [AS1, AS2, . . . , ASn−1, ASn] in in lBGP paths do
2: p2p_counter ← 0
3: for i = 1, . . . , n −1 do . finding multiple p2p links in a path
4: if state[ASi , ASi+1] = p2p then
5: p2p_counter ← p2p_counter+1
6: else if state[ASi , ASi+1] =−1 then .marking missing links in a path
7: state[ASi , ASi+1] ← MISSING
8: state[ASi+1, ASi ] ← MISSING
9: if p2p_counter > 1 then .marking multiple p2p links in a path

10: for i = 1, . . . , n −1 do
11: if state[ASi , ASi+1] = p2p then
12: state[ASi , ASi+1] ← WRONG
13: state[ASi+1, ASi ] ← WRONG
14: found ← false
15: for i = 1, . . . , n −1 do . finding and marking c2p links after a p2c or p2p link in a path
16: if state[ASi , ASi+1] = c2p or state[ASi , ASi+1] = p2p then
17: found ← true
18: else if state[ASi , ASi+1] = p2c and found then
19: state[ASi , ASi+1] ← WRONG
20: state[ASi+1, ASi ] ← WRONG
21: index ← 0
22: for i = 1, . . . , n −1 do . finding first c2p or p2p link in a path
23: if index = 0 then
24: if state[ASi , ASi+1] = c2p or state[ASi , ASi+1] = p2p then
25: index ← i
26: if index 6= −1 then .marking p2c links before a c2p or p2p link in a path
27: for i = 1, . . . , index do
28: if state[ASi , ASi+1] = p2c then
29: state[ASi , ASi+1] ← WRONG
30: state[ASi+1, ASi ] ← WRONG

• Stage 3: Grouping wrong and missing links
All the wrong and missing links found in stage 2 are grouped to allow stage 4 to infer possible types.

Algorithm Kastelein’s 3rd stage

1: lmissing links ← []
2: lwrong links ← []
3: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in lBGP paths do
4: for i = 1, . . . , n −1 do
5: link x ← {ASi , ASi+1}
6: if state[ASi , ASi+1] = MISSING and x not in lmissing links then
7: add x to lmissing links

8: else if state[ASi , ASi+1] = WRONG and x not in lwrong links then
9: add x to lwrong links
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• Stage 4: Inferring possible solutions for wrong and missing links
For each wrong and missing link, all the paths are selected in which that wrong of missing link is present.
Given the fact that these filtered paths contain enough routing information, the type of the link is inferred.
When the order of the path is in the inverted direction, the inferring as c2p becomes p2c and vice versa.
The algorithm uses five rules presented below to infer c2p, p2c, and p2p links. The not_p2p flag is used to
determine whether a link can be inferred as p2p.

1. . . . → ? → c2p→ . . . =⇒ c2p
An unknown link followed by a c2p link is inferred as c2p
The not_p2p flag for this link is set to true

2. . . . → ? → p2p→ . . . =⇒ c2p
An unknown link followed by a p2p link is inferred as c2p
The not_p2p flag for this link is set to true

3. . . . → c2p→ ? → p2p→ . . . =⇒ p2p, c2p, or p2c
An unknown link in between a c2p link and a p2c link is inferred as

– p2p when not_p2p is false
– c2p (p = 0.5) or p2c (p = 0.5) when not_p2p is true

4. . . . → ? → p2c→ . . . =⇒ c2p p2p, c2p, or p2c
An unknown link followed by a p2c link is inferred as

– p2p when not_p2p is false
– c2p (p = 0.5) or p2c (p = 0.5) when not_p2p is true

5. . . . → p2p→ ? → . . . =⇒ p2c
An unknown link after a p2p link is inferred as p2c
The not_p2p flag for this link is set to true

6. . . . → p2c→ ? → . . . =⇒ p2c
An unknown link after a p2c link is inferred as p2c
The not_p2p flag for this link is set to true

The 6 basic inferring rules above do not take s2s links into account. For example, ? → s2s→ c2p should

also infer a c2p link. The algorithm will therefore use the following refined rules to infer c2p, p2c, and p2p
links:
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1. . . . → ? →x times
s2s → c2p→ . . . =⇒ c2p

An unknown link followed by a possible sequence of s2s links and next a c2p link is inferred as c2p
The not_p2p flag for this link is set to true

2. . . . → ? →x times
s2s → p2p→ . . . =⇒ c2p

An unknown link followed by a possible sequence of s2s links and next a p2p link is inferred as c2p
The not_p2p flag for this link is set to true

3. . . . → c2p→x times
s2s → ? →x times

s2s → p2c→ . . . =⇒ p2p, c2p, or p2c
An unknown link in between a) a c2p link followed by a possible sequences of s2s links and b) a possible
sequences of s2s links followed by a p2c link is inferred as:

– p2p when not_p2p is false
– c2p (p = 0.5) or p2c (p = 0.5) when not_p2p is true

4. . . . → ? →x times
s2s → p2c→ . . . =⇒ p2p, c2p, or p2c

An unknown link followed by a possible sequence of s2s links and next a p2c link is inferred as:
– p2p when not_p2p is false
– c2p (p = 0.5) or p2c (p = 0.5) when not_p2p is true

5. . . . → p2c→x times
s2s → ? → . . . =⇒ p2c

An unknown link after a possible sequence of s2s links followed by a p2c link is inferred as p2c
The not_p2p flag for this link is set to true

6. . . . → p2p→x times
s2s → ? → . . . =⇒ p2c

An unknown link after a possible sequence of s2s links followed by a p2p link is inferred as p2c
The not_p2p flag for this link is set to true

When looking at the first rule in either the basic or refined version, it would be possible to already infer all the

unknown links before the ? as c2p. This is not done since the algorithm infers missing and wrong links one
by one. The same holds for the third rule.
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Algorithm Kastelein’s 4th stage - basic version

1: for each AS link {ASx , ASy } in lmissing links and lwrong links do
2: c2p[ASx , AS y ] ← 0 . number of times link is inferred as c2p
3: p2c[ASx , AS y ] ← 0 . number of times link is inferred as p2c
4: p2p[ASx , AS y ] ← 0 . number of times link is inferred as p2p
5: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in lBGP paths do
6: use ← false
7: index ←−1
8: reversed ← false
9: for i = 1, . . . , n −1 do

10: if ASx = ASi and ASy = ASi+1 then
11: use ← true
12: index ← i
13: else if ASx = ASi+1 and ASy = ASi then
14: use ← true
15: index ← i
16: reversed ← true
17: if use then
18: found_p2c ← false
19: found_c2p ← false
20: found_p2p ← false
21: if state[ASindex+1, ASindex+2] = c2p or state[ASindex+1, ASindex+2] = p2p then
22: found_c2p ← true
23: not_p2p[ASi , ASi+1] ← false
24: not_p2p[ASi+1, ASi ] ← false
25: else if state[ASindex-1, ASindex] = c2p and state[ASindex+1, ASindex+2] = p2c then
26: if not_p2p[ASindex, ASindex+1] = false then
27: found_p2p ← true
28: else
29: if random(0,1) < 0.5 then
30: found_c2p ← true
31: else
32: found_p2c ← true
33: else if state[ASindex+1, ASindex+2] = p2c then
34: if not_p2p[ASindex, ASindex+1] = false then
35: found_p2p ← true
36: else
37: if random(0,1) < 0.5 then
38: found_c2p ← true
39: else
40: found_p2c ← true
41: else if state[ASindex-1, ASindex] = p2c or state[ASindex-1, ASindex] = p2p then
42: found_c2p ← true
43: not_p2p[ASi , ASi+1] ← false
44: not_p2p[ASi+1, ASi ] ← false
45: if ( found_c2p and not reversed ) or ( found_p2c and not reversed ) then
46: p2c[ASx , AS y ]++
47: c2p[AS y , ASx ]++

48: if ( found_c2p and not reversed ) or ( found_p2c and reversed ) then
49: c2p[ASx , AS y ]++
50: p2c[AS y , ASx ]++

51: if found_p2p then
52: p2p[ASx , AS y ]++
53: p2p[AS y , ASx ]++
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Algorithm Kastelein’s 4th stage - refined version

1: for each AS link {ASx , ASy } in lmissing links and lwrong links do
2: initialise c2p[ASx , AS y ], p2c[ASx , AS y ], and p2p[ASx , AS y ] . same as in the basic version
3: for each AS path [AS1, AS2, . . . , ASn−1, ASn] in lBGP paths do
4: if use then
5: initialise found_p2c, found_c2p, and found_p2p . same as in the basic version
6: stop ← false
7: for i = index, . . . , n −1 do . infer rules 1 and 2
8: if state[ASi+1, ASi+2] = p2c then
9: stop ← true

10: else if ( state[ASi-1, ASi] = c2p or state[ASi-1, ASi] = p2p ) and ( stop = false ) then
11: found_c2p ← true
12: stop ← true
13: not_p2p[ASindex, ASindex+1] ← false
14: not_p2p[ASindex+1, ASindex] ← false
15: found_1 ← false
16: stop ← false
17: for i = index, . . . , n −1 do . infer rule 2
18: if state[ASi+1, ASi+2] = c2p or state[ASi+1, ASi+2] = p2p then
19: stop ← true
20: else if state[ASi+1, ASi+2] = p2c and stop = false then
21: found_1 ← true
22: found_2 ← false
23: stop ← false
24: for i = index, . . . , 0 do . infer rule 2
25: if state[ASi-1, ASi] = p2c or state[ASi-1, ASi] = p2p then
26: stop ← true
27: else if state[ASi-1, ASi] = c2p and stop = false then
28: found_2 ← true
29: found_3 ← false
30: stop ← false
31: for i = index, . . . , n −1 do . infer rules 4
32: if state[ASi+1, ASi+2] = c2p or state[ASi+1, ASi+2] = p2p then
33: stop ← true
34: else if state[ASi+1, ASi+2] = c2p and stop = false then
35: found_3 ← true
36: if ( found_1 = true and found_2 = true ) or ( found_3 = true ) then
37: if not_p2p[ASindex, ASindex+1] = false then
38: found_p2p ← true
39: else
40: if random(0,1) < 0.5 then
41: found_c2p ← true
42: else
43: found_p2c ← true
44: stop ← false
45: for i = index, . . . , 0 do . infer rules 5 and 6
46: if state[ASi-1, ASi] = c2p then
47: stop ← true
48: else if ( state[ASi-1, ASi] = p2c or state[ASi-1, ASi] = p2p ) and ( stop = false ) then
49: stop ← true
50: found_p2c ← true
51: not_p2p[ASindex, ASindex+1] ← false
52: not_p2p[ASindex+1, ASindex] ← false
53: increment c2p[ASx , AS y ], p2c[ASx , AS y ], and p2p[ASx , AS y ] . same as in the basic version
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• Stage 5: Select the most inferred type for each wrong and missing link
For each inferred wrong and missing link, select the type that is inferred the most and remove the link
from the list of wrong and missing links. When stage 5 is not able to infer all wrong and missing links,
stage 2, stage 3, stage 4 and stage 5 are repeated until no further changes are detected.

Algorithm Kastelein’s 5th stage

1: for each AS link x as {ASx , ASy } in lmissing links and lwrong links do
2: found ← false
3: if c2p[ASx , AS y ] > 0 and c2p[ASx , AS y ] ≥ max( p2c[ASx , AS y ], p2p[ASx , AS y ] ) then
4: state[ASx , AS y ] ← c2p
5: state[AS y , ASx ] ← p2c
6: found ← true
7: if p2c[ASx , AS y ] > 0 and p2c[ASx , AS y ] ≥ max( c2p[ASx , AS y ], p2p[ASx , AS y ] ) then
8: state[ASx , AS y ] ← p2c
9: state[AS y , ASx ] ← c2p

10: found ← true
11: if p2p[ASx , AS y ] > 0 and p2p[ASx , AS y ] ≥ max( c2p[ASx , AS y ], p2c[ASx , AS y ] ) then
12: state[ASx , AS y ] ← p2p
13: state[AS y , ASx ] ← p2p
14: found ← true
15: if found = true then
16: if x in lmissing links then
17: remove x from lmissing links

18: else if x in lwrong links then
19: remove x from lwrong links

3.2. AS mock graph generator
The AS mock graph generator creates a topology that mimics the AS topology of the Internet. An AS Mock
graph will be used to validate Kastelein’s algorithm. When a number of relationship types is removed from
or changed in a mock graph, the algorithm, BGP control plane data, and trace routes should be able to com-
pletely restore the graph.

Looking at the Internet topology, ASes can be grouped in tiers where ASes in a higher tier, represented by
a lower number, have more p2c links than ASes in lower tiers. ASes in a tier can be interconnected via p2p
links. The AS mock graph generator does not produce s2s links since their absence should not interfere with
the validation of Kastelein’s algorithm. The generator has the following parameters:

• The number of tier-1 ASes S1

• The AS multiplier per tier Sx

• The number of tiers N

• The probability that a nth tier AS has two c2p links p
second c2p
n

• The probability that two nth tier ASes share a p2p link p
p2p
n

The first tier consists of S1 ASes, and a next tier has Sx times more ASes than the previous tier. In order
to have a connected graph, and make sure that all BGP traffic can flow through the mesh of tier-1 ASes, all
tier-1 ASes need to be interconnected using p2p links. If this is not the case, a BGP announcement has to
traverse two p2p links in the tier-1 mesh which is not allowed. ASes in lower tiers do not necessarily need to
be interconnected because announcements can always make use of c2p links to higher tier ASes. However,
each AS that is not a tier-1 AS has to have at least one c2p link to be able to reach other parts of the AS graph.

The algorithm is split up in three stages. In the first stage the variables are initialised and each tier receives

its amount of ASes. The second stage interconnects ASes in each tier with p2p links with the probability p
p2p
n .

To ensure that all tier-1 ASes are interconnected, p
p2p
1 equals 1. The third and final stage adds 1 or 2 c2p and

p2c links per AS between tiers given the probability p
second c2p
n .
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• Stage 1: Initialising variables and adding ASes to tiers

Algorithm MGG 1st stage

1: choose S1, Sx , and N . number of tier-1 ASes, AS multiplier per tier, and number of tiers
2: counter ← 1
3: for n = 1, . . . , N do
4: Ti ← [] . ASes in the ith tier
5: choose p

p2p
n . probability that two nth tier ASes share a p2p link

6: if n = 1 then
7: size ← S1

8: else
9: size ← size×Sx

10: choose p
second c2p
n . probability that a nth tier AS has two c2p links

11: for i = counter, . . . , counter+ size do
12: add ASi to Tn

• Stage 2: Interconnecting all the ASes in the separate tiers with p2p links

Given the probability p
p2p
n , two nth tier ASes will share a p2p link.

Algorithm MGG 2nd stage

1: for n = 1, . . . , N do
2: for i = 1, . . . , len(Tn) do
3: for j = 1, . . . , len(Tn) do
4: ASx ← Tn[i ]
5: ASy ← Tn[ j ]

6: if ASx 6= ASy and random(0,1) < p
p2p
n then

7: state[ASx , ASy ] ← p2p
8: state[ASy , ASx ] ← p2p

• Stage 3: Interconnecting a lower tier AS with a lower tier AS using c2p and p2c links

Given the probability p
second c2p
n , A nth tier ASes will have an extra c2p link.

Algorithm MGG 3rd stage

1: for n = 2, . . . , N do
2: for i = 1, . . . , len(Tn) do
3: choose a random ASx from the n −1th tier
4: state[ASx , ASi ] ← p2c
5: state[ASi , ASx ] ← c2p
6: if random(0,1) < p

second c2p
n then

7: choose a random ASy 6= ASx from the n −1th tier
8: [ASy , ASi ] ← p2c
9: [ASi , ASy ] ← c2p
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3.3. BGP Simulator
The BGP simulator simulates BGP traffic, and as a result, allows the user to see where data for a prefix would
flow. The user first loads the AS topology and sets forwarding rules for the ASes. Next, the user inserts an-
nouncements and the simulator starts simulating BGP traffic. The simulator can visualise AS relations and
routing states for smaller topologies. The working of the simulation tool is divided into three stages: the AS
Graph (ASG), Routing Table (RT) and Routing State (RS) stages.

The ASG stage stores the relationships and parameters of ASes and is used for simulating the actual BGP
traffic. The RT stage contains information about which RIB entry an AS will use to reach a certain prefix.
The RS stage contains information about which AS ends up at which source AS depending on a prefix and
also provides a connectivity summary. The working of the ASG, RT and RS stages are described in detail in
sections 3.3.1, 3.3.2 and 3.3.3. After the working is described, section 3.3.4 presents simulator results using
sample AS topologies.

3.3.1. AS Graph (ASG) stage
The ASG stage has four main usages. First, the ASG stage stores the relations between ASes. For each neigh-
bour of an AS, the LOCAL_PREFERENCE and the type of link (p2c, c2p, p2p or s2s) are stored. Second, in the
ASG stage the forwarding rules of an AS can be set. For example, an AS can or cannot forward an announce-
ment coming from a p2p link to a p2p link. With the possibility to change the forwarding rules per AS, route
leaks can be simulated. A cause of route leaks is when ASes forward BGP announcements to ASes that are not
supposed to receive them.

Next, the ASG stage has an IN, RIB and OUT table for each AS to simulate a BGP router. All the announce-
ments received by an AS are stored in the IN table before being processed. During processing the announce-
ments may be added to the Routing-Information-Base (RIB) table and the OUT table. This depends on the
BGP rules. Announcements in the OUT tables are sent to other ASes’ IN tables if forwarding rules allow for
this.

Listing 3.1 shows the data structure of an announce-
ment used in the ASG and RT stages. The variable LO-
CAL_PREFERENCE is the LOCAL_PREFERENCE which the AS
has of the neighbouring AS the announcement was received
from. In this case, the LOCAL_PREFERENCE of AS4 at AS5 is
100. Next, the variable extra_path_length is used to simulate
AS path prepending, the process of adding a sequence of the
same AS to a path in order to make the route less attractive.
Finaly, the variable good, either true of false, indicates if the
announcement originated from an AS that is allowed to an-
nounce the prefix.

Listing 3.1: Data structure of an announcement

1 {
2 "LOCAL_PREFERENCE": 100,
3 "extra_path_length": 0,
4 "good": true,
5 "path": ["1","2","3","4","5"],
6 "prefix": "192.168.0.0/24",
7 "prefix_length": "24",
8 "source_AS": "1",
9 }

IN, RIB and OUT table
The flowing of announcement from and to IN, RIB and OUT tables can be described in three steps. The first
step initialises the announcement after which step two and three are repeated until no more changes are
recorded in the ASG stage. The list below contains a description of the three steps:

• Step 1: An announcement - either marked good or malicious - is added at the source AS. During this
step the announcement is stored as a route in the RIB table of the source AS, and is added to the OUT
table of the source AS.

• Step 2: For all ASes all announcements that are currently stored in the OUT tables are copied to the IN
tables of neighbouring ASes if forwarding rules allow this. At this time, the neighbouring AS, where the
announcement is copied to, is added to the path in the announcement. When the route stored in OUT
table was created in step 1, i.e., the length of the route is 1 and therefore not received but created, all
forwarding rules are ignored: the route is copied to all IN tables of neighbouring ASes. This is normal
behaviour when an AS starts announcing a prefix to ensure that all the ASes can have a route to that
prefix.
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• Step 3: All announcements now stored in the IN tables are copied to the RIB and/or OUT table of that
same AS if BGP rules allow this. The simulator uses the following decision criteria, in the given order, to
accept a route. If a criteria is not met, the simulator moves the next criterion. If a criterion is met, the
simulator performs its included action(s) and the rest of criteria are ignored:

1. The given prefix is not yet present in the RIB table
Add the announcement to RIB and OUT tables

2. The LOCAL_PREFERENCE value for the prefix is the highest compared to all other
LOCAL_PREFERENCE values of the same prefix in the RIB table.
Add the announcement to RIB and OUT tables

3. The path length for the prefix is the shortest compared to all other path lengths of the same prefix
in the RIB table.
Add the announcement to RIB and OUT tables

4. The path length for the prefix equals the largest path lengths of the same prefix in the RIB table.
Add the announcement to RIB table only

5. The path length for the prefix is smaller than the largest path length of the same prefix in the RIB
table.
No action

6. Add the announcement to RIB and OUT tables

At this point, all the announcements in the ASG stage have been sent and received by the ASes. Steps one,
two and three can be repeated when a new announcement is added. Multiple announcements can be added
at the same time before the iterating process starts. This means that a different order of adding and iterating
will lead to different results. BGP routes can also be directly added to the ASG stage therefore bypassing a)
the IN and OUT tables, and b) the BGP rules in place to determine how announcements flow through the AS
graph. In addition to simulating BGP traffic, learned routes need to be added to verify that the simulator is
working properly. These learned routes are obtained from RIPE and RouteViews RRCs.

3.3.2. Routing Table (RT ) stage
The RT stage is created using the ASG stage. For each AS found in the ASG stage, the actual used route to
reach a prefix - found in its RIB table - is retrieved and stored. In other words, if an AS wants to send data to
an IP-address belonging to a prefix, it has to choose which route to use from the ASG stage’ RIB table. As a
result of the way BGP works, an AS can have multiple routes to a prefix. Whether a route is used depends on
the LOCAL_PREFERENCE, AS_PATH and PREFIX_LENGTH attributes.

3.3.3. Routing Stage (RS) stage
The RS stage uses the data from the RT stage to compute where the data of an AS destined for a prefix will
eventually end up. An AS can be labeled GOOD, BAD, CONTESTED, or NO_ROUTING. For a GOOD AS its
data destined for that prefix is received by a source AS that is allowed to announce that prefix. For a BAD AS
its data destined for the prefix is received by a source AS that is not allowed to announce the prefix. An AS
labelled GOOD and BAD is labelled CONTESTED. The label NO_ROUTING is given to an AS which cannot
reach that prefix.
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3.3.4. Simulator Output
Following the description of the working of the simulation tool, the simulation results are presented and ex-
plained. To start, AS relations in the ASG stage and the routing state can be visualised. In order to understand
the figures, it is necessary to know how to read the graphs. This is explained below. Next, AS relations are
shown, and finally, a fictional hijack is simulated and visualised.

Reading the graphs
Figure 3.1 shows that in all relations the arrow determines
the direction. In other words, there is a p2p from AS1 to AS2
and a p2p relation from AS2 to AS1. A p2p relation is de-
picted as a normal solid line. An s2s relation is represented
by a dotted line. A c2p relation is visualised using a bold line.
Finally, a dashed line depicts a p2c relation. See figure 3.2,
an AS can be any of the following:

Figure 3.1: Types of AS relations
• GOOD

The data for a given prefix is routed to a good source AS.
Displayed as an oval.

• BAD
The data for a given prefix is routed to a malicious source
AS.
Displayed as a hexagon.

• CONTESTED
The data for a given prefix can be routed to a good and a
malicious source AS.
Displayed as a diamond.

• NO_ROUTING
The data for a given prefix cannot be routed to any source
AS.
Displayed as a rectangle.

Figure 3.2: Types of ASes

Figure 3.3: Types of routes

Figure 3.4: Example of AS relations

As shown in figure 3.3, a route can be either GOOD, BAD or NOT_USED.
In the case that a route is not used, it is not possible to see if it is either
coming from a good or a malicious source AS and is colored blue. A
route originating from a good source AS, is green. If the route originates
from a malicious source AS, it is colored red. The properties of a route
are added as a label to the link between ASes. They consist first of the AS
number, followed by the LOCAL_PREFERENCE, PATH_LENGTH and
PREFIX_SIZE.

Visualising AS relations
Figure 3.4 shows the AS relations. AS4, AS5 and AS11 all only have a
single provider. AS3 has two providers. There is a p2p relation between
AS44 and AS55 while AS2 and AS55 are part of the same organisation
and therefore have an s2s link between them. Only p2c links are drawn
here: a p2c link also implies a c2p link.
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Visualising BGP routes
This section simulates and visualises a fictional hijack. The same AS graph has been used as in figure 3.4.
However, the link between AS2 and AS55 is removed. This results in the configuration shown in figure 3.5.
First, AS1 starts announcing the prefix 192.168.0.0/24. Figure 3.6 shows how the announcements have flown
through the AS graph. AS44 and AS55 cannot receive any announcements from AS1 since they are not con-
nected to AS1 in any way. However, AS11 and AS12, which can reach AS1, do not have a route to 192.168.0.0/24.
According to the forwarding rules, a route learned from a p2c link cannot be sent over the c2p link from AS3
to AS11. Data sent from green oval shaped ASes to the prefix 192.168.0.0/24 will end up at a good source AS.
Blue boxed shaped ASes cannot reach the prefix.

Figure 3.5: AS topology
Figure 3.6: AS1 announcing good prefix 192.168.0.0/24.

Next, malicious AS12 also starts announcing prefix 192.168.0.0/24. This is visualised in figure 3.7. The
malicious announcement coming from AS11 and received by AS3 is not passed on to AS2 due to the forward-
ing rules in place. However, it is sent down to AS4 and AS5. AS3 cannot decide which route to choose: both
the LOCAL_PREFERENCE and the PATH_LENGTH are the same for both routes. As a result, AS3 is marked
CONTESTED meaning it cannot decide to which AS it has to send data destined for prefix 192.168.0.0/24. Be-
cause AS4 and AS5 have to pass AS3, they are also marked CONTESTED. AS44 and AS55 cannot receive any
announcements from AS1 and AS12 since they are not connected to them in any way.

Figure 3.7: good AS1 announcing prefix 192.168.0.0/24 and mali-
cious AS12 also announcing 192.168.0.0/24.

Figure 3.8: good AS1 announcing prefix 192.168.0.0/24 and mali-
cious AS12 also announcing 192.168.0.0/24. Note that AS3 has a
higher LOCAL_PREFERENCE of 999 of AS11.
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Finally, in figure 3.8, AS3 increases the LOCAL_PREFERENCE to 999 for announcements coming from
AS11. AS3 has to decide which path to take: to AS1 via AS2 or to AS12 via AS11. Since the LOCAL_PREFERENCE
is higher for AS12 this path is chosen. As a result, data coming from the cone of AS3 ends up at AS12 also re-
sulting in the BAD AS4 and AS5. The announcement from AS2 to AS3 is not used, therefore colored blue. Note
that the good announcement coming from AS1 is still visible at AS5. This is because the announcement of
AS1 is first iterated through the AS graph before the malicious announcement from AS12 is added. Therefore,
AS5 now has two routes to choose from. But, even it is chooses the good route, data headed for 192.168.0.0/24
still ends up at the AS that is hijacking the prefix.

Routing Table stage statistics
The amount of data in the RT stage, where the actual
used routes to reach prefixes are retrieved and stored, can
quickly grow when multiple ASes and announcements
are added. To give an insight, and make it easier to
perform debugging, the simulator generates an overview
that groups per prefix which source AS(es) an AS uses to
reach that prefix.

See the example in listing 3.2. In data, to reach pre-
fix 192.168.0.0/24, AS1, AS2, and AS3 use routes that
lead to AS1. AS1 uses its own announcement. AS4 ei-
ther uses the route originated in AS1 or in AS4. The
NO_ROUTING list contains ASes that cannot reach the
prefix 192.168.0.0/24.

In summary, instead of a list, the amount of ASes is
provided.

Listing 3.2: Example of RT stage statistics

1 {
2 "data": {
3 "192.168.0.0/24": {
4 "AS1": ["AS1","AS2","AS5"],
5 "AS1 + AS12": ["AS4"],
6 "AS12": ["AS11","AS12","AS3"],
7 "NO_ROUTING": ["AS55","AS44"]
8 }
9 },

10 "summary": {
11 "192.168.0.0/24": {
12 "AS1": 3,
13 "AS1 + AS12": 1,
14 "AS12" : 3,
15 "NO_ROUTING": 2
16 }
17 }
18 }

Routing State stage statistics
The RS stage, which holds where the
data of an AS destined for a prefix
will eventually end up, also provides an
overview. GOOD, BAD, CONTESTED,
and NO_ROUTING ASes are grouped
as well as good and bad source ASes.
In summary, the amount and percent-
age of GOOD, BAD, CONTESTED, and
NO_ROUTING ASes are presented.

Listing 3.3: Example of RS stage statistics

1 {
2 "data": {
3 "bad_ASes": ["AS11","AS12","AS3","AS5","AS4"],
4 "bad_source_ASes": ["AS12"],
5 "contested_ASes": [],
6 "good_ASes": ["AS1","AS2"],
7 "good_source_ASes": ["AS1"],
8 "no_routing_ASes": ["AS55","AS44"]
9 },

10 "summary": {
11 "keys" :
12 ["good","bad","contested","no_routing"],
13 "amount" :
14 [ 0, 7, 0, 2 ],
15 "percentage" :
16 [ 0.0, 77.78, 0.0, 22.22 ]
17 }
18 }



4
Validation & Results

The previous chapter explained how Kastelein’s algorithm functions, how the AS mock graph generator
can be tuned, and how BGP traffic is simulated using the BGP simulator. This chapter validates Kastelein’s
algorithm with BGP control plane data, trace routes, and a mock graph from which specific links are
changed and removed and need to be restored. The algorithm’s performance is further determined and
compared with other AS relation data sets and topology generating algorithms: to be able to compare
these data sets and algorithms, the topologies generated by the algorithms are used. Finally, the BGP sim-
ulator’s scalability is determined after which the simulator is validated using BGP control plane data.

4.1. Validating Kastelein’s algorithm
Kastelein’s algorithm is validated with the use of a generated mock graph which mimics the AS topology of
the Internet. When relationship types of links are removed from a mock graph or changed in a mock graph,
the algorithm should be able to completely restore the mock graph using the trace route data based on the
original mock graph. Therefore, a method to generate this data using a mock graph is also needed.

In order to generate trace routes using a mock graph, the BGP simulator is used. The mock graph is first
loaded into the simulator. Then, a prefix announcement is added to every AS. The size of the IP prefix is not
relevant: it is only important to know how BGP traffic flows between ASes with separate resources. Therefore,
IP prefixes must not overlap. After the IP prefix announcements are loaded, BGP traffic is simulated using the
AS Graph stage of the BGP simulator. Next, the actual used BGP routes for reaching prefixes are generated in
the BGP simulator’s Routing Table stage. These BGP routes, after having been inverted, can be used as trace
routes: where trace route paths flow towards the AS announcing the prefix, BGP paths start in the announcing
AS. To mimic the fact that not all ASes provide their routing data, BGP routes originating from certain ASes
can be removed from the set of generated trace routes.

Five different cases that involve the removing of the relationship types of links from a mock graph and
changing of the relationship types of links in a mock graph are presented here. The removal of a link’s re-
lationship type only renders the type unknown: the connection itself remains intact. The generated scatter
plots presented in the next chapter will show on the x-axis, depending on the case, the average percentage of
relationship types of links removed from the mock graph and/or the percentage of links changed in the mock
graph over multiple runs. The y-axis shows a) the percentage of links where the relationship type differs from
the relationship type in the original mock graph or b) the percentage of links that are not inferred in the mock
graph produced by the algorithm but are present in the original mock graph. To be able to compare the 5
cases, the same mock graph is used.
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Of the 70k ASes that exist, around 219 (≈ 0.31%) provide routing data to route collectors. Therefore, to stay
close to this percentage, only 0.5%, 1%, 2%, and 3% of all ASes in the mock graph will be used to generate
trace routes for Kastelein’s algorithm. To capture how the algorithm performs when more ASes are used, the
percentages 25%, 50%, 75% and 100% will also be included. All measurements in all 5 cases are run 10 times.
The average results are depicted in scatter plots.

• Case 1: Removing relationship types of randomly chosen links
This case demonstrates the algorithm’s ability to restore the mock graph when the relationship types
of links are not inferred. Knowing how many relationship types of links from a mock graph can be
removed while the algorithm is still able to restore the original mock graph, is useful since it can be
used to indicate how well the algorithm performs in improving real incomplete and partially wrong AS
relation data sets. In steps of 5%, the relationship types of 5% to 100% of randomly chosen links in the
mock graph are removed. The same method is repeated for 0% to 20% in steps of 1%.

• Case 2: Changing relationship types of randomly chosen links
This case demonstrates the algorithm’s ability to restore the mock graph where part of the links are
wrongly inferred. As in case 1, the same reasoning holds: how many relationship types of links can be
altered in the mock graph before the algorithm can no longer restore it? In steps of 5%, the relationship
types of 0% to 100% of the randomly chosen links in the mock graph are changed. For the reason given
in case 1, the same method is repeated for 0% to 20% in steps of 1%. A p2p relationship type is changed
in either a c2p or p2c relationship type with a probability of 50% respectively. A c2p or p2c relationship
type is changed to a p2p relationship type.

• Case 3: Removing and changing relationship types of randomly chosen links
In the current real-world known Internet topology, some links are wrongly inferred or not inferred at
all: this case closer represents the real-world use case by combining case 1 and case 2. In steps of 5%,
the relationship types of 0% to 100% of the randomly chosen links in the mock graph are first altered.
Then the same percentage of relationship types of randomly chosen links are removed. For the reason
given in case 1, the same method is repeated for 0% to 20% in steps of 1%. Relationship types of links
are changed in the same manner as described in case 2.

• Case 4: Removing randomly chosen c2p and p2c relationship types involving customer-less ASes
This case focuses on the algorithm’s ability to infer c2p and p2c links. In steps of 5%, the relationship
types of 0% to 100% of randomly chosen c2p and p2c links are removed involving ASes that do not
contain p2c links. For the reason given in case 1, the same method is repeated for 0% to 20% in steps
of 1%. Kastelein’s algorithm contains more inferring rules, see section 3.1 on page 27, for c2p and p2c
relationship types than for p2p relationship types. Furthermore, a link that can be inferred as p2p can
also be inferred as c2p or p2c and not break the valley-free constraint. Therefore it would be interesting
to see how the Kastelein’s algorithm handles both c2p and p2c links, and p2p links. This case only
involves customer-less ASes to validate that Kastelein’s algorithm is capable of correctly inferring all
c2p and p2c links with inferring rules 1, 2, and 5 in section 3.1 on page 27.

• Case 5: Removing relationship types of randomly chosen p2p links
This case, compared to case 1, only tests the algorithm’s ability to infer p2p links. In steps of 5%, 0% to
100% of the relationship types of randomly chosen p2p links are removed from the mock graph. For the
same given in case 1, the same method is repeated for 0% to 20% in steps of 1%. The same reason to
include this case holds as the reason given in case 4.

Mock graph design
The mock graph used in these 5 cases should mimic the real-world AS topology. However, the number of
generated BGP paths using a mock graph with the size of the entire Internet will be too large and the currently
known AS Internet topology contains wrong relationship types. Therefore, a smaller mock graph that still
mimics the structure of the Internet is desired. This mock graph should not contain any wrong relationship
types to be able to compare results from all 5 cases. The used parameters for the mock graph, introduced in
section 3.2 on page 30, are substantiated next:
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• The number of tiers N :
There are 3 types of ASes: tier-1, tier-2, and tier-3. Therefore N = 3 .

• The number of tier-1 ASes S1 and the AS multiplier per tier Sx :
Tier-1 ASes are transit-free: they can reach the entire Internet via their customer cone or via the cus-
tomer cones of their peers. The customer cone is the set of IPv4 and IPv6 addresses that is either owned
by the AS or can be reached by visiting its customers, and also includes the customers of the customers.
The number of tier-1 ASes varies from 7 to 25 according to different sources [8] [9]: determining whether
an AS is tier-1 is difficult since no clear definition exists.

Given that tier-1 consists of S1 ASes, and a next tier has Sx more ASes than the previous tier, the total

number of ASes Ntotal in a mock graph can be calculated using the formula Ntotal = S1 +S1 ·Sx +S1 ·Sx
2 .

As a consequence of hardware limitations, the simulator can only handle around 5000 ASes. This lim-
itation has no negative effect on the validation results as long as the tier-1, tier-2, and tier-3 struc-
ture is kept. To accomplish this structure, the AS multiplier per tier Sx is first calculated for 70k ASes
and 16 tier-1 ASes: the average of 7 and 25 tier-1 ASes [8] [9]. 70000 = 16+ 16 · Sx + 16 · Sx

2 renders
Sx ≈ 65. To keep this tier-1, tier-2, and tier-3 structure, Sx is fixed which leaves the variable S1 to solve:
5000 = S1 +S1 ·65+S1 ·652 renders S1 ≈ 1.16. S1 needs to be an integer and needs to have at least one
p2p link in tier-1, therefore S1 = 2 . Finally, with 5000 ASes, 5000 = 2+2 ·Sx +2 ·Sx

2 renders Sx ≈ 49 .

• The probability that there is a p2p link between two tier-1 ASes p
p2p
1 :

To ensure that the entire graph is connected, all tier-1 ASes have to be connected via p2p links. There-

fore p
p2p
1 = 1

• The probability that there is a p2p link between two tier-2 ASes p
p2p
2 :

Tier-2 ASes may share a p2p. Around 25 large and important tier-2 ASes exist [19]: based on AS Rank’s
serial-1 data set [17], the average number of p2p links between them is 7.15 . Using these averages, the

probability that two tier-2 ASes share a p2p link is p
p2p
2 = 7.15

25 ·2
= 0.143 .

• The probability that there is a p2p link between two tier-3 ASes p
p2p
2 :

Since tier-3 ASes almost solely purchase transit, i.e., use c2p links to reach other parts of the Internet,

the probability that two tier-3 ASes are peered is assumed to be 0. Therefore p
p2p
3 = 0

• The probability that a tier-2 AS has two c2p links p
second c2p
2 :

To determine the probability that a tier-2 AS has a second c2p link to a tier-1 AS, the average number
of c2p links between tier-2 and tier-1 ASes is calculated. Using AS Rank’s serial-1 data set, a tier-2 AS
has either 2.3 or 3.3 links to a tier-1 AS when 7 or 25 ASes are considered tier-1 respectively [8] [9]: to
be more redundant in the case of link failures and provide more efficient routing for tier-3 ASes, tier-2

ASes have multiple c2p links to tier-1 ASes. Therefore p
second c2p
2 = 1

• The probability that a tier-3 AS has two c2p links p
second c2p
3 :

Since tier-3 ASes almost solely purchase transit, i.e., tier-3 ASes use c2p links to reach other parts of the

Internet, the probability that two tier-3 ASes are connected is assumed to be 0. Therefore p
second c2p
3 = 0

Because the Internet topology is highly complex, a simplified model as the one presented above can never
precisely represent the AS topology structure of the Internet. This model neglects the presence of Internet
Exchange Points (IXPs) where clusters of ASes are interconnected with p2p links. Furthermore, ASes with
more than two c2p links exist, and the current randomised p2p link placement method does not always rep-
resent the AS topology where there are clusters of ASes interconnected via p2p links. However, Kastelein’s
algorithm is designed in such a way that knowledge of the exact topology is not needed: the only requirement
is that the provided BGP paths or trace routes follow the valley-free constraint.
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Case 1: Removing relationship types of randomly chosen links
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Figure 4.1: The ability of Kastelein’s algorithm to infer removed relationship types of randomly chosen links from a mock graph.
The x-axis shows the percentage of randomly removed relationship types of links from the mock graph used by the algorithm.

The y-axis shows the percentage of relationship types of links not inferred by the algorithm compared to the total links in the mock
graph from which no relationship types are removed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Figure 4.2: The ability of Kastelein’s algorithm to infer removed relationship types of randomly chosen links from a mock graph.
The x-axis shows the percentage of randomly removed relationship types of links from the mock graph used by the algorithm.

The y-axis shows the percentage of relationship types of links wrongly inferred by the algorithm compared to the links in the mock
graph from which no relationship types are removed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.

Analysis of case 1
The higher the percentage of VPs, the more not inferred relationship types of links that can be inferred. The
more relationship types of randomly chosen links that are removed, the higher the number of wrongly in-
ferred relationship types. When at least 25% of the ASes are used as VPs, Kastelein’s algorithm is capable of
re-inferring all the relationship types of links with a maximum of 4% of the relationship types wrongly in-
ferred.

The results involving 0.5%, 1%, 2%, and 3% of the ASes used as VPs most resemble the real-world. For
these percentages of VPs hold that for up to 20% every X% of removed relationship types only a maximum of
X
4 % cannot be inferred and X

20 % will be wrongly inferred. The results presented in figures 4.1 and 4.2 show
that Kastelein’s algorithm is capable of restoring not inferred relationship types when the mock graph itself
does not contain any wrongly inferred relationship types.
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Case 2: Changing relationship types of randomly chosen links
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Figure 4.3: The ability of Kastelein’s algorithm to infer changed relationship types of randomly chosen links in a mock graph.
The x-axis shows the percentage of changed relationship types of randomly chosen links in the mock graph used by the algorithm.
The y-axis shows the percentage of relationship types of links not inferred by the algorithm compared to the total links in the mock

graph in which no relationship types are changed.
RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Figure 4.4: The ability of Kastelein’s algorithm to infer changed relationship types of randomly chosen links in a mock graph.
The x-axis shows the percentage of changed relationship types of randomly chosen links in the mock graph used by the algorithm.

The y-axis shows the percentage of links wrongly inferred relationship types by the algorithm compared to the links in the mock graph
in which no relationship types are changed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.

Analysis of case 2
Contrary to case 1, the percentage of not inferring links does not increase linearly when more relationship
types of links are changed. Kastelein’s algorithm stage 3 - where wrong and not inferred relationship types
are found and removed - can remove more relationship types than initially were changed in the mock graph.
This amount of removed relationship types highly depends on the other relationship types in the mock graph.

The algorithm is more accurate in re-inferring not inferred relationship types than in re-inferring wrongly
inferred relationship types. Graph A in figure 4.4 shows that the algorithm correctly infers about half of the
changed relationship types therefore improving the AS relationship set. Graph B in figure 4.4 shows that
when 25%, 50%, and 75% of the ASes are used as VPs and more than 50% of the relationship types in the mock
graph are changed, the percentage of wrongly inferred links stabilises. This is caused by the way in which
the relationship types are changed. c2p and p2c links are changed to p2p links which can be easily detected
by the algorithm. p2p links are changed in either c2p or p2c links. The algorithm has a higher error rate in



42 4. Validation & Results

inferring these relationship types as any p2p link can also be a c2p or p2c in a mock graph that only contained
valley-free paths.

When 100% of the relationship types have been changed in graph B in figure 4.4, all the relationship types
that were changed into p2p relationship types are detected and removed. The relationship types that are
changed into either c2p or p2c are a) not spotted by the algorithm and b) do not influence the inferring of
other links and are therefore the only links that are wrongly inferred. In graph B in figure 4.4, the percent-
age of wrongly inferred relationship types when 100% of the relationship types are changed is equal to the
percentage of c2p and p2c links in the original mock graph.

Case 3: Removing and changing relationship types of randomly chosen links
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Figure 4.5: The ability of Kastelein’s algorithm to infer a) changed relationship types of randomly chosen links in a mock graph and b)
removed relationship types of randomly chosen links from a mock graph.

The x-axis shows the percentage of randomly relationship types of links first changed in the mock graph after which the same
percentage of relationship types of links are randomly removed from the mock graph. This altered mock graph is used by the algorithm.

The y-axis shows the percentage of relationship types of links not inferred by the algorithm compared to the total links in the mock
graph from which no relationship types are removed and in which no relationship types are changed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Figure 4.6: The ability of Kastelein’s algorithm to infer a) changed relationship types of randomly chosen links in a mock graph and b)
removed relationship types of randomly chosen links from a mock graph.

The x-axis shows the percentage of randomly links first changed in the mock graph after which the same percentage of relationship
types of links are randomly removed from the mock graph. This altered mock graph is used by the algorithm.

The y-axis shows the percentage of relationship types of links wrongly inferred by the algorithm compared to the links in the mock
graph from which no relationship types are removed and in which no relationship types are changed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Analysis of case 3
Compared to case 2 where only the relationship types were changed, case 3 shows around 5 times more not
inferred relationship types. In graph B in figure 4.5, the percentage of not inferred links stays close to 0% until
10% of the relationship types are first randomly altered and next randomly removed. This percentage drops
after 90%: at this stage there are so few links left that the algorithm is performing in a similar way as in graph
B in figure 4.1 where only the relationship types were removed.

When in graph A in figure 4.6 3% of the ASes are used as VPs, the algorithm produces more wrongly in-
ferred links than when only 0.5% of the ASes are used. This may sound odd at first, however, the number of
not inferred links in graph A in figure 4.5 shows that when 3% of the ASes are used as VPs the percentage of
not inferred links is lower compared to when 0.5%, 1%, and 2% of the ASes are used. A lower percentage of not
inferred links therefore leads to a higher percentage of wrongly inferred links. This trend continues in graph
B in figure 4.6: the percentage of wrongly inferred links is higher when 75% of the ASes are used than when
25% or 25% of the ASes are used as VPs. The only exception in graph B in figure 4.6 is when all the ASes are
used as VPs: there is some threshold between 75% and 100% where Kastelein’s algorithm starts performing
better.

Case 4: Removing randomly chosen c2p and p2c relationship types involving customer-
less ASes
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Figure 4.7: The ability of Kastelein’s algorithm to infer removed c2p and p2c relationship randomly chosen types of links involving
customer-less ASes from a mock graph.

The x-axis shows the percentage of randomly removed c2p and p2c relationship types from the mock graph used by the algorithm.
The y-axis shows the percentage of relationship types not inferred by the algorithm compared to the total links in the mock graph from

which no relationship types are removed.
RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Figure 4.8: The ability of Kastelein’s algorithm to infer removed c2p and p2c relationship types of randomly chosen links involving
customer-less ASes from a mock graph.

The x-axis shows the percentage of randomly removed c2p and p2c relationship types from the mock graph used by the algorithm.
The y-axis shows the percentage of relationship types wrongly inferred by the algorithm compared to the links in the mock graph from

which no relationship types are removed.
RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Analysis of case 4
Kastelein’s algorithm is capable of re-inferring all removed c2p and p2c relationship types for any combi-
nation of ASes used as VPs and any percentage of relationship types removed from the mock graph. These
relationship types are easily inferred because:

(a) They are seen by every AS which is used as a VP

(b) The probability that a tier-3 AS has two c2p links is p
second c2p
3 = 0

(c) The probability that there is a p2p link between two tier-3 ASes p
p2p
2 = 0

AS a result, all tier-3 ASes only have a single link to reach other ASes and therefore always appear at the
beginning or the end of a BGP path resulting in a perfect inferring score.

Case 5: Removing relationship types of randomly chosen p2p links
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Figure 4.9: The ability of Kastelein’s algorithm to infer removed randomly chosen p2p links from a graph.
The x-axis shows the percentage of randomly removed p2p relationship types from the mock graph used by the algorithm.

The y-axis shows the percentage of relationship types not inferred by the algorithm compared to the total links in the mock graph from
which no relationship types are removed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Figure 4.10: The ability of Kastelein’s algorithm to infer randomly removed p2p relationship types of links from a graph.
The x-axis shows the percentage of randomly removed p2p relationship types from the mock graph used by the algorithm.

The y-axis shows the percentage of relationship types wrongly inferred by the algorithm compared to the links in the mock graph from
which no relationship types are removed.

RT = relationship type. Vantage Points (VPs) are ASes providing routing data.
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Analysis of case 5
Compared to case 4 where only the relationship types of c2p and p2c links were removed, case 5 sees a
small percentages of not inferred links. This is caused by the fact that a p2p link in a mock graph can be
interchanged with a c2p or p2c link and therefore cannot always be inferred: this includes p2p links at the
beginning of a path.

The ratios presented on the y-axis in graph A and B in figure 4.9 are based on all the links in the mock
graph. However, only p2p relationship types are removed in case 5. When only including p2p relationship
types, the ratios need to be multiplied by 5 since around 20% of all the links are p2p. This means that for all
percentages of ASes that are VPs Kastelein’s algorithm is able to infer a higher percentage p2p relationship
types than the percentage of p2p relationship types that are being removed from the mock graph.

4.2. Measuring the performance of Kastelein’s algorithm
Because the entire Internet topology is not known, Kastelein’s algorithm has first been validated with a mock
graph that mimicked the 3-tiered structure of the Internet in section 4.1. When relationship types were
changed or removed Kastelein’s algorithm was capable of better restoring the mock graph than the valida-
tion method was polluting it. This showed that the algorithm can improve fictional AS relation data sets.

The next step is to see whether Kastelein’s algorithm can also improve real-world data sets and outper-
form other state-of-the-art topology generating algorithms. The following AS relation data sets and topology
generating algorithms will be validated and compared. To be able to compare the algorithms and data sets,
the generated AS topologies by the algorithms are used for the comparison.

• Set 1: AS Rank’s serial-1 data set
AS Rank’s serial-1 data set is created using the IMC’ 13 algorithm and BGP control plane data Route-
Views [16]. This set is included because, currently, AS Rank has the most up-to-date AS relation data
sets [7] [17].

• Set 2: AS Rank’s serial-2 data set
AS Rank’s serial-2 data set contains all the AS relations found in the serial-1 data set the plus relation-
ships inferred using trace routes using the Caida’s Archipelago (ARK) Measurement Infrastructure. This
set is included for the same reason for which set 1 is included [7] [17] [18].

• Algorithm 1: The AS relationship set generated with Gao’s algorithm using BGP control plane data
Both Kastelein’s algorithm and IMC’ 13’s algorithm share elements from Gao’s algorithm. Kastelein’s
algorithm marks relationship types between ASes which cannot be inferred as p2p and the IMC’ 13
algorithm makes use of the the number of unique neighbours of an AS. Moreover, the author of the
Gao’s algorithm also introduced the 4 relationship types s2s, p2p, c2p, and p2c.

• Algorithm 2: The AS relationship set generated by IMC’ 13’s algorithm using BGP control plane data
The IMC’ 13’s algorithm is used to construct AS Rank’s serial-2 data set and Kastelein’s algorithm uses
the same method as in the IMC’ 13 algorithm to remove poisoned paths and AS path prepending. Al-
though set 2 is partially generated using the IMC’ 13 algorithm, it also makes sense to include the AS
relationship set generated by IMC’ 13’s algorithm alone.

• Algorithm 3: The AS relationship set generated with Kastelein’s algorithm using the serial-2 data set, BGP
control plane data, and trace routes
As explained in section 3.1, Kastelein’s algorithm is also capable of using trace routes where Gao’s al-
gorithm and IMC’13’s algorithm are limited to the use of BGP control plane data. Trace routes are
generated by the Technical University Delft and by Caida’s Archipelago (ARK) Measurement Infrastruc-
ture [15]. Kastelein’s algorithm improves existing data sets: AS Rank’s serial-2 data set is used since it
contains the highest number of links between ASes.

In an ideal world, an AS relationship data set contains all the links between ASes and all the relationship
types of those links are also correctly inferred. The validation consists of comparing the coverage ratios
that determine how many relationship types a set contains and correctness scores that indicate how many
relationship types of a set are correctly inferred.



46 4. Validation & Results

Coverage ratio
The most complete list of unique links between ASes contains all the unique links between ASes found in the
available BGP control plane data and all the available trace routes. When an algorithm is capable of inferring
all these unique links found in the complete AS relation data set, its coverage ratio is said to be 100%. Every
link equally contributes to the coverage ratio: when there are N unique links in the complete AS relation data
set and X links in the set for which the coverage ratio is calculated, the coverage ratio of this set is X

N ·100%.
The correctness of these links is not captured with the coverage ratio, but with the correctness score.

Correctness score
The correctness score indicates how many relationship types of links are correctly inferred. A generated set
where both the available BGP control plane data and trace routes do not contain any non-valley-free paths,
receives the maximum correctness score of 100%.

Every link equally contributes to the correctness score. When a link is found in C paths but only correctly
inferred according to the valley-free constraint in B paths, it generates a score of B

C . The overall correctness
score is the average correctness score of the individual links.

Valley-free path A BGP path that first consists of zero or more c2p links, then zero or one p2p link, followed
by zero or more p2c links where a s2s can appear anywhere in the path is called valley-free.

• Set 1: AS Rank’s serial-1 data set

• Set 2: AS Rank’s serial-2 data set

• Algorithm 1: data set generated with Gao’s algo-
rithm using BGP control plane data

• Algorithm 2: data set generated with IMC’ 13’s al-
gorithm using BGP control plane data

• Algorithm 3: data set generated with Kastelein’s al-
gorithm using AS Rank’s serial-2, BGP control plane
data, and trace routes.
Wrongly inferred types are not removed.

• Algorithm 4: data set generated with Kastelein’s al-
gorithm using AS Rank’s serial-2, BGP control plane
data, and trace routes.
Wrongly inferred types are removed.

Coverage ratio Correctness score
Set 1 60.00% 97.57%
Set 2 79.23% 97.48%
Alg 1 34.47% 99.89%
Alg 2 62.42% 69.03%
Alg 3 86.56% 99.53%
Alg 4 84.46% 100.00%

Table 4.1: Coverage ratio and correctness score comparison
of the data sets of AS Rank and data sets generated by Goa’s

algorithm, IMC’13’s algorithm and Kastelein’s algorithm.

While AS Rank’s serial-1 set 1 contains less ASes, its correctness score is slightly higher than the AS Rank’s
serial-2 set 2 containing more ASes: the fact that the serial-2 set also includes trace routes is clearly visible
with a coverage ratio that is almost 20% higher than its serial-1 counterpart. Both AS Rank sets have an
expected high correctness score: around 3% of the link types are not inferred.

While 62.42% of the links are found in BGP control plane data, Gao’s algorithm presented in algorithm
1 is only capable of inferring 34.47% of the total links. However, the relationship types that Gao’s algorithm
does infer have the second highest correctness score. Algorithm 2 containing the AS relationship set gener-
ated with the IMC’ 13 algorithm has a much higher coverage ratio and the lowest correctness score. The low
correctness score is caused by stage 14 of the algorithm that infers all the remaining links as p2p: X% of the
total links inferred by the algorithm are inferred in that stage. Other stages that should infer c2p and p2c links
infer too few links. This low c2p and p2c infer rate is probably caused by an implementation or interpreta-
tion error: the paper describing the algorithm did not include any pseudocode and the authors of the IMC’
13 algorithm could have given a more detailed description how the algorithm needs to be implemented.

A correctness score of 100.00% for algorithm 4 is the maximum score an AS relations data set can have.
Although this might sound to good to be true, when Kastelein’s algorithm repeats stage 3, stage 4, stage 5,
and stage 6 to generate an AS relation data set with more and more relationship types that do not contain
non-valley-free paths, all the relationship types of links that violate this constraint are removed. As a result,
the correctness score will always be 100. However, the correctness score itself is a good method to measure
the quality of an AS relation data set: set 1, set 2, and algorithm 1 have similar high correctness scores. The
motivation behinds Gao’s AS classification using the types c2p, p2c, p2p, and s2s rests on the constraint that
BGP routes between ASes are valley-free. It would therefore make sense to only use the valley-free constraint
to determine the quality of these sets.
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Finally, algorithm 4, where the wrongly inferred links are not removed, has a higher coverage ratio and
correctness score than set 1, set 2, and algorithm 2. Only algorithm 1 generated using Goa’s algorithm has
a higher correctness score. However, this set only has a coverage ratio of 34.47% When using the valley-free
constraint as a metric, the set generated by Kastelein’s algorithm outperforms all other sets included in the
measurements.

4.3. Measuring the scalability of the BGP simulator
The scalability of the BGP simulator is measured to see how it will perform for different use cases. For ex-
ample, the BGP simulator can be used to show how traffic flows to reach a certain prefix or to analyse large
BGP-related incidents involving many ASes and prefixes. As explained in section 3.3, the BGP simulator can
simulate BGP traffic using a network of ASes, BGP attributes and prefix announcements. Therefore, three
methods that measure the simulator’s scalability are presented below that involve different combinations of
numbers of ASes and prefix announcements. Each method involves simulations done by the BGP simulator
using mock graphs of different sizes and various amounts of added fictional prefix announcements. All three
methods will create a scatter plot where the y-axis shows the computation time of the BGP simulator. The
data shown on the x-axis is presented below. Besides measuring the computation time, the memory usage is
also captured and compared with the memory usage of Trap’s simulator.

• Method 1: Varying the number of ASes in the mock graph while a fixed number of ASes is announcing
one prefix
This method represents the use case where the BGP simulator is used to show how traffic flows to reach
certain prefixes. This results in the computation time of the simulator being measured for an increasing
mock graph size, starting where either 25, 50, 75 or 100 ASes announce a singe prefix to determine with
which rate the computation time increases when more and more ASes are added. The placing of the
prefixes in the mock graph is randomised and the announced prefixes do not overlap to allow for a fair
comparison between methods and the number of prefix announcements.

• Method 2: Varying the number of ASes that announce one prefix with a mock graph containing a fixed
number of ASes
This method does not have a direct use case. However, knowing how the BGP simulator’s computation
time scales when only the amount of prefix announcements is changing provides insight on how the
BGP simulator works internally. The computation time of the simulator is measured for an increasing
number of ASes that announce a unique and non-overlapping prefix where the mock graph consists of
either 250, 500, 750 or 1000 ASes. The average value is taken where the placing of the prefixes in the
mock graph is randomised and the announced prefixes do not overlap to allow for a fair comparison
between methods and the number of prefix announcements.

• Method 3: Varying the number of ASes that all announce one prefix
This method represents the use case where the entire AS Internet topology is simulated: each AS is
also announcing a prefix. The computation time of the BGP simulator is measured for a mock graph
with an increasing number of ASes which each announce a unique and non-overlapping prefix. The
announced prefixes do not overlap to allow for a fair comparison between methods and the number of
prefix announcements

In order to spot trends, the computation time of each pair of number of ASes and number of announcing
prefixes is measured 10 times and the average value is calculated. The parameters for the mock graph gener-
ator, described in section 3.2 on page 30, also play an important part. A mock graph is used because existing
AS relationship data sets are difficult to scale down given the alternating number of ASes involved in each
measurement.

To mimic the 3-tiered structure of the Internet with in total 5000 ASes, the same number of tier-1 ASes
S1, multiplier per tier Sx , and number of tiers N will be used as explained in section 4.1: S1 = 2 , Sx = 49 ,

and N = 3 . This 5000 limit is a consequence of hardware limitations: when too many prefix announcements
and ASes are added, the amount of memory needed will grow too large. To compare measurements involving
different sized mock graphs, starting with tier-1, each tier is filled before the next tier is filled. For example,
when a measurement involves 100 ASes, the first 2 will be tier-1 ASes and the other 98 ASes will be in the tier-2
as a result of the S1 and the Sx parameters.
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To ensure that all the ASes in mock graph can reach each other, the probability that two tier-1 ASes share a p2p

link is p
p2p
1 = 1 . With an average of 7.15 p2p links between 25 large tier-2 ASes [19], the probability that

two tier-1 ASes share a p2p link is p
p2p
2 = 7.15

25 ·2
= 0.143 . To mimic that tier-3 ASes are not interconnected

with each other using a p2p link, the probability that two tier-3 ASes share a p2p link is p
p2p
3 = 0 . To enable

that measurements involving different mock graphs share a similar topology, the probability that a tier-2 AS

has two c2p links is p
second c2p
2 = 1 and the probability that a tier-3 AS has two c2p links is p

second c2p
3 = 0 .

Method 1: Varying the number of ASes in the mock graph while a fixed number of ASes is announcing one prefix

0 200 400 600 800 1,000
0

20

40

60

80

100

120

Number of ASes in the mock graph

A
ve

ra
ge

co
m

p
u

ta
ti

o
n

ti
m

e
(s

)

25 prefixes
50 prefixes
75 prefixes

100 prefixes

The computation time is approximately equal to

t (s) = a ·#ASes where a is 0.010, 0.031, 0.066, or 0.11
for 25, 50, 75 and 100 ASes that announce a prefix respec-
tively. In other words, adding twice as many ASes that do
not announce a prefix to the BGP simulator results in a
computation time twice as high. Doubling the number of
ASes that announce a prefix does not result in a slope twice

as steep:
0.031

0.010
≈ 3.10 ,

0.066

0.031
≈ 2.13 ,

0.11

0.066
≈ 1.67 . The

adding of additional non-announcing ASes will result in
more BGP traffic in the AS graph: BGP-learned paths cannot
contain any loops and are only passed through when they
improve the current routing status.

The placement and number of links an AS has with other ASes will effect the computation time differently: the
higher the degree and the closer to the core of the AS graph the AS is, the higher the additional computation
time will be.

Method 2: Varying the number of ASes that announce one prefix with a mock graph containing a fixed number
of ASes

There is a non-linear relation between the computa-
tion time and number of ASes announcing a prefix for
a mock graph where the number of ASes not announc-
ing a prefix is fixed. This non-linear behaviour is a con-
sequence of the need to compare all prefixes in an AS
in the routing table (RT) stage. The RT stage of the sim-
ulator contains information about which route an AS
takes to reach a certain prefix. When a more-specific,
in other words, a prefix that fits in another prefix, is
found, the route associated with this more-specific is
preferred over the route belonging to the larger prefix.
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Method 3: Varying the number of ASes that all announce one prefix
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Using polynomial regression, the
computation time is approximately

t (s) = 9.35 ·10−6 · x3 −4.03 ·10−5 · x2 +0.0318 · x1 −0.782 .
Under the assumption that the BGP simulator has enough
memory, the computation time of the BGP simulator with
10k, 25k and 70k ASes will take around 100 days, 5 years,
and 13 years respectively. These high computation times,
mainly caused by the prefix comparisons in the the RT
stage, render the BGP simulator unusable in situations that
require an up-to-date set of used BGP routes. For example,
when a prefix is hijacked, an up-to-date set of used BGP
routes is desired immediately possible to notify other ASes
or ISPs.

Performance comparison with Trap’s simulator
As discussed in section 2.7, Trap’s simulator used 32.5 Gb of memory when announcing 9 prefixes with an AS
graph consisting of 5056 ASes in real-time. Therefore, to be able to compare the BGP simulator presented in
this thesis with Trap’s simulator, the memory usage and computation time of the BGP simulator was mea-
sured with a mock graph consisting of 5056 ASes of which 5, 10, 15, or 20 ASes also announce a prefix.

Number of prefixes 5 10 15 20
Memory usage ≈ 225Mb ≈ 329Mb ≈ 411Mb ≈ 469Mb
Computation time ≈ 11s ≈ 16s ≈ 24s ≈ 35s

Table 4.2: Memory usage and computation time of the BGP simulator for a mock graph with 5056 ASes where 5, 10, 15, or 20 randomly
chosen ASes announce a prefix.

The BGP simulator is not designed to run in real-time. However, it does manage to simulate 9 prefixes
in less than 16 seconds. This should be sufficient for most use cases. Compared to Trap’s simulator the BGP
simulator is using around 10 times less memory.

4.4. Validating the BGP simulator
Because the BGP simulator only takes the LOCAL_PREFERENCE, AS_PATH, and prefix length BGP attributes
into account, simulation results will never fully match the currently used BGP routes between ASes. And al-
though the simulator is capable of simulating BGP traffic with directly added routes with AS path prepending,
it cannot predict whether ASes will apply AS path prepending. Moreover, the AS Internet topology is not com-
pletely known, and with an incomplete and partially wrong AS topology, simulation results will differ from the
real-world BGP routes.

In order to demonstrate that the BGP simulator - with only the basic attributes - is working correctly, sec-
tion 3.3 already provided several examples which included hijacked and non-hijacked prefixes and showed
the simulator’s ability to correctly use the LOCAL_PREFERENCE, AS_PATH, and prefix length attributes. How-
ever, these examples all used AS graphs with only a few ASes. Therefore, the BGP simulator will be further
validated using the larger improved AS relations data set generated by Kastelein’s algorithm. This algorithm
uses AS Rank’s serial-2 data set as a base in combination with a) available BGP control plane data and b) trace
routes to correctly infer wrongly inferred and not inferred links in the serial-2 data set.

The validation consists of the computation of the path match percentage by matching BGP control plane
data routes with BGP simulator routes: the BGP simulator should simulate the same routes as the BGP routes
found in the BGP control plane data. BGP control plane data contains BGP routes received by ASes and
captured by route collectors.

Path match percentage
The path match percentage is a metric that indicates how similar a BGP control plane data route is to the
best matching BGP simulator route. Its computation requires the following steps:



50 4. Validation & Results

• Step 1: Selecting random prefixes in the BGP control plane data
With the way in which the BGP simulator is currently implemented, it is not possible to simulate all the
prefixes.

• Step 2: Finding the corresponding ASes that announce these prefixes in the BGP control plane data
The ASes that are announcing the prefixes, also called source ASes, selected in step 1 are needed to
simulate BGP traffic.

• Step 3: Finding the associated BGP routes of the selected random prefixes in the BGP control plane data

• Step 4: Loading the improved AS relations data set into the BGP simulator

• Step 5: Adding the random prefixes selected with the associated source ASes to the BGP simulator and
simulating BGP routes

• Step 6: Grouping BGP control plane data routes per announcing prefix and receiving AS
Only BGP routes that include the same prefix, source AS and destination AS are compared with each
other. The destination AS is the last AS in the path of the BGP route that could use this BGP route to
reach the prefix announced by the source AS.

• Step 7: Grouping BGP simulator routes per announcing prefix and receiving AS
The same reasoning holds as given in step 6.

• Step 8: Matching BGP routes from step 7 with BGP routes from step 6 that are in the same group
At this point, every route is assigned to a pair containing the announcing prefix and destination AS of
that BGP route. For each pair, all the BGP control plane data routes are matched with the best matching
BGP simulator route from the same pair: the BGP simulator route that shares the most links with the
BGP control plane data route is chosen. The path match percentage is equal to the number of links
that are present in the BGP control plane data route and are not present in the BGP simulator route
divided by the total number of links in the BGP control plane data route.

When a BGP control plane data route and a BGP simulator route are identical, the BGP control plane data
route’s path match percentage is said to be 100%. Given the BGP control plane data route [1,2,3,4] and the
BGP simulator route [1,2,8,4], the path match percentage is 33.3% since only the link [1,2], and not the links
[2,3] and [3,4], is present in the BGP control plane data route and in the BGP simulator route.

For either 1000 or 4000 random prefixes found in the BGP control plane data, BGP simulator routes are
compared with the BGP routes found in the BGP control plane data. By computing and grouping path match
percentages. 1000 or 4000 random prefixes are included to detect trends.
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Figure 4.11: Both graphs contain the path match percentage for BGP control plane data routes from either 1000 or 4000 randomly
selected prefixes. The x-axis groups and shows the BGP control plane data routes in slices of 10% and filters out the BGP control plane

data routes with a path match percentage of either 0% or 100%. The y-axis displays the number of BGP control plane data routes.
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Table 4.3 shows that 5398
13858 ≈ 38% and 14176

44322 ≈ 32% of the BGP control plane data paths have a direct match
with a BGP simulator path for 1000 and 4000 prefixes respectively. It should be noted these BGP control plane
data paths with a 100% path match percentage are not the only BGP paths simulated by the BGP simulator:
the BGP simulator has an average of 2.72 paths for every bundle of BGP routes with the same prefix, source AS
and destination AS. Since only the basic BGP attributes are known, the BGP simulator cannot decide which
BGP route to use, therefore keeping all the possible BGP routes.
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1000 prefixes 2717 0 600 1392 2564 1072 64 49 2 0 0 5398 13858
4000 prefixes 10797 0 2672 5050 8317 3097 111 102 1 0 0 14176 44322

Table 4.3: The path match percentage for BGP control plane data routes from either 1000 or 4000 randomly selected prefixes. The
number of BGP control plane data routes are grouped in slices of 10% and BGP control plane data routes with a path match percentage

of either 0% or 100% are shown.

Because a BGP control plane data route either has a perfect match with a BGP simulator route or has at least
two links in its path that are different to the BGP simulator path, the 60% to, but not including, 100% path
match percentage range contains virtually no paths. With an average path length of 4.68, the expected BGP
control plane data routes with two non-matching links start at a path match percentage of 1− 2

4.68 ≈ 57%.
2717

13858 ≈ 20% and 10797
44322 ≈ 24% of the BGP control plane data paths do not have a single link that is also

present in the BGP simulator routes for either 1000 or 4000 prefixes. These 24% and 23%, and the other BGP
control plane data routes in figure 4.4 with a low path match percentage again show that the BGP simula-
tor only simulates four BGP attributes and lacks information regarding LOCAL_PREFERENCE and AS path
prepending. Both graphs in figure 4.4 show similar trends:

• 38% and 32% of the BGP control plane data routes have a path match percentage of 100% for 1000 and
4000 random prefixes respectively

• 20% and 24% of the BGP control plane data routes have a path match percentage of 0% for 1000 and
4000 random prefixes respectively

• The distribution of the BGP control plane data routes with a path match percentage between 20% and
70% is similar for both 1000 and 4000 random prefixes.

1000 prefixes

Match Mismatch
Start 9295 (≈ 67.1%) 4563 (≈ 32.9%)

Middle 3168 (≈ 19.8%) 12872 (≈ 80.2%)
End 7379 (≈ 54.7%) 6114 (≈ 45.3%)

4000 prefixes

Match Mismatch
Start 25660 (≈ 57.9%) 18663 (≈ 42.1%)

Middle 8174 (≈ 14.3%) 49092 (≈ 85.7%)
End 22528 (≈ 52.2%) 20669 (≈ 47.8%)

Table 4.4: Number of matched and mismatched links in the BGP control plane data routes for 1000 and 4000 randomly selected
prefixes. The links in the routes are grouped. All the links that are found at the beginning of a path are placed in the group start. All the

links that are found at the end of a path are placed in the group end. All the remaining links are added to the group middle.
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The distribution of BGP control plane data paths with a path match percentage between 20% and 70% is
caused by the limited number of possible path match percentages. Table 4.5 shows that the path lengths of
2, 3, and 4 are the most common. The possible associated percentages for these paths are:

• BGP paths with a path length of 2: 0%, 50%, and 100%
A single wrong AS in a path results in two wrong links. As a result, the path match percentage of 50%
can never occur in a BGP path with length 2.

• BGP paths with a path length of 3: 0%, 33%, 66%, and 100%
The path match percentage of 66% in a BGP path with length 3 can never occur since a single wrong
AS in a path results in two wrong links.

• BGP paths with a path length of 4: 0%, 25%, 50%, 75%, and 100%
Using the same reasoning as in BGP paths with a path length of 2 and 3, the path match percentage of
75% in a BGP path with length 3 can never occur.

This distribution and the fact that a single wrong AS results in two wrong links means that BGP paths with
a path length of 2, 3, and 4 can only have path match percentages of 0%, 25%, 33%, 50%, and 100%. The
bars presented in figure 4.4 show path match percentages of BGP paths in slices of 10%. The path match
percentages of 25%, 33%, and 50% end up in the groups 20%-30%, 30%-40%, and 40%-50%.

Table 4.4 shows that approximately 67.1% and 57.9% of the first links found in the collector paths are
matched with with first link found in the best matching BGP simulator route for 1000 and 4000 involved
prefixes respectively. For the last links in the collector paths approximately 54.7% and 52.2% are present in
the best matching BGP simulator route. Links found in the middle of the BGP control plane data paths are
mismatched approximately 65.70% and 69.98% of the time for 1000 and 4000 involved prefixes respectively.
These percentages are twice as high compared to the mismatch percentages of the start and end groups.

Path length 1 2 3 4 5 6 7 8 All
Match ≈ 83.6% ≈ 85.1% ≈ 50.9% ≈ 27.2% ≈ 25.5% ≈ 17.7% ≈ 16.5% ≈ 15.6% ≈ 45.7%

Mismatch ≈ 16.4% ≈ 14.9% ≈ 49.1% ≈ 72.8% ≈ 74.5% ≈ 82.3% ≈ 83.5% ≈ 84.4% ≈ 54.3%
#links 365 7430 16083 11636 6055 1566 224 32 43391
#paths 365 3715 5361 2909 1211 261 32 4 13858

Table 4.5: Percentage of matched and mismatched links in BGP control plane data routes for 1000 randomly selected prefixes grouped
per path length. For example, approximately 83.6% of the links found in the routes with path length of 1 can also be matched with the

links found in the best matching BGP simulator routes with the same path length of 1.

A single mismatched AS in a path results in two mismatched links. As a result, all the links not matched in
the start and end groups can also be present in the middle group. See table 4.5, 365+7430

43391 ≈ 18% of the BGP
control plane data paths have a path length larger than 3 when 4000 prefixes are involved. When neglecting
these 18% of paths, at least 4912 and 17066 links or at most 10033 and 33766 appear in a) the start and middle
or b) the end and middle group for 1000 and 4000 involved prefixes respectively.

The higher the path length, the lower the percentage of matched links: every extra link that a BGP an-
nouncement has to traverse introduces more uncertainties. Even with the improved AS relationship data
set generated with Kastelein’s algorithm only 50.9% of the links for the routes with a path length of 3 can be
matched. This sudden drop compared to the 85.1% of routes with a path length of 2 can be caused by only
a few different LOCAL_PREFERENCE values, resulting in totally different preferred paths. However, it should
be noted that a more detailed analysis is needed to verify this claim.
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Path length 1st link 2nd link 3rd link 4th link 5th link 6th link 7th link 8th link
1 ≈ 83.6% - - - - - - -
2 ≈ 88.7% ≈ 81.5% - - - - - -
3 ≈ 60.7% ≈ 37.5% ≈ 54.6% - - - - -
4 ≈ 54.1% ≈ 14.5% ≈ 5.5% ≈ 34.6% - - - -
5 ≈ 58.6% ≈ 26.9% ≈ 7.0% ≈ 4.1% ≈ 30.6% - - -
6 ≈ 51.0% ≈ 26.1% ≈ 10.0% ≈ 1.5% ≈ 0.8% ≈ 16.9% - -
7 ≈ 62.5% ≈ 21.9% ≈ 12.5% 0% 0% ≈ 3.1% ≈ 15.6% -
8 ≈ 50.0% ≈ 25.0% 0% 0% 0% 0% ≈ 25.0% ≈ 25.0%

Table 4.6: Percentage of matched BGP control plane data routes with the best matched BGP simulator routes grouped per path length
and position of the link in the route for 1000 randomly selected prefixes.

The percentage of matched links for all the routes with a path length of 1 should be 100% since all BGP control
plane data routes and BGP simulator routes that are compared have the same source and destination AS
pair, therefore always resulting in a match. However, because the AS relationship data set generated with
Kastelein’s algorithm does not contain all the links also found in the BGP control plane data routes, BGP
traffic is not always forwarded to all the ASes.

The first column in table 4.6 shows that for all routes it holds that the first link has the highest match
percentage compared to links appearing further in the route. The last links appearing in the routes generally
hold the second highest match percentage. For both sets of links it holds that at most a single wrong AS
in the path can result in a mismatch. This is not the case for links appearing in the middle of paths where
two mismatched ASes can cause the link to be mismatched. Consider the path [AS1, AS2, AS3, AS4], the link
between AS1 and AS2 can only be marked wrong when AS2 is not found in the best matching BGP simulator
route since AS1 is used to group BGP control plane data routes and BGP simulator routes. The link between
AS2 and AS3 can be a mismatch when AS2 and/or AS3 do not appear in the BGP simulator route.

A clear pattern is showing: the further the links appear in a path, the lower the match percentage and the
longer the path, the lower the percentage. See table 4.5, compared to the total number of routes there are
only 224+32 = 256 routes with a path length of at least 7. These routes are furthermore very poorly matched:
the BGP simulator prefers routes with smaller path lengths.

The general conclusion that can be drawn is that there the BGP simulator incorporates too few BGP
attributes and, because of the lack of insight on how ASes operate, critical information such as the LO-
CAL_PREFERENCE values are missing. This results in a BGP simulator that cannot accurately simulate BGP
traffic.





5
Conclusion & Future Work

The first chapter of this thesis stated two main goals: to design a topology generating algorithm that out-
performs the current state-of-the-art topology generating algorithms and AS relation data sets while only
using the valley-free constraint, and to design a BGP simulator that scales properly when large numbers
of ASes and prefix announcements are included.

Although BGP is crucial in enabling world wide connectivity, at the same time it allows for rerouting of
data, sending of spam, and application of Internet censorship with detrimental effects [4] [5]: as seen in the
introductory chapter, this misuse of BGP has severe consequences such as disconnecting entire countries
from the Internet and theft of confidential networking traffic. In order to better spot these anomalies an
improved AS relationship data set is needed in combination with a BGP simulator that can simulate large
BGP-related events and anomalies.

5.1. Kastelein’s algorithm
Both Gao’s algorithm, described in section 2.5.1, and IMC’ 13’s algorithm, described in section 2.5.2, are not
difficult to implement given their clearly described stages. Both algorithms are limited in their use since they
use BGP control plane data only. Adding trace routes - besides the BGP routes learned via ASes providing
their routes to route collectors - will result in relationship types of links being wrongly inferred.

The algorithms proposed by Gao et al. and Luckie et al. both assume that the customer cone of a customer
is smaller than the customer cone of the higher tiered AS. The customer cone of an AS is the set of IPv4 and
IPv6 addresses that are either owned by the AS or can be reached by visiting its customers, and also include
the customers of the customers. Furthermore, Luckie et al. also assume that ASes that do not appear in the
middle of any path are very unlikely to be interconnected with another AS via a p2p link. This claim only holds
when these so called stub ASes are actually stub. But, since the coverage of the route collectors is limited, this
cannot be said with certainty. Stub ASes are ASes that do not appear in the middle of any BGP path.

Gao’s algorithm uses the parameters R and L in stage 4 and stage 6. The parameter L in combination with
the number of ASes using an AS to reach parts of the Internet is used to infer s2s, c2p, and p2c relationship
types. The parameter R is used as a threshold to determine when two ASes are interconnected via a p2p link.
Different parameter values will lead to a different set of AS relations. This means that only with adequate
tweaking Gao’s algorithm could be capable of correctly generating the AS topology of the Internet.

The algorithm presented by Luckie et al. is described in 14 stages and infers c2p, p2c, and p2p relationship
types. Other than Gao’s algorithm, the IMC’ 13 algorithm first filters out poisoned paths. Poisoned paths are
paths where the same AS is listed twice after AS path prepending has been filtered out.
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Both algorithms have both strong and weak points. In order to not re-invent the wheel, Kastelein’s algo-
rithm takes advantage of these strong points such as removing AS path prepending and removing poisoned
paths, and the fact that AS Rank’s serial-1 and serial-2 AS relationship data sets already exist. Kastelein’s algo-
rithm does not replace the current state-of-the-art topology. Instead it uses this topology to generate a more
complete and more correct AS relationship data sets.
Kastelein’s algorithm excels in its simplicity: instead of using many assumptions, it only uses the fact that
nearly all BGP routes on the Internet follow the valley-free constraint.

Research Question 1: Can the currently known AS Internet topology be improved with a topology gen-
erating algorithm that uses data from route collectors, AS Rank’s serial-2 data set, and trace route data
in such a way that more relationship types are inferred and the percentage of correctly inferred relation-
ship types is higher using only the condition that BGP paths need to be valley-free?

Kastelein’s algorithm, described in section 3.1 on page 23, was validated a) using a mock graph that shared
the structure of the Internet where relationship types were changed and/or removed and b) by comparing the
output of the algorithm with the AS relation sets created with Gao’s algorithm, IMC’ 13’s algorithm, as well as
AS Rank’s serial-1 data set and serial-2 data set.

The validation method involving a mock graph in figures 4.1 to 4.10 on page 40 to page 44 show that
Kastelein’s algorithm is capable of correctly inferring more relationships types than the number of relation-
ships types that are removed from or changed in the mock graph. However, as seen in figure 4.10 on page
40, when 0.5% of the ASes provide routing data in the mock graph, and relationship types are changed in the
mock graph as well as removed from the mock graph, Kastelein’s algorithm is inferring around 50% wrong re-
lationship types less than relationship types changed in and removed from the mock graph. This ratio needs
to be decreased in further research.

Changing and removing relationship types with a low percentage of ASes provide routing data in the mock
graph resembles the real-word where the current state-of-the-art AS relation data sets both contain wrongly
inferred links and missing links. The fact that Kastelein’s algorithm is capable of better restoring the mock
graph than the validation method is polluting it, shows that the algorithm can be used to effectively improve
real-world AS relation data sets.

As seen in table 4.1 on page 46, Kastelein’s algorithm outperforms every other algorithm and its generated
relationship types have both a higher coverage ratio and correctness score compared to existing AS relation
data sets. Even AS Rank’s serial-2 data set that is created with the use of ARK trace routes and the IMC’ 13’s
algorithm has a lower coverage ratio of 79.22% compared to the 86.56% of Kastelein’s algorithm coverage ratio
and correctness score of 97.48 compared to Kastelein’s 99.53. The AS relationship topology generated by IMC’
13’s algorithm has a very low correctness score of 69.03. The low c2p and p2c infer rate in stages 4, 8, 9, 11 and
13 resulted in all the links being inferred as p2p in stage 14. This is probably caused by an implementation or
interpretation error: the paper describing the algorithm did not include any pseudocode and the authors of
the IMC’ 13 algorithm could have given a more detailed description on the workings of the algorithm.

Although the coverage ratio and correctness score of Kastelein’s algorithm are high, this does not automat-
ically make the algorithm the best performing one: more validation methods than only using the valley-free
constraint exist and the fact that most of the BGP paths indicate the inferred links are valley-free does not
necessarily means that the links themselves are correctly inferred. As a result, Kastelein’s algorithm needs to
be further validated using other BGP-related sources such as WHOIS data.
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5.2. BGP simulator
Trap’s BGP simulator used Mininet and Quagga to simulate 5624 ASes and 9 prefix announcements in real-
time with. The simulator was distributed over multiple servers and consumed 32.5 GB of memory. However,
Trap used a topology generated with 2018 routing data instead of a topology generated with 2008 routing
data. Furthermore, many AS configurations were not known. As a result, analysis concerning the availability
of YouTube.com during the incident differed from the analysis carried out by Dyn [6]. Trap states that when
all AS configurations were known and an up-to-date AS relationship data set was used the simulator would
have produced similar results. A new BGP simulator was designed that is:

(a) easy to set-up

(b) light-weight and scalable

(c) properly validated with BGP control plane data

Research Question 2: Can BGP traffic be simulated in such a way that the simulated BGP routes match
actual used BGP routes in an efficient way when a large number of ASes and IP ranges are involved?

The validation process of the BGP simulator, described in sections 4.3 and 4.4, consisted of two parts: the
scalability was determined by making use of a mock graph after which simulator-generated BGP routes were
compared with BGP routes from route collectors. The computation time of the BGP simulator increases lin-
early as more ASes that do not announce a prefix are added. However, when more prefix announcements are
added, the computation time no longer increases in a linear fashion. Assuming that the BGP simulator has
sufficient memory, the computation time of the BGP simulator with 10k, 25k and 70k ASes that all announce
a prefix will take 100 days, 5 years, and 11 years respectively. These high running times are mainly caused by
the prefix comparisons in the the routing table stage. In order to make the BGP simulator usable in situations
that require an up-to-date set of used BGP routes, the computation time needs to be reduced.

For the same configuration as the one used for Trap’s simulator, the BGP simulator is using 10 times less
memory and only needs around 16 seconds to complete while Trap’s simulator is capable of simulating these
9 prefixes and 5056 ASes in real-time. The computation time of the BGP simulator should be short enough
for most use cases.

Besides having a computation time that is short enough to be usable, the BGP simulator output needs
to match real-world BGP routes. When 1000 and 4000 random prefixes were used, real-world BGP routes
directly matched 56% and 57% of the BGP simulator generated routes respectively. It should be noted that for
every BGP control plane data route an average of 2.72 BGP simulator routes exist. This renders the simulator
far from perfect. This imperfection is caused by the fact that the BGP simulator can only simulate the BGP
attributes LOCAL_PREFERENCE and AS_PATH and supports, but does not predict, AS path prepending.

The AS relationship data set generated with Kastelein’s algorithm that was used for the validation did not
contain all the links found in the BGP control plane data. This resulted in lower percentages of matched links
than expected. The further the link appears in a path or the longer the path, the lower the match percentages
of the involved links are. The BGP simulator was not capable of simulating the same routes with path lengths
of at least 6. This is caused by the simulator’s preference of using routes with smaller path lengths.

The BGP simulator needs to be improved further before it can be used to accurately simulate BGP-related
incidents. All the BGP attributes need to be included and more information regarding ASes such as their
LOCAL_PREFERENCE values need to be added.
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