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ONLINE EDGE FLOW PREDICTION OVER EXPANDING SIMPLICIAL COMPLEXES

Maosheng Yang, Bishwadeep Das and Elvin Isufi

ABSTRACT
Simplicial convolutional filters can process signals defined over

levels of a simplicial complex such as nodes, edges, triangles, and
so on with applications in e.g., flow prediction in transportation or
financial networks. However, the underlying topology expands over
time in a way that new edges and triangles form. For example, in a
transportation network, a new connection between two locations is
newly built, or in a currency exchange market, two currencies can be
exchanged without an intermediate currency that can be understood
as a new edge between them. To handle the streaming nature of data,
we propose an online prediction for edge flows which generalizes to
other higher-order simplicial signals. This is achieved by updating
the filter coefficients via an online gradient descent with a provable
sub-linear regret relative to the simplicial filter optimized over the
whole sequence of edge flows. The update of the filter coefficients
associated with the lower and upper Hodge Laplacians can be un-
coupled in general. We test the online edge flow prediction on an
expanding synthetic simplicial complex and a coauthorship complex
showing a close performance to the offline counterpart.

1. INTRODUCTION

Graph signal processing tools have become ubiquitous for manipu-
lating graph signals. However, they are limited in the node signal
space [1, 2] whereas we often encounter signals that are naturally
associated with edges, e.g., blood flow between different areas in the
brain [3], water flow in a water distribution network, data flow in a
communication network, or traffic flow in a road network [4, 5]. We
typically model these signals as flows over the edges of a network,
which also has applications in modelling exchange rates in financial
markets [6], representing user preferences in statistical ranking [6],
or analyzing games or politics [7, 8, 9].

Analogous to utilizing edges for modelling the pairwise rela-
tionship between nodes when processing graph signals, we exploit
the relationships between edges through a common incidence node
or a common triangle where they participate to form a triadic relation
when processing edge flows [10]. Simplicial complexes are a gen-
eralization of graphs that can model the above two edge adjacencies
as lower and upper adjacencies with favourable algebraic properties
[11]. By associating subsets of nodes with signals, we obtain sim-
plicial signals, where edge flows are an instance for a pair of nodes.
Recent works have established a framework to analyze and process
such signals from both spatial/simplicial and spectral perspectives,
including signal reconstruction methods [12, 13], Fourier transforms
[10], simplicial filters [10, 14].

In this paper, we are interested in predicting edge flows sequen-
tially when new edges are forming over time, i.e., the underlying
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simplicial complex expands over time [15, 16, 17]. This arises in
numerous applications, for instance, predicting the water flow in a
new pipe between hydraulic components of a water network [18],
providing a global ranking where new alternatives are coming over
time in statistical ranking, or predicting the exchange rates in a finan-
cial market where a new trade between two commodities establishes
over time [6, 10]. Nevertheless, existing methods [19, 13, 20] only
process simplicial signals on static settings and do not capture the
expanding nature of the topology.

To account for the underlying topological dynamics, we propose
an online framework to perform edge flow prediction over an ex-
panding simplicial complex. In detail, we first use the simplicial
convolutional filter proposed in [10, 21] as the flow predictor on the
new edge; then we consider an online gradient descent algorithm to
update the filter parameters [22, 23], generalizing the methods devel-
oped for the node signal space [24, 25, 26]. Online gradient descent,
as a simple update rule, has sub-linear regret bounds [22]. We show
that both the prediction and update steps enjoy low computational
costs suitable for the streaming nature of the edge addition. We also
uncouple the filter update into the two sets of updates associated
with the lower and upper edge adjacencies, reducing the computa-
tion cost. Lastly, we evaluate this algorithm with both synthetic and
real-world data.

2. SIMPLICIAL SIGNALS AND SIMPLICIAL FILTERS

A k-simplex sk is a set of k+1 vertices. For a k-simplex, its faces are
all its subsets with k vertices and its cofaces are all (k+1)-simplices
that have sk as a face. A simplicial complex (SC) X is a collection
of simplices which are closed under inclusion, i.e., if a simplex is in
the SC, then its subsets are also in the SC. Geometrically, a node is a
0-simplex, an edge is a 1-simplex, and a filled triangle is a 2-simplex.
A graph with a node and edge set is a simple SC [11, 13].

Given a SC X over a set of nodes V = {1, 2, . . . , |V|}, with the
edge set E and the triangle set P , we assign each edge e = {i, j}
and triangle p = {i, j, k} an orientation according to the lexico-
graphical ordering of their vertices, denoted by e = [i, j], i < j
and p = [i, j, k], i < j < k. We can use the incidence ma-
trix B1 ∈ R|V|×|E| to describe the relationship between nodes and
edges, whose eth column has nonzero entries when node i is inci-
dent to edge e, i.e., [B1]i,e = −1 for e = [i, ·] and [B1]i,e = 1

for e = [·, i]. Likewise, the incidence matrix B2 ∈ R|E|×|P| de-
scribes the relationship between edges and triangles, whose pth col-
umn has nonzero entries when edge e participates in the triangle p,
i.e., [B2]e,p = −1 for e = [i, j], p = [i, ·, j], and [B2]e,p = 1 for
e = [i, j], p = [i, j, ·] or p = [·, i, j].

Moreover, a Hodge Laplacian in the edge space can be fur-
ther defined as L1 = B⊤

1 B1 + B2B
⊤
2 where the lower Laplacian

Ld := B⊤
1 B1 describes the edge-to-edge lower adjacencies via the

common nodes, while the upper Laplacian Lu := B2B
⊤
2 describes

the edge-to-edge upper adjacencies via the common triangles.IC
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Given a SC, we can define a k-simplicial signal space by associ-
ating the set of k-simplices with a real vector space. For instance, we
can define an edge flow f : E → R|E|, a node signal v : V → R|V|,
and a triangle flow p : P → R|P|. If the flow value on edge e fol-
lows [f ]e > 0, the flow orientation is aligned with the orientation of
edge e, and the flow is opposite, otherwise.

Given the Hodge Laplacian L1 and its lower and upper counter-
parts, a simplicial convolutional filter is defined as

H := H(α,β;Ld,Lu) =

Kd∑
k=0

αkL
k
d +

Ku∑
k=0

βkL
k
u (1)

which is a matrix polynomial of the lower and upper Laplacians Ld

and Lu with vectors α = [α0, . . . , αKd ]
⊤ ∈ RKd+1 and β =

[β0, . . . , βKu ]
⊤ ∈ RKu+1 collecting the filter coefficients with filter

orders Kd and Ku, respectively. The filtering of an edge flow f with
a simplicial convolutional filter H is a shift-and-sum operation:

shift: the filter first performs Kd consecutive lower simplicial shifts
in terms of the lower adjacencies to obtain f

(1)
d , . . . , f

(Kd)
d

with f
(k)
d := Lk

df denoting the k-th lower shift result; and
likewise, Ku consecutive upper shifts in terms of the upper
adjacencies to obtain f

(1)
u , . . . , f

(Ku)
u with f

(k)
u := Lk

uf de-
noting the k-th upper shift result;

sum: the filter performs a weighted linear combination of the above
shifted results as (α0+β0)f+

∑Kd
k=1 αkf

(k)
d +

∑Ku
k=1 βkf

(k)
u .

More importantly, the shift operation is local and admits a distributed
recursion. In particular, the one-step lower shift on an edge e is
a linear combination of the edge flows in its lower neighborhood
Nd,e, which share a common node with edge e, given by [Ldf ]e =∑

j∈Nd,e∪{e}[Ld]e,jfj . Likewise, the upper shift is a local operation
happening in the upper neighborhood Nu,e, which share a common
triangle with edge e, given by [Luf ]e =

∑
j∈Nu,e∪{e}[Lu]e,jfj .

Furthermore, the k-step shift can be obtained via a one-step shift
of the (k − 1)-shifted result, i.e., f (k)d = Ldf

(k−1)
d , and f

(k)
u =

Luf
(k−1)
u . This further allows a recursive implementation of the

filter. Thus, when computing the output for an edge e, it has a total
communication cost of order O(|Nd,e|Kd + |Nu,e|Ku) [10].

3. ONLINE EDGE FLOW PREDICTION OVER
EXPANDING SIMPLICIAL COMPLEXES

We apply the simplicial filter (1) to predict edge flows in an online
fashion over an expanding simplicial complex, where we assume
new edges are forming over time. In what follows, we add a sub-
script t to the previously introduced variables to denote their coun-
terparts at time instance t.

In a SC with a fixed node set V , we have a stream of edge forma-
tion over time, i.e., edge sets E0, E1, . . . , Et, which leads to a stream
of growing triangles, i.e., triangle sets P0,P1, . . . ,Pt. Suppose a
new edge et is formed at time t, which is adjacent to its lower neigh-
bors via a node, and this edge et together with two other existing
edges forms a new triangle pt, without loss of generality. We ac-
count for both the newly formed lower and upper adjacencies by
adding columns b1,t ∈ R|V| and b2,t ∈ R|Et| to the incidence ma-
trices, B1,t−1 ∈ R|V|×|Et| and B2,t−1 ∈ R|Et|×|Pt|, respectively.
The updated incidence matrices read as

B1,t =
[
B1,t−1 b1,t

]
, B2,t =

[
B2,t−1

0
b2,t

]
(2)

with |Et| = |Et−1| + 1, and |Pt| = |Pt−1| + 1; see Fig. 1 for an
illustration of b1,t and b2,t. We then update the Hodge Laplacians
from the previous ones Ld,t−1 and Lu,t−1 as

Ld,t =

[
Ld,t−1 B⊤

1,t−1b1,t

b⊤
1,tB1,t−1 b⊤

1,tb1,t

]
(3)

and

Lu,t =

[
Lu,t−1 B

⊤
2,t−1b2,t

b⊤
2,tB2,t−1 b⊤

2,tb2,t

]
(4)

with B2,t−1 :=
[
B2,t−1 0

]
∈ R|Et−1|×|Pt|. Note that a new

triangle is not necessarily formed, in which case the update of B2,t

and Lu,t is not needed. Given the expanding SC model, we consider
the following two-step online edge flow prediction at time t: first, an
edge flow prediction step, and second, an online filter update step.
Edge flow prediction. Consider a sequence of edge flows f0, f1,
. . . , fT over time t = 0, 1, . . . , T , which are of different dimensions
|E0|, |E1|, . . . , |ET |, due to the edge expansion of the SC. Our goal
is to predict the edge flow [ft]et on the newly formed edge et at
time t based on the existing edge flow ft−1, the current predictor
parameters, and the newly updated SC topology.

To perform the prediction of [ft]et , we consider the prediction
model with the input edge flow ft−1 from the previous time instance
via a simplicial filter Ht := Ht(ht−1;Ld,t,Lu,t)

f̂t = Ht

[
ft−1

g

]
=

( Kd∑
k=0

αk,t−1L
k
d,t +

Ku∑
k=0

βk,t−1L
k
u,t

)[
ft−1

g

]
where we emphasise two points: 1) we build the filter Ht from the
filter coefficients ht−1 = [α⊤

t−1,β
⊤
t−1]

⊤ at the previous time in-
stance t − 1 with the updated Hodge Laplacians Ld,t and Lu,t [cf.
(3) and (4)], and 2) we assume the edge flow on the new edge has a
default value g, e.g., zero, or the mean or median of the edge flow at
t− 1. Then, the predicted flow [f̂t]et on edge et can be equivalently
written as

[f̂t]et = [Ftht−1]et = [Ft]et,:ht−1 (5)

where [Ft]et,: is the etth row of Ft, which is given by

Ft = [f t f
(1)
d,t . . . f

(Kd)
d,t f t f

(1)
u,t . . . f

(Ku)
u,t ] (6)

with f t := [f⊤t−1, g]
⊤ and f

(k)
d,t := Lk

d,tf t and f
(k)
u,t := Lk

u,tf t de-
noting the shifted results by the updated Laplacians. Moreover, the
prediction (5) can be written w.r.t. αt−1 and βt−1 as

[f̂t]et = [Fd,t]et,:αt−1 + [Fu,t]et,:βt−1 (7)

where we collect the lower shifted flows and the upper shifted flows
separately, i.e., define

Fd,t := [f t f
(1)
d,t . . . f

(Kd)
d,t ] and Fu,t := [f t f

(1)
u,t . . . f

(Ku)
u,t ].

The entries of row [Ft]et,: can be computed locally over the
lower and upper neighborhood of et and they admit a recursive im-
plementation via [f

(k)
d,t ]et = [Ld,tf

(k−1)
t ]et which is given by∑

j∈Nd,et
∪{et}

[Ld,t]et,j [f
(k−1)
t ]j =

∑
j∈Nd,et

[Ld,t]et,j [f
(k−1)
t−1 ]j

and likewise for the upper shifted entries. In the distributed imple-
mentation, the communication complexity of computing [Ft]et,: is
of order O(|Nd,et |Kd + |Nu,et |Ku), yielding from the Kd lower

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2023 at 08:33:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Online edge flow prediction at time instance t over an expanding simplicial complex which includes nodes, edges and filled triangles
(shaded area). The arrows on the edges and the arcs with an arrow on the triangles indicate the reference orientations of the edges and
triangles, respectively. The open triangle {1, 3, 4} is not a 2-simplex. (Left): the edge flow ft−1 and the SC at time instance t− 1. (Middle):
at time instance t, a new edge et = [2, 5] is formed, which creates new lower adjacency via nodes 2 and 5 and upper adjacency via triangle
[2, 3, 5], i.e., we have [b1]2 = −1, [b1]5 = 1, and [b2][2,3] = 1, [b2][2,5] = −1, [b2][3,5] = 1. Then, the edge flow is predicted by
[f̂t]et = [Htf t]et [cf. (5) and (7)]. (Right): When the edge flow on et+1 = [2, 5] is know, the filter coefficients αt and βt are updated [cf.
(11) and (14)]; Meanwhile, a new edge et+1 = [4, 6] is formed at t+ 1, the edge flow on which is predicted again based on (5) again.

and Ku upper consecutive shifts, and an inner product with a cost of
order O(K2

d + K2
u). With the edge flow [f̂t]et on the new edge et

predicted, we update the simplicial filter coefficients.
Online filter learning. After the true edge flow [ft]et is revealed,
we update the filter coefficient ht. In an offline setting, ht can be
obtained by minimizing the accumulated loss up to time t

ht = argmin
h

t∑
τ=0

ℓτ (h) (8)

with the loss at time τ defined as, ℓτ (h) = ([Fτ ]eτ ,:h− [fτ ]eτ )
2 +

µ∥h∥22. The solution to (8) is also referred to as a batch solution,
which may be computationally demanding to obtain for every t.

In the online learning setting, however, we update the filter co-
efficients ht based on the instantaneous loss at time instance t,

ℓt(h) = ([Ft]et,:h− [ft]et)
2 + µ∥h∥22, (9)

which measures the ℓ2-norm distance of the predicted edge flow
[f̂t]et and the true one [ft]et with a regularizer ∥h∥22 weighted by
µ > 0. The loss in (9) is strongly convex in h for µ > 0, and also
Lipschitz for bounded edge flows, filter coefficient h and the matrix
[Ft]et,:, for all t. The gradient of ℓt(h) w.r.t. h can be found as

∇hℓt(h) = [Ft]
⊤
et,:[Ft]et,:h− [Ft]

⊤
et,:[ft]et + µh. (10)

Then, we can update the filter coefficient ht from the previously
learned ht−1 via an online gradient descent step

ht = ht−1 − η∇hℓt(ht−1)

= ((1− µη)I− ηt[Ft]
⊤
et,:[Ft]et,:)ht−1 + η[Ft]

⊤
et,:[ft]et ,

(11)

with a learning rate η > 0.
Note that the filter coefficients α and β control the lower and

upper adjacencies in the prediction independently. We can equiva-
lently write the loss function (9) as

ℓt(h) = ([Fd,t]et,:α+ [Fu,t]et,:β − [ft]et)
2 + µ(∥α∥22+∥β∥22).

(12)
The gradients of ℓt(h) w.r.t α and β can be found as

∇αℓt(h) = [Fd,t]
⊤
et,:[Fd,t]et,:α− [Fd,t]

⊤
et,:[ft]et

+ µα+ [Fd,t]
⊤
et,:[Fu,t]et,:β,

∇βℓt(h) = [Fu,t]
⊤
et,:[Fu,t]et,:β − [Fu,t]

⊤
et,:[ft]et

+ µβ + [Fu,t]
⊤
et,:[Fu,t]et,:α,

(13)

where [Fd,t]
⊤
et,:[Fu,t]et,: = [f t]

2
et since the lower shifted signal f

(k)
d,t

is independent to the upper shifted one f
(k)
u,t based on the fact that

B1B2 = 0 [10]. When the default value on edge et is 0, i.e.,
[f t]et = g = 0, then term [Fd,t]

⊤
et,:[Fu,t]et,:βt−1 disappears in

∇αℓt(h) and likewise [Fu,t]
⊤
et,:[Fu,t]et,:α disappears in ∇βℓt(h),

making the updates of αt and βt independent of each other. Then,
the online update of the two sets of coefficients is given by

αt = αt−1 − ηd∇αℓt(ht−1),

βt = βt−1 − ηu∇βℓt(ht−1),
(14)

where we consider learning rates ηd and ηu for the lower and upper
filter coefficients. When computing ∇αℓt(ht−1) in (14), the major
computational cost comes from the terms [Fd,t]

⊤
et,:[Fd,t]et,:α and

[Fd,t]
⊤
et,:[Fu,t]et,:βt−1, which are of orders O(2Kd) and O(Ku +

Kd), respectively, and likewise for computing ∇βℓt(ht−1).
Compared to (11), the updates in (14) uncouple the filter learn-

ing into the lower and upper simplicial adjacencies. In the simplicial
frequency domain, as studied in [10], this implies that we update
the filter frequency response in two orthogonal edge flow subspaces
given by the Hodge decomposition, namely the gradient and the curl
space. The update of the filter coefficients αt and βt concludes the
online filter learning at time t, which is followed by the new predic-
tion [f̂t+1]et+1 = [Ft+1ht]et+1 for next time instance t+ 1.
Regret analysis. To analyze the performance of the online filter
learning [cf. (11)] w.r.t. the offline batch solution [cf. (8)] optimized
upon observing the entire edge flow sequence, we perform a regret
analysis. The static regret of an online learning is defined as [22, 23]

RT (h) :=

T∑
t=0

lt(ht)− min
h

T∑
t=0

lt(h) (15)

where the first term is the accumulated loss of the online learner
[cf. (11)] with the sequence of filters {h0, . . . ,hT } and the sec-
ond is the minimum of the loss upon observing the whole sequence,
which can be obtained by the batch solution h∗ at t = T [cf.
(8)]. The following proposition gives an upper bound for RT (h)
based on the convexity of the loss in (9) and the Lipschitz property
∥∇hℓt(h)∥2 ≤ L. This upper bound indicates the worst-case per-
formance gap of the online filter learning relative to an optimal h∗.

Proposition 1. Given a sequence of coming edge flows ft, for t =
0, . . . , T , consider a sequence of online filters {ht} updated over
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Fig. 2. Prediction performance of the online gradient descent (OGD), the batch solution (BS) and the inductive filter (IND) on an expanding
synthetic SC ((left)) and an expanding coauthorship complex ((right)) in terms of ϵp(t) (top) and ϵc(t) (bottom).

a sequence of L Lipschitz functions lt(ht) [cf. (9)] with a fixed
learning rate η. The static regret of the online filter learning w.r.t an
optimal simplicial filter h⋆ is upper bounded as

RT (h
⋆) ≤ ∥h⋆∥22

2η
+

η

2
L2T. (16)

The proof can be derived from [22, Thm. 2.13]. This bound
obtains the minimum R∗

T (h
∗) = ∥h∗∥2L

√
T , for an optimal η∗ =

∥h∗∥2/L
√
T , which grows sub-linearly with T . This implies the

difference between the average loss of the online learner and the
average loss of the optimal h⋆ tends to zero as T goes to infinity.

4. NUMERICAL EXPERIMENTS

We corroborate the online edge flow predictor on expanding SCs on
a synthetic dataset and a coauthorship dataset. As a baseline, we
considered the offline batch solution (BS) [cf. (8)] optimized based
on a least-squares solution. Both datasets contain nodes, edges, and
triangles, as well as edge flows. We remove the last T edges based
on their index and the respective triangles which they participate in.
The remaining SC and the edge flow form the initial state. The SC
expands with one edge et coming at time t, and the edge flow on et is
assumed to be the median of the known edge flows ft−1. To enable a
warm start of the simplicial filter, we use the first coming edge flow
to pretrain the filter coefficient α0 and β0 by solving (8), which are
also used to build an inductive filter (IND) as another baseline, i.e.,
α0 and β0 not updated over time.

We evaluate the performance by using a pointwise and a cumu-
lative root normalized mean square error, ϵp and ϵc, respectively,
which measure the instantaneous and overall errors, given by

ϵp(t) =
|[f̂t]et − [ft]et |

[ft]et
, ϵc(t) =

√√√√∑t
τ=0([f̂τ ]eτ − [fτ ]eτ )

2∑t
τ=0[f̂τ ]

2
eτ

.

Synthetic dataset. We generated an alpha complex (AC) of 300
nodes, 850 edges and 551 triangles with a filtration of 0.01 using
the Gudhi toolbox [27, 28]. The edge flow on the AC is generated
to have a low-pass nature, as f = (I + 0.5Ld + 0.3Lu)

−1f0 where
f0 = 51. After removing the last 300 edges, the AC contains 550
edges and 194 triangles. At each time instance t = 0, 1, . . . , 299,
we randomly added one edge to the AC and update B1,t and B2,t.
For the prediction, we set the filter orders Kd = Ku = 5 where the
lower and upper Laplacians are normalized by the maximal eigen-
value of L1. We set µ = 0.1 and ηd,t = ηu,t = 0.01.

As reported in Fig. 3 (left), the performance of the OGD sits
in between the BS and the IND and it approaches to the BS while
becoming better than the IND over time in terms of both ϵp(t) and
ϵc(t). This learning ability of the OGD leads to an overall error
ϵc(t) = 0.09 compared to 0.12 for the IND and 0.07 for the BS at
the final time instance t = 299.
Coauthorship prediction. We then considered a coauthorship com-
plex from the Semantic Scholar Open Research Corpus [29] where
nodes are authors and papers with k-authors are represented as k-
simplices. As processed in [30], there are 352 nodes, 1472 edges
and 3285 triangles. We aim to predict the edge flows which are the
citation numbers of the two-author papers. First, we removed the last
100 edges, resulting in 1374 edges and 2722 triangles and then added
one edge each time based on their index in an ascending order. Other
parameters in the OGD remain the same as in the synthetic case.

From Fig. 3 (right), we observe that the OGD performs better
than both the BS and the IND in general in terms of both ϵp(t) and
ϵc(t). At some time instances around t = 10, 40 and 60, the point-
wise errors ϵp(t) of all three approaches present drastic increases,
which leads to the increase in ϵc(t) as well. This is due to the piece-
wise constant nature of the underlying edge flow with large discon-
tinuity at these time instances [29]. While optimizing the predictor
over the entire available sequence, the BS performance is deviated
by the large discontinuity. However, when learning based on the
instantaneous error of the incoming edge flow, the OGD is not influ-
enced by the large discontinuity at other time instances when edge
flows respect the slow-varying property, e.g., between t = 10 and
40. This leads to a 90% prediction accuracy of the OGD compared
to 30% and 26% for the BS and the IND, where a prediction is con-
sidered accurate if it is within ±10% of the true value [30].

5. CONCLUSION

In this paper, we proposed an online edge flow prediction algorithm
for expanding simplicial complexes with edges and edge flows com-
ing over time. The algorithm leverages the simplicial filter to predict
the incoming edge flow on the updated topology. This prediction
admits a distributed implementation with a low communication cost.
When an edge flow is revealed, we then apply an online gradient de-
scent to learn the filter coefficient, which is shown to approach the
batch solution asymptotically. This online edge flow prediction can
be easily generalized to other higher-order simplicial signal spaces.
Future works can be focused to analyze the predictor from the spec-
tral perspective or to study the online prediction when the existing
edge flows also vary over time.
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