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Learning parametric model predictive
control strategies for frequency control

of a microgrid

Microgrids are a promising tool that can help transition the electricity grid towards a smart
grid. They can provide significant benefits to the power grid in the form of increased reliability
and flexibility. Through the local control and consumption of distributed electricity generation
the overall complexity of the electricity grid can be reduced and efficiency can be increased.

The microgrid controller sets the electricity consumption and generation of all controllable
devices within the microgrid and controls how much electricity is exchanged with the main
electricity grid. Microgrid controllers can minimize the operating cost of the microgrid by
storing energy in local batteries and importing or exporting electricity from the main grid
when electricity price is lowest or highest respectively.

Model Predictive Control (MPC) has been proposed as a method for developing such micro-
grid controllers. MPC can deal well with the many different constraints that are imposed on
the control of the microgrid. Because controlling a microgrid involves switching devices on and
off, microgrids are often modelled as a hybrid system. A downside of MPC for hybrid systems
is that, a mixed integer optimization problem must be solved at every control step. Solving
mixed integer programs is computationally complex, especially for large scale problems. The
difficulty of the optimization problem limits the response time of the microgrid controller.
This makes it difficult to scale a single-level MPC controller to larger scale systems.

Parametric MPC has been suggested as a way to reduce the computational complexity of
the controller and to create an efficient single level MPC controller. In parametric MPC the
control input is parametrized according to a set of parameters and a control law. Instead of
determining the inputs directly by solving an optimization problem, the optimization problem
determines the optimal parameters of the control law. This method can reduce the number of
optimization variables significantly and increases the scalability of the controller. To ensure
the parametric controller performs well a good parametric control law should be chosen.
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In this research a new way to determine the parametric control law is proposed. The con-
trol law is represented as a combination of expressions. These expressions are represented
using a set of expression trees. Using expression trees a wide array of different non linear
functions can be represented. During an offline optimization step, optimal control inputs are
determined using a regular MPC controller on a set of scenarios. Expression trees that are
able to parametrize the control inputs well are then learned from these control inputs using a
genetic algorithm. By using learning methods to determine the control law, the design of the
parametric controller can be automated. Using this method there is no need for the control
system engineer to determine a parametric control law through trial and error testing. This
can speed up the design process and could allow parametric MPC to be used for systems for
which input parametrizations are difficult to find.

The effectiveness of the proposed approach is illustrated through a case study in which a
microgrid is simulated with 2 controllable generators, renewable generation, an uncontrollable
load and local energy storage. The performance of the parametric MPC controller determined
in the offline optimization is compared with a handcrafted parametric MPC controller and a
regular MPC controller. The estimated economic cost of operating the simulated microgrid
using the different controllers is compared. Furthermore the computational complexity of
the different controllers is analysed. The results show that the offline trained parametric
controller achieves similar performance in both operating cost and computational complexity
as the handcrafted parametric controller. This shows that the proposed offline optimization
algorithm can be used to determine an effective control law for a parametric MPC controller.
This will make it easier to design parametric MPC controllers for different systems in the
future.
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Chapter 1

Introduction

1-1 Motivation

In the coming years the power grid is expected to undergo many changes [9]. In industry
and government there is a push to transform the power grid into a smart grid that can deal
with the expected changes in electricity generation and consumption as a result of the energy
transition. These changes include the expected rise of renewable and distributed generation
in the power grid, the reduction in number of traditional thermal generators, the need to
store large amounts of energy, and the introduction of more controllable loads and devices.
The effect of these changes are already seen in the grid today, but these effects are expected
to become more profound in the future. To operate the smart grid of the future new control
algorithms of many forms are being developed today [2].
As renewable energy sources are replacing traditional generation in the grid, distributed
generation is replacing traditional large generators. To keep centralized control of the grid
manageable there has been a push to group distributed renewable energy sources, smart
appliances, and small energy storage units together in so called microgrids [4]. Through
controlling these devices locally, the burden on the larger power grid is reduced. Peaks
in electricity generation can be stored in local energy storage and power demand can be
scheduled to coincide with peaks in generation. A more predictable amount of power is
supplied or requested from the main power grid.
Model Predictive Control (MPC) is a method well suited for frequency control in a microgrid
[8]. MPC has several advantages that make it well suited to be used in a microgrid controller.
One of the main advantages is that constraints can be easily enforced when using an MPC
controller. In general power control is very constrained, with both production limits at
the generators and limited transport capacities through power lines. Furthermore, MPC is
well suited to control models with hybrid dynamics. Hybrid systems are systems with both
continuous and discrete-event dynamics. Hybrid dynamics arise naturally in power systems
with devices that can switch on and off.
A downside of MPC is the large computational complexity of the controller [14]. At every
time step a difficult optimization problem needs to be solved, which takes a large amount
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2 Introduction

of computing power. This limits the response time of the controller. The computational
complexity increases as the microgrid becomes more complex, making it impossible to use
MPC for large microgrids without adaptations.

One way computational complexity of an MPC controller can be reduced, is by using a
parametric MPC controller. By defining a control law that parametrizes the control inputs,
the search space of the optimization can be reduced. Research on parametric MPC shows
that this can greatly reduce the computational complexity of an MPC controller [7, 11]. A
downside of parametric MPC is the challenge in determining a good control law. In previous
research this was done using expert knowledge of the dynamics of the system, which requires
a good understanding of the system and time to test different possible control laws [11]. This
master thesis report presents a method that can be used to automatically determine a control
law in an offline optimization step, making it easier to design a parametric MPC controller.

1-2 Research objective

The computational complexity of MPC controllers can be problematic when trying to use
them to control a microgrid. Parametric MPC can be used to reduce the computational
complexity of an MPC controller. However, designing a parametric controller is difficult
because there is no easy way to determine a good parametric control law. This is why the
research question for this thesis is:

How can novel parametrizations be found for parametric MPC for frequency con-
trol in a microgrid that achieve a good balance between computational complexity
and economic cost?

.

1-3 Contributions

This master thesis provides 2 main contributions:

• A method to determine a parametric control law for a microgrid using a genetic algo-
rithm is presented (Chapter 4).

• A fitness function that estimates the performance of a control law by testing how well
it can fit optimal input sequences is presented (Chapter 4).

• The proposed method is tested in a case study and a novel control law learned using
the presented method is determined (Chapter 5).

1-4 Outline

The remainder of the thesis is split up into 4 main chapters. Chapter 2 will introduce the
background behind microgrids and microgrid controllers. Furthermore, the microgrid model
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1-4 Outline 3

used in this thesis is explained and the MPC microgrid controller is introduced. In Chapter
3 parametric MPC is explained and the role of the control law is highlighted. Chapter 4
discusses a novel method to find parametric control laws. The algorithm used is explained
and motivation behind the method is expanded upon. A case study is performed to validate
the method presented. The results of the case study are shown in Chapter 5. Finally, Chapter
6 discusses the results of the case study and concludes the thesis.
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Chapter 2

Microgrid modelling and control

In this chapter background information on microgrids and microgrid control will be discussed.
In Section 2-1 microgrids and their function will be introduced. Furthermore, challenges
inherent to microgrid control will be highlighted. In Section 2-2 hybrid systems will be
introduced and how such systems can be modelled using Mixed Logical Dynamic (MLD)
models. Section 2-3 will describe the function and operation of different microgrid components
and how they can be added to the MLD model. Finally, in Section 2-4 Model Predictive
Control (MPC) of MLD models and microgrids will be described.

2-1 Microgrids

As the electricity grid has been transitioning away from fossil fuels, an increasing amount
of distributed generation is being attached to the electricity grid. Large power plants are
being replaced by renewable generation such as solar power. Furthermore, the intermittent
nature of renewable electricity generation also requires other devices such as power storage
and controllable loads to be attached to the electricity grid. Integrating all these new devices
brings many challenges. These challenges have given rise to the idea of introducing microgrids
within the main electricity network.

Microgrids are small grids in which local electricity generation, local Energy Storage System
(ESS) and local loads can be connected together [5]. All those devices would then be controlled
centrally by a local controller. This microgrid is attached to the main grid through a single
connection and acts as a single entity with respect to the rest of the electricity grid. There
are many advantages in structuring the electricity grid in this way. Because local loads
and generation are connected, it can reduce loads on main grid lines which have limited
capacity. Transport of electricity incurs line losses; by consuming electricity locally efficiency
is increased. Microgrids can be designed to be fully self-sufficient without a connection to the
main grid. Such an isolated microgrid is also called an islanded microgrid. If the microgrid
is able to operate in both grid-connected and islanded modes, the microgrid will be affected
less by outages, increasing the availability and reliability of electricity.

Master of Science Thesis G. G. J. Bakker



6 Microgrid modelling and control

Because microgrids are small in comparison to the main grid and numerous , it is not feasible
to employ an operator to manage the operation of a microgrid manually. Instead the operation
of a microgrid relies on automatic management through software. This software must perform
the following function:

• Regulate voltage and frequency in the microgrid during islanded operation

• Control power exchanged with the main grid

• Set operation modes and set points of connected generators and ESS

• Minimize operational cost of the microgrid

• Manage transition from grid-connected to islanded operation modes and vice versa

These functions are performed by different controllers within the software. In this thesis a
microgrid controller that operates a microgrid in grid-connected mode is discussed.

2-1-1 Frequency control

The local microgrid controller controls the power flow within the microgrid and the power
that is exchanged with the main grid [5]. Traditionally power flow control has been separated
into three different time scales: primary, secondary and tertiary. As shown in Figure 2-1
the control performed at different time scales has a different goal and operation. Primary
control is performed at the level of individual generators and ensures that the frequency of
the electricity grid remains stable. Secondary frequency control ensures that the frequency
stays at the operational frequency of the grid. Finally tertiary control is used to determine
how the load must be divided over all the generators attached to the grid.

Primary frequency control is performed at the level of individual devices and as such is
distributed over the whole network. When the load on the grid changes, the grid frequency
starts deviating from the target frequency. When the generators participating in primary
frequency control measure this frequency deviation, the power target of the generators is
automatically adjusted. This ensures the electricity produced and consumed is always in
balance.

While primary frequency control ensures the consumption and production of electricity is
balanced and the grid frequency remains stable, it does not ensure that the grid frequency
is always equal to the target frequency and that there is zero steady-state error. To ensure
zero steady-state error secondary frequency control, also called automatic generation control
or load frequency control, is necessary. The Transmission Systems Operator (TSO) has con-
tracts with different customers that require them to be able to quickly vary the electricity
they are consuming or supplying. The TSO monitors the grid frequency and tie line power
transfer. If these values deviate from the set points determined during the tertiary frequency
control process, they send a signal to the participating customers to increase or decrease
their electricity output or input. Historically secondary frequency control was performed by
varying the power output of large synchronous generators found in thermal power stations.
However, as the grid is transitioning towards more distributed and renewable generation,

G. G. J. Bakker Master of Science Thesis



2-1 Microgrids 7

such generators cannot be solely relied upon for providing the reserve power necessary for
secondary frequency control.

f0

30 s 15 min

f

t
Primary Control Secondary Control Tertiary Control

Stabilization of f

Linear feedback control on ∆f

Decentralized in generators
Response 5s

Regulation of f to nominal frequency
Centralized control by TSO

Response 30s

Economic operation
Optimization methods

Response 15 min

Figure 2-1: Illustration of the difference between primary, secondary, and tertiary control.

In the future microgrids could provide a new source of reserve power for secondary frequency
control. However, an important requirement for participating in secondary frequency control
is that the response of microgrid must be fast enough. The microgrid must change the power
transfer with the grid within 30 seconds of receiving a signal from the TSO. If the grid
contains ESS, controllable generation, or controllable loads with a fast enough response time
this should be no issue. However, the microgrid controller must also have a response time
that is fast enough. Furthermore, if the microgrid is designed to also be able to operate in
islanded mode, secondary frequency control must be performed by the microgrid controller
itself, necessitating similar fast response times. For controllers of large microgrids based
on MPC achieving such response times can become an issue because of the computational
complexity of the controller.

2-1-2 Electricity price and economics

The final level of frequency control is called tertiary frequency control. During normal opera-
tion the total maximum possible electricity production of all generators attached to the grid is
a lot higher than electricity demand. Different generators have different costs and constraints
associated with operating them. Generators are constrained by their ramp-up and ramp-down
rates, minimum or maximum production capacity, or produce electricity intermittently in the
case of renewable generators. In tertiary frequency control this problem is solved through a
process called economic dispatch.

The TSO organizes a market in which electricity suppliers and consumers can buy and sell
electricity. At regular intervals the TSO settles the outstanding orders and determines how
much power each electricity supplier must provide to the grid during the next time period. Any
imbalance in power supply and demand caused by consumers and producers deviating from
the determined set points is accounted for by secondary frequency control. The settlement
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8 Microgrid modelling and control

moments occur every few hours throughout the day. The price electricity producers ask
does not have to be constant in the time between settling times. Through this process each
generator operator can determine the cost of operating their generators separately and in this
way the market economics determine the most efficient configuration of generator set points,
minimizing the cost of electricity for the consumers.

Because of the process of economic dispatch, the electricity price varies throughout the day.
End users can agree on fixed-rate contracts with an electricity supplier. The electricity sup-
pliers buy the electricity consumed by their customers each day in the electricity market.
However, large consumers could also decide to buy their electricity directly for varying prices.

For a microgrid buying electricity at varying prices is interesting, because it means that the
cost of operating the microgrid can be reduced if electricity consumption can be scheduled
during times when the electricity price is low and excess production can be sold on the grid
when the price is high. Instead of paying a fixed rate for the electricity, the electricity would
be bought and sold at the current price in the grid. In the microgrid model that is examined
in this thesis the changing electricity price is taken into account. It is assumed that there is
a known electricity buy and sell price. In reality the market dynamics of tertiary frequency
control means that there are no fixed future prices; so in any practical applications the future
electricity price would need to be estimated.

Creating a microgrid controller that can participate in both secondary frequency control
and tertiary frequency control is quite challenging. Because of the varying electricity price
throughout the day, any controller should look at least a day ahead to be able to buy and sell
electricity for the right price. Such a long horizon conflicts with the need for fast response
times that are needed to participate in secondary frequency control.

2-2 Mixed logical dynamic systems

The modelling of a microgrid involves both discrete and continuous dynamics. For example,
the charge state of a battery can be modelled as a continuous state, while the operational
state of a generator can be described using a discrete variable, either on or off. Such systems
are part of a class called hybrid systems. There are many ways to formulate models of
such hybrid systems. In this research microgrid models represented as MLD models will be
discussed. While MLD models are not as descriptive or general as some other hybrid system
models, MLD models have the advantage that they can easily be used in an MPC controller.
MLD models consist of a set of linear relations:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g (2-1)

where x(k) = [xTr (k) xTb (k)]T with xr(k) ∈ Rnr and xb(k) ∈ {0, 1}nb , and where z(k) ∈ Rrr

and δ(k) ∈ {0, 1}rb are auxiliary variables. Different relations between auxiliary variables can
be enforced by adding extra constraints to the system.

G. G. J. Bakker Master of Science Thesis



2-3 Microgrid components 9

For example, the relation [f(x) ≤ 0] ⇔ [δ = 1] can be implemented as set of constraints,
using the following relation:

[f(x) ≤ 0]⇔ [δ = 1] is true if and only if
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ

(2-2)

where M represents the maximum value the function f(x) can be and m the minimum value.
The machine precision ε is used because strict equalities are not allowed.

Products between logical variables, and of continuous and logical variables can also be rewrit-
ten in terms of linear inequalities. When m and M are defined similarly as for (2-2), the
equation z = δf(x) is equivalent to:

z ≤Mδ

z ≥ mδ
z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ) (2-3)

2-3 Microgrid components

The microgrid model described in this thesis consists of several components. These com-
ponents can be subdivided into several categories: electricity sources, ESS, loads and a grid
connection. Electricity sources can be either controlled sources or uncontrolled sources. Com-
pletely modelling all the dynamics of every component in the microgrid would make the system
very complex and would be infeasible to use in a control application, so a simplified model is
used to describe the microgrid as an MLD system.

2-3-1 Energy storage system

The storage system models any batteries or other types of energy storage attached to the
microgrid. The microgrid controllers keeps track of the charge state xess(k), which represent
how much energy stored in the ESS at each time step k. The microgrid models the charging
and discharging of the ESS using a piecewise affine equation based the model described in
[10]:

xess(k + 1) =

xess(k) + Ts
ηd
Pess(k), Pess(k) < 0

xess(k) + TsηcPess(k), Pess(k) ≥ 0
(2-4)

In the microgrid model the charging efficiency ηc and the discharging efficiency ηd are assumed
to be independent of the charge state xess. The input variable Pess represents the power
exchanged with the ESS and Ts is the sampling time. When Pess is positive the ESS is
charging and thus consuming electricity from the microgrid. To model the piecewise affine
equation using an MLD model, two new auxiliary variables have to be introduced, δess(k) and
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10 Microgrid modelling and control

zess(k). δess(k) should represent whether the ESS is in charging mode or discharging mode at
time step k. These constraints are defined using the following relations:

{
δess(k) = 1⇐⇒ Pess(k) ≥ 0
δess(k) = 0⇐⇒ Pess(k) < 0

(2-5)

zess(k) = δess(k)Pess(k) (2-6)

The piecewise affine equation can then be written as a linear equation:

xess(k + 1) = xess(k) + Ts

(
ηc −

1
ηd

)
zess(k) + Ts

ηd
Pess(k) (2-7)

The ESS has a limited size and thus there is a minimum and maximum charge state, rep-
resented by xess and xess. To ensure the model charge remains within this limit another
constraint is defined:

xess ≤ xess(k) ≤ xess (2-8)

There is also a maximum charge rate P ess and a maximum discharge rate P ess, which define
the final constraint of the ESS model:

P ess ≤ Pess(k) ≤ P ess (2-9)

2-3-2 Sources

The microgrid model includes two kinds of electricity sources: controlled sources and un-
controlled sources. Controlled sources are generators for which the electricity output can be
regulated and planned. For example a diesel generator could be modelled as a controlled
electricity source, while uncontrolled sources usually involve renewable electricity generation,
such as solar panels. Uncontrolled generators supply a varying rate of electricity throughout
the day. For the microgrid model it is assumed the output of these generators is known ahead
of time. They are then added to the microgrid model as a known disturbance.

The total power produced by all uncontrolled sources in a microgrid is represented using
the variable Pres(k). Importantly in practical applications the electricity production of these
generators is not know ahead of time. An implementation of a microgrid using this model
would need to estimate the future values of Pres(k).

The microgrid controller should be able to control multiple controllable sources. The number
of generators in the grid is represented as Ngen. The electricity produced by the ith generator
in the microgrid is represented as Pgen,i(k) and P gen(k) is used to represent a vector of all
the different generators:

G. G. J. Bakker Master of Science Thesis



2-3 Microgrid components 11

P gen(k) = [Pgen,1(k), ..., Pgen,Ngen(k)]T

Generators have a minimum and a maximum operating power output, represented as P gen,i
and P gen,i. The minimum operating power output of each generator will be higher than 0;
however, the generators can also be shut off completely in which case Pgen,i(k) = 0. To
represent the operating state of the generators new binary auxiliary variables δgen,i(k) have
to be added to the model. The constraints that have to be added to the MLD model can
then be represented as:

{
δgen,i(k) = 1 ⇐⇒ Pgen,i(k) ≥ P gen,i,

δgen,i(k) = 0 ⇐⇒ Pgen,i(k) = 0, ∀i ∈ {1, ..., Ngen}
(2-10)

Pgen,i(k) < P gen,i(k) ∀i ∈ {1, ..., Ngen} (2-11)

There is a cost associated with operating the generators. In this model it is assumed that the
cost of operating the generators depends on the time step k and increases linearly with the
electricity produced. cgen(k) is the cost per kW of generated power. The total cost of running
all the generators is described as:

Cgen(k) = cgen(k)
Ngen∑
i=1

Pgen,i(k) (2-12)

where Cgen(k) is the total cost. In reality there is a fixed cost associated with running the
generators in the form of fixed expenses such as maintenance, furthermore, a generators
efficiency depends on the output power, making the true operating cost non-linear.

2-3-3 Loads

In the microgrid model only critical loads are considered. This means these loads must be
satisfied at all times and the controller had no control over when electricity is consumed in the
system. This is a realistic assumption to make when considering the current day electricity
grid, however, if the variance in daily electricity price keeps increasing it could be profitable
to control devices as non-critical loads. Some devices do not need to operate at specific times
during the day, they only have requirements that they are turned on a certain percentage of
the time during a specific time period.

In the MLD system the loads of all separate devices are summed and represented using a
single variable Pload(k). It is assumed that the future values of Pload(k) are known. Similarly
to the renewable generation such values would need to be estimated if the microgrid model
is implemented in practice.
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2-3-4 Grid connection

The model in considered in this thesis is a grid-connected microgrid. So at all times there is a
connection to the main grid from which power can be imported and exported. The power flow
to the main grid is represented using the variable Pgrid(k). When power is being imported
from the main grid Pgrid(k) is positive and when power is being exported Pgrid(k) is negative.

As discussed in Section 2-1 the price of electricity varies throughout the day. In the micro-
grid model this electricity price is represented as two time-varying variables cimport(k) and
cexport(k). cimport(k) represents the price that is paid for each kW of electricity imported dur-
ing time step k, while as cexport(k) represents the price that each exported kW of electricity
is sold for when exported to the main grid. To use the electricity price in the MPC controller
two new auxiliary variables δgrid(k) and zgrid(k) must be introduced. This variable represents
whether the grid is in importing or exporting mode and should be subject to the following
constraints:

{
δgrid(k) = 1 ⇐⇒ Pgrid(k) < 0
δgrid(k) = 0 ⇐⇒ Pgrid(k) ≥ 0

(2-13)

zgrid(k) = δgrid(k)Pgrid(k) (2-14)

Using these auxiliary variables the cost of buying or selling electricity at each time step k can
be calculated:

Cgrid(k) = cimport(k)Pgrid(k) + (cexport (k)− cimport (k)) zgrid(k) (2-15)

where Cgrid(k) represents the cost. It will be positive when electricity is being imported and
negative when electricity is exported. When the cost is negative, this means money is being
earned by selling excess electricity.

The connection to the main grid has a limited capacity, bounding the power flow. This
bounded power flow is ensured by the following constraints:

P grid ≤ Pgrid ≤ P grid (2-16)

where P grid is the minimum allowable power flow and P grid is the maximum allowed power
flow.

2-3-5 Full model

During operation in grid-connected mode the power flow to the main grid is equal to the
difference in electricity production and consumption in the microgrid. This relationship can
defined by adding an equality constraint that is an affine function of the power flows in the
grid:
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Pess(k) = Pres(k)− Pgrid(k)− Pload(k) +
Ngen∑
i=1

Pgen,i(k) (2-17)

All the different components in the microgrid model are attached to a single connection the
main grid. Figure 2-2 shows a schematic drawing of all the components connected together.

ESS

Generator

Loads

Renewable
generation

Main grid

Pres

Pgen

Pess

Pload

Pgrid

Figure 2-2: Schematic representation of the microgrid model

This means the complete microgrid model can be described by combining all the components.
The definition of the complete microgrid model in MLD format is:

x(k) =
[
xess(k)

]
u(k) =

[
Pess(k), Pgrid(k),P T

gen(k)
]T

δ(k) =
[
δess(k), δgrid(k), δTgen(k)

]T
z(k) =

[
zess(k), zgrid(k)

]T
A =1

B1 =
[
Ts
ηd

0 0
]

B2 =
[
0 0 0

]
B3 =

[
Ts
(
ηc − 1

ηd

)
0
]

(2-18)

where 0 is a vector of all zeros with length Ngen and δgen(k) is defined similarly as P gen(k).
The matrices E1, E2, E3, E4, and g can be derived from (2-5), (2-6), (2-8), (2-9), (2-10),
(2-11), (2-13), (2-14), (2-16), and (2-17) using the relations defined in (2-2) and (2-3).
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2-4 Model predictive control for microgrids

In this thesis control of a microgrid using MPC will be discussed. An MPC controller works by
computing a control sequence uk = ûk, ûk+1, ..., ûk+Np−1 at each time step k, where Np is the
prediction horizon. This is done by solving a finite horizon optimal control problem (OCP).
The OCP of an MLD system is defined as:

J∗
Np(xk) , min

uk,δk,zk
JNp(xk,uk, δk, zk)

s.t. x̂h+1 = Ax̂h +B1ûh +B2δ̂h +B3ẑh

E1x̂h + E2ûh + E3δ̂h + E4ẑh + g ≤ 0
δ̂h ∈ {0, 1} ∀h ∈ {k, ..., k +Np − 1}
x̂k = xk (2-19)

where JNp is a cost function that defines the desired system response and δk and zk are
defined similarly to uk. There is no guarantee that for all states xk there exists a feasible
solution to the OCP. The feasible set Xmpc ⊂ Rn is defined by the property xk ∈ Xmpc if
there exists a feasible solution to the OCP. The solution of the OCP is an optimal control
sequence u∗

k = û∗
k, û

∗
k+1, ..., û

∗
k+Np−1 and the associated optimal state sequence estimate is x∗

k.
In MPC the control action that is applied to the system at each time step k is û∗

k

MPC has been used in many different domains and has been proven to work well in many
practical applications. Some advantages of MPC include the ability to work well with con-
straints and systems with multiple inputs and outputs. These properties make MPC an
excellent method for controlling hybrid systems.
The MPC controller used in this thesis is based on the MPC controller described in [11].
The controller operates by minimizing the operating cost of the microgrid while ensuring no
constraints are violated. This will ensure proper power balance within the microgrid at all
times. The cost function of the MPC controller is defined as the economic cost of operating
the microgrid over the prediction horizon:

JNp =
Np−1∑
h=0

cimport (h) P̂grid (h) + (cexport (h)− cimport (h)) ẑgrid (h) + cgen (h)
Ngen∑
i=1

P̂gen,i (h)


(2-20)

Combining (2-19) and (2-20) gives the definition of the microgrid MPC controller:

min
uk,δk,zk

Np−1∑
h=0

cimport (h) P̂grid (h) + (cexport (h)− cimport (h)) ẑgrid (h) + cgen (h)
Ngen∑
i=1

P̂gen,i (h)


s.t. x̂h+1 = Ax̂h +B1ûh +B2δ̂h +B3ẑh

E1x̂h + E2ûh + E3δ̂h + E4ẑh ≤ g
δ̂h ∈ {0, 1}nδ ∀h ∈ {k, ..., k +Np − 1}
x̂k = xk (2-21)

where nδ is the dimension of δ(k), which is equal to 2 +Ngen.
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2-5 Conclusions

In this chapter microgrids were introduced. Microgrids could be very useful in the future
electricity grid. Introducing microgrids into the grid could make it easier to control large
amounts of distributed generation and improve reliability of the power grid. The tasks of a
microgrid controller were discussed and how frequency control of a microgrid relates to the
larger grid. MLD systems were introduced and it was shown how a microgrid and its com-
ponents can be modelled as an MLD system. Finally, MPC was introduced, the advantages
and disadvantages were discussed, and an MPC controller for a microgrid was presented.
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Chapter 3

Parametric model predictive control

This chapter explains how a parametric Model Predictive Control (MPC) controller can be
used to reduce the computational complexity of an MPC controller for a microgrid. The
role of the control law in the parametric MPC controller will be explained and differentiation
will be made between a discrete and continuous control law. Different ways to express and
determine these control laws are discussed in Sections 3-2 and 3-3. The motivation behind the
need for a novel way to determine parametrizations is discussed in Section 3-4. Furthermore,
in Section 3-5 it will be explained why it is difficult to express the performance of a control
law.

3-1 Parametric control law

In parametric MPC a control law is defined that parametrizes the inputs. Using the control
law only the parameters of the control law need to be found during the online optimization.
If the parameters of the control law are of a lower dimension than all the inputs in the predic-
tion horizon, this can reduce the computational complexity of the controller. Furthermore,
by parametrizing the discrete variables the problem can be transformed from a mixed inte-
ger problem to a problem containing only continuous variables. In Figure 3-1 a schematic
representation shows how the control law is used in a microgrid parametric MPC controller.
Every time step states of the microgrid are measured and combined with the price, renewable
generation and load values. These values are used in an online optimization to determine a
set of parameters for the control law. The control law is then used to determine the control
inputs.
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Microgrid

Control law

Optimization

Parameters

Measurements

Control inputs

Predictions

Controller

Figure 3-1: Schematic representation of the parametric MPC microgrid controller

By using parametric MPC a trade-off can be made between the size of the feasible region Xk,
the cost of the controller JN (k), and the computational complexity of solving the optimal con-
trol problem (OCP). Instead of optimizing a sequence of control inputs uk, the optimization
is done over a set of parameters θk ∈ Rp by defining the control law l(θk, vk) that parametrizes
the input:

uk = l(θk, vk), l(θk, vk+1), . . . , l(θk, vk+Np−1)) (3-1)

where vk are time-dependent variables. For example a variable of the control law could be
the previous system state xk−1 or a vector of future generation price predictions cgen. The
parameters θk are determined during the online optimization and in the they are fixed over
the prediction horizon. This means that as long as p < Np the number of free variables in
the MPC optimization is reduced.

By reducing the number of free variables in the optimization problem the computational
complexity of the optimization can be reduced. However because the parametrization reduces
the search space of the optimization, there is also a chance that the actual optimal control
sequence u∗

k is no longer in the search space. If this is the case the performance of the
controller will go down or no feasible control sequence can even be found. This means the
feasible set of the parametric MPC controller Xk,pmpc will be smaller than the feasible set of
the regular MPC controller Xk,mpc.

The main advantage of using a parametric MPC controller is that the computational com-
plexity of the controller can be reduced. However, this comes at the cost that the solutions
found during the online optimization may be worse than those of the regular MPC controller.
Furthermore, because the feasible region is smaller, the parametric controller might not be
able to determine a control input at every timestep that satisfies all the constraints of the
system. If calculated inputs fall outside of the defined lower or upper bound, this problem
can be solved by taking the maximum or minimum allowed value instead. However, this
might result in a situation in which electricity can no longer be supplied to all loads in the
microgrid, because the battery is empty.
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3-2 Discrete-value control law 19

In the case of the microgrid controller there are both continuous and discrete control inputs.
Different parametrization methods are used for continuous and discrete variables; so the
control law will also be split up in a discrete control law ld(θd

k , vk) and a continuous control
law lc(θc

k, vk).

Using these control laws the OCP of the MPC controller can be rewritten to obtain the OCP
of the parametric MPC controller:

min
θc
k
,θd
k
,zk

Np−1∑
h=0

cimport (h) P̂grid (h) + (cexport (h)− cimport (h)) ẑgrid (h) + cgen (h)
Ngen∑
i=1

P̂gen,i (h)


s.t. x̂h+1 = Ax̂h +B1ûh +B2δ̂h +B3ẑh

E1x̂h + E2ûh + E3δ̂h + E4ẑh ≤ g
ûh = lc(θc

k, vh)
δ̂h = ld(θd

k , vh) ∀h ∈ {k, ..., k +Np − 1}
x̂k = xk (3-2)

After the optimization is finished, the control inputs to the system can be determined using
the formula:

uk = lc(θc
k, vk) (3-3)

To increase the response times of the controller the control law can be evaluated multiple
times using updated values for vk.

By redefining the OCP this way the number of free variables can be reduced and there are no
more binary variables. A downside however, is that if x̂h or ûh−1 are part of the variables vk
of the control law, the optimization becomes non-linear. Non-linear problems are generally
more difficult to solve than linear or quadratic problems. This trade-off between less variables
and non linear optimization could be worth it, but without testing it is difficult to determine
for which problems this is the case.

3-2 Discrete-value control law

The discrete-value parametrization determines the discrete-value control law ld(θd
k , vk). By

defining such a control law the mixed integer OCP can be transformed into an optimization
containing only continuous variables, making it significantly easier to solve.

Methods for determining a discrete-value control law of a microgrid are discussed in [7, 12].
The papers propose two different ways of define and determining the discrete-value control law.
One method uses an automated optimization and the other method uses expert knowledge to
determine the control law. In [12] Pippia et al. define the control law as a set of if-then-else
rules. By using knowledge of the microgrid operation a set of rules were hand-designed that
allow the microgrid to operate with a minimal reduction in operating costs.
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In contrast [7] proposes a method using a set of decision trees that define the discrete-value
control law. These decision trees can be automatically learned, eliminating the need for
expert knowledge of the microgrid and making the parametric controller easier to design.
This methods works well for automating the design of the discrete-value control law and so
it has been used in the case study discussed in Chapter 5.

Both methods do not use any parameters that are changed in the online optimization in the
definition of the control law so the dimension of θd is equal to zero. This has the advantage
that δ̂h can be determined outside of the online optimization. One idea that was investigated
to improve the parametric MPC controller was to define a discrete-value control law that
does include parameters θd that can be changed during the online optimization. However
this idea was discarded, because the discrete time control law already performed well enough
without these parameters and the new control law did not provide a large improvement in
performance.

3-3 Continuous-value control law

The focus of this thesis is on developing a method that can help find good continuous-value
control laws lc(θc

k, vk). Pippia et al. already proposed a control law for a parametric MPC
controller in [11]. The authors of [11] defined the control law as an affine combination of three
functions:

l(θk, vk) =
3∑
i=1

θk,i
fi(vk)
fmax
i

(3-4)

where θk,i is the ith entry of the vector θk and the functions fi are predefined functions. The
variables used in the functions fi are the predicted values of the costs and power generation
and consumption as well as the previous inputs vk =

(
Pload(k), Pres(k), cexport(k), cimport(k),

cgen(k), û(k − 1)
)
. The authors of [11] based the choice of the functions fi on the dynamics

of the microgrid, but did not provide any justification for how they arrived at these choices.
This makes it difficult to use the parametric controller described in [11] in other microgrids.
Especially as new types of devices with different dynamics are added to the microgrid, new
functions fi will need to be determined.

Because no guidelines for the determining such functions are provided, design of a parametric
controller can be difficult. There is no way to determine how well a parametric MPC con-
troller will perform with a specific control law without testing the controller in a simulation.
Furthermore, there are no guarantees that a well-performing control law even exists. This
makes determining a control law a trial-and-error process, without any guarantees that a
good control law will be found.

In this next chapter a method to determine a control law using genetic programming will be
presented. This method addresses this issue by automating the design of the control law.
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3-4 Determining a control law

Currently there is no structured way to determine the continuous-value control law lc(θc
k, vk).

Most papers on parametric control provide a parametric control law without a justification
for why the control law works or how it was derived. Usually they are determined using
insight of the control system engineer in the controlled system and the structure of solutions
to the OCP.
Because there is no structured way to determine a control law, it is difficult to design a control
law for new systems. Many different possible control laws need to be tested and final result
is obtained through a trial and error process. The method in [7] provides an easier way to
derive a discrete-value control law using machine learning. However [7] does not provide a
way to determine a continuous-value control law.
In this thesis a method is presented that uses machine learning to determine a control law
for the variables in a parametric MPC controller. By combining the proposed method with
the method described in [7], the process of determining control laws for a parametric MPC
controller can be fully automated. This will reduce the burden on the designer of the controller
to provide insight in the dynamics of the system and make it easier to design parametric MPC
controllers.

3-5 Defining a good control law

The goal of this thesis is to find a novel method to determine a control law l(θk, vk) for a
parametric MPC controller of a microgrid that achieves a good balance between computational
complexity and economic cost. Before methods of finding a parametrization can be discussed,
it should first be defined what defines a good balance. This is not an easy definition to make,
for several reasons. The purpose of implementing a parametric MPC controller is that a
trade-off is made between three different values:

• The computational complexity of the MPC controller

• The feasible region of the parametric MPC controller Xk,pmpc

• The economic cost of operating the microgrid in closed-loop with the controller

A good parametrization should minimize the computational complexity of the MPC controller,
while keeping the feasible region XN and the closed-loop operating cost as close as possible
to those of the regular MPC controller. This is pretty straight forward, but if you try to
quantify this trade-off you encounter some problems.
First of all the computational complexity of an MPC controller is hard to quantify. Some
simple assumptions can be made to get an idea of the computational complexity of an opti-
mization problem. For example a linear program is generally easier to solve than a quadratic
program, which in its turn is easier to solve than a non-linear program. Programming prob-
lems with more variables and constraints are harder to solve than programs with less variables.
However there is no way to determine how long it will take to solve an OCP without actu-
ally solving it. Neither is there a good way to determine exactly how adding or removing
constraints and variables will impact the time it takes to find a solution.
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This problem is exasperated because of the different algorithms used to find solutions to
different types of problems. An interior point algorithm for finding a solution to a non-linear
program is hard to compare to a branch and bound algorithm used to solve a mixed integer
problem. The interior point solver could have a slower average case computation time, while
the branch and bound solver might be faster in the average case, but slower in the worst case
scenario. The only way to test the actual computational complexity of two different MPC
controllers, is to evaluate the controllers on a set of initial states xk and compare the resulting
computation time. The computation time can vary a lot for different states, so the controllers
should be compared on a number of different points.

Testing an MPC controller this way takes some time, exactly because of the computational
complexity that parametric MPC aims to reduce. Furthermore, the computational complexity
can only be compared for states xk where a feasible solution exist for both the parametric and
regular MPC. This means looking at just the difference in computation speed of the controllers
is not a good performance measure of the parametrization law. If only the computational
complexity improvement was measured, the perfect parametrization could be a precomputed
solution valid at a single point xk.

This means the feasible region of the parametric MPC controller Xk,mpc is important in
determining the effectiveness of a control law. This is also problematic, because it is hard to
make objective statements about this region. Especially for hybrid and non-linear systems it
is very hard to determine such a feasible region. Even if Xk,mpc and Xl could be determined
easily there is another challenge. In reality we do not care equally about each point xk in
the set Xk,mpc. Most likely the system and controller will only ever operate in a small subset
of the feasible region of the mpc controller, Xk,op ⊂ Xk,mpc. Even then some states are
likely visited very rarely, while others are visited very frequently. To exactly define what a
good parametrization is, a definition is needed of which states are important and which are
unimportant.

If one defines Xk,op by hand, one measure for the performance of a control law could be
the size of the intersection of the feasible region of the parametric MPC controller and the
operating region |Xk,op ∩ Xl|. A way to test this criteria is to sample a number of points
from Xk,op and test whether a feasible solution exists for the parametric controller. Because
this also involves testing the parametric MPC controller on a number of points, this is also
difficult to compute.

The operating cost of the controller in the closed-loop is the last factor in how well the
parametric controller performs. A good parametrization law should keep the economic cost of
operating the microgrid close to cost of the regular MPC controller. However this value is also
difficult to determine as the only way is by simulating the controller making it computationally
difficult to evaluate.

All of this means it is not trivial to determine how well a parametric control law l(θk, vk) per-
forms. Determining the computational complexity, the feasible region, and the final solution
cost of the parametric controller all require the controller to be evaluated on a set of points
in order to get an estimate and comparison to the regular MPC controller.

If one wants to use machine learning techniques to determine a good control law the difficulty
of evaluating the performance of the control law is a problem. In machine learning the
performance should be expressed using a loss function and this loss function is evaluated many

G. G. J. Bakker Master of Science Thesis



3-6 Conclusions 23

times in the algorithm. If the loss function takes a long time to evaluate, machine learning
techniques become impractical. In the next chapter it will be discussed how this problem can
be overcome by parametrizing the optimal input sequence u∗

k instead and defining the loss
function that way.

3-6 Conclusions

In this chapter parametric MPC was introduced. Parametric MPC can be used to reduce the
computational complexity of an MPC controller. By reformulating the OCP using a control
law different types of optimization methods can be used and the number of variables in the
optimization problem can be reduced. The downside of using parametric MPC is that the
controller usually is not able to find the exact optimal solution leading to worse performance,
such as e.g. increased operating costs of the microgrid.

Defining a good control law is difficult, because it involves making a trade-off between the
computational complexity, feasible region of the controller, and the optimality of the solutions
produced by the controller. All three of these values are not easy to define exactly. The only
way to produce estimates of how a parametric controller will perform with a specific control
law is to run tests. This can be time consuming and if only simulations are used might not
be indicative of real world performance.

Methods to determine a good control law other than by trial-and-error would be useful. By
automating the process of defining a good parametric control law much time could be saved.
For this reason in the next chapter a method in which a control law is learned using a genetic
algorithm during an offline optimization is presented.
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Chapter 4

Learning a parametrization using
expression trees and genetic

programming

In the previous chapter the concept of parametric Model Predictive Control (MPC) was
introduced and the advantages and disadvantages of using parametric MPC were discussed.
Defining a good control law is hard and automating the process of finding a good control law
could make it easier to design parametric controllers. In this chapter it will be explained how
expression trees can be used to define the control law of a parametric MPC controller. Specific
expression trees that describe good control laws can be found using genetic programming,
making it possible to automate the process of determining a control law. In this chapter the
method is explained and an offline optimization algorithm for finding such a control law is
outlined.
Section 4-1 describes the general working of the genetic programming algorithm. The differ-
ent steps of the algorithm are further expanded upon in the following sections: Section 4-2
discusses the grammar used to represent the control laws, Section 4-3 shows how a fitness
function can be defined as a measure of how well a control law is able to parametrize a known
optimal input sequence, and finally Section 4-4 describes how the selection and generation of
new candidate solutions is performed.

4-1 Genetic programming

During the offline optimization genetic programming is used to determine a good control
law. Genetic programming is used to find polynomial functions fi that are used in the
parametrization function as defined in Chapter 3. Finding these polynomial functions is done
during an offline optimization step during the design phase of the controller.
To find these polynomial functions, they must first be represented in a manner that can
be used in genetic programming. This representation form is referred to as a “genotype”,
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the corresponding control law is called the “phenotype”. Expression trees are used for the
genotype form, because they allow for easy manipulation by genetic operators. The expression
trees used use Grammar-Guided Genetic Programming (GGGP) similar to those presented in
[13]. In GGGP a grammar is defined to which all the expression trees must adhere, reducing
the search space and allowing expert knowledge to be incorporated in the algorithm.

During the offline optimization the algorithm is initialized with a number of random candidate
solutions. Each candidate solution is referred to as an individual and all candidate solutions
together is referred to as the population. All individuals are scored using a fitness function.
This fitness function should determine how well an individual performs and produces a single
score, the fitness of an individual. The fitness function used in this thesis is further discussed
in Section 4-3.

After the fitness of all individuals has been determined, a number of candidates are selected
to be modified or combined using genetic operators, such as crossover and mutation. The
genetic operators used and how they are applied is discussed further in Section 4-4.

The likelihood of an individual being selected is based on the fitness of the individual. In-
dividuals with a higher fitness score are more likely to be selected then candidates with a
lower fitness score. After new individuals are generated using the genetic operators the worst
performing individuals are eliminated from the population. This ensures that the population
remains of a constant size. Each individuals fitness is then measured again and a new se-
lection process is performed. Each cycle of selection and modification is called a generation.
As the number of generations increases and the worst individuals are eliminated the average
fitness of the population increases, allowing even better individuals to be created. The genetic
algorithms runs for a limited number of generations or until an individual is found that has
a high enough fitness score. The steps of the genetic algorithm can thus be summarized as
follows:

1. Initialize random population of individual solutions

2. Determine fitness of individuals

3. Select best performing individuals and eliminate other individuals

4. Generate new individuals

5. Repeat steps 2,3,4 until a good enough solution is found or the generation limit is
reached
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4-2 Expression tree grammar

As discussed to able to use the genetic operators, each individual solution must be represented
as a “genotype”. Grammar trees are used as the genotype representation of the individuals in
the offline optimization. The grammar of the expression tree is defined in Backus-Nauer form
[1], using a tuple (N ,S,P), where N denotes a set of non-terminals, S ∈ N is a starting tree
and P are production rules.

Each expression tree is built up from polynomials, 〈pol〉, monomials 〈mon〉, constants 〈const〉,
and variables 〈var〉. By including variables in the non-terminal set variables, such as the ex-
pected renewable generation Pres(h) or an input of the previous time step Pess(h− 1), can be
incorporated in the expressions. Constants that constrain the variables during the optimiza-
tion are added to the production rule of 〈const〉. These values could be found through random
initialisation. However, we know they are likely important values for the parametrization, so
adding them manually can help speed up the genetic search.

Polynomial functions were chosen, because they can be used to describe all the control laws in
[11]. Polynomials are likely adequate to describe well-performing control laws, but different
definitions could be explored in further research. More operators could be added to the
grammar, although this does come at a cost of increased complexity of the offline optimization.
If the described method was adapted to determine a control law for different systems this
choice should be re-evaluated. For example grammar to define a control law for a system
with oscillatory dynamics might include sin and cos operators and define the control law
using trigonometric polynomial functions.

The complete grammar rules used in the genetic algorithm are defined as follows:

Nonterminals N and starting tree S

N = {〈pol〉 , 〈mon〉 , 〈const〉 , 〈var〉},
S = Tuple (〈pol〉 , 〈pol〉 , 〈pol〉)

Production rules P
〈pol〉 := 〈const〉 | 〈mon〉 | 〈const〉 · 〈mon〉 | 〈pol〉+ 〈pol〉
〈mon〉 := 〈var〉 | 〈var〉 · 〈mon〉
〈var〉 := xess(k − 1)|cimport(k)|cexport(k)|cgen(k)|

cimport(k − 1)|cexport(k − 1)|cgen(k − 1)|
Pload(k − 1)|Pres(k − 1)|Pload(k)|Pres(k)|
Pgrid(k − 1)|Pess(k − 1)|Pgen,tot(k − 1)

〈const〉 := RandomReal ∈ [−10, 10]|P ess|P ess|xess|xess|P gen|P gen|P grid|P grid

(4-1)

where Pgen,tot =
∑i=Ngen

1 Pgen,i. Each tree consists of a tuple of polynomials. The control
law, or phenotype, corresponding to a specific genotype is found by determining the functions
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28 Learning a parametrization using expression trees and genetic programming

represented by each polynomial in the tuple. The control law is then defined as:

l(θk, vk) =
3∑
i=1

θk,i
fi(vk)

max |fi|
(4-2)

where fi represents a polynomial in the starting tree tuple. The denominator terms max |fi|
represents the maximum value fi can take. This does not have to be exact an exact value,
these terms are added to normalize functions and ensures all elements of θk are of similar size,
which helps during the online optimization.

In this thesis the control law was defined using three polynomials. This should be adequate
to determine a good control law as this is the same number of functions used in [11]. In future
research it can be explored how changing the number of polynomials changes the performance
of the control law. Theoretically adding more polynomials should increase the computational
complexity of the offline and online optimizations, while reducing the closed loop cost of
operating the microgrid.

The grammar rules were chosen this way to incorporate as much knowledge as possible of the
microgrid. Only a small range [−10, 10] for random constants was chosen, with the motivation
that all important information is already contained in the constants that define the model.
The random constants should only be used to help define combinations of variables and
constants. Defining the grammar like this will help speed up the offline optimization and
allow the learned control law to be used when parameters change slightly. Figure 4-1 shows
an example expression tree, the control law corresponding to this genotype is:

l(θk, vk) = θk,1 ·
−cimport(k)
max |cimport|

+ θk,2 ·
−cexport(k)
max |cexport|

+θk,3 ·
−Pload (k − 1) + Pres (k − 1) + Pgen,tot (h− 1)

max |−Pload (k − 1) + Pres (k − 1) + Pgen,tot (k − 1)| (4-3)
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(a)

(b)

Figure 4-1: (a) Example of an expression tree defined using the grammar defined in (4-2). (b)
Expression tree with non-terminal nodes removed. Equations corresponding to the genotype are
f1 = −cimport(h), f2 = −cexport(h), f3 = −Pload(h− 1) + Pres(h− 1) + Pgen,tot(h− 1)
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30 Learning a parametrization using expression trees and genetic programming

4-3 Fitness function

After the population has been initialized, the fitness of each individual must be tested. To
determine the fitness of each individual a fitness function has to be defined. The fitness
function returns a fitness score which represents the performance of the control law represented
by the individual. In Chapter 3 it was discussed that the performance of a parametric MPC
controller is a trade off between the computational complexity, the optimality of the solutions
found J∗

N (xk) and the feasible region of the controller Xpmpc. However it was also discussed
that determining estimates for these values is difficult. The only way to get an estimate is by
testing the controller on a number of different initial states xk.

In genetic programming the fitness of each individual must be determined each generation
of the algorithm. This means the fitness function will be evaluated many times while run-
ning the genetic programming algorithm. Using estimates determined by solving the optimal
control problem (OCP) in many points as a fitness function will make running the genetic
programming algorithm run very slow and infeasible without a very large amount of compu-
tational power. Furthermore, it would make scaling this approach to larger microgrid models
impossible.

Because of this a different approach is used to determine the fitness of an individual. Instead
of trying to estimate the performance of the parametric MPC controller, it will be tested how
well the control law can be used to parametrize known optimal input sequences u∗ that are
precomputed:

fitness score = min
θ
‖u∗ − L(θ, v)‖ (4-4)

This is the main idea behind the fitness function implemented in the offline optimization. The
motivation behind formulating the fitness score like this is simple. If the parametric control
law is able to parametrize known optimal input sequences u∗ well, then when it is used in a
parametric controller, a close to optimal solution should also exist. The advantage of defining
the fitness function like this is that it can be evaluated relatively quickly.

The implementation involves some extra steps. To ensure the parametrization does not overfit
to a specific instance of u∗ a training data set is created. To create the dataset first a set
of scenarios of size Ns with variables vs are defined. Values for all the variables used in the
genetic algorithm are defined in the scenario: vs = {x∗

s, cimport, cexport, cgeneration,P load,P res}
where cimport, cexport, cgeneration, P load, and P res are vectors of size Np. These scenarios can
be defined using real world data, be defined by hand or randomly sampled from a predefined
probability distribution. The optimal state sequence is determined using a regular MPC
controller. At the same time the optimal input sequence corresponding to each scenario u∗

s

is also determined.

The fitness of an individual is the average of the fitness values over all scenarios in the training
data set. Using the data in a scenario and the optimal state sequence, the expressions fi can
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be evaluate. The control law can then be written as:

Ls(θs, vs) =


f1(vs,1) ... fi(vs,1)
f1(vs,2) ... fi(vs,2)

... . . . ...
f1(vs,Np−1) ... fi(vs,Np−1))


θs,1...
θs,i

 (4-5)

where vs,k are the values of the kth entry in each vector in the scenario vs.

If the norm in (4-4) is taken to be the euclidean norm, the fitness of an individual on a
scenario fs is:

fs = min
θs

∥∥∥∥∥∥∥∥∥∥


û∗
s,1
û∗
s,2
...

û∗
s,Np−1

−


f1(vs,1) ... fi(vs,1)
f1(vs,2) ... fi(vs,2)

... . . . ...
f1(vs,Np−1) ... fi(vs,Np−1))


θs,1...
θs,i


∥∥∥∥∥∥∥∥∥∥

2

(4-6)

which can be solved using ordinary least squares methods. After the fitness of an individual on
every scenario has been determined, these fitnesses should be combined into a single fitness
score. In the genetic programming algorithm, the fitness score of an individual should be
better higher when it is better. To achieve this the fitness function is defined as follows:

fi = Ns

Npop ·
∑Ns
s=1 fs

(4-7)

where fi is the fitness of individual i and Npop is the size of the population. Using the inverse
of fs means well performing functions are a lot more likely to be selected. However care should
be taken, because fi could become very large if the parametrization fits very well and fs is
very small. Experimenting with different definitions of the fitness function might improve the
performance of the offline optimization.

The downside of defining the fitness function as a function of how well a known optimal input
can be fit is that performance of the control law is not tested during the offline optimization.
In the next chapter it will be shown that it is possible to generate a well-performing control
law this way, but there is no guarantee that the control law determined during the offline
optimization is actually the best possible control law.

Using the fitness function defined in this chapter all the inputs are assumed to be of equal
importance in the parametrization. However a control law that is able to parametrize the first
inputs in the input sequence better might increase the performance of the parametric MPC
controller. Further research could explore adding a weighting factor to the different inputs
in the fitness function. Furthermore the constraints on the allowed inputs are ignored in
the definition of the fitness function. Adding constraints or a penalty function for constraint
violations to the fitness function is another improvement that could be explored.

4-4 Selection and genetic operators

After the fitness of each individual has been determined, a number of individuals is selected.
The selection of the individuals is performed as follows. First the best performing individual
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is selected. Then all remaining individuals are assigned a probability of being selected:

p(i) = fi∑Npop
i=1 fi

(4-8)

where p(i) is the probability of individual i being selected, fi is the fitness of individual i,
and Npop is the number of remaining individuals. One individual is selected using these
probabilities, then the probabilities are recalculated, and in this manner new individuals are
selected until half of the population has been selected. The unselected half of the population
is then eliminated. Performing the selection process this way ensures that the best performing
individuals are likely to be selected, while maintaining variety of the population. The variety
of the population makes it less likely for the genetic programming algorithm to become stuck
in a local minimum.

After individuals have been selected, new individuals are generated using genetic operators,
mutation and crossover. Figure 4-2 and Figure 4-3 show schematic representations of these
operators. Mutation is performed by selecting a single individual. A single token in the
tree of that individual is selected and replaced with another valid token, resulting in a new
individual. Crossover is performed by selecting two individuals, then corresponding tokens in
the genotype trees of the individuals are selected and the branches originating from that point
are exchanged between the two individuals, generating two new individuals. Each individual
is used to generate a new individual. The new population is then formed by combining the
selected individuals and the newly generated individuals and the next iteration of the genetic
programming algorithm is run.

Figure 4-2: Schematic representation of the mutation operator
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Figure 4-3: Schematic representation of the crossover operator
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34 Learning a parametrization using expression trees and genetic programming

4-5 Conclusions

In this chapter a method was presented that uses GGGP and expression trees to define a
control law for parametric MPC. The grammar of the tree was defined as a tuple of polyno-
mials made up of variables and constants important to the microgrid model. Furthermore, it
was shown how the fitness of an individual can be tested by determining how well the control
law can be used to parametrize a known optimal input sequence. Implementing the fitness
function in this way reduces the computation time needed to evaluate the function and makes
it feasible to run the genetic programming algorithm.
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Chapter 5

Case study

To test the effectiveness of the method proposed in the previous chapter a case study is done
in which a microgrid is simulated and controlled using several control algorithms. The results
of this case study are presented in this chapter. Section 5-1 discusses how the simulated
microgrid was defined and what controllers were compared. Section 5-2 presents the results
of the offline optimization in which the genetic algorithm described in the previous chapter
is used. Section 5-3 shows the result of the online optimization in which the microgrid is
simulated for a full day of operation using the three different controllers. In Section 5-4 the
results of the online optimization are compared and discussed. The computational complexity
of the different controllers is also examined and discussed.

5-1 Setup of case study

Table 5-1: Microgrid model parameters

Ts 30 (s)
ηc 0.9
ηd 0.9
xess 500 (kWh)
xess 0 (kWh)
P ess 150 (kW)
P ess −150 (kW)
Ngen 2
P gen 250 (kW)
P gen 20 (kW)
P grid 1000 (kW)
P grid −1000 (kW)

The simulated microgrid used in this case study is based
on the one described in [7], however, it only includes two
generators instead of three and the parameters of the
model are slightly different. This microgrid is similar to
the microgrid described in [11], but it does not include
an ultracapacitor. All the parameters of the model are
shown in Table 5-1.

The case study is split up into an offline optimization
and an online optimization. In the offline optimiza-
tion, the genetic algorithm is run to determine a control
law using the method described in Chapter 4. During
the online optimization the operation of a microgrid in
closed loop with three different controllers. One con-
troller uses regular Model Predictive Control (MPC)
controller, the second microgrid controller uses para-
metric MPC with a hand-designed control law and the
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third controller uses parametric MPC with the control law learned during the offline opti-
mization.

The microgrid has four inputs Pess, Pgrid, Pgen,1, and Pgen,2. Because of the equality constraint
on the power flows described in (2-17), one of the inputs can be derived from the other inputs
to the system. This means only three control laws are needed. Pgen,1 and Pgen,2 are chosen
to have the same production limits and costs. This choice was also made in [7, 11], so this
allows for a good comparison between the methods .Furthermore, because Pgen,1 and Pgen,2
are the same, the same control law can be used. This helps reduce the duration of the offline
optimization. This helps running the case study practical, because the offline optimization
already took more than 24 hours to run. Because of this only two control laws are needed for
the parametric MPC controller: Lgrid(θk, vk) and Lgen(θk, vk).

The hand-designed reference controller is based on the controller described in [11] only the
control law for the ultra capacitor is omitted, since this component is not included in this
case study. The control laws of the reference parametric MPC controller are:

lgrid(θk, vk) =
3∑
i=1

θk,i
fi(vk)

max |fi|

f1 = cimport(k)
f2 = Pload(k − 1) + Pres(k − 1) + Pgen,tot(k − 1)
f3 = 0.5(xess − xess)− xess(k − 1)

(5-1)

lgen(θk, vk) =
3∑
i=1

θk,i
fi(vk)

max |fi|

f1 = Pload(k − 1)
f2 = cimport(k)
f3 = xess − xess(k − 1)

(5-2)

All simulations were performed using Matlab version R2017b on a computer running windows
10 with an AMD ryzen 5 5600X processor and 32 GB of memory. The code used to run the
simulations can be found at:
github.com/ggjbakker/Learned-parametric-microgrid-control-simulation.
The code needs a working installation of YALMIP [6], TOMLAB and Gurobi to run in
addition to the standard Matlab installion. YALMIP is not used in the optimization or the
controllers, it is only used to determine the states of the Mixed Logical Dynamic (MLD)
model.
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5-2 Offline optimization 37

5-2 Offline optimization

The expression tree control laws were determined using the genetic programming algorithm
described in the previous chapter. The population size was set to 40 individuals. A training
set of scenarios and a test set of scenarios was formulated using random generated data. The
number of scenarios in the training set was Ns = 2000. To prevent over fitting to the training
set, every 50 generations the training scenarios were replaced. To test the convergence of
the algorithm a test set of 20000 scenarios was also formulated. Every 150 generations the
fitness of the best individual in the population was tested using the test set scenarios, the
resulting fitness scores are plotted in Figure 5-1. The algorithm was run for 10000 generations
and as you can see in Figure 5-1, the performance had converged to a steady value by that
point. The offline optimization took around 24 hours to run. Running the offline optimization
for larger systems will take longer, however, the genetic algorithm is easy to parallelize and
could definitely be optimized. Furthermore, because it is done during the design phase of the
controller there are no real time constraints as long as it is still reasonable.
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Figure 5-1: Performance of best individual in the population on the test scenarios during the
offline optimization. The left plot shows the fitness of the best individual during the optimization
for lgen and during the optimization for lgrid

The control laws found during the optimization were:

lgrid(θk, vk) =
3∑
i=1

θk,i
fi(vk)

max |fi|

f1 = cexport(k)− cgen(k)
f2 = P gen · (cexport (k) cimport (k − 1)− 0.5) · (cimport (k)− 1)
f3 = (2cimport(k − 1) + Pres(k)) · (cimport(k − 1) + x(h) + Pres(k) + P grid)

(5-3)
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lgen(θk, vk) =
3∑
i=1

θk,i
fi(vk)

max |fi|

f1 = cexport(k)
f2 = c2

gen(k)− P esscgen(k)
f3 = cgen(k)

(5-4)

One of the advantages of Grammar-Guided Genetic Programming (GGGP) is that the result
of the optimization are easily readable can be interpreted more easily than when using e.g.
a neural net. The parametrization of the generator inputs contains a function that is just
the generator cost cgen(h) and a function that contains the c2

gen(h), which intuitively makes
sense. The more complicated functions are harder to ascribe a clear meaning to. It is clear
what variables are being used, however, it is not obvious why these functions are able to
parametrize the input well.

The fact that the functions determined in the offline optimization are able to parametrize the
optimal inputs well is shown using an example. Figure 5-2 shows a sample parametrization of
an optimal input sequence using the hand-designed and learned functions. The optimal input
sequences are discontinuous functions, while the parametrizations are continuous. However,
the parametrizations are able to fit the shapes decently well. The constraints on the inputs
are not taken into account during the genetic algorithm and in the examples some violations
of the minimum and maximum input bounds are observed.
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Figure 5-2: Example parametrization of optimal inputs sequence using parametrization functions
found using offline optimization and the handcrafted function. The top picture shows an example
parametrization of input Pgen and the bottom picture shows an example parametrization of input
Pgrid.

5-3 Online optimization

In the online optimization the microgrid a 24 hour period of the microgrid was simulated.
Three different controllers are compared: a regular MPC controller and two different para-
metric MPC controllers.

The regular MPC controller is the same as described in (2-21). The controllers use an internal
microgrid model with time steps of 30 mins and Np = 48, so the control horizon is 24 hours.
Gurobi version 9.1 was used to solve the mixed-integer linear programming (MILP) optimal
control problem (OCP) in the regular MPC controller.

The hand-designed parametric controller and expression tree based controller use the same
controller except they use different control laws. The hand-designed parametric controller
uses a heuristic rule set to determine the discrete variables; the same heuristic rule set as
described in [12]. To ensure that the expression tree based controller can be designed without
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expert knowledge, it instead uses the approach described in [7] to determine a control law
for the discrete variables. The resulting non-linear minimization problems were solved using
TOMLAB and the SNOPT[3] solver. SNOPT is a sequential quadratic programming (SQP)
suited for solving large-scale non-linear optimization problems. SNOPT was chosen to solve
the optimization problem, because it works well with objective functions that are expensive
to evaluate and can handle non-convex problems.

In Figure 5-3 the values of Pload(k), Pres(k), cgen(k), cimport(k), and cexport(k) in the case
study scenario are shown. In the case study the values of these variables are assumed to
be known ahead of time so the predictions used in the MPC controllers are the same as the
actual values.
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Figure 5-3: Values of the prediction variables in the case study scenario
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The regular MPC controller was implemented in Matlab, using the Matlab Gurobi interface.
During an initialization step the OCP described in (2-19) is converted to the standard form of
an MILP problem and defined using the Gurobi problem structure. During subsequent con-
troller calls the problem is updated using the new state and prediction values. The optimizer
is warm started using the solution of the previous time step.

Figure 5-4 shows the microgrid power flows and charge state in the closed-loop simulation
controlled with the regular MPC controller. The regular MPC controller shows the desired
behaviour. During the day electricity is stored in the Energy Storage System (ESS), ensuring
that the generators can run at full capacity and electricity is returned to the main grid when
the electricity price is highest. Some undesired behaviour can also be seen. The controller
switches between power flow settings of the ESS very often in a short time period. To prevent
this behaviour extra constraints could be added to the controller or an additional cost on
changing the input from the previous value could be imposed.
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Figure 5-4: Power flow in the microgrid and charge state of the ESS during the closed-loop
simulation controlled by the regular MPC controller
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The parametric MPC controllers were implemented in Matlab using TOMLAB. The objective
and constraint of the optimization problems were defined using matlab functions. During an
initialization step the problem was defined using the TOMLAB interface. At every timestep
after the first the problem was warm started using the solution from the previous time step.
If evaluating the control law returned inputs that were outside of the constraints, the values
were clipped to ensure no constraints are violated.

In Figure 5-5 the results of the closed-loop simulation using the hand-designed parametric
MPC controller are plotted. As can be seen, the hand-designed controller performs worse
than the regular MPC controller. The generators do not operate at full capacity despite the
fact that there is still battery capacity available. Furthermore, the generators are not used to
produce electricity even when the return on exporting electricity is higher than the cost to run
the generators in the middle of the day. Performance could be improved by choosing a better
control law. However, as discussed designing control laws is difficult and time consuming.
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Figure 5-5: Power flow in the microgrid and charge state of the ESS during the closed-loop
simulation controlled by the hand-designed parametric MPC controller
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The simulation of the expression-tree-based parametric MPC controller was performed in the
exact same way as the closed-loop simulation of the hand-designed parametric controller. The
only difference between the controllers is that the functions used to describe the objective and
constraints contain a different control law.

Figure 5-6 shows the closed-loop result of the expression-tree-based parametric MPC con-
troller learned during the offline optimization. The controller performs better than the hand-
designed parametric MPC controller and closer to the performance of the regular MPC con-
troller. The generators are able to operate at full capacity during the whole day and electricity
is exported to the grid when electricity price is highest. However, some efficiency is still lost
compared to the regular MPC controller. Too much electricity is imported from the grid and
stored in the ESS. This increases the total cost of operating the microgrid, because of the
efficiency losses in the storage system. Furthermore, the ESS ends the day fully charged even
though there is no value for stored electricity defined in the cost function. Of course, if the
microgrid continued to operate, this electricity could be used to reduce future costs.
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Figure 5-6: Power flow in the microgrid and charge state of the ESS during the closed-loop
simulation controlled by parametric MPC controller learned in the offline optimization step
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5-4 Comparison of different methods

Table 5-2 lists the cost of running the simulated microgrids in closed loop. The regular MPC
controller has the lowest total operating cost. The expression tree controller falls somewhere
in between the hand-designed and the regular MPC controller. This matches the simulated
power flows in the microgrid. Comparing the hand-designed parametric MPC controller and

Table 5-2: Economic cost of operating the microgrid during the case study

import cost export cost generator cost Total cost
Regular MPC 979 -902 6120 6197
Expression tree parametric MPC 1334 -877 6119 6577
hand-designed parametric MPC 3371 -626 4127 6860

the expression-tree-based controller it can be concluded that the offline optimization was able
to determine a parametric control law that performed well. The economic cost of operating
the microgrid with the controller learned during the offline optimization was lower than the
cost of operating the microgrid with the hand-designed controller. While the expression-tree-
based controller performed better than the hand-designed controller, there is no guarantee
that such a control law could not also have been determined by hand if more time was spent
hypothesising and testing different control laws. However, it does demonstrate the ease of use
of the proposed method. In general all the controllers were able to find a feasible solution for
all the scenario in the case study.
The main goal of using a parametric MPC controller is to reduce the computational com-
plexity of the OCP, so it can be solved faster and the response time of the controller can
be reduced. Table 5-3 shows the mean time it took to solve the OCP for every step in the
closed-loop simulation. Unfortunately this goal was not achieved in the case study. The
two parametric controllers took similar times to run. They use the same SNOPT solver and
problem formulation, so this is not surprising.
It is surprising that the regular MPC controller was able to solve its optimization prob-
lem quite a bit faster than the parametric MPC controllers were able to solve theirs. This
highlights some of the problems of implementing a parametric MPC controller in this way.
Because different techniques are used to solve the different OCP, it is hard to estimate how
computational complexity changes when implementing a parametric MPC controller. The
solver used and how well it is optimized affect the computational complexity greatly. As a
comparison the internal MILP solver built in to TOMLAB was also used to solve the OCP
of the regular MPC controller. The TOMLAB “mipsolve” solver takes a minute to solve the
OCP with Np = 8 and ran out of memory when trying to solve the OCP with Np = 48.

Table 5-3: Mean computation time of the OCP solver

mean computation time (s)
Regular MPC 0.016
Expression tree parametric MPC 0.1043
hand-designed parametric MPC 0.0969

The computation times of the parametric controller in the case study are similar to the
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computation times presented in [7], which uses a similar microgrid model of similar size as
the one used in this case study. In [7] GUROBI is also used to solve the MILP optimization
problem, however, the mean computation time of the regular MPC solver used in that paper
is 6 seconds. This difference could be explained by the use of a newer version of the GUROBI
solver, differences in implementation or difference in the hardware used. Further investigation
is needed to determine where these differences come from and in which cases a parametric
MPC controller can still provide a reduction in computational complexity.

The fact that it is difficult to compare computation times of solvers is further illustrated in
Figure 5-7. The figure shows a box plot of all the solve times in the case study for both the
regular MPC controller and the expression tree parametric MPC controller. The computation
times of the parametric MPC controller contains a lot of outlier time steps which took much
longer to compute than the other time steps. In a practical application this would be a
problem during implementation, because the response time would be limited by the slowest
computation times. Only reporting and looking at the mean and standard deviation of the
computation time of the MPC controller prevents a good comparison to be made.
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Figure 5-7: Box plot of the solve duration of the OCP

5-5 Conclusions

In this chapter a case study was presented in which a microgrid was simulated using three
different controllers, a regular MPC controller; a hand-designed parametric controller and
a parametric controller using a control law defined during an offline optimization step. For
the latter during the offline optimization step a control law was learned using GGGP. The
offline optimization step took around 24 hours to run and converged on a solution during
that time. The control law found in the offline optimization performed better than the hand-
designed control law during the online optimization. The hand-designed controller did not
perform optimally and could likely have been improved by spending more time tuning the
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control laws. However, the effectiveness of the proposed automated design process is well
demonstrated.

Unfortunately, the parametric MPC controllers did not reduce online computational com-
plexity compared to the regular MPC controller when solved using Gurobi. The parametric
MPC solver was however faster than the TOMLAB mixed-integer solver and comparable in
speed to parametric controllers in literature. This highlights the issues with trying to compare
the computational complexity between different MPC controllers after reformulating them as
they are solved using different methods. In which cases a parametric controller is faster as a
regular MPC controller should be further investigated.
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Chapter 6

Conclusions and discussion

6-1 Conclusions

Reducing the computational complexity of Model Predictive Control (MPC) controllers for
frequency control in a microgrid is necessary to make MPC practical to implement on larger
microgrids. Parametric MPC could be a useful method to achieve such a reduction in com-
putational complexity. However, it is hard to define parametric control laws that will achieve
good performance. Control laws can be defined by looking at the dynamics of the system and
testing the control laws using trial and error. This is a slow process and makes it hard to
design a parametric controller. This process could be sped up if the parametric control law
could be determined using machine learning methods.

A challenge when trying to use machine learning is that the performance of a control law is
hard to define and difficult to measure. The performance of a control law is a combination
of the computational complexity of the parametric controller, the feasible region, and the
economic cost when operating in closed-loop. These values can only be estimated by testing
the controller on many different scenarios which is very slow. This is a problem when trying to
use machine learning methods, because the performance of many different candidate solutions
must be determined. As a solution to this problem a machine learning method is proposed
in which the performance is estimated by testing how well the parametric control law can
parametrize a set of known optimal inputs.

The presented method uses a genetic algorithm and the control laws are defined using
Grammar-Guided Genetic Programming (GGGP). Every function in the control law is de-
fined using an expression tree. Using expression trees to define the control law allows a wide
variety of possible control laws to be tested. The fitness of each candidate solution is deter-
mined by testing how well the candidate control law can parametrize a known optimal input.
Genetic programming can then be used to determine the optimal expression tree.

This approach was tested by simulating a microgrid and controlling it using three different
controllers. The parametric controller determined using the genetic algorithm was compared
to a parametric controller using a control law defined by hand and a regular MPC controller.
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The resulting parametric controller performed well, showing that the proposed method is
able to determine a good control law. Some efficiency was lost compared to the regular MPC
controller; however, this is expected when using a parametric MPC controller. The hand-
designed parametric controller did not perform very well during the simulations. A better
control law could likely have been found by spending more time on testing. However, this
does demonstrate the need for an automated method well and provides a solid base line of
performance for the parametric controller.

Unfortunately, the parametric MPC controller did not achieve a lower computational com-
plexity then the regular MPC controller in the case study. While the parametric controller
outperformed the “mipsolve” TOMLAB solver by a large margin, the GUROBI solver was
a lot faster than the parametric controller. The parametric controller did have similar com-
putational complexity to other parametric MPC controllers in literature, showing that the
designed parametric controller works well. However, it has to be concluded that a parametric
MPC controller might not be a good solution for controlling this type of microgrid.

6-2 Discussion

The results of the case study raise some questions that should be studied further. While
parametric MPC proved to be faster than regular MPC in previous research, the results of
the case study performed in this study provided different results. This conclusion does not
come from the fact that the parametric MPC controller was slower in this case study, but
because the baseline MPC controller was much faster. Possible explanations could be a newer
version solver being used, different settings for the solver, different hardware being used,
and differences in the parameters and configuration of the examined microgrid. However,
the difference in computation time are so large that it seems unlikely that these are the
only explanations. Without more closely looking at the code used in previous research other
reasons can only be speculated upon.

This result does highlight one of the difficulties of performing research on the computational
complexity of MPC. The computational complexity of MPC controllers and the resulting
slow response times are one of the biggest disadvantages of MPC. However, there are no
exact metrics that can define the computational complexity. While estimates of the required
computation time can be made by looking at the number of variables and constraints in the
optimization problem and the type of the optimization problem, no definite conclusions can be
drawn from this. The only way a real estimate of the required computation time can be made
is by solving the optimization problem and measuring the time that is needed to determine
a solution. Estimates obtained this way can differ greatly depending on the method used
to solve the optimization problem and the hardware used. This makes it hard to compare
research on computational complexity of MPC controllers, because these elements are not
standardized in control system literature.

These problems also tie into why it can be difficult to determine a good control law for a
parametric MPC controller. There is no easy way to determine whether the trade-off between
different types of optimization with different numbers of variables is worth without testing.
Trying to find a parametrization and testing the resulting parametric controller takes time
and this effort might not be worth it if there is no guarantee that online computational
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complexity of the controller can be reduced. The method described in this thesis helps reduce
the effort involved in determining a parametric control law, making it easier to test whether
a parametric controller would be a good solution.

6-3 Suggestions for future research

Parametric MPC could be tested on different types of hybrid systems. Determining on what
types of systems parametric MPC can provide a reduction in computational complexity would
be beneficial. The genetic algorithm presented in this thesis could be adapted for that purpose.
Defining the grammar of the expression trees differently or using a different fitness function
could improve the algorithm. For example the input constraints could be added to the fitness
function or a weighting vector could be added so the first values in the input sequence are more
important in the fitness score. Currently the genetic algorithm has no good way to change the
trade-off between computational complexity and economic cost. Adapting the method so that
this trade-off could be tuned for the application would be a good improvement. Changing
the number of polynomial functions used in the control law could be used to achieve such
a trade-off. Currently the constraints on upper and lower bounds on the input values are
not taken into account in the offline optimization. Adding constraints to the fitness function
evaluation might lead to better parametrization functions.

Further research could also focus on improving the microgrid model so that it more closely
resembles a practical application. Testing a parametric MPC controller on physical hardware
is an important step in determining whether the method has merit in real world applications.
If the computational complexity is manageable the microgrid Mixed Logical Dynamic (MLD)
model could be expanded with more states to make it more accurate to the real world. For
example the Battery dynamics in the current model is very simple, in the real world the
maximum charge and discharge rates are dependent on the battery charge state.

Using a different machine learning approach than genetic programming in the offline opti-
mization could also be explored. Using methods that can make use of the gradient of the
fitness function could help speed up the offline optimization. Different methods for deter-
mining the discrete-time control law also have potential to improve the performance of a
parametric controller. Using decision trees for the discrete-time control law is good enough
for the microgrid model, but for other systems it could be beneficial to define a discrete-time
control law that has parameters that can be optimized in the online optimization.
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Glossary

MPC Model Predictive Control
MLD Mixed Logical Dynamic
MILP mixed-integer linear programming
ESS Energy Storage System
TSO Transmission Systems Operator
OCP optimal control problem
GGGP Grammar-Guided Genetic Programming
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