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Abstract—The increasing volume of global freight trade, cou-
pled with economic growth, necessitates ongoing innovation in
optimizing freight operations. Over the past decade, the concept
of synchromodality has been explored to encourage a modal shift
from unimodal to multimodal transport. Synchromodality, with
its flexibility feature, can create more resilient freight transport
systems. Various models employing different techniques have
been proposed to establish a resilient synchromodal framework
capable of reacting to disruptions. However, there are only few
studies addressing the unknown duration of disruptions. This re-
search proposes a learning-based modular framework comprising
to capture the dynamics of disruptions in multimodal transport
and learn to make more effective decisions, thus addressing
the challenge of limited prior knowledge about disruptions and
enabling fast responses to disruptions.

Index Terms—Synchromodality; Resilient freight transport;
Learning-based decision support framework

I. INTRODUCTION

Road transportation dominates inland freight movement,
accounting for 77% of the EU’s freight in 2020 [1]. Logistic
Service Providers (LSPs) often prefer unimodal transport
primarily due to its inherent reliability [2]. However, road
transport introduces several externalities, including accidents,
road damage, environmental harm, and congestion [3]. The
Intermodal concept promotes a shift of freight transport to
other modes, such as barge and train. It can offer a cheaper
option for inland freight transport due to the economics of
scale [2]. Despite its cost-effectiveness, the share of intermodal
transport remains low due to its lack of flexibility. The concept
of synchromodality aims to increase the attractiveness of
intermodal transport. By having a flexibility feature within the
intermodal transport, synchromodal transport provides a higher
number of combined routes, thus creating added values in the
trade-off between price and time to the shippers [2].

Disruptions uncertainties negatively contribute to the ef-
ficiency of conventional intermodal transport [4] and could
cause a severe economic loss. Disruption with low occurrence
probability but high impact such as COVID-19 increased the
logistic cost by 12% globally [5]. From another spectrum

where disruption occurs frequently, a study by [6] estimates
$15.2 Million loss in a year due to train delays. This estimate
made in 2011 will have a significantly higher value today.

This research investigates how to create a resilient inter-
modal freight transport system that leverages the flexibil-
ity offered by synchromodality. The resilience of a freight
transport network is defined by its ability to recover from
disruptions and is measured by the effort required to restore
normal operations [7]. It provides a learning-based modular
framework capable of capturing the disruptions generating
a reaction plan. Developing the comprehensive model as
mentioned above with practical solutions creates a challenge
for scholars. Not only filling the gap of knowledge, the model
should be practical to be implemented at the industry level,
thus, shifting the freight transport paradigm away from road
dependency towards more sustainable and flexible options. The
modular framework utilizes optimization, simulation, and ma-
chine learning techniques allows plug-and-play possibility for
connecting with different existing/under development models
and is extensible, making it applicable to different eco-systems
of port-inland connections, expected to improve the solution
space in generating decisions to react to the disruptions.

The paper is organized as follows: Section II provides a
brief literature review. In section III, the disruption profiling
is explained, followed by model formulation in section IV.
Finally, the preliminary results are presented in Section V.

II. LITERATURE REVIEW

A. Concept of Synchromodality

Synchromodality is a concept developed to address the
growing freight trade and its dynamics. Its objective is to
thrive in the highly competitive transportation market and
meet growing customer demands by enhancing flexibility and
offering more customized services [2]. This flexibility attribute
enables real-time mode shifts to respond and adapt to unex-
pected circumstances in the uncertain and competitive market
[8]. To fully leverage this flexibility, certain requirements must
be met. It is suggested that Logistics Service Providers (LSPs)
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can make the most of this feature when shippers agree to
mode-free or a-modal requests [8]. In this scenario, LSPs
have the freedom to choose the mode of transport that best
suits the cargo’s delivery, provided it meets the customer’s
requirements. This flexibility is a significant departure from
traditional transportation approaches, offering a responsive and
adaptable solution in the face of dynamic market conditions.
The flexibility allows the services to adapt and react to
disruptions [9] which will be the focus of this research.

B. Dynamic Models of Synchromodal Framework

Dynamic models for synchromodal transport have been pro-
posed in several studies. A Synchromodal Transportation Re-
planning (STP) for hinterland transport is developed using
a mixed integer linear programming (MILP) [10]. Using a
different approach, a dynamic matching problem is proposed
to deal with uncertain shipment requests [11]. In this model,
the shipment requests are not completely known, but rather
sequentially announced using a rolling horizon approach. This
approach is adopted by another model for a global shipment
matching problem and improved by incorporating disruptions
in the service network [12]. The reaction to disruption in these
two models are reallocation planning of the containers.

Other studies propose an agent-based model to to compare
the performance of unimodal, intermodal, and synchromodal
for cost, time, and emissions. The model applies a synchro-
modal scenario by putting logic for each agent to reroute to
the nearest and cheapest terminal if there is a disruption in
the network, and monitor the impact on cost, time, and emis-
sion [13]. Another study proposed an agent-based framework
for cooperative planning [14]. The model uses decentralized
optimization with a negotiation scheme. It breaks down the
problem into several sub-problems and lets the agents com-
municate with other agents to achieve each objective under
disrupted scenarios. The model provides a sequence plan and
re-plans it when exogenous events occur. A decision support
system is proposed using a hybrid simulation-optimization
model under synchromodal framework [15]. It employs an
offline model to create the initial plan and an online model
to react to the disruptions and selects one of three possible
policies: wait, transshipment, or detour. The disruptions are
categorized according to frequency and duration by assigning
them to a random variable in the simulation. The online model
will be triggered if there is a disruption occurs. The result of
the study shows that the transshipment policy has the lowest
share in all scenarios. This result could be a subject for future
research since transshipment or mode shift plays an important
role in Synchromodal. The other policy in this model is to
wait, which is essentially the traditional reaction, and detour,
which is practically difficult for barge and/or freight trains.

More recent studies integrate a learning approach within
the synchromodal framework, such as a study by [12] that
adopts the RL approach in the global shipment matching
problem under dynamic and stochastic travel time settings
to address the curse of dimensionality of applying dynamic
programming for solving the objective following Bellman’s

equation. Another study using RL technique under synchro-
modal framework is proposed by [16]. This study builds on top
of an Adaptive Large Neighborhood Search (ALNS) proposed
in the study by [17] to address the service time uncertainty in
synchromodal transport. Unlike the study by [12] the learning
agent in this study works side by side with the ALNS model
instead of replacing its role. Integration of the RL approach
in the synchromodal framework, it is potentially possible
to address the variation in the nature of disruptions in the
network. This is considered in the study [16], in which the
RL agent works together with an optimization model and a
binary reward system is employed depending on whether a
delay occurs due to disruptions and the taken actions. Their
approach does not account for shipment volume or the length
of the delay. In contrast, this research proposes a negative cost
value as the reward. This method considers a higher delay
penalty for higher shipment volumes, allowing the RL agent
to prioritize larger shipments. Extensive disruption scenarios
are incorporated for an improved learning process. The dis-
ruptions impact both demand and services, a feature that has
not been extensively studies in the literature. The modular
framework offers a plug and play mechanism allowing for
improving/replacing/extending the modules as needed.

III. DISRUPTION CATEGORIZATION

The disruption in the freight network varies in type and
impact and may require different reaction strategies either
at strategic, tactical, or operational levels. It can be distin-
guished according to the frequency and severity, categorized
into endogenous and exogenous factors [15], and come from
different sources such as nature or human acts [18]. Another
way to categorize the disruptions is by separating them into
two spectrum as elaborated by [19]: low occurrence probability
but severe impact, and high occurrence probability with low
impact. The categorization of the disruptions could be useful
to simplify a model while keeping the realistic behavior.

In this research, the disruption in the freight network is
divided into two components encompassing disruptions on the
service network (supply side) and on the requests (demand
side). Each profile represents a group of similar disruptions
along with the possible impact and occurrence frequency.

On the supply side, the disruption categorization has more
profiles than the request disruption. Five distinct profiles are
developed to represent different types of service disruptions
as detailed in Table I. Each profile contains a group of
disruptions with similar characteristics. The first profile is a
frequent disruption that could cause a short delay on either
the train or truck network. This could be caused by road
congestion for trucks [13], or technical and communication
problems on trains [20]. The second profile is a delay in barge
service lines which, for instance, is caused by congestion in
the river due to locks or high traffic [21]. The third profile,
adopted from [13] is a possible delay due to more severe
disruptions such as bad weather or systems maintenance.
These disruptions could result in operations being halted for a
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TABLE I
SERVICE DISRUPTION PROFILE

Profile Description Mode/
Location

Effect in the
Simulation Duration Capacity

Reduction
Occurrence

per Year

1 Operational delays, road congestions
Train,
Truck

Delay 1-3h 0% 30%

2
Operational delay,
canal congestion

Barge Delay 1-6h 0% 35%

3
Bad weather, labor strike, accident,
systems maintenance

Train,
Barge

Delay 12-48h 0% 6%

4 Terminal congestion, operational delay Terminal Delay 1-3h 0% 30%

5 High and low water level Barge
Carrying capacity

reduction
12-24h 20-80% 5%

TABLE II
REQUEST DISRUPTION PROFILE

Profile Description Location Effect in the
simulation

Delay
Release

Valume
Change

Occurrence
per Year

6 Demand Change Shipment Volume
change - -30% to + 30% 30%

7 Customs issues, main port operational
delays Shipment Release time

change 1-6h - 30%

8 Mother vessels arrival delays Shipment Release time
change 1-7d - 5%

certain period. The fourth profile is a disruption in the terminal
such as equipment problems or port congestion [22]. The
fifth profile is a reduction on barge carrying capacity due to
the fluctuation of river water level [23], [24]. The low water
level restricts barges from carrying containers with their full
capacity because the barges need to reduce the draft, while the
high water level could limit the height of the stacked containers
on the barge to prevent collisions with bridges

On the request side, three disruption profiles are considered,
including two profiles of changes in container release time
and a profile of alterations in shipment volume. In port-inland
transportation, changes in the release time could happen due
to several causes such as the late arrival of the mother vessels
which can cause delays of release time up to seven days [25]
or more minor issues such as customs clearance which cause
delays of less than a day. Meanwhile, the volume changes
could come from the shippers due to, for instance, unexpected
increases in demand beyond long-term contracts. The request
disruption profiles are presented in Table II.

The disruption profiles are created based on two spectrum
explained by [19]. The high probability with a low severity
level is represented by high occurrence per year and low value
of severity (column 5 and 6) as attributed in Profile 1, Profile
2, Profile 5, Profile 6, and Profile 7. The other spectrum, the
low probability with high severity disruption is attributed in
Profile 3, Profile 5, and Profile 8. Each profile can only occur
in certain locations. The third column in the table indicates
the possible location of disruption when it occurs. It could be
either in a terminal, service line, or directly on the shipment.

IV. MODEL FORMULATION

The research examines hinterland freight transportation,
specifically focusing on the unidirectional flow of shipments
from the main port to various inland terminals excluding the
final leg of transportation from these terminals to distribution
centers or warehouses. Each terminal is interconnected via
dedicated service lines, which are exclusively served by one
mode of transport, i.e. barges, trains, or fleets of trucks. The
shipments may be transported directly or through multiple
service lines, involving transfers at transshipment terminals,
thus constituting a multi-modal transport network.

Real-world operations often face disruptions in both the
service network and requests, manifesting as delays, capacity
reductions, or changes in shipment release times. Under a
synchromodal framework, the service network adapts flexibly
in real-time to these disruptions. This flexibility primarily in-
volves reallocating containers or matching them with available
services, rather than altering fixed service schedules, which is
typically challenging in practice.

To enable the synchromodal framework in the service
network, the proposed model follows several assumptions.
This study assumes the disclosure of enough information (in
real time) among stakeholders to allow the central planner
to re-route a shipment flexibly, assuming the necessary ICT
infrastructure is available. Moreover, the modal free booking
is applied to all shipments granting full authorization to the
planning in reallocating the containers.

A. Simulation Module
The main objective of this simulation is to capture the

dynamic nature of disruptions in the hinterland freight network
representing real-world operations to create an environment for
implementing a decision support system.
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The inland terminals are represented by nodes located at
various locations. Multiple nodes of inland terminals could
be located within the main port and serve as origin points
for loading shipments onto transport modes. Other nodes are
scattered further in the hinterland as the transshipment termi-
nals or destination points. These terminals are characterized by
handling capacity affecting the loading or unloading time. In
this simulation, several parameters are assumed infinite such
as stacking yard capacity and vehicle buffer area. Violation
of these parameters could result in terminal congestion and
could cause a delay. Rather than creating parameters, the port
congestion is modeled using random variables to represent
unexpected events.

The simulation module has three main service, shipment,
and disruptions processes. The service is divided into fixed
and flexible schedule service. The fixed schedule follows a
predetermined departure time while flexible services depend
on assigned requests. The shipment and services follow paral-
lel processes while interacting with each other. The simulation
keeps track of the actual costs for transporting each shipment
from its origin the its destination. The cost components consist
of storage, handling, travel, and delay penalty.

During the simulation process, the disruptions are enforced
according to the profiles explained earlier. The disruption
on requests only applies in a small time window after a
shipment is announced and before it is released. However,
the disruption on the service line could occur anytime in the
chain of events causing the disrupted request to wait until
the disruption ends. The always wait policy represents the
absence of synchromodal framework and potentially causes
severe delays in shipment delivery.

B. Hybrid Simulation-Optimization

Under synchromodal framework, it is assumed that there is
a centralized planner is responsible for generating a shipment
plan at regular intervals. Thus, shipment requests are delivered
according to their requirements considering various objectives
such as minimizing costs, maximizing on-time delivery, or
minimizing emissions. Additionally, the planning process can
be triggered to create a new shipment plan in case of dis-
ruptions or new requests. This approach, known as online
planning, can potentially enhance the resilience of the freight
network.

The modular framework presented in this study, enables
various analytical methods to plug-in, acting as a central
planner. These could range from simple strategies such as
first come first serve (FIFO) principal, heuristic methods or
sophisticated optimization models with various objectives. The
role of the optimization module, that is embedded in the
simulation module, is to match requests with available services
considering the time and cost parameters associated with the
service lines.

Upon receiving a new request or detecting a disrupted
shipment, the optimization module is triggered to initiate
the planning or re-planning process. The matching decision
involves assigning a service line to the shipment. In the

replanning process, the new assignment replaces the original
itinerary. In contrast to the always wait policy, this hybrid
simulation-optimization model always reassigns affected ship-
ments to new service lines as the disrupted location is excluded
from the possible solution space.

C. Reinforcement Learning Approach

Reassigning a shipment to a different service line during a
disruption can potentially improve the resilience of the freight
network and is feasible within a synchromodal framework.

However, in some situations, it may be better for a shipment
to wait until the disruption ends and then continue on its
original itinerary. For example, if the disruption is expected to
be brief or occurs at a terminal far ahead in the journey, where
it is likely to be resolved before the shipment arrives. The
challenge lies in the uncertainty of the disruption’s duration.

To address this, a reinforcement learning technique is in-
tegrated into the model, allowing it to decide whether to
wait or reassign based on the learning agent’s experience.
This approach enables the model to make more informed
decisions, balancing the benefits of reassignment with the
potential advantages of waiting.

Using a value function, the RL agent can select the best
action for a given state by learning from past experiences and
extensive training. Unlike supervised learning, which relies on
labeled data, the RL agent is guided by a reward system that
indicates the effectiveness of each action. Properly modeling
the action, state, and reward system is crucial for developing
an optimal RL agent.

From the perspective of a centralized planner in synchro-
modal transport, defining the state of the RL agent is complex.
If all shipments and service attributes are considered, the state
space becomes exceedingly large. However, by narrowing the
perspective to a single shipment, defining the state becomes
more manageable, given that each request has an independent
decision-making process. In this approach, the state consists
of six features: the request’s current position, destination, due
time, volume, type of disruption, and the current time. This
framework allows decision making at the level of shipments,
represented by RL sub-agents, enabling decision making based
on the previous actions taken, ensuring that actions within the
same request are not independent from each other.

The reward system is also implemented separately for each
sub-agent. This reward is used by the RL agent to update the
action value function Q(s, a) for each state s and action a
using the off-policy Temporal Difference Control, Q-learning
technique. The total transportation cost between terminals,
including transport and storage, handling, and delay costs, is
used as a reward for actions. The reward calculation starts
when a disruption impacts a shipment and continues until
either an action resolves the issue or another disruption affects
the same shipment. Since rewards are negative costs, the agent
selects actions based on the value function, choosing those
with values closest to zero to minimize costs.

This framework allows the RL sub-agent to make decisions
based on the previous action taken, ensuring that actions
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Fig. 1. Learning Assisted Hybrid Simulation-Optimization Flow

within the same request are not independent of each other.
The learning technique is integrated with the existing hybrid
simulation-optimization to create a comprehensive decision
support system for a resilient synchromodal framework. These
three modules work together by exchanging information, as
illustrated in the flow diagram in Figure 1, forming a complete
model of Learning-Assisted Hybrid Simulation-Optimization
within the synchromodal framework.

V. PRELIMINARY RESULTS

To verify the model a synthetic service network, comprising
2 barge lines, 3 train lines, and 25 truck fleets with weekly
recurring random departure times is considered. The network
is loaded with randomly generated requests. A heuristic algo-
rithm, following a nearest departure time rule,is constructed
to act as a centralized planner and to evaluate the modular
framework (implemented using Python 3.10.6).

The time horizon for each simulation is ten weeks. The
three possible policies consisting always wait, always reassign,
and heuristic-based policy are evaluated using the model. The
always wait is a policy without having a replanning procedure.
The always reassign is a policy that triggers the heuristic
algorithm every time a disruption occurs and always accepts
the solution. This represents a naive synchromodal framework
without the RL agent. The last policy is by employing the
RL agent to find the optimal policy using ϵ-greedy policy.
To balance the exploration and exploitation [26], the ϵ value
provides a small amount of probability so the RL agent
occasionally chooses an action with a lower value and explores
the probability of having a better reward in a longer run.

To verify the model, it runs for over 100 episodes to train
the RL. In the episodic training, the RL agent applies the ϵ-
greedy policy to explore and update its value function. Once
training completes, the model runs again for one time with
the RL agent applying a greedy policy by always choosing
the best action.

Under the greedy policy, the RL agent always selects the
action with the highest value. The results of the total cost of
each policy are compared to see how the model performs with
different policies. To ensure consistency in the verification
process, a random seed of 0 is set. This means each episode
encounters the same disruption occurrences, simplifying the

Fig. 2. RL Agent Training Result

comparison between policies. This simplification is solely for
verification purposes, allowing observation of how the RL
agent’s performance improves despite the limited number of
training episodes.

The total costs for each training episode in Figure 2 show a
decreasing pattern over episodes. The green dashed line is the
total cost of always wait policy while the red dashed line is the
total cost of always reassign policy. The RL agent outperforms
the two other policies way before it reaches convergence. This
convergence shows that the RL assisted model is matured for
this specific sample case.

After going through the episodic training the learning-
assisted model is evaluated again, this time using a greedy
policy. This means, the model always chooses actions between
wait and reassign according to the highest action value for
the given states. The result obtained with greedy policy are
compared against the other two policies in Figure 3.

Different policies demonstrate various performances in
terms of delay and storage costs. In the sample case, the always
wait policy results in longer waiting times at the terminal,
and ultimately elevated arrival delays. Switching to the always
reassign policy reduces delays but increases the total travel
cost, due to the model choosing a longer route to avoid the
disruption. Finally, the RL agent performs better by keeping
the travel cost lower than always reassign and reducing the
delay and storage costs even more, in this particular case,
by having 24% lower total cost compared to always reassign
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Fig. 3. Total Cost Comparison

policy.
It is important to note that the better performance of always

reassign over always wait policy does not imply the superiority
of one policy over the other in all cases. A different sequence
of disruptions, may result in a different outcome. As for
the learning-assisted model, it is expected to always perform
better, or at least mimic the performance of the best policy
between the other two. This result is yet to be seen and proven
in the numerical experiment with a larger network and larger
shipment numbers.

VI. CONCLUSION

This paper proposes a modular simulation-optimisation de-
cision support tool to address the dynamic nature of demand
and disruption in synchromodal transport. To address the
unknown duration of disruptions in the synchromodal frame-
work, an RL agent is integrated. Comparing three distinct
policies always wait, always reassign, and an RL-assisted
greedy policy, the model RL assisted model outperforms the
other two policies by using its experience to choose the
proper actions in case of a disruption occurs. The modular
framework allows for extensibility to enable the plug-ins of
different optimization techniques. Employing a more sophis-
ticated optimization technique to replace the current heuristic
model will provide a scalable model for a larger and more
complex network. Additional future work considers a larger
case with an extended disruption profile set. Furthermore, for
larger problem sizes, more advanced reinforcement learning
techniques, such as deep reinforcement learning can be used
to handle the increased complexity and ensure scalability.
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