
Exploring Alternatives to Full Neuron Reset for Maintaining Plasticity in
Continual Backpropagation

Urtė Urbonavičiūtė1

Supervisors: Wendelin Böhmer1, Laurens Engwegen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Urtė Urbonavičiūtė
Final project course: CSE3000 Research Project
Thesis committee: Wendelin Böhmer, Laurens Engwegen, Megha Khosla

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Deep learning systems are typically trained in static
environments and fail to adapt when faced with a
continuous stream of new tasks. Continual learn-
ing addresses this by allowing neural networks to
learn sequentially without forgetting prior knowl-
edge. However, such models often suffer from a
gradual decline in learning ability, a phenomenon
known as loss of plasticity. Recent work introduced
Continual Backpropagation (CBP), which restores
plasticity by fully reinitializing low-utility neurons.
While this approach is effective, it can also disrupt
the learning process. This research proposes and
tests three less disruptive alternatives to full reini-
tialization: injecting Gaussian noise into weights,
reinitializing weights from the original initializa-
tion distribution, and rescaling weights to match
their initial variance. We evaluate these strate-
gies using the Permuted MNIST benchmark. The
present findings show that noise injection has re-
sults similar to original CBP, reinitializing weights
from the original distribution shows a better per-
formance, while weight rescaling performs much
worse than CBP. This implies that less destructive
methods can maintain plasticity effectively, with
some alternatives offering better stability-plasticity
trade-offs than CBP.

1 Introduction
Deep learning, the foundation of many modern neural net-
work architectures, is based on gradient-based optimization
methods such as backpropagation [1]. Backpropagation en-
ables the efficient computation of gradients and allows mod-
els to adjust their parameters to minimize prediction error.
This technique has achieved remarkable success in domains
such as natural language processing [2], robotics [3], and
game playing [4]. The standard deep learning systems work
in two main stages: a training phase where the model learns
information, and a usage phase where the model’s parame-
ters are fixed and the model tries to predict. While this design
works well in static environments, it limits the system’s ca-
pacity to adapt to new information over time. [5]

In contrast, continual learning addresses this limitation by
enabling models to learn sequentially from a stream of tasks
without forgetting previously acquired knowledge [6, 7]. This
capability is essential for dynamic real-world applications,
such as autonomous systems and lifelong learning agents [8].

However, while continual learning appears to be a signif-
icant improvement over traditional deep learning, over time
the model loses the ability to adapt effectively to new tasks.
This phenomenon is called loss of plasticity and it happens
because networks become over-specialized in earlier tasks,
and their learning capacity decreases. This issue has been
extensively examined in recent studies, which highlight how
neural networks struggle to maintain adaptability in long-
term learning scenarios [9, 10].

To address this, researchers have explored various strate-
gies that also involve reinitializing neurons, weights, or sub-

networks of a model to keep the model adaptable. For in-
stance, Sokar et al. [11] proposed ReDo, a method for deep
reinforcement learning that identifies dormant neurons (units
that are rarely active) and periodically resets their weights to
restore the network’s ability to learn and respond to new pat-
terns.

Similarly, Dohare et al. [12] conducted a systematic study
on loss of plasticity in both supervised and reinforcement
learning. The researchers confirmed that standard deep learn-
ing models consistently lose their learning ability over time in
continual learning settings, regardless of the dataset or archi-
tecture. Eventually, these models perform no better than shal-
low networks in later tasks. To address this issue, they pro-
posed Continual Backpropagation, a backpropagation adap-
tation that maintains plasticity by periodically reinitializing a
small fraction of low-utility neurons during training. During
this process, the outgoing weights and biases of re-initialized
units are set to zero, while incoming weights are reset us-
ing Kaiming uniform initialization. In this initialization tech-
nique, the weights are sampled from a uniform distribution
scaled by the number of input connections, helping to main-
tain stable activation variance across layers [13].

While full reinitialization has shown promise in restoring
plasticity, it also introduces potential downsides. Resetting
neurons to zero may discard partially useful features, intro-
duce instability since some existing network contributions are
removed, and delay reactivation, as freshly reset neurons can-
not immediately participate in learning. These limitations
raise an important question:

Are there less disruptive alternatives to full neuron
reinitialization for maintaining plasticity in Contin-
ual Backpropagation?

This research investigates three such alternative strategies
for handling low-utility neurons within the Continual Back-
propagation framework.

One approach, inspired by Ash and Adams [14], scales and
injects small Gaussian noise into the weights of low-utility
neurons instead of completely resetting them. This added
randomness is expected to help re-engage inactive neurons
without completely discarding their learned information.

Another method reinitializes low-utility neurons by sam-
pling their outgoing weights from the Kaiming uniform dis-
tribution instead of resetting them to zero. It is hypothesized
that this method could provide a softer reset and allow neu-
rons to learn faster.

A third strategy, based on the work of Niehaus et al. [15],
rescales the weights of inactive neurons and restores their
original variance. This method is expected to help these neu-
rons become active again by increasing their sensitivity, with-
out completely changing what they have already learned.

Together, these approaches are examined to assess whether
they can improve plasticity in continual learning without the
drawbacks associated with full neuron resets.

This paper is organized as follows. Section 2 reviews the
relevant background and prior work related to this research.
In Section 3, we introduce and motivate several alternative
strategies to full neuron reset within the Continual Back-
propagation framework. Section 4 outlines the experimen-

tal setup, including dataset details, hyperparameter configu-
rations, and evaluation metrics. The empirical results of the
proposed methods are presented and analyzed in Section 5.
Section 6 briefly reflects on responsible research practices,
followed by a discussion of the key findings and their impli-
cations in Section 7. Finally, Section 8 concludes the paper
and suggests directions for future work.

2 Background and Related Work
This research builds on the work by Dohare et al. [12], who
addressed the problem of loss of plasticity in continual learn-
ing and proposed a way to solve it. In addition, several other
studies are explored to identify alternative neuron reinitializa-
tion strategies. This section outlines the key background and
related work that form the foundation for this research.

2.1 Continual Backpropagation (CBP)
Dohare et al. [12] proposed Continual Backpropagation
(CBP), an effective modification of standard backpropagation
designed to mitigate the loss of plasticity in continual learn-
ing settings. The main idea behind CBP is to periodically
reinitialize a small fraction of neurons that have low utility.

Low utility is an indicator of neurons that have become
stale or uninformative over time. It is measured based on
both the magnitude of the outgoing weights and the neuron’s
recent activations. Specifically, in a feed-forward neural net-
work, the contribution utility ul[i] of the i-th hidden unit in
layer l at time t is updated using an exponential moving aver-
age:

ul[i] = η × ul[i] + (1− η)× |hl,i,t| ×
nl+1∑
k=1

|wl,i,k,t|

Where:

• hl,i,t is the activation of the i-th unit in layer l at time t,

• wl,i,k,t is the weight connecting the i-th unit in layer l to
the k-th unit in layer l + 1,

• nl+1 is the number of neurons in the next layer l + 1,

• η ∈ (0, 1) is the decay rate controlling the moving aver-
age.

In the reinitialization process, the outgoing weights and bi-
ases of selected neurons are reset to zero, while their incom-
ing weights are re-sampled from the original initialization
distribution (Kaiming uniform). This allows the network to
reuse underperforming neurons and restore some of its abil-
ity to adapt to new tasks.

To ensure that neurons had enough opportunity to learn be-
fore being replaced, only those that exceed a maturity thresh-
old are considered eligible for reinitialization. Among these
mature neurons, a small fraction with the lowest utility scores
is selected.

Although CBP is effective in maintaining long-term plas-
ticity, full neuron reinitialization may discard partially use-
ful features and delay reactivation, thus motivating the explo-
ration of less disruptive alternatives.

2.2 Noise Injection
In their work on WARM (Weight Averaged Random Model),
Ash and Adams [14] propose a simple yet effective regular-
ization strategy for continual learning: periodically scaling
weights by a factor λ and adding small Gaussian noise to the
model parameters. They call this method shrink and perturb,
and the key idea is to introduce controlled noise that encour-
ages ongoing exploration of the weight space and helps the
model escape overconfident or stale regions without catas-
trophic forgetting. In each training round t, the update per-
turbs each parameter θti as follows:

θti ← λ · θt−1
i + pt, where pt ∼ N (0, σ2) and 0 < λ < 1

The researchers demonstrate that this simple yet powerful
technique significantly improves generalization while main-
taining computational efficiency.

In the context of Continual Backpropagation, this idea is
adapted by applying the same scaling and noise injection pro-
cess to low-utility neurons instead of setting their weights to
zero. Incoming weights, outgoing weights, and biases are
scaled by a factor λ and perturbed by noise sampled from a
Gaussian distribution with standard deviation σ.

2.3 Weight Rescaling for Variance Restoration
Weight modification methods are often developed as regu-
larization techniques aimed at improving the performance of
neural networks.

Batch normalization, introduced by Ioffe and
Szegedy [16], is one of the main methods in deep net-
work training that improves stability and performance. It
reduces internal covariate shift by normalizing the input
to each layer across a mini-batch. This technique makes
training more stable and faster. Usually, other research builds
upon batch normalization and aims to improve it or make the
algorithm more efficient.

L2 regularization adds a penalty to the loss function based
on the squared magnitude of the weights. This discourages
overly large weights and promotes smoother, more generaliz-
able models. It was formally introduced in the context of lin-
ear models as “ridge regression” by Hoerl and Kennard [17]
and is now a standard regularization strategy in neural net-
works. L2 regularization is also used alongside CBP in the
work of Dohare et al. [12]

Weight normalization, introduced by Salimans and
Kingma [18], reparameterizes the weights by decoupling
their magnitude and direction. It introduces a learnable scal-
ing parameter, which must be optimized via gradient descent.
While this method has proven to be effective, it is tightly cou-
pled with the optimizer and introduces additional parameters,
making it less ideal for a continual backpropagation (CBP)
setting, where only the reinitialization method is being re-
placed and neurons are reinitialized individually, rather than
through global retraining.

Weight interpolation is a recent approach explored in con-
tinual learning [19]. It blends weights from the current and
previous models using linear interpolation after task-specific
training. To be effective, it requires storing entire model
copies and solving permutation matching to align neurons

across tasks. Although it is powerful for merging models and
mitigating forgetting, its computational cost and architectural
constraints (e.g. batch normalization updates and permuta-
tion alignment) make it less compatible with simple continual
learning pipelines.

In contrast, Weight rescaling, proposed by Niehaus et
al. [15], is quite suitable for integration with the CBP setup
and is used in this research as one of the alternative meth-
ods to neuron reinitialization. Specifically, it is explored as a
replacement for the original CBP reinitialization step where
outgoing weights are set to zero. This technique does not
require additional learnable parameters or separate models,
works well with Kaiming initialization, ReLU activation, and
the SGD optimizer, and has shown good performance on
CIFAR-10 in supervised learning settings.

This method resets the variance of neuron weights with-
out discarding their directional information. The procedure
involves standardizing the neuron’s weights (computing z-
scores) and then rescaling them to match the standard devi-
ation of the original initialization distribution, typically de-
rived from Kaiming or Xavier initialization:

w(ℓ) ← w(ℓ) − µ(w(ℓ))

σ(w(ℓ))
· σinit + µ(w(ℓ))

Where:
• w(ℓ) are the weights of a neuron in layer ℓ,
• µ and σ represent the empirical mean and standard devi-

ation of those weights,
• σinit is the standard deviation used by the original weight

initialization strategy.
Unlike full reinitialization, Weight rescaling in the CBP

setting can preserve the mean and directional structure of the
weights while restoring diversity, which is essential for con-
tinual learning. This method has the advantage of being non-
destructive and not dependent on activation history, making it
broadly applicable across architectures.

3 Alternative Strategies for Maintaining
Plasticity in Continual Backpropagation

In the research of Dohare et al. [12], neurons with low utility
are periodically reinitialized to maintain the plasticity of the
model. During the reinitialization, the incoming weights are
redrawn from a Kaiming uniform initialization distribution,
while the outgoing weights and biases are set to zero.

In this work, the focus is on modifying this reinitializa-
tion step itself. Instead of the original reset, three alternative
strategies are explored.

1. Noise Injection. Inspired by the Shrink-and-Perturb
method [14], this approach aims to softly re-engage low-
utility neurons. It scales the existing weights and biases
by a factor λ and adds small Gaussian noise, thus re-
taining some memory while encouraging diversity. Two
versions are implemented: one where noise is injected
only into the incoming weights (leaving biases and out-
going weights as zero), and another where noise is added
to incoming weights, outgoing weights, and biases. The

noise injection follows the same formula as it was pro-
posed by Ash and Adams [14]:

θt = λ · θt−1 + ϵ, ϵ ∼ N (0, σ2)

2. Reinitialization from Kaiming Uniform Distribu-
tion. As a more principled alternative to zeroing out
weights, this method samples both incoming and outgo-
ing weights from the Kaiming uniform distribution used
during model initialization, while keeping the biases at
zero. By assigning small random values instead of ze-
ros, it aims to avoid leaving neurons in an inactive state
and allows them to start contributing more quickly after
reinitialization.

3. Weight Rescaling. Based on the method proposed by
Niehaus et al. [15], this strategy rescales the incoming
weights of a neuron to match the variance of the origi-
nal initialization, without fully discarding the previously
learned information. It uses the same formula as it was
proposed in their research paper:

w←
(
w − µ(w)

σ(w)

)
· σinit + µ(w)

All methods are applied within a feedforward neural net-
work trained using stochastic gradient descent (SGD). Fur-
ther details of the network architecture, training loop, and
task-specific configuration are given in the next section.

4 Experimental Setup
This section outlines the experimental setup, including the
dataset, model architecture, hyperparameter configurations,
and evaluation metrics.

4.1 Permuted MNIST Benchmark
The new methods are evaluated using the Permuted MNIST
benchmark [20], a widely used and computationally efficient
setup for evaluating continual learning algorithms.

A more extensive version of this benchmark, referred to as
Online Permuted MNIST, is used by Dohare et al. [12]. In that
setting, each task applies a unique random pixel permutation
to the entire MNIST dataset, presented one sample at a time
with no mini-batches or task change indicators. This setup
is designed to test long-term plasticity in continual learning
setting.

In our experiments, a reduced version of this benchmark
is used to allow faster iterations and evaluation. The full
MNIST set is shuffled, and the first 10,000 samples are se-
lected for training. For each of the 600 tasks, a new unique
pixel permutation is applied to the entire 10,000-sample
dataset. This means that the dataset is fully permuted 600
times, resulting in 600 distinct permutations and task transi-
tions. Although this setup is smaller than the 60,000 sample
configuration used in Dohare et al. research [12], it preserves
key properties of continual learning and remains effective for
evaluating plasticity and learning stability over time.

All experiments are repeated 20 times for final evaluations
and 10 times during hyperparameter tuning.

4.2 Network Architecture
The architecture used in the Permuted MNIST experiments
is a fully connected feedforward network with three hidden
layers, each containing 100 ReLU-activated neurons. This
reduced architecture, compared to the one used in the orig-
inal paper of Dohare et al. [12], is sufficient for comparing
continual backpropagation with our proposed alternatives, as
our focus is not on the final accuracy, but rather a comparison
between the CBP and the alternative strategies.

All models are implemented using the PyTorch framework
[21].

4.3 Computational Environment
Due to the large number of tasks and multiple experimen-
tal runs across methods and hyperparameter settings, high-
performance computational resources were required. Most
experiments were conducted on the DelftBlue supercomputer
[22] and the Delft AI Cluster (DAIC) [23] at TU Delft. These
clusters enabled efficient parallel execution and handling of
data-intensive workloads.

4.4 Evaluation Metrics
To assess the performance of each method on the Permuted
MNIST benchmark, the following metrics are recorded con-
tinuously during training:

• Overall Task Accuracy - the model’s average predic-
tion accuracy across all samples within the task.

• Initial Task Accuracy - average accuracy of the first
10% of samples in each task, indicating how quickly the
model learns.

• Per-Task Accuracy - accuracy evaluated for an individ-
ual task, using all data samples from that task.

• Dead Unit Ratio - the proportion of neurons with
zero utility, indicating under-utilized or non-contributing
neurons.

• Approximate Rank - a proxy for the representational
capacity and plasticity of each layer. It reflects how
many principal components (or singular values) are
needed to explain most of the variance in the matrix [24].

These metrics together provide a comprehensive view of
the model’s learning behavior. Among them, overall task ac-
curacy is arguably the most important in the context of con-
tinual learning, especially when solving the problem of loss
of plasticity. This is because plasticity loss is directly linked
to a model’s inability to acquire new knowledge, which is
presented as a drop in accuracy over time. Therefore, our
main objective is to maintain high overall accuracy through-
out training. In some cases, when a method or configuration
shows noticeably lower accuracy, deeper analysis of other
metrics might not be even done.

Nevertheless, the remaining metrics still offer valuable in-
sights. Initial task accuracy is especially useful for verifying
hypotheses regarding learning speed. For example, we hy-
pothesize that when weights are not reset to zero (as in stan-
dard CBP), models may start learning faster, which would be
reflected in this metric. This trend can often be confirmed
further by inspecting the per-task accuracy curves.

The approximate rank helps evaluate how expressive or
flexible the model remains over time. A high rank suggests
that the model has diverse internal features and is capable of
adapting to new information, while a low rank may show that
the model’s features have become less flexible.

The dead unit ratio, also used by Dohare et al. [12], mea-
sures the proportion of neurons whose utility is zero accord-
ing to the contribution-based utility function. While this met-
ric is tightly coupled to the specific utility function and does
not directly measure plasticity or accuracy, it is still useful.
It allows comparison of how different methods affect neuron
usage, and whether they prevent the inactivity of units.

Together, these metrics support a comprehensive under-
standing of how each proposed strategy affects the learning
and the network.

All line graphs that present the evaluation metrics report
the mean value across multiple runs and include shaded ar-
eas that represent standard deviation. Lines in the plots are
averaged over 5 steps.

4.5 Hyperparameter Configuration
CBP has several key hyperparameters: the replacement rate,
which determines the probability that a neuron is selected for
reset; the maturity threshold, which ensures that neurons are
not reset too soon after reinitialization; the decay rate, which
controls the exponential moving average used in utility com-
putation; the learning rate, which affects how quickly the
model updates its weights; and the step size, which controls
the magnitude of each weight update during the training pro-
cess.

For all continual backpropagation variants analyzed in Per-
muted MNIST experiments, the best-performing hyperpa-
rameter settings reported in the Dohare et al. [12] research
paper are used: a learning rate of 0.003, a replacement rate of
1 × 10−5, a decay rate of 0.99, a maturity threshold of 100,
and a step size of 0.001.

Noise injection is the only method among our alternatives
that introduces additional hyperparameters: the shrinkage
factor λ and the standard deviation σ of the Gaussian distribu-
tion. Also, two variants of this method are considered, one in
which noise is applied only to the incoming weights, and an-
other in which noise is added to incoming weights, outgoing
weights, and biases.

The following hyperparameter values were explored:
• σ ∈ {0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02,
0.01, 0.005, 0.001} - controls the magnitude of the
added noise.

• λ ∈ {0.2, 0.4, 0.6, 0.8} - controls the degree of weight
shrinkage.

The results in Figure 6 (Appendix A) show that applying
Noise injection to both weights and biases consistently out-
performs Noise injection only to the incoming weights.

Among the standard deviations, σ = 0.03 and σ = 0.04
yielded the best accuracy (Appendix A, Figure 7). It can be
also seen that the results of different σ make a parabola as
accuracy for both very small and very large values of σ de-
creases. As shown in Figure 8 (Appendix A), higher σ values
also lead to a higher approximate rank. In contrast, lower

Figure 1: Noise injection method compared to Continual Backpropagation and Backpropagation across two metrics: (a) Overall accuracy, (b)
Approximate rank

σ values result in higher percentage of dead neurons (Ap-
pendix A, Figure 9). Based on these results, σ = 0.04 is
selected as the optimal value.

As for λ, lower values (e.g., 0.2) resulted in fewer dead
neurons (Appendix A, Figure 12), while higher values (e.g.,
0.8) had higher approximate rank (Appendix A, Figure 11).
In terms of accuracy, λ = 0.2 performed best, while λ = 0.4
came as a close second (Appendix A, Figure 10). For the final
evaluations, λ = 0.2 is selected.

5 Results of Alternative Methods to Full
Neuron Reinitialization

This section presents the results of the proposed alternative
neuron reinitialization strategies, evaluated across multiple
criteria, and compares them to standard Continual Backprop-
agation (CBP) and Backpropagation (BP). The results pre-
sented here are based on the Permuted MNIST dataset. Addi-
tional results on the Incremental CIFAR dataset are provided
in Appendix C.

5.1 Results of Noise Injection
The Noise injection strategy used in this experiment applies
Gaussian noise to both incoming and outgoing weights as
well as biases, with a standard deviation σ = 0.04 and a
shrinkage factor λ = 0.2. Compared to standard CBP, this
method achieves nearly identical overall accuracy, as shown
in Figure 1a. It also maintains a similar percentage of dead
neurons and comparable performance in the first 10% sam-
ples in each task (Appendix B, Figures 13 and 14). The most
noticeable decline appears in the approximate rank metric,
where the values fall 10 units lower than those of CBP, but
still remain around 10 units higher than BP (Figure 1b).

5.2 Results of Reinitialization from Kaiming
Uniform Distribution

The Reinitialization from Kaiming uniform distribution
method proved to be better than standard Continual Back-
propagation across all evaluated metrics. In term of overall

accuracy, it performs slightly better than CBP (Figure 2a).
A more notable improvement is observed in accuracy of the
first 10% data points of each task, where it performs about
2% better than CBP (Figure 2b). This is further illustrated by
the accuracy on an individual task, such as the 400th, where
the method shows higher initial accuracy before converging
to a similar level as CBP (Figure 2c).

The most significant difference is observed in the approx-
imate rank, which is consistently higher by about 10 units
compared to CBP, indicating stronger representational capac-
ity and better plasticity (Figure 2d). In addition, the method
results in slightly fewer dead neurons throughout training
(Appendix B, Figure 15).

5.3 Results of Weight Rescaling

Weight rescaling was tested by applying it to both incom-
ing and outgoing weights, as well as to incoming weights
only. In most cases, the outcomes were similar across both
approaches, except in a few cases where rescaling only the
incoming weights resulted in slightly better performance.
Therefore, the upcoming figures present results where only
the incoming weights are rescaled.

Initial experiments in which weight rescaling is applied in
the standard continual backpropagation (CBP) setting showed
no improvement over standard backpropagation. Upon in-
specting the weights before and after rescaling, it was noticed
that they did not change much during this process. This led us
to hypothesize that CBP’s default hyperparameters, particu-
larly the replacement rate, which controls how many neurons
are replaced, may limit the degree to which neurons are able
to deviate from their original weights.

To test this, further experiments were conducted with lower
replacement rates (10−6 and 10−7) in order to affect fewer
neurons and potentially allow more time for their weights to
change before rescaling. However, no improvement in per-
formance was observed, as the model continued to behave
similarly to standard backpropagation (Figure 3).

Figure 2: Reinitialization from Kaiming uniform distribution method compared to Continual Backpropagation and Backpropagation across
various metrics: (a) Overall accuracy, (b) Initial accuracy, (c) Accuracy of the 400th task, (d) Approximate rank

Figure 3: Accuracy of initial Weight rescaling application (replace-
ment rate = 10−5) and Weight rescaling with lower replacement
rates, compared to Continual Backpropagation (CBP) and Back-
propagation (BP)

Another approach, inspired by the original weight rescal-
ing paper [15], was explored. In that research, weight rescal-
ing is applied once per epoch in a supervised learning set-
ting, therefore we decided to apply weight rescaling less fre-
quently. A sample counter was introduced to trigger rescaling
once per task (every 10,000 samples). Also, the replacement
rate was increased to compensate for the reduced frequency,
allowing more neurons to be rescaled at once.

Figure 4: Accuracy of Weight rescaling applied once per task com-
pared to Continual Backpropagation (CBP) and Backpropagation
(BP)

Several replacement rates were tested under this setup (0.5,
0.1, 0.01, 0.001), as shown in Figure 4. While most config-
urations again showed no benefit, a high replacement rate of
0.5 resulted in slightly more stable accuracy over time, al-
though performance remained low overall.

The final results, in which the best performing version of
each alternative method is presented, can be seen in Figure 5.

Figure 5: Final overall accuracy comparison between CBP, BP,
Noise injection, Weight rescaling and Reinitialization from Kaim-
ing uniform distribution

6 Responsible Research
This section reflects on the ethical aspects of the research,
scientific integrity, and reproducibility of the results.

6.1 Ethical Issues
This research does not use any personal, sensitive, or identifi-
able data. The experiments are conducted on standard bench-
mark datasets Permuted MNIST and Incremental CIFAR-
100, which consist of synthetic or anonymized image data.
The research focuses purely on methods aimed at improving
plasticity in continual learning models.

No direct deployment or real-world integration of the mod-
els was carried out. However, it is worth noting that since
the extensive experiments are only done on a narrow syn-
thetic benchmark (Permuted MNIST), the results are not nec-
essarily representative of real-world applications and there-
fore may not generalize broadly. This limitation should be
considered when interpreting the findings or applying them
to real systems.

6.2 Scientific Integrity
Throughout the research, ChatGPT1 was used only for gram-
mar correction, synonym suggestions, and sentence rephras-
ing. Example prompts used for these purposes are provided
in the Appendix D for transparency.

All methodological and experimental contributions were
independently developed and implemented by the author. All
references to existing methods (e.g., Continual Backpropaga-
tion) are cited.

6.3 Reproducibility of the Results
The results in this research are designed to be reproducible,
as the detailed description of the experimental setup is pro-
vided in Section 4. It includes all relevant hyperparameters,
the model architecture, and the evaluation metrics. Each ex-
periment was run multiple times to ensure statistical robust-
ness, and the number of runs is explicitly reported.

1ChatGPT by OpenAI, https://chat.openai.com

Additionally, the full source code is publicly available in
a GitHub repository. The repository includes instructions for
setup, installation, and running experiments.

It is important to note, that fixed random seeds were not
used across all experiments since the goal was to evaluate the
robustness of the results. However, the variability introduced
by this is minimal and accounted for using multiple runs and
standard deviation reporting.

All code was written in Python 3.8 using standard machine
learning libraries such as PyTorch [21].

7 Discussion
This section reflects on the results obtained from the On-
line Permuted MNIST benchmark and provides further in-
terpretation. The proposed alternative methods are compared
with Continual Backpropagation (CBP) and discussed in the
broader context of maintaining plasticity in continual learn-
ing.

Among the experimented methods, sampling both incom-
ing and outgoing weights from the Kaiming uniform distri-
bution shows a consistent improvement over standard CBP
across all metrics. From the single-task accuracy and ini-
tial accuracy graphs, it can be concluded that a network in
which outgoing weights are not periodically set to zero is
able to learn new information faster, consequently improv-
ing overall accuracy. This likely happens because outgoing
weights initialized from the Kaiming distribution provide a
meaningful gradient path for learning from the start, unlike
zeroed weights, which need several updates before becoming
effective. Furthermore, the higher approximate rank indicates
that the network flexibly responds to new data and is more
plastic. The reduction in the number of dead neurons also
supports this, suggesting that reinitializing outgoing weights
with non-zero values increases the chance that these neurons
will remain useful and active over time, thus the likelihood of
them becoming dead again reduces.

As for Noise injection, it performs similarly to CBP across
almost all metrics, with the exception of approximate rank,
where its performance shows a noticeable decline. This may
be explained by the fact that Noise injection perturbs exist-
ing representations rather than reinitializing them completely,
making neurons less sensitive to new input patterns.

Additionally, while the best results are observed with a
shrinkage factor λ = 0.2, it could be argued that this value
causes a substantial loss of prior knowledge since the weights
are strongly scaled down before noise is added. From the hy-
perparameter tuning results (Figure 10), it can be seen that
λ = 0.4 could be considered as a strong alternative. It of-
fers a better trade-off between preserving previously learned
information and maintaining accuracy similar to that of CBP.
Moreover, if the goal is to retain even more information from
prior tasks while still introducing plasticity, using a smaller
noise standard deviation, such as σ = 0.03, could be bene-
ficial. Our tuning experiments suggest that this standard de-
viation yields similar accuracy as σ = 0.04 (Figure 7) while
introducing less disruption to the network.

Finally, the Weight rescaling strategy appeared to be inef-
fective in the continual learning setting used in this research.

https://github.com/urte16/loss-of-plasticity

This is likely due to the differences between continual learn-
ing and the static, supervised learning conditions under which
weight rescaling was originally proposed and shown to be ef-
fective.

The main goal of Weight rescaling is to restore the variance
of a neuron’s weights while preserving its directional struc-
ture. This can be beneficial in supervised learning, where
data distributions are static and previously useful directions
remain relevant. In contrast, continual learning involves task
shifts and non-stationary data, where older directions may be-
come not useful anymore.

Thus, rescaling stale neurons in continual learning changes
their magnitude but not their usefulness. The preserved direc-
tions may continue to align with outdated features and pre-
vent the neuron from learning representations relevant to new
tasks. Without a change in direction, such neurons are un-
likely to reactivate or meaningfully contribute to learning.

These findings of the experiments suggest that while
Weight rescaling offers a non-destructive alternative to reini-
tialization in theory, it may not be sufficiently forceful to re-
store plasticity under a continual learning setting.

8 Conclusions and Future Work
To conclude this research, three alternative reinitialization
strategies were proposed and evaluated in the Continual
Backpropagation (CBP) framework: Noise injection, Reini-
tialization from Kaiming uniform distribution, and Weight
rescaling. All methods were tested on the Online Permuted
MNIST benchmark.

The most effective method was Reinitialization from
Kaiming uniform distribution. It consistently outperformed
the standard CBP approach across all metrics, including over-
all accuracy. Unlike full reinitialization, where outgoing
weights are reset to zero, this method initializes outgoing
weights with values sampled from the Kaiming uniform dis-
tribution, allowing neurons to remain immediately trainable.
This reduces the delay in reactivation, allows faster integra-
tion of new information, and improves plasticity.

The Noise injection method also showed promising results,
performing comparably to the original CBP and preserving
some existing network contributions. This preservation of
past knowledge makes the method more suitable for scenarios
where stability is as important as plasticity.

In contrast, Weight rescaling did not result in any improve-
ments and performed similarly to standard backpropagation.
This is likely because Weight rescaling was originally de-
veloped for static supervised learning, where resetting vari-
ance improves convergence. In continual learning, however,
merely restoring variance does not redirect neurons toward
new tasks, and may not be sufficient to overcome loss of plas-
ticity.

Future Work. In the future, testing could be performed on
a separate test set after the model has finished learning a task.
Instead of averaging accuracy over all training steps, the ac-
curacy of test set could be used. This would provide a better
understanding of how well the model performs after training,
without taking into account the learning process itself.

Additionally, the runtime of each alternative method could
be measured and ways to make them more efficient could be
identified.

Furthermore, the current experiments use the best perform-
ing hyperparameters from the original CBP setup. However,
it is possible that other hyperparameter configurations, which
are suboptimal for CBP, might work better with the proposed
reinitialization methods. Therefore, tuning the CBP hyperpa-
rameters specifically for these alternative methods could po-
tentially improve performance.

Finally, evaluating these alternatives on more complex con-
tinual learning benchmarks could provide more insights into
their scalability and general applicability.

References
[1] David E Rumelhart, Geoffrey E Hinton, and Ronald J

Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536,
1986.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate, 2016.

[3] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquer-
cio, Matthias Mueller, Vladlen Koltun, and Davide
Scaramuzza. Champion-level drone racing using deep
reinforcement learning. Nature, 620:982–987, 08 2023.

[4] David Silver, Aja Huang, Christopher Maddison, Arthur
Guez, Laurent Sifre, George Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature,
529:484–489, 01 2016.

[5] Gary Marcus. Deep learning: A critical appraisal, 2018.
[6] German I. Parisi, Ronald Kemker, Jose L. Part, Christo-

pher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Net-
works, 113:54–71, 2019.

[7] Ioannis Prapas, Babak Derakhshan, A. Rahman Mahdi-
raji, Oliver Hinz, and Sebastian Voss. Continu-
ous training and deployment of deep learning models.
Datenbank-Spektrum, 21:203–212, 2021.

[8] Khadija Shaheen, Muhammad Abdullah Hanif, Osman
Hasan, and Muhammad Shafique. Continual learning
for real-world autonomous systems: Algorithms, chal-
lenges and frameworks, 2022.

[9] Martial Mermillod, Aurélia Bugaiska, and Patrick
Bonin. The stability-plasticity dilemma: Investigat-
ing the continuum from catastrophic forgetting to age-
limited learning effects. Frontiers in psychology, 4:504,
08 2013.

[10] Clare Lyle, Zeyu Zheng, Evgenii Nikishin,
Bernardo Avila Pires, Razvan Pascanu, and Will

Dabney. Understanding plasticity in neural networks,
2023.

[11] Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro,
and Utku Evci. The dormant neuron phenomenon in
deep reinforcement learning, 2023.

[12] Shibhansh Dohare, J. Fernando Hernandez-Garcia,
Qingfeng Lan, Parash Rahman, A. Ruapm Mahmood,
and Richard S. Sutton. Loss of plasticity in deep con-
tinual learning. Nature, 632:768—774, 2024.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Pro-
ceedings of the IEEE international conference on com-
puter vision, pages 1026–1034, 2015.

[14] Jordan T. Ash and Ryan P. Adams. On warm-starting
neural network training, 2020.

[15] Lukas Niehaus, Ulf Krumnack, and Gunther Heide-
mann. Weight rescaling: Applying initialization strate-
gies during training, 06 2024.

[16] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift, 2015.

[17] Arthur E. Hoerl and Robert W. Kennard. Ridge regres-
sion: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970.

[18] Tim Salimans and Diederik P. Kingma. Weight normal-
ization: A simple reparameterization to accelerate train-
ing of deep neural networks, 2016.

[19] Jedrzej Kozal, Jan Wasilewski, Bartosz Krawczyk, and
Michał Woźniak. Continual learning with weight inter-
polation, 2024.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library, 2019.

[22] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 2). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.

[23] Delft AI Cluster (DAIC). The delft ai cluster (daic),
rrid:scr 025091, 2024.

[24] Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Har-
nessing structures for value-based planning and rein-
forcement learning, 2020.

[25] Alex Krizhevsky. Learning multiple layers of features
from tiny images. pages 32–33, 2009.

[26] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning, 2017.

A Hyperparameter Tuning Results

This section presents results from hyperparameter tuning ex-
periments for the Noise injection method on the Permuted
MNIST benchmark. It includes comparisons between differ-
ent noise injection variants and explores the effects of varying
the standard deviation σ and the scaling factor λ.

A.1 Noise Injection Methods

Figure 6: Overall accuracy comparison between two Noise injec-
tion methods: injecting noise to only incoming weights and inject-
ing noise to incoming weights, outgoing weights, and biases

A.2 Effect of Standard Deviation on Overall
Accuracy, Approximate Rank, and Percentage
of Dead Neurons

Figure 7: Overall accuracy across different noise standard deviations
σ

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

Figure 8: Approximate rank across different standard deviations σ
in Noise injection

Figure 9: Percentage of dead neurons across different standard de-
viations σ in Noise injection

A.3 Effect of Lambda on Overall Accuracy,
Approximate Rank, and Percentage of Dead
Neurons

Figure 10: Overall accuracy across different λ values in Noise in-
jection

Figure 11: Approximate rank across different λ values in Noise in-
jection

Figure 12: Percentage of dead neurons across different λ values in
Noise injection

B Additional Experimental Results on the
Permuted MNIST Benchmark

This section presents further experimental results on the Per-
muted MNIST benchmark that were not included in the main
text.

Figure 13: Percentage of dead neurons of the Noise injection method
compared to Continual Backpropagation and Backpropagation

Figure 14: Initial accuracy of the Noise injection method compared
to Continual Backpropagation and Backpropagation

Figure 15: Percentage of dead neurons of the Reinitialization from
Kaiming uniform distribution method compared to Continual Back-
propagation and Backpropagation

C Class-Incremental CIFAR Results
This appendix presents the evaluation of the proposed neuron
reinitialization strategies on the more challenging Incremen-
tal CIFAR benchmark, including a description of the bench-
mark, the evaluation setup, and the corresponding results.

C.1 Incremental CIFAR Benchmark
To further assess the generalization of our proposed methods,
we evaluate them on the Incremental CIFAR benchmark, de-
rived from the CIFAR-100 dataset [25]. Compared to Per-
muted MNIST, CIFAR-100 features higher-dimensional in-
put and more complex visual patterns, making it a signifi-
cantly more challenging continual learning scenario [26].

Following prior work [12], the dataset is split into a se-
quence of tasks, where each task introduces a disjoint subset
of new classes. In the default configuration, five new classes
are introduced every 200 epochs, resulting in 100 classes in
total. In our setup, we run only the first half of the experiment
(introducing 50 classes in total), which is sufficient to ob-
serve performance trends while also reducing computational
demands. Samples are presented in a continual learning set-
ting, without explicit task boundaries.

A ResNet-18 architecture with ReLU activations and batch
normalization is used for all experiments, consistent with Do-
hare et al. research [12]. The test accuracy is computed af-
ter every epoch using held-out examples from all classes the
model has encountered so far.

All experiments, including hyperparameter tuning and fi-
nal evaluations, were repeated 5 times with different random
seeds. The presented line graphs are smoothed by averaging
every five steps, and the shaded areas represent the standard
deviation across runs.

C.2 Hyperparameter Configuration
For all experiments, the best reported Continual Backprop-
agation (CBP) hyperparameters in Dohare et al. research
[12] were used: a replacement rate of 0.00001 and a matu-
rity threshold of 1000. A learning rate schedule is applied at
the start of each new task increment:

• Epochs 0–60: learning rate = 0.1

• Epochs 60–120: learning rate = 0.02

• Epochs 120–160: learning rate = 0.004

• Epochs 160–200: learning rate = 0.0008

This schedule helps to achieve more stable convergence and
preserve previously learned knowledge.

Training is performed using SGD with a momentum of 0.9,
weight decay of 0.0005, and mini-batch size of 90.

Among proposed alternative methods, only the top two per-
formers from the Permuted MNIST benchmark are evaluated
due to time and computational constraints: Noise injection
and Reinitialization from Kaiming uniform distribution.
For Noise injection, a brief hyperparameter search is per-
formed over four values of λ (0.2, 0.4, 0.6, 0.8) and three
values of standard deviation σ (0.02, 0.04, 0.06). The results
of this tuning process are shown in Figures 16 and 17.

Figure 16: Test accuracy across different values of λ in Noise Injec-
tion

Interestingly, all tested combinations of λ and σ yield very
similar final test accuracy. Therefore for final evaluations, we
use the same setting as in the Permuted MNIST benchmark
(λ = 0.2 and σ = 0.04).

These hyperparameter tuning results suggest that the per-
formance of Noise injection on the Incremental CIFAR-100

Figure 17: Test accuracy across different noise standard deviations
σ in Noise Injection

benchmark is relatively robust to hyperparameter variations
within the explored range.

C.3 Results and Discussion
Figure 18 shows that, compared to CBP, Noise Injection
maintains similarly high test accuracy on the Incremental CI-
FAR benchmark, consistent with observations from the Per-
muted MNIST experiments.

As for the Reinitialization from Kaiming uniform distribu-
tion method, it performs well at the beginning of the task and
reaches a similar accuracy to CBP. However, its performance
slightly declines toward the end of the task. This drop sug-
gests that certain CBP hyperparameters, such as the learning
rate schedule, may not be optimal for this method. Hyper-
parameter tuning could potentially stabilize performance and
lead to better results.

Overall, these findings suggest that the proposed alterna-
tive methods may generalize across different continual learn-
ing benchmarks. While preliminary results on Incremental
CIFAR support the potential robustness of these strategies,
a more comprehensive evaluation involving broader datasets
and additional tuning is needed to confirm generalization. A
full investigation of this is left for future work and is beyond
the scope of the current study.

D Example Prompts for Language Model
Assistance

This appendix provides example prompts used when inter-
acting with the language model. These examples illustrate
the type of language-related assistance requested. In some
cases, slight variations of these prompts may have been used.
Importantly, the responses from the model were not copied
directly, but rather suggestions were carefully reviewed and
integrated with existing text as appropriate. Since the prompts
were applied across multiple different parts of the text, spe-
cific before and after examples are not provided.

• Make this sentence clearer and syntactically correct:
”...”

• Fix grammar errors: ”...”
• Improve the flow and readability of this text: ”...”

Figure 18: Test accuracy comparison between Continual Backprop-
agation, Backpropagation, Noise injection, and Reinitialization from
Kaiming uniform distribution

	Introduction
	Background and Related Work
	Continual Backpropagation (CBP)
	Noise Injection
	Weight Rescaling for Variance Restoration

	Alternative Strategies for Maintaining Plasticity in Continual Backpropagation
	Experimental Setup
	Permuted MNIST Benchmark
	Network Architecture
	Computational Environment
	Evaluation Metrics
	Hyperparameter Configuration

	Results of Alternative Methods to Full Neuron Reinitialization
	Results of Noise Injection
	Results of Reinitialization from Kaiming Uniform Distribution
	Results of Weight Rescaling

	Responsible Research
	Ethical Issues
	Scientific Integrity
	Reproducibility of the Results

	Discussion
	Conclusions and Future Work
	Hyperparameter Tuning Results
	Noise Injection Methods
	Effect of Standard Deviation on Overall Accuracy, Approximate Rank, and Percentage of Dead Neurons
	Effect of Lambda on Overall Accuracy, Approximate Rank, and Percentage of Dead Neurons

	Additional Experimental Results on the Permuted MNIST Benchmark
	Class-Incremental CIFAR Results
	Incremental CIFAR Benchmark
	Hyperparameter Configuration
	Results and Discussion

	Example Prompts for Language Model Assistance

