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13

The Fourier transform and multipliers

In this chapter, we complement the discussion of three major themes of Fourier
analysis that we have studied in the previous Volumes. The first one is the
Banach space valued Hausdorff–Young inequality

‖f̂‖Lp′ (Rd;X) 6 C‖f‖Lp(Rd;X). (13.1)

As we recall from Section 2.4.b, this is a non-trivial condition, expressed by
saying that the space X have Fourier type p. The basic theory around this
notion was already developed in 2.4.b, but we now turn to the main result on
this topic, Bourgain’s Theorem 13.1.33, which says that (13.1) holds for some
p > 1 if and only if X has some non-trivial type. Section 13.1 is dedicated to
a detailed proof of this deep result.

The second theme is about connecting the Fourier multipliers Tm : f 7→
(mf̂)∨ from Chapter 5 and Section 8.3 with the Calderón–Zygmund theory
of Chapter 11. In principle, we have

Tmf = (mf̂)∨ = m̂ ∗ f = k ∗ f,

where the right-hand side has the formal structure of the operators studied in
Chapter 11, but the question then becomes the correspondence of the condi-
tions on the multiplier m and on the singular convolution kernel k. As we will
see in Section 13.2.a, the function k will be a nice Calderón–Zygmund kernel,
and hence f 7→ k ∗ f will be in the scope of all results of Chapter 11 (notably,
including those dealing with extrapolation of boundedness to the weighted
Lp(w;X) spaces), as soon as m satisfies assumptions like those in the Mihlin
Multiplier Theorem 5.5.10 for sufficiently many derivatives ∂αm. Moreover,
this result is very general in that it holds for multipliers taking values in arbi-
trary Banach spaces, and then in particular in L (X,Y ) for any Banach spaces
X and Y . However, the required number of derivatives on this level of gener-
ality is higher than that in the Mihlin Multiplier Theorem 5.5.10. Coping only
with the same derivatives as in Mihlin’s theorem turns out to be more deli-
cate and require the use of a Banach space valued Hausdorff–Young inequality
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226 13 The Fourier transform and multipliers

(13.1). It will be convenient to know, thanks to Bourgain’s Theorem 13.1.33,
that this estimate is always available in the UMD spaces that we so frequently
deal with (recalling that every UMD space has non-trivial type by Proposition
7.3.15). As we have already seen in a number of occasions (notably, Bourgain’s
Theorem 5.2.10 on the Hilbert transform, and Guerre-Delabrière’s Theorem
10.5.1 on the imaginary powers (−∆)is of the Laplacian), the UMD condition
is often necessary for the theory that we develop.

As the third topic of this chapter, we complement these result by The-
orem 13.3.5 of Geiss, Montgomery-Smith, and Saksman, which significantly
extends the previous examples of Fourier multipliers whose Lp(Rd;X) bound-
edness implies the UMD condition. As one of its consequences, in Corollary
13.3.9, we are able to compete the characterisation of situations in which there
is a continuous embedding Hk,p(Rd;X) ↪→ W k,p(Rd;X) between two classes
of classical function spaces studied in the previous Volumes. This also pro-
vides a link with the following Chapter 14, where we undertake a systematic
development of the theory of function spaces of Banach space valued functions.

Despite the interconnected themes of the three sections of this chapter, any
of them can be studied independently of the other two by a reader interested
in a particular topic.

13.1 Bourgain’s theorem on Fourier type

Already in Section 2.4.b, we discussed in some detail the notion of Fourier
type, or the extent to which the Hausdorff–Young inequality ‖f̂‖p′ 6 C‖f‖p
remains valid for the Fourier transform of vector-valued functions. In the
Notes of Chapter 2, we also mentioned without proof the main theorem on
this topic, due to Bourgain, stating that non-trivial type implies non-trivial
Fourier type (and hence is equivalent to it, the other direction being a rather
easier Proposition 7.3.6). The aim of this section is to prove this fundamental
result, which will also play a role in the subsequent parts of the book.

We recall from Proposition 2.4.20 that the Fourier type p ∈ [1, 2] of a
Banach space X can be defined by any of the following equivalent conditions,
where moreover any choice of d ∈ Z+ is equivalent by Proposition 2.4.11:

(1) The Fourier transform on Rd, defined on f ∈ L1(Rd;X) by

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξ dξ, ξ ∈ Rd,

extends to a bounded operator from Lp(Rd;X) to Lp
′
(Rd;X).

(2) The Fourier transform on Td, defined on f ∈ L1(Td;X) by

f̂(k) =

∫
Td
f(t)e−2πit·k dt, k ∈ Zd,

restricts to a bounded operator from Lp(Td) to `p
′
(Zd).
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(3) The Fourier transform on Zd, defined on x = (xk)k∈Zd ∈ `1(Zd;X) by

x̂(t) =
∑
k∈Z

e−2πik·txk, t ∈ Td,

extends to a bounded operator from `p(Zd;X) to Lp
′
(Td;X).

Denoting the norms of the respective extensions (or restrictions) by ϕp,X(Rd),
ϕp,X(Td) and ϕp,X(Zd), we have:

Proposition 13.1.1. Let X be a Banach space, p ∈ (1, 2] and d ∈ Z+. Then

ϕp,C(Rd−1)ϕp,X(R) 6 ϕp,X(Rd) 6
(
ϕp,X(R)

)d
, (13.2)

ϕp,X(Rd) = ϕp,X∗(Rd) 6
{
ϕp,X∗(Td) = ϕp,X(Zd)
ϕp,X(Td) = ϕp,X∗(Zd)

}
6
ϕp,X(Rd)
ϕp,C(Rd)

. (13.3)

It is actually known that ϕp,C(Rd) = (p1/p(p′)−1/p′)d. For the purposes of de-
riving Proposition 13.1.1 with these explicit values, one only needs the easier
lower bound ϕp,C(Rd) > (p1/p(p′)−1/p′)d, which is readily deduced by com-

puting the Lp norms of φ(x) = φ̂(x) = e−π|x|
2

.
As we shortly recall in more detail, most of the estimates of Proposition

13.1.1 have been proved in Section 2.4.b. To complete the picture with the
final estimate in (13.3) (stated in Proposition 2.4.20 with a weaker constant),
we begin with:

Lemma 13.1.2. Let X be a Banach space and p ∈ (1,∞). Let f ∈ Lp(Td;X)
be a trigonometric polynomial, which we identify with its periodic extension
to Rd, and let φ ∈ S (Rd;X). Then

lim
ε↓0
‖f(·)φ(ε·)εd/p‖Lp(Rd;X) = ‖f‖Lp(Td;X)‖φ‖Lp(Rd),

lim
ε↓0
‖F [f(·)φ(ε·)εd/p]‖Lp′ (Rd;X) = ‖f̂‖`p′ (Zd;X)‖φ̂‖Lp′ (Rd).

Proof. For the Lp norm we have

‖f(·)φ(ε·)εd/p‖p
Lp(Rd;X)

=

∫
Rd
‖f(t)φ(εt)‖pXε

d dt

=

∫
Td
‖f(t)‖pX

( ∑
k∈Zd

|φ(ε(t+ k))|pεd
)

dt,

where in parentheses we have a Riemann sum of
∫
Rd |φ(t)|p dt.

For the Lp
′

norm, let us write f(t) =
∑
k∈Zd xkek(t). Then

F [f(·)φ(ε·)εd/p](ξ) =
∑
k∈Zd

xk

∫
Rd
φ(εt)εd/pe2πik·te−2πiξ·t dt
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=
∑
k∈Zd

xkφ̂(ε−1(ξ − k))ε−d/p
′

Let us split this into two parts,

I :=
∑
k∈Zd

xk1Q(ξ − k)φ̂(ε−1(ξ − k))ε−d/p
′
,

II :=
∑
k∈Zd

xk1{Q(ξ − k)φ̂(ε−1(ξ − k))ε−d/p
′
,

where Q = [− 1
2 ,

1
2 )d. The terms in I are disjointly supported, and hence

‖I‖Lp′ (Rd;X) =
( ∑
k∈Zd

‖xk‖p
′
‖1Q(· − k)φ̂(ε−1(· − k))ε−d/p

′
‖p
′

Lp′ (Rd)

)1/p′

=
( ∑
k∈Zd

‖xk‖p
′
‖1Q(ε·)φ̂‖p

′

Lp′ (Rd)

)1/p′

→
( ∑
k∈Zd

‖xk‖p
′
‖φ̂‖p

′

Lp′ (Rd)

)1/p′

.

On the other hand,

‖II‖Lp′ (Rd;X) 6
∑
k∈Zd

‖xk‖‖1{Q(· − k)φ̂(ε−1(· − k))ε−d/p
′
‖Lp′ (Rd)

6
∑
k∈Zd

‖xk‖‖1{Q(ε·)φ̂‖Lp′ (Rd) → 0.

Thus ‖I + II‖Lp′ (Rd;X) indeed converges to the claimed limit. �

Proof of Proposition 13.1.1. The second bound in (13.2) is contained in Prop-
osition 2.4.11. The first bound is also there, but in a slightly different form,
and the present formulation is obtained by repeating the same proof: Given
f ∈ Lp(R;X) and φ ∈ Lp(Rd−1), we have

‖f̂‖Lp′ (R;X)‖φ̂‖Lp′ (Rd−1) = ‖F (f ⊗ φ)‖Lp′ (Rd;X)

6 ϕp,X(Rd)‖f ⊗ φ‖Lp(Rd;X) = ϕp,X(Rd)‖f‖Lp(R;X)‖φ‖Lp(Rd−1).

Choosing f and φ that (almost) achieve equality in the definition of the con-
stants ϕp,X(R) and ϕp,C(Rd−1), we obtain the first bound in (13.2).

The first equality in (13.3) is Proposition 2.4.16. The first pair of inequal-
ities and the two equalities in the middle of in (13.3) are all contained in
Proposition 2.4.20 (either as stated or substituting X∗ in place of X).

Concerning the last pair of inequalities in (13.3), it suffices to prove that

ϕp,X(Td) 6
ϕp,X(Rd)
ϕp,C(Rd)

, (13.4)
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since the other bound follows with X∗ in place of X and using the first equality
in (13.3). To this end, it follows from Lemma 13.1.2 that

‖f̂‖`p′ (Zd;X)‖φ̂‖Lp′ (Rd) = lim
ε↓0
‖F [f(·)φ(ε·)εd/p]‖Lp′ (Rd;X)

6 lim
ε↓0

ϕp,X(Rd)‖f(·)φ(ε·)εd/p‖Lp(Rd;X)

= ϕp,X(Rd)‖f‖Lp(Td;X)‖φ‖Lp(Rd).

Choosing, again, f and φ that (almost) achieve equality in the definition of
the constants ϕp,X(Td) and ϕp,C(Rd), we complete the proof of (13.4), and
hence the Proposition. �

Proposition 13.1.1 at hand, in order to prove that a given Banach space has
Fourier type p, we can pick any of the equivalent conditions amenable to our
analysis. We will eventually achieve our goal with the constant ϕp,X(T), but
a major part of the work will take place on the dual group Z. This has the
advantage of presenting a convenient finite formulation as follows:

Definition 13.1.3. Let X be a Banach space, p, q ∈ [1,∞] and n ∈ Z+. Then

ϕ
(q)
p,X(n) is the smallest admissible constant such that the inequality

∥∥∥ n∑
k=1

ekxk

∥∥∥
Lq(T;X)

6 ϕ(q)
p,X(n)

( n∑
k=1

‖xk‖p
)1/p

, ek(t) := e2πikt (t ∈ T),

holds for every choice of x1, . . . , xn ∈ X. We abbreviate ϕp,X(n) := ϕ
(p′)
p,X(n).

Although the case q = p′ is most directly linked with the Hausdorff–Young
inequality on the infinite spaces Rd,Td and Zd, it turns out that our inter-
mediate steps towards this final goal will also need to make use of the more
general definition with “mismatched” exponents. Moreover, we will even need
some further variations of this definition (e.g., involving other index sets F in
place of {1, . . . , n}), but we postpone them until the point where they will be
used. For the moment, we have the fairly obvious

Lemma 13.1.4. Let X be a Banach space and p, q ∈ [1,∞]. The sequence

(ϕ
(q)
p,X(n))n>1 is increasing, and

1 6 ϕ(q)
p,X(n) 6 n1/p′ , ϕp,X(Z) = lim

n→∞
ϕp,X(n) ∈ [1,∞].

Proof. That the sequence is increasing follows simply by extending a shorter
sequence by additional zeroes. This also shows the existence of a (possibly
infinite) limit limn→∞ ϕp,X(n). The lower bound follows by taking x1 6= 0 =
xk for k > 2, and the upper bound is also simply the triangle and Hölder’s
inequality
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k=1

ekxk

∥∥∥
Lq(T;X)

6
n∑
k=1

‖xk‖ 6 n1/p′
( n∑
k=1

‖xk‖p
)1/p

.

Given (xk)nk=1, let x = (xk)k∈Z be its zero extension. The upper bound
ϕp,X(n) 6 ϕp,X(Z) follows by observing that

∑n
k=1 ek(t)xk is simply x̂(−t).

It only remains to check that ϕp,X(Z) 6 limn→∞ ϕp,X(n). Let x = (xk)k∈Z
be finitely supported, i.e., xk = 0 if |k| > N for some finite N . Now

x̂ =
∑

|k|6N−1

e−kxk =
2N−1∑
j=1

e−N+jxN−j = e−N

2N−1∑
j=1

ejxN−j ,

hence

‖x̂‖Lp′ (T;X) =
∥∥∥ 2N−1∑

j=1

ejxN−j

∥∥∥
Lp′ (T;X)

6 ϕp,X(2N − 1)
( 2N−1∑

j=1

‖xN−j‖p
)1/p

= ϕp,X(2N − 1)‖x‖`p(Z;X) 6 lim
n→∞

ϕp,X(n)‖x‖`p(Z;X).

By the density of finitely supported sequences in `p(Z;X), this shows that
ϕp,X(Z) 6 limn→∞ ϕp,X(n), and completes the proof. �

The task of proving that a space X has non-trivial Fourier type (assuming
non-trivial type) is hence reduced, in principle, to showing the boundedness
of the sequence (ϕp,X(n))n>1 for some p > 1. Although the proof that we
are about to give is eventually set up slightly differently, this idea serves as a
good motivation for a major part of the subsequent analysis. The proof that
we will present can be roughly divided into the following main steps, treated
in the next four sections:

1. Using type bounds on Sidon sets that partition {1, . . . , n} gives a first mild
improvement ϕ2,X(n) = o(n1/2) over the trivial estimate ϕ2,X(n) 6 n1/2.

2. Comparison with the finite Fourier transform on Zn gives sub-multi-
plicativity and leads to ϕ2,X(n) = O(n1/r−1/2) for some r > 1.

3. By a delicate Lemma 13.1.25 of Bourgain, this gives a first uniform bound

ϕ
(2)
s;X(n) = O(1), but with mismatched exponents s ∈ (1, r) and 2 6= s′.

4. Standard duality and interpolation, combined with repeating the same
key Lemma 13.1.25 on the dual side, allow us to conclude with p ∈ (1, r).

A thorough reader may recognise some conceptual similarity with the consid-
erations encountered in Section 7.3.b in the context of deducing non-trivial
type (and cotype) from the non-containment of certain subspaces. There we
defined the finite type constant τ2,X(n) as the best constant in the estimate∥∥∥ n∑

k=1

εkxk

∥∥∥
L2(Ω;X)

6 τ2,X(n)
( n∑
k=1

‖xk‖2
)1/2

∀x1, . . . , xn ∈ X. (13.5)

These numbers will play a role in the first proof step outlined above.
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13.1.a Hinrichs’s inequality: breaking the trivial bound

Recall that our goal is deriving non-trivial Fourier type from non-trivial type.
Thus, from the knowledge that random sums

∑
k εkxk can be dominated by

‖(xk)‖`p , we would like to conclude that trigonometric sums
∑
k ekxk can

be similarly dominated (though possibly with a different p). An obvious idea
that suggests itself is to try to dominate the trigonometric sum by the random
sum. Indeed, we know from Section 6.5 that this can be done under particular
circumstances if the trigonometric sum is restricted to a special set called a
Sidon set. This leads to the following strategy: Given the initial sum over k ∈
{1, . . . , N}, we want to partition this into sums over Sidon sets on which we can
make estimates, and this partitioning should be done sufficiently economically
so that it allows us to beat the trivial estimate. To carry out this idea, we
need to be able to

1. efficiently recognise Sidon sets, and
2. decompose arbitrary sets into as few as possible Sidon sets.

We now turn to these tasks. Recall from Section 6.5 that a subset Λ ⊆ Z
is called a Sidon set if the following estimate holds uniformly over all finitely
non-zero sequences (cλ)λ∈Λ of complex numbers:∑

λ∈Λ

|cλ| 6 C
∥∥∥∑
λ∈Λ

cλeλ

∥∥∥
∞
.

The smallest admissible constant C is called the Sidon constant of Λ and is
denoted by S(Λ). However, this definition in itself is hardly helpful in checking
whether or not a particular set actually satisfies this property. A first sufficient
condition for a set to be a Sidon set was achieved in Proposition 6.5.3, showing
in particular that S({2k : k ∈ N}) 6 4. For the present purposes, we require
a more robust criterion, which is provided in the following:

Definition 13.1.5 (Quasi-independent set). A subset F ⊆ Z \ {0} is
called quasi-independent if αk ≡ 0 is the only finitely non-zero sequence such
that αk ∈ {−1, 0,+1} for all k ∈ F and∑

k∈F

αk · k = 0.

Example 13.1.6. The sequence {2k : k ∈ N} is quasi-independent. In fact, if∑∞
k=0 αk2k = 0 for a finitely non-zero sequence (αk)∞k=1, then∑

k:αk=+1

2k =
∑

k:αk=−1

2k.

It follows from the uniqueness of the binary expansion that {k : αk = +1} =
{k : αk = −1}, and this is possible only if both sets are empty. Hence αk ≡ 0.
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Proposition 13.1.7 (Bourgain). Every quasi-independent set F ⊆ Z \ {0}
is a Sidon set with

S(F ) 6 16.

By Example 13.1.6, this gives another proof of the fact that {2k : k ∈ N} is a
Sidon set, but with a slightly weaker constant than Proposition 6.5.3.

Proof. This is based on a variant of the Riesz product method also used in
the proof of Proposition 6.5.3, but the details are somewhat different, and we
will provide a self-contained argument. By considering every finite subset of
the original F , we may assume without loss of generality that F is finite to
begin with. Given parameters % ∈ (0, 1] and ξ = (ξk)k∈F ∈ RF , let then

Rξ(t) :=
∏
k∈F

(
1 + % cos(2π(kt+ ξk))

)
=
∏
k∈F

(
1 +

%

2
(ek(t)e1(ξk) + e−k(t)e−1(ξk))

)
=

∑
α∈{−1,0,+1}F

2−|α|%|α| exp
(

2πi
∑
k∈F

αk · kt
)

exp
(

2πi
∑
k∈F

αkξk

)
,

where |α| :=
∑
k∈F |αk| as usual for multi-indices,. (To relax the notation, we

do not explicate the dependence of Rξ on %.)
From the assumption that F is quasi-independent, it follows that∑

k∈F

αk · k = 0 only if αk ≡ 0,

and hence R̂ξ(0) = 1. It is also clear from the first line of the definition of
Rξ(t) (recalling that % ∈ (0, 1]) that Rξ(t) > 0, and hence

‖Rξ‖L1(T) =

∫ 1

0

Rξ(t) dt = R̂ξ(0) = 1.

Let us further write

R
(m)
ξ (t) :=

∑
α∈{−1,0,+1}F
|α|=m

2−|α| exp
(

2πi
∑
k∈F

αk · kt
)

exp
(

2πi
∑
k∈F

αkξk

)
,

so that

Rξ(t) =

#F∑
m=0

%mR
(m)
ξ (t), where

R
(0)
ξ (t) = 1, R

(1)
ξ (t) =

1

2

∑
k∈F

(
ek(t)e1(ξk) + e−k(t)e−1(ξk)

)
.

From the orthogonality of the exponentials, for each j ∈ F , we have
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0

R
(1)
ξ (t)ej(t) dt =

1

2

∑
k∈F

(
δk,−je1(ξk) + δk,je−1(ξk)

)
=

1

2
e−1(ξj),

where we observed that k = −j is not possible when k, j belong to the same
quasi-independent set F , since 1·k+1·j = 0 is a direct violation of the defining

condition. It is also immediate that
∫
R

(0)
ξ ej = 0 for all j ∈ F ⊆ Z \ {0}.

For
f =

∑
j∈F

cjej ,

we then conclude that∫ 1

0

Rξf =

∫ 1

0

( #F∑
m=0

%mR
(m)
ξ

)(∑
j∈F

cjej

)
= 0 +

%

2

∑
j∈F

cje−1(ξj) +
∑
j∈F

cj
∑
m>2

%m
∫ 1

0

R
(m)
ξ ej .

(13.6)

Using again the orthogonality of the exponentials, we have∣∣∣ ∫ 1

0

R
(m)
ξ ej

∣∣∣ =
∣∣∣ ∑
α∈{−1,0,+1}F
|α|=m∑

k∈F αk·k=−j

2−m exp
(

2πi
∑
k∈F

αkξk

)∣∣∣

6
∑

α∈{−1,0,+1}F
|α|=m∑

k∈F αk·k=−j

2−m =

∫ 1

0

R
(m)
0 ej ,

where R
(m)
0 is simply R

(m)
ξ with ξ = 0. It follows that

#F∑
m=0

∣∣∣ ∫ 1

0

R
(m)
ξ ej

∣∣∣ 6 #F∑
m=0

∫ 1

0

R
(m)
0 ej =

∫ 1

0

R0ej 6 ‖R0‖L1(T) = 1.

The last term in (13.6) can now be estimated by∣∣∣∑
j∈F

cj
∑
m>2

%m
∫ 1

0

R
(m)
ξ ej

∣∣∣ 6∑
j∈F
|cj |

∑
m>2

%2
∣∣∣ ∫ 1

0

R
(m)
ξ ej

∣∣∣ 6∑
j∈F
|cj |%2.

If we now choose ξj so that cje−1(ξj) = |cj |, then (13.6) gives

%

2

∑
j∈F
|cj | =

∫ 1

0

Rξf −
∑
j∈F

cj
∑
m>2

%m
∫ 1

0

R
(m)
ξ ej

6 ‖Rξ‖L1(T)‖f‖L∞(T;X) + %2
∑
j∈F
|cj |,
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and hence (%
2
− %2

)∑
j∈F
|cj | 6 ‖f‖L∞(T;X) =

∥∥∥∑
k∈F

ckek

∥∥∥
L∞(T;X)

.

Choosing finally % = 1
4 completes the proof. �

By the previous result, our initial task of decomposing arbitrary sets into
Sidon sets is reduced to decomposing into quasi-independent sets. A first step
in this direction is to know that every set has a quasi-independent subset of
somewhat substantial size.

Lemma 13.1.8. Any finite subset F ⊆ Z\{0} has a quasi-independent subset
F0 ⊆ F of cardinality #F0 > dlog3 #F e.

Proof. Let F0 ⊆ F be a quasi-independent subset of maximal cardinality, and
let

F1 :=
{ ∑
k∈F0

αk · k : αk ∈ {−1, 0,+1}
}
.

Clearly F1 ⊇ F0, and we claim that in fact F1 ⊇ F . If not, let k0 ∈ F \F1. We
will check that F0 ∪ {k0} is quasi-independent, contradicting the maximality
of F0. Namely, suppose that ∑

k∈F0∪{k0}

αk · k = 0,

where αk ∈ {−1, 0,+1}. If αk0 = ±1, then

k0 =
∑
k∈F0

(−αk0αk) · k ∈ F1,

contradicting k0 /∈ F1. Thus αk0 = 0, but then also αk = 0 for all k ∈ F0, since
F0 is quasi-independent, and this proves that F0 ∪ {k0} is quasi-independent.

As explained above, this proves that F1 ⊇ F , and hence

#F 6 #F1 6 3#F0 ,

from which the proposition follows, since #F0 > log3 #F is necessarily an
integer. �

By recursively removing big quasi-independent subsets, we arrive at the de-
sired decomposition of the initial set:

Lemma 13.1.9. For N ∈ Z+, let

d(N) := min{k ∈ Z+ : any subset F ⊆ Z \ {0} of size #F 6 N can be

divided into at most k quasi-independent subsets}.

Then d(3n) 6
2 · 3n

n+ 1
for all n ∈ N. For all n > 1, each of the partitioning

quasi-independent subsets can be chosen to have size at most n.
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Proof. Since clearly d(3n) 6 3n (as each singleton is quasi-independent), the
claim is obvious for n 6 1. For 3 < #F 6 9, Lemma 13.1.8 guarantees a
quasi-independent subset of size 2. Starting from a set of size 9 and repeatedly
extracting 3 quasi-independent subsets of size 2, we are left with a subset of
size 3 that trivially splits into 3 quasi-independent subsets of size 1. Hence
d(32) 6 3 + 3 = 6 = 2 · 32/(2 + 1). We then assume that, for some n > 2,
any set of size 3n can be divided into at most 2 ·3n/(n+ 1) quasi-independent
subsets of size at most n, and we prove the same for n+ 1.

If #F = 3n+1, Lemma 13.1.8 guarantees that we can repeatedly extract
quasi-independent subsets Fi (i = 1, . . . , j) of size n+ 1, until

3n+1 − j(n+ 1) 6 3n < 3n+1 − (j − 1)(n+ 1),

thus
2 · 3n

n+ 1
6 j < 1 +

2 · 3n

n+ 1
.

The remaining set of size at most 3n can then be divided into at most d(3n)
quasi-independent subsets, and by the induction assumption we have

d(3n+1) 6 j + d(3n) <
(

1 +
2 · 3n

n+ 1

)
+

2 · 3n

n+ 1
= 1 +

4 · 3n

n+ 1
.

For n > 2, we have 1/(n+ 1) 6 4
3/(n+ 2) and 3n/(n+ 2) > 9

4 , and hence

d(3n+1) 6
(4

9
+

16

3

) 3n

n+ 2
< 6

3n

n+ 2
=

2 · 3n+1

(n+ 1) + 1
,

and this completes the induction step. Note that all quasi-independent subsets
that we constructed in the induction step had either size n+ 1, or they came
from the induction assumption, in which case their size is at most n. �

In the next remark, we indicate converses to the obtained bounds of Lemmas
13.1.8 and 13.1.9.

Remark 13.1.10. Let F0 ⊆ F := {1, . . . , N} be such that N > 2 and F0 is
quasi-independent. We claim that necessarily #F0 6 2 log2(N). Clearly, this
implies d(N) > N

2 log2(N) . Indeed, write m = #F0. It suffices to consider m > 2.

Let A ⊆ F0 be arbitrary. Then

0 6
∑
a∈A

a 6
∑
a∈F0

a < N2.

Therefore, the number of different values can be estimated by

#
{∑
a∈A

a : A ⊆ F0

}
6 N2.

One the other hand, if A,B ⊆ F0 are such that
∑
a∈A a =

∑
b∈B b, then the

quasi-independence of F0 implies A = B. Therefore,
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2m = #{A ⊆ F0} 6 #
{∑
a∈A

a : A ⊆ F0

}
.

We can conclude 2m 6 N2 and thus the claim follows.

We now possess all the ingredients needed for the first estimate of Fourier type
in terms of type, stated in terms of the finite versions of both properties. The
reader may wish to compare the next proposition to Theorem 7.6.12 which
gives a related inequality for the Walsh system.

Proposition 13.1.11 (Hinrichs’s inequality). For all n > 1 we have

ϕ2,X(3n)√
3n

6 16
√

2 · τ2,X(n)√
n

.

Proof. By Lemma 13.1.9, the set {1, . . . , 3n} can be divided into

A 6 2 · 3n/(n+ 1)

quasi-independent subsets Fa of size #Fa 6 n. By Proposition 13.1.7, each
quasi-independent Fa is a Sidon set with S(Fa) 6 16. By Pisier’s Theorem
6.5.5, trigonometric series over a Sidon set is comparable in the Lp norm to the
corresponding Rademacher series, up to the Sidon constant. Chaining these
observations and using the definition of the type constants τ2,X(n) and the
Cauchy–Schwarz inequality, we obtain

∥∥∥ 3n∑
k=1

ekxk

∥∥∥
L2(T;X)

=
∥∥∥ A∑
a=1

∑
k∈Fa

ekxk

∥∥∥
L2(T;X)

6
A∑
a=1

∥∥∥ ∑
k∈Fa

ekxk

∥∥∥
L2(T;X)

6
A∑
a=1

16
∥∥∥ ∑
k∈Fa

εkxk

∥∥∥
L2(Ω;X)

6
A∑
a=1

16 · τ2,X(#Fa)
( ∑
k∈Fa

‖xk‖2
)1/2

6 16 · max
16a6A

τ2,X(#Fa)
√
A
( A∑
a=1

∑
k∈Fa

‖xk‖2
)1/2

6 16 · τ2,X(n)

√
2 · 3n
n+ 1

( 3n∑
k=1

‖xk‖2
)1/2

,

from which the proposition follows. �

The following corollary gives the promised improvement over the trivial bound
ϕ2,X(3n) 6

√
3n as soon as n is large enough.
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Corollary 13.1.12. Let X be a Banach space of type p ∈ (1, 2]. Then for all
n > 1, we have

ϕ2,X(3n)√
3n

6 16
√

2 · τp,X;2 · n−1/p′ .

The type constant τp,X;s with a secondary parameter (above s = 2) was
introduced right before Proposition 7.1.4 as the best constant in the inequality∥∥∥ K∑

k=1

εkxk

∥∥∥
Ls(Ω;X)

6 τp,X;s

( K∑
k=1

‖xk‖p
)1/p

, (13.7)

where x1, . . . , xK ∈ X and K ∈ Z+ are arbitrary. Recall that τp,X := τp,X;p.

Proof. From the definition of the type constants and Hölder’s inequality, it is
immediate that

τ2,X(n)√
n
6
τp,X;2 · n1/p−1/2

√
n

= τp,X;2 · n−1/p′ .

In combination with Proposition 13.1.11, this gives the result. �

13.1.b The finite Fourier transform and sub-multiplicativity

Note that the improvement of Corollary 13.1.12 over the trivial bound is only
very slight. Our first goal in bootstrapping this initial estimate is to obtain a
power-type bound of the form ϕ2,X(N) = O(N1/2−δ). As the reader can easily
verify (perhaps referring to Lemma 7.3.19), this would readily follow from the
established bound, if in addition we had a sub-multiplicative estimate

ϕ2,X(nm)
?
6 ϕ2,X(n)ϕ2,X(m).

As we do not know whether this is true, we take a detour by comparing
the sequence ϕ2,X(n) with the following discretised variant:

Definition 13.1.13. Let X be a Banach space and n ∈ Z+. Then ϕ
(q)
p,X(Zn)

is the best constant in the following inequality with arbitrary x1, . . . , xn ∈ X:( 1

n

n∑
h=1

∥∥∥ n∑
k=1

ek(h/n)xk

∥∥∥q)1/q

6 ϕ(q)
p,X(Zn)

( n∑
k=1

‖xk‖p
)1/p

.

As the notation suggests, ϕ
(q)
p,X(Zn) has an interpretation as the norm of the

Fourier transform (thus, a Fourier type constant) of functions on the finite
group Zn = Z/nZ, but there is no need to insist too much on this point here.

The difference of the defining inequalities of ϕ
(q)
p,X(n) and ϕ

(q)
p,X(Zn) is that

the Lp(T;X) integral norm in the former is replaced by a finite Riemann sum
approximation in the latter. We will next develop some tools for comparing
the two kinds of norms. This will involve elements of some fairly classical
Fourier analysis, and we begin with
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Definition 13.1.14. The Dirichlet kernel is defined by

Dn(t) :=
∑
|k|6n

ek(t), t ∈ T,

the Fejér kernel by

Fn(t) :=
1

n+ 1

n∑
k=0

Dk(t) =
∑
|k|6n

(
1− |k|

n+ 1

)
ek(t), t ∈ T,

and the de la Vallée–Poussin kernel by

Vn(t) :=
1

n

2n−1∑
k=n

Dk(t) =
∑
|j|6n

ej(t) +
∑

n<|j|<2n

(
2− |j|

n

)
ej(t), t ∈ T.

Lemma 13.1.15. These kernels satisfy the identities

Dn(t) =
sin(π(2n+ 1)t)

sin(πt)
, Fn(t) =

1

n+ 1

sin2(π(n+ 1)t)

sin2(πt)
> 0,

Vn(t) = 2F2n−1(t)− Fn−1(t).

Proof. The formula for Dn is the summation of a geometric series:

Dn(t) :=
∑
|k|6n

e2πikt = e−2πint e
2πi(2n+1)t − 1

e2πit − 1
=

sin(π(2n+ 1)t)

sin(πt)
.

Since

n∑
k=0

sin(π(2k + 1)t) = =
n∑
k=0

eiπtei2πkt = =
(
eiπt

ei2π(n+1)t − 1

ei2πt − 1

)
= =

(
eiπ(n+1)t sin(π(n+ 1)t)

sin(πt)

)
=

sin2(π(n+ 1)t)

sin(πt)
,

we obtain the formula for Fn by summing over the formula for Dk. Finally,

Vn =
1

n

2n−1∑
k=n

Dk =
1

n

( 2n−1∑
k=0

Dk −
n−1∑
k=0

Dk

)
=

1

n

(
2nF2n−1 − nFn−1

)
.

�

Lemma 13.1.16. If f is a trigonometric polynomial with deg(f) < n, then
for all s ∈ R we have ∫ 1

0

f(t) dt =
1

n

n∑
h=1

f(s+ h/n),

i.e., f can be integrated exactly by uniform Riemann sums of order n.
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Proof. It is enough to consider f(t) = ek(t), where |k| < n. We observe that

n∑
h=1

e2πikh/n =

{
e2πik/n e2πikn/n−1

e2πik/n−1
= 0, 0 < |k| < n,

n, k = 0,

and hence

1

n

n∑
h=1

f(s+ h/n) =
ek(s)

n

n∑
h=1

e2πikh/n = ek(s)δk,0 = δk,0 =

∫ 1

0

ek(t) dt.

�

On the level of Lp norms, this leads to the following comparison result:

Proposition 13.1.17 (Marcinkiewicz inequality). Let X be a Banach
space and p ∈ [1,∞). Then for all n ∈ Z+ and x1, . . . , xn ∈ X, we have( 1

n

n∑
h=1

∥∥∥ n∑
k=1

ek(h/n)xk

∥∥∥p)1/p

6 3
∥∥∥ n∑
k=1

ekxk

∥∥∥
Lp(T;X)

.

With the usual modification, the result is also true (and entirely trivial) for
p =∞: of course the supremum over {j/n : j = 1, . . . , n} is dominated by the
supremum over all of T!

Proof. Let

f(t) :=
n∑
k=1

ek(t)xk, m := bn/2c.

Then (n−1)/2 6 m 6 n/2 and the function e−(m+1)f is a linear combination
of ek with

−m = 1− (m+ 1) 6 k 6 n− (m+ 1) 6 (2m+ 1)− (m+ 1) = m,

so e−(m+1)f is a trigonometric polynomial of degree m.
Since the de la Vallée–Poussin kernel Vm from Definition 13.1.14 has

Fourier coefficients V̂m(k) = 1 for all values |k| 6 m on which the Fourier
coefficients of e−(m+1)f are supported, we conclude that

V̂m[e−(m+1)f ]̂ = [e−(m+1)f ]̂ ,
hence Vm ∗ (e−(m+1)f) = e−(m+1)f . Thus

‖f(t)‖ = ‖e−(m+1)(t)f(t)‖ = ‖Vm ∗ (e−(m+1)f)(t)‖

6
∫
T
|Vm(t− s)|‖f(s)‖ ds

6
(∫

T
|Vm(t− s)| ds

)1/p′(∫
T
|Vm(t− s)|‖f(s)‖p ds

)1/p

(13.8)
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By Lemma 13.1.15, we have

|Vm| = |2F2m−1 − Fm−1| 6 2F2m−1 + Fm−1, (13.9)

where
∫
T Fk(t) dt = F̂k(0) = 1, and hence∫

T
|Vm(t− s)| ds 6 3.

Substituting into (13.8) and summing, we have

n∑
h=1

‖f(h/n)‖p 6 3p/p
′
∫
T

n∑
h=1

|Vm(h/n− s)|‖f(s)‖p ds.

Since the right-hand side of (13.9) is a trigonometric polynomial of degree
2m− 1 6 n− 1, Lemma 13.1.16 guarantees that

n∑
h=1

|Vm(h/n− s)| 6
n∑
h=1

(2F2m−1 + Fm−1)(h/n− s)

= n

∫
T
(2F2m−1 + Fm−1)(u) du = 3n.

Substituting back, we conclude that

1

n

n∑
h=1

‖f(h/n)‖p 6 3p/p
′
∫
T

3‖f(s)‖p ds = 3p‖f‖pLp(T;X).

�

We now have the desired comparison of the two finite Fourier type constants:

Lemma 13.1.18. For any Banach space X and n ∈ Z+, we have

ϕ
(q)
p,X(n) 6 ϕ(q)

p,X(Zn) 6 3 · ϕ(q)
p,X(n).

Proof. Substituting ek(t)xk in place of xk in Definition 13.1.13, we find that

1

n

n∑
h=1

∥∥∥ n∑
k=1

ek(t+ h/n)xk

∥∥∥q 6 (ϕ(q)
p,X(Zn)

)q( n∑
k=1

‖xk‖p
)q/p

Integrating over t ∈ T and using the translation invariance

‖f(·+ h/n)‖Lq(T;X) = ‖f‖Lq(T;X),

we obtain

1

n

n∑
h=1

∫
T

∥∥∥ n∑
k=1

ek(t)xk

∥∥∥q dt 6
(
ϕ

(q)
p,X(Zn)

)q( n∑
k=1

‖xk‖p
)q/p

,
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and hence ϕ
(q)
p,X(n) 6 ϕ(q)

p,X(Zn).
The other estimate follows at once from the Marcinkiewicz inequality

(Proposition 13.1.17), which is the first step in( 1

n

n∑
h=1

∥∥∥ n∑
k=1

ek(h/n)xk

∥∥∥q)1/q

6 3
∥∥∥ n∑
k=1

ekxk

∥∥∥
Lq(T;X)

6 3ϕ
(q)
p,X(n)

( n∑
k=1

‖xk‖p
)1/p

.

�

The following lemma is our reason for considering the quantities ϕ
(q)
p,X(Zn):

Lemma 13.1.19. For any Banach space X and m,n ∈ Z+, we have the sub-
multiplicative estimate

ϕ
(q)
p,X(Zmn) 6 ϕ(q)

p,X(Zm)ϕ
(q)
p,X(Zn), 1 6 p 6 q 6∞;

in particular

ϕp,X(Zmn) 6 ϕp,X(Zm)ϕp,X(Zn) ∀p ∈ [1, 2].

Proof. The second estimate is an obvious special case with q = p′ > 2 > p.
For the proof of the general estimate, it is convenient to observe that, by

simple reindexing and modular arithmetic, the condition defining ϕ
(q)
p,X(Zn)

is unchanged if instead of {1, . . . , n} we take all sums over {0, . . . , n − 1}. In

the defining condition of the constant ϕ
(q)
p,X(Zmn), we should then sum over

{0, . . . ,mn − 1}, and the key trick of the proof is to use a non-symmetric
reindexing of this range for the h and k sums, namely

h = an+ b : a = 0, . . . ,m− 1, b = 0, . . . , n− 1,

k = um+ v : u = 0, . . . , n− 1, v = 0, . . . ,m− 1.

Then
hk = (an+ b)(um+ v) = aumn+ avn+ bum+ bv,

and hence, noting that e2πiau = 1,

ek(h/mn) = eu(b/n)ev(a/m)ev(b/mn).

Thus { 1

mn

mn−1∑
h=0

∥∥∥mn−1∑
k=0

ek(h/mn)xk

∥∥∥q}1/q

=
{ 1

n

n−1∑
b=0

1

m

m−1∑
a=0

∥∥∥m−1∑
v=0

ev(a/m)y(b)
v

∥∥∥q}1/q

,
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y(b)
v := ev(b/mn)

n−1∑
u=0

eu(b/n)xum+v,

6
{ 1

n

n−1∑
b=0

ϕ
(q)
p,X(Zm)q

(m−1∑
v=0

‖y(b)
v ‖p

)q/p}1/q

6 ϕ(q)
p,X(Zm)

{m−1∑
v=0

( 1

n

n−1∑
b=0

∥∥∥ n−1∑
u=0

eu(b/n)xum+v

∥∥∥q)p/q}1/p

by Minkowski’s inequality for p 6 q,

6 ϕ(q)
p,X(Zm)

{m−1∑
v=0

ϕ
(q)
p,X(Zn)p

n−1∑
u=0

‖xum+v‖p
}1/p

= ϕ
(q)
p,X(Zm)ϕ

(q)
p,X(Zn)

{mn−1∑
k=0

‖xk‖p
}1/p

,

where we used the defining condition for ϕ
(q)
p,X(Zm) with the sequences

(y
(b)
v )m−1

v=0 for each fixed b = 0, . . . , n − 1, and that for ϕ
(q)
p,X(Zn) with the

sequences (xmu+v)
n−1
u=0 for each fixed v = 0, . . . ,m− 1. �

Combining the above results with Corollary 13.1.12 of Hinrichs’s inequal-
ity, we achieve the desired power-type improvement over the trivial estimate
ϕ2,X(N) 6 N1/2. One could try to deduce this from Lemma 7.3.19 applied
to ϕ2,X(Zn). However, this time that does not work since we do not know
whether ϕ2,X(Zn) is increasing in n. Therefore, we adapt the proof of the
lemma and use the facts that ϕ2,X(n) is increasing and that ϕ2,X(Zn) is sub-
multiplicative. Our choice of notation r′ below is indicative of the fact that
this is the Hölder conjugate of a (small) exponent r > 1.

Corollary 13.1.20. Let X be a Banach space of type p ∈ (1, 2]. Then

ϕ2,X(N) 6 C ·N1/2−1/r′ = C ·N1/r−1/2,

where

r′ := 3p′(68 · τp,X;2)p
′
, C := e

r′
2p′ . (13.10)

Proof. Given N,n ∈ Z+, let k ∈ Z+ satisfy

3n(k−1) 6 N < 3nk. (13.11)

Then

ϕ2,X(N) 6 ϕ2,X(3nk) since ϕ2,X is increasing by Lemma 13.1.4,

6 ϕ2,X(Z3nk) by the comparison in Lemma 13.1.18,
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6 ϕ2,X(Z3n)k by sub-multiplicativity (Lemma 13.1.19),

6 (3 · ϕ2,X(3n))k by the comparison in Lemma 13.1.18.

Therefore, by (13.11) for any s ∈ (1, 2] we find

N1/2−1/sϕ2,X(N) 6 3n(k−1)( 1
2−

1
s )(3 · ϕ2,X(3n))k

= 3n( 1
s−

1
2 )[3n( 1

2−
1
s ) · 3 · ϕ2,X(3n)]k

For appropriate n and s, we will show that the term within brackets satisfies
[. . .] 6 1. By Corollary 13.1.12, we can estimate

[. . .] 6 3n( 1
2−

1
s ) · 3 · 16

√
2 · τp,X;2 · 3n/2 · n−1/p′ =: 3n/s

′
Tn−1/p′ ,

where T := 48
√

2τp,X;2. Therefore, setting s′ = (1 + eT p
′
)p′ log(3) and taking

eT p
′
6 n < eT p

′
+ 1 we find that

3n/s
′
Tn−1/p′ 6 e1/p′T

e−1/p′

T
= 1.

From the above we conclude that

N1/2−1/sϕ2,X(N) 6 3n( 1
s−

1
2 ) 6 3n/2 = en log(3)/2 6 es

′/(2p′).

The above trivially holds true if we replace s′ by any r′ > s′. Since 50 6 T 6
68τp,X;2 and p′ > 2, one can check that

s′ = (1 + eT p
′
)p′ log(3) = T p

′
(T−p

′
+ e)p′ log(3) 6 (68τp,X;2)p

′
3p′ =: r′.

Thus the statement follows. �

Before turning to some of the sophisticated constructions and estimates for
Bourgain’s theorem, we discuss a much simpler situation where one can obtain
ϕ2,X(n) = O(n1/r−1/2) with r ∈ (1, 2). It does not play a role in the proof of
Bourgain’s theorem.

Proposition 13.1.21. If X has type p and cotype q, then for all n > 1,

ϕ2,X(n) 6 τ2,X(n)c2,X(n) 6 τp,X;2cq,X;2n
1/p−1/q.

Of course the latter bound is nontrivial only if 1
p −

1
q <

1
2 .

Proof. Let (γh)h>1 be a complex Gaussian sequence (i.e., standard indepen-
dent Gaussian random variables). Also let

γ̃k =
1√
n

n∑
h=1

γhek(
h

n
), k = 1, . . . , n.
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Then (γ̃k)nk=1 are also independent standard Gaussian random variables (see
Section E.2). Hence, using the natural Gaussian analogue of the finite type
and cotype constants,

1

n

n∑
h=1

∥∥∥ n∑
k=1

xkek(
h

n
)
∥∥∥2

6
1

n
cγ2,X(n)2E

∥∥∥ n∑
h=1

γh

n∑
k=1

xkek(
h

n
)
∥∥∥2

= cγ2,X(n)2E
∥∥∥ n∑
k=1

γ̃kxk

∥∥∥2

6 cγ2,X(n)2τγ2,X(n)2
n∑
k=1

‖xk‖2.

Since ‖γ‖2 = 1, Proposition 7.1.18 informs us that τγ2,X 6 τ2,X and cγ2,X 6
c2,X , and the analogous result for the finite constants τγ2,X(n) etc. follows by

the same argument. Finally, Hölder’s inequality implies τ2,X(n) 6 τp,X;2n
1
p−

1
2

and c2,X(n) 6 cq,X;2n
1
2−

1
q . �

13.1.c Key lemmas for an initial uniform bound

The core of this section consists of two delicate lemmas of Bourgain that
allow us to bootstrap the power-type improvement over the trivial bound on
the growth of ϕ2,X(N), as given in Corollary 13.1.20, into a uniform estimate

for the constants ϕ
(2)
s,X(N) with some s > 1. To streamline the presentation of

the core arguments, we begin with the following classical identity:

Lemma 13.1.22. Let f =
∑
j∈Z f̂(j)ej with (f̂(j))j∈Z ∈ `1(Z). Then

∑
j≡n mod N

f̂(j) =
1

N

N∑
h=1

e−1(nh/N)f(h/N).

Proof. We first observe that

1

N

N∑
h=1

f(h/N) =
∑
j∈Z

f̂(j)
1

N

N∑
h=1

ej(h/N) =
∑

j≡0 mod N

f̂(j),

which is case n = 0 of the claim.
We apply this with f replaced by

e−nf =
∑
j∈Z

f̂(j)ej−n =
∑
j∈Z

f̂(j + n)ej

to find that

1

N

N∑
h=1

(e−nf)(h/N) =
∑

j≡0 mod N

f̂(j + n) =
∑

j≡n mod N

f̂(j),

which is the general case. �
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Lemma 13.1.23 (Bourgain). Let F ⊆ Z be a finite subset with #F = N .
Then there exists t0 ∈ T such that at least 1

8N of the pairwise disjoint intervals

In :=
1

N
[n− 1

2
, n+

1

2
), n = 1, . . . , N,

satisfy t0k ∈ In + Z for some k ∈ F .

Proof. We in fact show that this is true for the “average” choice of t0 ∈ T.
For t ∈ T and n = 1, . . . , N , we denote

νn(t) := #{k ∈ F : tk ∈ In + Z},
N(t) := #{n = 1, . . . , N : νn(t) > 0}.

The claim is then that N(t0) > 1
8N for some t0 ∈ T, and we will prove that∫ 1

0

N(t) dt >
1

8
N, (13.12)

which clearly implies the existence of a desired t0.
The strategy of the proof is as follows. Since each of the N different k ∈ F

satisfies tk ∈ In + Z for exactly one n = 1, . . . , N , we have

N =
N∑
n=1

νn(t) =
∑

16n6N
νn(t)>0

νn(t) 6 N(t)1/2
( N∑
n=1

νn(t)2
)1/2

.

Integrating and using the Cauchy–Schwarz inequality, we obtain

N 6
(∫ 1

0

N(t) dt
)1/2(∫ 1

0

N∑
n=1

νn(t)2 dt
)1/2

,

and (13.12) follows if we can prove that∫ 1

0

N∑
n=1

νn(t)2 dt 6 8N. (13.13)

Now
νn(t) =

∑
k∈F

1In+Z(kt) =
∑
k∈F

1I0+Z(kt− n/N).

For the convenience of Fourier analysis, we replace the indicator

1I0+Z(t) = 1[− 1
2N ,

1
2N )(t), t ∈ [−1

2
,

1

2
),

by the regularised version given by the 1-periodic extension of the “tent”
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s(t) := (1−N |t|)+, t ∈ [−1

2
,

1

2
).

An elementary computation of the Fourier coefficients shows that

ŝ(j) =
1

N
sinc2(πj/N) =

{
1/N, j = 0,

0, 0 6= j ≡ 0 mod N.
(13.14)

Note that the first equality above is valid for all j ∈ Z, although in the second
we only consider particular cases. Clearly 0 6 ŝ(j) = O(j−2), so that Lemma
13.1.22 applies to f = s. Since s(h/N) = 1NZ(h) for h ∈ Z, the conclusion of
the lemma takes a particularly clean form, namely∑

j≡n mod N

ŝ(j) =
1

N
∀n = 1, . . . , N. (13.15)

We observe that 1I0+Z(t) 6 2s(t), and hence

νn(t) 6 2
∑
k∈F

s(kt− n/N) = 2
∑
k∈F

∑
j∈Z

ŝ(j)ej(kt− n/N)

= 2

N∑
h=1

eh(−n/N)
∑
j≡h

mod N

ŝ(j)
∑
k∈F

ej(kt).

Substituting this into (13.13), we can now estimate∫ 1

0

N∑
n=1

ν2
n 6 4

∫ 1

0

N∑
n=1

∣∣∣ N∑
h=1

eh(−n/N)
∑
j≡h

mod N

ŝ(j)
∑
k∈F

ej(kt)
∣∣∣2 dt

= 4

∫ 1

0

N
N∑
h=1

∣∣∣ ∑
j≡h

mod N

ŝ(j)
∑
k∈F

ej(kt)
∣∣∣2 dt,

since the matrix (N−1/2eh(−n/N))Nh,n=1 is unitary,

6 4N

N∑
h=1

( ∑
j≡h

mod N

ŝ(j)
∥∥∥∑
k∈F

ejk

∥∥∥
L2(T)

)2

6 4N
{N−1∑
h=1

( ∑
j≡h

mod N

ŝ(j)N1/2
)2

+
(
ŝ(0)N +

∑
06=j≡0
mod N

ŝ(j)N1/2
)2}

,

since
∥∥∥∑
k∈F

ejk

∥∥∥
L2(T)

=

{
N, j = 0,

N1/2, otherwise,

= 4N
{N−1∑
h=1

( 1

N
N1/2

)2

+
( 1

N
N + 0

)2}
,
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by (13.15) and (13.14),

= 4N{(N − 1)N−1 + 1} = 4{2N − 1} < 8N = RHS (13.13).

This confirms (13.13) and hence, as explained in the beginning of the proof,
the assertion of the Lemma. �

From the comparison between `pN (X) and `∞N (X), it is immediate that

ϕ
(q)
∞,X(N) 6 ϕ(q)

p,X(N) ·N1/p.

This triviality admits a crucial improvement, where on the left we have a
similar quantity associated to an arbitrary subset F ⊆ Z of size N .

Definition 13.1.24. Given F ⊆ Z, we denote by ϕ
(q)
∞,X(F ) be the best con-

stant in the estimate∥∥∥∑
k∈F

ekxk

∥∥∥
Lq(T;X)

6 ϕ(q)
∞,X(F ) sup

k∈F
‖xk‖,

which is to holds for arbitrary families (xk)k∈F in X.

Clearly the previously considered ϕ
(q)
∞,X(N) is the special case ϕ

(q)
∞,X(N) =

ϕ
(q)
∞,X({1, . . . , N}) in this notation. In contrast to random sums with indepen-

dent sequences of random variables, the particular choice of the indexing set
F is very relevant here, since the joint distribution of (ek)k∈F can be very
different from that of (ek)Nk=1.

Lemma 13.1.25 (Bourgain). For any Banach space X and exponents p, q ∈
[1,∞) we have

ϕ
(q)
∞,X(F ) 6 Aϕ(q)

p,X(N) ·N1/p, A :=
(
8p(π + 21/q · 3)

)1+1/q
,

whenever F ⊆ Z is a subset of size #F = N .

Remark 13.1.26. We only apply Lemma 13.1.25 with p = 2 6 q. In this case

A 6
(
16(π +

√
2 · 3)

)3/2
< 1285.

Proof of Lemma 13.1.25. Since∥∥∥∑
k∈F

ekxk

∥∥∥
Lq(T;X)

6
∑
k∈F

‖xk‖ 6 N max
k∈F
‖xk‖,

and ϕ
(q)
p,X(N) > 1, we have the trivial estimate

ϕ
(q)
∞,X(F ) 6 N 6 ϕ(q)

p,X(N)N1/p′+1/p 6 Aϕ(q)
p,X(N)N1/p ∀N 6 Ap

′
.
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Suppose then, for induction, that N > Ap
′
, and moreover that the Lemma

has been verified for all N ′ < N in place of N . For F ⊆ Z+ of size N , we
consider a splitting (with ∅ 6= F0 ( F to be specified shortly)∥∥∥∑
k∈F

ekxk

∥∥∥
Lq(T;X)

6
∥∥∥ ∑
k∈F0

ekxk

∥∥∥
Lq(T;X)

+
∥∥∥ ∑
k∈F\F0

ekxk

∥∥∥
Lq(T;X)

=: I + II.

Since F \ F0 ( F is a strictly smaller set and ϕ
(q)
p,X is clearly non-decreasing,

the induction hypothesis applies to show that

II 6 ϕ(q)
∞,X(F \ F0) max

k∈F\F0

‖xk‖

6 Aϕ(q)
p,X(N)#(F \ F0)1/p max

k∈F
‖xk‖.

(13.16)

Let us make a specific choice of F0 ( F as follows. By Lemma 13.1.23, there
exist t0 ∈ T and 1 6 n1 < n2 < . . . n` 6 N with ` > 1

8#F such that each of
the mutually disjoint sets

Inj + Z =
1

N
[n− 1

2
, n+

1

2
) + Z, (j = 1, . . . , `),

intersects with the set {kt0 : k ∈ F}. For each j ∈ {1, . . . , `}, we pick a
kj ∈ F such that kjt0 ∈ Inj + Z, and set F0 := {kj : j = 1, . . . , `}. Then
#F0 = ` > 1

8#F . The size bound on #F0 shows that (13.16) implies

II 6 Aϕ(q)
p,X(N)

(7

8
N
)1/p

max
k∈F
‖xk‖. (13.17)

Let ψ : kj → nj be the corresponding bijection from F0 onto ψ(F0) ⊆
{1, . . . , N}. Thus by definition that kjt0 ∈ Iψ(kj) + Z = Inj + Z for all j =
1, . . . , `. For any h ∈ Z, we then have

I =
∥∥∥ ∑
k∈F0

ek(·+ ht0)xk

∥∥∥
Lq(T;X)

by translation invariance

6
∥∥∥ ∑
k∈F0

[ek(ht0)− eh(
ψ(k)

N
)]ekxk

∥∥∥
Lq(T;X)

+
∥∥∥ ∑
k∈F0

eh(
ψ(k)

N
)ekxk

∥∥∥
Lq(T;X)

=: I1(h) + I2(h),

where (using again the induction hypothesis, now with the smaller set F0 ( F )

I1(h) 6 ϕ(q)
∞,X(F0) max

k∈F0

∣∣∣ exp(2πikht0)− exp(i2πh
ψ(k)

N
)
∣∣∣‖xk‖

6 Aϕ(q)
p,X(#F0)1/p max

k∈F0

(
2π|h| inf

j∈Z

∣∣∣kt0 − ψ(k)

N
− j
∣∣∣)max

k∈F0

‖xk‖

6 Aϕ(q)
p,X(N)N1/p π|h|

N
max
k∈F
‖xk‖,

(13.18)



13.1 Bourgain’s theorem on Fourier type 249

since kt0 ∈ Iψ(k) + Z.
Having estimated both I1(h) and II in terms of the induction hypothesis,

the serious work is left with I2(h), which we first average over a range h =
1, . . . ,H 6 N , where a favourable value of H is to be determined. We have

1

H

H∑
h=1

I2(h)q =
N

H

∫
T

1

N

H∑
h=1

∥∥∥ ∑
j∈ψ(F0)

eh(j/N)eψ−1(j)(t)xψ−1(j)

∥∥∥q dt

6
N

H

∫
T

1

N

N∑
h=1

∥∥∥ N∑
j=1

eh(j/N)yj(t)
∥∥∥q dt

yj(t) :=

{
eψ−1(j)(t)xψ−1(j), j ∈ ψ(F0),

0, else,

6
N

H

∫
T

(
ϕ

(q)
p,X(ZN )

[ N∑
j=1

‖yj(t)‖p
]1/p)q

dt

by definition of ϕ
(q)
p,X(ZN )

6
N

H

(
3ϕ

(q)
p,X(N)

)q( ∑
k∈F0

‖xk‖p
)q/p

by Lemma 13.1.18

6
N

H

(
3ϕ

(q)
p,X(N)

)q
(#F0)q/p max

k∈F0

‖xk‖q.

Combining the previous bound with (13.17) and (13.18), we have

∥∥∥∑
k∈F

ekxk

∥∥∥
Lq(T;X)

6 I + II 6
1

H

H∑
h=1

(I1(h) + I2(h)) + II

6 max
16h6H

I1(h) +
( 1

H

H∑
h=1

I2(h)q
)1/q

+ II

6
(
A
πH

N
+ 3
(N
H

)1/q

+A
(7

8

)1/p)
N1/pϕ

(q)
p,X(N) max

k∈F
‖xk‖,

(13.19)

where N = #F , as we recall. We now choose H so as to essentially equate
the first two terms:

H := bH ′c, H ′ := A−q/(q+1)N.

Since A > 1, we have H 6 H ′ 6 N . Recalling that N > Ap
′
, and noting that

p′ > 1 > q/(q + 1), we also observe that H ′ > 1, and hence H > 1. Thus
this choice of H lies in the admissible range considered above. We also have
H ′ 6 H + 1 6 2H, and thus

A
πH

N
+ 3
(N
H

)1/q

6 A
πH ′

N
+ 3
(2N

H ′

)1/q

= (π + 21/q · 3)A1/(q+1).
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We also note that(7

8

)1/p

− 1 =
1

p
ξ1/p−1

(7

8
− 1
)
6 − 1

8p
, for some ξ ∈

(7

8
, 1
)
.

Substituting into (13.19), we hence have

ϕ
(q)
∞,X(F ) 6

[
(π + 21/q · 3) ·A1/(q+1) +

(
1− 1

8p

)
A
]
ϕ

(q)
p,X(N) ·N1/p.

To complete the induction step, it remains to check that the quantity in
brackets is at most A, which after easy simplification is the same as

(π + 21/q · 3) ·A1/(q+1) 6
1

8p
A.

Clearly this is the case with the choice of A stated in the Lemma. �

We are now ready for a first uniform bound on the finite Fourier type con-
stants:

Corollary 13.1.27. Let X be a Banach space, r ∈ (1, 2], and suppose that

ϕ2,X(N) 6 C ·N1/r−1/2 ∀N ∈ Z+.

Then for all s ∈ (1, r), we have

ϕ
(2)
s,X(N) 6 3500

Cr

r − s
∀N ∈ Z+.

Proof. By Lemma 13.1.25 and Remark 13.1.26 with p = q = 2, we have

ϕ
(2)
∞,X(F ) 6 1285 · ϕ2,X(N) ·N1/2 6 1285 · C ·N1/r (13.20)

whenever F ⊆ Z has size #F = N .
Let x = (xk)Nk=1 ∈ `sN (X) have norm one. For α ∈ (0, 1) to be chosen, we

denote

Fj := {n ∈ Z : αj < ‖xn‖ 6 αj−1}, x(j) := (1Fj (k) · xk)Nk=1.

Note that Fj = ∅ and x(j) = 0 for j 6 0, and

#Fj 6 #{n ∈ Z : αj < ‖xn‖} 6 α−js‖x‖`sN (X) = α−js, j > 1.

Thus∥∥∥ N∑
k=1

ekxk

∥∥∥
L2(T;X)

6
∞∑
j=1

∥∥∥ ∑
k∈Fj

ekx
(j)
k

∥∥∥
L2(T;X)

6
∞∑
j=1

ϕ
(2)
∞,X(Fj) max

k∈Fj
‖x(j)

k ‖
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6
∞∑
j=1

1285 · ϕ(2)
2,X(#Fj) · (#Fj)1/2 · αj−1 by (13.20)

6
∞∑
j=1

1285 · C(#Fj)
1/rαj−1 6

∞∑
j=1

1285 · Cα−js/rαj−1

=
1285 · C

α

α1−s/r

1− α1−s/r .

The choice α = (s/r)r/(r−s) gives

1

α

α1−s/r

1− α1−s/r =
α−s/r

1− α1−s/r =
(r/s)s/(r−s)

1− s/r
6

e

1− s/r

by an elementary optimisation in the last step. Substituting back, this gives

∥∥∥ N∑
k=1

ekxk

∥∥∥
L2(T;X)

6 1285 · C · e

1− s/r
= 1285 · e · Cr

r − s
< 3500 · Cr

r − s

for all (xk)Nk=1 ∈ `sN (X) of norm one, which is the claimed bound. �

13.1.d Conclusion via duality and interpolation

With the uniform bound of Corollary 13.1.27, we have already covered the
core of the deep implication from non-trivial type to non-trivial Fourier type.
The rest of the argument depends on the more routine techniques of duality
and interpolation, but is still not entirely straightforward. We now turn our
attention to giving these finishing touches to the proof. At the end of this
section, a statement and proof of Bourgain’s theorem will finally be given.

The first duality that we want to use is most elegantly expressed in terms
of the Fourier type constants on the cyclic group ZN :

Lemma 13.1.28. Let X be a Banach space, N ∈ Z+ and p, q ∈ (1,∞). Then

N1/qϕ
(q)
p,X(ZN ) = N1/p′ϕ

(p′)
q′,X∗(ZN ).

Proof. Since X is norming for X∗, Proposition 1.3.1 shows that `pN (X) is

norming for `p
′

N (X∗), so that

( N∑
h=1

∥∥∥ N∑
k=1

ek(h/N)x∗k

∥∥∥p′)1/p′

= sup
{ N∑
h=1

〈
xh,

N∑
k=1

ek(h/N)x∗k

〉
:
( N∑
h=1

‖xh‖p
)1/p

6 1
}
,

where, observing the symmetry ek(h/N) = e2πikh/N = eh(k/N),
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N∑
h=1

〈
xh,

N∑
k=1

ek(h/N)x∗k

〉
=

N∑
k=1

〈 N∑
h=1

eh(k/N)xh, x
∗
k

〉
6
( N∑
k=1

∥∥∥ N∑
h=1

eh(k/N)xh

∥∥∥q)1/q( N∑
k=1

‖x∗k‖q
′
)1/q′

6 N1/qϕ
(q)
p,X(ZN )

( N∑
h=1

‖xh‖p
)1/p( N∑

k=1

‖x∗k‖q
′
)1/q′

.

Substituting back, this proves that

N1/p′ϕ
(p′)
q′,X∗(ZN ) 6 N1/qϕ

(q)
p,X(ZN ).

Permuting the names of the exponents and using the isometric embedding of
X into X∗∗, it also follows that

N1/qϕ
(q)
p,X(ZN ) 6 N1/qϕ

(q)
p,X∗∗(ZN ) 6 N1/p′ϕ

(p′)
q′,X∗(ZN ),

which proves the claimed equality. �

Corollary 13.1.29. Let X be a Banach space, r ∈ (1, 2], and suppose that

ϕ2,X(N) 6 C ·N1/r−1/2 ∀N ∈ Z+.

Then for all s ∈ (1, r) we have

ϕ
(s′)
∞,X∗(F ) 6 1.35 · 107 Cr

r − s
N1/s ∀s ∈ (1, r),

whenever F ⊆ Z is a subset of size #F = N .

Recall from Corollary 13.1.20 that if X has type p ∈ (1, 2], then the assump-
tion is satisfied with C and r as in (13.10).

Proof. By using both estimates of Lemma 13.1.18 with Lemma 13.1.28 in
between, and finally Corollary 13.1.27, we have

N1/s′ϕ
(s′)
2,X∗(N) 6 N1/s′ϕ

(s′)
2,X∗(ZN ) = N1/2ϕ

(2)
s,X(ZN )

6 N1/2 · 3ϕ(2)
s,X(N) 6 N1/2 · 3 · 3500

Cr

r − s
.

Then Lemma 13.1.25 and Remark 13.1.26 with p = 2 6 q = s′ show that

ϕ
(s′)
∞,X∗(F ) 6 1285 · ϕ(s′)

2,X∗(N) ·N1/2 < 1.35 · 107 Cr

r − s
·N1/2+1/2−1/s′ .

whenever F ⊆ Z is a subset of size #F = N . �
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We now come to another form of duality, where we pass from the Fourier
transform on Z to that on the circle T, and it is in this latter setting that our
argument will be completed.

Lemma 13.1.30. Let X be a Banach space, 1 6 s 6∞, and suppose that

ϕ
(s′)
∞,X∗(F ) 6 K ·N1/s

whenever F ⊆ Z is a subset of size #F = N . Then the Fourier transform

F : f ∈ L1(T;X) 7→ (f̂(k))k∈Z, f̂(k) =

∫
T
e−k(t)f(t) dt,

satisfies the weak-type estimate

‖Ff‖`s′,∞(Z;X) 6 K‖f‖Ls(T;X). (13.21)

Proof. Let f ∈ Ls(T;X), let λ > 0, and let F be a finite subset of {k ∈ Z :

‖f̂(k)‖ > λ}. (By a periodic analogue of the Riemann–Lebesgue Lemma 2.4.3,
which has essentially the same proof, we could argue that this set is finite to
begin with, but we do not need this here.) Then

#F 6
1

λ

∑
k∈F

‖f̂(k)‖ =
1

λ

∑
k∈F

〈f̂(k), x∗−k〉

for suitable x∗−k ∈ X∗ of norm one

=
1

λ

∫
T
f(t)

(∑
k∈F

e−k(t)x∗−k

)
dt

6
1

λ
‖f‖Ls(T;X)

∥∥∥ ∑
k∈−F

ekxk

∥∥∥
Ls′ (T;X∗)

6
1

λ
‖f‖Ls(T;X)ϕ

(s′)
∞,X∗(−F ) 6

1

λ
‖f‖Ls(T;X)K(#F )1/s,

and hence
λ(#F )1−1/s 6 K‖f‖Ls(T;X).

Since this is true for any finite F ⊆ {k ∈ Z : ‖f̂(k)‖ > λ}, it is also true

for F = {k ∈ Z : ‖f̂(k)‖ > λ} (showing, a posteriori, the finiteness of this
set). Then the supremum over λ > 0 of the left-hand side is precisely the
`s
′,∞(Z;X) norm that we wanted to estimate. �

From (13.21) and the trivial fact that F is bounded from L1(T;X) →
`∞(Z;X), it seems apparent that we should conclude that F is bounded
from Lp(T;X) to `p

′
(Z;X) by interpolation. However, the version of the

Marcinkiewicz Interpolation Theorem 2.2.3 covered in the text is not suffi-
cient for this purpose, and we would need the generalisation stated in the
Notes as Theorem 2.7.5. We will give a proof of a quantitative version of the
special case relevant for the present application:
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Lemma 13.1.31. Let X be a Banach space such that (13.21) holds for some
s ∈ (1, 2]. Then

‖Ff‖`t′ (Z;X) 6
3K

(s− t)1/t′
‖f‖Lt(T;X) ∀t ∈ (1, s).

Proof. By homogeneity we may assume that ‖f‖Lt(T;X) = 1. We have

‖Ff‖`t′ (Z;X) =

∫ ∞
0

t′λt
′−1#{k : ‖f̂(k)‖ > λ} dλ

6
∫ ∞

0

t′λt
′−1#{k : ‖f̂λ(k)‖ > θ0λ} dλ

+

∫ ∞
0

t′λt
′−1#{k : ‖f̂λ(k)‖ > θ1λ} dλ,

(13.22)

where θ0 + θ1 = 1 and, with parameters A and γ to be chosen shortly,

fλ := f · 1{‖f‖X6Aλγ}, fλ := f · 1{‖f‖X>Aλγ}.

Then

‖fλ‖L1(T;X) =

∫
{‖f‖X>Aλγ}

‖f‖X 6 (Aλγ)1−t‖f‖tLt(T;X) = (Aλγ)1−t

and hence
‖f̂λ‖`∞(Z;X) 6 (Aλγ)1−t 6 θ1λ,

provided that we choose

γ = −1/(t− 1), A = θ
−1/(t−1)
1 .

Then the second term on the right of (13.22) vanishes, and subsequently

‖Ff‖t
′

`t′ (Z;X)
6
∫ ∞

0

t′λt
′−1#{k : ‖f̂λ(k)‖ > θ0λ} dλ

6
∫ ∞

0

t′λt
′−1(θ0λ)−s

′
Ks′‖fλ‖s

′

Ls(T;X) dλ

by Lemma 13.1.30

= t′
(K
θ0

)s′(∫ ∞
0

λt
′−s′−1‖fλ‖s

′

Ls(T;X) dλ
)s′/s′

6 t′
(K
θ0

)s′∥∥∥(∫ ∞
0

λt
′−s′−1‖fλ‖s

′

X dλ
)1/s′∥∥∥s′

Ls(T)

by Minkowski’s inequality with exponents s 6 s′

= t′
(K
θ0

)s′∥∥∥(∫ (A/‖f‖X)t−1

0

λt
′−s′−1‖f‖s

′

X dλ
)1/s′∥∥∥s′

Ls(T)
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keeping in mind the choice γ = −1/(t− 1)

= t′
(K
θ0

)s′∥∥∥( 1

t′ − s′
[ A

‖f‖X

](t−1)(t′−s′)
‖f‖s

′

X

)1/s′∥∥∥s′
Ls(T)

= t′
(K
θ0

)s′ 1

θt
′−s′

1

1

t′ − s′
∥∥∥(‖f‖s′−(t−1)(t′−s′)

X

)1/s′∥∥∥s′
Ls(T)

,

where, observing that tt′ = t+ t′, we have

s′ − (t− 1)(t′ − s′) = s′ − (t+ t′ − ts′ − t′ + s′) = t(s′ − 1),

so that∥∥∥(‖f‖s′−(t−1)(t′−s′)
X

)1/s′∥∥∥s′
Ls(T)

=
∥∥∥‖f‖t/sX ∥∥∥s′

Ls(T)
= ‖f‖ts

′/s
Lt(T;X) = 1.

Taking θ0 = θ1 = 1
2 and using (t′)1/t′ 6 e1/e < 3

2 , we obtain

‖Ff‖`t′ (Z;X) 6
2(t′)1/t′Ks′/t′

(t′ − s′)1/t′
6

3Ks′/t′

(t′ − s′)1/t′
.

Testing (13.21) with a constant function f ≡ x, with Fourier coefficients

f̂(k) = δk,0x, shows that K > 1 and hence Ks′/t′ 6 K. Moreover,

t′ − s′ =
t

t− 1
− s

s− 1
=
t(s− 1)− s(t− 1)

(s− 1)(t− 1)
=

s− t
(s− 1)(t− 1)

> s− t,

and hence

‖Ff‖`t′ (Z;X) 6
3K

(s− t)1/t′
.

�

Lemma 13.1.32. Let X be a Banach space, and suppose that there are con-
stants C and r ∈ (1, 2] such that

ϕ2,X(N) 6 C ·N1/r−1/2

for all N ∈ Z+. Then for all t ∈ (1, r), we have

ϕt,X 6
109 · C

(r − t)1+1/t′
.

Proof. By Corollary 13.1.29, for all s ∈ (1, r), we then have

ϕ
(s′)
∞,X∗(F ) 6 1.35 · 107 Cr

r − s
N1/s =: K ·N1/s

whenever F ⊆ Z is a subset of size #F = N .
By Lemma 13.1.30, it follows that
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‖F‖L (Ls(T;X),`s′,∞(Z;X)) 6 K,

which by Lemma 13.1.31 implies

ϕt,X(T) := ‖F‖L (Lt(T;X),`t′ (Z;X)) 6
3K

(s− t)1/t′
6

5 · 107 · C · r
(r − s)(s− t)1/t′

for all 1 < t < s < r. Optimising the bound with respect to s in this range,
we choose

s =
t2 + (t− 1)r

2t− 1
.

With this choice, a computation shows that

r − s =
t(r − t)
2t− 1

>
1

3
(r − t), s− t =

(r − t)(t− 1)

2t− 1
>

1

3
(r − t)(t− 1).

Substituting back,

ϕt,X(T) 6 5 · 107 · C · r 31+1/t′

(r − t)1+1/t′(t− 1)1/t′
,

where r 6 2 and 31+1/t′ 6 33/2 and, for t ∈ (1, 2),

(t− 1)1/t′ = [(t− 1)t−1]1/t > [e−1/e]1/t > e−1/e.

Thus

ϕt,X(T) 6 108 · C 33/2 · e1/e

(r − t)1+1/t′
6

109 · C
(r − t)1+1/t′

.

�

We are finally ready for the main theorem:

Theorem 13.1.33 (Bourgain). A Banach space X has non-trivial type if
and only if it has non-trivial Fourier-type. Quantitatively:

(1) If X has Fourier-type t ∈ (1, 2], then it has type t with τt,X 6 ϕt,X(Z).
(2) If X has type p ∈ (1, 2] with related constant τp,X;2 as defined in (13.7),

then it has Fourier-type

t = 1 +
1

6p′(68 · τp,X;2)p′

with constants

ϕt,X(R) 6 ϕt,X(T) 6 exp
(
2(68 · τp,X;2)p

′)
.
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Proof. (1): This is contained in Proposition 7.3.6.
(2): This is the main part of the proof, and depends on the results devel-

oped in the section. By Corollary 13.1.20, the assumptions imply that

ϕ2,X(N) 6 C ·N1/r−1/2,

where, denoting T := (68 · τp,X;2)p
′
> 682 > 4 000, we have

r′ = 3p′T, C = e
r′
2p′ = e

3
2T .

Thus Lemma 13.1.32 shows that

ϕt,X(T) 6
109 · C

(r − t)1+1/t′
, t ∈ (1, r),

where r > 1 + (3p′T )−1. Hence, choosing t := 1 + (6p′T )−1 ∈ (1, r), we have

r − t > (6p′T )−1, (r − t)1+1/t′ 6 (6p′T )
3
2 .

Thus, noting that p′ 6 p′ log(68τp,X;2) = log T , where T > 682 > 4 000,

ϕt,X(T) 6 109 · e 3
2T · (6p′T )

3
2

= 109 · 6 3
2 · (log T )

3
2 · T 3

2 · e 3
2T

6 e
1
6T · e 1

6T · e 1
6T · e 3

2T = e2T .

Finally, ϕt,X(R) 6 ϕt,X(T) is part of Propositions 13.1.1. �

Example 13.1.34. For each r ∈ [2,∞), the space X = Lr(S) has type 2 with
τ2,X;2 = κr,2,K (the Kahane–Khintchine constant from the scalar-valued case
of Theorem 6.2.4), but Fourier-type t if and only if t ∈ [1, r′]. Hence, any esti-
mate of the Fourier-type exponent in terms of the type of X must necessarily
depend not only on the type exponent but also on the type constant of X.

Proof. The estimate τ2,X;2 6 κr,2,K follows from∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;Lr(S))

6
∥∥∥ N∑
n=1

εnxn

∥∥∥
Lr(Ω;Lr(S))

=
∥∥∥ N∑
n=1

εnxn

∥∥∥
Lr(S;Lr(Ω))

6 κr,2,K
∥∥∥{xn}Nn=1

∥∥∥
Lr(S;`2N )

6 κr,2,K
∥∥∥{xn}Nn=1

∥∥∥
`2N (Lr(S))

.

For the reverse estimate, it suffices to pick some non-zero φ ∈ Lr(S) and
observe that the type inequality for xn = anφ ∈ X implies the Kahane–
Khintchine inequality for an ∈ K.

The fact that X has Fourier-type t if t ∈ [1, r′] follows from the scalar-
valued Hausdorff–Young inequality and Minkowski’s inequality:

‖f̂‖Lt′ (R;Lr(S)) 6 ‖f̂‖Lr(S;Lt′ (R)) 6 ‖f‖Lr(S;Lt(R)) 6 ‖f‖Lt(R;Lr(S))

We indicate two alternative proofs of the “only if” part:
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(1) In Example 2.1.15, it is verified directly that the Fourier transform is not
bounded from Lp(R; `r

′
) to Lp

′
(R; `r

′
) for p ∈ (r′, 2]. By duality, it is also

not bounded from Lp(R; `r) to Lp
′
(R; `r).

(2) Proposition 7.3.6 says that if X has Fourier type p, then it has cotype p′.
But Corollary 7.1.6 says that Lr(S) has cotype p′ only for p′ ∈ [r,∞].

This concludes the verification of the example. �

We also record the following simpler variant, which is nevertheless sufficient
for many purposes:

Proposition 13.1.35. Let X have type p and cotype q, where 1
p −

1
q <

1
2 . Let

1

r
:=

1

2
+

1

p
− 1

q
∈
[1

2
, 1
)
.

Then X has every Fourier-type t ∈ (1, r), and

ϕt,X(R) 6 ϕt,X(T) 6 109 τp,X;2cq,X;2

(r − t)1+1/t′

Proof. By Proposition 13.1.21, we have

ϕ2,X(N) 6 N
1
p−

1
q = N

1
r−

1
2 , C := τp,X;2cq,X;2

Thus Lemma 13.1.32 implies the bound for ϕt,X(T), and Proposition 13.1.1
the bound for ϕt,X(R). �

Remark 13.1.36. The assumptions of Proposition 13.1.35 are satisfied by many
“common” spaces of nontrivial type (and hence finite cotype). Namely, such
space often have type or cotype 2, and hence either 1

p −
1
q = 1

2 −
1
q <

1
2 or

1
p −

1
q = 1

p −
1
2 < 1− 1

2 = 1
2 .

13.2 Fourier multipliers as singular integrals

The goal of this section is to see how the results on singular integrals proved
above can be applied to the theory Fourier multipliers developed in Sections
5.3 and 5.5. Given m ∈ L∞(Rd; L (X,Y )), we recall that the operator Tm is

a priori defined as Tm : L̂1(Rd;X)→ L̂1(Rd;Y ) by

Tmf(x) =

∫
Rd
m(ξ)f̂(ξ)e2πiξ·x dξ.

The notation MLp(Rd;X,Y ) stands for the space of all m ∈ L∞(Rd; L (X,Y ))
for which Tm extends to a bounded linear operator from Lp(Rd;X) to
Lp(Rd;Y ). The connection of Fourier multipliers to integral operators is par-
ticularly simple in the following special case:
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Proposition 13.2.1. Let X,Y be Banach spaces and m ∈ L∞c (Rd; L (X,Y )).

Then for all f ∈ L1 ∩ L̂1(Rd;X), we have

Tmf(x) =

∫
Rd
k(x− y)f(y) dy,

where k = m̂ ∈ L̂1(Rd; L (X,Y )).

Proof. Under these assumptions, we can make a direct computation

Tmf(x) =

∫
Rd
m(ξ)f̂(ξ)e2πix·ξ dξ

=

∫
Rd
m(ξ)

(∫
Rd
f(y)e−2πiy·ξ dy

)
e2πix·ξ dξ

=

∫
Rd

(∫
Rd
m(ξ)e2πi(x−y)·ξ dξ

)
f(y) dy =

∫
Rd
m̂(x− y)f(y) dy,

where the first step is the definition of Tm for f ∈ L̂1(Rd;X), the second is

the definition of f̂(ξ) for f ∈ L1(Rd;X), the third is Fubini’s theorem that
applies since both m ∈ L1(Rd; L (X,Y )) and f ∈ L1(Rd;X), and the fourth
is the definition of the inverse Fourier transform of m ∈ L1(Rd; L (X,Y )). �

The compact support assumption on m in Proposition 13.2.1 is not as restric-
tive as it may seem at first sight, as one can often reduce considerations to
this situation by simple limiting arguments that we shortly explain. Recall
from Definition 5.5.20 that ψ ∈ S (Rd) is called a smooth Littlewood–Paley
function if

(i) ψ̂ is smooth, non-negative, and supported in {ξ ∈ Rd : 1
2 6 |ξ| 6 2};

(ii)
∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ ∈ Rd \ {0}.

Such functions exist by Lemma 5.5.21, whose proof also gives the identity
ψ̂(ξ) = ϕ̂(ξ)− ϕ̂(2ξ) and hence∑

L<j6N

ψ̂(2−jξ) = ϕ̂(2−Nξ)− ϕ̂(2−Lξ)

for some ϕ̂ ∈ D(Rd) with ϕ̂(0) =
∫
ϕ = 1. Let

mj(ξ) := ψ̂(2−jξ)m(ξ), mN (ξ) := ϕ̂(2−Nξ)m(ξ),

mN
L (ξ) := mN (ξ)−mL(ξ) =

∑
L<j6N

mj(ξ),
(13.23)

and observe that mN ∈ L∞c (Rd; L (X,Y )), whereas

mj ,m
N ∈ L∞c (Rd \ {0}; L (X,Y )),
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i.e., these are supported away from both the origin and infinity. While the
support away from zero is not required by Proposition 13.2.1, it is a conve-
nience for forthcoming considerations due to the special role of the origin in
various multiplier conditions. The next two lemmas describe a precise sense in
which, for many purposes, it is “enough” to study the truncated multipliers
mN .

Lemma 13.2.2. Let X,Y be Banach spaces and m ∈ L∞(Rd; L (X,Y )). For
p ∈ (1,∞), we have m ∈MLp(Rd;X,Y ), if and only if mN ∈MLp(Rd;X,Y )
uniformly in N , if and only if mN

L ∈MLp(Rd;X,Y ) uniformly in M and N .

Proof. By the algebra of multipliers (Lemma 5.3.2), we have

TmN f = Tm(Tϕ̂(2−N ·)f) = Tm(ϕ2−N ∗ f),

where ϕt(x) = t−dϕ(t−1x) and

‖ϕt ∗ f‖p 6 ‖ϕt‖1‖f‖p = ‖ϕ‖1‖f‖p,

so that ‖mN‖MLp(Rd;X,Y ) 6 ‖ϕ‖1‖m‖MLp(Rd;X,Y ), and thus

‖mN
L ‖MLp(Rd;X,Y ) 6 2‖ϕ‖1‖m‖MLp(Rd;X,Y ).

On the other hand, it is evident from property (ii) of Littlewood–Paley
functions that mN (ξ) → m(ξ) as N → ∞ for every ξ ∈ Rd, and mN

L (ξ) →
m(ξ) as N → ∞ and L → −∞ for every ξ ∈ Rd \ {0}. In particular, both
limits hold for almost every ξ ∈ Rd. Then Proposition 5.3.16 implies that

‖m‖MLp(Rd;X,Y ) 6 lim inf
N→∞

‖mN‖MLp(Rd;X,Y ),

‖m‖MLp(Rd;X,Y ) 6 lim inf
N→∞
L→−∞

‖mN
L ‖MLp(Rd;X,Y ).

�

13.2.a Smooth multipliers have Calderón–Zygmund kernels

We will be mostly concerned with multipliers satisfying Mihlin-type conditions
of the form

‖∂αm(ξ)‖ 6M |ξ|−|α|, ξ ∈ Rd \ {0}, (13.24)

for some set of multi-indices α ∈ Nd. Recall that the Mihlin class, introduced
and used in Definitions 5.3.17 and 5.5.9 and Theorems 5.3.18 and 5.5.10 (in
one and several variables, respectively) to deduce that m ∈ MLp(Rd;X,Y )
for all p ∈ (1,∞) without any a priori boundedness assumptions on Tm, fea-
tured stronger R-boundedness versions of such conditions. The difference in
the present context is that we are willing to assume that m ∈MLp0(Rd;X,Y )
for some p0 ∈ (1,∞) to begin with, and we wish to show that this a priori
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boundedness on one space can then be extrapolated to boundedness on other
function spaces under conditions that are similar to those in Mihlin’s theo-
rems, but without the R-bounded aspects. As a matter of fact, these pointwise
bounds can often be relaxed to weaker integrated versions, which is easily ver-
ified by inspecting the proofs, but for the clarity of the exposition we state
the results under such pointwise assumptions. This is hardly a restriction for
most applications.

The role of the multiplier conditions (13.24) for the kernel estimates is via

careful use of the fundamental relation ∂̂jf(ξ) = 2πiξj f̂(ξ). So as to make most
efficient use of the relation, and to unburden the formulae from inessential
constants, we introduce the abbreviation

/∂ := ∂/2πi

so that
/̂∂jf(ξ) = ξj f̂(ξ).

The deduction of the kernel estimates is easiest when sufficiently many
derivatives are allowed in (13.24); as it turns out, this is somewhat more
than the collection α ∈ {0, 1}d appearing in Mihlin’s Theorem 5.5.10. We
formulate several results for a generic Banach space Z instead of L (X,Y ), as
the operator structure plays no role here; this also makes the formulae slightly
shorter. We say that a collection A of multi-indices is convex, if α ∈ A implies
β ∈ A whenever 0 6 β 6 α.

Lemma 13.2.3. If m ∈ L∞(Rd;Z) satisfies (13.24) for a convex set of multi-
indices α, then each mj ∈ L∞c (B(0, 2j+1);Z) satisfies

‖/∂αmj‖∞ 6M2−j|α|

for the same set of multi-indices, where M is the constant of (13.24).

Proof. By the Leibniz rule, we have

∂αmj(ξ) = ∂α[ψ̂(2−jξ)m(ξ)] =
∑
θ6α

(
α

θ

)
2−j|θ|∂θψ̂(2−jξ)∂α−θm(ξ),

where each ∂α−θm also satisfies (13.24) by convexity. Thus

‖∂αmj(ξ)‖ 6
∑
θ6α

(
α

θ

)
2−j|θ|12j−16|ξ|62j+1M |ξ|−|α−θ|

6
∑
θ6α

(
α

θ

)
2−j|θ|M(2j−1)−|α|+|θ|

= M2−j|α|2|α|
∑
θ6α

(
α

θ

)
2|α−θ| · 1|θ|
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= M2−j|α|2|α|(2 + 1)|α| = M2−j|α|6|α|,

where the binomial formula was used in the second to last step. The result
follows after dividing both sides by (2π)|α| > 6|α|. �

Lemma 13.2.4. Let Z be a Banach space and f ∈ L∞c (B(0, A);Z) have dis-
tributional derivatives that satisfy

‖/∂αf‖∞ 6 A−|α|

for some A > 0 and all multi-indices α in some convex set. Then

‖x 7→ /∂
α
x [(e2πiy·x − 1)f(x)]‖∞ 6 (6 + 2|α|)A|y| ·A−|α|

for all y ∈ Rd with |y| 6 A−1, and for the same set of multi-indices.

Proof. The derivatives are given by

/∂
α
x [(e2πiy·x − 1)f(x)] = (e2πiy·x − 1)/∂

α
f(x) +

∑
0 6=γ6α

yγe2πiy·x /∂
α−γ

f(x),

and hence

‖/∂αx [(e2πiy·x − 1)f(x)]‖ 6 2π|y|A ·A−|α| +
∑

0 6=γ6α

|y||γ|A−|α|+|γ|

6 |y|A ·A−|α|
(

2π +
∑

0 6=γ6α

(A|y|)|γ|−1
)
.

If A|y| 6 1, then (A|y|)|γ|−1 6 1 and
∑

0 6=γ6α 1 = 2|α| − 1. �

Lemma 13.2.5. Let Z be a Banach space and f ∈ L∞c (B(0, A);Z) have dis-
tributional derivatives that satisfy

‖/∂αf‖∞ 6 A−|α| ∀|α| 6 d+ 1

for some A > 0. Then for almost all x, y ∈ Rd with |y| 6 1
2 |x|, we have

|x|n|f̂(x)| 6 cdAd−n, (13.25)

|x|n|f̂(x− y)− f̂(x)| 6 cdAd−n min{A|y|, 1} (13.26)

for all n = 0, 1, . . . , d+ 1. In particular, f̂ ∈ L1(Rd;Z) and

‖f̂‖1 6 cd.

Proof. For x ∈ B(0, A), we have

‖xαf̂‖∞ 6 ‖/∂
α
f‖1 6 ‖/∂

α
f‖∞‖1B(0,A)‖1 6 A−|α|ωdAd,
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where ωd is the volume of the unit ball in Rd. With α = nei, this shows that
|xi|n|f̂(x)| 6 ωdAd−n for i = 1, . . . , d, which readily gives (13.25).

We observe that f̂(x − y) − f̂(x) is the Fourier transform of (e2πix·y −
1)f(x), which satisfies the same assumptions as f for |y| 6 A−1, except for a
multiplicative factor (6+2d)A|y|, by Lemma 13.2.4. An application of (13.25)
to this function in place of f hence gives

|x|n|f̂(x− y)− f̂(x)| 6 cdAd−nA|y|

when A|y| 6 1. On the other hand, if A|y| > 1, then we simply estimate

f̂(x−y)−f̂(x) by (13.25) and the triangle inequality, recalling the assumptions
that |y| 6 1

2 |x| and n 6 d+ 1:

|f̂(x− y)− f̂(x)| 6 |f̂(x− y)|+ |f̂(x)| 6 cdAd−n(|x− y|−n + |x|−n)

6 cdA
d−n(2n + 1)|x|−n 6 c′dAd−n|x|−n.

The last two bounds are both seen to be dominated by the claimed bound in
(13.26).

That f̂ ∈ L1(Rd;Z) is immediate from (13.25) by integrating the estimate

|f̂(x)| 6 cdAd min
{

1, (A|x|)−d−1
}
.

�

Proposition 13.2.6. Let X,Y be Banach spaces and m ∈ L∞(Rd; L (X,Y ))
satisfy

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀|α| 6 d+ 1.

Then each KN (x, y) = kN (x−y) = m̂N (x−y) is a Calderón–Zygmund kernel
with the following bounds independent of the truncation N :

‖kN (x)‖ 6 c

|x|d
, ‖kN (x− y)− kN (x)‖ 6 1

|x|d
ω
( |y|
|x|

)
,

for all x, y ∈ Rd with |y| 6 1
2 |x|, where

c = cdM, ω(t) = cdM · t ·
(

1 + log
1

t

)
.

Note that the modulus of continuity ω above is slightly “worse” (i.e., with
slower decay as t → 0) than the Lipschitz modulus ω1(t) = t, but “better”
than any of the Hölder moduli ωδ(t) = tδ for δ ∈ (0, 1).

Proof. By Lemma 13.2.3, the functions mj satisfy the assumptions, and hence
the conclusions, of Lemma 13.2.5 with A = 2j+1 and a multiplicative factor
cdM . Thus,
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|kN (x)| 6
∑
j6N

|kj(x)| 6
∑
j∈Z

min
06h6d+1

cd2
(j+1)(d−h)

|x|h
M

6
∑

j:2j+161/|x|

cd2
(j+1)dM +

∑
j:2j+1>1/|x|

cd2
−(j+1)

|x|d+1
M 6 c′d|x|−dM.

Similarly, for |y| 6 1
2 |x|,

|kN (x− y)− kN (x)| 6
∑
j∈Z

min
06h6d+1

cd2
(j+1)(d−h)

|x|h
min{2j+1|y|, 1}M

6
∑

j:2j+161/|x|

cd2
(j+1)(d+1)|y|M +

∑
j:1/|x|62j+161/|y|

cd
|x|d+1

|y|M

+
∑

j:2j+1>1/|y|

cd2
−(j+1)

|x|d+1
M

6 c′d
1

|x|d+1
|y|M +

c′d
|x|d+1

|y|
(

1 + log
|x|
|y|

)
M +

c′d
|x|d+1

|y|M

6
c′′d
|x|d+1

|y|
(

1 + log
|x|
|y|

)
M.

This completes the proof. �

With the uniform pointwise bounds of Proposition 13.2.6 at hand, we can
strengthen the sense in which the operator Tm with such bounds is associated
with a Calderón–Zygmund kernel k:

Proposition 13.2.7. Let X,Y be Banach spaces, p ∈ [1,∞), and m ∈
MLp(Rd;X,Y ) satisfy

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀|α| 6 d+ 1.

Then there is a kernel k ∈ C(Rd\{0}; L (X,Y )) that satisfies the same bounds
as kN in Proposition 13.2.6 and such that

Tmf(x) =

∫
Rd
k(x− y)f(y) dy

for all f ∈ Lp(Rd;X) and almost all x ∈ Rd outside the support of f .

Proof. We split the proof into two cases:

Case p ∈ (1,∞): Let f ∈ Lp(Rd;X). Using the notation from the proof of
Lemma 13.2.2 and the preceding discussion, we have

TmNL f = Tm[(ϕ2−N ∗ f)− (ϕ2−L ∗ f)],
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where ϕ2−N ∗ f → f in Lp(Rd;X) as N → ∞ by a standard mollifier re-
sult (e.g., Proposition 1.2.32). We also have ‖ϕR ∗ f‖p 6 ‖ϕR‖p‖f‖1 =

R−n/p
′‖f‖1 → 0 as R →∞ if f ∈ L1(Rd;X) and ‖ϕR ∗ f‖p 6 ‖ϕR‖1‖f‖p =

‖f‖p uniformly in R. Since (L1 ∩Lp)(Rd;X) is dense in Lp(Rd;X), it follows
that ϕ2−L ∗ f → 0 in Lp(Rd;X) as L→ −∞ for all f ∈ Lp(Rd;X).

Summarising this discussion, it follows that, for all f ∈ Lp(Rd;X), we
have the convergence TmNL f → f in Lp(Rd;X) as N →∞ and L→ −∞. By
passing to a subsequence if needed, we may assume that this convergence also
takes place almost everywhere.

If f ∈ L̂1(Rd;X)∩L1(Rd;X) ⊆ Lp(Rd;X), then Proposition 13.2.1 shows
that

TmNL f = kNL ∗ f,

where TmNL is bounded from Lp(Rd;X) to Lp(Rd;Y ) by Lemma 13.2.2. On

the other hand, kNL is a finite sum of kj = m̂j , where the multipliers mj are
in the scope of Lemma 13.2.5, and hence kNL ∈ L1(Rd; L (X,Y )). But then
also f 7→ kN ∗ f is bounded from Lp(Rd;X) to Lp(Rd;Y ), and the previous
display must remain valid for all f ∈ Lp(Rd;X) by continuity. Combining
these pieces, we obtain

Tmf(x) = lim
N→∞
L→−∞

TmNL f(x) = lim
N→∞
L→−∞

∫
Rd
kNL (x− y)f(y) dy

for all f ∈ Lp(Rd;X) and almost every x ∈ Rd.
Let us finally consider x ∈ { supp f . Since this set is open, we can pick an

ε > 0 such that B(x, ε) ⊆ { supp f . For such x and any y ∈ supp f , the series∑
j∈Z

kj(x− y) = lim
N→∞
L→−∞

kNL (x− y)

converges absolutely by the proof of Proposition 13.2.6. We denote by k(x−y)
the limit. Moreover, the same proposition shows that

‖kNL (x− y)f(y)‖ 6 cdM

|x− y|d
‖f(y)‖,

which is integrable over y ∈ Rd by Hölder’s inequality, since f ∈ Lp(Rd;X)
and [y 7→ |x− y|−d] ∈ Lp′({B(x, ε)). Thus

Tmf(x) = lim
N→∞
L→−∞

∫
Rd
kNL (x− y)f(y) dy =

∫
Rd
k(x− y)f(y) dy

by dominated convergence. The pointwise estimates of kNL are clearly inherited
by k by the pointwise convergence. This completes the proof for p ∈ (1,∞).
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Case p = 1: We can still make use of large parts of the preceding consid-
erations, but some details require a modification. The standard mollifier re-
sult (Proposition 1.2.32) still applies to show that ϕ2−N ∗ f → f , and hence
TmN f → Tmf , in L1(Rd;X) as N → ∞, but it no longer guaranteed that
ϕ2−L ∗ f should converge to 0 as L → −∞. Hence, we will separately deal
with TmLf .

For f ∈ L̂1(Rd;X) ∩ L1(Rd;X), we have

‖TmLf(x)‖ =
∥∥∥ ∫

Rd
ϕ(2−Lξ)m(ξ)f̂(ξ) dξ

∥∥∥
6
∫
|ξ|62L+1

‖m‖∞‖f̂(ξ)‖ dξ 6 ωd(2
L+1)d‖m‖∞‖f‖1.

Hence TmL extends to a bounded operator from L1(Rd;X) to L∞(Rd;Y ) of
norm at most ωd2

(L+1)d‖m‖∞ → 0 as L→ −∞.

For f ∈ L̂1(Rd;X) ∩ L1(Rd;X), we can now write

TmN f = TmNL f + TmLf = kmNL ∗ f + TmLf.

Since all of the operators acting on f above are bounded from L1(Rd;X) to
L1(Rd;Y ) + L∞(Rd;Y ), the identity continues to hold for all f ∈ L1(Rd;X).
Taking the limits N →∞ and L→ −∞, we have TmN f → Tmf in L1(Rd;Y )
and TmLf → 0 in L∞(Rd;Y ). Along suitable subsequences, we have both
limits almost everywhere, and hence we arrive at the same pointwise limit

Tmf(x) = lim
N→∞
L→−∞

∫
Rd
kNL (x− y)f(y) dy

as in the case p ∈ (1,∞). The rest of the proof can then be concluded in
the same way as before. Specifically, let us note that the final application
of dominated convergence is justified simple because the product of [y 7→
|x− y|−d] ∈ L∞({B(x, ε)) and f ∈ L1(Rd;X) is integrable. �

Corollary 13.2.8. Let X,Y be Banach spaces and p0 ∈ [1,∞). Suppose that
m ∈MLp0(Rd;X,Y ) satisfies

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀|α| 6 d+ 1.

Then Tm extends to a bounded operator from Lp(w;X) to Lp(w;Y ) for every
p ∈ (1,∞) and every Muckenhoupt weight w ∈ Ap. Moreover,

‖Tm‖L (Lp(w;X),Lp(w;Y )) 6 cd,p(‖m‖MLp0 (Rd;X,Y ) +M)[w]
max{1, 1

p−1}
Ap

.

Proof. By Proposition 13.2.7, the A2 Theorem 11.3.26 applies to such an
operator Tm, and this gives precisely the stated conclusions. �
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Corollary 13.2.9. Let X,Y be UMD spaces. Suppose that m ∈ L∞(Rd;X,Y )
satisfies

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀|α| 6 d+ 1,

and in addition

R
({
|ξ||α|∂αm(ξ) : ξ ∈ Rd \ {0}

})
6 M̃ ∀α ∈ {0, 1}d,

Then Tm extends to a bounded operator from Lp(w;X) to Lp(w;Y ) for every
p ∈ (1,∞) and every Muckenhoupt weight w ∈ Ap. Moreover,

‖Tm‖L (Lp(w;X),Lp(w;Y )) 6 cd,p(min(~dp,X , ~dp,Y )βp,Xβp,Y M̃+M)[w]
max{1, 1

p−1}
Ap

.

Proof. By Mihlin’s Multiplier Theorem 5.5.10, the assumptions imply that

‖m‖MLp(Rd;X,Y ) 6 cd min(~dp,X , ~dp,Y )βp,Xβp,Y M̃.

We then conclude with an application of Corollary 13.2.8. �

This proof displays a certain dichotomy between the multiplier conditions
needed to get the boundedness of Tm to begin with, and the conditions needed
to extrapolate this boundedness to other spaces. The former one needs the
stronger R-boundedness assumptions, but only for a smaller number of deriva-
tives, while the latter only needs usual pointwise bounds, but for a larger set of
derivatives. This dichotomy disappears from sight in the following important
special case:

Corollary 13.2.10. Let X be a UMD space. Suppose that a scalar-valued
m ∈ L∞(Rd) satisfies

|∂αm(ξ)| 6M |ξ|−|α| ∀|α| 6 d+ 1.

Then Tm extends to a bounded operator on Lp(w;X) for every p ∈ (1,∞) and
every Muckenhoupt weight w ∈ Ap. Moreover,

‖Tm‖L (Lp(w;X))) 6 cd,p~dp,Xβ2
p,XM [w]

max{1, 1
p−1}

Ap
.

Proof. The assumed pointwise bounds coincide with the R-bounds required
by Corollary 13.2.10 in the case of a scalar-valued multiplier m. �

13.2.b Mihlin multipliers have Hörmander kernels

We now turn to the question of kernel estimates assuming only the multiplier
conditions appearing in Mihlin’s Theorem 5.5.10. It turns out that the max-
imal order of d derivatives is just on the border of what we need to make
useful estimates, and in order to cope with this condition, we need to impose
an additional assumption on the underlying Banach space X in terms of the
notion of Fourier type discussed in Section 13.1.

The analogue of Lemma 13.2.5 in the present context is the following
rather more complicated assertion.
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Lemma 13.2.11. Let X be a Banach space with Fourier type p ∈ (1, 2]. Let
f ∈ L∞c ((−A,A)d;X) satisfy

‖/∂αf‖∞ 6 A−|α| ∀α ∈ {0, 1}d

for some A > 0. Then f̂ ∈ L1(Rd;X) and, denoting

Φp,X := 4p′(4 + log+
2 ϕp,X),

we have the estimates
‖f̂‖1 6 Φdp,X , (13.27)

‖1{[−R,R]d f̂‖1 6 Φdp,X
4dϕp,X

(AR)1/p′
∀R > 0, (13.28)

‖f̂(· − y)− f̂(·)‖1 6 Φdp,X · 4 · 2dA|y| ∀y ∈ Rd, (13.29)

‖1{B(0,3|y|)[f̂(· − y)− f̂(·)]‖1 6 Φdp,X min
{

2,
8d2ϕp,X
(Ar)1/p′

, 4 · 2dAr
}
. (13.30)

Remark 13.2.12. Thanks to Bourgain’s Theorem 13.1.33, the assumption on
the Banach space X in Lemma 13.2.11 is simply that X has some non-trivial
type r ∈ (1, 2]. Namely, Theorem 13.1.33 guarantees that we can then take

p′ = 1 + 6r′T, ϕp,X 6 e
2T , T := (68τr,X;2)r

′
> 682 > 4 000,

and hence

Φp,X 6 4
(
1 + 6r′T

)(
4 +

2

log 2
T
)

=
48

log 2
(

1

6r′T
+ 1)(

2 log 2

T
+ 1)r′T 2

6 70 · r′T 2 = 70r′(68τr,X;2)r
′
.

Proof of (13.27). For k ∈ Zd, let

Dk = {x ∈ Rd : xi ∈ [2ki , 2ki+1) ∀i = 1, . . . , d}

so that obviously

‖f̂‖1 =
∑
k∈Zd

‖1Dkf‖1.

For each k ∈ Zd, we partition 1 = α+ β + γ for some α, β, γ ∈ {0, 1}d yet to
be chosen. Then

Dk = Dα
k ×D

β
k ×D

γ
k , Dθ

k = {(xi)i:θi=1 : xi ∈ [2ki , 2ki+1)}.

Similarly,

Rd = Rα × Rβ × Rγ , Rθ = {(xi)i:θi=1 : xi ∈ R},

and we abbreviate LsLtγ := Ls(Rα × Rβ ;Lt(Rγ ;X)).
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For x ∈ Dk, we have |xi| > 2ki , and hence |xβ+γ | > 2k·(β+γ). We can now
make the following estimate. At a critical point, passing from a norm of the
Fourier transform f̂ to a norm of f itself, we apply the Fourier type assumption

to F : Lp(Rγ ;X) → Lp
′
(Rγ ;X), producing the constant ϕp,X(Rγ) 6 ϕ

|γ|
p,X ,

and the trivial boundedness of the Fourier transform F : L1(Rα+β ;Z) →
L∞(Rα+β ;Z), with Z = Lq(Rγ ;X) for either q = p or q = p′, depending on
the (irrelevant) order in which we perform these two steps:

‖1Dk f̂‖L1 6 2−k·(β+γ)‖1Dkxβ+γ f̂‖L1

6 2−k·(β+γ)‖1Dk‖L1Lpγ‖x
β+γ f̂‖

L∞Lp
′
γ

6 2−k·(β+γ) · 2d2k·(α+β+γ/p) · ϕ|γ|p,X‖/∂
β+γ

f‖L1Lpγ

6 2d2k·(α−γ/p
′) · ϕ|γ|p,XA

−|β|−|γ|2dA|α|+|β|+|γ|/p

6 4d2k·(α−γ/p
′) · ϕ|γ|p,XA

|α|−|γ|/p′

= 4d ×
∏

i:αi=1

(A2ki)×
∏
i:βi=1

1×
∏
i:γi=1

(ϕp,X(2kiA)−1/p′).

Since the splitting 1 = α + β + γ is free for us to choose, it is obvious that,
for each i, we choose it to be in the first, second or third category according
to which of the three numbers

A2ki , 1, ϕp,X(2kiA)−1/p′

is the smallest. This gives us the estimate

‖f̂‖1 =
∑
k∈Zd

‖1Dkf‖1

6 4d
∑
k∈Zd

d∏
i=1

min{A2ki , 1, ϕp,X(2kiA)−1/p′}

= 4d
(∑
k∈Z

min{A2k, 1, ϕp,X(2kA)−1/p′}
)d

6 4d
( ∑
k:A2k61

A2k +
∑

k:16A2k6ϕp
′
p,X

1 +
∑

k:A2k>ϕp
′
p,X

ϕp,X(2kA)−1/p′
)d

6 4d
(

2 + (1 + log+
2 ϕ

p′

p,X) +
ϕp,X(ϕp

′

p,X)−1/p′

1− 2−1/p′

)d
6 4d(3 + p′ log+

2 ϕp,X + 2p′)d 6 (4p′)d(4 + log+
2 ϕp,X)d

where we observed that 1− 2−1/p′ > 1/(2p′), since the function g(u) = u/2 +
2−u satisfies g(u) 6 1 for u = 1/p′ ∈ [0, 1

2 ], being convex with g(0) = 1 and

g( 1
2 ) = 1/4 + 2−1/2 < 1. �
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Proof of (13.28). Making the same decomposition

‖1{[−R,R]d f̂‖1 =
∑
k∈Zd

‖1Dk1{[−R,R]d f̂‖1

as in the proof of (13.27), we observe hat 1Dk1{[−R,R]d is non-zero only if at

least one ki satisfies 2ki+1 > R. Thus

‖1{[−R,R]d f̂‖1 6
d∑
i=1

∑
k∈Zd

2ki>R/2

‖1Dk f̂‖1

6 d · 4d
(∑
k∈Z

min{A2k, 1, ϕp,X(2kA)−1/p′}
)d−1

×
( ∑
k:2k>R/2

min{A2k, 1, ϕp,X(2kA)−1/p′}
)
,

by inspection of the proof of (13.27). The factor raised to power d − 1 is
estimated as in the proof of (13.27) by(∑

k∈Z
min{A2k, 1, ϕp,X(2kA)−1/p′}

)d−1

6 (p′)d−1
(

4 + log+
2 ϕp,X

)d−1

.

On the other hand, we have∑
k:2k>R/2

min{A2k, 1, ϕp,X(2kA)−1/p′}

6
∑

k:2k>R/2

ϕp,X(2kA)−1/p′

6
ϕp,X(AR/2)−1/p′

1− 2−1/p′
6 4p′ϕp,X(AR)−1/p′ ,

again by recycling some estimates from the proof of (13.27). Collecting the
bounds, the proof of (13.28) is complete. �

Proof of (13.29). We observe that f̂(x− y)− f̂(x) is the Fourier transform of
f(x)e2πix·y, which verifies the same assumptions as f by Lemma 13.2.4, aside
from the multiplicative factor (6 + 2d)A|y|, provided that A|y| 6 1. Applying
(13.27) to this function gives (13.29) for A|y| 6 1. But for A|y| > 1, (13.29)
is an immediate consequence of (13.27) by the triangle inequality. �

Proof of (13.30). This final bound is a certain synthesis of the other bounds.
The first and third bounds in the minimum are obtained from (13.27) (with
the triangle inequality) and from (13.29), respectively, ignoring the restriction
to {B, which only increases the norm.
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For the second bound, we also use the triangle inequality, but keeping the
restriction to {B. Then

‖1{B(0,3|y|)f̂(· − y)‖1 = ‖1{B(−y,3|y|)f̂‖1
6 ‖1{B(0,2|y|)f̂‖1 6 ‖1{(−2r/

√
d,2r/

√
d)d)f̂‖1,

and the same bound is obvious for f̂ in place of f̂(· − y). Applying (13.28)
with R = 2r/

√
d produces the required bound. �

Proposition 13.2.13. Let X,Y be Banach spaces, and suppose that m ∈
L∞(Rd; L (X,Y )) satisfies

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀α ∈ {0, 1}d. (13.31)

Let KN (t, s) = kN (t−s) = m̂
N

(x−y) be the kernels related to the Littlewood–
Paley truncations mN of m as in (13.23).

(1) If the space Y has Fourier type p ∈ (1, 2], then the kernels KN satisfy the
Hörmander condition uniformly in N , and quantitatively∫

|t|>3|s|
‖(kN (t− s)− kN (t))x‖Y dt 6 (2Φp,Y )d+1M‖x‖X ∀x ∈ X,

where Φp,Y = 4p′(4 + log+
2 ϕp,Y ).

(2) If the space X has Fourier type p ∈ (1, 2], then the kernels KN satisfy the
dual Hörmander condition uniformly in N , and quantitatively∫
|t|>3|s|

‖(kN (t− s)∗ − kN (t)∗)y∗‖ dt 6 (2Φp,X)d+1M‖y∗‖Y ∗ ∀y∗ ∈ Y ∗,

where Φp,X = 4p′(4 + log+
2 ϕp,X).

Proof of (1). From Lemma 13.2.3 it follows that each Littlewood–Paley trun-
cation mj ∈ L∞c (B(0, 2j+1); L (X,Y )) satisfies

‖/∂αmj‖∞ 6 2dM2−(j+1)|α|,

which is like the condition of Lemma 13.2.11 with A = 2j+1 and an additional
multiplicative constant 2dM .

Moreover, for x ∈ X, the function mj(·)x ∈ L∞c (B(0, 2j+1);Y ) satisfies
the same assumption with constant 2dM‖x‖, and now the range Y also has
Fourier type p ∈ (1, 2], as required to apply Lemma 13.2.11. In particular,
from (13.30), we conclude that∫

|t|>3|s|
‖(kj(t− s)− kj(t))x‖Y dt

6 Φdp,Y 2dM‖x‖min
{

2,
8d2ϕp,Y

(2j+1r)1/p′
, 8 · 2d2j+1r

}
.
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Since mN ∈ L∞c (Rd; L (X,Y )) ⊆ L1(Rd; L (X,Y )), the kernels kN = m̂
N ∈

C0(Rd; L (X,Y )) are well defined, and we can estimates∫
|t|>3|s|

‖(kN (t− s)− kN (t))x‖Y dt

6
∑
j6N

∫
{B
‖(kj(t− s)− kj(t))x‖Y dt

6 Φdp,Y 2dM‖x‖
( ∑
j:8·2d2j+1r62−d−5

8 · 2d2j+1r

+
∑

j:2−d−362j+1r6(8d2ϕp,Y )p′

1

+
∑

2j+1r>(8d2ϕp,Y )p′

8d2ϕp,Y
(2j+1r)1/p′

)
6 Φdp,Y 2dM‖x‖

(
2 + (log+

2 (8d2ϕp,Y )p
′
+ d+ 4) +

1

1− 2−1/p′

)
6 Φdp,Y 2dM‖x‖

(
6 + 3d+ log+

2 ϕp,Y

)
p′

6 Φdp,Y 2dM‖x‖ · d · Φp,Y 6 (2Φp,Y )d+1M‖x‖.

�

Proof of (2). We note that (13.31) implies a similar bound for the pointwise
adjoint function m∗ = m(·)∗ ∈ L∞(Rd; L (Y ∗, X∗)), while the assumption
that X has Fourier type p ∈ (1, 2] implies that X∗ has the same Fourier
type with ϕp,X∗ = ϕp,X (Proposition 2.4.16). Thus case (2) follows from the
already proven case (1) applied to (m∗, Y ∗, X∗) in place of (m,X, Y ). �

Corollary 13.2.14. Let X,Y be Banach spaces with non-trivial Fourier type,
let p0 ∈ [1,∞), and suppose that m ∈MLp0(Rd;X,Y ) satisfies

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀α ∈ {0, 1}d.

Then m ∈MLp(Rd;X,Y ) for all p ∈ (1,∞).

Proof. By Lemma 13.2.2, the Littlewood–Paley truncations of m satisfy mN ∈
MLp0(Rd;X,Y ) uniformly in N ∈ Z. By Proposition 13.2.13, the kernels

kN = m̂
N

satisfy both Hörmander and dual Hörmander conditions uniformly
in N ∈ Z. On the other hand, by Lemma 13.2.11, the kernel kj = m̂j satisfy
kj(·)x ∈ L1(Rd;Y ) for all x ∈ X, uniformly in ‖x‖ 6 1, and hence kj ∈
L1

so(Rd; L (X,Y )).
It follows that the kernels kNL satisfy both Hörmander and dual Hörmander

conditions uniformly in L,N ∈ Z, and they belong to L1
so(Rd; L (X,Y )) (but

in general not uniformly). Thus the convolution with kNL defines a bounded
operator from Lp0(Rd;X) to Lp0(Rd;Y ). So does TmNL , and hence the identity
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TmNL f = kNL ∗ f,

initially guaranteed by Proposition 13.2.1 for all f ∈ L1 ∩ L̂1(Rd;X), ex-
tends by continuity and density to all f ∈ Lp0(Rd;X). Since the operators are
uniformly bounded on this space, and their kernels satisfy both Hörmander
and dual Hörmander conditions uniformly, it follows from the Calderón–
Zygmund Theorem 11.2.5 that they extend boundedly from Lp(Rd;X) to
Lp(Rd;Y ) for all p ∈ (1,∞), again uniformly in L,N ∈ Z. This is the same
as mN

L ∈ MLp0(Rd;X,Y ) uniformly in L,N ∈ Z, which, by Lemma 13.2.2,
implies that m ∈MLp(Rd;X,Y ). �

The following corollary is just the operator-valued Mihlin Multiplier Theo-
rem 5.5.10 in the special case of Hilbert spaces (in contrast to general UMD
spaces covered by Theorem 5.5.10); we state it here for the sake of pointing
out the alternative approach to this special case via the Calderón–Zygmund
extrapolation theory developed in this chapter.

Corollary 13.2.15. Let H1, H2 be Hilbert spaces and suppose that m ∈
L∞(Rd; L (H1, H2)) satisfies

‖∂αm(ξ)‖ 6M |ξ|−|α| ∀α ∈ {0, 1}d.

Then m ∈MLp(Rd;H1, H2) for all p ∈ (1,∞).

Proof. By Plancherel’s theorem in both Hilbert spaces, we have

‖Tmf‖L2(Rd;H2) = ‖mf̂‖L2(Rd;H2) 6M‖f̂‖L2(Rd;H1) = M‖f‖L2(Rd;H1),

and thus ‖m‖ML2(Rd;H1,H2) 6M . Since both Hi have Fourier type 2, Corollary

13.2.14 applies to give that m ∈MLp(Rd;H1, H2) for all p ∈ (1,∞). �

13.3 Necessity of UMD for multiplier theorems

In the previous sections, we have seen Fourier multiplier theorems of roughly
two types:

1. If we already know the boundedness of such an operator on one Lp0(Rd;X),
then this boundedness can be extrapolated to other Lp(Rd;X) spaces un-
der relatively mild (or even no) assumptions on the space X.

2. If we need to prove the boundedness “from scratch”, then the required
assumptions on X tend to be much stronger, and in particular involve the
UMD property.

Let us also recall from the previous volumes that the need of the UMD prop-
erty is not only imposed by the chosen proof strategies, but by the very nature
of things: for prominent examples of multipliers like −i sgn(ξ) corresponding
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to the Hilbert transform (Theorem 5.2.10), or |ξ|is corresponding to imaginary
powers of the Laplacian (Corollary 10.5.2), the UMD property is indeed nec-
essary. The goal of this section is to continue this list by yet another class of
Fourier multipliers whose boundedness requires UMD, and thereby close the
circle of implications in a number of useful characterisations of UMD spaces.
We start by discussing the types of multipliers that we are going to consider:

Definition 13.3.1. We say that m is constant in the direction of x ∈ Rd\{0}
if m(tx) = m(x) for all t > 0. We say that m is stably constant in the direction
of x ∈ Rd \ {0} if, in addition, we have

lim
t→∞

m(y + tx) = m(x) ∀y ∈ Rd.

Note that if m is stably constant in the direction of x, then for every s > 0,

lim
t→∞

m(y + tsx) = lim
t→∞

m(y + tx) = m(x) = m(sx),

where the last step follows from the assumption (included in the definition of
stably constant) that m is in particular constant in the direction of x.

Example 13.3.2. Suppose thatm ∈ C(Rd\{0}) is homogeneous,m(tx) = m(x)
for all t > 0 and x ∈ Rd \ {0}. Then m is stably constant in every direction.
Indeed

lim
t→∞

m(y + tx) = lim
t→∞

m(t−1y + x) = m(x)

simply by the continuity of m at x.

Example 13.3.3. Suppose that m ∈ C1(Rd\{0}) satisfies the first order Mihlin
condition |∇m(x)| 6 M |x|−1 for all x ∈ Rd \ {0}. If m is constant in the
direction of some x, then m is stably constant in this direction. Indeed

|m(y + tx)−m(x)| = |m(y + tx)−m(tx)| =
∣∣∣ ∫ 1

0

y · ∇m(ys+ tx) ds
∣∣∣

6 |y|
∫ 1

0

M ds

|ys+ tx|
6

M |y|
t|x| − |y|

,

and clearly this converges to 0 as t→∞.

Proposition 13.3.4 (Transference from Td to Trd). Let

m ∈ C(Rd \ {0}; L (X)),

and suppose that it induces a periodic Fourier multiplier

T := T̃(m(j))j∈Zn\{0} ∈ L (Lp0(Td;X)).

If Tk is the extension of T to Lp0(Td;Lp(T(k−1)d;X)) (Lp(T0;X) := X), then
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k=1

Tkfk

∥∥∥
Lp(Trd, dt1... dtr;X)

6 ‖T‖L (Lp0(Td;X))

∥∥∥ r∑
k=1

fk

∥∥∥
Lp(Trd, dt1... dtr;X)

for all fk = fk(t1, . . . , tk) ∈ Lp0(Td, dtk;Lp(T(k−1)d, dt1 . . . dtk−1;X)) that
have non-zero Fourier coefficients with respect to tk only in the directions
where m is stably constant.

Proof. By the density of trigonometric polynomials in Lp, we may assume
that

fk(t1, . . . , tk−1, tk) = fk(t̄k−1, tk) =
∑
`∈Zn

0<|`|6B

∑
j∈Z(k−1)n

|j|6B

a
(k)
j,` ej(t̄k−1)e`(tk),

where
t̄k−1 = (t1, . . . , tk−1) ∈ (Td)k−1, tk ∈ Td,

ej(t̄k−1) := exp(2πij · t̄k−1), e`(tk) := exp(2πi` · tk),

and we may choose the same B for all the fk, since there are only finitely many
of them. Then Tkfk has a similar expansion with the (j, `) term multiplied by
m(`).

Let us fix some t̄k := (t̄k−1, tk) = (t1, . . . , tk) ∈ Tkd for the moment, and

N̄k := (N1, . . . , Nk−1, Nk) = (N̄k−1, Nk) ∈ Zk+

to be chosen below.
We will shortly define an auxiliary function of the new variable t ∈ Td. For

this we need to introduce a couple of product-like operations between vectors
of different lengths. We set

N̄k ⊗ t := (N̄k−1 ⊗ t,Nkt) = (N1t, . . . , Nkt) ∈ (Td)k, N̄k ∈ Zk,

N̄k−1 � j := N1j1 + . . .+Nk−1jk−1 ∈ Zd, j = (j1, . . . , jk−1) ∈ (Zd)k−1.

These operations satisfy the identity

j · (N̄k−1 ⊗ t) = (N̄k−1 � j) · t, hence ej(N̄k−1 ⊗ t) = eN̄k−1�j(t),

where · stands for the usual Euclidean scalar product.
The new function is then defined by

f̃k(t) := fk(t̄k + N̄k ⊗ t)

=
∑
`∈Zn

0<|`|6B

∑
j∈Z(k−1)n

|j|6B

a
(k)
j,` ej(t̄k−1)e`(tk)eN̄k−1�j+Nk`(t), (13.32)

The function T̃kfk : Tn → X is defined analogously.
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We now want to compare T̃kfk with T f̃k. They are both multiplier trans-
forms of f̃k, where in the first one the exponential eN̄k−1�j+Nk` is multiplied

by m(N̄k−1 � j +Nk`), and in the second one by m(`).
By the assumption on fk, we know that m is stably constant in the direc-

tion of ` whenever a
(k)
j,` 6= 0, and therefore

lim
Nk→∞

m(N̄k−1 � j +Nk`) = m(`).

Hence, assuming that N̄k−1 was already chosen, and recalling that j ∈ Z(k−1)d

and ` ∈ Zd with |j|, |`| 6 B take only finitely many different values, we can
choose Nk large enough so that

|m(N̄k−1 � j +Nk`)−m(`)| 6 ε

for any preassigned ε > 0 and all relevant values of j and `.
In conclusion, denoting by ‖g‖A the sum of the norms of the Fourier co-

efficients of a trigonometric polynomial g (on a torus of any dimension), we
have

‖T̃kfk − T f̃k‖p 6 ‖T̃kfk − T f̃k‖A 6 ε‖f̃k‖A 6 ε‖fk‖A.

Of course the ‖ · ‖A norms are finite since the functions above are all trigono-
metric polynomials.

Summing up, it follows that∥∥∥ r∑
k=1

T̃kfk

∥∥∥
p
6
∥∥∥T r∑

k=1

f̃k

∥∥∥
p

+ ε
r∑

k=1

‖fk‖A. (13.33)

Here the Lp norms are taken with respect to the variable t ∈ Td, and we
recall that the variables t1, . . . , tr ∈ Td were kept fixed until now. We now
take the Lp norms of (13.33) with respect to t̄r = (t1, . . . , tr) ∈ Trd and use
the triangle inequality to get(∫

Trn

∫
Tn

∥∥∥ r∑
k=1

(Tkfk)(t̄r + N̄r ⊗ t)
∥∥∥p
X

dt dt̄r

)1/p

6 ‖T‖L (Lp0(Tn;X))

(∫
Trn

∫
Tn

∥∥∥ r∑
k=1

fk(t̄r + N̄r ⊗ t)
∥∥∥p
X

dt dt̄r

)1/p

+ ε

r∑
k=1

‖fk‖A.

Exchanging the order of the integrations on Trd and Td, we find by translation
invariance that the dependence on t and N̄r disappears and we are left with∥∥∥ r∑

k=1

Tkfk

∥∥∥
Lp0(Trd;X)

6 ‖T‖L (Lp0(Td;X))

∥∥∥ r∑
k=1

fk

∥∥∥
Lp0(Trd;X)

+ ε
r∑

k=1

‖fk‖A.
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Since there is no more explicit N̄r dependence, we may take ε → 0, and this
gives the assertion. �

Theorem 13.3.5 (Geiss–Montgomery-Smith–Saksman). Let d > 2 and
m ∈ C(Rd \ {0}) be a multiplier that is stably constant in the directions of
four vectors ±ui, i = 1, 2, where moreover

m(−u1) = m(u1) 6= m(u2) = m(−u2).

If m ∈MLp(Rd;X), then X is a UMD space and

βR
p,X 6

2‖m‖MLp(Rd;X).

|m(u1)−m(u2)|
(13.34)

To streamline the proof, we recall a transference result that we already ob-
served and used in the proof of Corollary 10.5.2:

Lemma 13.3.6. If m ∈ C(Rd \ {0}) ∩MLp(Rd;X), then (m(k))k∈Zd\{0} ∈
MLp0(Td;X) and

‖(m(k))k∈Zd\{0}‖MLp0(Td;X) 6 ‖m‖MLp(Rd;X).

Proof. This is a slight variant of Proposition 5.7.1, which says that if every
k ∈ Zd is a Lebesgue point of m ∈ L∞(Rd), then (m(k))k∈Zd is a Fourier
multiplier on Lp(Td;X) of at most the norm of the Fourier multiplier m
on Lp(Rd;X). A slight obstacle is that 0 may fail to be a Lebesgue point
of our m(ξ), no matter how we define m(0). But, if we only consider the
action of these operators on Lp0(Td;X), the 0th frequency never shows up,
and one can check that the proof of Proposition 5.7.1 also applies, with trivial
modifications, to the case that each k ∈ Zd \ {0} is a Lebesgue point, giving
exactly what we claimed. �

Proof of Theorem 13.3.5. We begin by essentially the same reduction as in
the proofs of both Theorems 5.2.10 and 10.5.1 (the necessity of UMD for the
boundedness of the Hilbert transform and the imaginary powers of the Lapla-
cian, respectively); but we repeat this short step for the reader’s convenience:
By Theorem 4.2.5 it suffices to estimate the dyadic UMD constant. In order to
most conveniently connect this with Fourier analysis, we choose a model of the
Rademacher system (rk)nk=1, where the probability space is Tdn = Td1×· · ·×Tdn
(each Tdk is simply an indexed copy of Td), and rk = rk(tk) is a function of the
kth coordinate tk ∈ Tdk only. Moreover, we are free to choose any instance of
such function, as long as it takes both values ±1 on subsets of Td of measure
1
2 . Then it is sufficient to prove that

∥∥∥ n∑
k=1

εkfk

∥∥∥
Lp(Tdn;X)

6 K
∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

,
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where K is the constant on the right of (13.34), for all signs εk = ±1, for
all fk of the form fk = φk(r1, . . . , rk−1)rk; these are precisely the martingale
differences of Paley–Walsh martingales (see Proposition 3.1.10). We use the
convention that Lp(T0;X) := X.

Let us then observe that, with suitable choice of the invertible matrices
Aj , j = 1, 2, the multipliers mj(ξ) = m(Ajξ) (of the same multiplier norm
as the original m) are stably constant in the directions of ±ek, k = 1, 2, and
moreover mj(±ek) = m(u1) if j = k and mj(±ek) = m(u2) if j 6= k. Defining
yet another multiplier m′ = 1

2 (m1 − m2) (of at most the same multiplier
norm as m), we find that m′ is also stably constant in the directions of ±ek,
k = 1, 2, and moreover m′(±e1) = 1

2 (m(u1)−m(u2)) =: a and m′(e2) = −a.
If we can prove the claim with m′, e1, e2 in place of the original m,u1, u2, then
the original claim also follows from

βp,X 6
2‖m′‖MLp(Rd;X)

|m′(e1)−m′(e2)|
6

2‖m‖MLp(Rd;X).

|m(u1)−m(u2)|

Dropping the primes, we assume without loss of generality that m(±e1) =
a = −m(±e2), and m is stably constant in the directions of ±ej , j = 1, 2.

From Proposition 13.3.4 and Lemma 13.3.6 we know that, for suitable
functions fk,∥∥∥ n∑

k=1

T̃kfk

∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp0(Td;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

,

where Tk is a copy T̃(m(j))
j∈Zd\{0}

acting in the kth Tdk, thus

Tkfk = φk(r1, . . . , rk−1)T̃(m(j))
j∈Zd\{0}

rk.

The required condition on fk above is that its Fourier coefficients with respect
to the variable tk should be non-zero only in the directions, where m is stably
constant, i.e., only in the directions ±e1 and ±e2. Given the product form of
fk, this means more simply that rk should have non-zero Fourier coefficients
only in these directions, which holds in particular if rk is a function of only
the first or only the second coordinate. Note that this gives still (more than)
enough flexibility to make rk equidistributed with a Rademacher variable.

Now, given a sequence (εk)rk=1, we choose rk to be a function of the first
coordinate if εk = +1, and of the second coordinate if εk = −1. It then follows
that in either case T̃(m(j))

j∈Zd\{0}
rk = aεkrk, and we conclude that
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k=1

εkfk

∥∥∥
Lp(Tdn;X)

=
1

|a|

∥∥∥ n∑
k=1

Tkfk

∥∥∥
Lp(Tdn;X)

6
2

|m(e1)−m(e2)|
‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

,

which is what we claimed. �

For the sake of precise quantitative conclusions, we also record the follow-
ing variant of Theorem 13.3.5. The assumptions of the next result are much
stronger than those of Theorem 13.3.5, so that the qualitative conclusion that
X is a UMD space is immediate from the previous theorem. The point of this
variant is that under the stronger assumption we can directly estimate the
complex UMD constant βC

p,X of X. The result is not strictly a corollary of
Theorem 13.3.5 itself, but follows by a modification of its proof, as we are
about to see.

Corollary 13.3.7. Let d > 2 and m ∈ C(Rd \ {0}) be an even, homogeneous
multiplier whose range contains the complex unit circle. If m ∈MLp(Rd;X),
then X is a UMD space and

βC
p,X 6 ‖m‖MLp(Rd;X).

Proof. By the same reductions and notation as in the proof of Theorem 13.3.5,
we now need to check that∥∥∥ n∑

k=1

σkfk

∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

,

for any σk ∈ C with |σk| = 1. By the assumption about the range of m, we
can further write σk = m(uk) for some uk ∈ C with |uk| = 1.

Consider a large number R > 0. For each k, we can find an integer vector
nk ∈ Zd such that ‖nk−Ruk‖`∞ 6 1

2 . Thus ‖uk−R−1nk‖`∞ 6 1
2R . Since m is

continuous, by choosing R large enough we ensure that |m(uk)−m(R−1nk)| 6
δ for each k = 1, . . . , n and any given δ > 0. Thus∥∥∥ n∑

k=1

σkfk

∥∥∥
Lp(Tdn;X)

=
∥∥∥ n∑
k=1

m(uk)fk

∥∥∥
Lp(Tdn;X)

6
∥∥∥ n∑
k=1

m(nk)fk

∥∥∥
Lp(Tdn;X)

+
n∑
k=1

δ‖fk‖Lp(Tdn;X),

where we also used the homogeneity m(R−1nk) = m(nk).
We now come to our choice of the Rademachers functions rk appearing in

the martingale differences fk = φk(r1, . . . , rk−1)rk. Fixing any Rademacher
function r on T, we take rk(t) := r(nk · t) for t ∈ Td. Substituting nk · t into
the Fourier series of r, we find that



280 13 The Fourier transform and multipliers

rk(t) =
∑
j∈Z

r̂(j)e2πijnk·t

has a Fourier series involving only frequencies that are multiples of the vector
nk. By the homogeneity of m again, this means that

T̃(m(j))
j∈Zd\{0}

rk = m(nk)rk,

and thus∥∥∥ n∑
k=1

m(nk)fk

∥∥∥
Lp(Tdn;X)

=
∥∥∥ n∑
k=1

T̃(m(j))
j∈Zd\{0}

fk

∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

.

Collecting the estimates, we have checked that∥∥∥ n∑
k=1

σkfk

∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

fk

∥∥∥
Lp(Tdn;X)

+ δ

n∑
k=1

‖fk‖Lp(Tdn;X),

or in other words∥∥∥ n∑
k=1

σkrkφk(r1, . . . , rk−1)
∥∥∥
Lp(Tdn;X)

6 ‖m‖MLp(Rd;X)

∥∥∥ n∑
k=1

rkφk(r1, . . . , rk−1)
∥∥∥
Lp(Tdn;X)

+ δ

n∑
k=1

‖rkφk(r1, . . . , rk−1)‖Lp(Tdn;X).

While the specific choice of the Rademacher functions rk depended on the
numbers nk, which in turn depended on δ, it is clear that this last bound
is true for any Rademacher sequence (rk)nk=1, as soon as it is true for one.
Once this observation is made, we see that everything is independent of δ,
and taking the limit δ → 0, we obtain the required bound. �

Corollary 13.3.8. Let X be a Banach space, d > 2 and p ∈ (1,∞). If any of
the following operators is bounded on Lp(Rd;X), then X is a UMD space:

(1) a second-order Riesz transform RjRk, 1 6 j, k 6 d,
(2) their non-zero difference R2

j −R2
k, 1 6 j 6= k 6 d,

(3) the Beurling transform B = (R2
2 −R2

1) + i2R1R2 (d = 2).
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Moreover, we have the following estimates:

(1) βR
p,X 6 2‖RjRk‖L (Lp(Rd;X)),

(2) βR
p,X 6 ‖R2

j −R2
k‖L (Lp(Rd;X)),

(3) βC
p,X 6 ‖B‖L (Lp(R2;X)).

Proof. These operators correspond to the multipliers

mRjRk(ξ) = −ξjξk
|ξ|2

, mR2
j−R2

k
(ξ) = −

ξ2
j − ξ2

k

|ξ|2
, mB(ξ) = −ξ1 − iξ2

ξ1 + iξ2
,

each of which is even and homogeneous, in particular stably constant in all
directions.

Writing ξ1 + iξ2 in the polar coordinates as reiθ, it is clear that mB(ξ) =
mB(reiθ) = −e−i2θ takes all values in the complex unit circle. Hence the
claims concerning B are immediate from Corollary 13.3.7.

For RjRk, we observe that mR2
j
(ξ) = −ξ2

j /|ξ|2 is −1 for ξ = ej and 0 for

ξ = ek, k 6= j, whereas mRjRk(ξ) = − 1
2 for ξ = (ej+ek) and 1

2 for ξ = (ej−ek)
when k 6= j; in each case we have |m(u1) − m(u2)| = 1 for suitable vectors
ui. For R2

j − R2
k, the multiplier is −1 for ξ = ej and +1 for ξ = ek, so that

|m(ej)−m(ek)| = 2. In each case, the claimed conclusion is immediate from
Theorem 13.3.5. �

Corollary 13.3.8 allows us to complete a characterisation of a function space
embedding that we studied in Section 5.6:

Corollary 13.3.9. Let X be a Banach space, let d, k > 1 and p ∈ (1,∞).
Then there is a constant C such that

‖f‖Wk,p(Rd;X) 6 ‖f‖Hk,p(Rd;X) ∀f ∈ S (Rd;X)

if and only if at least one of the following holds:

(1) d = 1 and k is even, or
(2) X is a UMD space.

Proof. The sufficiency of (1) has been established in Proposition 5.6.10 and
the sufficiency of (2) in Theorem 5.6.11. Moreover, in Theorem 5.6.12, it has
been shown that the UMD property is necessary when k is odd, and that the
boundedness of the second-order Riesz transform R2

1 is necessary when k is
even and d > 2. By Corollary 13.3.8, the UMD property follows from this,
and hence it is necessary in all cases except (1). �

In our final corollary to Theorem 13.3.5, we dispense with the evenness con-
dition.
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Corollary 13.3.10. Let d > 1 and m ∈ C(Rd \ {0}) be any positively homo-
geneous multiplier (i.e., m(λξ) = m(ξ) for all ξ ∈ Rd \ {0} and λ > 0) that is
not identically constant. If m ∈MLp(Rd;X), then X is a UMD space and

βR
p,X 6 min

u1,u2∈Sd−1

4‖m‖MLp(Rd;X)

|m(u1) +m(−u1)−m(u2)−m(−u2)|
,

βR
p,X 6 (~p,X)2 6

(
min

u∈Sd−1

2‖m‖MLp(Rd;X)

|m(u)−m(−u)|

)2

,

where at least one of the right-hand sides is finite.

The assumption that m is not identically constant, rather than the perhaps
expected “not identically zero”, is necessary: the Fourier multiplier Tm with
m ≡ c coincides with the scalar multiplication f 7→ c · f , whose boundedness
certainly needs no UMD.

Proof. As pointed out right before Proposition 5.3.7, the assumption that
m ∈MLp(Rd;X) implies the same property for the reflected function m̃(ξ) :=
m(−ξ). Then, by the triangle inequality, the even and odd parts meven :=
1
2 (m+ m̃) and modd := 1

2 (m− m̃) are also positively homogeneous multipliers
of at most the same multiplier norm as m. Since m is not identically constant,
and m = meven + modd, at least one of meven or modd is not identically
constant.

If meven is not identically constant, there are two directions u1, u2 ∈ Sd−1

such that meven(u1) 6= meven(u2) and hence, by evenness,

meven(−u1) = meven(u1) 6= meven(u2) = meven(−u2).

By Example 13.3.2, the homogeneous meven ∈ C(Rd \ {0}) is stably con-
stant in every directions. Hence meven satisfies the assumptions of the Geiss–
Montgomery-Smith–Saksman Theorem 13.3.5, and the said theorem guaran-
tees that, for any such u1, u2 ∈ Sd−1,

βR
p,X 6

2‖meven‖MLp(Rd;X)

meven(u1)−meven(u2)

6
4‖m‖MLp(Rd;X)

m(u1) +m(−u1)−m(u2)−m(−u2)
.

(Note that the condition that meven(u1) 6= meven(u2) is precisely the require-
ment that the denominator is non-zero, and hence can extend the previous
display to all pairs of u1, u2 ∈ Sd−1; interpreting 1/0 =∞, as usual, this only
amounts to adding the triviality βR

p,X 6∞.)
For the odd part modd, being not identically constant is equivalent to being

not identically zero. If this is the case, there is some direction u ∈ Sd−1 such
that m(−u) = −m(u) 6= 0. Writing ξ ∈ Rd as ξ = (ξ · u)u+ [ξ − (ξ · u)u], we
consider the invertible linear transformations Aλξ = (ξ · u)u+ λ[ξ − (ξ · u)u],
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where λ > 0. By Proposition 5.3.8, each modd ◦ Aλ has the same multiplier
norm as modd. As λ → 0, it is clear that Aλξ → (ξ · u)u for all ξ ∈ Rd and
thus, by the continuity of m and hence modd,

modd ◦Aλ(ξ)→ modd((ξ · u)u) = sgn(ξ · u)modd(u).

A convergence result for multipliers, Proposition 5.3.16, then implies that

|modd(u)|‖ξ 7→ sgn(ξ · u)‖MLp(Rd;X) 6 lim inf
λ→0

‖modd ◦Aλ‖MLp(Rd;X)

= ‖modd‖MLp(Rd;X).

By another application of Proposition 5.3.8 with a rotation that sends u to
e1, it follows that

‖ξ 7→ sgn(ξ1)‖MLp(Rd;X) = ‖ξ 7→ sgn(ξ · u)‖MLp(Rd;X)

6
‖modd‖MLp(Rd;X)

|modd(u)|
6

2‖m‖MLp(Rd;X)

|m(u)−m(−u)|
.

(The bound remains valid for all u ∈ Sd−1, reducing to a triviality if m(u) =
m(−u).) By Fubini’s theorem, we find that

~p,X := ‖ξ 7→ sgn(ξ)‖MLp(R;X)‖ξ 7→ sgn(ξ1)‖MLp(R;X).

The bound between βR
p,X 6 (~p,X)2 is contained in Corollary 5.2.11. �

13.4 Notes

Section 13.1

The precise quantitative form of the final bound in the comparison of various
Fourier-type constants in Proposition 13.1.1 seems to be new; we were not
aware of this estimate at the time of completing Volume II, where a weaker
version was given. The identity ϕp,C(Rd) = (p1/p(p′)−1/p′)d mentioned below
the said proposition is due to Babenko [1961] in the special case that p′ is an
even integer, and due to Beckner [1975] in full generality.

The main result of this section, Theorem 13.1.33 is from Bourgain [1988a],
with preliminary versions going back to Bourgain [1981, 1982]. The main
theorem of Bourgain [1982] reads as follows: If X is a B-convex Banach space
(which is equivalent to non-trivial type by Proposition 7.6.8), then there are
u, v ∈ (1,∞) and δ,M ∈ (0,∞) such that

δ
(∑
γ∈Γ
‖xγ‖uX

)1/u

6
∥∥∥∑
γ∈Γ

γxγ

∥∥∥
L2(G;X)

6M
(∑
γ∈Γ
‖xγ‖vX

)1/v

, (13.35)

whenever {xγ}γ∈Γ is a finitely non-zero sequence of elements of X and Γ is
the spectrum of the compact abelian group G. This is a Hausdorff–Young
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inequality with mismatched exponents; our Corollary 13.1.27 is the special
case of the right-hand inequality with G = T and Γ = {ek}k∈Z. For these
particular G and Γ , and under the stronger assumption that X be super-
reflexive, (13.35) was proved in Bourgain [1981]. A further predecessor of
such results is due to James [1972], who proved a bound like (13.35) with a
super-reflexive Z in place of both X and L2(G;X), and zk ∈ Z in place of
both xγ and γxγ , under the assumption that (zk)∞k=1 is a basic sequence in Z,
i.e., ∥∥∥ K∑

k=1

akzk

∥∥∥
Z
6 C

∥∥∥ L∑
k=1

akzk

∥∥∥
Z

(13.36)

for all scalars ak and integers K 6 L. Requiring (13.36) for zk = ekxk ∈
Z = L2(T;X), uniformly in xk ∈ X, is equivalent to the still stronger prop-
erty that X be a UMD space, which is why additional work was required by
Bourgain [1981] to obtain his result for trigonometric series in super-reflexive
spaces. (The estimate (13.36) in the said special case is equivalent to the
L2(T;X)-boundedness of the periodic Hilbert transform by Proposition 5.2.7,
and this is equivalent to the UMD property by Corollary 5.2.11. UMD spaces
are super-reflexive by Corollary 4.3.8, but the converse is false. Various exam-
ples showing the last point are due to Pisier [1975], Bourgain [1983], Garling
[1990], Geiss [1999], and Qiu [2012]. The example of Qiu [2012] is an infinitely
iterated Lp(Lq) space, which has been presented in Theorem 4.3.17, but the
super-reflexivity of this space is not treated there.)

As in our treatment in the section under discussion, getting from estimate
(13.35) with mismatched exponents to dual pairs requires further ideas. This
was achieved by Bourgain [1988b], who proved that, for some u1, v1 ∈ (1,∞)
and δ1,M1 ∈ (0,∞), there further holds

δ1

(∑
γ∈Γ
‖xγ‖

u′1
X

)1/u′1
6
∥∥∥∑
γ∈Γ

γxγ

∥∥∥
Lu1 (G;X)

6
∥∥∥∑
γ∈Γ

γxγ

∥∥∥
Lv
′
1 (G;X)

6M1

(∑
γ∈Γ
‖xγ‖v1X

)1/v1
,

(13.37)

when G is either T or the Cantor group {−1, 1}N. For G = T, the leftmost
and rightmost estimates correspond, in our notation, to ϕu1,X(T) 6 1/δ1 and
ϕv1,X(Z) 6 M1, respectively. The easy estimate ϕp,X(R) 6 ϕp,X(T) was also
observed by Bourgain [1988b]. In contrast to the case of T, a scaling argument
(substituting f(λ·) in place of f and considering the limit λ → 0 or λ → ∞)

shows that an estimate of the from ‖f̂‖Lq(R;X) 6 C‖f‖Lp(R;X) can only hold
for q′ = p; thus, in order to deduce any Hausdorff–Young inequality on R at
all, the additional steps from the mismatched exponents of Bourgain [1982]
to the dual exponents of Bourgain [1988b] seem to be necessary.

The second half of the argument leading to Bourgain’s Theorem 13.1.33, as
presented in Sections 13.1.c and 13.1.d, is close to the treatment of Bourgain
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[1988b], although we have also benefited from the exposition of these steps by
Pietsch and Wenzel [1998]. On the other hand, the first half of our treatment,
in Sections 13.1.a and 13.1.b, is also based on Pietsch and Wenzel [1998] but
deviates from the original approach of Bourgain [1982]. The beginning of the
argument, leading to Proposition 13.1.11 on “breaking the trivial bound” is
due to Hinrichs [1996], but it also uses a result of Bourgain [1985], Proposition
13.1.7, on the Sidon property of quasi-independent sets.

We have chosen this approach of Hinrichs [1996] and Pietsch and Wenzel
[1998] due to an independent interest, in our opinion, of some of its intermedi-
ate steps, despite the fact that the original argument of Bourgain [1982, 1988b]
seems slightly more efficient in terms of the final quantitative conclusions. In
any case, the main result says that every Banach space of type p ∈ (1, 2] will
have Fourier-type r = 1 + (cτp,X;2)−p

′
, for some absolute constant c. (The ad-

ditional factor 6p′ in our formulation of Theorem 13.1.33 could obviously be
absorbed by choosing a larger constant c.) The difference is in the numerical
value of c, which is 68 in our formulation (up to the lower order factor just
mentioned) and 17 in Bourgain [1982, 1988b].

In our approach, this constant comes from the proof of Corollary 13.1.20,
where the estimate 48

√
2 (≈ 67.88) 6 68 is made. (Since we are clearly off

Bourgain’s constant at this point already, it would seem pointless to insist in
the decimals here.) The constant 48

√
2, in turn, is produced as

48
√

2 = 16 ·
√

2 · 3, where

(i) 16 is the upper bound of the Sidon constants of quasi-independent sets
from Proposition 13.1.7;

(ii)
√

2 comes from the factor in front of the upper bound of the number of
quasi-independent sets required to partition a given set in Lemma 13.1.9;
the root is due to the use of this number count after an application of
the Cauchy–Schwarz inequality in the proof of Proposition 13.1.11;

(iii) 3 is the constant from the Marcinkiewicz inequality (Proposition 13.1.17),
which enters into the estimate through an application of the Comparison
Lemma 13.1.18 in the proof of Corollary 13.1.20.

One may speculate that the constant 16 (just below the 17 of Bourgain [1982])
is the heart of the matter, and the other two factors are only produced by
secondary details that should be avoidable by more careful reasoning.

The approach of Bourgain [1982] is based on two abstract results (avoided
in the present treatment) about the collection of tuples of functions

O := {ξ = (ξi)
n
i=1 ∈ L2(Ω;R)n : ‖ξi‖∞ 6 1,

∫
ξi =

∫
ξiξj = 0

for all 1 6 i 6= j 6 n}

on a probability space Ω; namely:

(1) The set E of extreme points of O consists of tuples of ±1-valued functions.
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(2) For each ξ ∈ O, there is a Borel probability measure µ on E such that

ξi =

∫
E

ηi dµ(η), for every i = 1, . . . , n.

According to Bourgain [1982], the proof of (1) is “essentially contained in”
Dor [1975], while (2) can be derived from a generalisation of Choquet’s inte-
gral representation theorem due to Edgar [1976]. Combining these abstract
tools with delicate hard analysis, Bourgain [1982] eventually arrives at his key
technical estimate, which in our notation (and exchanging the roles of X and
X∗ compared to Bourgain [1982]) may be stated as

ϕ
(2)
∞,X∗(F ) 6 K ·N1/t, t′ = (17 · τp,X;2)p

′
. (13.38)

This is recognised as a close relative of Corollary 13.1.29, where the bound

ϕ
(s′)
∞,X∗(F ) 6 K ·N1/s, s′ > r′ = 3p′(68 · τp,X;2)p

′

is obtained. While the left-hand sides are not identical, (13.38) allows Bourgain
[1982] to deduce the Hausdorff–Young inequality with mismatched exponents
as in (13.35) (with X∗ in place of X) for any v ∈ (1, t), and finally, in Bourgain
[1988b], also the classical Hausdorff–Young inequality (13.37) (again with X∗

in place of X) with any u1 ∈ (1, v). Since v ∈ (1, t) is arbitrary, one can reach
any u1 ∈ (1, t), and thus in particular the r determined by

r′ = (18 · τp,X;2)p
′

(13.39)

is a Fourier type of X∗, and hence of X.

Remark 13.4.1 (A typo in the statement of Bourgain’s theorem in König
[1991]). It seems to be claimed by König [1991] that every space of type

p > 1 would have Fourier-type r with r′ = c · τp
′

p,X;2 and c = 18 (forgetting
brackets from (13.39)). As written, this is absurd for any absolute constant c:

It is straightforward to verify that, for every p ∈ (1, 2], the space X = `p

has type p with constant τp,X;2 = 1:

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;`p)

6
∥∥∥ N∑
n=1

εnxn

∥∥∥
`p(L2(Ω))

=
∥∥∥{xn}Nn=1

∥∥∥
`p(`2N )

6
∥∥∥{xn}Nn=1

∥∥∥
`p(`pN )

=
( N∑
n=1

‖xn‖pX
)1/p

Thus, were the claim in the beginning of the remark true, all these spaces
would have the Fourier-type r = c

c−1 > 1, which is impossible for p ∈ (1, r)
by Example 2.1.15.
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Since the numerical constant in (13.38) may be affected by an equivalent
choice of the type constant, we note that Bourgain [1982] is not explicit about
the precise definition of the constant that he denotes by C, but one can see
in the proof of the first step of his Proposition 4 that C = τp,X∗;2; recall that
we exchanged the roles of X and X∗ compared to Bourgain [1982].

More details on quasi-independent sets can be found in the monograph of
Graham and Hare [2013]. Sometimes quasi-independent sets are called disso-
ciate sets, but it seems that in more recent works this terminology is reserved
for the slightly stronger property where one allows αk ∈ {−2,−1, 0, 1, 2} in
Definition 13.1.5. In particular, one can find there that quasi-independent are
Sidon sets with constant 6

√
6 ≈ 14.70, which is slightly better than the con-

stant 16 in Proposition 13.1.7. The converse bounds of Remark 13.1.10 have
been shown to us by Dion Gijswijt. If one replaces the group Z by another
group it was shown on page 203 in Pietsch and Wenzel [1998] that the bound
of Lemma 13.1.8 is sharp.

The result of Proposition 13.1.21 states that type p and cotype q with
1/p − 1/q < 1/r − 1/2 with r ∈ (1, 2) implies Fourier type r. In the limiting
case of equality it is unknown what happens. However, the result is sharp
in the sense that for every r ∈ (1, 2) and for every p ∈ (r, 2) there exists
a Banach space X such that X has type p, cotype q, and Fourier type r
with 1

p −
1
q = 1

r −
1
2 , and none of the exponents (p, q, r) can be improved

(see Bourgain [1988a] and Garćıa-Cuerva, Torrea, and Kazarian [1996]). This
example was also used to show that the dependence on the type constant is
necessary in Theorem 13.1.33. The following improvement was observed in
Garćıa-Cuerva, Torrea, and Kazarian [1996] for Banach lattices X:

sup{p ∈ (1, 2] :X has Fourier type p}
= sup{p ∈ (1, 2] : X has type p and cotype p′}.

Section 13.2

In the scalar-valued case, considerations of the kind that we have presented in
this section go back to Hörmander [1960] who used similar methods to rederive
(a variant of) the multiplier theorem of Mihlin [1956, 1957] by transforming
it into a form where the theory of Calderón and Zygmund [1952] could be
applied. The methods of Hörmander [1960] are already very close to the ones
in the Section 13.2.b, the key difference being that he can make use of the
Plancherel theorem to pass between L2 estimates in the space and frequency
variables. For functions taking values in a general Banach space, the only
available substitute is the elementary L1(Rd;X)-to-L∞(Rd;X) boundedness
of the Fourier transform. This still allows essentially similar conclusions, at
the cost of requiring estimates for a higher number of derivatives as input.
On the other hand, as soon as we start imposing such stronger assumptions,
we can also obtain stronger conclusions, namely, standard Calderón–Zygmund
kernels rather than just Hörmander kernels, as in Section 13.2.a. Scalar-valued
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versions of such results are again well known; for example, a version of Propo-
sition 13.2.7 with d + 2 derivatives (instead of d + 1 in the said proposition)
appears in the book of Stein [1993]. Under this stronger assumption, Stein
[1993] deduces that k ∈ C1(Rd \ {0}), while Proposition 13.2.6 gives the
slightly weaker conclusion that k is just barely below Lipschitz, with a modu-
lus of continuity ω(t) = O(t · log(1 + 1/t)). This is still quite enough to derive
like Corollaries 13.2.8, 13.2.9, and 13.2.10 on the boundedness of Fourier mul-
tipliers on weighted Lp(w;X) spaces. Using the result from Stein [1993] in
place of Proposition 13.2.7, a version of Corollary 13.2.10 assuming d + 2
derivatives was formulated by Meyries and Veraar [2015]. In principle, vari-
ants of Propositions 13.2.6 and 13.2.7 sufficient for Corollaries 13.2.8 through
13.2.10 would only require smoothness of order d+ε, but such statements and
proofs are bound to have additional technicalities due to the very formulation
of fractional order smoothness conditions. Various results in this direction, in-
volving kernel bounds for Fourier multipliers with close-to-critical fractional
smoothness, were explored by Hytönen [2004].

To get rid of the ε > 0 altogether, i.e., to deduce useful (in view of
Calderón–Zygmund extrapolation) kernel estimates for k = m̂ from just d
derivatives of m, one needs to impose assumptions on the Fourier-type of the
underlying spaces. While we have only dealt with the sufficiency of the Fourier-
type assumption in Section 13.2.b, an early result involving both directions,
in dimension d = 1, is the following:

Theorem 13.4.2 (König [1991]). A Banach space X is K-convex if and

only if every f ∈ C1(T, X) has Fourier coefficients (f̂(n))n∈Z ∈ `1(Z;X).

Recall that K-convexity is equivalent to non-trivial type by Pisier’s Theo-
rem 7.4.23, and non-trivial type is equivalent to non-trivial Fourier-type by
Bourgain’s Theorem 13.1.33. The proof of “⇒” in Theorem 13.4.2 is then
straightforward from non-trivial Fourier type. For the converse, König [1991]
starts with a concrete counterexample when X = L1(T), and approximates
this finite versions that can be represented in `1N , with blow-up in the limit
N →∞. By the Maurey–Pisier Theorem 7.3.8, if X does not have non-trivial
type, then it contains subspaces isomorphic to `1N uniformly, and hence the
said finite examples can also be represented in X. Finally, the closed graph
theorem guarantees that a sequence of examples with blow-up also guarantees
the existence of a single f ∈ C1(T, X) with (f̂(n))n∈Z /∈ `1(Z;X).

In our formulation of Proposition 13.2.13, the assumed Fourier-type p ∈
(1, 2] only affects the constant in the estimate. However, by more careful
reasoning, one could show that also the number of the required derivative
∂αm could be reduced as a function of p; roughly speaking, one needs only
derivatives up to order bd/pc+ 1, or more generally fractional smoothness of
order d/p + ε, to obtain the same conclusions. Such results can be found in
Hytönen [2004]. In the more general context of various function spaces, this
phenomenon will be explored further in Chapter 14; see Proposition 14.5.3
and take q =∞ there.
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Our focus in the section under discussion has been exploring conditions
that one needs to assume on a multiplier m in order that their associated ker-
nel k = m̂ satisfies the assumptions of one of the extrapolation theorems of
Chapter 11 (so that the a priori boundedness of Tm on one Lp0(Rd;X) extends
to other spaces), but similar considerations can also be used to reduce the re-
quired smoothness, as a function of the Fourier-type of the underlying spaces,
in results like Mihlin’s Multiplier Theorem 5.5.10 (where the boundedness of
Tm on Lp(Rd;X) is deduced “from scratch”). Such results were pioneered
by Girardi and Weis [2003b] and further elaborated by Hytönen [2004]. If m
is scalar-valued, it is also possible to replace Fourier-type by quantitatively
weaker assumptions on type or cotype; see Hytönen [2010].

Section 13.3

The main results of this section, notably Proposition 13.3.4, Theorem 13.3.5,
and Corollary 13.3.8, are essentially from Geiss, Montgomery-Smith, and
Saksman [2010], but we have incorporated some improvements, partially in-
spired by unpublished observations of Alex Amenta that he kindly shared
with us.

These results may be seen as successors, in terms of both statement and
proof, of Theorem 5.2.10 of Bourgain [1983] and Theorem 10.5.1 of Guerre-
Delabrière [1991], which deal with the necessity of UMD for the boundedness
of the Hilbert transform and the imaginary powers (−∆)is of the Laplacian,
respectively. However, none of these three results contains any of the other
two.

Certain elaborations of Corollary 13.3.8 are due to Castro and Hytönen
[2016]. Namely, the identity ∂j∂ku = −RjRk∆u implies that

‖∂j∂ku‖Lp(Rd;X) 6 C
d∑
i=1

‖R2
i u‖Lp(Rd;X), (13.40)

where C 6 ‖RjRk‖L (Lp(Rd;X)), but C could a priori be much smaller. How-
ever, Castro and Hytönen [2016] show that the seemingly weaker inequality
(13.40) still implies the UMD property with the same control

βp,X 6 2C(13.40) (13.41)

as in Corollary 13.3.8 for ‖RjRk‖L (Lp(Rd;X)). More generally, the same paper
proves the necessity of UMD for any member of a family of inequalities of the
form

‖∂βu‖Lp(Rd;X) 6 C
∑
α∈A

‖∂αu‖Lp(Rd;X),

but the relation between the constants is particularly clean in the example
just mentioned.

It could be of interest to identify more general criteria (subsuming previous
related results) for inequalities of classical/harmonic analysis to
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(1) imply the UMD property of X (as in all mentioned results), or
(2) control the UMD constant βp,X linearly by the constant in the inequality

(as in Theorems 10.5.1 and 13.3.5, but not Theorem 5.2.10).

While we have concentrated, in this section, on lower bounds of multiplier
norms by the UMD constants, Geiss, Montgomery-Smith, and Saksman [2010]
also treat the other direction. In particular, they show that the first two
bounds of Corollary 13.3.8 are actually identities:

‖2RjRk‖L (Lp(Rd;X)) = ‖R2
j −R2

k‖L (Lp(Rd;X)) = βR
p,X (13.42)

for all 1 6 j 6= k 6 d. The upper bounds for the norms are proved by
representing and estimating the operators by means of stochastic integrals.
Yaroslavstev [2018] obtained further variants of these estimates for related
operators. We plan to detail this in a forthcoming Volume. By (13.41), a
trivial bound, and (13.42), it follows that

βp,X 6 2C(13.40) 6 2‖RjRk‖L (Lp(Rd;X)) = βp,X ,

and hence all these quantities must be equal. In particular, as observed by
Castro and Hytönen [2016], it follows that

CX=R
(13.40) =

1

2
βp,R =

1

2
(max(p, p′)− 1),

using Burkholder’s Theorem 4.5.7 for the last equality. We are not aware of
another method than that of Geiss, Montgomery-Smith, and Saksman [2010]
to determine the exact norms (13.42) or the sharp constant in (13.40), which
highlights the benefits of martingale techniques even for questions of classical
analysis.

In the third case of Corollary 13.3.8 concerning the Beurling–Ahlfors trans-
form, the matching upper bound is an outstanding open problem even for
X = C (see Problems O.1 and O.2).

More generally, Geiss, Montgomery-Smith, and Saksman [2010] prove that
all real, even, and homogeneous (i.e., m(tξ) = m(ξ) ∈ R for all ξ ∈ Rd \ {0}
and t ∈ R \ {0}) multipliers m ∈ C∞(Rd \ {0}) satisfy the estimate

‖m‖MLp(Rd;X) 6 Cm · βp,X ,

where Cm depends only on m. Note in particular that the estimate is linear in
βp,X , improving on the quadratic estimate provided by T (1) Theorem 12.4.21,
or the still higher order dependence in the Mihlin Multiplier Theorem 5.5.10.
By elaborations of the T (1) technology, linear dependence has also been ob-
tained for a class of even non-convolution operators on Lp(R;X) (but only in
dimension d = 1, as written) by Pott and Stoica [2014], but beyond that the
availability of linear bounds in terms of βp,X remains open. In particular, a
possible linear estimate between βp,X and the norm of the Hilbert transform
~p,X = ‖H‖L (Lp(R;X)), in either direction, is unknown (see Problem O.6).
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Certain substitute results related to the latter are due to Domelevo and
Petermichl [2023c,d]. They construct a new dyadic operator and show that
its boundedness is equivalent to that of the Hilbert transform, with linear de-
pendence between the respective norms in both directions. Analogous results
for the Riesz transforms are obtained in Domelevo and Petermichl [2023a,b].

Further estimates between the Hilbert transform (and variants) and de-
coupling constants related to the UMD constant can be found in Osȩkowski
and Yaroslavtsev [2021].

Corollary 13.3.9 characterises situations in which there is a continuous
embedding Hk,p(Rd;X) ↪→ W k,p(Rd;X). Several related results, including
versions on domains O ⊆ Rd, are due to Arendt, Bernhard, and Kreuter
[2020].
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