
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Assessing Moving Block
Railway Capacity Based on
Fixed Block Infrastructure
Occupation
M.V. van der Meulen

Assessing Moving Block Railway Capacity
Based on Fixed Block Infrastructure

Occupation
by

M.V. van der Meulen
to obtain the degree of Master of Science in Civil Engineering

at the Delft University of Technology, department of Transport and Planning
to be defended publicly on March 11, 2022 at 16:00 PM.

Student number: 4218337
Project duration: March 12, 2021 – March 11, 2022
Thesis committee: Prof. dr. R.M.P. Goverde TU Delft (chair)

Dr. ir. E. Quaglietta TU Delft (daily supervisor)
Dr. ir. P.K. Krishnakumari TU Delft (external supervisor)
A.D. Middelkoop ProRail (daily supervisor)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover photo: A Thalys train on the HSL-Zuid nearby Hazeldonk, made by Stefan Verkerk (2020),
retrieved from ProRail Beeldbank.

http://repository.tudelft.nl/

Preface
During my final year at high school, I was thinking about what to study after my high school graduation.
Doubting between Architecture and Building Engineering, and because of my lack of feeling with the
English language also between a research university and university of applied sciences , I decided to
start a bachelor Civil Engineering at the TU Delft. It was a good choice!

During my bachelor I discovered the beauties and challenges of transportation engineering, especially
of Public Transport. I got interested in public transport, because of its importance for society: it keeps
cities accessible, it assures movability for certain groups in society who don’t have access to car and/or
bike and it is better for our environment. Besides, there is always room to make it more efficient.
I would like to thank Rob Goverde and Egidio Quaglietta for introducing me into the world of railways. I
enjoyed your lectures about all kind of topics within railway operations. Also, thanks for supervising me
during my graduation project. Due to Covid-19 most of our meetings were online, but still it was possible
to discuss my progress, helping me with the model definition and guiding me in the right direction.

Special thanks to Dick Middelkoop from ProRail. Unfortunate we couldn’t work together in the Inkt-
pot due to the restrictions, but I would like to thank you for your time and sharing your knowledge about
railway operations in the Netherlands during our online meetings. I liked our discussions about my
knowledge from the lectures at the TU Delft and your expertise. It was nice to gain experience with the
simulation software that is being used at ProRail. I would also like to express my gratitude to the rest
of the I&TV team from ProRail. Thanks for welcoming me, helping me and the fun quarterly meetings.

My time as a student was what life is: it has it’s ups and downs. I had an amazing time at my student
association. There I had the opportunity to grow as a person and develop myself. Also I did make some
great friends. Thanks for all the breaks in the library between studying. I appreciated it! But struggling
with courses and family circumstances didn’t make life easy. Thanks to my Father in heaven for His
blessings and taking care of me.

My master’s study Transport & Planning is finalized by this thesis. Fully in English, which still surprises
me a little bit. Although, it wouldn’t surprise me if you would spot some grammatical errors, so please
forgive me for that. I’m looking forward to start my career in the railway industry.

I wish you a pleasant reading.

Martijn van der Meulen
Delft, January 2022

i

Summary
Research problem
Over the past decade the number of travelled kilometres by train has increased significantly in the
Netherlands. This has also a consequence: the Dutch railway network is getting full. One of the
solutions for this might be a new signalling system. ETCS L3 Moving Block, one of the signalling types
of ERTMS, promises an increase of capacity. With a dynamic speed profile (just as ETCS L2) and
without fixed blocks, the occupation times will be shorter compared to NS’54/ATB-EG. However, the
capacity gains may differ between certain locations.

To assess rail capacity, the timetable compressionmethod is arguably themost widely usedmethod.
An issue with this method is defining boundaries of line sections. It is up to the infrastructure manager
to interpret the guidelines presented by the UIC, but a misinterpretation will lead to different results.
Therefore there is need for an alternative method to identify capacity bottlenecks, for example a method
which could make use of track occupation data of a moving block system. However, ETCS L3 Moving
Block is still in development, so gathering data out of daily operations is not possible. Also gathering
moving block data out of simulation isn’t always a convenient solution. In simulation software FRISO,
used at ProRail, ETCS L3 Moving Block is not (yet) implemented. So to assess capacity gains of
moving block, first a model is needed which estimates the blocking times of trains operating under
moving block signalling.

This research aims to define a novel method to assess capacity of moving block. It uses trajec-
tory data from a fixed block system to estimate the track occupation of a future moving block system.
Therefore, the following main research question will be answered:

How can capacity gains of Moving Block be assessed with data for both railway corridors and
complex nodes?

Methodology
To assess the capacity gains of moving block, a model has been defined to estimate blocking times
for moving block. As input it uses infrastructure characteristics, rolling stock parameters and planned
time-distance data of trains operating under fixed block signalling. The blocking time for fixed- and
moving block can be divided into six time components: route setup-, sight and reaction-, approach-,
running-, clearing- and release time. The length of the route setup time and release time depend on
system characteristics and safety margins. In the model presented in this research these are fixed
values. The sight and reaction time mainly depend on the reaction time and the level of attention of the
train driver. Also this time component is modelled as a fixed value.

The approach time is defined as the time the train runs through the absolute braking distance. The
approach time can be estimated with the braking characteristics of the train, gradient of the tracks and
trajectory data of the train. With the braking characteristics and the gradient of the track the possible
braking rate of a train can be determined. From the point of interest (EoA) a braking curve will be
constructed backwards in time and distance per timestep Δ𝑡. Once the braking curve has the same
speed as the free flow speed of the trajectory data, the indication point is found. The time it takes for
the train to run from the indication point to the EoA will be the approach time.

For the running time there are three different situations. First, on a normal track line, the running
time is equal to the time period between two requests for movement authority (MA). Second, when a
virtual block is applied, it is the time it takes to run through that block. Third, for a stop at a station,
the running time is equal to the dwelling time. The clearing time is the time it takes a train has fully
passed a location. Then, the total length of the blocking time is the sum of all six time components.
The start time is the passage time minus the approach-, reaction- and setup time. The end time is the
passage time plus the running-, clearing- and release time. Once the blocking times are known, the
buffer times can be calculated by subtracting the end of blocking time of the leading train from the start
of the blocking time of the following train.

iii

iv Summary

Two methods are described to identify bottlenecks. A first approach is to sum the blocking times of
all trains per block during a time period. The block with the highest summed blocking time indicates a
bottleneck. A disadvantage is that this approach works only for homogeneous traffic. However, most
(heavy) rail networks have also lines with heterogeneous traffic. When a line with homogeneous traffic
would be assessed with this method, it should be decomposed from the heterogeneous traffic lines.
A second approach is to analyse the buffer times between two trains. Bottlenecks can be identified
using the following steps: first, determine all the start- and end times of the blocking time of a section.
Second, calculate the buffer times at that section. Third, make a list of all buffer times of the study area
and sort it from short to long. Fourth, keep all unique train pair combinations that appears first in the
list. These are the shortest buffer times for each train pair. The section that are kept can be identified
as bottlenecks. This approach works for both homogeneous as heterogeneous traffic. Also, with this
method it easy to assess a complete network at once and it is not needed to decompose corridors.

Verification
The defined model to estimate blocking times for moving block has been verified using data out of
the microscopic railway simulation model EGTRAIN. A portion of the South West Main Line between
London Waterloo and Surbiton has been modelled. This corridor consists of two sprinter services, both
operating 6 times an hour. First, the British fixed-block AWS/TPWS three aspect signalling has been
used, which is very similar to the dutch ATB-EG signalling system. The output of this run had been
used as input for the model to estimate the blocking time for a moving block signalling system. Then
the same corridor was simulated with ERTMS L3 Moving block. The output of the second simulation
was compared to the results of the defined model.

Between the estimated and simulation approach-, clearing- and blocking time was a correlation of re-
spectively 0.98, 0.99 and 0.99. This shows that the model is very precise. Between the estimated and
simulation approach-, clearing- and blocking time was an absolute difference of respectively 0.79s,
0.53s and 0.87s. The 95%-confidence interval is respectively (-4,4), (0,1) and (-3,3) seconds. Given
that ProRail plans with an precision of 6 seconds, it is verified that the model is also accurate.

Case study
The described methods were applied to a case study in the Netherlands. Four corridors were selected
as study area, which included 174 trains. These corridors, operating under NS’54/ATB, were simulated
with the event driven microscopic simulation model FRISO, owned by ProRail.

For both fixed block asmoving block the buffer times were calculated and analysed using the defined
method. By keeping the same timetable, the buffer time between two trains increases on average by
75 seconds (60%) using moving block. Three different train pairs with the shortest buffer time were
analysed in detail. These showed that the blocking time reduces between 45% and 60%. The critical
location between these trains moved towards the first or last switch they shared, depending on the train
order.

In this thesis a bottleneck is defined as the location with the shortest buffer time between two trains,
also called a critical location, section or block. With fixed block signalling, most bottlenecks are located
in a station area (69%), followed by a junction (13%), open line (13%) and cargo yard (5%). In gen-
eral, with moving block the critical locations move towards switches, more bottlenecks will be located
in station areas (74%) and junctions (17%) and less in open line areas (4%).

Conclusion
Moving block signalling promises a significant increase of capacity compared to a fixed block system,
such as NS’54/ATB. This is mainly caused by a strong reduction of the approach- and running time.

With infrastructure data, rolling stock parameters and planned time-distance data, the blocking times
for a moving block signalling system can be estimated. Given the blocking times, buffer times between
trains can be calculated. With the buffer times, capacity bottlenecks in a network can be identified for
both homogeneous as heterogeneous traffic without splitting corridors into line sections. With moving
block, bottlenecks will move towards switches in junctions and station areas. On average, moving block
will result in a significant increase of capacity in bottlenecks.

Samenvatting
Onderzoeksprobleem
Over de afgelopen 10 jaar is in Nederland het aantal gereisde kilometers per trein significant toegenomen.
Dit heeft een gevolg: het Nederlandse spoornetwerk raakt vol. Eén van de oplossingen zou een nieuwe
trein beveiligingssysteem kunnen zijn. ERTMS/ETCS L3 Moving Block (bewegend blok) beloofd een
toename van de capaciteit op het spoor. Met een dynamisch snelheidsprofiel (net als in ETCS L2) en
zonder vaste blokken, zal de spoorbezettingstijd korter zijn vergeleken met NS’54/ATB-EG. Echter, de
capaciteitswinst zal verschillen tussen bepaalde plekken.

Om de capaciteit te beoordelen is de methode van gecomprimeerde dienstregelingen (timetable
compression method, UIC leaflet 406) de meest gebruikte methode. Echter, een probleem met deze
methode is het definiëren van de grenzen van een lijn sectie. Het is aan de infrastructuur manager om
de richtlijnen te interpreteren, zoals ze door de UIC gegeven zijn. Echter, een mis-interpretatie zal lijden
tot een verschillend resultaat. Daarom is er een wens voor een alternatieve methode om capaciteit
knelpunten te identificeren, bijvoorbeeld een methode die gebruik maakt van spoorbezettingstijden van
een bewegend blok systeem. Echter, ETCS L3Moving Block is nog in ontwikkeling, dus het verzamelen
van data uit de dagelijkse praktijk is niet mogelijk. Ook het verzamelen van bewegend blok data uit een
simulatie is niet altijd een gemakkelijke opgave. In de simulatie software FRISO, gebruikt bij ProRail,
is ETCS L3 Moving Block (nog) niet geïmplementeerd. Dus om de capaciteitswinst van de bewegende
blokken te kunnen beoordelen, is er eerst een model nodig die de bloktijden schat van treinen die
opereren onder een bewegend blok systeem.

Dit onderzoek heeft als doel om een methode te definiëren die de capaciteit van een bewegend
blok systeem beoordeelt. De methode zal trein data gebruiken werkend onder een vast blok systeem
om de spoorbezetting te schatten van een toekomstig bewegend blok systeem. In dit onderzoek zal
deze hoofd onderzoeksvraag worden beantwoord:

Hoe kan de capaciteitswinst van Bewegend Blok worden beoordeeld met data voor zowel spoor
corridors als knooppunten?

Methodologie
Om de capaciteitswinst van een bewegend blok systeem te kunnen beoordelen, is er een nieuw model
gedefinieerd die de bloktijden van een bewegend blok systeem kan schatten. Als input gebruikt het
model infrastructuur karakteristieken, parameters van materieel en geplande tijd-afstand data uitgevo-
erd onder een vast blok systeem. De bloktijden van een vast- en bewegend blok systeem kunnen
worden onderverdeeld in zes componenten: route set-up, zicht- en reactietijd, aanrijtijd, rijtijd, uit-rijtijd
en tijd om het blok vrij te geven. De lengte van de route set-up en de tijd om het blok vrij te geven zijn
afhankelijk van de systeem karakteristieken en veiligheidsmarges. In het model is aangenomen dat
dit constante waardes zijn. De zicht- en reactietijd is voornamelijk afhankelijk van de reactie tijd en de
mate waarin de machinist oplet. Ook dit tijdscomponent is gemodelleerd als een constante waarde.

De aanrijtijd is gedefinieerd als de tijd die de trein nodig heeft om zijn remafstand te overbruggen.
De aanrijtijd kan worden geschat met behulp van de rem karakteristieken van de trein, de helling van
het spoor en tijd-afstand data van de trein. Met de rem karakteristieken en de helling van de spoorbaan
kan de remming van de trein worden bepaald die de trein kan bereiken. Vanaf het punt waarvoor de
aanrijtijd moet worden berekend (EoA) wordt de remcurve terug in de tijd en afstand berekend per
tijdstap Δ𝑡. Als de rem curve dezelfde snelheid heeft bereikt als dat de trein heeft op die locatie, dan
is het indicatie punt gevonden. De tijd die nodig is om van het indicatie punt naar de EoA te rijden is
gelijk aan de aanrijtijd.

Voor de rijtijd zijn er drie verschillende situaties. Ten eerste, voor een normaal stuk spoor is de rijtijd
gelijk aan de tijd tussen twee verzoeken om een gebied te mogen betreden. Ten tweede, wanneer er
een virtueel blok is toegepast, is de rijtijd gelijk aan de tijd die nodig is om door het blok te rijden. Ten
derde, als de trein een geplande stop maakt, is de rijtijd gelijk aan de tijd die de trein stil staat. De
uit-rijtijd is gelijk aan de tijd die de trein nodig heeft om een locatie volledig te passeren. Uiteindelijk

v

vi Samenvatting

is de totale lengte van een bloktijd de som van de zes tijdscomponenten. De start tijd is het passage
tijdstip min de aanrijtijd, reactietijd en route set-up tijd. De eind tijd is het passage tijdstip plus de rijtijd,
uit-rijtijd en de tijd om een locatie vrij te geven. Als de bloktijden zijn uitgerekend, kunnen de buffer
tijden worden uitgerekend. Dit is de eindtijd van de leidende trein min de start tijd van de opvolgende
trein.

Er zijn twee methodes gedefinieerd om knelpunten te identificeren. De eerste aanpak is het som-
meren van de bloktijden van alle treinen die het blok passeren gedurende een tijdsperiode. Het blok
van de hoogste gesommeerde bloktijd indiceert een knelpunt. Een nadeel is dat deze methode alleen
werkt voor homogeen treinverkeer. Daarbij komt dat de meeste spoornetwerken ook trajecten hebben
met heterogeen verkeer. Wanneer een traject zou worden beoordeeld met deze methode, zal deze
dus moeten worden gescheiden van de traject met heterogeen verkeer. Een tweede aanpak is het
analyseren van de buffer tijden. Knelpunten kunnen worden geïdentificeerd met de volgende stap-
pen: eerst moeten alle begin- en eindtijden van de bloktijden worden bepaald. Als tweede kunnen
de buffer tijden worden uitgerekend. Als derde wordt er een dataset gemaakt met alle buffer tijden in
een gebied, oplopend in lengte met daarbij de bijbehorende trein combinatie. Als laatste stap worden
alle niet-unieke trein combinaties verwijderd uit de dataset, waarbij de eerst voorkomende wordt be-
houden. Met andere woorden: de laagste buffer tijd tussen twee trein combinaties wordt behouden.
Deze blokken kunnen worden geïdentificeerd als knelpunten. Deze tweede aanpak werkt voor zowel
homogeen als heterogeen verkeer. Ook is deze methode makkelijk toe te passen om een heel netwerk
in één keer te analyseren en is het niet nodig om trajecten te scheiden.

Verificatie
De gedefinieerde methode om de blok tijden van een bewegend blok systeem te schatten kan worden
geverifieerd met behulp van data uit het microscopisch trein simulatie model EGTRAIN. Daarin is een
deel van het Zuid-West hoofdspoor tussen Londen Waterloo en Surbiton gemodelleerd. Dit corridor
bestaat uit twee sprinters die beide 6 keer per uur opereren. Als eerste is het Britse vast blok systeem
AWS/TPWS gebruikt, die erg lijkt op het Nederlandse ATB-EG treinbeveiligingssysteem. De uitvoer
van deze simulatie wordt als invoer gebruikt voor het model om de blok tijden voor een bewegend
blok systeem te schatten. Vervolgens is hetzelfde studiegebied nogmaals gesimuleerd met ETCS L3
Moving Block. De uitkomst van deze simulatie is vergeleken met de geschatte bloktijden.

Tussen de geschatte en gesimuleerde aanrijtijd, uit-rijtijd en blok tijd zit een correlatie van respec-
tievelijk 0.98, 0.99 en 0.99. Dit laat zien dat het model erg nauwkeurig is. Tussen de geschatte en
gesimuleerde aanrijtijd, uit-rijtijd en bloktijd zit een absoluut verschil van respectievelijk 0.79s, 0.53s en
0.87s. Het 95%-betrouwbaarheidsinterval is respectievelijk (-4,4), (0,1) en (-3,3) seconden. Gegeven
dat ProRail de dienstregeling plant met een nauwkeurigheid van 6 seconden, laat zien dat het model
ook erg accuraat is.

Case studie
De beschreven methode is toegepast op een case studie in Nederland. 4 corridors zijn geselecteerd
als studie gebied waarin in totaal 174 treinen opereren. Deze corridors, die opereren onder NS’54/ATB,
waren gesimuleerd met een gebeurtenis-gedreven microscopisch simulatie model FRISO, eigendom
van ProRail.

Voor zowel vaste- als bewegende blokken zijn de buffer tijden berekend en geanalyseerd met be-
hulp van het gedefinieerde model. Als de dienstregeling wordt behouden, dan zal de buffer tijd tussen
twee treinen toenemen met een gemiddelde van 75 seconden (60%) met een bewegend blok systeem.
De drie verschillende trein combinaties met de kortste buffer tijd zijn ook in detail geanalyseerd. Deze
lieten zien dat de bloktijden met 45% tot 60% afnemen ten opzichte van NS’54/ATB. De kritieke locaties
bij deze treinen verplaatste zich naar de eerste of laatste wissel die ze beide gebruikte, afhankelijk van
de trein volgorde.

In deze scriptie is een knelpunt gedefinieerd als de locatie met de kortste buffer tijd tussen twee
treinen, ook wel een kritieke locatie, -sectie of -blok genoemd. Met vaste blokken zijn de meeste
knelpunten te vinden in een stations gebied (69%), gevolgd door aansluitingen (13%), vrije banen
(13%) en goederenemplacementen (5%). Omdat met bewegende blokken over het algemeen de kri-
tieke plekken zich verplaatsen naar wissels, zijn er meer knelpunten in stations gebieden (74%) en
aansluitingen (17%) en minder in vrije banen (4%).

Samenvatting vii

Conclusie
Een bewegend blok systeem beloofd een significante toename van capaciteit vergeleken met een vast
blok systeem, zoals NS’54/ATB. Dit wordt hoofdzakelijk veroorzaakt door een sterke afname van de
aanrijdtijd en rijtijd.

Met infrastructuur data, materieel karakteristieken en geplande tijd-afstand data kunnen de blok-
tijden van een bewegend blok systeem worden geschat. Met de bloktijden kunnen de buffer tijden
tussen trein worden uitgerekend. Met de buffer tijden kunnen capaciteitsknelpunten in een netwerk
worden geidentifieerd voor zowel homogeen als heterogeen verkeer zonder het splitsen van corridors
in lijn secties. Met een bewegend blok system zullen knelpunten zich verplaatsen naar wissels in
aansluitingen en stationsgebieden. Over het algemeen zal een bewegend blok systeem zorgen voor
een significante toename van capaciteit in knelpunten.

Glossary

𝐿 Length of the train [m].
𝑇 Timestamp [s].
𝑎 Deceleration of the train [m/s2].
𝑡 Time length [s].
𝑣 Speed of the train [m/s].
𝑥 Position of the train [m].

AIS Automatic Identification System for maritime transport.
ATB-EG Automatische Trein Beveiliging Eerste Generatie.
ATO Automatic Train Operation.
ATP Automatic Train Protection system.
AWS Automatic Warning System.

BC Braking curve.
BT Buffer time.

DRP Name of area, Dienstregelpunt.

EBD Emergency Brake Deceleration braking-curve in the ETCS braking model.
EBI Emergency Brake Intervention.
EGTRAIN Microsimulation model for railways.
EoA End of Authority.
ERTMS European Rail Traffic Management System.
ETCS European Train Control System.
EU European Union.

FRISO Flexible Rail Infrastructure Simulation of Operations.

GSM-R International standard for wireless railway communication, part of ERTMS.

HWT Headway time.

IC Intercity.
IM Infrastructure Manager.

L2 ERTMS/ETCS Level 2.
L3 ERTMS/ETCS Level 3.
LRIT Long Range Identification and Tracking system for maritime transport.

MA Movement Authority.
MB Moving Block.
MTPS Rolling stock Position Service, Materieel Trein Positie Service.

NS’54 Dutch Legacy block signalling system, seinstelsel 1955.

OBU On-Board Unit.
ORBIT Warning system for a red signal in a train, OOGST RemcurveBewaking In Trein.
ORR Driving on braking distance; Op Remweg Rijden.

PR Position Report.

QATS System to monitor and troubleshoot malfunctions of ERTMS.

ix

x Glossary

RBC Radio Block Centre.
RFD Rail Fundamental Diagram.
ROT Runway Occupation Time.
RTM Realtime Train Monitoring.

SBI Service Brake Intervention Limit.

TI Train Integrity.
TPWS Train Protection and Warning System.
TROTS Train detection & tracking system.

UIC Union Internationale des Chemins de Fer, International Union of Railways.

Contents

Preface i

Summary iii

Samenvatting v

Glossary ix

1 Introduction 1
1.1 Background . 1
1.2 Problem definition . 1
1.3 Research objectives and scope . 2
1.4 Research questions . 2
1.5 Report outline. 3

2 Background 5
2.1 Blocking time theory . 5
2.2 Timetable compression method . 8
2.3 Braking curve . 10

3 Literature review 13
3.1 Terminology . 13
3.2 Shortcomings and limitations in UIC 406 Timetable compression method 13
3.3 Other capacity assessment methods in railways . 14

3.3.1 Analytical . 14
3.3.2 Optimisation . 15
3.3.3 Simulation. 15
3.3.4 Other approaches . 16

3.4 Data-driven methods in other transportation modes . 17
3.4.1 Aviation . 17
3.4.2 Road traffic . 18
3.4.3 Maritime transport . 19

3.5 Conclusion . 19

4 Methodology 21
4.1 A mathematical approach to assess moving block track occupation times 21
4.2 Using track occupation data to identify capacity bottlenecks 26

4.2.1 Summing blocking times . 26
4.2.2 Buffer times . 28

5 Verification 29
5.1 EGTRAIN . 29
5.2 Verification case study setup. 30
5.3 Approach to assess moving block track occupation times 32

5.3.1 Data collection and processing . 32
5.3.2 Results . 33
5.3.3 Discussion and conclusion . 36

5.4 Using track occupation data to identify capacity bottlenecks 37

xi

xii Contents

6 Case Study 41
6.1 FRISO. 41
6.2 Model setup. 43

6.2.1 Study area . 43
6.2.2 Timetable and rolling stock. 43
6.2.3 Infrastructure . 43
6.2.4 Route setup times . 44

6.3 Data collection and processing . 44
6.3.1 Fixed block blocking times . 45
6.3.2 Planned time-distance data . 46
6.3.3 Rolling stock parameters . 47
6.3.4 infrastructure characteristics . 47

6.4 Model application . 48
6.4.1 Approach time . 48
6.4.2 Clearing time . 50
6.4.3 Running time . 50

6.5 Buffer time calculations. 51

7 Results 53
7.1 Summing blocking times . 53
7.2 Buffer times analysis . 54

7.2.1 D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA) 56
7.2.2 H7400-B3900 (Duivendrecht - Amsterdam Bijlmer ArenA) 57
7.2.3 A4400-C3500 (Boxtel - ’s-Hertogenbosch) . 57
7.2.4 Critical sections . 58

7.3 Roberto . 60
7.3.1 D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA) 62
7.3.2 H7400 - B3900 (Duivendrecht - Amsterdam Bijlmer ArenA) 64
7.3.3 A4400-C3500 (Boxtel - ’s-Hertogenbosch) . 66

8 Discussion 69
8.1 Limitations of the model . 69
8.2 Calculation of approach time. 70
8.3 Model application with realised data. 71

9 Conclusion & recommendations 73
9.1 Conclusion . 73
9.2 Recommendations . 76

9.2.1 Future work and research . 76
9.2.2 Practical improvements to FRISO and Roberto. 77

Bibliography 79

A Different shapes of the fundamental diagram 87

B Added code lines in EGTRAIN 89

C Python scripts verification study 93

D Python scripts case study 97

E Case study: Rolling stock 111

F Case study: Infrastructure 117

G Case study: trajectories 133

1
Introduction

1.1. Background
Over the past decade the number of travelled kilometres by train has increased significantly in the
Netherlands. This is good news for environmentalists, however it has also a consequence: the Dutch
railway network is getting full [27]. Pre-Covid-19, Rogier van Boxtel, at that time CEO of the NS, warned
that the capacity limit will be reached in 2027 [45]. During the corona pandemic, the number of travellers
has dropped massively, but it is expected that the growth will continue after the crisis [46]. Building
new infrastructure can be a solution for the railway industry to cope with the demand, however this is
expensive and there isn’t always enough space available to build new tracks. Therefore a solution may
be found in another corner: a new signalling system.

On the 17th of May 2019 the government decided to replace the complete block signalling and Au-
tomatic Train Protection (ATP) with European Rail Traffic Management System (ERTMS) before the
end of 2050 [67]. The current system, NS’54/ATB-EG block signalling, has been designed more than
60 years ago and the hardware is outdated, so this needs to be replaced. To meet the agreements
made with the European Union (EU), it is chosen to build ERTMS Level 2 on the Dutch railway net-
work, instead of investing in new hardware of the current ATB-EG system. Except advantages such as
ERTMS is safer compared to ATB-EG and it is interoperable across European borders, ERTMS has
another advantage: the infrastructure capacity is expected to increase. With ATB-EG the blocklengths
and signal positions are based on trains with the worst braking rate. In ETCS Level 2 the system com-
putes a dynamic speed profile, based on the characteristics of the train, whereby trains can brake later
for a red signal.

Although in ETCS Level 2 wayside signalling makes place for in-cab signalling, the system still
uses fixed blocks. In ETCS Level 3 Moving Block, one of the next steps in the development of ERTMS,
this will become moving blocks. With fixed blocks the complete network has been split up in sections
(blocks), where each block can be occupied by one train. When a certain block is occupied, no other
train can enter that block. With moving blocks, the occupied block moves with the train. It is not needed
to reserve time to run through a block, resulting in shorter occupation times and more efficient use of
the infrastructure [32]. Also it is expected that maintenance costs with ERTMS L3 Moving Block will
reduce, since there will be less equipment alongside the tracks.

1.2. Problem definition
Just like ETCS L2, ETCS L3 Moving Block promises an increase of capacity. However, how big this
promise is, is part of some unanswered questions. This may differ between certain locations. ProRail
wants to know this and has a strong interest in the development of ETCS L3 Moving Block, because it
can increase the reliability and availability of their network [27]. With knowing capacity bottlenecks of
ATB-EG, ETCS L2 and ETCS L3 Moving Block, it can support ProRail’s planning and long-term deci-
sion making.

1

2 1. Introduction

To assess rail capacity, the timetable compression method [37] is arguably the most widely used
method [100]. An issue with this method is defining the boundaries of line sections. For example,
should a line be split into smaller line sections or should it be seen as a long-distance service. Both
choices will lead to different results [10, 40]. Leaflet Code 406 [37] by the UIC gives some guidelines,
but in the end it is up to the infrastructure manager’s expertise to make the right choice.

Therefore there is a need for an alternative method, for example a method which could make use
of track occupation data collected during operations or produced with simulation. However, gathering
moving block data from daily operations is not possible, since ETCS L3 Moving Block is still in develop-
ment. Also gathering moving block data out of simulation isn’t always a convenient solution, especially
for ProRail. In the simulation software FRISO, used at ProRail, ETCS L3 Moving Block is not (yet)
implemented. Implementing Moving Block in FRISO, or building the Dutch rail infrastructure in another
simulation tool, is expensive and a time consuming process. This makes it harder for ProRail to inves-
tigate the effects of Moving Block on the capacity and bottlenecks of the Dutch railway network. So to
assess capacity gains of moving block, first a model is needed which estimates the blocking times of
trains operating under moving block signalling.

1.3. Research objectives and scope
This research aims to define a novel method to assess capacity of moving block. It uses track occupa-
tion data from a fixed block system to estimate the track occupation of a future moving block system.
Therefore, the following main research question will be answered:

How can capacity gains of Moving Block be assessed with data for both railway corridors and
complex nodes?

Once the method has been defined, simulation data will be gathered with EGTRAIN. First, a corri-
dor will be simulated with a fixed block signalling system. Then, the defined method will be applied to
estimate the blocking times for a moving block system. The outcome will be compared to moving block
simulation data from EGTRAIN, to validate the model. The defined method will be applied to a case
study in the Netherlands. Four corridors in the Dutch railway network will be simulated and assessed
to see how moving block affects bottlenecks in corridors and complex nodes.

For this research two assumptions are made. First, the timetable is given. The goal is to compare
two signalling systems and find the benefit in infrastructure occupation. Therefore the timetable, and
thus the train order, will be a constant factor. Second, it is assumed that moving block has been fully
developed. If and when moving block will be integrated in the dutch railway network, it will be ERTMS
Level 3 Moving Block. In the current state of ERTMS Level 3 Moving Block the verification of train
integrity – performed by an on-board device called Train Integrity Monitoring (TIM) – for trains with
variable composition such as freight trains is still an open challenge [4]. Besides this, communication
failures could lead to an emergency brake. This results in a capacity drop, which has a big impact on
the operations’ performances. This thesis will not discuss these two problems.

1.4. Research questions
Based on the problem definition and main research question, sub questions are formulated. These will
be answered in this research and will help to answer the main research question. The sub questions
are:

1. What are the shortcomings in the timetable compression method and which solutions do
exist?
This question will be answered through a literature study. It is known that the UIC Timetable
compression method has some limitations and shortcomings. Since the publication of the 2nd
edition in 2013, researchers have proposed a couple of solutions to these limitations.

1.5. Report outline 3

2. Which potential data-driven methods to assess capacity do exist?
Besides railways, also other transportation modes have to deal with capacity constraints. The
literature study will give an overview of data sources in other transportation modes and how this
data is being used to assess capacity.

3. How can the blocking times under moving block signalling be estimated?
In this thesis a method will be defined on how to estimate the blocking times under moving block
signalling using train data operating under fixed block signalling.

4. How can bottlenecks be identified without splitting lines?
This method should bypass the limitations in the UIC timetable compression method, but give
similar results.

5. How does Moving Block affect bottlenecks?
Capacity is constrained because of bottlenecks in the railway network. Especially at these lo-
cations it is interesting to know how much moving block affects the buffer times and minimal
headways, since these locations limit the maximum number of trains on a corridor. There is also
a possibility that the bottleneck will move to another location on a corridor.

6. How can the defined method support ProRail and the rail industry in assessing capacity
impacts of Moving Block signalling?
In the last part of this study already existing tools at ProRail, FRISO and Roberto, will be used
next to the defined method. It will be shown how these can complement each other.

1.5. Report outline
Chapter 2 contains a more extensive description of background information. First the blocking time
theory will be explained and how the differences between fixed- and moving block affect the blocking
times. In section 2.2 the timetable compression method by the UIC is explained. Section 2.3 gives
information about the principles of the braking curve under ERTMS. These principles will be taken into
account in the model definition in chapter 4.

Chapter 3 is a literature review, starting with explaining some terminology. This is followed by a discus-
sion of the shortcomings and limitations in the UIC Timetable compression method (sec.3.2 and other
capacity assessment methods in railways used in literature (sec.3.3. In section 3.4 a broader scope is
taken at data driven capacity assessment methods in other transportation modes.

In chapter 4 the model to estimate the blocking times under moving block signalling is explained, fol-
lowed by an approach to identify capacity bottlenecks using the blocking times. These methods will be
verified in chapter 5 using simulation data of EGTRAIN.

Chapter 6 applies the methods that are explained and verified in the previous chapters. First the FRISO
simulation tool and the model setup are stated (sec.6.1 and 6.2), followed by an explanation on how
the model is being applied and the calculations are made. In chapter 7 the results of the case study
are given.

This thesis is being closed by a discussion on the used methods and results (Ch. 8) and a conclusion
(Ch.9), which answers the research questions. In section 9.2 recommendations for future research and
improvements to FRISO will be given.

2
Background

This chapter provides relevant background information about infrastructure occupation in railways and
will be used as starting point in chapter 4. In section 2.1 the Blocking time theory is explained, including
the differences between a Fixed and Moving Block signalling system in this theory. Section 2.2 sum-
marises the Timetable compression method by the UIC [37], which is one of the most used capacity
assessment methods in railways. In section 2.3 the principle of the braking curve in ERTMS is told.

2.1. Blocking time theory
In general, blocking time – also called occupancy time – is the total time a section of a track is allocated
exclusively to a train movement. It starts as soon as the preparations to allocate a train’s Movement
Authority (MA) demand for exclusive occupation of a route’s element. This request should be made
before the train reaches the element, in case the request will be denied and the train has still sufficient
time and space to stop. The blocking time ends when the train has completely left the section and all
signalling components have been reset to normal position [11, p.221]. Thus, the blocking time of a
track section is much longer than the time a train occupies the section.

In figure 2.1 the blocking time of a Fixed Block signalling system is shown, including the speci-
fications of all attributes. The length of a block is the distance between two signals, which can be a
physical signal along the tracks (e.g. NS’54/ATB-EG or ETCS L1) or an in-cab signal (e.g. ETCS L2).
Each time component is explained in table 2.1. The length (in time) of each attribute depends, among
other things, on the infrastructure, the signalling system that has been used and train characteristics.
The blocking time for a fixed block signalling system is always distance-discrete, which means that an
occupied block always starts and ends at a fixed location. Drawing the successive blocking times for a
train over a railway line in a time-distance diagram leads to a Blocking Time Stairway. This represents
the operational use of a railway line by a train [30].

Compared to fixed block, Moving Block has the same time components. However, instead of the
occupied block having a fixed position and length, it moves along with the train. Therefore one will –-
on the first sight –- not observe the typical stairway in a timetable as with fixed block signalling, but a
bandwidth around the trajectory of the train. However, because the subsystems (geometric interlock-
ing, Radio Block Centre, Train Position Report) work periodically – and not continuous, Moving Block is
a time-discrete system. One will still get steps in his timetable, but much smaller ones (see figure 2.2).
The step sizes are defined by the frequency of the subsystems, T_CYCLOC. During the time it takes
to request and get the MA, the train moves. Considering this, the running time is equal to T_CYCLOC,
instead of the time it takes to run through a block. All in all, it is accepted to speak about a bandwidth,
but in simulation it should still be considered that it is discrete [11, p.226].

5

6 2. Background

Figure 2.1: Physical attributes of a block section (Source: International Union of Railways (UIC) [37], edited by author)

Table 2.1: Blocking time components [11]

Time component Remark
Route setup Preparation of the MA has to start sufficiently early that the signal aspect

changes at latest with the start of the reaction time. The preparation covers
moving switches, locking route elements, commanding the signal aspect.

Reaction A reaction offset to interpret the distant signal aspect is granted to the train
driver. It may be defined as a time or as a distance (in correspondence to
minimum sighting distances). In case of a scheduled stop ahead of the track
section the reaction time has to be replaced by the time demand for the depar-
ture process, which may usually be triggered just after the opening of the exit
signal.

Approach The approaching time is related to the approach indication in approach to the
block. It may either a separate distant signal (one-block signalling) or a com-
bined main/distant signal (two-block signalling). If in two-block signalling the
braking distance takes more than one block section, multiple-aspect signalling
has to be applied granting multiple block sections for braking.

Running The time for the head of the train to run through the block

Clearing The clearing time is the time it takes to completely leave the section. It starts
the moment the head of the train left the block and ends as soon the rear-end
has left the block.

Route release The route release is the time it takes to reset all signalling components to normal
position, so that another train can enter that block.

Virtual blocks
Although Moving Bock is a time-discrete signalling system, at some locations it works like a distance-
discrete system [11, p.230-231]. Depending on the specific infrastructure design, certain sections have
to be operated in (virtual) blocks in any case, as trains should not come to a standstill for various rea-
sons:

2.1. Blocking time theory 7

Figure 2.2: Blocking time of moving block being discrete with intervals of T_CYCLOC (Source: Büker et al. [11])

1. Moveable elements (e.g. switches, bridges) can only be occupied as a whole
2. Overhead catenary design does not allow standstill
3. Level crossings, to prevent a blockage for road traffic, which could lead to dangerous situations
4. Initial traction effort is too low to ensure re-acceleration (e.g. slopes)
5. Maximum coupling forces may avoid re-acceleration

Trains will get permission to approach these sections completely, or not at all, so it can be seen as
distance-discrete instead of time-discrete. However switches have to been reported as shifted and
locked before the train is authorized to approach that switch. Therefore extra time is needed to reserve
a switch, in the contrary to for example level crossings, which is a fail-safe system. In practise path
conflicts and capacity bottlenecks occur most frequently in stations and junctions rather than on open
line sections [5] [59]. This is being confirmed in section 7.2.4. At stations and junctions switches are
used to make it possible to change tracks. Since these switches are operated as (virtual) blocks, these
become often decisive for minimum headway times and decrease the benefits of the moving block
principle (see figure 2.3). In consequence, this could have a huge impact on the capacity consumption.

Figure 2.3: Moving block being interrupted in switchpoint (Source: Büker et al. [11])

8 2. Background

Figure 2.4: Timetable on a double-track line section before (left) and after (right) compression (Source: International Union of
Railways (UIC) [37])

2.2. Timetable compression method
The timetable compression method [37] is arguably one of the most used methods to assess capacity
of railways, see for example [29, 50, 59]. In this section the method will be explained for general
cases, where in section 3.2 the shortcomings and limitations are elaborated. For special cases, one
can read leaflet UIC Code 406 [37]. The timetable compression method follows out of the blocking time
theory. When the blocking time has been calculated for each block, one gets a graph such as figure
2.4. The original purpose of the method is to measure capacity occupation of a given timetable, which
is achieved by compressing the train blocking time stairways [10]. The compression and evaluation
can be summarised in four steps:

1. Defining infrastructure and timetable boundaries
First, a corridor should be defined. A corridor represents the main (inter)national connections
and consists of multiple lines. The chosen corridor excludes hump and storage yards, terminals
and other adjacent properties, since they operate independently. However, their impact on the
corridor should be included (e.g. a train path to/from a terminal).

2. Defining section for evaluation
There are two types of sections to consider:

• Train path line sections, referring to market conditions, are used for measuring capacity
by inserting or excluding train paths. They are those parts of the line in which sequences of
long-distance trains are defined within a timetable

• Line sections are a subset of a Train path line section and are used to measure capacity
consumption by compressing the timetable.

Train path line sections should be broken down into line sections if any of the following criteria
are applicable:

• Establish areas where the infrastructure conditions differ significantly:
– Signalling system
– Number of tracks in the line section
– Branching lines

• Establish areas where significant timetable or traffic operation differences occur:
– Beginning or ending services

2.2. Timetable compression method 9

– Different number of trains
– Train mixture and/or train sequence
– Crossing trains

• Line section along single-track lines are defined by the corresponding adjacent interlockings
where trains can cross or overtake

It should be noted that (train path) line sections may overlap. For example, when a train path line
section will be broken down into a line section at a station area, this station area will be included
in the analysis of both line sections. Once the line section has been defined, the analysed time
period will be defined. This could be 24h, to calculate the occupancy rate over a whole day, or
only for peak hours. However, it is advised to use time periods not shorter than 2 hours.

3. Calculating capacity consumption
Once the sections and time period are defined, the timetable can be compressed. This will be
done by compressing the train paths (blocks) as close as possible, without any overlap between
two blocks. For example, see figure 2.4. The occupancy time rate can be computed by:

Occupancy time rate [%] = Occupancy Time
Defined Time Period × 100 (2.1)

As a guideline, the calculated occupancy time rate should not exceed the proposed occupancy
time rates given in table 2.2.

Table 2.2: Proposed occupancy time rates (Source: International Union of Railways (UIC) [37, p.29])

Type of line Peak hour Daily period
Dedicated suburban passenger traffic 85% 70%
Dedicated high-speed line 75% 60%
Mixed-traffic lines 75% 60%

To analyse a timetable, the capacity consumption can be used. This can be calculated by:

Capacity consumption [%] = Occupancy Time(1 + Additional Time Rate)
Defined Time Period × 100 (2.2)

Where the additional time rates are given in table 2.3. These time values are added to secure
quality of operation (e.g. buffer time, quality time, etc.)

Table 2.3: Proposed additional time rates for lines (Source: International Union of Railways (UIC) [37, p.30])

Type of line Peak hour Daily period

Dedicated suburban passenger traffic 18% 43%
Dedicated high-speed line 33% 67%
Mixed-traffic lines 33% 67%

4. Evaluating capacity consumption
In order for capacity consumption values to best represent the corresponding infrastructure, the
following conditions – given by leaflet code 406 [37, p.30-31] – can be used as a guideline:

• The capacity consumption values reflect the infrastructure characteristics of the defined train
path line sections.

• The line section with the highest capacity consumption value along the train path line section
is the representative line section for the train path line section.

• Acceptable quality of service is represented by capacity consumption values of up to and
including 100%.

10 2. Background

• Capacity consumption values beyond 100% represent a bottleneck, which means a lower
quality of service, and should be subject to timetable or infrastructure improvement mea-
sures.

• Capacity consumption values below 100% represent available capacity and thus the poten-
tial for additional train paths along the defined train path line section.

Figure 2.5: Overview of the EBD braking curve and its related supervision limits (Source: European Railway Agency [25])

2.3. Braking curve
The braking curve is defined by the European Railway Agency as the prediction of speed decrease ver-
sus distance [25]. From this prediction the ETCS on-board computer calculates the braking distances.
These will also be used to assist the train driver and to allow him to drive comfortably, by maintaining
the speed of the train within the appropriate limits.

The braking curve related to the speed decrease due to an emergency is called Emergency Brake
Deceleration (EBD) curve. From the EBD and the measured speed of the train, the ETCS calculates
in real time the distance necessary to stop. This distance before the stop location is called Emergency
Brake Intervention (EBI) location. It is the point beyond which ETCS will bypass the driver, intervenes
and stops the train. However, before this point is reached, the system calculates several other super-
vision limits: Indication (I), Permitted speed (P), Warning (W) and Service Brake Intervention (SBI).
These locations are indicated in figure 2.5 and have the following function:

• Indication: the ETCS gives a indication signal to the driver. The driver will have enough time to
act on the service brake, so that the train does not overpass the Permitted speed.

• Permitted speed: in case of overspeed, the ETCS leaves the driver an additional time to act on
the service brake so that the train will not overpass the point beyond which ETCS will trigger the
command of the brakes. The distance from the indication to the supervised location is called the
perturbation distance.

• Warning: the moment when an additional audible warning will be given after the Permitted speed
has been overpassed.

• Service Brake Intervention: This limit takes into account the service brake build up time so that
the EBI supervision limit is not reached. The SBI is an optional feature which can be installed to
avoid too frequent emergency braking. Emergency brakings can be damaging for both the rolling
stock and the track.

• Emergency Braking Intervention: when this limit will be reached, the system applies the emer-
gency brakes.

2.3. Braking curve 11

Figure 2.6: Construction of the EBD (Source: European Railway Agency [25])

Calculation of braking curves
The ETCS braking curve algorithms need the following parameters to perform their real time supervision
and advisory functions [25]:

• Physical parameters, which result from the real time measurements by the ETCS on-board equip-
ment: the position, speed and acceleration of the train

• ETCS fixed values. They mostly relate to the ergonomics of the braking curve model itself (e.g.
driver reaction times)

• ETCS trackside data, such as signalling- and infrastructure data. These parameters are under
full responsibility of the Infrastructure Manager.

• On-board parameters, such as information of the rolling stock.

The EBD is a piecewise parabolic shaped curve that starts from the target location and is computed
with the deceleration from the emergency brake system and the deceleration/acceleration due to the
uphill/downhill slopes:

𝐴𝑠𝑎𝑓𝑒(𝑣, 𝑑) = 𝐴𝑏𝑟𝑎𝑘𝑒_𝑠𝑎𝑓𝑒(𝑣) + 𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑑) (2.3)

where: 𝑣 = Speed [m/s]
𝑑 = Distance [m]

During the time the emergency brakes are released, both deceleration factors might change. The EBD
has to adapt to that, which can be seen in figure 2.6. Every time one the factors changes, a new braking
partial curve will be calculated, to be sure the train stops on the designated location.

𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 is the acceleration/deceleration due to slope of the tracks. It can be calculated by:

𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
𝑔 ⋅ 𝑔𝑟𝑎𝑑

1000 + 10 ⋅ 𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔
(2.4)

where: 𝑔 = gravitational acceleration (9.81 𝑚/𝑠2)
𝑔𝑟𝑎𝑑 = gradient value in h[m/km]
𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 = Compensation factor due to rotating mass of the train [%]

The gradient information is given to the on-board equipment in form of a gradient profile, see figure
2.7. The information is piecewise constant between two defined locations, so for every piece of track
the gradient is known, but it is not continuous. It is continuous in a way that for every piece of track it
is known what the gradient is, but constant between two defined locations [24, p.79].

12 2. Background

Figure 2.7: Gradient profile in ERTMS (Source: European Railway Agency [24], p.80)

As input parameters for 𝐴𝑏𝑟𝑎𝑘𝑒𝑠𝑎𝑓𝑒 the EBD makes a differentiation between two situations. First, when
the ETCS on-board equipment is fitting a train with a predefined composition, all corresponding rolling
stock parameters can be preconfigured in the system. The train for which it is possible to store such
predefined data are called Gamma trains [25]. For these trains, 𝐴𝑏𝑟𝑎𝑘𝑒_𝑠𝑎𝑓𝑒 can be calculated by:

𝐴𝑏𝑟𝑎𝑘𝑒_𝑠𝑎𝑓𝑒 = 𝐴𝑏𝑟𝑎𝑘𝑒_𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 ⋅𝐾𝑑𝑟𝑦_𝑟𝑠𝑡(𝑀_𝑁𝑉𝐸𝐵𝐶𝐿)⋅{𝐾𝑤𝑒𝑡_𝑟𝑠𝑡+𝑀_𝑁𝑉𝐴𝑉𝐴𝐷𝐻⋅(1−𝐾𝑤𝑒𝑡_𝑟𝑠𝑡)} (2.5)

In case of variable composition, it is neither possible to directly express nor to define the braking per-
formance with deceleration data. These trains are so-called Lambda trains and a conversion model
is needed. In this case, 𝐴𝑏𝑟𝑎𝑘𝑒_𝑠𝑎𝑓𝑒 is replaced by 𝐴𝑏𝑟𝑎𝑘𝑒_𝑡𝑢𝑛𝑒𝑑 and can be calculated by:

𝐴𝑏𝑟𝑎𝑘𝑒_𝑡𝑢𝑛𝑒𝑑 = 𝐴𝑏𝑟𝑎𝑘𝑒_𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑(𝜆) ⋅ 𝐾𝑣_𝑖𝑛𝑡(𝑇𝑟𝑎𝑖𝑛 𝑡𝑦𝑝𝑒) ⋅ 𝐾𝑟_𝑖𝑛𝑡(𝐿_𝑡𝑟𝑎𝑖𝑛) (2.6)

where 𝜆 is the braking percentage, calculated according to UIC leaflet 544-1. For Lambda trains,
equation 2.3 results in:

𝐴𝑠𝑎𝑓𝑒(𝑣, 𝑑) = 𝐴𝑏𝑟𝑎𝑘𝑒_𝑡𝑢𝑛𝑒𝑑(𝑣) + 𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑑) (2.7)

In equations 2.5 and 2.6 specific national values are used, which can differ from country to country.
𝐾𝑑𝑟𝑦_𝑟𝑠𝑡 and 𝐾𝑤𝑒𝑡_𝑟𝑠𝑡 quantify the braking performance on dry and wet rails. In the Netherlands, how-
ever, the factor for wet rails is not applied, so this is zero. Also the speed correction factor 𝐾𝑣_𝑖𝑛𝑡 and
train length correction factor 𝐾𝑟_𝑖𝑛𝑡 are national variables. These integrated correction factors are ac-
tually used as tuning factors, allowing the infrastructure manager to tweak the ETCS braking curves to
their national legacy signalling system [25].

Besides the deceleration factor 𝐴𝑠𝑎𝑓𝑒, also the brake build up time 𝑇𝑏𝑟𝑎𝑘𝑒 affects the time when the
emergency brakes should be released. For Gamma trains, 𝑇𝑏𝑟𝑎𝑘𝑒 is known by the railway undertaking.
For lambda trains, the conversion model [24, p.197] dictates equation 2.8.

𝑇𝑏𝑟𝑎𝑘𝑒 = 𝐾𝑡𝑖𝑛𝑡 ⋅ (𝑎 + 𝑏 ⋅ (
𝐿𝑡𝑟𝑎𝑖𝑛
100) + 𝑐 ⋅ (𝐿𝑡𝑟𝑎𝑖𝑛100)

2
) (2.8)

where: 𝐾𝑡𝑖𝑛𝑡 = Integrated correction factor
𝑎, 𝑏, 𝑐 = factors depending on brake settings and emergency/service brake intervention
𝐿𝑡𝑟𝑎𝑖𝑛 = Train length in m

3
Literature review

The literature review gives an overview of capacity assessment in railways and other transportation
modes. First some terminology of capacity is explained (sec. 3.1), followed by an review of the UIC
406 Timetable compression method in section 3.2. Sections 3.3 and 3.4 give an overview of other
capacity assessment methods. Section 3.5 provides a conclusion to this literature review.

3.1. Terminology
In literature capacity has been widely discussed. There is also a wide variety of definitions of capacity,
all referring to different situations and/or phases in planning. Bešinović and Goverde and Jensen et al.
discusses the terminology around capacity used in literature:

• Theoretical capacity (Synonyms: Design capacity, Absolute capacity, Capacity throughput):
The maximum number of trains that can traverse a given part of the network in a predefined time
period. The operation must be completely homogeneous with a single ideal train type with no
supplements of any kind and represents an upper limit for infrastructure capacity. [10] [41]

• Maximum capacity: The maximal set of trains that can be handled in a given time period while
considering the actual train mix where train types may have different stopping patterns and max-
imum speeds resulting in heterogeneous operation. Buffer times are not included in headways
between trains. [41]

• Practical capacity (Synonyms: Achievable capacity, Effective capacity): The maximum capacity
that can actually be used in a given time period to obtain a robust and stable operation. Buffer
times are added to the minimum headway between trains to obtain planning headways that pro-
vide stability and robustness. [10] [41]

• Capacity occupation (Synonyms:Infrastructure occupation, Occupancy time, Consumed capac-
ity, Carrying capacity, Used capacity): The time a set of trains in a given sequence occupies the
infrastructure. [41]

• Capacity occupation rate (Synonyms: Utilization rate): The ratio between capacity occupation
and a predefined time period, in which the set of trains should operate. [41]

3.2. Shortcomings and limitations in UIC 406 Timetable compres-
sion method

The timetable compression method is a capacity assessment method proposed by the International
Union of Railways (UIC). As explained in section 2.2, the approach is to calculate capacity consump-
tion by compressing a timetable and to evaluate the number of possible train paths for a line, node and
corridor [37].

13

14 3. Literature review

As explained in the UIC leaflet 406, the method should be seen as a guideline for infrastructure man-
agers (IM), instead of strict rules. The occupancy- and additional time rates for lines are proposed as
a fixed value. For nodes the occupancy rates are given as a range, since there was not enough data
available when it was published. To interpret the guidelines correctly by the infrastructure manager,
experience is needed. Misinterpretation can easily be made, for example should a line be split into
smaller line sections or should it be seen as a long-distance service. Both choices will lead to different
results [40]. Another argument is given by Jamili [39]: “the UIC 406 capacity method can determine
“only” the capacity consumption on the line sections. The capacity consumption of larger parts of sin-
gle track infra- structures may be estimated by considering only the crossing stations that are actually
operated. This often leads to an increase of capacity on the railway line which is not found by simply
‘compressing’ the train graphs. Furthermore, this might result in the paradox situation where adding
an extra train to the timetable reduces the capacity consumption. Due to the extra trains, the UIC
406 method requires the line section to be divided into more line sections. Compressing the timetable
graphs for the line sections appeared by adding these extra trains results in less capacity consumption
than in the case without the extra trains.”

Bešinović and Goverde [10] reviewed the timetable compression method and made a literature review.
This resulted in a list of four limitations of this method. First, according to the UIC 406 method the
network should be decomposed in train path lines or line sections. Due to this decomposition, certain
train dependencies, which overlap line sections, are neglected and result in an underestimated ca-
pacity occupation. A second limitation is the length of the decomposed line sections, which affect the
resulting capacity occupation significantly. To overcome these issues, they proposed a network model
for capacity assessment that preserves microscopic details of the infrastructure and all train depen-
dencies using max-plus algebra. Third, the given saturation rates are a rough guideline and are highly
dependent on the infrastructure layout, train characteristics and level of service. Besides, they may
vary significantly for different national networks. A fourth limitation is one of the remaining limitations of
the UIC 406 method. For the capacity assessment in nodes the UIC proposes to decompose a node
in switch areas and platform track areas, and evaluate each segment independently. More on this can
be read in section 3.3.1.

Furthermore there is the proposed method by the UIC on how to calculate occupancy time of switch
areas. According to Veselý and Bazant [94] a lot of manual calculations are needed and it could be very
time consuming. To solve this, they designed the method in simulation tool Villon [83], so the process
can be automated. The tool was tested with a simple intersection, where a two line track and a one
line track arrive at a station. The tool was verified by performing the manual calculations according to
the UIC 406 leaflet.

3.3. Other capacity assessment methods in railways
Besides the timetable compression method, other methods exist to assess railway capacity. Some
methods are an extension of the timetable compression method, while others can be seen as an al-
ternative approach. In literature [1] [40] [57] most methods can be put into the categories analytical,
optimisation and simulation. An overview will be given in the next subsections, followed by an subsec-
tion where queuing models and the rail fundamental diagram are elaborated.

3.3.1. Analytical
Analytical methods are aimed at determining a preliminary solution and are characterized for mod-
elling the railway environment by means of a mathematical formula. In 1996 the International Union of
Railways (UIC) published an analytical method in code 405 [36], which was officially replaced by the
timetable compression method in 2004 as standard measure of capacity. However, it is still being used
by some researchers, since according to Rotoli et al. “it offers an efficient estimation of the capacity of
a line” [78]. They analysed the UIC 405 code and propose, in extension to this, a simplified approach
where detailed information about the signalling system is not needed [77, p.19]. The input variables will
be the data such as distance, scheduled travel time and number of train between consecutive nodes.
A disadvantage is that this approach could underestimate the capacity occupation. To overcome this,
Bešinović and Goverde [10, p.33] introduces a max-plus automata model for capacity assessment in

3.3. Other capacity assessment methods in railways 15

nodes.
Weik et al. [100] use a hybrid approach consisting of analytic timetable compression and stochastic

simulation to provide insights to the area of timetable-independent modeling of train path correlation
effects. Their work includes three major aspects: they (1) present a versatile Matlab-based simulation
toolbox for timetable independent compression in station areas, (2) discuss the problem of accounting
for correlations within the observation area on double-track railway lines and (3) explore approaches
to incorporate interactions between line segments and stations. Their approach is more suitable to
evaluate the effect of the underlying infrastructure on the capacity for strategic planning rather than the
capacity occupation of a specific timetable. To cover the timetable effect, they calculate the infrastruc-
ture occupation for at least 100,000 different generated and compressed timetables.

In long term strategic planning, when only limited knowledge is available about the future timetable,
the analytical method of Schwanhäußer [80] [81] can be used to evaluate capacity [55]. The method,
also called STRELE formula, aims to determine capacity of a railway line by calculation of expected
waiting times. In literature it has been referred to multiple times (see e.g. [78], [108] and [55]). The
STRELE formula is implemented in software tools such as LUKS®[96] , which is the standard tool for
capacity calculation in Germany. Besides this, it takes less computation time to determine the capacity
of a railway line compared with simulations.

3.3.2. Optimisation
Optimisation methods are generally heuristic algorithms possibly based on mathematical programming
tools, with the purpose of finding an optimal timetable. Often the throughput of a section will be max-
imised, considering constraints such as train mix, vehicle circulation, infrastructure layout and safety
principles. Liao et al. [57] state that most optimisation approaches focus only on infrastructure re-
sources. On the contrary, they include also candidate train services and fleet size to find a saturated
timetable with maximum transportation performance running in a unit of time. A limitation in their current
model is that station capacity is not included. There is a possibility to include this in a future research,
as also vehicle maintenance constraints.

Jovanović et al. [43] focus specifically on railway station design analysis and capacity determination.
For a given station layout, they determine the infrastructure occupation time based on the execution
of all predicted train routes, and on the minimal follow-up times between incompatible routes. From a
case study, they concluded the effects of the different conceptual designs were immediately noticeable,
even in the case of very small changes in station design. The UIC 406 method (see section 2.2) was
used to verify the obtained results. The results indicated that the occupation time rate could be reduced
by 8% by adopting the most favorable design for a future station.

3.3.3. Simulation
Simulation methods are intended to provide a model as close as possible to reality in order to i.a.
validate a given timetable, verifying feasibility and analyse robustness. Often simulation software is
applied, such as RailSys [76], FRISO [64] and EGTRAIN [72]. Goverde et al. [30] used stochastic
simulation in combination with the timetable compression method to propose a new concept of dynamic
infrastructure occupation. The concept was applied to make a comparison study between the legacy
Dutch NS’54/ATB signalling system (current and optimized situation) and ETCS Level 2 (current and
shorter block lengths).

Vieira et al.[97] show how a circulation planning tool can aid railroads fully utilize their infrastructure
in order to improve capacity utilization. Their simulation approach took just seconds to run, resulting
in a much more powerful tool to assess capacity limits. The planning tool quantifies the maximum
operational capacity and returns the throughput of the infrastructure and related efficiency.

On the contrary to most capacity assessment methods which are on a microscopic level, Lindfeldt
[58] developed a model on a macroscopic level. He argues that for long term capacity planning micro-
scopic simulation may represent a level of detail that is not necessary. Macroscopic simulation needs
less computation time, so that may be more suitable for these cases. The model, where the core con-
sists of a scheduler and dispatcher, considers the infrastructure and rolling stock on a macroscopic
level, while timetables and perturbations have a more detailed representation. For the simulation of

16 3. Literature review

Table 3.1: Literature overview of approaches to assess capacity in railways

Author(s) Year Method Output
Goverde et al. 2013 Simulation Capacity occupation
Lindfeldt 2015 Simulation Macroscopic simulation model
Rotoli et al. 2016 Analytical Practical capacity
Bešinović and Goverde 2018 Analytical Capacity occupation
Vieira et al. 2018 Simulation Theoretical capacity
Weik et al. 2020 Analytical Capacity occupation
Widyastuti and Budhi 2020 Analytical Theoretical capacity
Jovanović et al. 2020 Optimisation Theoretical capacity
Bychkov et al. 2021 Queuing Train dispatch
Diaz de Rivera and Dick 2021 Rail Fundamental Diagram Impact of bottlenecks
Liao et al. 2021 Optimisation Transportation performance

the timetables, the model uses a Monte Carlo approach. In the validation RailSys was used reference.
Lindfeldt concluded that, despite the simplicity of the model, it is accurate enough to use it in a capacity
analysis.

The framework of Jensen et al. [40] determines the capacity consumed by a set of trains and can be
used in the strategic planning phase. The framework extends and improves the UIC 406 method be-
cause (1) there is no predefined timetable needed, only the service intention, (2) it can handle networks,
lines and line sections and (3) it estimates the needed buffer times to achieve a robust capacity utilisa-
tion. In later (tactical) planning – when the timetable is more certain – it is able to calculate the capacity
consumption more precise than the UIC 406 method. However, more calculations are needed, so when
there is no model available to automate the calculations, the 406 method would be more suitable.

3.3.4. Other approaches
Besides capacity assessment methods which can be categorized as analytical, simulation or optimisa-
tion, it is worth to highlight two other specific approaches: Queuing theory and the Rail Fundamental
Diagram (RFD).

Although in transport industry optimisation models are most popular, Bychkov et al. [13] argues that
they are not always suitable to apply. If there are significant random factors in the system - which can
be the case in railways - one has to deal with a stochastic optimization problem. Such problems are
too complex to be solved and do not always allow to obtain meaningful results for applications. In
these situation, queuing theory models can be considered. Bychkov et al. [13] build on their earlier
work [54, 107] and propose a new method of modelling micro-logistics transport systems based on the
queuing theory. The potential of this model is in the field of multimodal transport hubs, freight railway
stations and marshalling yards. However, as they pointed out, it is not suitable for well-scheduled
processes, such as unimodal public transportation or corporate cargo stations, where the influence of
random factors needs to be minimized. In other works queuing theory has been used for stations [99],
Marshalling Yards [21] and junctions [79].

With the development of moving block signalling systems, possibilities arise where car-following
models can be implemented in railways. Originating from the fundamental diagram in road traffic (see
section 3.4.2), the Rail Fundamental Diagram (RFD) is a relative new concept. In such a diagram the
density of traffic [veh/km] will be plotted against traffic flow [veh/h]. One of the first RFDs was drawn by
Sogin [85]. Corman et al. [17] used simulation to create RFDs for a line with moving block, discussing
how different aspects such as train length, weight, and speed affect the shape of the curve. Building
on that, Diaz de Rivera and Dick [19] showed the effect of vertical grades, which highly changes the
braking distances. Besides, they showed how much more the flow (Trains/hour) can be with a higher
density (Trains/kilometer) for Moving Block compared to multi aspect signalling. Since this is a relative
new concept, there is still a lot more to investigate, such as the effect of station capacity on RFDs and
how this method relates to other capacity assessment methodologies. A possible application of this
method could be to verify the potential capacity of Automatic Train Operation (ATO) [17].

3.4. Data-driven methods in other transportation modes 17

3.4. Data-driven methods in other transportation modes
Besides looking into existing literature in railways, we might learn something from data-driven ap-
proaches in other transportation modes. Although differences exist between transportation modes,
such as data sources, travel purpose of the transportation modes, and research gaps and other prob-
lems, it would be self-righteous to only look at knowledge that exists within the railway industry. In
this section a look is taken into data sciences, methods and approaches in aviation, road traffic and
maritime transport.

3.4.1. Aviation
In aviation, data science has become a very popular topic in the last decade. Where in 2009-2012
only a few studies were in data science, in 2018 more than 400 works were published related to ”data
science and analytics in aviation” [16]. Chung et al. divided these studies in four respective areas: big
data, forecasting, machine learning and air logistics.

The term Big Data refers to the big volume of the data sets in large numbers, their variety, and the
velocity requirements of the provision of the data [12]. These studies typically describe the (type of)
data, rather than the application of it. Forecasting with data is one of the latest prevalent applications
[15]. However, the goal can vary a lot: fuel usage and emission [14], runway incursions [86], delay and
demand forecasting [15]. Machine learning can be applied to discover and extract meaningful patterns
from large datasets [12]. Tong et al. proposed a deep learning method to predict aircraft speed during
landing, which is more accurate and effective than the state-of-the-art method. Last but not least is air
logistics. Examples can be found in a wide variety, such as the design of runways [9, 38, 86], decision
making of the air traffic controllers [6, 74], and aviation maintenance risks [63]. For the future, Chung
et al. see four important research directions with data in aviation: Blockchain, Industry 4.0 [105], sharing
economy and multi-method analysis.

Since a small error in aviation can lead to a fatal accident, a large number of sensors are embedded
to increase safety. These sensors produce large amount of data, which results also in a lot of different
data sources that can be used for research. First of all, there is the Flight Data Recorder (FDR), which
is mandatory in all aircraft [14]. Besides the FDR, most airplanes have also a Quick Access Recorder
(QAR), which records most of the parameters during a flight, but is - in the contrary to the FDR - not
designed to survive a crash [90]. But also on the ground there are recorders, for example to the open
source trajectory recorder ADS-B [89] or meteorological data [9, 69]. An overview with examples of
used data sources and methodologies are given in table 3.2.

In aviation, typically, runway capacity is the most stringent constraint on growth, ahead of airspace,
aircraft parking or terminal capacity [22]. Because runway expansion is often opposed by (local) gov-
ernment, as they are likely to limit pollution and noise, research is focused on how to maximise capacity
of existing runways. Runway capacity can be defined as a number of aircraft movements per defined
time period. On one hand theoretical capacity does not take delay into account, on the other hand the
practical capacity does take delay into account, whose value depends on the level of service that is
aimed for [44]. To estimate the maximum runway capacity, there are three relevant factors: The wake
turbulence categories, the levels of automation support and the Runway Occupation Time (ROT) [82].
The wake turbulence categories standardise the distance between preceding and succeeding aircraft
in the air. The levels of automation support have an influence on the safety margin. In aviation different
support systems exists, which have their own safety margin, depending on the error they have in mea-
suring the location of the aircraft. The ROT is the time between the touchdown and the moment the
aircraft leaves the runway, which depends on the runway exit. It is interesting to see that these three
factors more or less also exist in railways: the wake turbulence distance is comparable to the braking
distance, the automation support system to the signalling system and the ROT to the Blocking times.
Sekine et al. [82] put these three factors in an AirTOp model to perform a data-driven simulation and
analysis. In their research they concluded how these three factors affects the en-route and terminal
delay time.

On the ROT a relative simple analysis was performed by Kumar et al. [49]. They used surface
(trajectory) data to calculate the Runway Occupancy Time (ROT). For future work, they would like to
include weather data and cover different seasons to capture the effect of wind and rain on the ROT.
Later, Herrema et al. [33] included the weather effects. They provided a machine learning approach
to predict the runway exit utilisation based on actual movements at airports. They used a variety of

18 3. Literature review

Table 3.2: Literature overview of data-driven methods in aviation

Author(s) Year Data source Methodology Goal

Ramanujam and 2015 Operational data Discrete choice Quantifying the utility function
Balakrishnan modelling of the air traffic controllers
Chati and Balakrishnan 2014 Flight Data Recorder Statistical analysis Estimate operational values

(FDR) during landing and take off
Ghalebsaz-Jeddi et al. 2009 Multilateration Statistical analysis Analysing landing capacity

surveillance system data of a runway
Tong et al. 2018 Quick Access Recorder Deep learning Aircraft landing speed

(QAR) algorithm prediction
Sun et al. 2016 Runway ADS-B Data Statistical analysis Estimate aircraft mass
Jackson et al. 2015 Satellite imagery Remote sensing Extracting runway geometry
Baspinar et al. 2016 ALLFT+ Queuing network Analyse delay propagation

(historical air traffic) model and capacity drop
Kumar et al. 2009 Track surface data Statistical analysis Calculate ROT
Herrema et al. 2019 Various (a.o. Machine learning Predict runway exit

Radar and wind) and ROT
Sekine et al. 2021 Trajectories Statistical analysis Calculate runway

(Simulated) capacity
Levy et al. 2004 DROMS Statistical analysis Estimating runway capacity

data sources to have in total 15 input variables, giving information about the trajectory, runway design
and weather circumstances. Their output was a model which could predict if an aircraft would take a
procedural or non-procedural runway exit and therefor a flight will experience a longer ROT or not. On
a macroscopic level, Baspinar et al. [8] used a queuing network model to analyse delay characteristics
of European air traffic. They found critical capacity values for different airports, which are tipping points
between stable operations and unstable operations where the capacity drops and delays in the network
occur.

3.4.2. Road traffic
In road traffic there are in general two different types of technology to collect traffic data: ”in-situ”
technologies and Float Car Data [53]. ”In-situ” technologies refer to traffic data measured by detectors
located along the roadside. This type of technologies can be split into two categories: intrusive and
non-intrusive methods.

The intrusive methods basically consist of a data-recorder and a sensor placing on or in the road,
for example pneumatic road tubes, piezoelectric sensors and magnetic loops. These sensors can be
used both for real-time traffic information or be saved in a data-base and used later. Non-intrusive
techniques are based on remote observations, such as manual counts, infra-red (passive and active),
passive magnetic sensors, microwave radar, acoustic sensors and video image detection. This is a big
difference with railways, where the numbers of trains are known before operations start.

Float Car Data is a principle which collects real-time traffic data by locating vehicles via mobile
phones or GPS over the entire road network. For example, this can be used by a taxi or delivery
company which tracks their vehicles [106]. However, it is also used by navigation companies, such as
TomTom and Google Navigation. Google uses position data of mobile phones running on Android and
uses this in Google Maps to give live traffic information [42].

Besides live traffic information, traffic data can also be used to calculate road capacity or optimize
intersection signalling. With Edie’s definition [23] of flow, density and speed for an area in space and
time, the data can be configured to a fundamental diagram [31] (see Appendix A). Key in the fundamen-
tal diagram is that flow is equal to density times average speed: 𝑞 = 𝑘 ⋅ 𝑢. Since it has three different
variables, the fundamental diagram can be draw in three different planes: flow-density, speed-flow,
speed-density. Knoop and Daamen [47] proposed a method to automatically fit a fundamental diagram
through simulation and real-world detector data.

3.5. Conclusion 19

3.4.3. Maritime transport
In maritime transport the Automatic Identification System (AIS) is a great resource of data. Since 2004,
all passenger ships and ships over 300 gross tonnage have been fitted with AIS transponders [34],
and since 2014 this system became compulsory for all fishing vessels of length above 15 meters in
the EU [68]. In maritime transport it is applied as a navigation system to improve safety on waterways,
but it is also a great source for research. An AIS terminal transmits marine traffic data in both static
(e.g. length, width, type and MMSI number of the ship) and dynamic data (e.g. timestamp, position,
speed and course). Other vessels and coastal authorities can pick up these signals, display it in their
navigation system and manoeuvre safely through ports and waterways.

Liu et al. [60] gave an overview of studies where AIS data is used, for example marine safety, traffic
management, sustainability, ship grounding and near-miss detections. Xin et al. [104] used AIS data
as input of a microscopic simulation model for ship navigation in the ”Xiazhimen” waterway. Wang et al.
[98] propose a data-driven approach for a lock scheduling problem, which is a typical optimizing and
decision-making problem.

However, using AIS data is not without risk. AIS messages are vulnerable to manipulation and
subject to hacking [75]. It is known that vessels involved in illegal activities commit identity fraud (false
shipping numbers), have obscured destinations or manipulate the GPS [102]. Besides this, 50% of
AIS static data transmissions have errors of any kind [102]. Of the dynamic data, 27% of ships do not
transmit data at least 10% of the time (’go dark’).

Besides AIS, ships are also obligatory to have a Long Range Identification and Tracking (LRIT) sys-
tem onboard. The output is government centring – in Europe centralized via the EU LRIT Cooperative
Data Centre (CDC) [2]. The essence of the LRIT system is that participating countries get information,
at least every 6 hours, on their own flagged ships wherever they are in the world [51]. Since the signal
frequency is much lower compared to AIS, data is used of a longer time period and larger study area.
Alessandrini et al. [2] used LRIT data to estimate shipping emissions on the waters around the Europe
continent. Two years later, Alessandrini et al. [3] proposed a model to estimate the time of arrival in
ports using LRIT data. In their case study they used shipping data from the Mediterranean Sea. Vespe
et al. [95] did a statistical analysis on piracy on maritime transport in the Indian Ocean, using LRIT data
of 5 years from the EU database.

To the knowledge of the author data-driven capacity assessment methods are not (much) used in
maritime transport for ships. An extensive search for papers and articles, with keywords – including
variations – like ”data-driven waterway capacity”, ”data-driven berth capacity” or ”data-driven port ca-
pacity” didn’t result in literature that was wanted. It could be that other methods are more suitable to
solve the capacity problems in maritime transport. In the process of searching for literature, articles
were found about capacity issues at container terminals. Mar-Ortiz et al. [62] tackled this with a data-
driven method. However, this is another type of capacity problem than in railways, so for this research
it is not very suitable.

3.5. Conclusion
The timetable compression method is arguably the most widely used method to assess rail capacity.
Since it was published in 2013, multiple shortcomings and limitations are addressed, but also solutions
are proposed. It can be concluded that it is up to IMs experience on how to interpret the guidelines
presented in Code 406. This mainly concerns selecting (train path) line sections, occupancy times rates
and additional time rates. Besides the timetable compression method, there are other approaches to
assess capacity. These can be divided into analytical, optimisation and simulation approaches.

Other transportationmodes show a couple of opportunities which can be used in the railway industry.
In aviation sensors are widely used, which create big data sources for research. This research has a
wide range of purposes, such as forecasting of delay and demand, fuel usage and runway incursions.
To analyse the Runway Occupation Times and capacity mostly trajectory data has been used. In road
traffic the fundamental diagram is an important tool to assess capacity. This gave Song et al. and
Diaz de Rivera et al. the idea to introduce this concept in railways. Also in maritime transport there is
trajectory data available, but it is less used for capacity analysis.

4
Methodology

In this chapter the methods are explained that are used in this research. First, in section 4.1, a mathe-
matical approach to estimate blocking times for moving block signalling is described. Second, in section
4.2 a method is defined which should determine bottlenecks based on the calculated blocking times.

4.1. A mathematical approach to assess moving block track occu-
pation times

In figure 4.1 the model framework of this research is presented. In this section a mathematical ap-
proach will be described to estimate blocking times for a moving block signalling system. This model,
in figure 4.1 presented as function 𝑓, uses three input datasets: infrastructure characteristics, rolling
stock parameters and planned time-distance data. Out of these datasets four input variables for the
model can be extracted – the position (𝑥) and speed (𝑣) of the train, the deceleration capabilities of the
train (𝑎), length of the train (𝐿) – and a couple of fixed input parameters (𝛽), which are the length of the
setup, reaction and release time.

The output of the model will be the blocking times for Moving Block (MB). An important difference be-
tween fixed- and moving block is that with a MB signalling system (in regular operations) fixed blocks
do no longer exist, so one can not speak about the occupation or blocking times of blocks with a MB
system. However, when the term ’blocking time for moving block’ is used in this thesis, it is meant ’the
time between a movement authority request and release time for a geographical location or infrastruc-
tural element’.

As explained in section 2.1 the blocking time consists of six time components: route setup-, (sight and)

Figure 4.1: Model framework, with s:position, v:speed, a:deceleration, L:Length of the train, 𝛽:fixed parameters

21

22 4. Methodology

reaction-, approach-, running-, clearing- and route release time. The setup-, reaction- and release time
are independent of the behaviour of the train and are constant over time for a given block/location.
The setup and release time depend on the characteristics of the signalling system and other safety
margins. When the train passes a switch, additional setup time is needed to check the switch’ posi-
tion and if needed to shift and lock the switch. The reaction time mainly depend on the reaction time
and the level of attention of the train driver. In this model these three time components are fixed input
parameters. The other three components – approach-, running- and clearing time – are dependent on
the behaviour of the train. Because they are independent of each other, they can be modelled all three
individually. In the following subsections the calculations of these time components are explained for
a certain location 𝑏.

Approach time
Büker et al. 2019 define the approaching time for in-cab signalling as “the time the train runs through
the indication distance that is signalled by the cab signal” [11]. For Moving Block the indication distance
is equal to the absolute service braking distance. With a constant deceleration, the braking distance
can be defined with:

𝑠(𝑡) = 1
2𝑎Δ𝑡

2 + 𝑣0𝑡 (4.1)

where: 𝑡 = Time period
𝑎 = deceleration (see eq. 2.3)
𝑣0 = Speed before the train brakes

It is known for which location the approach time should be estimated – for Moving Block it is the End of
Authority (EoA), but the length to brake to that location is unknown. Therefore, the model will build a
braking curve from the EoA location backwards. The braking curve will be made until it reaches the free
flow speed of the train. However, this cannot be done with a constant deceleration rate. As explained
in section 2.3, the deceleration depends on the braking characteristics of the train and the gradient of
the track:

𝐴(𝑠) = 𝐴𝑡𝑟𝑎𝑖𝑛 + 𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑠) (4.2)

𝐴𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 𝑔 ⋅ sin (arctan(𝛼)) ≈ 𝑔 ⋅ 𝛼 (4.3)

where: 𝐴𝑡𝑟𝑎𝑖𝑛 = braking rate of the train [m/s2]
𝑔 = gravitational force (9.81 m/s2)
𝛼 = gradient at 𝑠 [m/m]

The braking rate of the train is constant during braking, but the track gradient may change over the
route and hence affect the actual distance needed by the train to brake. Therefore the deceleration is
not constant and equation 4.1 cannot directly be used. The braking curve will be built in multiple steps
from the EoA location, backwards in time and distance.

Let 𝐼 be the trajectory dataset of a certain train – gathered by simulation or real-time operations – and
let 𝑖 ∈ 𝐼 be a logging (datapoint) of that dataset. From that logging the following information is known:
time (𝑇𝑖), location (𝑆𝑖), speed (𝑉𝑖) and possible deceleration that the train can perform from that location
(𝐴𝑖) until it reaches the next logging (𝐴𝑖+1). The deceleration is calculated using eq. 4.2. The loca-
tion for which the approach time should be calculated (𝑏) is defined as 𝑠𝐸𝑜𝐴, where 𝑠𝐸𝑜𝐴. Let𝕎 be a
set of whole numbers, [0,…,𝑖 − 1]. When 𝑆𝑖 = 𝑠𝐸𝑜𝐴 and the braking curve will be build, index 𝑝 ∈ 𝕎
will be used to run backwards through 𝐼 from 𝑖, notated as 𝐼𝑖−𝑝. This all has been visualised in figure 4.2.

Let Δ𝑡 be the length of a timestep [s] for which the braking curve will be constructed, 𝑛 the number of
timesteps and 𝑣𝑛 the speed [m/s] at the end of the braking curve that is constructed until then. For

4.1. A mathematical approach to assess moving block track occupation times 23

Figure 4.2: Speed-Distance diagram with the braking curve zoomed in on the EoA (zoomed version of figure 4.3a)

every timestep, the model starts with a check to see if the braking curve has reached a higher speed
than the free flow speed:

𝑉𝑖−𝑝 ≤ 𝑣𝑛 (4.4)

When this is true, the model breaks out of the loop (equations 4.4-4.8) and starts to calculate the
approach time (eq.4.9). When it is false, it will continue. The braking curve is constructed from 𝑠𝐸𝑜𝐴
backwards per timestep Δ𝑡 with:

𝑠𝑛 = −
1
2𝐴𝑖−𝑝Δ𝑡

2 − 𝑣𝑛−1Δ𝑡 + 𝑠𝑛−1 (4.5)

𝑣𝑛 = 𝐴𝑖−𝑝Δ𝑡 + 𝑣𝑛−1 (4.6)

where: 𝑠𝑛 = Location of braking curve [m], with 𝑠0 = 𝑠𝐸𝑜𝐴
𝑣𝑛 = Speed of braking curve at 𝑠𝑛 [m/s], with 𝑣0 = 0 m/s
𝐴𝑖−𝑝 = Maximum possible deceleration between 𝑆𝑖−𝑝 and 𝑆𝑖−𝑝+1

Since the braking curve is constructed backwards, the deceleration has a positive sign in equations 4.5
and 4.6. Equations 4.4 until 4.6 will loop as long as:

𝑆𝑖−𝑝 ≤ 𝑠𝑛 (4.7)

When this is true, 𝑉𝑖−𝑝, 𝑆𝑖−𝑝 and 𝐴𝑖−𝑝 will be updated by increasing p by 1. Then the model will continue
at eq. 4.4. For example, in figure 4.2 𝑠0 to 𝑠8 will be calculated with 𝐴𝑖−1. 𝐴𝑖−1 > 𝑠9, so p will be
increased by 1 and the model continues at eq. 4.4. In an event-driven dataset (simulated or real-time),
the time gaps between 𝑖 − 𝑝 and 𝑖 − 𝑝 − 1 can be relative large compared to a time-driven dataset. So
when an event-driven dataset is applied, 𝑉𝑖−𝑝 will be changed to:

𝑉𝑖−𝑝,𝑚 = 𝑉𝑖−𝑝 − 𝐴𝑖−𝑝Δ𝑡 ⋅ 𝑚 (4.8)

where m is the number of loops between 𝑖 − 𝑝 and 𝑖 − 𝑝 − 1, starting at 0 every time 𝑉𝑖−𝑝 is updated.
An example is given in section 6.4

Once 4.4 is true, the approach time can be estimated by:

𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ;𝑏 = 𝑇𝐸𝑜𝐴 − 𝑇𝑖−𝑝 (4.9)

or in case of an event-driven dataset:

𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ;𝑏 = 𝑇𝐸𝑜𝐴 − 𝑇𝑖−𝑝 + Δ𝑡 ⋅ 𝑚 (4.10)

Although the indication point, where 𝑉𝑖−𝑝 = 𝑣𝑛, could be between 𝑖 − 𝑝 and 𝑖 − 𝑝 − 1, it is chosen to
not add a correction factor. Without a correction factor, the model will have the same precision as the

24 4. Methodology

input trajectory dataset. For example, when the dataset has a time interval of 1 second, the approach
time will also have a precision of 1 second. Also, during the iteration process of defining the model and
the verification (see chapter 5), it was found out that the current described model has a high precision
and accuracy, so it is not needed to add a correction factor. For a event-driven dataset this is different,
because there is a variation in time intervals between datapoints. To overcome this, eq. 4.8 was added
to the model and Δ𝑡 ⋅ 𝑚 was added to the approach time. This way the aimed precision is equal to Δ𝑡.

In figure 4.3 an example is given of a complete braking curve in a speed-distance, time-speed and
time-distance diagram. The blue line is the free flow trajectory of the train before it reaches the End of
Authority at 2180m. In this example, the indication point is just before 1800m. For the train it takes 18
seconds to run through the indication distance. When the train doesn’t get permission to pass the EoA
point, the train will brake at the indication point and reach the EoA point 37 seconds later.

(a) Speed-Distance diagram (b) Speed time diagram

(c) Time Distance diagram

Figure 4.3: Construction of the braking curve in different diagrams

All in all, to calculate the approach time, these input variables are needed:

• Braking characteristics of the train (𝐴𝑡𝑟𝑎𝑖𝑛)

• Gradient of the tracks (𝛼)

• Trajectory data of the train (𝑆, 𝑇, 𝑉)

Running time
The running time is the time needed for a train to run through a block. However, there are only (virtual)
blocks at specified locations. On the rest of the line blocks do no longer exist. For the calculation of
the running time, there are three different situations:

1. On a normal track line, the running time is equal to the time period between two requests for MA
(see section 2.1). The exact length depends on the type of system;

4.1. A mathematical approach to assess moving block track occupation times 25

2. When 𝑏 is in a virtual block (see section 2.1), the running time is the time it takes to run through
the virtual block;

3. When a train stops, e.g. at a station, the running time is equal to the time it stands still (𝑣 = 0).

For virtual blocks, the following will be applied: Let 𝐵 be a set of virtual blocks that a certain train passes
and let 𝑘 ∈ 𝐵 be the index to indicate a block. For each block, the train has an entrance- and exit loca-
tion and -time: 𝑙𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑘 , 𝑙𝑒𝑥𝑖𝑡𝑘 , 𝑇𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑘 and 𝑇𝑒𝑥𝑖𝑡𝑘 . Given that 𝑙𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑘 ≤ 𝑏 ≤ 𝑙𝑒𝑥𝑖𝑡𝑘 , the running time
will be 𝑇𝑒𝑥𝑖𝑡𝑘 − 𝑇𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑘 .

Mathematically this can be written as:

𝑡𝑟𝑢𝑛𝑛𝑖𝑛𝑔,𝑏 =
⎧

⎨
⎩

1/𝑓 ;For regular MB operations, depending on system characteristics

𝑇𝑒𝑥𝑖𝑡𝑚 − 𝑇𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑚 ;For virtual blocks, 𝑙𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒𝑘 ≤ 𝑏 ≤ 𝑙𝑒𝑥𝑖𝑡𝑘
𝑡𝑠𝑡𝑎𝑛𝑑𝑠𝑡𝑖𝑙𝑙,𝑏 ;Standstill time at 𝑏

(4.11)

where: 𝑓 = Frequency of MA requests per second
𝑏 = Location for which the blocking time needs to be calculated
𝑘 = index of a block

Clearing time
In a fixed block situation the clearing time is the time it takes to completely leave a block. For moving
block it is the time it takes for a train to cross a point in its full length. Hence the principle is not different
compared to fixed block, but the location for which the clearing time should be calculated is different.
Therefore an estimation model is needed. When a train runs with constant speed, the clearing time
can be calculated by:

𝑡𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔;𝑏 =
𝐿
𝑣𝑏

(4.12)

where: 𝐿 = Length of the train [m]
𝑣𝑏 = Speed of the train at 𝑏 [m/s]

However, this would lead to a largemis-estimation around stations, because at these locations trains
accelerate/decelerate over a longer distance. Therefore, when the loggings of the trajectory dataset
have a short interval, e.g. one second, the clearing time should be estimated by:

𝑡𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔;𝑏 = 𝑇(𝑏 + 𝐿) − 𝑇(𝑏) (4.13)

where: 𝑏 = Location for which the blocking time wanted to be known [m]
𝐿 = Length of the train [m]
𝑇(𝑏) = Time when the train has reached 𝑏 [s]
𝑇(𝑏 + 𝐿) = Time when the train has reached 𝑏 plus 𝐿 [s]

Note that the trajectory dataset is not continuous, but discrete. So to estimate the clearing time, let
𝑗 ∈ {0, … ,𝕎} and 𝑆𝑖 = 𝑏. Location 𝑏 is cleared when:

𝑆𝑖 + 𝐿 ≤ 𝑆𝑖+𝑗 (4.14)

Starting at 𝑗 = 0, 𝑗 will be increased by 1 until this is true. When it is true, the clearing time can be
estimated by:

𝑡𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔;𝑏 = 𝑇𝑖+𝑗 − 𝑇𝑖 (4.15)

26 4. Methodology

Blocking time
The blocking time of a location or block on the track can be calculated by summing the length of each
time component:

𝑡𝑏𝑙𝑜𝑐𝑘;𝑏 = 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ;𝑏 + 𝑡𝑟𝑢𝑛𝑛𝑖𝑛𝑔;𝑏 + 𝑡𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔;𝑏 + 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (4.16)

The start- and end time of the blocking time can be calculated by:

𝑡𝑆𝑡𝑎𝑟𝑡;𝑏 = 𝑇𝑃𝑎𝑠𝑠𝑎𝑔𝑒 𝑡𝑖𝑚𝑒;𝑏 − 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ;𝑏 (4.17)

𝑡𝐸𝑛𝑑;𝑏 = 𝑇𝑃𝑎𝑠𝑠𝑎𝑔𝑒 𝑡𝑖𝑚𝑒;𝑏 + 𝑡𝑟𝑢𝑛𝑛𝑖𝑛𝑔;𝑏 + 𝑡𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔;𝑏 + 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (4.18)

Once all input variables and datasets are collected, the model can be executed. In the appendices C
and D the python code can be found which was used to apply to model to the verification and case
study.

4.2. Using track occupation data to identify capacity bottlenecks
In this section two methods to identify capacity bottleneck are described. Both methods uses track
occupation data, for example the blocking times calculated in the previous section. In chapter 5.4 the
methods will be verified.

4.2.1. Summing blocking times
As alternative for the timetable compression method, which compresses the blocking time stairways of
train paths of a line section, this method sums the blocking times of a block over a defined period of
time. The goal of this method is to find blocks in a network which have a high blocking time. Tracks with
higher blocking times are likely to be capacity bottlenecks which require attention if service capacity
need to be increased. Mathematically the method can be written as:

𝜏𝐵 =
𝑛

∑
𝑖=1
𝑡𝑖,𝐵 (4.19)

where: 𝑖 = Train i
𝑛 = Total amount of trains during passing a period of time
𝑡𝑖,𝐵 = Blocking time of train 𝑖 at 𝐵
𝜏𝐵 = Summed blocking time

This method can be applied for both fixed- as moving block signalling system. Depending on the sys-
tem, 𝐵 is a block, infrastructural element or location in the network.

The method will be explained via an example. In figure 4.4 a blocking time diagram is given, which is
equal to the diagram used in the verification study in chapter 5. This study is about a portion of the
South West Main Line between LondonWaterloo and Surbiton, passing Clapham Junction, Wimbledon
and Raynes Park. This line has been modelled in EGTRAIN using the British fixed-block AWS/TPWS
three aspect signalling. More details about the model and the example study can be read in chapter 5.

The method will sum all the blocking times in a time period for each block. In this example there are
twelve trains, so each block will be occupied twelve times for a short period of time i.e. when a train
passes by. The output is the summed blocking time of each block during one hour.

When the occupation times are summed of all the trains simulated in the reference period, 𝑇𝐵 can be
plotted in a bar graph for all blocks B, such as figure 4.5. In figure 4.5a the summed blocking times
are plotted against the distance of the route. In this example all peaks are at stations where the trains
stop. In figure 4.5b the bars are sorted based on the occupation times, with the most occupied block
of the line on the left side. To keep the BlockID’s readable, only blocks with an occupation time higher
than 1000s are shown.

4.2. Using track occupation data to identify capacity bottlenecks 27

Figure 4.4: Blocking time diagram of a fixed block signalling system

(a) Sorted by distance (b) Sorted by occupation time

Figure 4.5: Summed occupation times of figure 4.4

Looking at the summed blocking time has the following advantages:

• There is no boundary definition needed. The study area can be a whole network or just a line
section;

• Practitioners do not need to pass through the often time consuming process of compressing the
timetable by shifting train paths, which usually requires the support of dedicated software tools.

• The method results in a quick overview of the most critical locations or infrastructure elements;
• The train order is not needed to know, only the frequency and trajectories.

Besides this, the method has also a couple of limitations:

• One cannot see if there is room for an extra trainpath in the schedule.
• Just as almost any other capacity assessment method, the method strongly depends on the
infrastructure layout. For example, one cannot compare a one-directional railway line compare
to a two-directional railway line.

28 4. Methodology

4.2.2. Buffer times
Another approach to find bottlenecks in a network would be to look at the time a track is not being
occupied. In the timetable compression method blocking time stairways will be compressed as close
as possible, without any overlap between two blocks. The location where two blocks touch each other,
the critical block, will be the bottleneck of a line section. However, the compression is a time consuming
process, so this needs to be avoided. A solution would be to find the location of the minimal time be-
tween the end of the blocking time of the leading train and the start of the blocking time of the following
train.

Let 𝐽 be the set of trains in a network and let 𝑖, 𝑗 ∈ 𝐽 be a train. Let 𝑄𝑖𝑗 be a set of blocks where train 𝑗 is
a direct successive train of 𝑖, so without any trains between them. 𝑏 ∈ 𝑄𝑖𝑗 is used as index to indicate
a specific block. 𝑇𝑆𝑡𝑎𝑟𝑡𝑖 (𝑏) and 𝑇𝐸𝑛𝑑𝑖 (𝑏) are the start and end of the blocking time of train 𝑖 of block 𝑏,
so that a bottleneck 𝛿𝑖𝑗 can be identified by:

𝛿𝑖𝑗 = min
𝑏∈𝑄𝑖𝑗

(𝑇end𝑖 (𝑏) − 𝑇start𝑗 (𝑏)) (4.20)

One could also say that it is the headway time minus the blocking time, also known as the buffer time.
Later on in this research a comparison will be made in the bottlenecks with fixed- or moving block sig-
nalling. To do this, it is expected that only looking at headway time will not be suitable, since – without
compression – the headway times will not change, but the blocking times will. This might result in other
bottlenecks between fixed- and moving block.

This approach can be explained with an example. In figure 4.6 a blocking time diagram of two intercity
trains is plotted. Halfway, a stop train merges in and makes two stops before it splits again. On this line
there are three different train combinations of a train following another train: Intercity-Intercity, Intercity-
Stop train, Stop train-Intercity. This results also in three different bottlenecks, numbered in figure 4.6.

Figure 4.6: Identifying capacity bottlenecks using minimal buffer times between trains

A big advantage is that it is not needed to define boundaries and split corridors into line sections. A
disadvantage is that the train order needs to be known. When also the exact timetable is known, bot-
tlenecks can be ranked based on the length of the buffer times.

The defined approaches in this section will be tested and verified in section 5.4 with a homogeneous
and heterogeneous traffic pattern

5
Verification

In chapter 4 a model to estimate the occupancy times of a moving block system was defined. In this
chapter this model will be verified with a study in the microsimulation model EGTRAIN. First, a short
introduction to EGTRAIN will be given, followed by a explanation of the used study area. Then the
data collection and processing is elaborated. This section is closed by the results and conclusion of
the verification.

5.1. EGTRAIN
EGTRAIN is a synchronous microscopic railway simulation model developed by Quaglietta [71]. It can
be characterized by four general features:
1. Flexibility: The model has been designed in C++ and has an open structure, which means that

inner model functions can bemanipulated or further methods can be added without compromising
or varying the original source code. This feature is also directly used in this verification.

2. Accuracy: in the design it was chosen for an object-oriented concept. By doing this, the model is
able to produce in detail the behaviour of each railway component, such as rail vehicles, signalling
equipment and infrastructure.

3. General applicability: the model is composed of four main modules: infrastructure, rolling stock
signalling system and timetable (see figure 5.1). With this modular structure the model can be
adapted to any case-study.

4. Computational efficiency: the model makes use of the multi-cores in computers, which makes it
computational efficient and having a lower computation time.

Figure 5.1: Architecture of EGTRAIN (Source: Quaglietta [71])

29

30 5. Verification

As input parameter, each module needs it own input files, such as infrastructure layout, train charac-
teristics, signalling layout (e.g. block section index and lengths) and the timetable. The simulation core
consists of three steps. First, for timestep 𝑡 the forces on the train, the speed, position and power
consumption are calculated. Second, after the speeds and position have been determined, both the
signalling and the interlocking systems are updated. Third, the simulation clock goes ahead at instant
𝑡+1, and the simulation restarts again from step 1, until the whole simulation period has been simulated.

The microscopic model returns a database containing all information about the dynamic evolution of a
train’s state during the whole simulation period. For this research train data about the simulation time
instant 𝑡[𝑠], train speed 𝑣[𝑚/𝑠] and the (nose) position of the train 𝑠[𝑚] is used, but also the Mechanical
power en Energy consumption is returned. The data can be printed out as a text file, so it can imported
in software for data analysis.

A big advantage of EGTRAIN is that in the model fixed and moving block signalling systems are in-
cluded. This means that EGTRAIN can provide track occupation data for both systems, while the rest
of the model stays constant. Since the defined method in chapter 4 uses track occupation times of
fixed block to estimate track occupation times of moving block, EGTRAIN can provide both the input
data as the control data to verify the output of the defined method. This makes the verification much
more reliable than when two different data sources (i.e. simulation tools) where used.

5.2. Verification case study setup
For the verification of the defined model a portion of the South West Main Line between London Water-
loo and Surbiton has beenmodelled in EGTRAIN. The corridor is fromWaterloo (Wtl) station to Surbiton
(Sbn), with stops at Clapham Junction (CpJ), Wimbledon (Wbn) and Raynes Park (RnP).
In this verification two different scenarios are simulated. The first scenario is a homogeneous traffic sit-
uation where two different services are in operation, A2_WtlSurbiton and A3_WtlSurbiton. They follow
respectively route A and B which can be seen in figure 5.2. The second scenario is a heterogeneous
traffic situation and will only be used for the verification of the method to identify capacity bottlenecks.
Here train A3_WtlSurbiton will be alternated by an intercity service, A4_WtlSurbiton. This train departs
from London Waterloo and will drive the same route as A2_WtlSurbiton but without stopping at the
other stations. The rolling stock characteristics of all three services can be seen in table 5.1. The
time-distance and blocking time diagrams can be found in figure 5.3.

Table 5.1: Characteristics of the trains

Train traintype max. speed braking rate Jerk rate Length

A2_WtlSurbiton Stopping train 33.6 m/s 0.6 m/s2 0.75 m/s3 161.84 m
A3_WtlSurbiton Stopping train 33.6 m/s 0.6 m/s2 0.75 m/s3 161.84 m
A4_WtlSurbiton Intercity 55.8 m/s 0.8 m/s2 0.75 m/s3 93.34 m

Table 5.2: Parameter and setting values

Setup time FB 3 s.

Setup time MB 0 s.

Switch setup time 5 s.

Release time FB 1 s.

Release time MB 1 s.

Reaction time 8 s.

Buffer times 0 s.

Recovery times 0 s.

In the homogeneous traffic situation the simulation period is 1
hour (3600s). During this period 6 trains of both services will
depart alternately from London Waterloo station. In the hetero-
geneous traffic situation also 6 trains of both services will depart,
but the simulation period here is 1.5 hours (5400s). To collect the
fixed block data, the British fixed-block AWS/TPWS three aspect
signalling has been used, which is very similar to the dutch ATB-
EG signalling system. For the Moving block data, ETCS Level
3 Moving Block has been used. Other parameters and settings
can be seen in table 5.2.

5.2. Verification case study setup 31

Figure 5.2: Layout and elevation profile of the Waterloo - Surbiton corridor on the South West Main Line in the UK (Source:
Quaglietta and Goverde [73])

(a) Speed distance diagram (Homogeneous traffic) (b) Blocking time stairway (Homogeneous traffic)

(c) Speed distance diagram (Heterogeneous traffic) (d) Blocking time stairway (Heterogeneous traffic)

Figure 5.3: Trajectories of the route Waterloo-Surbiton operating with AWS/TPWS fixed block signalling

32 5. Verification

5.3. Approach to assess moving block track occupation times
5.3.1. Data collection and processing
As explained in section 4.1, the proposed model to estimate blocking times for a moving block signalling
system uses three datasets: planned time-distance (trajectory)-, infrastructure- and rolling stock data.

The trajectory data is an output of the EGTRAIN simulation. For the model in this research the speed
and location of the train at every timestep is needed. To collect this, a couple of extra code lines were
added to the model, which can be seen in appendix B. These lines created a Time-Distance-Speed
dataset of the twelve trains. As example, a piece of this dataset has been given in table 5.3.

Table 5.3: Time-Speed data set

Time [s] Speed [m/s] Position [m]
⋮ ⋮ ⋮

506 15.6478 832.858
507 15.8728 848.506
508 16.0863 864.379
⋮ ⋮ ⋮

The second input variable is the infrastructure dataset, which gives the gradient of the tracks. The gra-
dient is an input variable for EGTRAIN. To make this information usable for this research, two datasets
are needed: a link database (table 5.4) and a node database (table 5.5). A trackline, which is used by
the train, consists of multiple links. These links are connected by nodes. By merging the node database
with the link database, it is known how long each link is. This can be merged with the trajectory dataset,
so it can be determined under which gradient the train drives for every timestep (see appendix C).

Table 5.4: Example of the link dataset

LinkID Start node ID End node ID Curve radius [m] Gradient [-] Max. Speed [m/s]
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

128 29 30 10000 -0.0012 26.8224
129 30 31 10000 0.0011 26.8224
130 31 32 10000 -0.0007 17.8816
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 5.5: Example of the node dataset

NodeID X[km] Y[km]
⋮ ⋮ ⋮
29 1.307592 0
30 1.408176 0
31 1.609344 0
⋮ ⋮ ⋮

Last but not least is the information of the rolling stock. From the rolling stock the length of the train and
the service braking rate are needed. In this verification study both A2_WtlSurbiton and A3_WtlSurbiton
service use the same rolling stock. However, this model should be suitable to be used for different kind
of rolling stock, so these will be used as input variables.

The output of the model is an estimation of the different time components (approach, clearing and run-
ning time) of the track occupation under moving block. Remember that the model could estimate the
blocking times (and each time component) for any location a train passes. It is chosen to calculate to
the blocking times for every geographical location a fixed block would have started, since EGTRAIN will

5.3. Approach to assess moving block track occupation times 33

do the same. Now, the same corridor will be simulated with EGTRAIN, but for a moving block signalling
system – in this study ETCS L3 Moving Block. This gives the length of each time component in a sim-
ulated environment. The time components of the estimated and simulated results can be compared in
a scatterplot.

Example: The third A2 train departs at 1604s at Waterloo Station. During its journey it passes block
15, starting at 2699.93m. The estimated approach time of this block for moving block is 20,59s. The
simulated approach time is 20s. This creates one datapoint (20,59 ; 20) in the scatterplot.

Figure 5.4: Scatterplot of the approach time without clearing the data

In total there are 1157 datapoints for each time component. In figure 5.4 the datapoints for the ap-
proach time are shown. As it can be seen, it consists of an outlier1, at (5,128). Just before that block
Raynes Park Station is located. In the simulated environment, the approach time started before the
train stopped at Raynes Park, so the stopping time at that station is included in the approach time. This
is an exception on blocks after the other stops. At the other stations the first block after the stop is
being reserved just after the train departs. This last approach is implemented in the model. Because of
this, there is a large difference between the estimated and simulated approach time at the block after
Raynes Park. Since this is an exception compared to all the other results, this datapoint is removed
from the dataset. The datapoints at (0,0) are kept, because these are a correct estimation compared
to the simulated results.

5.3.2. Results
The results of the approach time, clearing time, running time and blocking time (plus a zoomed version)
can be seen in figure 5.5. The other three components are a fixed value, depending on the system
and safety margins. These values are not shown in the figures, but are included in the blocking times
(figures 5.5d and 5.5e). With a perfect model, an estimated time component would be equal to the sim-
ulated value, which means that all datapoints are on the diagonal in the figure. Therefore the diagonal
line x=y is added to the graphs, to visualise how the models perform.

The strength of the model will be verified based on its precision and accuracy. The precision is how
close the estimated values are to each other. This can be measured by finding the correlation between
the estimated and the simulated values. Although we are not looking for a dependency between two
variables, a high correlation indicates how precise the estimation is compared to the simulated results.
With Pearson’s correlation formula the correlation can be calculated:

𝑟 =
∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

√∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)2√∑
𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2

(5.1)

1Actually, those are twelve datapoints, one of each train, which are located at the same spot

34 5. Verification

(a) Approach times (b) Clearing times

(c) Running times

(d) Blocking times (e) Blocking times (zoomed)

Figure 5.5: Scatterplots of estimated vs. simulated time components, including the aimed line x=y

where: 𝑛 = sample size
𝑥𝑖 , 𝑦𝑖 = individual sample points indexed with 𝑖
𝑥̄, 𝑦̄ = sample mean

Knowing the precision alone is not enough the know the strength of the model. For example, the model
should give a 1:1 ratio between the estimated and simulated datapoints – the diagonal line x=y. When
it has a 1:2 ratio, it can still be precise, but it is not accurate. Accuracy is how close the estimated
value is to the simulated value. It can be measured by calculating the absolute and relative differences
between the estimated and simulated datapoints:

5.3. Approach to assess moving block track occupation times 35

𝐴𝑏𝑠.𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 1
𝑁

𝑁

∑
𝑖=1
|𝑌𝑖 − 𝑌̂𝑖| (5.2)

𝑅𝑒𝑙.𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 1
𝑁

𝑁

∑
𝑖=1

|𝑌𝑖 − 𝑌̂𝑖|
𝑌̂𝑖

(5.3)

where: 𝑌𝑖 = Estimated value
𝑌̂𝑖 = Simulated value
𝑁 = Sample size

Before the precision and accuracy will be calculated, the estimated running times should be highlighted.
In 5.5c it looks like that the running times are perfectly estimated. However, remember that this sub-
model includes three different situations: normal line sections, virtual blocks and stops at station areas.
At normal line sections the running time – which is in this study about 95% of the datapoints – the run-
ning time is always zero, so this is indeed a perfect estimation. However this is not the case for the
virtual blocks (to protect moving infrastructure elements) and stops at station areas. Because there
are only a couple of datapoints which can be categorised in one of these two, this makes it harder
(or impossible) to perform a statistical analysis on them. This does not mean that it is not possible to
say anything about the quality of the estimation of the running times. The estimation of the running
times through virtual blocks is very similar to the estimation of the clearing time: in both cases it is the
time needed to cover a fixed distance. The distances are independent of the train’s behaviour and the
method to calculate the time is the same. So this means that it will give similar results in terms of pre-
cision and accuracy. The standstill time at a station can easily be measured in the trajectory dataset.
Because there are only 4 stops in this study area, excluding starting station London Waterloo, there is
not enough data to perform a proper statistical analysis. However, based on figure 5.5c it is possible
to say that there are not large deviations.

Pearson’s correlation formula is applied to the approach time, clearing time and the blocking time. The
results can be seen in table 5.6. The results show a very high correlation between the estimated and
simulated datapoints.

Table 5.6: Correlation between the estimated and simulated time components

Time component Correlation (𝜌(𝑡𝑒𝑠𝑡 , 𝑡𝑠𝑖𝑚))
Approach time 0.98
Clearing time 0.99
Blocking time 0.99

The absolute and relative differences can be seen in figure 5.7. On average there is an absolute
difference of 0.87 seconds between the estimated and simulated blocking time, which is a relative
difference of 2.33% (see table 5.7).

Table 5.7: Average differences between the estimated and simulated time components

Time component Absolute difference [s] Relative difference [%] 95% Confidence interval
Approach time 0.79 6.14 (-4,4)
Clearing time 0.53 6.74 (0,1)
Blocking time 0.87 2.33 (-3,3)

36 5. Verification

Figure 5.6: Estimated vs simulated approach time, where the colors indicate an acceleration or deceleration of the train

5.3.3. Discussion and conclusion
The largest deviation of all time components between the estimated and simulated results can be
found in the approach time. Although on average the deviation is less than a second, some datapoints
show a difference of a couple of seconds, considering figure 5.5a. It seems that the model slightly
underestimates the approach time of EoA-locations with short approach times, and overestimates the
approach time for EoA-locations with larger approach times.

By definition, the indication point depends on the speed and braking capabilities of the train. How-
ever, the approach time is the time it takes to cover the absolute braking distance. When the train would
slow down when covering the braking distance, the approach will increase. The opposite applies too:
when the train would accelerate, the approach time will decrease. This has been made visible in figure
5.6. Here the colors of the scatterplot indicate if the train slowed down or accelerated during 5 seconds
before it reached the EoA. One would expect to have (mostly) yellow dots in the lower segment (≤10s)
and dark red and black dots in the upper segment (>20s). But there are also a couple of orange/red
dots in the lower segment and orange/yellow dots in the upper segment. Also, there is a mix of all col-
ors in the middle segment. This means that one cannot say with full certainty that the model performs
worse when the train brakes or accelerate.

Besides this conclusion, one can also find an outlier at (10,15). Because the maximum allowed
speed at this location is much lower than on the rest of the line, the approach time is also much lower,
compared to the other black dots.

Looking at the computed differences between the estimated and simulated data in figure 5.7, about
half of the estimated approach times are perfectly estimated. For the clearing time a similar result is
achieved. A majority of the other clearing times is one second too high estimated. This results of an
average differences of 0.53 seconds. In general clearing times are shorter than approach times, so
this results in larger relative differences – up to 16% – in the clearing time than in the approach time.
When considering all sixe time components together, e.g. the blocking time, in 95% of the cases the
estimated blocking time is within a range of -3 to +3 seconds of the simulated blocking time. Currently
ProRail plans with an precision of 6 seconds [92]. All in all, it can be concluded that the model estimates
the blocking time very well, with a high accuracy and high precision.

5.4. Using track occupation data to identify capacity bottlenecks 37

(a) Absolute differences approaching times [s] (b) Relative differences approaching times [%]

(c) Absolute differences clearing times [s] (d) Relative differences clearing times [%]

(e) Absolute differences blocking times [s] (f) Relative differences blocking times [%]

Figure 5.7: Histograms of the differences between the estimated and simulated time components

5.4. Using track occupation data to identify capacity bottlenecks
In section 4.2 two methods were described to identify capacity bottlenecks on a line section. In this
verification study the timetable compression method described in UIC 406 is used to verify these meth-
ods. Since the study area is relative simple, with only one line section, and it is not needed to calculate
the infrastructure occupation, the shortcomings of the timetable compression method will not hinder the
usage of this method for the verification. Remember that we had a homogeneous and a heterogeneous
traffic situation, as explained in section 5.2. The blocking time diagrams of both situations are shown
in figures 5.8 and 5.9.

When the line sections are compressed, the critical block in the homogeneous situation is 30-B2
(marked by the red arrows in figure 5.8b). In the heterogeneous situation there are two critical blocks,
which are 4-B18 (500-620m.) and 80-B2 (17900-18000m.). Those blocks are the bottlenecks of this
line section.

In figures 5.10 and 5.11 the summed blocking times are plotted for the homogeneous and hetero-

38 5. Verification

(a) Uncompressed (b) Compressed

Figure 5.8: Blocking time diagrams of homogeneous traffic between London Waterloo and Surbiton

(a) Uncompressed (b) Compressed

Figure 5.9: Blocking time diagrams of heterogeneous traffic between London Waterloo and Surbiton

geneous traffic situations, sorted over the length of the shared infrastructure and sorted per highest
blocking time. In both figures there are clearly three peaks visible, which correspond to the first three
stops of the sprinter trains. The peak at block 30-B2 (6450m.) is the highest, so this should indicate
that this block is the bottleneck of this line section. However only for the homogeneous situation this
matches with the result of the UIC 406 method. In the heterogeneous situation the highest summed
blocking times does not match with the bottleneck in the UIC 406 method.

In figure 5.12 the buffer times of both traffic situations are plotted. In the homogeneous traffic
situation the lowest buffer time can be found at block 30-B2. Since the traffic is homogeneous, this is
also the buffer time between every two trains that pass that block. In the heterogeneous traffic situation
the lowest buffer time can be found at block 80-B2 between a sprinter (A3) and a following intercity train
(A4). Note that the next lowest buffer times in figure 5.12b are of the same pair of trains, so these cannot
be seen as a bottleneck location. When a sprinter follows the intercity train, the lowest buffer time is at
block 4-B18, which is the other bottleneck. The outcome of this approach matches with the bottlenecks
after applying the timetable compression method.

When this is applied for a study area which consists of multiple corridors, one will get a list of
(possible) bottlenecks. This list can be organized by sorting on the lowest buffer time to find the most
urgent one. Other possibilities are to organize it by name of the area, type of area and to see how often
a section is critical for between two trains. A more detailed application can be read in section 7.2.4.

To conclude, summing the blocking times to find a bottleneck can be used in only a homogeneous
traffic situation. Looking for the block with the minimal buffer time between two trains to identify a
bottleneck is a suitable approach for both traffic situations.

5.4. Using track occupation data to identify capacity bottlenecks 39

(a) Sorted over the length of the shared infrastructure (b) Sorted over highest summed blocking time

Figure 5.10: Summed blocking times of the heterogeneous traffic situation

(a) Sorted over the length of the shared infrastructure (b) Sorted over highest summed blocking time

Figure 5.11: Summed blocking times of the homogeneous traffic situation

(a) Homogeneous traffic (b) Heterogeneous traffic

Figure 5.12: Lowest buffer times between two following trains

6
Case Study

The defined method in chapter 4 will be applied to a case study in the Netherlands. The input data will
be generated with the simulation tool FRISO, which will be introduced in section 6.1. In section 6.2 the
model setup is presented. The data collection and processing steps are discussed in section 5.3.1. In
the last two sections the model is applied and it is explained how the buffer times are calculated. The
results of the case study are presented in chapter 7. .

6.1. FRISO
Flexible Rail Infrastructure Simulation of Operations, in short FRISO (Dutch: Flexibele Rail Infra Sim-
ulatie Omgeving), is an event driven microscopic railway simulation model owned by ProRail and de-
veloped by Incontrol Simulation Software [35]. FRISO has a couple of features from which it can
distinguish itself from other simulation software [65, 66, 88]:

• It can be used from a wide variety of studies, such as analysing timetables, comparing train
dispatching variants, tracing and quantifying bottlenecks in the infrastructure and calculations of
travel times of trains;

• One of the key features of the tool is its flexibility. However, this is expressed in another way
than in EGTRAIN. In EGTRAIN it was possible for the user to change the simulation core and
decide what the output would be. In FRISO the way to make changes to the infrastructure, such
as adding/(re)moving tracks, switches and signals, has been made very user friendly. This, in
combination with smart editors for making timetable variants, reduces the time efforts significantly
for implementing a simulation study.

• It can be connected to an external Traffic Management System (TMS). In these cases it can be
used to test and compare different kind of TMS’s;

• FRISO can be connected to other simulators to test and interfere with human behaviour, such
as PRL (dispatch manager), VKL (traffic manager, e.g. TRINITY) and Morpheus (train driver
simulator). This helps to improve the operations of the company.

FRISO has five main components, visible in figure 6.1:

• FRISO Input database (FRISO database)

• FRISO Simulation Engine (FRISO)

• FRISO Incontrol Center (FIC)

• FRISO Output Database

• FRISO Results Manager (FRM)

41

42 6. Case Study

Figure 6.1: Schematic overview of all components in FRISO (source: Steneker and Cunes [88])

The input database consists of all the information and data which are needed to perform the simulation,
such as infrastructure (from Infra Atlas), timetables (output of DONNA), rolling stock (from DONS) and
simulation settings. Since the data comes from different kind of sources, the tables are first converted
in FIC and then send to the input database and simulation engine. The simulation engine performs the
actual simulation and can be connected to other models and simulators. The results of the simulation
will be logged into the Output database and can be analysed in the FRISO Results Manager. In addi-
tion to the simulators, FRISO can generate an output that can be used as input for Roberto. Roberto
is a tool to calculate large sets of headway times based on the infrastructure, train data and signalling
system.

At the beginning of each simulation all the trains which will operate are generated. Each train gets a
list of events – based on the timetable – and its attributes, such a ID, serialnumber, etc. Just before
its first event, the train will be activated and placed in the model. Then the train will simulate all the
events occurring within the pre-selected simulation time period. These events can be: departure, ar-
rival, passage or short stop (standstill time). During the events the trains will operate under protection
of NS ’54 or ERTMS (ETCS Level 2), based on the availability and the settings of the simulation. In
this case study the trains will operate ’according plan’, but other possibilities are ’keeping train order’,
where disturbances are possible but the train order will not change, or First Come First Serve (FCFS)
[88].

In FRISO it is possible to simulate different scenarios by adding disturbances to the model. The pos-
sibilities are:

• Entrance disruption: the time a train will be placed in the model will be disrupted;

• Dwell time disruption: the time a train standstill at a stop will be disrupted;

• Acceleration disruption: the acceleration of the train will be disrupted. This can be useful to
simulate cases where there is less power available to accelerate;

• Departure disruption: a disruption of the departure in seconds after the departure time;

• Maximum speed disruption: the maximum allowed speed is lower than in undisturbed cases.

The model described in this research uses planned time-distance data, so in this case study there are
no disruptions added to the simulation.

6.2. Model setup 43

6.2. Model setup
6.2.1. Study area

Figure 6.2: Study area

For this case study four corridors are selected, corrispond-
ing to the four colors in figure 6.2:

1. Rotterdam – Schiphol – Arnhem (RoSA corridor)

2. Amsterdam – Maastricht (A2 corridor)

3. Roosendaal – Venlo (Brabant route)

4. Tilburg – ’s-Hertogenbosch – Nijmegen – Arnhem

This study area covers 5 of 7 sub-programms of the
national Program High frequent train operation (PHS,
dutch: Programma Hoogfrequent Spoorvervoer), which
are Amsterdam-Eindhoven, Schiphol-Utrecht-Nijmegen,
Breda-Eindhoven, Meteren-Boxtel andRijswijk-Rotterdam.
This program aims to improve connections by mak-
ing changes to the infrastructure and signalling system.
These improvements should make it possible to have an
intercity train every 10 minutes and more space for cargo
trains [70]. Since December 2017 there is an intercity train
every 10 minutes on the corridor Amsterdam-Eindhoven
and in the timetable of 2022 two other corridors were
added: Rotterdam-Schiphol and Schiphol-Nijmegen. [52]

6.2.2. Timetable and rolling stock

Figure 6.3: Active interlocking areas (PPLG’s) in
green around The Hague

In FRISO the PPLG’s (Interlocking areas, Dutch: Pri-
mair Procesleidingsgebieden) are selected which cor-
respond to the four corridors. In figure 6.3 an ex-
ample is shown of the PPLG’s around The Hague,
where the green PPLG’s are active. All trains who
pass an active PPLG were selected to be simu-
lated, but only for the parts with an active PPLG.
For example, the sprinters between The Hague CS
(Gvc) and Dordrecht (Ddr) are only simulated be-
tween The Hague HS (Gv) and Rotterdam (Rtd).
The trains will operate according to the timetable
of 2021. For the simulation the Roberto func-
tion in FRISO has been used, which means that
each train will be simulated individually. The ad-
vantage of this function is that the trains cannot in-
teract with each other, so the output corresponds to
nominal undisturbed conflict-free scheduled train opera-
tions.

In total 174 trains were selected for this simulation,
whereof each train is simulated once. In appendix E the
full list is given, which includes the names, train types,
rolling stock type, length and route.

6.2.3. Infrastructure
In appendix F the infrastructure is given on a microscopic level, including the locations of the signals.
The maps are made in Inframonitor. The study area can be split up in 28 Engineering line references,

44 6. Case Study

in the infra database called ’Kilometerlint’. They identify different cartesian systems to report the curvi-
linear progressive representation of the railway tracks pertaining to a given region of the Dutch rail
network. On all lines the Dutch fixed-block NS’54/ATB-EG three aspect signalling is in use.

In the model blocks between two signals are not named. Instead of that, it uses track vacancy detection
sections as reference to a piece of track. These sections are small parts of infrastructure – varying
from 100m up to 1000m – and have a name and ID number. Often signals serve multiple sections,
so one could say that a block consists of multiple sections. It can happen that a name of a section
occurs multiple times in a network, but all sections have an unique ID. These ID numbers can be used
as reference to calculate the blocking- and buffer times later in this study. Later on in this study the
sections will be used to compare the blocking times between fixed- and moving block.

6.2.4. Route setup times
For NS’54 the following route setup times, in FRISO called ’omlooptijden’, are used:

• 2 seconds as base value to set the route
• 2 seconds as delay between locking the switches and set the signals
• Time to move a switch:

– Angle > 1:20 : 13 seconds
– 1:12 < Angle ≤1:20 : 7 seconds
– Angle ≤1:12 : 3 seconds

It is assumed that switches are set and locked parallel.

6.3. Data collection and processing
During simulation practitioners have the possibility to save the section occupation times. This dataset
has the following information:

• Section ID
• Section name
• Train name
• Entrance time [s]
• Clearance time [s]
• Kilometerlint (Line reference)
• Entrance location on the Kilometerlint [m]
• Exit location on the Kilometerlint [m]

However, all other required data, such at train trajectories and infrastructure data cannot be logged
by practitioners. Therefore, the company Incontrol [35] was asked to log this data via the back-end of
the simulation software. This resulted in three other datasets:

• Trajectory data – for each infrastructure element a train passes, the following information i.a.
was logged: Train name, train type, train length, infrastructure element (ID, name and type), line
reference, section name, braking distance and for the front and back of the train: passage time,
speed and interval time.

• Train data – every time the acceleration of the train changes due to e.g. change of slope or
a change in power usage, the state of the train will be logged. This contains i.a. the following
information: Time, location, speed, acceleration, gradient, power usage, train name and the line
reference.

• Route formation data – the times a route will be set in an interlocking area, including train name,
route name, and of the start and end location of the route: signal type, signal name, signal ID,
line reference and location on that line.

6.3. Data collection and processing 45

During the data processing it was discovered that in the section occupation dataset the Engineering
line reference Dvaw-Asb didn’t exist, while it is present in the Trajectory dataset. The sections that are
located on this line had the (neighbouring) line reference Gpda-Asra. At the moment this thesis was
published, this is the only inconsistency in the line references that is known by the author. It was not
found out that there are any inconsistencies in the ID numbers of the infrastructure elements, such as
signals and sections. Therefore the ID numbers will be used as reference to process the data in the
rest of this research, instead of the Engineering line references.

6.3.1. Fixed block blocking times
In FRISO the occupation times of the tracks can be determined in two ways: section occupation and
blocking times. In FRISO the section occupation is the time when a train enters a section until it has
completely left that section. In other words: the physical occupation time, so the running time plus
clearing time of a section. The blocking time is the time starting when a route will be set until it has
been released. For this, FRISO makes a distinction between interlocking areas and open lines, which
are parts of infrastructure without any switches. In interlocking areas a block will be reserved according
to the location of a train and its scheduled route. In some cases a single block will be reserved at a
time (Dutch: enkelvoudige route), but there are also cases where multiple successive blocks will be
reserved at the same time (Dutch: samengestelde route). In open lines a track will be reserved until
the next red signal. A red signal can occur when there is a train in front or at the entrance of a interlock-
ing area. The problem is that in both cases the blocking times are higher then one would expect when
each block is being reserved individually. For example, the full length between Abcoude and Breukelen
(12km) is marked as interlocking area. Train A120 reserves the blocks over this full length at the same
time, which results in a blocking time up to 500s. A similar thing happens in open lines, where multiple
successive blocks are reserved until the first red signal. In practise this is not a problem, because in an
open line area there are no switches, so it is impossible for any other train to enter that area. However,
this results in a longer blocking time than needed from a safety perspective, so this data cannot directly
be used to perform a capacity assessment.

To overcome this, the blocking times for fixed block signalling will be recalculated according to the block-
ing time theory, assuming an automatic block signalling rather than an interlocking area with composite
routes. For this a block is defined as the distance between two main signals. During a simulation in
FRISO the following information (i.a.) can be logged in the trajectory data:

• Train
• Signal ID, name and type (interlocking/open line)
• Line reference
• Location [m]
• Time when the front (𝑇𝑓) and back (𝑇𝑏) passes a signal [s]
• Braking distance (based on the speed the train enters the section) [m]

𝑇𝑓 is the entry time of a block and equal to the start of the running time. The start of the blocking time
can be determined by subtracting the approach, reaction and setup time from 𝑇𝑓.

For the approach time, the braking distance is important. When the braking distance (𝑙) at the previous
signal (𝑖 − 1) is shorter than the block length (𝑠𝑓,𝑖 − 𝑠𝑓,𝑖−1), then the approach time is the running time
through that block (𝑇𝑓,𝑖 − 𝑇𝑓,𝑖−1). If the length of the previous block section is shorter than the abso-
lute braking distance, then the approaching time is considered to be the running time over multiple
consecutive preceding block sections for which the sum of their lengths exceeds the absolute braking
distance. Thus, the approach time can be determined by the minimum value of:

𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 𝑇𝑓,𝑖 − 𝑇𝑓,𝑖−𝑗 (6.1)

subjected to:

46 6. Case Study

𝑙𝑖−𝑗 ≤ 𝑠𝑖 − 𝑠𝑖−𝑗 (6.2)

where: 𝑖 = index of block
𝑗 = 1,2,…,𝑖
𝑇𝑓,𝑖 = front passage time at block 𝑖 [s]
𝑠𝑖 = entrance location of block 𝑖 [m]
𝑙𝑖−𝑗 = Braking distance at previous block(s) [m]

Just as in the verification study, for the setup and reaction time two fixed values will be taken. This
will be respectively 1 and 9 seconds. The end of the occupation time can be calculated by adding the
running, clearing and release time to 𝑡𝑓. The running time is the time it takes for the front of the train to
run through the block to the next signal. The clearing time can be determined by taking the differences
of the passage time of the front and back of the train at the next signal:

𝑡𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑇𝑓,𝑖+1 − 𝑇𝑓,𝑖 (6.3)

𝑡𝑐𝑙𝑒𝑎𝑟 = 𝑇𝑏,𝑖+1 − 𝑇𝑓,𝑖+1 (6.4)

where: 𝑖 = index of block
𝑇𝑓,𝑖 = passage time (front) at block 𝑖 [s]
𝑇𝑏,𝑖 = passage time (back) at block 𝑖 [s]

The release time will be assumed as a fixed value (1 s.). The blocking times can be calculated with:

𝑇𝑆𝑡𝑎𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 = 𝑇𝑓,𝑖 − 𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ − 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑠𝑒𝑡𝑢𝑝 (6.5)

𝑇𝐸𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 = 𝑇𝑓,𝑖 + 𝑡𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 𝑡𝑐𝑙𝑒𝑎𝑟 + 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (6.6)

𝑡𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑡𝑖𝑚𝑒 = 𝑇𝐸𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 − 𝑇𝑆𝑡𝑎𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 (6.7)

On this method one exception will be taken into account. For the first block after a stop at a station,
the start of the blocking time is the time the route will be set in the route formation dataset. Otherwise
this block will already be occupied when the train arrived at the platform, resulting in a higher blocking
time.

Once the blocking times for fixed block are calculated at a signal location, the blocking times will be
copied to all sections that are served by that signal at that time, except for sections in interlocking areas.
In interlocking areas track sectional route release will be used. The end of the occupation time can be
determined by the clearing time (𝑡𝑐𝑙𝑒𝑎𝑟) in the dataset ’section occupation’ plus adding the fixed value
for the release time:

𝑇𝐸𝑛𝑑𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 = 𝑇𝑐𝑙𝑒𝑎𝑟 + 𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (6.8)

By having the blocking times for fixed block per section, these blocking times can be compared to the
blocking times for moving block, calculated later on in this study. The python script of the complete
calculation can be found in appendix D

6.3.2. Planned time-distance data
FRISO is an event-driven simulation model, which means that the software can make a logging when
an event occurs. To collect a trajectory dataset, a log has been made every time a train passes an
infrastructure element. The elements included are:

6.3. Data collection and processing 47

• Buffer stop signal
• Level crossing (7
different types)

• Auto signal
• Auto signal P
• Balise
• signal (interlock-
ing)

• Stopping mark
• ETCS Block
marker

• Line reference
point

• Platform track
• End weld
• ERTMS_IN
• ERTMS_OUT
• Border (Country)
• H_signal
• Repeat
• Height
• Map border

• Offset
• Intersection
• L_signal
• Weld
• Single weld
• Double weld
• R_sign
• Section
• Speed sign A
• Speed sign CA
• Speed sign E

• Speed sign M

• Speed sign O

• Track

• Stop sign

• TF weld

• TF weld double

• Station an-
nouncement sign

• Distant signal

• Switch

Figure 6.4: Intervals between loggings [s]

This resulted in an output of 108.836 datapoints
over the whole study area. With these data-
points the trajectories (time, location, speed) of
the trains can be constructed. This applies: the
smaller the interval between two datapoints, the
more precise the trajectory will be. About a fifth
of those datapoints are located at the same lo-
cation as another infrastructure element, result-
ing in an interval of 0 seconds in the logging of
those datapoints. Since the type of infrastruc-
ture is not important for the model, but only the
time, location, speed and braking possibility at
that location, these double loggings can be re-
moved. When that is done, 87.793 datapoints
are leftover. The time intervals are plotted in a
histogram in figure 6.4. The average interval is
4.0s and, whereof the maximum is 620s. Large
time intervals are mostly caused by a stop at at station. From approximately one third of the data-
points the interval is smaller than 1 second, half the datapoints are smaller than 1.9s and 95% of the
datapoints have a smaller interval than 11.9s. Remember that in EGTRAIN the time interval was al-
ways 1 second, so in FRISO this is a bit higher. The plots of the trajectories can be found in appendix G.

6.3.3. Rolling stock parameters
In FRISO the braking rate is an input variable. In practise and in the planning phase a braking rate of
0.5 m/s2 is used for passenger trains, so this value will be adopted as input parameter in the case study.
Besides this, in the defined model the train length was used to calculate the clearing time. However, in
FRISO in the passagetime of the front and back of the train is being logged, so the clearing time can
be calculated by subtracting these two values. This means that the train length will not be used in this
case study.

6.3.4. infrastructure characteristics
The processing of the infrastructure data will be done in the same way as described in 5.3.1. As exam-
ple, in table 6.1 a sample of the infrastructure data of train B73500 is presented. Based on the location,
the gradient has been copied to the corresponding locations in the trajectory data in table 6.2. Then
the possible deceleration has been calculated, which is the sum of the deceleration rate of the train
and the gravitational effect.

48 6. Case Study

Table 6.1: Sample of the infrastructure data

Train Line reference Location [m] Time[s] Gradient
B73500-H-1 Asra-Wmd 20126,39749 562,8275601 0,00148718
B73500-H-1 Asra-Wmd 20114,83903 563,9521665 0,0002069
B73500-H-1 Asra-Wmd 20102,06086 565,13169 0,0002069
B73500-H-1 Asra-Wmd 20025 572,0671675 0
B73500-H-1 Asra-Wmd 19976 576,4771675 -0,00115

Table 6.2: Sample of the trajectory data, where column ’Gradient’ is added from of table 6.1 and ’Deceleration’ is calculated with
eq. 4.2

Train Infra Infra Infra Line Location Time [s] Gradient Deceleration
ID name type reference [m] [m/s^2]

B73500 4397 1183B Switch Asra-Wmd 20125 562,96 0,001487 0,514589
B73500 57387 1183BT Section1 Asra-Wmd 20096 565,67 0,000207 0,50203
B73500 57386 1181A- Offset Asra-Wmd 20080 567,11 0,000207 0,50203

L-300
B73500 57385 1181A- Weld Asra-Wmd 20074 567,65 0,000207 0,50203

L-200
B73500 57384 1181AT Section1 Asra-Wmd 20049 569,90 0,000207 0,50203
B73500 4394 1181A Switch Asra-Wmd 20025 572,06 0 0,5
B73500 57381 1177A- Weld Asra-Wmd 20000 574,31 0 0,5

L-100
B73500 4391 1177A Switch Asra-Wmd 19976 576,47 -0,00115 0,488719
B73500 4390 1175 Switch Asra-Wmd 19976 576,47 -0,00115 0,488719
B73500 57129 1123B- Border Asra-Wmd 19936 580,07 -0,00115 0,488719

V-2400
1Although a section is not a point, but a piece of track, the label of a section is located at a point

6.4. Model application
In this model application the blocking times for moving block will be forecast, using the computed
blocking times for fixed block, planned time-distance data, rolling stock parameters and infrastructure
characteristics according to the method described in chapter 4. In this chapter the method has been
described for a general dataset. However, the output data of FRISO has some specifications, whereof
some can make the application easier, but for others small adaptions are needed in the model descrip-
tion. In this section it is described how the model was applied specifically to the FRISO output.

For the route setup-, reaction- and release time the same values are used as for fixed block signalling,
which are respectively 1, 9 and 1 second. The calculation of the approach-, running- and clearing time
are discussed in the following three subsections:

6.4.1. Approach time
The calculation of the approach time can be split in four steps:

1. Selection of End of Authority (EoA) locations
The blocking time will be calculated for every infrastructural element that is logged. Once the
approach time for a specific element will be calculated, it will be assigned as EoA location. The
passage time of every location is known with an accuracy of 0.0001 second, which is higher than
in the verification study where it was 1 second.

2. Construction of braking curve
An issue with the chosen study area is that a subset of trains enters the model with a passage
instead of a departure from a station. For example, in the Dutch timetable train series 2400
operates between Lelystad Centrum and Dordrecht. However, the route between Lelystad and

6.4. Model application 49

Duivendrecht is not included in the study area, so the train enters the model while it is moving with
a passage at Duivendrecht. Something similar happens with the international train A120. This
train enters the model at Zevenaar (also known as the German border nearby Arnhem) while it is
moving. The difference is that for the 2400-series it would have been possible to select a larger
study area to make sure that this train would enter the model at a standstill position, but for train
A120 this was not possible, since that part is in Germany and not included in the FRISO model.
On the other hand, in the model the tracks on the German side of the border are long enough to
gather enough data to construct a braking curve once it reaches the Dutch-German border. To
summarize it, a limitation of the model to calculate the blocking times for MB is that when a train
starts in motion, the first (couple of) sections the approach time cannot be calculated, since there
is no data of the trains when they approach these sections.

For each EoA location, a braking curve will be constructed according to the method described in
chapter 4, using a time step of 1 second.

3. Finding indication point
A disadvantage of an event-driven simulation is that the interval between two datapoints is not
fixed (see figure 6.4), both for distance [m] as for time [s]. Small intervals in the trajectory dataset
are not a problem for finding the indication point, it can even be favorable because it gives more
information about the free flow speed. However, large intervals – let’s say 5 seconds and more
– are an issue, because during that interval the train could brake or accelerate. How this is an
issue, can be seen a fictional example in figure 6.5.
Here the braking curve (red line) is being constructed (backwards in time) and the final part is
shown together with a part of the Free flow speed (blue line). Since BC2 has passed FFS1, the
speed of the braking curve will be compared to FFS2. At BC3 – the next point constructed by the
braking curve – its speed is higher than FFS2. This means that the train should brake at FFS2,
since this is the last known position before it reaches the braking curve. However, there is a large
gap between FFS2 and BC3, so braking at FFS2 is a loss of capacity. Besides, braking at BC3
would be too late, because the trains speed is higher than the braking curve at that location.
To overcome this in the free flow speed curve multiple points are added with an interval equal
to Δ𝑡 (see figure 6.5b). Between FFS1 and FFS2 the acceleration is known, so for the same
time interval as the braking curve is constructed, the extra points will be determined (FFS1a-d).
For example: between FFS1 and FFS2 the acceleration is 0.67m/s2, so the speed of FFS1a-d
is respectively 22.33, 21.67, 21.00 and 20.33m/s. BC4 has the same speed as FFS1c, so the
indication point will be set at FFS1c.
Finding the intersection point between the braking curve and the Free flow speed without the
added intermediate data points and using that as indication point is not possible. This is because
of the way the model is programmed. Because the speed at BC3 is higher than at FFS2, the
model would break out of its loop, so BC4 and BC5 would not have been constructed. Also,

(a)Without substeps (b)With substeps

Figure 6.5: Example of the construction of the final part of the braking curve

50 6. Case Study

finding the intersection point between the braking curve and the Free flow speed wíth the added
intermediate data point would have been possible, but not necessarily needed. With the previ-
ously described approach the intervals between loggings will be equal to a time-driven dataset,
so a similar accuracy is reached.

4. Calculation of approach time
The approach is the time it takes of the train to travel from the indication point to the EoA location
at free flow speed. So, the approach time can simply be calculated by subtracting the passage
time at the indication point from the passage time at the EoA location.

6.4.2. Clearing time
To calculate the clearing time, the front- and back passage time of the train can be used:

𝑡𝑐𝑙𝑒𝑎𝑟 = 𝑇𝑏,𝑖 − 𝑇𝑓,𝑖 (6.9)

where 𝑖 is the index of a section. Because both passage times were logged in the dataset, the length
of the train is not needed to calculate the clearing time.

6.4.3. Running time
When aMoving Block systems will be implemented in the Netherlands, it will be ERTMS Level 3 Moving
Block. Currently the position report (PR) is updated every 6 seconds. This can be splitted into the
following lead times [7]:

• Train integrity (TI) message to the On-Board Unit (OBU): ca 0,5- 1 sec
• OBU generates a PR: ca 0,2 - 1 sec
• OBU sends a moving authority (MA) request, together with the PR, via the GSM-R to the Radio
Block Centre RBC: ca 0,5 - 1 sec

• The RBC generates a MA: ca 0,2 - 1 sec
• The RBC sends a MA back to the OBU: ca 0,5 - 1 sec
• The OBU processes the MA: ca 0,5 - 1 sec

However, it is expected that in the future, with Packet Switched and Future Railway Mobile Communi-
cation System (FRMCS), the frequency will be reduced to 1 second. Therefore for this case study a
running time of 1 second is assumed.

On top of that, ProRail uses the following setup times for switches with ERTMS [88]:

• 2 seconds to evaluate its directions and if necessary to give order to move it
• Time to move the switch:

– Angle > 1:20 : 16 seconds
– 1:12 < Angle ≤1:20 : 7 seconds
– Angle ≤1:12 : 3 seconds

• 5 seconds for the communications to the train

Unfortunately the angle of a switch has not been logged in the dataset. A sample of the switches in the
study area is taken in Inframonitor. The most common angle is 1:15, so a setup time of 14 seconds
(2+7+5) will be used. It is assumed that switches are set and locked parallel.

For level crossings there is no extra setup time needed, since in the Netherlands level crossings
are a fail-safe system. All other places where a train should not come to a standstill (see section 2.1) –
such as steep slopes or the overhead catenary design – are not given in the logged datasets, so these
will not be taken into account.

6.5. Buffer time calculations 51

6.5. Buffer time calculations
The buffer times were calculated using eq. 4.20. Practically, it was performed by the following steps:

1. Create a dataset with all (unique) sections, consisting of column headers: SectionID, section
name, Engineering Line Reference (ELR), name of the interlocking area or open line (Dutch:
dienstregelpuntcode, DRPcode), type of area (i.e. Station, open line, yard, junction, etc). In table
6.3 an example is given.

2. Create one dataset of blocking times of all the trains, consisting of section ID, name of the
train, start- and end of the blocking time.

3. Fit all blocking times in one hour. Each train in the FRISO model was simulated once. For
example, when a train departs at 10minutes past every hour, it will depart at 600s in the simulation
model. When the route is long enough, the start of the blocking time will exceed 3600 seconds,
or even 7200s or 10800s. For the buffer time analysis, it will be less complicating to have a
clock-face schedule, e.g. all the starting time between 0 and 3600s. If at a certain point the start
of a blocking time exceeds 3600 seconds, 3600 will be subtracted from the blocking time. This
also applies to 7200, 10800, etc. This way a clock-face schedule can be created. As example,
in figure 6.6 this principle has been visualised for the South West Main Line between London
Waterloo and Surbiton.

Figure 6.6: Example of fitting all the blocking times in one hour

4. Sort the dataset of blocking times by the start of the blocking time, in such a way that
sections which are occupied first are at the top and the last occupied section is at the bottom. In
table 6.4 an example is given.

5. Assign the sorted blocking times to dataset of sections, in such a way that a dataset will
be created with all sections and when it is occupied by which train. E.g. tables from step 1
and 4 will be merged. This includes these columns: Section ID, section name, engineering line
reference, name of the interlocking area of open line, type of area, Train_1, StartOccTime_1,
EndOccTime_1, Buffertime_1, Train_2, StartOccTime_2, EndOccTime, Buffertime_2, Train_3,
etc. At this point the columns of the buffer times are still empty.

6. Repeat the first train of every section, so the buffer time between the last train of the first hour
and the first train of the next hour can also be calculated.

7. Calculate the buffer times, which is the start of the block of the following train minus the end of
the block of the leading train. An example of the final result can be seen in table 6.5.

In chapter 7 the results of the calculations are analysed en discussed.

52 6. Case Study

Table 6.3: Sample of sections

Section Section ELR DRP Type
ID Name Code
5219 1109A Asd-Rtd Ledn Station
100016 2340AT Asa-Zvg Utma Junction
17121 486AT Asd-Asa Asdm Station

Table 6.4: Sample of blocking times

SectionID Train Start [s] End [s]
5219 B2400 10,0 60,1
100016 B120 11,0 92,5
17121 A3000 12,0 54,7
100016 H3100 249,9 334,8
17121 A3900 545,8 591,0
5219 D2400 1810,0 1860,1

Table 6.5: Sample of the calculated buffer times for moving block signalling

SectionID … type Train_1 Start_1 End_1 Buffer_1 Train_2 Start_2 End_2
5219 … Station B2400 10,0 60,1 1800,0 D2400 1810,0 1860,1
100016 … Junction B120 11,0 92,5 239,0 H3100 249,9 334,8
17121 … Station A3000 12,0 54,7 533,9 A3900 545,8 591,0

7
Results

In chapter 6 the setup of the case study was explained and how the model was applied. In this chapter
the results are presented. Although the summation of blocking times to identify bottlenecks can only
be used in homogeneous traffic situations, in section 7.1 one example will be shown how this method
could be applied for the case study. In section 7.2 the minimal buffer time method is used to identify
capacity bottlenecks. These will be compared to the results generated with the tool Roberto in section
7.3.

7.1. Summing blocking times
As it has been verified in section 5.4, the summation of blocking times to identify bottlenecks can only
be used in homogeneous traffic situations. However, these situations are very limited in the Nether-
lands. Often a piece of track is used by two or more different types of trains.

In the study area a homogeneous traffic situation can be found between The Hague HS and Delft Junc-
tion, located North of Delft station. This line section will be used as example to apply this method. On
this line section there are 4 tracks, whereof two are only used by sprinters, each in one direction. In
this example a look is taken at the sprinter train from The Hague HS1 to Delft. For these sprinters the
blocking times under fixed- and moving block are calculated accordingly to the method described in
sections 6.3.1 and 6.4. The blocking times are plotted in figure 7.1.

(a) Fixed block (b) Moving Block

Figure 7.1: Sprinter services from The Hague HS to Delft Junction (dotted line: start blocking time, solid line: trajectory,
dashed line: end blocking time)

1The sections between The Hague Central Station and HS were not included in the simulation, so the dwelling time at The Hague
HS is not known

53

54 7. Results

For the same corridor the summed blocking times are plotted in figure 7.2. The orange bars are located
in the interlocking area at The Hague HS, the red bar are respectively The Hague Moerwijk and Rijswijk
and the blue bars are the first two sections of Delft Junction (see figure 7.3). In between there are open
line sections, colored in green. In the fixed block situation (fig. 7.2a) there isn’t a clear bottleneck: both
the blocks at the stations as the open lines have a high blocking time. This is different in the moving
block situation, where the stations are the main bottlenecks. When the summed blocking times are
compared, there is a clear difference between the station areas and open lines. In the open lines there
is a reduction up to 87%, while it is at Moerwijk 35% and Rijswijk 42%. The lowest reduction (11%) is
at section 466T, just before Delft Junction. This is mainly because in the fixed block situation it has a
short approach and running time, because the blocks are short and there is sectional route release at
the junction.

Note that in this situation stations Moerwijk and Rijswijk are considered as bottlenecks, but the
sprinters interfere with intercity trains at The Hague Central Station and Delft station. It is possible that
(one of) these stations are a much larger bottleneck to the capacity. With this method it is not possible
to know this, which makes it one of the limitations. To identify capacity bottlenecks in the rest of the
study area, it is needed to analyse the buffer times.

(a) Fixed block (b) Moving Block

Figure 7.2: Summed blocking times of the sprinter services from The Hague HS to Delft Junction (Sections A304AT until 466T)

Figure 7.3: Infrastructure between The Hague HS and Delft Junction (not on scale). Colors correspond to figure 7.2

7.2. Buffer times analysis
In figures 7.4 and 7.5 the buffer times of all sections in the whole study area are plotted in a histogram.
In both figures there are peaks visible at various buffer times. Since in most situations there is mixed
traffic with varying headway times, it is not possible to assign peaks to a certain traffic pattern (i.e. 4
or 6 six trains/h), except for the peak around 1750 seconds, which relates to a pattern of 2 trains/h for
that piece of track.

In figure 7.5 the fixed block histogram (fig.7.4a) has been plotted on top of the moving block histogram
(fig.7.4b), where the fixed block histogram is slightly transparent to make the moving block histogram

7.2. Buffer times analysis 55

(a) Fixed block (b) Moving Block

Figure 7.4: Histogram of the buffer times at sections in the study area

visible. Here a clear effect of moving block can be seen: the peaks are shifted towards larger buffer
times, which indicate an overall decrease in the used capacity. Besides this, the peaks are tighter,
which indicate less variation in the blocking times. A reason could be that in open lines, where trains
are moving with a constant speed, the blocking times with moving block are (more or less) constant.
In the fixed block situation there is a large variation in block lengths, due to all kind of reasons. Since
the blocking times heavily depends on the length of the blocks, there will also be a large variation in
the blocking times.

Figure 7.5: Comparison of the buffer times of Fixed and Moving block (Figures 7.4a and 7.4b combined)

In the rest of this chapter the focus is on the sections with the lowest buffer times, since this would
indicate a bottleneck. In figure 7.6 the buffer times until 60 seconds for fixed- and moving block are
plotted. These graphs show again that the buffer times increase with moving block. In the fixed block
situation there are in total 498 blocks with a buffer time lower than 60 seconds, of which 3 are lower
than 5 seconds. Probably this is not how it is planned, because in practise the train operation will be
stochastic, so this would quickly result in delays. According to the planning norms of ProRail [93] the
(minimal) buffer times on the main lines (Hoofdrailnet) are 60 seconds. A reason for the small buffer
times in the dataset could be a consequence of the assumptions that are made during the calculations
of the buffer times in section 6.3.1.

The train pairs which have the shortest buffer times are D800-B7400, H7400-B3900 and A4400-
C3500. These will be analysed in more detail in the next subsections.

56 7. Results

(a) Fixed block (b) Moving Block

Figure 7.6: Buffer times at sections lower than 1 minute in the study area

7.2.1. D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA)
In figure 7.7 the blocking time diagrams of trains D800 (IC) and B7400 (Sprinter) can be seen. Both
trains depart from Amsterdam Central Station towards Utrecht, but from respectively platforms 4b and
5c. From switch 281 in section 263BT they share the infrastructure (see figure 7.8). After D800 has
passed signal 330 the route can be set for B7400 from signal 278. Since sectional route release is
applied, section A310T will be released last, so this section is the critical section. When moving block
is applied, train B7400 has only to wait for switch 281 to be shifted and locked. This means that there
is a possibility to allow train B7400 depart earlier than it is possible with fixed block. In figure 7.7b it can
be seen that there is much more buffer time between the two trains compared to fixed block signalling.
For this part of the corridor, the blocking time reduces on average 53% with MB for D800 and 63%
for B7400. Note that the start of the moving block blocking times show multiple discontinuities, also in
figures 7.9b and 7.11b. This caused by switches which need extra setup time.

(a) Fixed block (b) Moving Block

Figure 7.7: Time-distance diagrams of train pair D800-B7400 between Amsterdam Amstel and Amsterdam Bijlmer ArenA, with
in red the location of the relevant switch and signals

Figure 7.8: Used infrastructure by D800 (green) and B7400 (yellow) at Amsterdam CS, in red the shared infrastructure

7.2. Buffer times analysis 57

7.2.2. H7400-B3900 (Duivendrecht - Amsterdam Bijlmer ArenA)
In figure 7.9 the blocking time diagrams of train pair H7400 (Sprinter) and B3900 (Intercity) can be
seen. Both trains depart from Amsterdam CS and make a stop at Amsterdam Amstel. At Amsterdam
Bijlmer ArenA the trains diverge and B3900 overtakes H7400. In figure 7.10 the infrastructure between
Duivendrecht and Bijlmer ArenA is given in detail. H7400 makes a stop at Bijlmer ArenA at platform 6.
After section 3203T has been cleared, the switch can be shifted and locked for B3900. Then B3900
passes Bijlmer ArenA via platform 8 (without a stop) and pass H7400. With fixed block section 3203T
is the critical section. With moving block the buffer time will increase. However switch 3203 will still be
the critical element, since a virtual block is applied for this location (see figure 7.9b) and time is reserved
to shift and lock the switch. For this part of the corridor the blocking time reduces on average 66% for
H7400 and 49% for B3900 when moving block signalling is applied. All in all, it can be concluded that
the buffer time increases, but the bottleneck location will not change.

(a) Fixed block (b) Moving Block

Figure 7.9: Time-distance diagrams of train pair H7400 B3900 between Amsterdam CS and Amsterdam Bijlmer ArenA, with in
red the location of the relevant switch and signals

Figure 7.10: Used infrastructure by H7400 (purple) and B3900 (cyan) between Duivendrecht and Amsterdam Bijlmer ArenA, in
red the shared infrastructure

7.2.3. A4400-C3500 (Boxtel - ’s-Hertogenbosch)
Trains A4400 (Sprinter) and C3500 (Intercity) share tracks between Boxtel (Btl) and ’s-Hertogenbosch
(Ht). In figure 7.11 the blocking time diagrams of these trains are given. At Ht both trains make a stop
– at different platforms – and A4400 continues towards Oss, while C3500 continues in the direction of
Utrecht. In figure 7.12 the infrastructure before Ht can be seen in detail, where the trains operate from
right to left. With fixed block signalling the critical block is at signal 922, because this block is longer
than the distance between signal 2242 and switch 2221 and from signal 2242 sectional route release
is applied. With moving block the critical location moves to switch 2221. Here a virtual block is applied
and it will take time to shift and lock the switch. In consequence, the blocking time will be longer than
on the tracks before the switch, resulting in a bottleneck. For this part of the corridor the blocking time

58 7. Results

reduces on average 64% for A4400 and 46% for C3500 when moving block signalling is applied.

In the above three examples the blocking time reduction for sprinters is larger than for intercity trains.
When data of the whole study area is analysed, the same pattern is visible. On average the blocking
time for sprinter trains reduces with 57%, for intercity trains 49% and high speed lines 45%. This could
be explained by the fact that with an (average) higher speed, the approach and running times with fixed
block signalling will be lower. This means that the time differences between fixed and moving block
will be smaller for faster trains.

(a) Fixed block (b) Moving Block

Figure 7.11: Time-distance diagrams of train pair A4400-C3500 between Boxtel and ’s-Hertogenbosch, with in red the location
of the relevant switch and signals

Figure 7.12: Used infrastructure by A4400 (green) and C3500 (blue) before ’s-Hertogenbosch (Ht), in red the shared infrastruc-
ture. Figure not on scale.

7.2.4. Critical sections
A critical section is a section with the minimal buffer time between two blocking times. For each train
pair in the dataset a critical section can be determined. To discover a possible trend in the set of all
critical sections, the critical sections can be organized in three different categories: Section ID, name
of the area where the sections are located (name of station or junction) and type of area.

In table 7.1 the categories are presented in three tables. In table 7.1a the top 12 stations with most
critical sections for fixed block are given. What can be noticed is that the area around Hoofddorp is
largely present in this list. Three reasons can be mentioned: first, it is a busy area between Schiphol
and Leiden and also the High Speed line between Rotterdam and Schiphol merges here. Second,
there are a lot of shunting movements of empty rolling stock to and from the yard, especially at Hfdm
and Hfdo. Third, the number of tracks change here from 4 to 2 (and v.v.), so this makes it a physical
bottleneck. Besides Hoofddorp, the top 12 is dominated by large stations: Utrecht CS, Arnhem CS,
Eindhoven and Amsterdam CS. This is mainly because a lot of trains serve these stations. Note that
this case study considers only 4 corridors of the Netherlands, so these are not necessarily the most
critical stations in the Netherlands.

When a look is taken at the type of area, it can be seen that the amount of critical locations at stations
increases, especially at stops (Dutch: Haltes). The difference between stops and passenger stations is
that at passenger stations it is possible to change tracks via switches, while at stops this is not possible.

7.2. Buffer times analysis 59

Table 7.1: Number of critical sections in the study area deviated for different categories

(a) Sorted per area (DRP)

FB MB
Utrecht CS, Ut 42 32
Arnhem CS, Ah 41 45
Eindhoven, Ehv 36 32
Hoofddorp m., Hfdm 36 40
Hoofddorp yard, Hfdo 32 35
Amsterdam CS, Asd 30 33
s-Hertogenbosch, Ht 26 26
Geldermalsen, Gdm 20 22
Sittard, Std 20 22
Hoofddorp, Hfd 16 6
Maastricht, Mt 15 13
Dijksgracht west, Dgrw 13 2

(b) Sorted per section (6 train pairs and higher)

Fixed block Moving block

Section DRP1 N2 Section DRP1 N2

1104BT Hfd 8 1181BT Hfdo 8
1183BT Hfdo 8 141AT Nm 8
141AT Nm 7 1183BT Hfdo 8
2135T Ah 6 1125T Hfdm 7
1181BT Hfdo 6 537T Gdm 6
1177BT Hfdo 6 115BT Ehv 6
115BT Ehv 6 744BT Asdz 6
A1162T Hfdm 6 754T Asdz 6
754T Asdz 6 1129BT Hfdm 6

1523T Dvaw 6

(c) Sorted per type of area

Fixed block Moving block n3 ΔBT [s]4 ΔBT [%]4

Station
Terminal (Ut, Asd) 72 10,6% 65 9,5% 21 65,3 17,0
Passenger station 370 54,3% 383 56,2% 160 67,0 32,0
Stop (NL: Halte) 28 4,1% 50 7,3% 15 91,5 77,9
Border station 2 0,3% 3 0,4% -

Junction
Connection 33 4,8% 55 8,1% 12 26,5 10,3
Crossover 57 8,4% 59 8,7% 21 64,8 49,6

Open line 87 12,8% 25 3,7% -
Cargo yard 32 4,7% 39 5,7% 34 63,2 37,4
Bridge - 2 0,3% -

Sum 681 681 263

1Dienstregelpunt, name of area; 2Number of train pairs; 3Number of train pairs for which the critical
section doesn’t change; 4Absolute/relative average difference between FB- and MB Buffer time of n;

Also the number of critical locations at junctions increases, while there is a large decrease in open line
areas. With the examples in subsections 7.2.1 to 7.2.3 in mind, one can conclude with moving block a
large part of the critical locations move towards switches, located in station and junction areas. There
are also a few exceptions, where the critical block for two trains remain in open lines. Most of these
cases concerns a sprinter or stops train departing after an IC. Since a sprinter train accelerates faster
than an IC, the buffer time will reduce for the first couple of kilometers. However, at a certain point the

Figure 7.13: Rolling stock turning around at Nijmegen (Nm). In red shared infrastructure

60 7. Results

Figure 7.14: Intercity trains merging and diverging between Duivendrecht and Amsterdam South. In red shared infrastructure

sprinter train has to brake for a stop, while the IC continues. This results in a critical location in an open
line area.

When the focus is on sections individually, Hoofddorp is again present in the list of sections which
are most critical (Table 7.1b). Two sections outside of Hoofddorp, which are both present in the list
of fixed- and moving block, will be highlighted. First, section 141AT, which is in extension to platform
3 at Nijmegen (Nm). The infrastructure layout is presented in figure 7.13. For multiple lines this is
the end/start station, so actually rolling stock turn around at this station to operate another line. With
moving block, the new train pair at this section is H3100-O3000. With fixed block the critical section
for this train pair was A88BT, which is next to 141AT. Secondly, section 754T, which is located at plat-
form 3 at Amsterdam Zuid (Asdz) (see figure 7.14).This is the critical section for IC trains coming from
Amsterdam CS (via Diemen) and Utrecht CS. This also applies in the opposite direction, where 744BT
is the critical section (platform 2). However, with fixed block the critical section is 764CT at station
Amsterdam RAI.

Considering a reduction of the blocking times and possible shift of bottlenecks, the minimum buffer
time – without timetable compression – between two trains increases on average by 75 seconds. This
corresponds to an average increase of 60%. Unfortunate it is not possible to make a direct distinction
per type of area. Because the critical section of two trains may change between fixed- and moving
block, the set of train pairs which have a critical section in a certain type of area are not the same. This
means these cannot be compared. Only train pairs for which the critical section won’t change can be
taken into account for this comparison. In total, this applies for 263 train pairs. In table 7.1a this is
divided per type of area. For example, 160 of them have a critical section in a station area, where the
average buffer time increases by 67 seconds (31%). It can be concluded that on average the buffer
time increases in all type of areas.

7.3. Roberto
Besides the collected data, FRISO generates also an input file for Roberto. Roberto is used to calcu-
late the minimal headway times between two trains and to determine the critical block in undisturbed
circumstances. In the current version of Roberto (5.1.0.6) the user can choose between two different
signalling systems: NS’54 and Driving On Braking Distance (ORR, Dutch: Op Remweg Rijden). In this
second option the minimal headway is equal to the clearing time plus the approach time. Compared
to moving block, ORR does not include the route setup-, reaction-, release time and extra setup time
for switches. These time components are all assumed to be constant and sum up to 25s (1+9+1+14).
This means that ORR would be comparable to a moving block signalling system, so the case study
results can be compared to the output of Roberto.

7.3. Roberto 61

In this section the capabilities of Roberto will be shown. Roberto can identify critical blocks by com-
pressing the train path of the following train as close as possible to the leading train. This feature can
be used to validate the results in section 7.2. Also, using the calculated blocking times, the minimum
headway times can be determined. These can be compared to theminimum headway times of Roberto,
both with fixed- as moving block. This way capacity gains of moving block can be determined and at
the same time experience with Roberto will be gained, so it is possible to make recommendations how
the model to estimate moving block blocking times can be implemented in Roberto and answer the
research question how the defined method can support ProRail.

One important thing to note is that Roberto makes use of the Protected Zone Model for NS’54 instead
of the Blocking time theory. The basic idea is that behind every train, the signalling system provide a
certain zone to protect that train against following trains. In case of NS’54 this zone is a block length
between two signals. Figure 7.15 visualises the model. The protected zone can be divided into two
parts. First, there is the part of absolute protection (in red). This part consists of all track sections the
protected train has exclusive authority for. Second, there is the part in which other trains are forced to
slow down (in yellow) to prevent them from running into the part of absolute protection. The protected
zone is at its maximum (fig. 7.15b) when the train is going to release the block. When the block has
been released, the zone is at its minimum (fig. 7.15c). The main difference between the protected zone
model and the blocking time theory is that the approach time is added at the end of the occupation of
the block section instead of the beginning. This means that the minimal headway time fully depends
on the leading and how fast it clears a block. In the blocking time theory the approach time depends
on the speed of the following train. Because of this, one will see time difference between the minimal
headway time of Roberto and the model.
Although the protected zone model works well for traditional signalling systems, such as NS’54, it has
also its limitations. It cannot handle cab signalling systems in which the signalled distance depends
on the actual speed of the train, such as moving block systems [32, p.33-34]. Therefore, the protected
zone model is not used for ORR.

Figure 7.15: The protected zone model (Source: Hansen and Pachl [32], p.34)

In the following three subsections the same train pairs will be analysed as in the previous section. The
results of the defined and developed model in this thesis, in the rest of this chapter referred to as the
model, will be compared to the outcome of Roberto. The layout of the infrastructure of each example
can be found in section 7.2. Unfortunate with Roberto it is not possible to determine the minimum
headway times for all trains at once. Given the size of the study area, it will be very time consuming to
apply Roberto for each train pair. Therefore it is not possible to give any main findings or conclusions
between the results of the defined model and Roberto, i.e. the difference in buffer times or minimum
headway times.

62 7. Results

7.3.1. D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA)
In figure 7.16 the compressed time-distance diagram is given for train pair D800-B7400 operating un-
der NS’54. The trains are presented by three lines: sight-and-reaction-time line, front of the train and
back of the train. The colors of the signals are presented by a red, yellow and orange line. When the
train has entered a block, the signal turns red. After the block has been released, the signal will turn
yellow and the previous signal turns green. The orange lines present a yellow light in combination with
a number on the signal. The blue background shows that trains use the same infrastructure on that
part of the track. On the left side of the figure names and locations of the signals are given, of which
the blue name is the critical signal according to Roberto.

In figure 7.17 a similar figure is given, but in this case ORR is applied. Here the first blue line presents
the braking distance (or approach time). As one could see (also in figures 7.19 and 7.21), there are
some errors in the calculation of the braking distance, where it sometimes falls back to the last station
it has passed. However, in general the braking distance line has a very similar pattern as the start-
of-the-blocking-time line with moving block, for example in figure 7.7. One major difference is that in
moving block there is time reserved for switches, which is not considered in ORR.

Figure 7.16: Compressed train paths of trains D800 (Sprinter) and B7400 (Intercity) operating under NS’54, made in Roberto

Figure 7.17: Compressed train paths of trains D800 (Sprinter) and B7400 (Intercity) operating on braking distance (ORR), made
in Roberto

7.3. Roberto 63

In table 7.3 the corresponding headway- and buffer times of figures 7.16 and 7.17 are given for all
signals that the trains pass, including the first switch. The abbreviations of the column headers and
terminology used in Roberto are explained in table 7.2. In Roberto, the local- and global headway time
(HWT) is calculated for a compressed situation. This means that the buffer time (BT) at each signal
in Roberto can be determined by the difference between the local- and global headway time. Besides
this, the shift from an uncompressed, e.g. the timetable, to compressed situation can be calculated by:

𝑇𝑆ℎ𝑖𝑓𝑡 = 𝐻𝑊𝑇 − 𝐺𝑙𝑜𝑏𝑎𝑙 𝐻𝑊𝑇 (7.1)

In the developed model of this research the buffer time for each section is calculated by subtracting
the end of the blocking time of the leading train – in this case B800 – from the start of the blocking
time of following train, here B7400. It is important to note that this buffer time is for an uncompressed
situation, while in Roberto it is in a compressed situation. In other words, when Roberto and the model
would produce the same results, then:

𝐵𝑇𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑆ℎ𝑖𝑓𝑡;𝑅𝑜𝑏𝑒𝑟𝑡𝑜 + 𝐵𝑇𝑅𝑜𝑏𝑒𝑟𝑡𝑜 (7.2)

When the buffer times of the model has been determined, the minimal headway time can be calcu-
lated by the difference of the headway time in the timetable and the minimal buffer time of the whole
line section.

According to Roberto with fixed block B7400 could be shifted by 15 seconds towards D800, while the
model indicates a possible shift of 3 seconds. According to the data – used as input in the model –
B800 releases the critical block at 417s, while B7400 sets the route at 420s. It is likely that there is
a difference in the simulation settings between Friso and Roberto, but it couldn’t be found what this
difference is. When ORR would be applied, B7400 could be shifted by 127 seconds. In case of moving
block the shift would be 111,5 seconds. This difference has mainly to do with shifting and locking switch
281. Besides this, there are (small) differences between the calculated approach time in the model and
in Roberto (ΔAT). These differences – including the difference in clearing time (ΔCT) – can be seen in
table 7.4. In Friso the braking distance (in meters) is calculated with a constant deceleration, so any
changes in gradient are not taken into account. This leads to small differences in the results. However,
also larger differences can be found in the table, such as the approach time for signal 3198 (15s.).
Probably the model has a large error when it calculates the approach time for this signal. Unfortunate
Roberto doesn’t produce one output file with all approach times of the whole study area, so it will be a
very time consuming to gather the buffer times of all train pairs and perform a full comparison study.

Table 7.2: Abbreviations of tables 7.3 to 7.8.

Abbreviation Definition
T Type of infrastructure element: Switch, Open line signal, Interlocking signal

HWT Headway time according to the timetable

Local HWT Minimal local headway time by considering only that signal, i.e. red and yellow
time

Global HWT Minimal Global Headway time. Term used in Roberto and synonym for minimal
headway time. Global HWT = Local HWT + BT𝑅𝑜𝑏𝑒𝑟𝑡𝑜

Min. HWT Minimal headway time. Min HWT = HWT −𝑚𝑖𝑛(𝐵𝑇𝑀𝑜𝑑𝑒𝑙)
BT Buffer time

Approach time Time to run through the braking distance (Dutch: remtijd)

Clearing time Calculation of the clearing time in Roberto: Clearing time = HWT – Approach time
– BT. In the model it is calculated accordingly to chapter 4.

ΔCT = 𝐶𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑅𝑜𝑏𝑒𝑟𝑡𝑜
ΔAT = 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑀𝑜𝑑𝑒𝑙 − 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑅𝑜𝑏𝑒𝑟𝑡𝑜

64 7. Results

Table 7.3: Headway- and buffer times for train pair D800-B7400 between Amsterdam CS and Amsterdam Bijlmer ArenA

Fixed Block ORR Moving Block

Roberto Model Roberto Model

Signal T HWT Local BT Global BT Min. Local BT Global BT Min.
Name HWT HWT HWT HWT HWT HWT

281 S 158,3 141 2 143 3,0 155,3 141 -109 32 111,5 46,8
330 I 158,3 116 27 143 19,7 155,3 116 -85 31 114,9 46,8
707 O 160,7 119 26 145 41,7 157,7 119 -85 34 121,9 49,2
717 O 169,1 124 30 154 50,8 166,1 124 -81 43 129,1 57,6
406 I 174,1 120 38 158 53,8 171,1 120 -73 47 133,4 62,6
482 I 180,7 107 58 165 61,9 177,7 107 -53 54 138,0 69,3
490 I 255,0 119 120 239 179,5 252,0 119 9 128 228,0 143,5
611 O 255,6 212 28 240 137,5 252,6 212 -83 129 212,6 144,1
613 O 256,0 204 36 240 66,8 253,0 204 -75 129 209,9 144,5
615 O 239,1 133 90 223 89,9 236,1 133 -21 112 208,8 127,7
617 O 234,1 127 91 218 150,2 231,1 127 -20 107 204,3 122,7
621 O 227,9 100 112 212 137,4 224,9 100 1 101 186,8 116,4
3198 I 227,3 65 147 212 149,1 224,3 65 36 101 187,1 115,8
3208 I 317,3 42 259 301 124,1 314,3 42 148 190 287,9 205,8

Table 7.4: Comparison of approach- and clearing times of train pair D800-B7400 between Roberto and the model

Roberto (ORR) Model (MB)

Signal Type Global Approach BT Clearing Clearing Approach ΔCT ΔAT
Name HWT time time time (D800) time (B7400)

330 I 31 12 1 18 19,4 12,0 1,4 0,0
707 O 33 13 7 13 14,1 12,6 1,1 -0,4
717 O 42 13 14 15 15,4 12,6 0,4 -0,4
406 I 47 13 19 15 15,5 13,2 0,5 0,2
482 I 53 16 24 13 14,1 16,6 1,1 0,6
490 I 128 9 108 11 11,1 3,8 0,1 -5,2
611 O 128 20 98 10 11,1 19,9 1,1 -0,1
613 O 129 18 91 20 20,2 13,9 0,2 -4,1
615 O 112 12 86 14 14,5 3,8 0,5 -8,2
617 O 107 17 81 9 9,9 8,0 0,9 -9,0
621 O 101 26 67 8 8,2 20,9 0,2 -5,1
3198 I 100 35 57 8 8,2 20,0 0,2 -15,0
3208 I 190 11 172 7 7,5 9,9 0,5 -1,1

With such a file it would become easier to find any pattern in the performance of the model compared
to Roberto. Despite these errors, in all cases the critical location is at switch 281.

7.3.2. H7400 - B3900 (Duivendrecht - Amsterdam Bijlmer ArenA)
In figures 7.18 and 7.19 the time distance diagrams of train pair H7400-B3900 are shown for respec-
tively NS’54 and ORR. This train pair is a good example how NS’54 limits the capacity and how a
moving block system could improve this. The critical block is at signal 617, located between two sta-
tions where trains operate at full speed. The length of the block prevents a possible shorter headway
time. In case of ORR the critical location moves to the end of the line section at Duivendrecht (Dvd),
although at station Amsterdam Amstel (Asa) the buffer time is also very short. Note that there is no
signal at the end of this line section, so Roberto doesn’t give the buffer- and headway time in the output.
In consequence, the buffer- and headway at that location is not given in table 7.5, but in figure 7.19 it
can be seen that the critical location is at switch 3203.

7.3. Roberto 65

Figure 7.18: Compressed train paths of trains H7400 (Sprinter) and B3900 (Intercity) operating under NS’54, made in Roberto

Figure 7.19: Compressed train paths of trains H7400 (Sprinter) and B3900 (Intercity) operating on braking distance (ORR),
made in Roberto

When the results of the model are compared to Roberto, first it can be noticed that the critical block
is different. It is likely that this is because NS’54 makes use of signals with speed limits, which was
not taken into account in the calculation of the fixed block blocking times. Secondly, with fixed block
the minimal (global) headway is in Roberto on average 36s longer than in the model, which could be
a result of the different determinations of the critical block. Third, both with ORR as moving block the
critical location moves to the end of the line section at switch 3203. On average there is a difference
of 27 seconds between the minimal (global) headway of ORR and moving block, which is close to the
expected difference of 25 seconds. However, this difference depends on the minimal headway time at
the critical block, which depends on the performance of the model. In other words: when the model
has a (large) error at the critical block, it will immediately have effect on the minimal headway time on
the rest of the line section.

66 7. Results

Table 7.5: Headway- and buffer times for train pair H7400-B3900 between Amsterdam CS and Amsterdam Bijlmer ArenA

Fixed Block ORR Moving Block

Roberto Model Roberto Model

Signal T HWT Local BT Global BT Min. Local BT Global BT Min.
Name HWT HWT HWT HWT HWT HWT

281 S 259,2 139 153 292 157,2 256,6 139 68 207 208,0 234,1
330 I 259,2 124 168 292 121,5 256,6 124 83 207 220,9 234,1
707 O 259,0 133 159 292 134,5 256,3 133 74 207 222,9 233,9
717 O 254,3 131 156 287 135,8 251,7 131 71 202 215,6 229,2
406 I 245,7 199 80 279 131,1 243,1 199 -5 194 201,8 220,6
482 I 237,6 232 39 271 55,6 235,0 232 -46 186 199,4 212,5
490 I 163,4 113 83 196 91,7 160,7 113 -2 111 128,0 138,3
611 O 162,7 187 9 196 51,1 160,1 187 -76 111 122,7 137,6
613 O 161,9 140 55 195 2,6 159,3 140 -30 110 119,0 136,8
615 O 175,4 79 130 209 21,7 172,8 79 45 124 150,0 150,3
617 O 182,0 215 0 215 96,5 179,4 215 -84 131 155,3 156,9
621 O 185,1 200 18 218 84,9 182,4 200 -67 133 146,2 160,0
3198 I 181,3 162 52 214 16,4 178,7 162 -33 129 132,4 156,2
3208 I 93,1 53 73 126 16,4 90,4 53 -12 41 43,5 68,0
3203 S 87,9 25,1 62,8

Table 7.6: Comparison of approach- and clearing times of train pair H7400-B3900 between Roberto and the model

Roberto (ORR) Model (MB)

Signal Type Global Approach BT Clearing Clearing Approach ΔCT ΔAT
Name HWT time time time (D800) time (B7400)

330 I 207 12 182 13 14,2 12,0 1,2 0,0
707 O 207 13 181 13 12,6 11,4 -0,4 -1,6
717 O 202 14 175 13 12,6 14,0 -0,4 0,0
406 I 193 16 163 14 15,5 16,4 1,5 0,4
482 I 185 16 160 9 10,3 15,8 1,3 -0,2
490 I 111 14 89 8 8,8 14,6 0,8 0,6
611 O 110 20 83 7 8,1 19,9 1,1 -0,1
613 O 110 19 77 14 14,0 16,9 0,0 -2,1
615 O 123 8 106 9 9,0 4,4 0,0 -3,6
617 O 130 15 109 6 6,1 8,6 0,1 -6,4
621 O 133 23 104 6 6,0 20,9 0,0 -2,1
3198 I 129 28 92 9 9,4 27,5 0,4 -0,5
3208 I 41 28 5 8 8,3 29,3 0,3 1,3

7.3.3. A4400-C3500 (Boxtel - ’s-Hertogenbosch)
In figures 7.20 and 7.21 the compressed time distance diagrams of train pair A4400-C3500 between
Boxtel (Btl) and ’s-Hertogenbosch (Ht) are shown for respectively NS’54 and ORR.

According to Roberto the critical block is at signal 310. The main reason is that the blocks between
signals 310 and 922 and between 922 and 2242 are relatively long, resulting in a long blocking time.
Besides this, when A4400 has passed switch 2221 (at 5582s), it will be shifted and locked. This means
that signals 2242 and 922 can turn green at the same time. Consequently, the blocks after signals 922
and 2242 are relatively short occupied, which makes signal 310 the critical block. However, this works
only for this specific train pair and because Roberto uses the protected zone model. At Ht both trains
use different tracks, so they can have a short headway time before that station. In comparison, in the
blocking time theory the blocking times will be calculated independent of other trains on the tracks.

7.3. Roberto 67

Figure 7.20: Compressed train paths of trains A4400 (Sprinter) and C3500 (Intercity) between Boxtel and ’s-Hertogenbosch
operating under NS’54, made in Roberto

Figure 7.21: Compressed train paths of trains A4400 (Sprinter) and C3500 (Intercity) between Boxtel and ’s-Hertogenbosch
operating on braking distance, made in Roberto

According to this theory signal 922 is the critical block (see table 7.7 and figure 7.11). On the other
hand, one could also argue that signal 310 is yellow because signal 922 is red, so signal 922 would be
the bottleneck.

Both with ORR as moving block the critical location moves to switch 2221, which is the end of the line
section. Note that Roberto only calculates the buffer- and headway times for the first switch of the
line sections and all signals, so the numbers of Roberto for switch 2221 are not included in table 7.7.
Between the minimal (global) headway time of ORR and moving block is an average difference of 17s,
instead of the expected 25 seconds. For this train pair it is harder to explain this difference. The critical
location is at switch 2221, but Roberto gives only the approach time for signals. Looking at tables 7.4
and 7.6 an error of 7 seconds could happen, however in table 7.8 the time differences are all within 1
second. Unfortunate due to missing data it is not possible to explain the reason with certainty of the
minimal headway time difference.

68 7. Results

Table 7.7: Headway- and buffer times for train pair A4400-C3500 between Boxtel and ’s-Hertogenbosch

Fixed Block ORR Moving Block

Roberto Model Roberto Model

Signal T HWT Local BT Global BT Min. Local BT Global BT Min.
Name HWT HWT HWT HWT HWT HWT

1101A S 308,3 122 186 308 222,1 299,3 122 59 181 241,4 198,5
622 I 297,6 108 190 298 186,5 288,6 108 63 171 247,4 187,8
618 O 298,7 95 204 299 190,2 289,7 95 76 171 248,4 188,9
614 O 300,5 89 212 301 203,3 291,5 89 84 173 251,1 190,7
610 I 302,0 195 107 302 211,3 293,0 195 -20 175 252,3 192,2
604 I 303,4 254 50 304 116,2 294,4 254 -77 177 253,3 193,6
310 I 213,1 213 0 213 74,2 204,1 213 -127 86 157,1 103,3
922 O 179,7 151 30 181 9,0 170,8 151 -98 53 139,9 70,0
2242 O 168,3 75 93 168 80,1 159,3 75 -34 41 126,6 58,5
2221 S 162,8 109,8 53,1

Table 7.8: Comparison of clearing- and buffer times of train pair A4400-C3500 between Roberto and the model

Roberto (ORR) Model (MB)

Signal Type Global Approach BT Clearing Clearing Approach ΔCT ΔAT
Name HWT time time time (D800) time (B7400)

622 I 170 34 132 4 4,4 33,9 0,4 -0,1
618 O 171 34 134 3 4,0 34,4 1,0 0,4
614 O 173 34 136 3 4,0 33,5 1,0 -0,5
610 I 174 34 137 3 4,0 33,7 1,0 -0,3
604 I 176 34 138 4 4,4 33,7 0,4 -0,3
310 I 85 34 42 9 9,9 34,0 0,9 0,0
2242 O 41 19 12 10 10,9 18,8 0,9 -0,2

8
Discussion

In this chapter three topics are discussed. First, the limitations of the model to estimate the blocking
times for moving block. Second, another way to calculate the approach time is discussed. Last but not
least, it will be discussed if realised data can be used as input data for the model.

8.1. Limitations of the model
The model as described in chapter 4 has a couple of limitations:

• Disturbances and delays
Since the minimal headway time is different between fixed- and moving block signalling, with both
systems trains will operate differently in case of disturbances and/or delays. With moving block
the blocking time is shorter, so tracks can be released earlier. This means that a following train
can also continue earlier than with fixed block, resulting in a complete different operations [84].
However, this model only calculates the buffer times, so it will not change the trajectory of trains.
Therefore this model is suited for capacity studies and planning support, but should not be applied
for disturbed situations.

• Quality of dataset
In chapter 5 the model was verified by a dataset produced with EGTRAIN, a time-driven simu-
lation model. Then, the model was applied to a dataset produced with FRISO, an event-driven
simulation model. This difference is not important for the model, since both datasets contains all
the needed information. However, the interval of the data is more important. If the intervals are
smaller, the trajectory and course of the gradient can be reconstructed more precise, resulting in
a much more precise estimation of the blocking time.

• Approach time calculation at stops
When the model would be simplified by ignoring gradients and assuming constant braking, the
approach time could be calculated by:

𝑡𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ =
𝑉
2𝑎 (8.1)

where: 𝑉 = Speed [m/s]
𝑎 = Deceleration (braking rate) [m/s2]

When a constant braking of 0.5𝑚/𝑠2 is assumed, which was also the braking rate of trains in the
case study, one could say that 𝑡 ∼ 𝑉. This means that when the approach time and speed would
be plotted in the same graph, both lines would overlap. This has been done in figure 8.1 for a
sprinter and intercity train.
In the plots there are peaks visible when a train brakes for a stop at a station. In the figures it
seems that the trains do not brake to full standstill, but actually they do. FRISO makes a logging
when it passes an infrastructural element, which means the train is moving. So all moments when

69

70 8. Discussion

(a) A7300 (SPR) from De Haar Junction to Breukelen (b) O3000 (IC) from Arnhem to Amsterdam Amstel

Figure 8.1: Approach time and speed diagrams for two trains

a train stand still are not captured in this trajectory dataset. When a train stops, the passage in-
terval time between two elements increases. The interval time is directly used in the calculation
of the approach time, resulting in errors such as the peaks in figure 8.1.
Although the standstill moments are not present in the trajectory dataset, the arrival, departure
and passage times at every station were captured in a separate dataset. This could have been
used to overcome this problem. According to author’s observation it hadn’t an impact on the cal-
culation of the blocking- and buffer times. Also in the blocking time diagrams, such as figures
7.7b, 7.9b and 7.11b, this effect was not directly noticeable.
Remember that the dwelling time at stations should have been included in the running time (see
section 4.1). Because the arrival and departure times were not included, the dwelling time at
stations (for the running time) was not included in the calculations. Taking this into account, the
long approach times were canceled out by missing the dwelling times. To conclude, it could be
that there is an error of a couple of seconds of the blocking times at stations, but this hadn’t an
affect on the identification of bottlenecks.

8.2. Calculation of approach time
Remember that the approach time was calculated based on this formula:

𝑠(𝑡) = 1
2𝑎𝑡

2 + 𝑣0𝑡 (8.2)

where: 𝑠 = Distance [m]
𝑡 = Time period [s]
𝑎 = deceleration during t (see eq. 2.3) [m/s2]
𝑣0 = Speed before the train brakes [m/s]

In chapter 4 it was explained that the braking curve (BC) was constructed in time steps. Based on the
gradient at the previous datapoint, a piece of the BC was constructed. In the case study time steps of
1 second were used. However, the consequence is that these pieces are between two datapoints of
the trajectory dataset. This has been made visible in figure 8.2a, were each red dot is a new piece of
the BC. With this approach the gradient for each new piece is not exactly known at that location, but
the gradient of the previous datapoint in the trajectory dataset is used.

Now, the approach time could also be calculated in a different way, which has been made visible in
figure 8.2b. Instead of constructing the BC in fixed time steps, it could also be calculated by taking
the distance between two datapoints in the trajectory dataset. This means that 𝑠 is given and 𝑡 should
be found by solving eq. 8.2. In this way each red dot is at the same position as the blue dot, so the
gradient is exactly known. Then the speed 𝑣 can be found with 𝑣 = 𝑠 ⋅ 𝑡. Once the indication point has
been found, the approach time could be calculated can be calculated in the same way as described in
chapter 4.

8.3. Model application with realised data 71

(a) Construction per time step (b) Construction per distance step

Figure 8.2: Construction of the braking curve (in red) for a certain location of the sprinter A4400 (Blue)

At first sight it can be noted that the BC per time step overall is much more precise. However, the
goal of the construction is to find the indication point. Based on the figures it seems that both methods
have the indication point at the same location. It is likely that the result is different, but it seems more
a difference of tenths of a second, than a couple of seconds.

8.3. Model application with realised data
In this thesis it was shown how the model to estimate the occupancy time for moving block can be used
with simulated data. An unanswered question is if the model can also be used for realised data from
the outside world.

In trains there are multiple tracking systems present. Most of those systems use GPS to locate the
train. First, there is MTPS, a rolling stock position service device. It logs the time, position and speed
of the train once every ten seconds. This large time interval is a disadvantage of the system. Since
this system is not used for the safety of the train, so it is not very precise. Also with GPS it cannot
be determined which track a train uses – in case of multi-track lines – and the exact time a section or
block is released. For this, other systems are needed, such as TROTS (Train detection & Tracking
system)[91]. An advantage of MTPS is that most rolling stock in the Netherlands are equipped with this
system, so this would cover the whole network.

A similar system to MTPS is Realtime Train Monitoring (RTM) system. This system logs the train
behaviour more frequently, however only a part of the rolling stock are equipped with it [18].

A third system is the on-board safety system ORBIT. This system was installed to reduce the num-
ber of red-light passages by warning the train driver [61]. It calculates the braking curve based on the
location, speed and weight of the train[103]. Because it is a safety system, in general the logged data
is very accurate. However, it is not a fail-safe system, and because it uses a GPS-connection, inaccu-
racies can occur in tunnels. A big disadvantage is that it only logs data when a train is approaching a
red signal, so when a train should brake. This makes this data not usable for the model, since data is
needed of the complete trajectory.

A fourth logging system is QATS. QATS is developed for the monitoring and troubleshooting of
ERTMS L2, L3 and interlocking [26]. This system logs the ETCS Trains Position and status reports,
so it is much more precise than GPS data. However, it is only available on tracks where ERTMS is
equipped, so in the Netherlands it is only available for a few lines.

To conclude, there are multiple different data sources that can be used. However, all mentioned dis-
advantages can be covered by using data out of a simulation model. Besides, the model is suited for
planned operations, so one should scan the realised data for disturbances. So when the simulation
model can describe real operations accurately and precise, data out of a simulation model would be
preferred.

9
Conclusion & recommendations

This chapter provides the conclusions that can be drawn from this report. The research questions that
were asked in the introduction will be answers in section 9.1. In section 9.2 recommendations on future
research and improvements to FRISO will be given.

9.1. Conclusion
Timetable compression method
What are the shortcomings in the timetable compression method and which solutions do exist?

The timetable compression method is arguably the most widely used method to assess rail capacity.
Since it was published in 2013, multiple shortcomings and limitations are addressed in literature, but
also solutions are proposed.

Based on a literature review, Bešinović and Goverde 2018 concluded that there are four open chal-
lenges. For two of these challenges they propose a solution. First, there is shortcoming the capacity
assessment method for nodes. UIC Code 406 proposes to decompose a node in a switch and platform
area and evaluate each segment independently. Rotoli et al. gave a simplified approach, using this
decomposition and by assuming a general node layout. However, by decomposing the nodes, route
dependencies will not be considered, leading to underestimation of capacity occupation. To overcome
this, Bešinović and Goverde introduced an analytical max-plus automata model.

A second limitation is the length of the decomposed line sections, which affect the resulting capacity
occupation. As solution, Bešinović and Goverde proposed a network model for capacity assessment
that preserves microscopic detail of the infrastructure and all train dependencies using max-plus alge-
bra.

One of the remaining limitations is due to the network decomposition to line sections. Just as with
nodes, train dependencies will be neglected, resulting in an underestimated capacity occupation. The
other remaining limitation is the interpretation of Code 406. Where lines should be decomposed and
the occupancy- and additional time rates are guidelines. Infrastructure managers should keep their
own experience in mind when they apply the method. This means that the occupancy time rates of
lines can exceed the proposed time rates in the leaflet when it still leads to reliable train operations.

The original purpose of the UIC 406 capacity method was to measure capacity occupation of a given
timetable [10]. This is not the purpose of the model presented in this research, so it does not intend
to substitute the UIC 406 leaflet. However, this research still provides a method to quickly come to a
capacity assessment while overcoming some of the limitations of the UIC 406. For example, for the
model it is not needed to decompose the network. Also the occupancy- and additional time rates are
not being used, so the model bypasses this remaining limitation.

73

74 9. Conclusion & recommendations

Data-driven capacity assessment methods
Which potential data-driven methods to assess capacity do exist?

In the search for potential data-driven capacity assessment methods for railways, a literature review is
performed focusing on aviation, road traffic and maritime transport.

In aviation a small error can lead to a fatal accident, so a large number of sensors are embedded to
increase safety. These sensors produce large amount of data (”Big Data”), which results also in a lot of
different sources that can be used for research. Considering that runway capacity is the most stringent
constraint on terminal capacity, mostly trajectory data is used. For this, the Flight Data Recorder (FDR)
and Quick Access Recorder (QAR) – both mandatory in all aircraft – and the ADS-B recorder on the
ground are typical sources for trajectory data. Out of this data, researchers gathered headway times
and runway occupation times to perform capacity analyses. Besides trajectory data, also weather
circumstances and runway design were used as input variables. Herrema et al. showed how all these
variables can be used as input for a machine learning model to predict runway occupation. Also in
railways all these types of data, especially weather data, can be used to improve daily operations,
resulting in more capacity.

Compared to aviation and railways, in road traffic a significantly higher part of the vehicles are pri-
vately owned. This means that ”in-situ” technologies are more common to gather trajectory data, such
as road tubes or cameras. However, (commercial) companies track also vehicles via navigation soft-
ware and mobile phones, resulting in Float Car Data. This is different in railways, where the traffic size
is planned, so these types of technology are less suitable to use. A popular tool to analyse road traffic
data is the fundamental diagram. Song et al. and Diaz de Rivera et al. show how the fundamental dia-
gram can be a potential capacity assessment method in railways, but there are still a lot of unanswered
questions on this topic. In maritime transport there is also trajectory data available, but it is less used
for capacity analysis.

The model presented in this thesis uses trajectory data of trains operating under fixed block sig-
nalling to assess moving block capacity. The model is not a pure data-driven model, but it is an ana-
lytical approach using different datasets as input.

Modelling moving block
How can the blocking times under moving block signalling be estimated?

Just as for fixed block signalling, the blocking time for moving block can be split into six time compo-
nents: route setup-, sight and reaction-, approach-, running-, clearing- and release time. The length
of the route setup time and release time depend on system characteristics and safety margins. In the
model presented in this research these are fixed values. The sight and reaction time mainly depend
on the reaction time and the level of attention of the train driver. Also this time component is modelled
as a fixed value.

The approach time is defined as the time the train runs through the absolute braking distance. The
approach time can be estimated with the braking characteristics of the train, gradient of the tracks and
trajectory data of the train (distance, time, speed). With the braking characteristics and the gradient
a braking curve can be constructed per timestep Δ𝑡. The braking curve will be constructed from the
target location backwards in time and distance until it reaches the indication point, where it has the
same speed as the free flow speed of the trajectory data. The distance between the indication point
and the EoA is the braking distance which the train runs through.

For the running time there are three different situations. First, on a normal trackline, the running
time is equal to the time period between two requests for MA. Second, when a virtual block is applied,
it is the time it takes to run through that block. Third, for a stop at a station, the running time is equal to
the dwelling time.

The clearing time is the time it takes a train has fully passed a location. Then, the total length of
the blocking time is the sum of all six time components. The start time is the passage time minus the
approach, reaction and setup time. The end time is the passage time plus the running, clearing and
release time. It has been verified that in 95% of the cases the length of the blocking time is correctly
estimated within a range (e.g. error margin) of 3 seconds. In the other 5% the error is larger up to 15
seconds.

To conclude, this analytical approach can estimate the blocking times under moving block signalling

9.1. Conclusion 75

can be estimated with data of fixed block operations with a 95% reliability of having deviations below 3
seconds.

Bottleneck identification
How can bottlenecks be identified without splitting lines?

Two methods are described to identify bottlenecks in a network. A first approach is to sum the blocking
times of all trains that pass a block during a time period. The block with the highest summed blocking
time indicates a bottleneck. During the verification it was made clear that this method only works
for lines with homogeneous traffic. Since most railway networks also have heterogeneous lines, it is
needed to split lines. Therefore this method is less suitable.

A second approach is to analyse the buffer time between two trains. Bottlenecks can be identified
using the following steps: first, determine all the start- and end of the blocking time of each section.
Second, calculate the buffer times of each section. Third, create a dataset of the calculated buffer
times, including columns: section ID and -name, leading- and following train, name- and type of area
and the engineering line reference. Fourth, sort the dataset by buffer time, where the shortest buffer
time is first mentioned. Fifth, reduce the dataset to only the bottlenecks, by keeping the buffer time that
appears first in the list for each train pair combination and remove all the others. The sections that are
kept can be identified as bottlenecks. Each unique train pair combination has one bottleneck. It was
verified that this method works for both homogeneous as heterogeneous traffic. For this method it is
not needed to split lines, so train dependencies are being kept.

Effects on bottlenecks
How does Moving Block affect bottlenecks?

The model to estimate blocking times for moving block has been applied to a case study in the Nether-
lands. Using the buffer times between trains, bottlenecks for fixed- and moving block are identified and
compared. With moving block, more than 2/3 of the critical sections in open line areas move towards
stations or junctions. This is mainly because switches will become the critical location in the network,
instead of the long fixed blocks in NS’54. On average the blocking times reduces by 45% to 60%. By
keeping the same timetable, the buffer time between two trains increases on average by 75 seconds
(60%). This means that rolling out a Moving Block signalling system has a significantly effect on ca-
pacity bottlenecks. In this research the (overall) infrastructure occupation rate has not been calculated,
so it is not possible to draw any conclusions on this.

In all (heterogeneous) cases that were discussed in detail in this research it was seen that bottle-
necks with moving block moved towards switches. The first reason is that switches need a longer setup
time than regular tracks, because they need to shift and lock. Second, when an intercity is following a
sprinter, the trains will converge in the a time-distance diagram. In other words: the headway time will
decrease over time. The last infrastructure element they share will always be switch, so this will be the
critical location. The same applies vice versa: when a sprinter follows an intercity, they will diverge.
This means the first element they share is critical, which is a switch.

Support for the railway industry
How can the defined method support ProRail and the rail industry in assessing capacity impacts of
Moving Block signalling?

The models presented in this research can estimate the blocking- and buffer times for moving block
signalling. To do this, it is not needed to build a simulationmodel which includesmoving block signalling,
which is an advantage of this model. However, one should consider that the output will have an error of
a couple of seconds, which can be in some exceptions ten to twenty seconds. It seems that the model
has a larger deviation when the approach time is shorter or longer than average, but a reason for this
was not found by the author. Trajectory data of trains operating under another signalling system can
be used as input variable. Although simulation data has its own limitations, it is preferred to use this
type of data over realised data, because intervals between loggings will be smaller and in realised data
inaccuracies occur in the determination of the location by GPS.

With the output of the model, it can be estimated where bottlenecks will be located when a moving

76 9. Conclusion & recommendations

block signalling system will be rolled out. For this, it is not needed to split corridors into lines or line
sections.

It can be imagined that (simulation) software used by companies in the railway industry already
have some parts of the model presented in this thesis, for example a way to calculate one or more time
components of the blocking time. In that case it will be easier to implement the presented model in
their software by adding the calculations of the remaining time components. In section 9.2.2 detailed
improvements will be given how the model could be implemented in FRISO and Roberto.

Main research question
How can capacity gains of Moving Block be assessed with data for both railway corridors and complex
nodes?

Moving block signalling promises a significant reduction of the infrastructure occupation compared to a
fixed block system, such as NS’54/ATB. This is mainly caused by a strong reduction of the approach-
and running time.

With infrastructure data, rolling stock parameters and planned time-distance data, blocking times for
a moving block signalling system can be estimated. The model presented in this thesis has an average
error of 0.87s to the blocking time. In 95% of the cases the error is within a range of (-3,3) seconds.
With the blocking times of all trains, bottlenecks in both railway corridors and complex nodes can be
identified. One could sum all blocking times per block and consider blocks with the highest summed
blocking times as bottleneck. However, this can only be applied for homogeneous traffic situations.
Another approach is identifying bottlenecks by the shortest buffer time between two trains, also called
a critical block. This can be applied for both homogeneous as heterogeneous traffic situations. An ad-
vantage is that it is not needed to split corridors into line sections. One could analyse a whole network
at once and identify bottleneck at a microscopic level.

9.2. Recommendations
9.2.1. Future work and research
Several directions for future research can be recommended. First, a new verification study can be
made to determine the precision and accuracy of the model. In the performed verification study 12
trains were simulated, while there were actually only two different services. So 6 trains of each ser-
vice operate on the same infrastructure with the same timetable and driving behaviour. Besides this,
the two services are very similar and mostly share the same infrastructure. All in all, this results in a
large dataset, but the number of unique values are limited. Also, the size of the dataset has directly
an influence on the correlation. Therefore, it is recommended to perform an extra verification study,
with more unique train operations, so the accuracy and precision of the model can be better determined.

In section 6.5 a list of critical sections were analysed and marked as bottlenecks. However, multiple
different criteria can be made which section is more critical than another. One could look at the critical
section which as the shortest buffer time. Another possibility is to look how often a section is critical for
multiple train pairs, such as table 7.1b. A third possibility is to compare the list of critical sections to the
bottlenecks in the outside world. One could make a list of all places were secondary delays occurred
during real operations and see if they match with the critical sections found in simulation.

When the research plan for this thesis was written, one of the possible ways was defining a data-driven
approach to identify capacity bottlenecks. During the research it became an analytical method, but it is
recommended to investigate if it possible to describe a data-driven approach which can find capacity
bottlenecks. Possible input variables could be infrastructure properties, such as block lengths or (type
of) switches, traffic size or headway times.

As mentioned in the introduction of this research, ERTMS L3 hasn’t been fully developed yet. Within
L3, there are four different types: Overlay, Hybrid, Virtual block and Moving block. Currently, L3 Hybrid
is the most advanced (in terms of development) of the four different types and seen as the low risk
solution for application on the rail networks [27]. However, the question is how long the virtual blocks

9.2. Recommendations 77

should be to reach the same capacity gains as moving block. For this an optimisation study can be set
up, or a comparison study where different lengths of blocks will be compared to moving block. Given
that the model presented in this thesis calculates the blocking times for moving block, it is expected that
it can be applied in the timetable compression method and calculate the infrastructure occupation. For
a comparison study, also the blocking times of the ERTMS L3 Hybrid should be calculated or estimated.
Because this system is not implemented in FRISO and it uses virtual blocks, so the model presented in
this thesis cannot be used, a new model should be described to estimate the blocking times of ERTMS
L3 Hybrid.

In the case study corridors with mixed traffic were simulated and analysed. The traffic consisted of
passenger trains such as sprinters, intercity and high speed trains. Unfortunate cargo trains were not
included. During the selection of corridors the idea was to have corridors which had train paths for
cargo trains. After the simulation and data collection it was found out that these were not present in the
timetable. An important difference is that cargo trains accelerate much slower than passengers trains.
Also, the difference between the braking distance and the block length for cargo trains is lower than for
passenger trains. This means less capacity gain for cargo trains. It would be interesting to see what
the effect will be on bottlenecks in combination with passenger trains.

9.2.2. Practical improvements to FRISO and Roberto
With regard to experiences with FRISO and Roberto and the application of this model, the following is
recommended:

1. Logging data
FRISO is a user friendly microsimulation model and is rich of tools to analyse track occupation,
train behaviour, etc. It also logs all kind of different data, for which only a part was used in this
study. However, the user himself can export only a small part of all data. Currently it is only
possible to export section occupation data. It is advised to create an option where the user can
choose which data he want to export, for example by ticking boxes before a simulation run. Then
the user can also perform his own analysis and is not limited to the tools given in FRISO. This will
makes FRISO also more attractive to use for research purposes.

2. Implement the blocking time theory
This recommendation covers two topics. First, currently the blocking times in FRISO are not in
line with UIC code 406. In the current state the section occupation times only give the time a
train is physically in a block and the blocking time is too long (see also section 6.3). Second,
when ETCS Level 2 will be implemented in the Netherlands, the protected zone model cannot be
used, since ETCS Level 2 uses in-cab signalling. So to cover this, the blocking times should be
calculated according to the blocking time theory and not the protected zone model.

3. Gathering output of Roberto
Just as for FRISO, the possibilities to export data is very limited. Currently it is possible to export
a .csv file with only the minimal local headway time and buffer time for one train pair at a time.
However, Roberto has also other information in the back-end, but this is not given in the output
file. One could think of the red- and yellow times of the signals. But also the headway times when
Driving On Braking distance (Dutch: Op Remweg Rijden, ORR) is applied. Currently these are
only given at signals, but Roberto should have them also at other infrastructural elements. This
can be seen in the graphs for two reasons. First, ORR shows kinks at other places than signals,
meaning that it has information at these places. Secondly, when Roberto compresses the train
paths, the ORR line touches the back of the leading train at not-signals locations, meaning that
Roberto has the passage time of the train at these locations.

4. Implementation of the model in FRISO/Roberto
With ORR Roberto has already a strong base to implement the model to estimate the blocking
time for moving block into its simulation tool. However, also a few improvements can be made.
First of all, the graphs show sometimes an error of the ORR line, which probably is also present
in the back-end dataset. These could be fixed. Secondly, virtual blocks could be implemented,
including extra occupation time for switches. Third, other fixed parameters can be added for the
reaction, route setup and release time.

Bibliography
[1] M. Abril, M. A. Salido, F. Barber, L. Ingolotti, A. Lova, and P. Tormos. A heuristic technique for

the capacity assessment of periodic trains. In Frontiers in Artificial Intelligence and Applications,
volume 131, pages 339–346, 2005. ISBN 1586035606.

[2] Alfredo Alessandrini, Diego Guizzardi, Greet Janssens-Maenhout, Enrico Pisoni, Marco Trom-
betti, and Michele Vespe. Estimation of shipping emissions using vessel long range identifi-
cation and tracking data. Journal of Maps, 13(2):946–954, 11 2017. ISSN 17445647. doi:
10.1080/17445647.2017.1411842. URL https://www.tandfonline.com/doi/full/
10.1080/17445647.2017.1411842.

[3] Alfredo Alessandrini, Fabio Mazzarella, and Michele Vespe. Estimated Time of Arrival Using
Historical Vessel Tracking Data. IEEE Transactions on Intelligent Transportation Systems, 20(1):
7–15, 1 2019. ISSN 15249050. doi: 10.1109/TITS.2017.2789279.

[4] Joelle Aoun, Egidio Quaglietta, Rob M.P. Goverde, Martin Scheidt, Marcelo Blumenfeld, Anson
Jack, and Bill Redfern. A hybrid Delphi-AHP multi-criteria analysis of Moving Block and Virtual
Coupling railway signalling. Transportation Research Part C: Emerging Technologies, 129, 8
2021. ISSN 0968090X. doi: 10.1016/j.trc.2021.103250.

[5] John Armstrong and John Preston. Capacity utilisation and performance at railway stations.
Journal of Rail Transport Planning and Management, 7(3):187–205, 12 2017. ISSN 22109706.
doi: 10.1016/j.jrtpm.2017.08.003.

[6] Jacob Avery and Hamsa Balakrishnan. Data-driven modeling and prediction of the process for
selecting runway configurations. Transportation Research Record, 2600:1–11, 1 2016. ISSN
03611981. doi: 10.3141/2600-01. URL https://journals.sagepub.com/doi/abs/
10.3141/2600-01.

[7] Maarten Bartholomeus (ProRail). Information retrieved by e-mail, 6 2021.

[8] Baris Baspinar, N. Kemal Ure, Emre Koyuncu, and Gokhan Inalhan. Analysis of Delay Charac-
teristics of European Air Traffic through a Data-Driven Airport-Centric Queuing Network Model.
IFAC-PapersOnLine, 49(3):359–364, 1 2016. ISSN 24058963. doi: 10.1016/j.ifacol.2016.07.
060.

[9] Roberto Bellasio. Analysis of wind data for airport runway design. Journal of Airline and Airport
Management, 4(2):2014–2018, 9 2014. ISSN 2014-4865. doi: 10.3926/jairm.26. URL http:
//dx.doi.org/10.3926/jairm.26.

[10] Nikola Bešinović and Rob M.P. Goverde. Capacity Assessment in Railway Networks. Inter-
national Series in Operations Research and Management Science, 268:25–45, 2018. ISSN
08848289. doi: 10.1007/978-3-319-72153-8{_}2.

[11] Thorsten Büker, Thomas Graffagnino, Eike Hennig, and Alexander Kuckelberg. Enhancement
of Blocking-time Theory to Represent Future Interlocking Architectures. 8th International Con-
ference on Railway Operations Modelling and Analysis (ICROMA), pages 219–240, 2019. URL
https://easychair.org/publications/preprint/9v95.

[12] Gerrit Burmester, Hui Ma, Dietrich Steinmetz, and Sven Hartmannn. Big Data and Data Analytics
in Aviation. In Advances in Aeronautical Informatics: Technologies Towards Flight 4.0, chapter 5,
pages 55–65. Springer International Publishing, 5 2018. ISBN 9783319750583. doi: 10.1007/
978-3-319-75058-3{_}5. URL https://doi.org/10.1007/978-3-319-75058-3_5.

79

https://www.tandfonline.com/doi/full/10.1080/17445647.2017.1411842
https://www.tandfonline.com/doi/full/10.1080/17445647.2017.1411842
https://journals.sagepub.com/doi/abs/10.3141/2600-01
https://journals.sagepub.com/doi/abs/10.3141/2600-01
http://dx.doi.org/10.3926/jairm.26
http://dx.doi.org/10.3926/jairm.26
https://easychair.org/publications/preprint/9v95
https://doi.org/10.1007/978-3-319-75058-3_5

80 Bibliography

[13] Igor Bychkov, Alexander Kazakov, Anna Lempert, and Maxim Zharkov. Modeling of Railway
Stations Based on Queuing Networks. Applied Sciences, 11(5):2425, 3 2021. ISSN 2076-3417.
doi: 10.3390/app11052425. URL https://www.mdpi.com/2076-3417/11/5/2425.

[14] Yashovardhan S Chati and Hamsa Balakrishnan. Analysis of Aircraft Fuel Burn and Emissions
in the Landing and Take Off Cycle using Operational Data. In 6th International Conference on
Research in Air Transportation, 2014.

[15] Tsan-Ming Choi, Stein W. Wallace, and Yulan Wang. Big Data Analytics in Operations Manage-
ment. Production and Operations Management, 27(10):1868–1883, 10 2018. ISSN 10591478.
doi: 10.1111/poms.12838. URL http://doi.wiley.com/10.1111/poms.12838.

[16] Sai Ho Chung, Hoi Lam Ma, Mark Hansen, and Tsan Ming Choi. Data science and analytics in
aviation, 2 2020. ISSN 13665545.

[17] Francesco Corman, Jonas Henken, and Mehdi Keyvan-Ekbatani. Macroscopic fundamental
diagrams for train operations-are we there yet? MT-ITS 2019 - 6th International Conference on
Models and Technologies for Intelligent Transportation Systems, 2019. doi: 10.1109/MTITS.
2019.8883374.

[18] Data Science Lab. ProRail, 1 2022.

[19] Adrian Diaz de Rivera and C. Tyler Dick. Illustrating the implications of moving blocks on railway
traffic flow behavior with fundamental diagrams. Transportation Research Part C: Emerging
Technologies, 123:102982, 2 2021. ISSN 0968090X. doi: 10.1016/j.trc.2021.102982.

[20] Adrian Diaz de Rivera, C. Tyler Dick, and Leonel E. Evans. Improving Railway Operational
Efficiency with Moving Blocks, Train Fleeting, and Alternative Single-Track Configurations.
Transportation Research Record, 2674(2):146–157, 2020. ISSN 21694052. doi: 10.1177/
0361198120905842.

[21] Michal Dorda and Dušan Teichmann. Modelling of freight trains classification using queueing
system subject to breakdowns. Mathematical Problems in Engineering, 2013. ISSN 1024123X.
doi: 10.1155/2013/307652.

[22] Lynnette Dray. An empirical analysis of airport capacity expansion. Journal of Air Transport
Management, 87:101850, 8 2020. ISSN 09696997. doi: 10.1016/j.jairtraman.2020.101850.

[23] L.C. Edie. Discussion of traffic stream measurements and definitions. In Proceedings of the
Second International Symposium on the Theory of Traffic Flow, OECD, Paris, France, 1965.

[24] European Railway Agency. ERTMS/ETCS System Requirements Specification Chapter 3 Prin-
ciples. Technical Report 3.6.0, ERA, 2016.

[25] European Railway Agency. Introduction To ETCS Braking Curves. Technical Report 1.5, ERA,
2020. URL ERA_ERTMS_040026.

[26] Expandium. QATS signalling, 1 2022.

[27] Nicola Furness, Henri van Houten, Laura Arenas, and Maarten Bartholomeus.
ERTMS Level 3: the Game-Changer. Institution of Railway Signal En-
gineers, (232):1–9, 2017. URL https://www.irse.nl/resources/
170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf.

[28] Babak Ghalebsaz-Jeddi, George L Donohue, and John F Shortle. A Statistical Analysis of the
Aircraft Landing Process. Technical Report 3, George Mason University, 1 2009. URL https:
//www.sid.ir/en/journal/ViewPaper.aspx?id=243131.

[29] Rob M.P. Goverde and Ingo A. Hansen. Performance indicators for railway timetables. IEEE
ICIRT 2013 - Proceedings: IEEE International Conference on Intelligent Rail Transportation,
pages 301–306, 2013. doi: 10.1109/ICIRT.2013.6696312.

https://www.mdpi.com/2076-3417/11/5/2425
http://doi.wiley.com/10.1111/poms.12838
ERA_ERTMS_040026
https://www.irse.nl/resources/170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf
https://www.irse.nl/resources/170314-ERTMS-L3-The-gamechanger-from-IRSE-News-Issue-232.pdf
https://www.sid.ir/en/journal/ViewPaper.aspx?id=243131
https://www.sid.ir/en/journal/ViewPaper.aspx?id=243131

Bibliography 81

[30] RobM.P. Goverde, Francesco Corman, and Andrea D’Ariano. Railway line capacity consumption
of different railway signalling systems under scheduled and disturbed conditions. Journal of Rail
Transport Planning and Management, 3(3):78–94, 8 2013. ISSN 22109706. doi: 10.1016/j.
jrtpm.2013.12.001.

[31] B. D. Greenshields. A Study of Traffic Capacity. Proceedings Highway Research Board, (14):
448–477, 1934.

[32] Ingo Arne Hansen and Jorn Pachl. Railway Timetabling & Operations. DVV Media Group GmbH
| Eurailpress, 2nd edition, 2014. ISBN 978-3-7771-0462-1.

[33] Floris Herrema, Ricky Curran, Sander Hartjes, Mohamed Ellejmi, Steven Bancroft, and Michael
Schultz. A machine learning model to predict runway exit at Vienna airport. Transportation
Research Part E: Logistics and Transportation Review, 131:329–342, 11 2019. ISSN 1366-5545.
doi: 10.1016/J.TRE.2019.10.002.

[34] International Association of Lighthouse Authorities (IALA). IALAGUIDELINESON THEUNIVER-
SAL AUTOMATIC IDENTIFICATION SYSTEM. IALA Guidelines, Volume 1(Part II - Technical
Issues Edition 1.1), 2002. URL www.iala-aism.org.

[35] Incontrol Simulation Software. Simulation of Railway Networks. URL https://www.
incontrolsim.com/application-areas/railway-simulation/.

[36] International Union of Railways (UIC). Code 405 OR - Links between Railway Infrastructure
Capacity and the Quality of Operations. Technical report, UIC, 1996.

[37] International Union of Railways (UIC). UIC Code 406. Technical Report 2nd edition, UIC, 2013.

[38] Philip T.G. Jackson, Carl J. Nelson, Jens Schiefele, and Boguslaw Obara. Runway detection in
High Resolution remote sensing data. In 9th International Symposium on Image and Signal Pro-
cessing and Analysis, ISPA 2015, pages 170–175, Zagreb, Croatia, 2015. Institute of Electrical
and Electronics Engineers Inc. ISBN 9781467380324. doi: 10.1109/ISPA.2015.7306053.

[39] A. Jamili. Computation of practical capacity in single-track railway lines based on computing
the minimum buffer times. Journal of Rail Transport Planning and Management, 8(2):91–102, 9
2018. ISSN 22109706. doi: 10.1016/j.jrtpm.2018.03.002.

[40] Lars Wittrup Jensen, Alex Landex, Otto Anker Nielsen, Leo G. Kroon, and Marie Schmidt. Strate-
gic assessment of capacity consumption in railway networks: Framework and model. Trans-
portation Research Part C: Emerging Technologies, 74:126–149, 1 2017. ISSN 0968090X. doi:
10.1016/j.trc.2016.10.013.

[41] Lars Wittrup Jensen, Marie Schmidt, and Otto Anker Nielsen. Determination of infrastructure
capacity in railway networks without the need for a fixed timetable. Transportation Research Part
C: Emerging Technologies, 119:102751, 10 2020. ISSN 0968090X. doi: 10.1016/j.trc.2020.
102751.

[42] Tobias Jeske. Floating Car Data from Smartphones: What Google and Waze Know About You
and How Hackers Can Control Traffic. In Proceedings of the BlackHat Europe, pages 1–12,
2013. URL https://www.google.com/loc/m/api.

[43] Predrag Jovanović, Norbert Pavlović, Ivan Belošević, and Sanjin Milinković. Graph coloring-
based approach for railway station design analysis and capacity determination. European Journal
of Operational Research, 287(1):348–360, 11 2020. ISSN 03772217. doi: 10.1016/j.ejor.
2020.04.057.

[44] Stefan Kern and Michael Schultz. Evaluation of a standardized single runway airport model
with respect to runway capacity. In 16th AIAA Aviation Technology, Integration, and Operations
Conference, pages 1–13, 2016. ISBN 9781624104404. doi: 10.2514/6.2016-4071. URL
http://arc.aiaa.org.

www.iala-aism.org
https://www.incontrolsim.com/application-areas/railway-simulation/
https://www.incontrolsim.com/application-areas/railway-simulation/
https://www.google.com/loc/m/api
http://arc.aiaa.org

82 Bibliography

[45] J. W.; Kerssies. NS: Het spoor is over acht jaar vol - OV-Magazine, 2019. URL https://www.
ovmagazine.nl/2019/08/ns-het-spoor-is-over-acht-jaar-vol-1541/.

[46] KiM. Kerncijfers Mobiliteit 2020. Technical report, KiM, 2020. URL https:
//www.bovag.nl/BovagWebsite/media/BovagMediaFiles/Cijfers/2020/
Kerncijfers-Auto-2020-DEF.pdf?ext=.pdf.

[47] Victor L. Knoop and Winnie Daamen. Automatic fitting procedure for the fundamental dia-
gram. Transportmetrica B: Transport Dynamics, 5(2):129–144, 4 2017. ISSN 2168-0566. doi:
10.1080/21680566.2016.1256239. URL https://www.tandfonline.com/doi/full/
10.1080/21680566.2016.1256239.

[48] Victor L. Knoop, Andreas Hegyi, Maria Salomons, Hans Van Lint, Yufei Yuan, and Ramon Land-
man. CIE4825 and CIE5821 Lecture Notes; Traffic Flow Modelling & Control. TU Delft, Transport
& Planning, 6th editio edition, 2019.

[49] Vivek Kumar, Lance Sherry, and Rafal Kicinger. Runway Occupancy Time Extraction and Analy-
sis Using Surface Track Data. Technical report, Center for Air Transportation Systems Research;
Department of Systems Engineering and Operations Research; George Mason University, 2009.

[50] Alex Landex. Methods to estimate railway capacity and passenger delays. PhD thesis, Tech-
nical University of Denmark, 2008. URL http://wwwdtu2.sitecore.dtu.dk/upload/
institutter/dtutransport/rapporter/rap5_2008_phd-thesis_al_hjemmeside.
pdf.

[51] Anna-Liese S. Lapinski. LRIT and AIS; An analysis of October 2010 data. Technical Report
Technical Memorandum, Defence R&D Cananda - Atlantic, 2014.

[52] Arno Leblanc. Derde tienminutentrein tussen Rotterdam, Den haag, Leiden en Schiphol, 10
2021.

[53] Guillaume Leduc. Road Traffic Data : Collection Methods and Applications. EUR Number:
Technical Note: JRC 47967, JRC 47967(May):55, 2008. URL http://ftp.jrc.es/EURdoc/
EURdoc/JRC47967.TN.pdf.

[54] Anna Lempert, Alexander Kazakov, and Maxim Zharkov. A Stochastic Model of a Transport
Hub and Multi-phase Queueing Systems. In Vth International workshop ”Critical Infrastruc-
tures: Contingency Management, Intelligent, Agent-based, Cloud Computing and Cyber Se-
curity” (IWCI 2018), pages 117–123. Atlantis Press, 8 2018. doi: 10.2991/iwci-18.2018.21.
URL https://www.atlantis-press.com/proceedings/iwci-18/25899812.

[55] Wiebke Lenze and Nils Nießen. Modelling the Prohibition of Train Crossings in Tunnels with
Blocking Time Theory. In 8th International Conference on Railway Operations Modelling and
Analysis (ICROMA), pages 623–649, Norrköping, Sweden, 2019. Linköping University Electronic
Press.

[56] B. Levy, J. Legge, and M. Romano. Opportunities for improvements in simple models for estimat-
ing runway capacity. The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576),
1:5–21, 2004. doi: 10.1109/DASC.2004.1391282. URL http://ieeexplore.ieee.org/
document/1391282/.

[57] Zhengwen Liao, Haiying Li, Jianrui Miao, and Francesco Corman. Railway capacity estimation
considering vehicle circulation: Integrated timetable and vehicles scheduling on hybrid time-
space networks. Transportation Research Part C: Emerging Technologies, 124:33, 3 2021. ISSN
0968090X. doi: 10.1016/j.trc.2020.102961.

[58] Anders Lindfeldt. Validation of a simulation model for capacity evaluation of double-track railway
lines. In Proceedings of the 6th International Seminar on Railway Operations Modelling and
Analysis (RailTokyo2015), Tokyo, Japan, 2015.

https://www.ovmagazine.nl/2019/08/ns-het-spoor-is-over-acht-jaar-vol-1541/
https://www.ovmagazine.nl/2019/08/ns-het-spoor-is-over-acht-jaar-vol-1541/
https://www.bovag.nl/BovagWebsite/media/BovagMediaFiles/Cijfers/2020/Kerncijfers-Auto-2020-DEF.pdf?ext=.pdf
https://www.bovag.nl/BovagWebsite/media/BovagMediaFiles/Cijfers/2020/Kerncijfers-Auto-2020-DEF.pdf?ext=.pdf
https://www.bovag.nl/BovagWebsite/media/BovagMediaFiles/Cijfers/2020/Kerncijfers-Auto-2020-DEF.pdf?ext=.pdf
https://www.tandfonline.com/doi/full/10.1080/21680566.2016.1256239
https://www.tandfonline.com/doi/full/10.1080/21680566.2016.1256239
http://wwwdtu2.sitecore.dtu.dk/upload/institutter/dtu transport/rapporter/rap5_2008_phd-thesis_al_hjemmeside.pdf
http://wwwdtu2.sitecore.dtu.dk/upload/institutter/dtu transport/rapporter/rap5_2008_phd-thesis_al_hjemmeside.pdf
http://wwwdtu2.sitecore.dtu.dk/upload/institutter/dtu transport/rapporter/rap5_2008_phd-thesis_al_hjemmeside.pdf
http://ftp.jrc.es/EURdoc/EURdoc/JRC47967.TN.pdf
http://ftp.jrc.es/EURdoc/EURdoc/JRC47967.TN.pdf
https://www.atlantis-press.com/proceedings/iwci-18/25899812
http://ieeexplore.ieee.org/document/1391282/
http://ieeexplore.ieee.org/document/1391282/

Bibliography 83

[59] Tobias Lindner. Applicability of the analytical UIC Code 406 compression method for evaluating
line and station capacity. Journal of Rail Transport Planning and Management, 1(1):49–57, 11
2011. ISSN 22109706. doi: 10.1016/j.jrtpm.2011.09.002.

[60] Cong Liu, Jingxian Liu, Xun Zhou, Zhen Zhao, Chengpeng Wan, and Zhao Liu. AIS data-
driven approach to estimate navigable capacity of busy waterways focusing on ships enter-
ing and leaving port. Ocean Engineering, 218:108215, 12 2020. ISSN 00298018. doi:
10.1016/j.oceaneng.2020.108215.

[61] W.J. Mansveld. Veiligheid van het railvervoer, 6 2014.

[62] Julio Mar-Ortiz, Norberto Castillo-García, and María D. Gracia. A decision support system for
a capacity management problem at a container terminal. International Journal of Production
Economics, 222:107502, 4 2020. ISSN 0925-5273. doi: 10.1016/J.IJPE.2019.09.023.

[63] Karen B. Marais and Matthew R. Robichaud. Analysis of trends in aviation maintenance risk: An
empirical approach. Reliability Engineering and System Safety, 106:104–118, 10 2012. ISSN
09518320. doi: 10.1016/j.ress.2012.06.003.

[64] A. D. Middelkoop and L. Loeve. Simulation of traffic management with FRISO. WIT Transactions
on the Built Environment, 88:501–509, 2006. ISSN 17433509. doi: 10.2495/CR060501.

[65] Dick Middelkoop, Joris Steneker, Sebastiaan Meijer, Emdzad Sehic, and Maura Mazzarello.
Simulation backbone for gaming simulation in railways: A case study. In Proceedings - Winter
Simulation Conference, 2012. ISBN 9781467347792. doi: 10.1109/WSC.2012.6465195.

[66] Dick Middelkoop, Maura Mazzarello, and Douwe De Vries. Optimizing Train Traffic: Demon-
strating Benefits in a Case Study Optimizing Train Traffic: Demonstrating Benefits in a Case
Study Douwe de Vries. 2013. URL https://www.researchgate.net/publication/
316601277.

[67] Ministry of I&W. Dossier Programmabeslissing. Technical report, 2019. URL https://www.
rijksoverheid.nl/documenten/rapporten/2019/05/17/railmap-ertms-4-0.

[68] Fabrizio Natale, Maurizio Gibin, Alfredo Alessandrini, Michele Vespe, and Anton Paulrud. Map-
ping Fishing Effort through AIS Data. PLOS ONE, 10(6):e0130746, 6 2015. ISSN 1932-6203.
doi: 10.1371/journal.pone.0130746. URL https://dx.plos.org/10.1371/journal.
pone.0130746.

[69] Zohreh Nazeri and Jianping Zhang. Mining aviation data to understand impacts of severe weather
on airspace system performance. InProceedings - International Conference on Information Tech-
nology: Coding and Computing, ITCC 2002, pages 518–523. Institute of Electrical and Electron-
ics Engineers Inc., 2002. ISBN 0769515061. doi: 10.1109/ITCC.2002.1000441.

[70] ProRail. Programma Hoogfrequent Spoorvervoer, 10 2021.

[71] Egidio Quaglietta. A microscopic simulation model for supporting the design of railway systems:
development and applications. PhD thesis, University of Napoli, 2011. URL http://www.
fedoa.unina.it/8599/1/Quaglietta_Egidio_24.pdf.

[72] Egidio Quaglietta. A simulation-based approach for the optimal design of signalling block layout in
railway networks. Simulation Modelling Practice and Theory, 46:4–24, 8 2014. ISSN 1569190X.
doi: 10.1016/j.simpat.2013.11.006.

[73] Egidio Quaglietta and Rob M. P. Goverde. Exploring Virtual Coupling : Principles and Analysis
Operational. In Proc. of the 10th ASPECT Conference of the Institution of Railway Signalling
Engineers, number 3, pages 1–13, 2019.

[74] Varun Ramanujam and Hamsa Balakrishnan. Data-Driven Modeling of the Airport Configuration
Selection Process. IEEE Transactions on Human-Machine Systems, 45(4):490–499, 2015. ISSN
21682291. doi: 10.1109/THMS.2015.2411743.

https://www.researchgate.net/publication/316601277
https://www.researchgate.net/publication/316601277
https://www.rijksoverheid.nl/documenten/rapporten/2019/05/17/railmap-ertms-4-0
https://www.rijksoverheid.nl/documenten/rapporten/2019/05/17/railmap-ertms-4-0
https://dx.plos.org/10.1371/journal.pone.0130746
https://dx.plos.org/10.1371/journal.pone.0130746
http://www.fedoa.unina.it/8599/1/Quaglietta_Egidio_24.pdf
http://www.fedoa.unina.it/8599/1/Quaglietta_Egidio_24.pdf

84 Bibliography

[75] Cyril Ray, Romain Gallen, Clement Iphar, Aldo Napoli, and Alain Bouju. DeAIS project: De-
tection of AIS spoofing and resulting risks. In MTS/IEEE OCEANS 2015 - Genova: Discovering
Sustainable Ocean Energy for a NewWorld. Institute of Electrical and Electronics Engineers Inc.,
9 2015. ISBN 9781479987368. doi: 10.1109/OCEANS-Genova.2015.7271729.

[76] RMCon. RailSys Software, 2021. URL https://www.rmcon-int.de/railsys-en/
railsys-suite/.

[77] Francesco Rotoli, Elena Navajas Cawood, and Antonio Soria. Capacity assessment of railway in-
frastructure: Tools, methodologies and policy relevance in the EU context. JRCWorking Papers,
2016. URL https://ideas.repec.org/p/ipt/iptwpa/jrc100509.html.

[78] Francesco Rotoli, Elena Navajas Cawood, and Soria Antonio Ramirez. JRC Publications Repos-
itory - Capacity assessment of railway infrastructure: Tools, methodologies and policy rele-
vance in the EU context. Technical report, European Union (EU), Sevilla, Spain, 2016. URL
https://publications.jrc.ec.europa.eu/repository/handle/JRC100509.

[79] Christoph Schmitz, Norman Weik, Stephan Zieger, Nils Nießen, and Anke Schmeink. Markov
Models for the Performance Analysis of Railway Networks. Technical report, RWTH Aachen
University, 2017. URL http://www.via.rwth-aachen.de/downloads/RailLille_
Schmitz_Weik_Zieger_Niessen_Schmeink.pdf.

[80] Wulf Schwanhäußer. Die Bemessung der Pufferzeiten im Fahrplangefüge der Eisenbahn T E X
T. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, 1974.

[81] Wulf Schwanhäußer. The status of German railway operations management in research and
practice. Transportation Research Part A, 28(6):495–500, 11 1994. ISSN 09658564. doi: 10.
1016/0965-8564(94)90047-7.

[82] Katsuhiro Sekine, Furuto Kato, Kota Kageyama, and Eri Itoh. Data-driven simulation for eval-
uating the impact of lower arrival aircraft separation on available airspace and runway capac-
ity at tokyo international airport. Aerospace, 8(6), 2021. ISSN 22264310. doi: 10.3390/
aerospace8060165.

[83] Simcon. Villon, software simulation tool, 2021. URL https://www.simcon.sk/en/tools/
villon.

[84] Rogier Jakob Simons. The influence of railway signalling characteristics on resilience (MSc
thesis). 2019.

[85] Samuel L Sogin. Simulations of mixed use rail corridors: how infrastructure affects interactions
among train types. PhD thesis, University of Illinois at Urbana-Champaign, 2013. URL https:
//www.ideals.illinois.edu/handle/2142/46672.

[86] I. Song, I. Cho, T. Tessitore, T. Gurcsik, and H. Ceylan. Data-Driven Prediction of Runway
Incursions with Uncertainty Quantification. Journal of Computing in Civil Engineering, 32(2):
04018004, 3 2018. ISSN 0887-3801. doi: 10.1061/(ASCE)CP.1943-5487.0000733. URL
http://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000733.

[87] Tai Jin Song, Billy M. Williams, and Nagui M. Rouphail. Data-driven approach for identifying
spatiotemporally recurrent bottlenecks. IET Intelligent Transport Systems, 12(8):756–764, 10
2018. ISSN 1751956X. doi: 10.1049/iet-its.2017.0284.

[88] Joris Steneker and B.D. Cunes. FRISO Conceptueelmodel. Technical Report december, IN-
CONTROL Simulation Solutions, Utrecht, 2019.

[89] Apa Sun, J Ellerbroek, and J Hoekstra. Modeling and Inferring Aircraft Takeoff Mass fromRunway
ADS-B Data. In 7th International Conference on Research in Air Transportation, Philadelphia,
USA, 2016.

https://www.rmcon-int.de/railsys-en/railsys-suite/
https://www.rmcon-int.de/railsys-en/railsys-suite/
https://ideas.repec.org/p/ipt/iptwpa/jrc100509.html
https://publications.jrc.ec.europa.eu/repository/handle/JRC100509
http://www.via.rwth-aachen.de/downloads/RailLille_Schmitz_Weik_Zieger_Niessen_Schmeink.pdf
http://www.via.rwth-aachen.de/downloads/RailLille_Schmitz_Weik_Zieger_Niessen_Schmeink.pdf
https://www.simcon.sk/en/tools/villon
https://www.simcon.sk/en/tools/villon
https://www.ideals.illinois.edu/handle/2142/46672
https://www.ideals.illinois.edu/handle/2142/46672
http://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000733

Bibliography 85

[90] Chao Tong, Xiang Yin, Shili Wang, and Zhigao Zheng. A novel deep learning method for air-
craft landing speed prediction based on cloud-based sensor data. Future Generation Computer
Systems, 88:552–558, 11 2018. ISSN 0167739X. doi: 10.1016/j.future.2018.06.023.

[91] Marlies Van der Goot. Waar is die trein?, 2 2018.

[92] Marieke Van Gompel. ProRail verdeelt capaciteit spoor voortaan per zes secon-
den, 2019. URL https://www.spoorpro.nl/goederenvervoer/2019/08/19/
prorail-kan-capaciteit-spoor-voortaan-per-tien-seconden-verdelen/
?gdpr=accept.

[93] R. Vergroesen. ERTMS / ETCS Hybrid Level 3 and ATO (MSc thesis). 2020.

[94] Petr Veselý and Michael Bazant. Zobrazit SWITCH AREA CAPACITY ASSESSMENT US-
ING UIC 406 – THE PROCEDURE AND SOFTWARE TOOL. Perner’s Contacts, X(4):98–
106, 2015. URL https://pernerscontacts.upce.cz/index.php/perner/article/
view/991/826.

[95] Michele Vespe, Harm Greidanus, and Marlene Alvarez Alvarez. The declining impact of piracy
on maritime transport in the Indian Ocean: Statistical analysis of 5-year vessel tracking data.
Marine Policy, 59:9–15, 9 2015. ISSN 0308597X. doi: 10.1016/j.marpol.2015.04.018.

[96] VIA Consulting & Development. LUKS | VIA Consulting & Development GmbH, 2021. URL
https://www.via-con.de/en/development/luks/.

[97] Anderson P. Vieira, Luciano M. Christofoletti, and Plínio R.S. Vilela. Analyzing railway capacity
using a planning tool. In 2018 Joint Rail Conference, JRC 2018. American Society of Mechanical
Engineers (ASME), 6 2018. ISBN 9780791850978. doi: 10.1115/JRC2018-6160.

[98] Xiaoping Wang, Yunliang Zhao, Peng Sun, and Xiaobin Wang. An analysis on convergence of
data-driven approach to ship lock scheduling. Mathematics and Computers in Simulation, 88:
31–38, 2 2013. ISSN 03784754. doi: 10.1016/j.matcom.2013.03.005.

[99] NormanWeik and Nils Nie. Journal of Rail Transport Planning & Management Quantifying the ef-
fects of running time variability on the capacity of rail corridors. Journal of Rail Transport Planning
and Management, 15(August 2019):1–12, 2020. doi: 10.1016/j.jrtpm.2020.100203.

[100] Norman Weik, Jennifer Warg, Ingrid Johansson, Markus Bohlin, and Nils Nießen. Extending UIC
406-based capacity analysis – New approaches for railway nodes and network effects. Journal
of Rail Transport Planning and Management, 15:100199, 9 2020. ISSN 22109706. doi: 10.
1016/j.jrtpm.2020.100199.

[101] H. Widyastuti and W. S. Budhi. Railway capacity analysis using Indonesian method and UIC
code 405 method. In IOP Conference Series: Materials Science and Engineering, volume 930.
IOP Publishing Ltd, 11 2020. doi: 10.1088/1757-899X/930/1/012059.

[102] Windward. AIS Data on the High Seas: An Analysis of the Mag-
nitude and Implications of Growing Data Manipulation at Sea - News,
2014. URL http://maritime-connector.com/news/general/
ais-data-on-the-high-seas-an-analysis-of-the-magnitude-and-implications-of-growing-data-manipulation-at-sea/.

[103] Edwin Winterkamp. Veiliger spoor door vermindering rood sein-passages (ORBIT), 1 2022.

[104] Xuri Xin, Kezhong Liu, Xing Yang, Zhitao Yuan, and Jinfen Zhang. A simulation model for ship
navigation in the “Xiazhimen” waterway based on statistical analysis of AIS data. Ocean Engi-
neering, 180:279–289, 5 2019. ISSN 00298018. doi: 10.1016/j.oceaneng.2019.03.052.

[105] Li Da Xu, Eric L. Xu, and Ling Li. Industry 4.0: State of the art and future trends. In-
ternational Journal of Production Research, 56(8):2941–2962, 2018. ISSN 1366588X. doi:
10.1080/00207543.2018.1444806. URL https://www.tandfonline.com/action/
journalInformation?journalCode=tprs20.

https://www.spoorpro.nl/goederenvervoer/2019/08/19/prorail-kan-capaciteit-spoor-voortaan-per-tien-seconden-verdelen/?gdpr=accept
https://www.spoorpro.nl/goederenvervoer/2019/08/19/prorail-kan-capaciteit-spoor-voortaan-per-tien-seconden-verdelen/?gdpr=accept
https://www.spoorpro.nl/goederenvervoer/2019/08/19/prorail-kan-capaciteit-spoor-voortaan-per-tien-seconden-verdelen/?gdpr=accept
https://pernerscontacts.upce.cz/index.php/perner/article/view/991/826
https://pernerscontacts.upce.cz/index.php/perner/article/view/991/826
https://www.via-con.de/en/development/luks/
http://maritime-connector.com/news/general/ais-data-on-the-high-seas-an-analysis-of-the-magnitude-and-implications-of-growing-data-manipulation-at-sea/
http://maritime-connector.com/news/general/ais-data-on-the-high-seas-an-analysis-of-the-magnitude-and-implications-of-growing-data-manipulation-at-sea/
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

86 Bibliography

[106] Nale Zhao, Lei Yu, Hui Zhao, Jifu Guo, and Huimin Wen. Analysis of Traffic Flow Char-
acteristics on Ring Road Expressways in Beijing. Transportation Research Record: Jour-
nal of the Transportation Research Board, 2124(1):178–185, 1 2009. ISSN 0361-1981. doi:
10.3141/2124-17. URL http://journals.sagepub.com/doi/10.3141/2124-17.

[107] Marina Zhuravskaya, Anna Lempert, Nataliia Anashkina, and Maksim Zharkov. Issues of Sus-
tainable Urban Mobility Simulation. In 2018: Proceedings of The 18th International Scientific
Conference Business Logistics in Modern Management, volume 18, pages 439–452, 2018.

[108] Stephan Zieger, Norman Weik, and Nils Nießen. Der Einfluss von Pufferzeitverteilungen im
Fahrplan auf die Modellierung der Folgeverspätungen im Eisenbahnwesen. 26. Verkehrswis-
senschaftliche Tage 2018 an der Technischen Universität Dresden, pages 731–745, 2018. URL
https://publications.rwth-aachen.de/record/721529.

http://journals.sagepub.com/doi/10.3141/2124-17
https://publications.rwth-aachen.de/record/721529

A
Different shapes of the fundamental

diagram

Figure A.1: Different shapes of the fundamental diagram [48]

87

B
Added code lines in EGTRAIN

Blocking time data
1 //Function to Print out the blocking times of all the Trains
2 void PrintTrainBlockingTimes(string MainFolder) {
3 string FileName;
4 FileName = FileName + MainFolder + ”/BlockingTimes.txt”; //Name of output file
5 ofstream OutputFile;
6 OutputFile.open((char*)FileName.c_str(), ios::binary);
7

8 for (int i = 0; i<N_Reg; i++) {
9 OutputFile << ”TrainDescription ”; //Print text ”TrainDescription”
10 //Print the train description
11 OutputFile << T[i].TrainDescription << ”\n”;
12

13 //Print ID of the block
14 OutputFile << ”BlockID ”;
15

16 for (int j = 0; j<T[i].N_BlockTimeComplete; j++) {
17 OutputFile << T[i].BlockTime[j].BlockID << ” ”;
18 }
19 OutputFile << ”\n”;
20

21 //Print the start location of the block
22 OutputFile << ”GeoPosStart ”;
23

24 for (int j = 0; j<T[i].N_BlockTimeComplete; j++) {
25 OutputFile << T[i].BlockTime[j].GeoPosStart << ” ”;
26

27 }
28 OutputFile << ”\n”;
29

30 //Print the end location of the block
31 OutputFile << ”GeoPosEnd ”;
32

33 for (int j = 0; j<T[i].N_BlockTimeComplete; j++) {
34 OutputFile << T[i].BlockTime[j].GeoPosEnd << ” ”;
35 }
36

37 OutputFile << ”\n”;
38

39 //Print the time when the occupation time starts
40 OutputFile << ”StartOccTime ”;
41

42 for (int j = 0; j<T[i].N_BlockTimeComplete; j++) {
43 OutputFile << T[i].BlockTime[j].StartOccTime << ” ”;
44 }
45 OutputFile << ”\n”;
46

47 //Print the time when the occupation time ends
48 OutputFile << ”EndOccTime ”;

89

90 B. Added code lines in EGTRAIN

49

50 for (int j = 0; j<T[i].N_BlockTimeComplete; j++) {
51 OutputFile << T[i].BlockTime[j].EndOccTime << ” ”;
52 }
53 OutputFile << ”\n”;
54

55 //Print the length of the setup time
56 OutputFile << ”setupTime ”;
57

58 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
59 OutputFile << T[i].BlockTime[j].setupTime << ” ”;
60 }
61 OutputFile << ”\n”;
62

63 //Print the length of the sight and reaction time
64 OutputFile << ”sightReacTime ”;
65

66 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
67 OutputFile << T[i].BlockTime[j].sightReacTime << ” ”;
68 }
69 OutputFile << ”\n”;
70

71 //Print the length of the approach time
72 OutputFile << ”ApproachTime ”;
73

74 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
75 OutputFile << T[i].BlockTime[j].ApproachTime << ” ”;
76 }
77 OutputFile << ”\n”;
78

79 //Print the length of the running time
80 OutputFile << ”RunTime ”;
81

82 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
83 OutputFile << T[i].BlockTime[j].RunTime << ” ”;
84 }
85 OutputFile << ”\n”;
86

87 //Print the length of the clearing time
88 OutputFile << ”clearingTime ”;
89

90 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
91 OutputFile << T[i].BlockTime[j].clearingTime << ” ”;
92 }
93 OutputFile << ”\n”;
94

95 //Print the length of the release time
96 OutputFile << ”ReleaseTime ”;
97

98 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
99 OutputFile << T[i].BlockTime[j].ReleaseTime << ” ”;
100 }
101 OutputFile << ”\n”;
102

103

104 //Print the length of the block in meters
105 OutputFile << ”BlockLength ”;
106

107 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
108 OutputFile << T[i].BlockTime[j].length << ” ”;
109 }
110 OutputFile << ”\n”;
111

112 //Print the speed when the train enters the block
113 OutputFile << ”V_run ”;
114

115 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
116 int srt = (int) T[i].BlockTime[j].StartRunTime;
117 OutputFile << T[i].V[srt] << ” ”;
118 }
119 OutputFile << ”\n”;

91

120

121 OutputFile << ”V_Approach ”;
122

123 //Print the speed when the train is at the approach distance
124 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
125 int srt = (int)T[i].BlockTime[j].StartApproachTime;
126 OutputFile << T[i].V[srt] << ” ”;
127 }
128 OutputFile << ”\n”;
129

130 OutputFile << ”V_Clear ”;
131

132 //Print the speed when the train leaves the block
133 for (int j = 0; j < T[i].N_BlockTimeComplete; j++) {
134 int srt = (int)T[i].BlockTime[j].StartClearTime;
135 OutputFile << T[i].V[srt] << ” ”;
136 }
137 OutputFile << ”\n”;
138 }
139 }

Speed-distance data
1 void PrintSpeedDiagram(Train *Train, string FolderName) {
2

3 //Create output file
4 string FileName;
5 FileName = FolderName + ”/SpeedDiagram.txt”;
6 ofstream OutputFile;
7 OutputFile.open((char*)FileName.c_str(), ios::binary);
8

9

10 //Print timesteps
11 OutputFile << ”Time ”;
12

13 for (int t = 0; t <= 9500; t++) {
14 OutputFile << t * timestep << ” ”;
15 }
16

17 OutputFile << ”\n”;
18

19

20 for (int i = 0; i < N_Reg; i++) {
21

22 //Print the speed at every timestep
23 OutputFile << T[i].TrainDescription << ”_Speed ”;
24 for (int t = 0; t <= 9500; t++) {
25 OutputFile << Train[i].V[t] << ” ”;
26 }
27 OutputFile << ”\n”;
28

29 //Print the position at every timestep
30 OutputFile << T[i].TrainDescription << ”_Position ”;
31 for (int t = 0; t <= 9500; t++) {
32 OutputFile << Train[i].S[t] << ” ”;
33 }
34 OutputFile << ”\n”;
35 }
36 }

C
Python scripts verification study

1 import pandas as pd
2 import numpy as np
3 pd.options.mode.chained_assignment = None
4 import matplotlib.pyplot as plt
5 import math
6

7 from matplotlib.collections import PatchCollection
8 from matplotlib.patches import Rectangle
9

10 import seaborn as sns
11

12 import matplotlib.patches as mpatches
13 from matplotlib.pyplot import figure

Merge Link and node data
1 #Load link and node data
2 Link = pd.read_excel(’link database.xlsx’)
3 node = pd.read_excel(’Node database.xlsx’)
4

5 #Merging
6 Link[’Length’] = 0.0
7 Link[’LengthCum’] = 0.0
8

9 for i in range(0,len(Link)):
10 for j in range(0,len(node)-1):
11 if Link.StartNodeID[i] == node.NodeID[j]:
12 Link.Length[i] = node.X[j+1] - node.X[j]
13 if i == 0:
14 Link.LengthCum[i] = Link.Length[i]
15 else:
16 Link.LengthCum[i] = Link.LengthCum[i-1] + Link.Length[i]
17 i += 1
18

19 Link[’Distance’] = Link.LengthCum * 1000.0
20

21

22 Link[’A_Gradient’] = 0.0
23 Link[’Acceleration’] = 0.0
24 A = 0.6 #braking deceleration of both trains in the verification study is 0.6m/s^2
25

26 for i in range(len(Link)):
27 Link.A_Gradient[i] = 9.81 * math.sin(math.atan(Link.Gradient[i]))
28 Link.Acceleration[i] = Link.A_Gradient[i] + A
29

30 Link.to_excel(’Link_data.xlsx’)

93

94 C. Python scripts verification study

Approach time model
1 #Load link data
2 Link = pd.read_excel(’Link_data.xlsx’)
3

4 #Load fixed block occupation data
5 A2_1 = pd.read_excel(’FB_A2_1.xlsx’)
6 A2_2 = pd.read_excel(’FB_A2_2.xlsx’)
7 A2_3 = pd.read_excel(’FB_A2_3.xlsx’)
8 A2_4 = pd.read_excel(’FB_A2_4.xlsx’)
9 A2_5 = pd.read_excel(’FB_A2_5.xlsx’)
10 A2_6 = pd.read_excel(’FB_A2_6.xlsx’)
11

12 A3_1 = pd.read_excel(’FB_A3_1.xlsx’)
13 A3_2 = pd.read_excel(’FB_A3_2.xlsx’)
14 A3_3 = pd.read_excel(’FB_A3_3.xlsx’)
15 A3_4 = pd.read_excel(’FB_A3_4.xlsx’)
16 A3_5 = pd.read_excel(’FB_A3_5.xlsx’)
17 A3_6 = pd.read_excel(’FB_A3_6.xlsx’)
18

19 #Load trajectory data
20 A2_1_TSD = pd.read_excel(’A2_1_TSD2.xlsx’)
21 A2_2_TSD = pd.read_excel(’A2_2_TSD2.xlsx’)
22 A2_3_TSD = pd.read_excel(’A2_3_TSD2.xlsx’)
23 A2_4_TSD = pd.read_excel(’A2_4_TSD2.xlsx’)
24 A2_5_TSD = pd.read_excel(’A2_5_TSD2.xlsx’)
25 A2_6_TSD = pd.read_excel(’A2_6_TSD2.xlsx’)
26

27 A3_1_TSD = pd.read_excel(’A3_1_TSD2.xlsx’)
28 A3_2_TSD = pd.read_excel(’A3_2_TSD2.xlsx’)
29 A3_3_TSD = pd.read_excel(’A3_3_TSD2.xlsx’)
30 A3_4_TSD = pd.read_excel(’A3_4_TSD2.xlsx’)
31 A3_5_TSD = pd.read_excel(’A3_5_TSD2.xlsx’)
32 A3_6_TSD = pd.read_excel(’A3_6_TSD2.xlsx’)
33

34 #Calculate performable deceleration at every timestep
35 def Acc(Speed):
36 Speed[’Acceleration’] = 0.0
37 Link = pd.read_excel(’Link_data.xlsx’)
38 for i in range(len(Speed)):
39 for j in range(1,len(Link)):
40 if Speed.Distance[i] < Link.Distance[j] and Speed.Distance[i] >= Link.Distance[j

-1]:
41 Speed.Acceleration[i] = Link.Acceleration [j]
42 if i < len(Speed)-1:
43 i+=1
44

45 return(Speed)
46

47 #Approach time estimation model
48 def Gradient(FB, Speed):
49

50 FB[’Est_App_Time2’] = 0.0
51 for j in range(1,(len(FB))):
52 V = 0.0
53 s = 0.0
54 v_null = 0.0
55 for i in range(len(Speed)):
56 if Speed.Distance[i] >= FB.GeoPosStart[j]:
57 if Speed.Speed[i-1] == 0.0: #als de snelheid al nul is, dan approach time ook
58 FB.Est_App_Time[j] = 0.0
59 else: #Als de trein rijdt, dan approach time uitrekenen
60 brake_loc = Speed.Distance[i-1]
61 for p in range(1,200):
62 for m in range(100):
63 if V > Speed.Speed[i-p-1]:
64 break
65 elif brake_loc >= Speed.Distance[i-p-1]:
66 s += 0.5 * Speed.Acceleration[i-p-1] + V
67 V += Speed.Acceleration[i-p-1]
68 brake_loc = Speed.Distance[i-1] - s

95

69 elif brake_loc < Speed.Distance[i-p-1]:
70 break
71 if V > Speed.Speed[i-p-1]:
72 break
73 else:
74 continue
75

76 print(’Warning: hier hadden we niet moeten komen’)
77

78 FB.Est_App_Time2[j] = Speed.Time[i-1] - Speed.Time[i-p-1]
79 print (’Est App Time: ’, FB.Est_App_Time2[j])
80 break
81

82 #execute the models
83 print(’Start dataset 1’)
84 Acc(A2_1_TSD)
85 print(’Start dataset 2’)
86 Acc(A2_2_TSD)
87 print(’Start dataset 3’)
88 Acc(A2_3_TSD)
89 print(’Start dataset 4’)
90 Acc(A2_4_TSD)
91 print(’Start dataset 5’)
92 Acc(A2_5_TSD)
93 print(’Start dataset 6’)
94 Acc(A2_6_TSD)
95

96 print(’Start dataset 1’)
97 Acc(A3_1_TSD)
98 print(’Start dataset 2’)
99 Acc(A3_2_TSD)
100 print(’Start dataset 3’)
101 Acc(A3_3_TSD)
102 print(’Start dataset 4’)
103 Acc(A3_4_TSD)
104 print(’Start dataset 5’)
105 Acc(A3_5_TSD)
106 print(’Start dataset 6’)
107 Acc(A3_6_TSD)
108

109 print(’Start dataset 1’)
110 Gradient(A2_1, A2_1_TSD)
111 print(’Start dataset 2’)
112 Gradient(A2_2, A2_2_TSD)
113 print(’Start dataset 3’)
114 Gradient(A2_3, A2_3_TSD)
115 print(’Start dataset 4’)
116 Gradient(A2_4, A2_4_TSD)
117 print(’Start dataset 5’)
118 Gradient(A2_5, A2_5_TSD)
119 print(’Start dataset 6’)
120 Gradient(A2_6, A2_6_TSD)
121

122 print(’Start dataset 1’)
123 Gradient(A3_1, A3_1_TSD)
124 print(’Start dataset 2’)
125 Gradient(A3_2, A3_2_TSD)
126 print(’Start dataset 3’)
127 Gradient(A3_3, A3_3_TSD)
128 print(’Start dataset 4’)
129 Gradient(A3_4, A3_4_TSD)
130 print(’Start dataset 5’)
131 Gradient(A3_5, A3_5_TSD)
132 print(’Start dataset 6’)
133 Gradient(A3_6, A3_6_TSD)

96 C. Python scripts verification study

Clearing time model
1 #Load data
2 A2_1 = pd.read_excel(’FB_A2_1.xlsx’)
3 A2_2 = pd.read_excel(’FB_A2_2.xlsx’)
4 A2_3 = pd.read_excel(’FB_A2_3.xlsx’)
5 A2_4 = pd.read_excel(’FB_A2_4.xlsx’)
6 A2_5 = pd.read_excel(’FB_A2_5.xlsx’)
7 A2_6 = pd.read_excel(’FB_A2_6.xlsx’)
8

9 A3_1 = pd.read_excel(’FB_A3_1.xlsx’)
10 A3_2 = pd.read_excel(’FB_A3_2.xlsx’)
11 A3_3 = pd.read_excel(’FB_A3_3.xlsx’)
12 A3_4 = pd.read_excel(’FB_A3_4.xlsx’)
13 A3_5 = pd.read_excel(’FB_A3_5.xlsx’)
14 A3_6 = pd.read_excel(’FB_A3_6.xlsx’)
15

16 A2_1_TSD = pd.read_excel(’A2_1_TSD2.xlsx’)
17 A2_2_TSD = pd.read_excel(’A2_2_TSD2.xlsx’)
18 A2_3_TSD = pd.read_excel(’A2_3_TSD2.xlsx’)
19 A2_4_TSD = pd.read_excel(’A2_4_TSD2.xlsx’)
20 A2_5_TSD = pd.read_excel(’A2_5_TSD2.xlsx’)
21 A2_6_TSD = pd.read_excel(’A2_6_TSD2.xlsx’)
22

23 A3_1_TSD = pd.read_excel(’A3_1_TSD2.xlsx’)
24 A3_2_TSD = pd.read_excel(’A3_2_TSD2.xlsx’)
25 A3_3_TSD = pd.read_excel(’A3_3_TSD2.xlsx’)
26 A3_4_TSD = pd.read_excel(’A3_4_TSD2.xlsx’)
27 A3_5_TSD = pd.read_excel(’A3_5_TSD2.xlsx’)
28 A3_6_TSD = pd.read_excel(’A3_6_TSD2.xlsx’)
29

30 #Model
31 def Clearing(df, tsd):
32 L = 161.84 #Length of the trains
33 df[’Est_ClearingTime’] = 9999.0
34 for i in range(len(df)):
35 for j in range(len(tsd)):
36 if df.StartRunTime[i] == tsd.Time[j]:
37 for k in range(600):
38 if tsd.Distance[j+k] > tsd.Distance[j] + L:
39 df.Est_ClearingTime[i] = k
40 break
41 else:
42 continue
43 else:
44 continue
45 break
46

47 #Execute the model of each train separately
48 Clearing(A2_1, A2_1_TSD)
49 Clearing(A2_2, A2_2_TSD)
50 Clearing(A2_3, A2_3_TSD)
51 Clearing(A2_4, A2_4_TSD)
52 Clearing(A2_5, A2_5_TSD)
53 Clearing(A2_6, A2_6_TSD)
54

55 Clearing(A3_1, A3_1_TSD)
56 Clearing(A3_2, A3_2_TSD)
57 Clearing(A3_3, A3_3_TSD)
58 Clearing(A3_4, A3_4_TSD)
59 Clearing(A3_5, A3_5_TSD)
60 Clearing(A3_6, A3_6_TSD)
61

62 #merge all trains in one dataset
63 df = pd.concat([A2_1, A2_2, A2_3, A2_4, A2_5, A2_6,
64 A3_1, A3_2, A3_3, A3_4, A3_5, A3_6], sort=False)
65

66 #Calculate correlation
67 df.corr()

D
Python scripts case study

1 import pandas as pd
2 import numpy as np
3 pd.options.mode.chained_assignment = None
4 import matplotlib.pyplot as plt
5 import math
6

7 from matplotlib.collections import PatchCollection
8 from matplotlib.patches import Rectangle
9

10 import seaborn as sns
11

12 import matplotlib.patches as mpatches
13 from matplotlib.pyplot import figure

Calculation of deceleration rates
1 blok = pd.read_excel(’blokbezetting friso.xlsx’)
2

3 #Creating list of trains
4 trains = []
5

6 for i in range(len(blok)):
7 if blok.TreinNaam[i] not in trains:
8 trains.append(blok.TreinNaam[i])
9 else:
10 continue
11

12 #Creating ’blokbezetting’ and ’gradient’ files per train
13 for i in range(len(trains)):
14 df = blok[blok.TreinNaam == trains[i]]
15 df.to_excel(’blokbezetting_’+trains[i]+’.xlsx’)
16

17 for i in range(len(trains)):
18 df = rosa[rosa.Trein == trains[i]]
19 df.to_excel(’gradient_’+trains[i]+’.xlsx’)
20

21 #Define function to link datasets
22 def Remweg(q):
23 print(’Start met: ’, trains[q])
24 blok = pd.read_excel(’blokbezetting_’+trains[q]+’.xlsx’)
25 rosa = pd.read_excel(trains[q]+’_rosagradient.xlsx’)
26

27 blok[’remweg’] = np.nan
28

29

30 for i in range(len(blok)):
31 for j in range(len(rosa)):

97

98 D. Python scripts case study

32 if rosa.id2[j] == blok.SeinID[i] and rosa.kilometrering[j] == blok.
SeinKilometrering[i]:

33 blok.remweg[i] = rosa.remAfstandM[j]
34 if i < len(blok)-1:
35 i += 1
36 continue
37 else:
38 break
39

40 blok.to_excel(’blok_remweg_’+trains[q]+’.xlsx’)
41 print(’klaar met ’, trains[q])
42

43 #Run function
44 for q in range(len(trains)):
45 Remweg(q)
46

47 for i in range(len(trains)):
48 df = dis[dis.naam == trains[i]]
49 df.to_excel(’rosa_data_’+trains[i]+’.xlsx’)
50

51 #Define function to link the gradient to the rosa data and calculate acceleration rates
52 def grad(q):
53 print(’Start met: ’, trains[q])
54 rosa = pd.read_excel(’rosa_data_’+trains[q]+’.xlsx’)
55 gradient = pd.read_excel(’gradient_’+trains[q]+’.xlsx’)
56

57 print(’gradient is nul’)
58 rosa[’gradient’] = 0.0
59

60 for i in range(0,len(rosa)):
61 for j in range(1,len(gradient)):
62 if rosa.Distance[i] == gradient.Distance[j]:
63 rosa.gradient[i] = gradient.Gradient[j-1]
64 break
65 elif rosa.Distance[i] < gradient.Distance[j]:
66 rosa.gradient[i] = gradient.Gradient[j-1]
67 break
68 else:
69 rosa.gradient[i] = 0.0
70 continue
71

72 print(’Acceleratie uitrekenen’)
73 rosa[’Acceleration’] = 0.0
74 for i in range(len(rosa)):
75 grav = 9.81 * math.sin(math.atan(rosa.gradient[i]))
76 if rosa.treinType[i] == ’IC’ or rosa.treinType[i] == ’SPR’ or rosa.treinType[i] == ’

HS’ or rosa.treinType[i] == ’IR’ or rosa.treinType[i] == ’R’ or rosa.treinType[i] == ’LM’
:

77 rosa.Acceleration[i] = 0.5 + grav
78 elif rosa.treinType[i] == ’G’:
79 rosa.Acceleration[i] = 0.2 + grav
80 else:
81 print(rosa.treinType[i], ’NOT FOUND!’)
82

83 rosa.to_excel(trains[q]+’_rosagradient.xlsx’)
84 print(’Klaar met: ’, trains[q])

Calculation fixed block occupation times
1 blok = pd.read_excel(’blokbezetting friso.xlsx’)
2

3 for i in range(len(trains)):
4 df = blok[blok.TreinNaam == trains[i]]
5 df.to_excel(’blokbezetting_’+trains[i]+’.xlsx’)
6

7 def Remweg(q):
8 print(’Start met: ’, trains[q])
9 blok = pd.read_excel(’blokbezetting_’+trains[q]+’.xlsx’)
10 rosa = pd.read_excel(trains[q]+’_rosagradient.xlsx’)

99

11

12 blok[’remweg’] = np.nan
13

14 for i in range(len(blok)):
15 for j in range(len(rosa)):
16 if rosa.id2[j] == blok.SeinID[i] and rosa.kilometrering[j] == blok.

SeinKilometrering[i]:
17 blok.remweg[i] = rosa.remAfstandM[j]
18 if i < len(blok)-1:
19 i += 1
20 continue
21 else:
22 break
23

24 blok.to_excel(’blok_remweg_’+trains[q]+’.xlsx’)
25 print(’klaar met ’, trains[q])
26

27 for q in range(len(trains)):
28 Remweg(q)
29

30 def block(trains):
31 for i in range(len(trains)):
32 print(’Start met: ’, i)
33 df = pd.read_excel(’blok_remweg_’+trains[i]+’.xlsx’)
34 df[’setup’] = 3.0
35 df[’reaction’] = 9.0
36 df[’approach’] = 0.0
37 df[’running’] = 0.0
38 df[’clearing’] = 0.0
39 df[’release’] = 1.0
40 df[’StartOccTime’] = 0.0
41 df[’EndOccTime’] = 0.0
42 df[’BlokLengte’] = 0.0
43

44 for k in range(1,len(df)):
45 for l in range(10):
46 if k >= l:
47 if df.remweg[k-l] <= df.AfgelegdeAfstandTrein[k] - df.

AfgelegdeAfstandTrein[k-l]:
48 df.approach[k] = df.TijdstipVoorkantPassage[k] - df.

TijdstipVoorkantPassage[k-l]
49 break
50 elif (k-l) == 0:
51 if df.remweg[k-l] <= df.AfgelegdeAfstandTrein[k] - df.

AfgelegdeAfstandTrein[k-l]:
52 df.approach[k] = df.TijdstipVoorkantPassage[k] - df.

TijdstipVoorkantPassage[0]
53 break
54 else:
55 continue
56

57 df.approach[0] = 0
58

59 for j in range(0,len(df)-1):
60 df.running[j] = df.TijdstipVoorkantPassage[j+1] - df.TijdstipVoorkantPassage[j]
61 df.BlokLengte[j] = df.AfgelegdeAfstandTrein[j+1] - df.AfgelegdeAfstandTrein[j]
62

63 if df.TijdstipAchterkantPassage[j+1] == 0.0:
64 df.clearing[j] = 0.0
65 else:
66 df.clearing[j] = df.TijdstipAchterkantPassage[j+1] - df.

TijdstipVoorkantPassage[j+1]
67

68 df.clearing[len(df)] = 0.0
69 df.running[len(df)] = 0.0
70 df.BlokLengte[len(df)] = 0.0
71

72 for h in range(len(df)):
73 df.StartOccTime[h] = df.TijdstipVoorkantPassage[h] - df.approach[h] - df.reaction

[h] - df.setup[h]
74 df.EndOccTime[h] = df.TijdstipVoorkantPassage[h] + df.running[h] + df.clearing[h]

100 D. Python scripts case study

+ df.release[h]
75

76 df.to_excel(’FB_blockingtimes_’+trains[i]+’.xlsx’)
77 print(’klaar met: ’, i)
78

79 block(trains)

Moving block model
1 def AppTime(pos):
2 for r in range(0,len(pos)):
3 print(’Start met ’, r, ’ -- trein: ’, pos[r])
4 dfrosa = pd.read_excel(pos[r]+’_rosagradient.xlsx’)
5 dfsec = dfrosa
6 dfsec[’Section_found’] = 9999.0
7 dfsec[’MB_Route_form’] = 1.0
8 dfsec[’MB_ReacTime’] = 9.0
9 dfsec[’MB_ApproachTime’] = 9999.0
10 dfsec[’MB_ReleaseTime’] = 1.0
11 dfsec[’MB_RunningTime’] = 0.0
12 dfsec[’MB_ClearingTime’] = 0.0
13

14 for j in range(0, len(dfsec)):
15 V = 0.0
16 s = 0.0
17 v_null = 0.0
18 brake_loc = 0.0
19 PassTime = 0.0
20 for i in range(0,(len(dfrosa))):
21

22 if dfsec.id2[j] == dfrosa.id2[i] and dfrosa.voorkantSnelheidMS[i] == 0:
23 dfsec.Section_found[j] = 1.0
24 dfsec.MB_ApproachTime[j] = 0.0
25 break
26

27 elif dfsec.id2[j] == dfrosa.id2[i]:
28 dfsec.Section_found[j] = 2.0
29 PassTime = dfrosa.voorkantPassageTijdstipS[i]
30

31 brake_loc = dfrosa.Distance[i]
32 for p in range(0,200):
33

34 for m in range(0,100):
35 V_free_flow = dfrosa.voorkantSnelheidMS[i-p] - (dfrosa.

voorkantVersnellingMS2[i-p-1] * m)
36 if V >= V_free_flow or brake_loc < 0:
37 break
38 elif brake_loc > dfrosa.Distance[i-p-1]:
39 s += 0.5 * dfrosa.Acceleration[i-p-1] + V
40 V += dfrosa.Acceleration[i-p-1]
41 brake_loc = dfrosa.Distance[i] - s
42 elif brake_loc <= dfrosa.Distance[i-p-1]:
43 break
44

45 if V >= V_free_flow or brake_loc < 0:
46 break
47 else:
48 continue
49

50 print(’WARNING! hier hadden we niet moeten komen’)
51

52 for h in range(0,10):
53 if dfrosa.voorkantIntervalS[i-p-h] != 0:
54 T = (((dfrosa.Distance[i-p] - brake_loc) / (dfrosa.Distance[i-p]

- dfrosa.Distance[i-p-1-h])) *
55 dfrosa.voorkantIntervalS[i-p-h])
56 break
57 else:
58 continue

101

59

60 dfsec.MB_ApproachTime[j] = (PassTime - dfrosa.voorkantPassageTijdstipS[i-
p]) + T

61 break
62 else:
63 dfsec.Section_found[j] = 0.0
64

65

66 for b in range(0,len(dfsec)-1):
67 dfsec.MB_ClearingTime[b] = dfsec.achterkantPassageTijdstipS[b] - dfsec.

voorkantPassageTijdstipS[b]
68

69 dfsec.to_excel(’MB_OccTimes_’+pos[r]+’.xlsx’)
70 print(’Klaar met ’, r)

Coupling Fixed Block and Moving Block datasets
1 df = pd.read_excel(’rijweginstelling_14122021.xlsx’)
2

3 for j in range(len(trains)):
4 data = df[df.TreinNaam == trains[j]]
5 data.to_excel(trains[j]+’_rijweginstelling.xlsx’)
6

7 def koppel(j):
8 print(’Start met: ’,j, ” - ”, trains[j])
9 rijweg = pd.read_excel(trains[j]+’_rijweginstelling.xlsx’)
10 sectie = pd.read_excel(trains[j]+’_Sectiebezetting.xlsx’)
11 rosa = pd.read_excel(’MB_OccTimes_’+trains[j]+’.xlsx’)
12 FB = pd.read_excel(’FB_blockingtimes_’+trains[j]+’.xlsx’)
13

14 rosa = rosa[rosa.Distance >= 0.0]
15 rosa = rosa.rename(columns={”key”: ’TypeRijweg’, ”value”:”Station”})
16 rosa[’MB_StartOccTime’] = 0.0
17 rosa[’MB_EndOccTime’] = 0.0
18 rosa[’MB_OccTime’] = 0.0
19

20

21 #Calculation of start- and end of the blocking time for moving block
22 for k in range(len(rosa)):
23 if rosa.MB_ApproachTime[k] >= 0.0:
24 rosa.MB_StartOccTime[k] = rosa.voorkantPassageTijdstipS[k] - rosa.MB_ApproachTime

[k] - rosa.MB_ReacTime[k] - rosa.MB_Route_form[k]
25 if rosa.MB_ApproachTime[k] < 0.0:
26 rosa.MB_StartOccTime[k] = rosa.voorkantPassageTijdstipS[k] - rosa.MB_ReacTime[k]

- rosa.MB_Route_form[k]
27

28 rosa.MB_EndOccTime[k] = rosa.voorkantPassageTijdstipS[k] + rosa.MB_RunningTime[k] +
rosa.MB_ClearingTime[k] + rosa.MB_ReleaseTime[k]

29

30

31 if rosa.type[k] == ’WISSEL’ or rosa.type[k] == ’AHOB’ or rosa.type[k] == ’AOB’ or
rosa.type[k] == ’OVW_ONBEWAAKT’ or rosa.type[k] == ’HAHOB’ or rosa.type[k] == ’AHOB_FIETS
’ or rosa.type[k] == ’EBO_HAND’ or rosa.type[k] == ’EBO_CENTRAAL’:

32 if rosa.MB_StartOccTime[k] >= 14.0:
33 rosa.MB_StartOccTime[k] = rosa.MB_StartOccTime[k] - 14.0
34 else:
35 rosa.MB_StartOccTime[k] = 0.0
36 else:
37 rosa.MB_StartOccTime[k] = rosa.MB_StartOccTime[k] - 1.0
38

39 rosa.MB_OccTime[k] = rosa.MB_EndOccTime[k] - rosa.MB_StartOccTime[k]
40

41 #Adding columns for FB data
42 rosa[’FB_Route_form’] = 1.0
43 rosa[’FB_ReacTime’] = 9.0
44 rosa[’FB_ApproachTime’] = 0.0
45 rosa[’FB_ReleaseTime’] = 1.0
46 rosa[’FB_RunningTime’] = 0.0
47 rosa[’FB_ClearingTime’] = 0.0

102 D. Python scripts case study

48 rosa[’FB_StartOccTime’] = 0.0
49 rosa[’FB_EndOccTime’] = 0.0
50 rosa[’FB_OccTime’] = 0.0
51

52 FB[’SeinNaam’] = FB[’SeinNaam’].apply(str)
53 FB[’SeinType’] = FB[’SeinType’].apply(str)
54 rosa[’naam3’] = rosa[’naam3’].apply(str)
55 rosa[’kilometerLint’] = rosa[’kilometerLint’].apply(str)
56 rosa[’sectieNaam1’] = rosa[’sectieNaam1’].apply(str)
57 rosa[’TypeRijweg’] = rosa[’TypeRijweg’].apply(str)
58 rijweg[’VanSeinNaam’] = rijweg[’VanSeinNaam’].apply(str)
59 rijweg[’VanSeinKilometerling’] = rijweg[’VanSeinKilometerling’].apply(str)
60 sectie[’Kilometerlint’] = sectie[’Kilometerlint’].apply(str)
61

62 rosa.TypeRijweg[0] = ’BED’
63

64 sectie[’DRPnaam’].replace({’-’:np.nan})
65

66 #Finding stations/stops on the route
67 for w in range(len(sectie)-1):
68 if sectie.AfrijTijd[w] - sectie.OprijTijd[w] >= 65.0:
69 for z in range(len(rosa)):
70 if sectie.Sectie[w] == rosa.sectieNaam1[z] and sectie.DRPnaam[w] == rosa.

dienstregelpuntCode[z]:
71 rosa.Station[z] = ’Ja’
72 elif sectie.Sectie[w+1] == rosa.sectieNaam1[z] and sectie.DRPnaam[w+1] ==

rosa.dienstregelpuntCode[z] and sectie.OprijTijd[w+1]*0.97 < rosa.
voorkantPassageTijdstipS[z] < sectie.OprijTijd[w+1]*1.03:

73 rosa.Station[z] = ’Na’
74

75 #copying fixed block blocking times to all signals
76 for i in range(len(rosa)):
77 for k in range(len(FB)):
78 if rosa.id2[i] == FB.SeinID[k]:
79 rosa.TypeRijweg[i] = FB.SeinType[k]
80 rosa.FB_ApproachTime[i] = FB.approach[k]
81 rosa.FB_RunningTime[i] = FB.running[k]
82 rosa.FB_ClearingTime[i] = FB.clearing[k]
83 rosa.FB_StartOccTime[i] = FB.StartOccTime[k]
84

85 if rosa.TypeRijweg[i] == ’ONB’: #ONB = Onbediend (Open lines)
86 rosa.FB_EndOccTime[i] = FB.EndOccTime[k]
87 break
88

89 #Copying approach, running and clearing times from the signal to the other infra elements
in the block

90 for p in range(1, len(rosa)):
91 if rosa.TypeRijweg[p] != ’BED’ and rosa.TypeRijweg[p] != ’ONB’:
92 rosa.TypeRijweg[p] = rosa.TypeRijweg[p-1]
93 rosa.FB_ApproachTime[p] = rosa.FB_ApproachTime[p-1]
94 rosa.FB_RunningTime[p] = rosa.FB_RunningTime[p-1]
95 rosa.FB_ClearingTime[p] = rosa.FB_ClearingTime[p-1]
96

97 #Applying sectional route release in interlocking areas
98 for m in range(len(rosa)):
99 for n in range(len(sectie)):
100 if (rosa.sectieNaam1[m] == sectie.Sectie[n] and rosa.TypeRijweg[m] == ’BED’
101 and rosa.dienstregelpuntCode[m] == sectie.DRPnaam[n]
102 and (sectie.OprijTijd[n]-60.0) < rosa.voorkantPassageTijdstipS[m] < (sectie.

OprijTijd[n]+60.0)):
103 rosa.FB_EndOccTime[m] = sectie.AfrijTijd[n] + 1.0
104

105 #Applying route setup times for the block at and after a stop
106 for u in range(len(rosa)):
107 if rosa.Station[u] == ’Na’ or rosa.Station[u] == ’Ja’:
108 for g in range(len(rijweg)):
109 if (rosa.naam3[u] == rijweg.VanSeinNaam[g]
110 and rosa.id2[u] == rijweg.VanSeinID[g]
111 and rosa.richting[u] == ’M’):
112 rosa.FB_StartOccTime[u] = rijweg.TijdstipBeginRijwegInstelling[g]
113 if rosa.Station[u] == ’Na’:

103

114 for t in range(1,20):
115 if rosa.Station[u-t] == ’Na’:
116 rosa.FB_StartOccTime[u-t] = rosa.FB_StartOccTime[u]
117 continue
118 else:
119 break
120

121 #Define end times for elements at the start of the simulations
122 for u in range(len(rosa)):
123 if rosa.FB_EndOccTime[u] == 0.0:
124 continue
125 else:
126 rosa.FB_EndOccTime[0] = rosa.FB_EndOccTime[u]
127 break
128

129 #Filling gaps
130 for p in range(1, len(rosa)):
131 if rosa.FB_StartOccTime[p] == 0.0:
132 rosa.FB_StartOccTime[p] = rosa.FB_StartOccTime[p-1]
133 if rosa.FB_EndOccTime[p] == 0.0:
134 rosa.FB_EndOccTime[p] = rosa.FB_EndOccTime[p-1]
135

136 for y in range(1,len(rosa)):
137 if rosa.FB_StartOccTime[y] < rosa.FB_StartOccTime[y-1] and rosa.achterkantSnelheidMS[

y] > 0.0:
138 for p in range(1,50):
139 if rosa.FB_StartOccTime[y] == rosa.FB_StartOccTime[y+p] and (y+p+1) < len(

rosa):
140 continue
141 else:
142 for u in range(0,p):
143 rosa.FB_StartOccTime[y+u] = rosa.voorkantPassageTijdstipS[y] - 24.0
144 break
145

146 rosa.FB_OccTime[y] = rosa.FB_EndOccTime[y] - rosa.FB_StartOccTime[y]
147

148 #Finish
149 rosa.to_excel(trains[j]+’_FB_MB_OccTimes_v14.xlsx’)
150 print(’Klaar met: ’, trains[j])
151

152 #Run function
153 for j in range(20, len(trains)):
154 koppel(j)
155

156 #Adding all datasets to one dataset
157 block_list = []
158

159 for i in range(len(trains)):
160 df = pd.read_excel(trains[i]+’_FB_MB_OccTimes_v14.xlsx’)
161 block_list.append(df)
162 df2 = pd.concat(block_list)
163

164 df2 = df2.sort_values(by=’FB_StartOccTime’)
165 df2.to_excel(’Alles_OccupationTimes_FB_MB_v3.xlsx’)

Buffer time calculation and ananlysis
1 #Creating basic hour pattern
2 data = pd.read_excel(’Alles_OccupationTimes_FB_MB_v3.xlsx’)
3

4 for i in range(len(data)):
5 if data.FB_StartOccTime[i] > 3600.0 and data.FB_StartOccTime[i] < 7200.0:
6 data.FB_StartOccTime[i] = data.FB_StartOccTime[i] - 3600.0
7 data.FB_EndOccTime[i] = data.FB_EndOccTime[i] - 3600.0
8

9 elif data.FB_StartOccTime[i] > 7200.0 and data.FB_StartOccTime[i] < 10800.0:
10 data.FB_StartOccTime[i] = data.FB_StartOccTime[i] - 7200.0
11 data.FB_EndOccTime[i] = data.FB_EndOccTime[i] - 7200.0
12

104 D. Python scripts case study

13 elif data.FB_StartOccTime[i] > 10800.0 and data.FB_StartOccTime[i] < 14400.0:
14 data.FB_StartOccTime[i] = data.FB_StartOccTime[i] - 10800.0
15 data.FB_EndOccTime[i] = data.FB_EndOccTime[i] - 10800.0
16

17 for j in range(len(data)):
18 if data.MB_StartOccTime[j] > 3600.0 and data.MB_StartOccTime[j] < 7200.0:
19 data.MB_StartOccTime[j] = data.MB_StartOccTime[j] - 3600.0
20 data.MB_EndOccTime[j] = data.MB_EndOccTime[j] - 3600.0
21

22 elif data.MB_StartOccTime[j] > 7200.0 and data.MB_StartOccTime[j] < 10800.0:
23 data.MB_StartOccTime[j] = data.MB_StartOccTime[j] - 7200.0
24 data.MB_EndOccTime[j] = data.MB_EndOccTime[j] - 7200.0
25

26 elif data.MB_StartOccTime[j] > 10800.0 and data.MB_StartOccTime[j] < 14400.0:
27 data.MB_StartOccTime[j] = data.MB_StartOccTime[j] - 10800.0
28 data.MB_EndOccTime[j] = data.MB_EndOccTime[j] - 10800.0
29

30 data = data.sort_values(by=’FB_StartOccTime’)
31 data.to_excel(’Alles_OccupationTimes_FB_MB_v4.xlsx’)
32

33 #Calculation fixed block buffer times
34 data = pd.read_excel(’Alles_OccupationTimes_FB_MB_v4.xlsx’)
35 sec_list = []
36

37 for i in range(len(data)):
38 if data.type[i] == ’SECTIE’ and data.id2[i] not in sec_list:
39 sec_list.append(data.id2[i])
40

41 df = pd.DataFrame(sec_list, columns=[’SectieID’])
42

43 df[’SectieNaam’] = np.nan
44 df[’kilometerLint’] = np.nan
45 df[’dienstregelpuntCode’] = np.nan
46 df[’kilometrering’] = np.nan
47 df[’Train_count’] = 0.0
48

49 for i in range(1,14):
50 df[’TrainSeries_’+str(i)] = np.nan
51 df[’FB_Route_form_’+str(i)] = np.nan
52 df[’FB_ReacTime_’+str(i)] = np.nan
53 df[’FB_ApproachTime_’+str(i)] = np.nan
54 df[’FB_RunningTime_’+str(i)] = np.nan
55 df[’FB_ClearingTime_’+str(i)] = np.nan
56 df[’FB_ReleaseTime_’+str(i)] = np.nan
57 df[’FB_StartOccTime_’+str(i)] = np.nan
58 df[’FB_EndOccTime_’+str(i)] = np.nan
59 df[’FB_OccTime_’+str(i)] = np.nan
60 df[’FB_BufferTime_’+str(i)] = np.nan
61

62 for p in range(len(data)):
63 if data.type[p] == ’SECTIE’ and data.FB_StartOccTime[p] != 0.0 and data.MB_ApproachTime[p

] != 9999.0 and data.MB_OccTime[p] > 0.0:
64 for h in range(len(df)):
65 if data.id2[p] == df.SectieID[h]:
66

67 df.Train_count[h] += 1.0
68

69 df.SectieNaam[h] = data.naam3[p]
70 df.kilometerLint[h] = data.kilometerLint[p]
71 df.dienstregelpuntCode[h] = data.dienstregelpuntCode[p]
72 df.kilometrering[h] = data.kilometrering[p]
73

74 q = int(df.Train_count[h])
75

76 df[’FB_Route_form_’+str(q)].iloc[h] = data.FB_Route_form[p]
77 df[’FB_ReacTime_’+str(q)].iloc[h] = data.FB_ReacTime[p]
78 df[’FB_ApproachTime_’+str(q)].iloc[h] = data.FB_ApproachTime[p]
79 df[’FB_RunningTime_’+str(q)].iloc[h] = data.FB_RunningTime[p]
80 df[’FB_ClearingTime_’+str(q)].iloc[h] = data.FB_ClearingTime[p]
81 df[’FB_ReleaseTime_’+str(q)].iloc[h] = data.FB_ReleaseTime[p]
82 df[’FB_OccTime_’+str(q)].iloc[h] = data.FB_OccTime[p]

105

83 df[’TrainSeries_’+str(q)].iloc[h] = data.naam[p]
84 df[’FB_StartOccTime_’+str(q)].iloc[h] = data.FB_StartOccTime[p]
85 df[’FB_EndOccTime_’+str(q)].iloc[h] = data.FB_EndOccTime[p]
86

87 #Repeating the first train
88 for h in range(len(df)):
89 q = int(df.Train_count[h]+1.0)
90

91 df[’FB_Route_form_’+str(q)].iloc[h] = df[’FB_Route_form_’+str(1)].iloc[h]
92 df[’FB_ReacTime_’+str(q)].iloc[h] = df[’FB_ReacTime_’+str(1)].iloc[h]
93 df[’FB_ApproachTime_’+str(q)].iloc[h] = df[’FB_ApproachTime_’+str(1)].iloc[h]
94 df[’FB_RunningTime_’+str(q)].iloc[h] = df[’FB_RunningTime_’+str(1)].iloc[h]
95 df[’FB_ClearingTime_’+str(q)].iloc[h] = df[’FB_ClearingTime_’+str(1)].iloc[h]
96 df[’FB_ReleaseTime_’+str(q)].iloc[h] = df[’FB_ReleaseTime_’+str(1)].iloc[h]
97 df[’FB_OccTime_’+str(q)].iloc[h] = df[’FB_OccTime_’+str(1)].iloc[h]
98 df[’TrainSeries_’+str(q)].iloc[h] = df[’TrainSeries_’+str(1)].iloc[h]
99 df[’FB_StartOccTime_’+str(q)].iloc[h] = df[’FB_StartOccTime_’+str(1)].iloc[h] +3600.0
100 df[’FB_EndOccTime_’+str(q)].iloc[h] = df[’FB_EndOccTime_’+str(1)].iloc[h] +3600.0
101

102 df = df[df.Train_count != 0.0]
103 df.to_excel(’Alles_Sectiebezetting_volg_FB_b.xlsx’)
104

105 #Calculation moving block buffer times
106 MB = pd.read_excel(’Alles_OccupationTimes_FB_MB_v4.xlsx’)
107 MB2 = MB.sort_values(by=’MB_StartOccTime’)
108 MB2.to_excel(’OccTimes_volg_MB_4b.xlsx’)
109

110 data = pd.read_excel(’OccTimes_volg_MB_4b.xlsx’)
111

112 sec_list = []
113

114 for i in range(len(data)):
115 if data.type[i] == ’SECTIE’ and data.id2[i] not in sec_list:
116 sec_list.append(data.id2[i])
117

118 df = pd.DataFrame(sec_list, columns=[’SectieID’])
119

120 df[’SectieNaam’] = np.nan
121 df[’kilometerLint’] = np.nan
122 df[’dienstregelpuntCode’] = np.nan
123 df[’kilometrering’] = np.nan
124 df[’Train_count’] = 0.0
125

126 for i in range(1,14):
127 df[’TrainSeries_’+str(i)] = np.nan
128 df[’MB_Route_form_’+str(i)] = np.nan
129 df[’MB_ReacTime_’+str(i)] = np.nan
130 df[’MB_ApproachTime_’+str(i)] = np.nan
131 df[’MB_RunningTime_’+str(i)] = np.nan
132 df[’MB_ClearingTime_’+str(i)] = np.nan
133 df[’MB_ReleaseTime_’+str(i)] = np.nan
134 df[’MB_StartOccTime_’+str(i)] = np.nan
135 df[’MB_EndOccTime_’+str(i)] = np.nan
136 df[’MB_OccTime_’+str(i)] = np.nan
137 df[’MB_BufferTime_’+str(i)] = np.nan
138

139

140 for p in range(len(data)):
141 if data.type[p] == ’SECTIE’ and data.FB_StartOccTime[p] != 0.0 and data.MB_EndOccTime[p]

> 0.0 and data.MB_ApproachTime[p] != 9999.0 and data.MB_OccTime[p] > 0.0:
142 for h in range(len(df)):
143 if data.id2[p] == df.SectieID[h]:
144

145 df.Train_count[h] += 1.0
146

147 df.SectieNaam[h] = data.naam3[p]
148 df.kilometerLint[h] = data.kilometerLint[p]
149 df.dienstregelpuntCode[h] = data.dienstregelpuntCode[p]
150 df.kilometrering[h] = data.kilometrering[p]
151

152 q = int(df.Train_count[h])

106 D. Python scripts case study

153

154 df[’MB_Route_form_’+str(q)].iloc[h] = data.MB_Route_form[p]
155 df[’MB_ReacTime_’+str(q)].iloc[h] = data.MB_ReacTime[p]
156 df[’MB_ApproachTime_’+str(q)].iloc[h] = data.MB_ApproachTime[p]
157 df[’MB_RunningTime_’+str(q)].iloc[h] = data.MB_RunningTime[p]
158 df[’MB_ClearingTime_’+str(q)].iloc[h] = data.MB_ClearingTime[p]
159 df[’MB_ReleaseTime_’+str(q)].iloc[h] = data.MB_ReleaseTime[p]
160 df[’MB_StartOccTime_’+str(q)].iloc[h] = data.MB_StartOccTime[p]
161 df[’MB_EndOccTime_’+str(q)].iloc[h] = data.MB_EndOccTime[p]
162 df[’MB_OccTime_’+str(q)].iloc[h] = data.MB_OccTime[p]
163 df[’TrainSeries_’+str(q)].iloc[h] = data.naam[p]
164

165 #Repeating the first train for each section
166 for h in range(len(df)):
167 q = int(df.Train_count[h]+1.0)
168

169 df[’MB_Route_form_’+str(q)].iloc[h] = df[’MB_Route_form_’+str(1)].iloc[h]
170 df[’MB_ReacTime_’+str(q)].iloc[h] = df[’MB_ReacTime_’+str(1)].iloc[h]
171 df[’MB_ApproachTime_’+str(q)].iloc[h] = df[’MB_ApproachTime_’+str(1)].iloc[h]
172 df[’MB_RunningTime_’+str(q)].iloc[h] = df[’MB_RunningTime_’+str(1)].iloc[h]
173 df[’MB_ClearingTime_’+str(q)].iloc[h] = df[’MB_ClearingTime_’+str(1)].iloc[h]
174 df[’MB_ReleaseTime_’+str(q)].iloc[h] = df[’MB_ReleaseTime_’+str(1)].iloc[h]
175 df[’MB_OccTime_’+str(q)].iloc[h] = df[’MB_OccTime_’+str(1)].iloc[h]
176 df[’TrainSeries_’+str(q)].iloc[h] = df[’TrainSeries_’+str(1)].iloc[h]
177 df[’MB_StartOccTime_’+str(q)].iloc[h] = df[’MB_StartOccTime_’+str(1)].iloc[h] +3600.0
178 df[’MB_EndOccTime_’+str(q)].iloc[h] = df[’MB_EndOccTime_’+str(1)].iloc[h] +3600.0
179

180

181 df = df[df.Train_count != 0.0]
182 df.to_excel(’Sectiebezettingen_volg_MB_v2.xlsx’)
183

184 #Adding Interlocking area types
185 sectie = pd.read_excel(’lijst secties.xlsx’)
186

187 FB = pd.read_excel(’Alles_Sectiebezetting_volg_FB_b.xlsx’)
188

189 for i in range(len(FB)):
190 for j in range(len(sectie)):
191 if FB.SectieNaam[i] == sectie.naam[j] and FB.dienstregelpuntCode[i] == sectie.DRP[j]:
192 FB.DRPtype[i] = sectie.DRPtype[j]
193 break
194

195 FB.to_excel(’Alles_Sectiebezetting_volg_FB_v2.xlsx’)
196

197 df = pd.read_excel(’Sectiebezettingen_volg_MB_v2.xlsx’)
198 for i in range(len(df)):
199 for j in range(len(sectie)):
200 if df.SectieNaam[i] == sectie.naam[j] and df.dienstregelpuntCode[i] == sectie.DRP[j]:
201 df.DRPtype[i] = sectie.DRPtype[j]
202 break
203

204 df.to_excel(’Alles_Sectiebezetting_volg_MB_v2b.xlsx’)
205

206 #Calculation of buffer times
207 data = pd.read_excel(’Alles_Sectiebezetting_volg_FB_v2.xlsx’)
208 for i in range(len(data)):
209 for j in range(2,13):
210 if data[’FB_Route_form_’+str(j)].iloc[i] == 1.0:
211 data[’FB_BufferTime_’+str(j-1)].iloc[i] = data[’FB_StartOccTime_’+str(j)].iloc[i]

- data[’FB_EndOccTime_’+str(j-1)].iloc[i]
212 else:
213 break
214

215 data.to_excel(’Alles_Sectiebezetting_volg_FB_v3.xlsx’)
216

217 data = pd.read_excel(’Alles_Sectiebezetting_volg_MB_v2b.xlsx’)
218

219 for i in range(len(data)):
220 for j in range(2,13):
221 if data[’MB_Route_form_’+str(j)].iloc[i] == 1.0:
222 data[’MB_BufferTime_’+str(j-1)].iloc[i] = data[’MB_StartOccTime_’+str(j)].iloc[i]

107

- data[’MB_EndOccTime_’+str(j-1)].iloc[i]
223 else:
224 break
225

226 data.to_excel(’Alles_Sectiebezetting_volg_MB_v3b.xlsx’)
227

228 #Creating a dataset with all buffer times in one column, including the details of the first
and second train

229 def FBbufferdataset(FB):
230 df = pd.DataFrame()
231 df[’SectieID’] = np.nan
232 df[’SectieNaam’] = np.nan
233 df[’KilometerLint’] = np.nan
234 df[’dienstregelpuntCode’] = np.nan
235 df[’kilometrering’] = np.nan
236 df[’DRPtype’] = np.nan
237 df[’TrainSeries_1’] = np.nan
238 df[’Route_form_1’] = np.nan
239 df[’ReacTime_1’] = np.nan
240 df[’ApproachTime_1’] = np.nan
241 df[’RunningTime_1’] = np.nan
242 df[’ClearingTime_1’] = np.nan
243 df[’ReleaseTime_1’] = np.nan
244 df[’StartOccTime_1’] = np.nan
245 df[’EndOccTime_1’] = np.nan
246 df[’OccTime_1’] = np.nan
247 df[’BufferTime’] = np.nan
248 df[’TrainSeries_2’] = np.nan
249 df[’Route_form_2’] = np.nan
250 df[’ReacTime_2’] = np.nan
251 df[’ApproachTime_2’] = np.nan
252 df[’RunningTime_2’] = np.nan
253 df[’ClearingTime_2’] = np.nan
254 df[’ReleaseTime_2’] = np.nan
255 df[’StartOccTime_2’] = np.nan
256 df[’EndOccTime_2’] = np.nan
257 df[’OccTime_2’] = np.nan
258

259 for i in range(len(FB)):
260 for j in range(1,12):
261

262 if FB[’FB_BufferTime_’+str(j)].iloc[i] > 0.0:
263 df = df.append({’SectieID’:FB.SectieID[i]}, ignore_index=True)
264 df.SectieNaam[len(df)-1] = FB.SectieNaam[i]
265 df.KilometerLint[len(df)-1] = FB.kilometerLint[i]
266 df.dienstregelpuntCode[len(df)-1] = FB.dienstregelpuntCode[i]
267 df.kilometrering[len(df)-1] = FB.kilometrering[i]
268 df.DRPtype[len(df)-1] = FB.DRPtype[i]
269

270 df.TrainSeries_1[len(df)-1] = FB[’TrainSeries_’+str(j)].iloc[i]
271 df.Route_form_1[len(df)-1] = FB[’FB_Route_form_’+str(j)].iloc[i]
272 df.ReacTime_1[len(df)-1] = FB[’FB_ReacTime_’+str(j)].iloc[i]
273 df.ApproachTime_1[len(df)-1] = FB[’FB_ApproachTime_’+str(j)].iloc[i]
274 df.RunningTime_1[len(df)-1] = FB[’FB_RunningTime_’+str(j)].iloc[i]
275 df.ClearingTime_1[len(df)-1] = FB[’FB_ClearingTime_’+str(j)].iloc[i]
276 df.ReleaseTime_1[len(df)-1] = FB[’FB_ReleaseTime_’+str(j)].iloc[i]
277 df.StartOccTime_1[len(df)-1] = FB[’FB_StartOccTime_’+str(j)].iloc[i]
278 df.EndOccTime_1[len(df)-1] = FB[’FB_EndOccTime_’+str(j)].iloc[i]
279 df.OccTime_1[len(df)-1] = FB[’FB_OccTime_’+str(j)].iloc[i]
280 df.BufferTime[len(df)-1] = FB[’FB_BufferTime_’+str(j)].iloc[i]
281

282 df.TrainSeries_2[len(df)-1] = FB[’TrainSeries_’+str(j+1)].iloc[i]
283 df.Route_form_2[len(df)-1] = FB[’FB_Route_form_’+str(j+1)].iloc[i]
284 df.ReacTime_2[len(df)-1] = FB[’FB_ReacTime_’+str(j+1)].iloc[i]
285 df.ApproachTime_2[len(df)-1] = FB[’FB_ApproachTime_’+str(j+1)].iloc[i]
286 df.RunningTime_2[len(df)-1] = FB[’FB_RunningTime_’+str(j+1)].iloc[i]
287 df.ClearingTime_2[len(df)-1] = FB[’FB_ClearingTime_’+str(j+1)].iloc[i]
288 df.ReleaseTime_2[len(df)-1] = FB[’FB_ReleaseTime_’+str(j+1)].iloc[i]
289 df.StartOccTime_2[len(df)-1] = FB[’FB_StartOccTime_’+str(j+1)].iloc[i]
290 df.EndOccTime_2[len(df)-1] = FB[’FB_EndOccTime_’+str(j+1)].iloc[i]
291 df.OccTime_2[len(df)-1] = FB[’FB_OccTime_’+str(j+1)].iloc[i]

108 D. Python scripts case study

292 elif FB[’FB_BufferTime_’+str(j)].iloc[i] <= 0.0:
293 continue
294

295 else:
296 break
297 #print(df)
298 df.to_excel(’FB_Buffertijden.xlsx’)
299

300 FB = pd.read_excel(’Alles_Sectiebezetting_volg_FB_v3.xlsx’)
301 FBbufferdataset(FB)
302

303 def bufferdataset(FB):
304 df = pd.DataFrame()
305 df[’SectieID’] = np.nan
306 df[’SectieNaam’] = np.nan
307 df[’KilometerLint’] = np.nan
308 df[’dienstregelpuntCode’] = np.nan
309 df[’kilometrering’] = np.nan
310 df[’DRPtype’] = np.nan
311 df[’TrainSeries_1’] = np.nan
312 df[’Route_form_1’] = np.nan
313 df[’ReacTime_1’] = np.nan
314 df[’ApproachTime_1’] = np.nan
315 df[’RunningTime_1’] = np.nan
316 df[’ClearingTime_1’] = np.nan
317 df[’ReleaseTime_1’] = np.nan
318 df[’StartOccTime_1’] = np.nan
319 df[’EndOccTime_1’] = np.nan
320 df[’OccTime_1’] = np.nan
321 df[’BufferTime’] = np.nan
322 df[’TrainSeries_2’] = np.nan
323 df[’Route_form_2’] = np.nan
324 df[’ReacTime_2’] = np.nan
325 df[’ApproachTime_2’] = np.nan
326 df[’RunningTime_2’] = np.nan
327 df[’ClearingTime_2’] = np.nan
328 df[’ReleaseTime_2’] = np.nan
329 df[’StartOccTime_2’] = np.nan
330 df[’EndOccTime_2’] = np.nan
331 df[’OccTime_2’] = np.nan
332

333 for i in range(len(FB)):
334 for j in range(1,12):
335

336 if FB[’MB_BufferTime_’+str(j)].iloc[i] > 0.0:
337 df = df.append({’SectieID’:FB.SectieID[i]}, ignore_index=True)
338 df.SectieNaam[len(df)-1] = FB.SectieNaam[i]
339 df.KilometerLint[len(df)-1] = FB.kilometerLint[i]
340 df.dienstregelpuntCode[len(df)-1] = FB.dienstregelpuntCode[i]
341 df.kilometrering[len(df)-1] = FB.kilometrering[i]
342 df.DRPtype[len(df)-1] = FB.DRPtype[i]
343

344 df.TrainSeries_1[len(df)-1] = FB[’TrainSeries_’+str(j)].iloc[i]
345 df.Route_form_1[len(df)-1] = FB[’MB_Route_form_’+str(j)].iloc[i]
346 df.ReacTime_1[len(df)-1] = FB[’MB_ReacTime_’+str(j)].iloc[i]
347 df.ApproachTime_1[len(df)-1] = FB[’MB_ApproachTime_’+str(j)].iloc[i]
348 df.RunningTime_1[len(df)-1] = FB[’MB_RunningTime_’+str(j)].iloc[i]
349 df.ClearingTime_1[len(df)-1] = FB[’MB_ClearingTime_’+str(j)].iloc[i]
350 df.ReleaseTime_1[len(df)-1] = FB[’MB_ReleaseTime_’+str(j)].iloc[i]
351 df.StartOccTime_1[len(df)-1] = FB[’MB_StartOccTime_’+str(j)].iloc[i]
352 df.EndOccTime_1[len(df)-1] = FB[’MB_EndOccTime_’+str(j)].iloc[i]
353 df.OccTime_1[len(df)-1] = FB[’MB_OccTime_’+str(j)].iloc[i]
354 df.BufferTime[len(df)-1] = FB[’MB_BufferTime_’+str(j)].iloc[i]
355

356 df.TrainSeries_2[len(df)-1] = FB[’TrainSeries_’+str(j+1)].iloc[i]
357 df.Route_form_2[len(df)-1] = FB[’MB_Route_form_’+str(j+1)].iloc[i]
358 df.ReacTime_2[len(df)-1] = FB[’MB_ReacTime_’+str(j+1)].iloc[i]
359 df.ApproachTime_2[len(df)-1] = FB[’MB_ApproachTime_’+str(j+1)].iloc[i]
360 df.RunningTime_2[len(df)-1] = FB[’MB_RunningTime_’+str(j+1)].iloc[i]
361 df.ClearingTime_2[len(df)-1] = FB[’MB_ClearingTime_’+str(j+1)].iloc[i]
362 df.ReleaseTime_2[len(df)-1] = FB[’MB_ReleaseTime_’+str(j+1)].iloc[i]

109

363 df.StartOccTime_2[len(df)-1] = FB[’MB_StartOccTime_’+str(j+1)].iloc[i]
364 df.EndOccTime_2[len(df)-1] = FB[’MB_EndOccTime_’+str(j+1)].iloc[i]
365 df.OccTime_2[len(df)-1] = FB[’MB_OccTime_’+str(j+1)].iloc[i]
366 elif FB[’MB_BufferTime_’+str(j)].iloc[i] <= 0.0:
367 continue
368 else:
369 break
370 df.to_excel(’MB_Buffertijden.xlsx’)
371

372 MB = pd.read_excel(’Alles_Sectiebezetting_volg_MB_v3b.xlsx’)
373 bufferdataset(MB)
374

375 MB = pd.read_excel(’MB_Buffertijden.xlsx’)
376 FB = pd.read_excel(’FB_Buffertijden.xlsx’)
377

378 #Due to an mistake in the timetable, train pair B120-D30900 had to be removed
379 FB = FB[(FB.train_merge != ’B120-H-1-D30900-H-1’) & (FB.train_merge != ’D30900-H-1-B120-H-1’

)]
380 MB = MB[(MB.train_merge != ’B120-H-1-D30900-H-1’) & (MB.train_merge != ’D30900-H-1-B120-H-1’)

]
381

382 #Analysis and creating graphs
383 #Histogram FB buffer times
384 figure(figsize=(9, 5), dpi=80)
385 plt.hist(FB.BufferTime, bins=100, range=(0,2000))
386 plt.xlabel(’Buffertime [s]’)
387 plt.ylabel(’Number of sections’)
388 plt.ylim(0,1400)
389

390 #Histogram MB Buffer times
391 figure(figsize=(9, 5), dpi=80)
392 plt.hist(MB.BufferTime, bins=100, range=(0,2000), color=’r’)
393 plt.xlabel(’Buffertime [s]’)
394 plt.ylabel(’Number of sections’)
395 plt.ylim(0,1400)
396

397 #Histogram both FB and MB buffer times
398 figure(figsize=(9, 5), dpi=80)
399 plt.hist(MB.BufferTime, bins=100, range=(0,2000), color=’r’, label=’Moving block’)
400 plt.hist(FB.BufferTime, bins=100, range=(0,2000), label=’Fixed block’, alpha=0.8)
401 plt.xlabel(’Buffertime [s]’)
402 plt.ylabel(’Number of sections’)
403 plt.legend()
404 plt.ylim(0,1400)
405

406 #Histogram FB buffer times < 60s
407 figure(figsize=(9, 5), dpi=80)
408 plt.hist(FB.BufferTime, bins=30, range=(0,60))
409 plt.xlabel(’Buffertime [s]’)
410 plt.ylabel(’Number of sections’)
411 plt.ylim(0,60)
412

413 #Histogram MB buffer times < 60s
414 figure(figsize=(9, 5), dpi=80)
415 plt.hist(MB.BufferTime, bins=30, range=(0,60), color=’r’)
416 plt.xlabel(’Buffertime [s]’)
417 plt.ylabel(’Number of sections’)
418 plt.ylim(0,60)
419

420 #Finding the critical section for all train pairs
421 df3 = pd.read_excel(’FB_Buffertijden.xlsx’)
422

423 df3[’Combi’] = np.nan
424

425 for i in range(len(df3)):
426 df3.Combi[i] = df3.TrainSeries_1[i]+’-’+df3.TrainSeries_2[i]
427

428 combi_list = []
429

430 for i in range(len(df3)):
431 if df3.Combi[i] not in combi_list:

110 D. Python scripts case study

432 combi_list.append(df3.Combi[i])
433 else:
434 continue
435

436 data3=pd.DataFrame(combi_list, columns=[’Combi’])
437

438 data3[’SectieID’] = np.nan
439 data3[’ObjectType’] = ’SECTIE’
440 data3[’ObjectNaam’] = np.nan
441 data3[’Kilometerlint’] = np.nan
442 data3[’kilometrering’] = np.nan
443 data3[’Dienstregelpunt’] = np.nan
444 data3[’DRPtype’] = np.nan
445 data3[’Buffertijd’] = 0.0
446

447 for i in range(len(data3)):
448 for j in range(len(df3)):
449 if df3.Combi[j] == data3.Combi[i]:
450 data3.SectieID[i] = df3.SectieID[j]
451 data3.ObjectNaam[i] = df3.SectieNaam[j]
452 data3.Kilometerlint[i] = df3.KilometerLint[j]
453 data3.kilometrering[i] = df3.kilometrering[j]
454 data3.Dienstregelpunt[i] = df3.dienstregelpuntCode[j]
455 data3.DRPtype[i] = df3.DRPtype[j]
456 data3.Buffertijd[i] = df3.BufferTime[j]
457 break
458 else:
459 continue
460

461 data3.to_excel(’FB_CriticalSections_a.xlsx’)
462 df2 = pd.read_excel(’MB_Buffertijden.xlsx’)
463 df2[’Combi’] = np.nan
464

465 for i in range(len(df2)):
466 df2.Combi[i] = df2.TrainSeries_1[i]+’-’+df2.TrainSeries_2[i]
467

468 combi_list = []
469 for i in range(len(df2)):
470 if df2.Combi[i] not in combi_list:
471 combi_list.append(df2.Combi[i])
472 else:
473 continue
474 data2=pd.DataFrame(combi_list, columns=[’Combi’])
475

476 data2[’SectieID’] = np.nan
477 data2[’ObjectType’] = ’SECTIE’
478 data2[’ObjectNaam’] = np.nan
479 data2[’Kilometerlint’] = np.nan
480 data2[’kilometrering’] = np.nan
481 data2[’Dienstregelpunt’] = np.nan
482 data2[’DRPtype’] = np.nan
483 data2[’Buffertijd’] = 0.0
484

485 for i in range(len(data2)):
486 for j in range(len(df2)):
487 if df2.Combi[j] == data2.Combi[i]:
488 data2.SectieID[i] = df2.SectieID[j]
489 data2.ObjectNaam[i] = df2.SectieNaam[j]
490 data2.Kilometerlint[i] = df2.KilometerLint[j]
491 data2.kilometrering[i] = df2.kilometrering[j]
492 data2.Dienstregelpunt[i] = df2.dienstregelpuntCode[j]
493 data2.DRPtype[i] = df2.DRPtype[j]
494 data2.Buffertijd[i] = df2.BufferTime[j]
495 break
496 else:
497 continue
498 data2.to_excel(’MB_CriticalSections_a.xlsx’)

E
Case study: Rolling stock

Train count plus rolling stock ID:

• 2x High Speed (HS)

– 2x 1427

• 44x Intercity (IC)

– 4x1379, 10x 1433, 6x 1434, 4x1490, 20x1491

• 72x Sprinter (SPR)

– 4x 1387, 8x 1395, 6x 1460, 4x1462, 16x 1464, 8x1469, 4x1470, 16x1471, 4x1479, 2x 1482

• 26x Regional

– 2x1387, 4x1390, 2x1391, 2x1403, 8x1404, 4x1415, 2x1416, 2x1448

• 2x Interregional

– 2x1399

• 28x Empty rolling stock (LM)

– 2x 1367, 4x1434, 4x1469, 8x1471, 2x1485, 8x1491

111

112 E. Case study: Rolling stock

Train Train Type Rolling stock Length [m] Route
1 A120-H-1 HSL ICE 08 bakken 200 Em-Ah-Ut-Asd
2 A700-H-1 Intercity DDZ10 254 Dvaw-Asdz-Shl-Ledn
3 A800-H-1 Intercity VIRM08 216 Mt-Std-Rm-Wt-Ehv-Ht-

Ut-Asa-Asd
4 A1500-H-1 Intercity ICMm08 214 Asdm-Asd
5 A1600-H-1 Intercity ICMm09 243 Dvaw-Asdz-Shl
6 A1700-H-1 Intercity ICMm09 243 Ut
7 A1800-H-1 Intercity DDZ10 254 Dvaw-Asdz-Shl-Ledn
8 A2400-H-1 Intercity VIRM10 270 Rtd-Sdm-Dt-Gv-Laa-

Ledn-Shl-Asdz-Dvd
9 A2600-H-1 Intercity ICMm08 214 Asdm-Asd
10 A3000-H-1 Intercity VIRM10 270 Nm-Ah-Ed-Klp-Ut-Asa-Asd
11 A3100-H-1 Intercity VIRM10 270 Nm-Ah-Ed-Db-Ut-Asb-

Asdz-Shl
12 A3300-H-1 Sprinter SNG10 195 Ledn-Ssh-Nvp-Hfd-Shl-Asdl
13 A3500-H-1 Intercity VIRM10 270 Vl-Br-Hrt-Dn-Hm-Ehv-

Ht-Ut-Asb-Asdz-Shl
14 A3900-H-1 Intercity VIRM10 270 Hrl-Std-Rm-Wt-Ehv-

Ht-Ut-Asa-Asd
15 A4300-H-1 Sprinter SLT06 101 Dvaw-Rai-Asdz-Shl-Hfd
16 A4400-H-1 Sprinter SLT08 138 Dn-Hmbh-Hm-Hmh-Hmbv-

Ehv-Ehs-Bet-Btl-Vg-Ht-O
17 A5000-H-1 Sprinter SGMm06 (3+3) 158 Rtd-Sdm-Dtcp-Dt-Rsw-Gvmw-Gv

18 A5100-H-1 Sprinter SGMm06 (3+3) 158 Rtd-Sdm-Dtcp-Dt-Rsw-Gvmw-Gv

19 A5200-H-1 Sprinter Flirt07 FFF 144 Ehv-Ehs-Bet-Btl-Ot-Tb-Tbu
20 A6300-H-1 Sprinter SNG07 135 Laa-Gvm-Vst-Dvnk-Ledn-Vh
21 A6400-H-1 Sprinter Flirt07 FFF 144 Wt-Mz-Hze-Gp-Ehv
22 A6500-H-1 Sprinter SLT06 101 Htnc-Htn-Utln-Utvr-Ut
23 A6900-H-1 Sprinter SLT10 170 Gdm-Cl-Htnc-Htn-Utln-Utvr-Ut

24 A7200-H-1 Stop train GWE03 56 Gdm
25 A7300-H-1 Sprinter SGMm06 (3+3) 158 Har-Mrn-Db-Bnk-Utvr-

Ut-Utzl-Mas-Bkl
26 A7400-H-1 Sprinter SGMm06 (3+3) 158 Har-Mrn-Db-Bnk-Utvr-Ut-

Utzl-Mas-Bkl-Ac-Ashd-Asb-
Dvd-Asa-Asdm-Asd

27 A7500-H-1 Sprinter Flirt03 FFF 63 Ah-Otb-Wf-Ed
28 A7600-H-1 Sprinter SGMm05 131 Wc-Nmd-Nmgo-Nm-Nml-Est-

Ahz-Ah-Ahp-Ahpr-Vp-Rh
29 A7700-H-1 Sprinter SGMm03 79 Wspl-Rtd
30 A11600-H-1 Intercity ICMm09 243 Dvaw-Asdz-Shl
31 A11700-H-1 Intercity ICMm09 243 Ut
32 A14600-H-1 Sprinter SLT10 170 Asd-Asdm-Assp
33 A15800-H-1 Sprinter SLT10 170 Asdm-Asd
34 A20000-H-1 Stop train Flirt05 AB 91 Em-El-Zv-Ah
35 A30700-H-1 Stop train GTW03 56 Zv-Dvn-Wtv-Ahp-Ah
36 A30900-H-1 Stop train GTW03 56 Zv-Dvn-Wtv-Ahp-Ah
37 A31100-H-1 Stop train GTW02 41 Ah-Est-Za-Hmn-Op
38 A31300-H-1 Stop train Flirt03 FFF 63 Ed-Edc
39 A32400-H-1 Stop train Flirt04 TAG 91 Rm-Ec-Srn-Std-Lut-

Bk-Bde-Mt
40 A32500-H-1 Stop train GWE02 41 Std-Gln-Sbk-Sn-Nh-Hb-Hrl
41 A71600-H-1 Empty rolling ICMm09 243 Shl-Hfdo

stock

113

Train Train Type Rolling stock Length [m] Route
42 A73100-H-1 Empty rolling VIRM10 270 Shl-Hfdo

stock
43 A73500-H-1 Empty rolling VIRM10 270 Shl-Hfdo

stock
44 A74300-H-1 Empty rolling SLT06 101 Hfd-Hfdo

stock
45 A75700-H-1 Empty rolling SLT10 170 Hfd-Hfdm

stock
46 A75800-H-1 Empty rolling SLT10 170 Hfd-Hfdm

stock
47 A79200-H-1 Empty rolling BR186 2x 223 Asd

stock + 7 HST prio
48 A79300-H-1 Empty rolling Thalys 10 bakken 200 Asd

stock
49 A91400-H-1 Fast train Flirt10 AB 182 Vl-Kn
50 B120-H-1 HSL ICE 08 bakken 200 Asd-Ut-Ah-Em
51 B700-H-1 Intercity DDZ10 254 Laa-Ledn-Shl-Asdz
52 B1500-H-1 Intercity ICMm08 214 Asd
53 B1600-H-1 Intercity ICMm09 243 Shl-Asdz-Dvd
54 B1800-H-1 Intercity DDZ10 254 Laa-Ledn-Shl-Asdz
55 B2400-H-1 Intercity VIRM10 270 Dvaw-Asdz-Shl-Ledn-Laa-

Gv-Dt-Sdm-Rtd
56 B2600-H-1 Intercity ICMm08 214 Asd
57 B3000-H-1 Intercity VIRM10 270 Asd-Asa-Ut-Klp-Ed-Ah-Nm
58 B3100-H-1 Intercity VIRM10 270 Shl-Asdz-Asb-Ut-Db-Ed-Ah-Nm
59 B3500-H-1 Intercity VIRM10 270 Shl-Asdz-Asb-Ut-Ht-

Ehv-Hm-Dn-Hrt-Br-Vl
60 B3900-H-1 Intercity VIRM10 270 Asd-Asa-Ut-Ht-Ehv-

Wt-Rm-Std-Hrl
61 B4300-H-1 Sprinter SLT06 101 Hfd-Shl-Asdz-Rai-Dvd
62 B4400-H-1 Sprinter SLT08 138 O-Ow-Rs-Hto-Ht-Vg-

Btl-Bet-Ehs-Ehv-Hmbv-
Hmh-Hm-Hmbh-Dn

63 B5000-H-1 Sprinter SGMm06 (3+3) 158 Gv-Gvmw-Rsw-Dt-Dtcp-Sdm-Rtd
64 B5100-H-1 Sprinter SGMm06 (3+3) 158 Gv-Gvmw-Rsw-Dt-Dtcp-Sdm-Rtd
65 B5200-H-1 Sprinter Flirt07 FFF 144 Tbu-Tb-Ot-Btl-Bet-Ehs-Ehv
66 B6000-H-1 Sprinter SLT10 170 Ut-Utvr-Utln-Htn-Htnc-

Cl-Gdm-Zbm-Ht
67 B6300-H-1 Sprinter SNG07 135 Ledn-Dvnk-Vst-Gvm-Laa
68 B6400-H-1 Sprinter Flirt07 FFF 144 Ehv-Gp-Hze-Mz-Wt
69 B6900-H-1 Sprinter SLT10 170 Ut-Utvr-Utln-Htn-Htnc-Cl-Gdm
70 B7300-H-1 Sprinter SGMm06 (3+3) 158 Bkl-Mas-Utzl-Ut-Utvr-

Bnk-Db-Mrn-Vndw
71 B7400-H-1 Sprinter SGMm06 (3+3) 158 Asd-Asdm-Asa-Dvd-Asb-

Ashd-Ac-Bkl-Mas-Utzl-Ut-
Utvr-Bnk-Db-Mrn-Vndw

72 B7500-H-1 Sprinter Flirt03 FFF 63 Ed-Wf-Otb-Ah
73 B7600-H-1 Sprinter SGMm05 131 Va-Ahp-Ah-Ahz-Est-Nml-

Nm-Nmgo-Nmd-Wc
74 B7700-H-1 Sprinter SGMm03 79 Rtd
75 B11600-H-1 Intercity ICMm09 243 Ledn-Ldl
76 B11700-H-1 Intercity ICMm09 243 Shl-Asdz-Dvd
77 B14600-H-1 Sprinter SLT10 170 Asdm-Asd
78 B15800-H-1 Sprinter SLT10 170 Asd-Asdm-Assp
79 B20000-H-1 Stop train Flirt05 AB 91 Ah-Zv-El-Em
80 B30700-H-1 Stop train GTW03 56 Ah-Ahp-Wtv-Dvn-Zv
81 B30900-H-1 Stop train GTW03 56 Ah-Ahp-Wtv-Dvn-Zv
82 B32300-H-1 Stop train Lint 41 04 bakken 82 Nm-Nmh

114 E. Case study: Rolling stock

Train Train Type Rolling stock Length [m] Route
83 B32400-H-1 Stop train Flirt04 TAG 91 Mt-Bde-Bk-Lut-Std-Srn-Ec-Rm
84 B32500-H-1 Stop train GWE02 41 Hrl-Hb-Nh-Sn-Sbk-Gln-Std
85 B71600-H-1 Empty rolling ICMm09 243 Hfdo-Shl

stock
86 B73100-H-1 Empty rolling VIRM10 270 Hfdo-Shl

stock
87 B73500-H-1 Empty rolling VIRM10 270 Hfdo-Shl

stock
88 B74300-H-1 Empty rolling SLT06 101 Hfdo-Hfd

stock
89 B75700-H-1 Empty rolling SLT10 170 Hfdm-Hfd

stock
90 B75800-H-1 Empty rolling SLT10 170 Hfdm-Hfd

stock
91 B79200-H-1 Empty rolling BR186 2x 223 Asdmw-Asd

stock + 7 HST prio
92 B79300-H-1 Empty rolling Thalys 10 bakken 200 Asdmw-Asd

stock
93 B91400-H-1 Fast train Flirt10 AB 182 Kn-Vl
94 C800-H-1 Intercity VIRM08 216 Mt-Std-Rm-Wt-Ehv-Ht-

Ut-Asa-Asd
95 C1500-H-1 Intercity ICMm08 214 Asdm-Asd
96 C2400-H-1 Intercity VIRM10 270 Rtd-Sdm-Dt-Gv-Laa-Ledn-

Shl-Asdz-Dvd
97 C2600-H-1 Intercity ICMm08 214 Asdm-Asd
98 C3100-H-1 Intercity VIRM10 270 Nm-Ah-Ed-Db-Ut-Asb-Asdz-Shl
99 C3300-H-1 Sprinter SNG10 195 Ledn-Ssh-Nvp-Hfd-Shl-Asdl
100 C3500-H-1 Intercity VIRM10 270 Vl-Br-Hrt-Dn-Hm-Ehv-Ht-

Ut-Asb-Asdz-Shl
101 C3900-H-1 Intercity VIRM10 270 Hrl-Std-Rm-Wt-Ehv-Ht-

Ut-Asa-Asd
102 C4300-H-1 Sprinter SLT06 101 Dvaw-Rai-Asdz-Shl-Hfd
103 C4400-H-1 Sprinter SLT08 138 Dn-Hmbh-Hm-Hmh-Hmbv-Ehv-

Ehs-Bet-Btl-Vg-Ht-O
104 C5000-H-1 Sprinter SGMm06 (3+3) 158 Rtd-Sdm-Dtcp-Dt-Rsw-Gvmw-Gv
105 C5100-H-1 Sprinter SGMm06 (3+3) 158 Rtd-Sdm-Dtcp-Dt-Rsw-Gvmw-Gv
106 C5200-H-1 Sprinter Flirt07 FFF 144 Ehv-Ehs-Bet-Btl-Ot-Tb-Tbu
107 C6300-H-1 Sprinter SNG07 135 Laa-Gvm-Vst-Dvnk-Ledn-Vh
108 C6400-H-1 Sprinter Flirt07 FFF 144 Wt-Mz-Hze-Gp-Ehv
109 C6500-H-1 Sprinter SLT06 101 Htnc-Htn-Utln-Utvr-Ut
110 C6900-H-1 Sprinter SLT10 170 Gdm-Cl-Htnc-Htn-Utln-Utvr-Ut
111 C7200-H-1 Stop train GWE03 56 Gdm
112 C7300-H-1 Sprinter SGMm06 (3+3) 158 Har-Mrn-Db-Bnk-Utvr-Ut-

Utzl-Mas-Bkl
113 C7400-H-1 Sprinter SGMm06 (3+3) 158 Har-Mrn-Db-Bnk-Utvr-

Ut-Utzl-Mas-Bkl-Ac-Ashd-
Asb-Dvd-Asa-Asdm-Asd

114 C7500-H-1 Sprinter Flirt03 FFF 63 Ah-Otb-Wf-Ed
115 C7600-H-1 Sprinter SGMm05 131 Wc-Nmd-Nmgo-Nm-Nml-Est-Ahz-

Ah-Ahp-Ahpr-Vp-Rh
116 C7700-H-1 Sprinter SGMm03 79 Wspl-Rtd
117 C14600-H-1 Sprinter SLT10 170 Asd-Asdm-Assp
118 C15800-H-1 Sprinter SLT10 170 Asdm-Asd
119 C30700-H-1 Stop train GTW03 56 Zv-Dvn-Wtv-Ahp-Ah
120 C30900-H-1 Stop train GTW03 56 Zv-Dvn-Wtv-Ahp-Ah
121 C31100-H-1 Stop train GTW02 41 Ah-Est-Za-Hmn-Op
122 C31300-H-1 Stop train Flirt03 FFF 63 Ed-Edc

115

Train Train Type Rolling stock Length [m] Route
123 C32400-H-1 Stop train Flirt04 TAG 91 Rm-Ec-Srn-Std-Lut-Bk-Bde-Mt
124 C32500-H-1 Stop train GWE02 41 Std-Gln-Sbk-Sn-Nh-Hb-Hrl
125 C71600-H-1 Empty rolling ICMm09 243 Shl-Hfdo

stock
126 C73100-H-1 Empty rolling VIRM10 270 Shl-Hfdo

stock
127 C73500-H-1 Empty rolling VIRM10 270 Shl-Hfdo

stock
128 C74300-H-1 Empty rolling SLT06 101 Hfd-Hfdo

stock
129 C75700-H-1 Empty rolling SLT10 170 Hfd-Hfdm

stock
130 C75800-H-1 Empty rolling SLT10 170 Hfd-Hfdm

stock
131 D800-H-1 Intercity VIRM08 216 Asd-Asa-Ut-Ht-Ehv-Wt-

Rm-Std-Mt
132 D1500-H-1 Intercity ICMm08 214 Asd
133 D2400-H-1 Intercity VIRM10 270 Dvaw-Asdz-Shl-Ledn-Laa-

Gv-Dt-Sdm-Rtd
134 D2600-H-1 Intercity ICMm08 214 Asd
135 D3000-H-1 Intercity VIRM10 270 Asd-Asa-Ut-Klp-Ed-Ah-Nm
136 D3500-H-1 Intercity VIRM10 270 Shl-Asdz-Asb-Ut-Ht-Ehv-

Hm-Dn-Hrt-Br-Vl
137 D3900-H-1 Intercity VIRM10 270 Asd-Asa-Ut-Ht-Ehv-Wt-Rm-Std-Hrl
138 D4300-H-1 Sprinter SLT06 101 Hfd-Shl-Asdz-Rai-Dvd
139 D4400-H-1 Sprinter SLT08 138 O-Ow-Rs-Hto-Ht-Vg-Btl-Bet-Ehs-

Ehv-Hmbv-Hmh-Hm-Hmbh-Dn
140 D5000-H-1 Sprinter SGMm06 (3+3) 158 Gv-Gvmw-Rsw-Dt-Dtcp-Sdm-Rtd
141 D5100-H-1 Sprinter SGMm06 (3+3) 158 Gv-Gvmw-Rsw-Dt-Dtcp-Sdm-Rtd
142 D5200-H-1 Sprinter Flirt07 FFF 144 Tbu-Tb-Ot-Btl-Bet-Ehs-Ehv
143 D6000-H-1 Sprinter SLT10 170 Ut-Utvr-Utln-Htn-Htnc-

Cl-Gdm-Zbm-Ht
144 D6300-H-1 Sprinter SNG07 135 Ledn-Dvnk-Vst-Gvm-Laa
145 D6400-H-1 Sprinter Flirt07 FFF 144 Ehv-Gp-Hze-Mz-Wt
146 D6900-H-1 Sprinter SLT10 170 Ut-Utvr-Utln-Htn-Htnc-Cl-Gdm
147 D7300-H-1 Sprinter SGMm06 (3+3) 158 Bkl-Mas-Utzl-Ut-Utvr-

Bnk-Db-Mrn-Vndw
148 D7600-H-1 Sprinter SGMm05 131 Va-Ahp-Ah-Ahz-Est-Nml-

Nm-Nmgo-Nmd-Wc
149 D7700-H-1 Sprinter SGMm03 79 Rtd
150 D8900-H-1 Sprinter SGMm03 79 Ledn-Ldl
151 D14600-H-1 Sprinter SLT10 170 Asdm-Asd
152 D15800-H-1 Sprinter SLT10 170 Asd-Asdm-Assp
153 D30700-H-1 Stop train GTW03 56 Ah-Ahp-Wtv-Dvn-Zv
154 D30900-H-1 Stop train GTW03 56 Ah-Ahp-Wtv-Dvn-Zv
155 D32300-H-1 Stop train Lint 41 04 bakken 82 Nm-Nmh
156 D32400-H-1 Stop train Flirt04 TAG 91 Mt-Bde-Bk-Lut-Std-Srn-Ec-Rm
157 D32500-H-1 Stop train GWE02 41 Hrl-Hb-Nh-Sn-Sbk-Gln-Std
158 D71600-H-1 Empty rolling ICMm09 243 Hfdo-Shl

stock
159 D73100-H-1 Empty rolling VIRM10 270 Hfdo-Shl

stock
160 D73500-H-1 Empty rolling VIRM10 270 Hfdo-Shl

stock
161 D74300-H-1 Empty rolling SLT06 101 Hfdo-Hfd

stock
162 D75700-H-1 Empty rolling SLT10 170 Hfdm-Hfd

stock

116 E. Case study: Rolling stock

Train Train Type Rolling stock Length [m] Route
163 D75800-H-1 Empty rolling SLT10 170 Hfdm-Hfd

stock
164 E2000-H-1 Intercity ICMm08 214 Ut
165 F6500-H-1 Sprinter SLT06 101 Ut-Htnc
166 G2000-H-1 Intercity ICMm08 214 Ut
167 H3100-H-1 Intercity VIRM10 270 Shl-Asdz-Asb-Ut-Db-Ed-Ah-Nm
168 H6500-H-1 Sprinter SLT06 101 Ut-Htnc
169 H7400-H-1 Sprinter SGMm06 (3+3) 158 Asd-Asdm-Asa-Dvd-Asb-

Ashd-Ac-Bkl-Mas-Utzl-Ut-
Utvr-Bnk-Db-Mrn-Vndw

170 H7500-H-1 Sprinter Flirt03 FFF 63 Ed-Wf-Otb-Ah
171 M6000-H-1 Sprinter SLT10 170 Ht-Zbm-Gdm-Cl-Htnc-Htn-

Utln-Utvr-Ut
172 N800-H-1 Intercity VIRM08 216 Asd-Asa-Ut-Ht-Ehv-Wt-Rm-Std-Mt
173 O3000-H-1 Intercity VIRM10 270 Nm-Ah-Ed-Klp-Ut-Asa-Asd
174 O6000-H-1 Sprinter SLT10 170 Ht-Zbm-Gdm-Cl-Htnc-Htn-

Utln-Utvr-Ut

F
Case study: Infrastructure

Microscopic overview of the infrastructure.

Figure F.1: Roosendaal → Ettenleur

Figure F.2: Roosendaal ← Ettenleur ↔Breda → Gilzerijen

Figure F.3: Breda ← Gilzerijen → Tilburg

117

118 F. Case study: Infrastructure

Figure F.4: Gilzerijen ← Tilburg → Boxtel

Figure F.5: Tilburg/’s-Hertogenbosch ← Boxtel → Liempde

Figure F.6: Boxtel ← Liempde ↔Best → Eindhoven Strijp-S

Figure F.7: Best ← Eindhoven Strijp-S ↔Eindhoven Stadion → Eindhoven Centraal

119

Figure F.8: Eindhoven Station ← Eindhoven Centraal → Helmond/Geldrop

Figure F.9: Utrecht CS → Utrecht Vaartsche Rijn

Figure F.10: Utrecht CS ← Utrecht Vaartsche Rijn → Utrecht Lunetten/Bunnik

120 F. Case study: Infrastructure

Figure F.11: Utrecht Lunetten ← Houten → Culemborg

Figure F.12: Houten ← Culemborg → Geldermalsen

Figure F.13: Culemborg ← Geldermalsen → Meteren Betuweaansluiting

Figure F.14: Geldermalsen ← Meteren betuweaansluiting →Zaltbommel

Figure F.15: Meteren betuweaansluiting ← Zaltbommel → Hedel

Figure F.16: Zaltbommel ← Hedel → ’s-Hertogenbosch

121

Figure F.17: Rosmalen →’s-Hertogenbosch Oost/Hedel ↔’s HertogenBosch

Figure F.18: ’s-Hertogenbosch → Vught

Figure F.19: ’s-Hertogenbosch ← Vught → Tilbrug/Boxtel

Figure F.20: Utrecht Vaartsche Rijn ← Bunnik ↔ Driebergen Zeist → Maarn

122 F. Case study: Infrastructure

Figure F.21: Driebergen Zeist ← Maarn → Veenendaal

Figure F.22: Maarn ← Veenendaal West ↔ Rhenen

Figure F.23: Veenendaal De Klomp ← Ede-Wageningen → Wolfheze

Figure F.24: Ede-Wageningen ← Wolfheze → Oosterbeek

Figure F.25: Wolfheze/Elst ← Arnhem West aansluiting → Arnhem Centraal

123

Figure F.26: Arnhem West aansluiting ← Arnhem centraal → IJsselbrug

Figure F.27: Arnhem Centraal ← IJsselbrug →Zevenaar

Figure F.28: IJsselbrug ← Zevenaar → Zevenaar Oost

Figure F.29: Zevenaar ← Zevenaar Oost ↔ Elten → Emmerik

Figure F.30: Elten ← Emmerich (→ Germany)

124 F. Case study: Infrastructure

Figure F.31: Oss ←Oss West ↔ Rosmalen ↔ ’s-Hertogenbosch Oost → ’s Hertogenbosch

Figure F.32: Ravenstein ← Oss → Oss West

Figure F.33: Nijmegen Dukenburg ← Wijchen ↔ Ravenstein →Oss

Figure F.34: Nijmegen ← Nijmegen Goffert ↔ Nijmegen Dukenburg → Wijchen

Figure F.35: Nijmegen Lent ← Nijmegen → Nijmegen Dukenburg

Figure F.36: Arnhem Zuid ← Elst ↔ Nijmegen Lent → Nijmegen

Figure F.37: Breukelen ← Maarsen ↔ Utrecht Zuilen → Utrecht CS

125

Figure F.38: Abcoude ← Breukelen → Maarsen

Figure F.39: Abcoude ↔ Breukelen

Figure F.40: Amsterdam Bijlmer ArenA ← Abcoude → Breukelen

Figure F.41: Duivendrecht ← Amsterdam Bijlmer ArenA → Abcoude

126 F. Case study: Infrastructure

Figure F.42: Amsterdam RAI/Amsterdam Amstel/Diemen Zuid ← Duivendrecht → Amsterdam Bijlmer ArenA

Figure F.43: Amsterdam Muiderpoort aansluiting ← Amsterdam Muiderpoort West ↔ Amsterdam Amstel → Duiven-
drecht/Diemen

Figure F.44: Amsterdam Centraal ← Amsterdam Muiderpoort aansluiting → Amsterdam Muiderpoort West

127

Figure F.45: Singelgracht ← Amsterdam CS → Amsterdam Muiderpoort aansluiting

Figure F.46: Lijnwerkplaats Amsterdam ← Singelgracht → Amsterdam CS

Figure F.47: Duivendrecht ← Amsterdam RAI ↔ Amsterdam Zuid → Amsterdam Riekpolder aansl.

128 F. Case study: Infrastructure

Figure F.48: Singelgracht ← Lijnwerkplaats Amsterdam → Amsterdam Lelylaan

Figure F.49: Lijnwerkplaats Amsterdam ← Amsterdam Lelylaan → Amsterdam Riekpolder aansl.

Figure F.50: Amsterdam Zuid/Lelylaan ← Amsterdam Riekpolder aansl. → Schiphol

Figure F.51: Amsterdam Riekpolder aansl. ← Schiphol → Hoofddorp

129

Figure F.52: Schiphol ↔ Hoofddorp

Figure F.53: Schiphol ← Hoofddorp →Nieuw-Vennep

Figure F.54: Hoofddorp ← Nieuw vennep ↔ Sassenheim →Voorhout

Figure F.55: Nieuw Vennep ←Sassenheim ↔ Voorhout → Leiden

Figure F.56: Voorhout ← Leiden → Den Haag Laan van NOI

130 F. Case study: Infrastructure

Figure F.57: Leiden ← Den Haag Laan van NOI → Den Haas HS

Figure F.58: Den Haag Laan van NOI ← Den Haag HS ↔ Den Haag Moerwijk ↔ Rijswijk → Delft

Figure F.59: Rijswijk ← Delft ↔ Delft Campus → Schiedam Centrum

Figure F.60: Delft Campus ← Schiedam Centrum → Rotterdam Centraal

131

Figure F.61: Schiedam Centrum ← Rotterdam Centraal

G
Case study: trajectories

Figure G.1: Arnhem Centraal (Ah) - Venlo (Vl) Trajectory

Figure G.2: Arnhem Centraal (Ah) - Zwolle (Zl) Trajectory

133

134 G. Case study: trajectories

Figure G.3: Amsterdam Amstel (Asa) - Zevenaar grens (Zvg) Trajectory

Figure G.4: Amsterdam Centraal (Asd) - Amsterdam Amstel (Asa) Trajectory

Figure G.5: Amsterdam Centraal (Asd) - Zutphen (Zp) Trajectory

135

Figure G.6: Amsterdam Riekerpolder aansl. (Asra) - Wmd Trajectory

Figure G.7: Amsterdam Westhaven (Awhv) - Amsterdam Centraal (Asd) Trajectory

Figure G.8: Breda (Bd) - Eindhoven (Ehv) Trajectory

136 G. Case study: trajectories

Figure G.9: Budel (Bdl) - Roermond (Rm) Trajectory

Figure G.10: Barneveld Noord (Bnn) - Ede Wageningen (Ed) Trajectory

Figure G.11: Duivendrecht aansluiting west (Dvaw) - Amsterdam Bijlmer ArenA (Asb) Trajectory

137

Figure G.12: Eindhoven (Ehv) - Weert (Wt) Trajectory

Figure G.13: Elst (Est) - Dordrecht (Ddr) Trajectory

Figure G.14: Gaasperdammerweg aansl. (Gpda) - Amsterdam Riekpolder aansl. (Asra) Trajectory

138 G. Case study: trajectories

Figure G.15: Kaldenkirchen (Kn) - Venlo (Vl) Trajectory

Figure G.16: Maastricht (Mt) - Venlo (Vl) Trajectory

Figure G.17: Rhenen (Rhn) - De Haar aansl. (Har) Trajectory

139

Figure G.18: Rotterdam (Rtd) - Hoofddorp (Hfd) Trajectory

Figure G.19: Singelgracht aansl. (Sgra) - Amsterdam Riekpolder aansl. (Asra) Trajectory

Figure G.20: Sittard (Std) - Herzogenrath (Hz) Trajectory

140 G. Case study: trajectories

Figure G.21: Tilburg (Tb) - Nijmegen (Nm) Trajectory

Figure G.22: Utrecht Centraal (Ut) - Boxtel (Btl) Trajectory

Figure G.23: Utrecht Centraal (Ut) - Rotterdam Centraal (Rtd) Trajectory

141

Figure G.24: Viers - Kaldenkirchen (Kn) Trajectory

Figure G.25: Venlo (Vl) - Eindhoven (Ehv) Trajectory

Figure G.26: Woerden (Wd) - Leiden (Ledn) Trajectory

142 G. Case study: trajectories

Figure G.27: Zevenaar grens (Zvg) - Emmerich (Em) Trajectory

	Preface
	Summary
	Samenvatting
	Glossary
	Introduction
	Background
	Problem definition
	Research objectives and scope
	Research questions
	Report outline

	Background
	Blocking time theory
	Timetable compression method
	Braking curve

	Literature review
	Terminology
	Shortcomings and limitations in UIC 406 Timetable compression method
	Other capacity assessment methods in railways
	Analytical
	Optimisation
	Simulation
	Other approaches

	Data-driven methods in other transportation modes
	Aviation
	Road traffic
	Maritime transport

	Conclusion

	Methodology
	A mathematical approach to assess moving block track occupation times
	Using track occupation data to identify capacity bottlenecks
	Summing blocking times
	Buffer times

	Verification
	EGTRAIN
	Verification case study setup
	Approach to assess moving block track occupation times
	Data collection and processing
	Results
	Discussion and conclusion

	Using track occupation data to identify capacity bottlenecks

	Case Study
	FRISO
	Model setup
	Study area
	Timetable and rolling stock
	Infrastructure
	Route setup times

	Data collection and processing
	Fixed block blocking times
	Planned time-distance data
	Rolling stock parameters
	infrastructure characteristics

	Model application
	Approach time
	Clearing time
	Running time

	Buffer time calculations

	Results
	Summing blocking times
	Buffer times analysis
	D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA)
	H7400-B3900 (Duivendrecht - Amsterdam Bijlmer ArenA)
	A4400-C3500 (Boxtel - 's-Hertogenbosch)
	Critical sections

	Roberto
	D800-B7400 (Amsterdam CS - Amsterdam Bijlmer ArenA)
	H7400 - B3900 (Duivendrecht - Amsterdam Bijlmer ArenA)
	A4400-C3500 (Boxtel - 's-Hertogenbosch)

	Discussion
	Limitations of the model
	Calculation of approach time
	Model application with realised data

	Conclusion & recommendations
	Conclusion
	Recommendations
	Future work and research
	Practical improvements to FRISO and Roberto

	Bibliography
	Different shapes of the fundamental diagram
	Added code lines in EGTRAIN
	Python scripts verification study
	Python scripts case study
	Case study: Rolling stock
	Case study: Infrastructure
	Case study: trajectories

