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ABSTRACT 

Choice probabilities and related outputs of discrete choice models form a critical input to many travel 

demand forecasting and transport project evaluation studies. The decision rule underlying a discrete 

choice model describes how individuals make their decisions and thereby co-determines the choice 

probabilities. Uncertainty from the side of the analyst regarding the underlying decision rule(s) may 

therefore translate into alternative predictions regarding the behavioural response to changing travel 

conditions. In this paper, we contrast the well-known Random Utility Maximization framework, on 

which most travel demand forecasts are based, with its Random Regret Minimization counterpart. 

Based on a review of the existing empirical comparisons between the two frameworks we discuss the 

connections and dissimilarities between both model types and the associated implications for travel 

demand forecasting. The empirical comparisons reveal that both models perform about equally well in 

terms of model fit and external validation, which makes it hard to identify one model as a superior 

specification for forecasting. Despite these small differences in overall model fit, choice probabilities 

and elasticities can differ substantially (and predictably) in specific choice-contexts. One such example 

is the compromise effect where the Random Regret Minimization framework predicts a market share 

bonus for ‘in-between’ alternatives. The paper discusses model averaging techniques to generate 

predictions when a clear winning model cannot be identified. Finally, the paper puts these 

considerations in the context of a regret-based Dutch National Model, which is currently under 

construction.       
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1. INTRODUCTION 

It is generally acknowledged that uncertainty in travel demand forecasts is one of the most prominent 

causes underlying uncertainties in transport infrastructure evaluation (e.g. Rasouli and Timmermans, 

2012). Forecasting travel behaviour is intrinsically linked to the extent to which travellers respond to a 

changing environment as represented by travel times, costs and other related travel conditions. For 

example, the Dutch National Model is a marginal model predicting changes in travel behaviour 

relative to a baseline scenario (e.g., Daly & Sillaparcharn, 2008; Willigers & de Bok, 2009). Like 

many other macro-models, the model is based on the Random Utility Maximization (RUM) 

framework (McFadden, 1974) and assumes travellers maximise their underlying utility functions and 

select e.g. the mode or destination associated with the highest level of overall utility. The functional 

form of the utility function has direct implications for the extent to which respondents are willing to 

make trade-offs between e.g. travel time and travel costs (or other travel attributes) and simultaneously 

their inclination to alter their mode or route choice under changing conditions.  

 Transportation modellers and policy analysts deal with inherent uncertainties underlying 

descriptive models of travel behaviour by performing sensitivity analyses using, for example, 

alternative values for the implicit trade-offs (e.g., values of time) across attributes. Similarly, 

demographic trends can also be varied systematically in sample enumeration procedures to provide 

additional insight into the likely ranges (confidence intervals) around best estimates of relevant model 

outcomes, such as market shares under varying policy packages. In this paper, we point out that 

sensitivity tests so far have ignored the possibility of variations in the underlying decision rule used by 

travellers when making decisions. Hess et al. (2012) point out that the applied decision rule is 

associated with a similar degree of uncertainty to the analyst, while significant evidence of the 

presence of heterogeneous decision heuristics has been found within the transport literature (Leong 

and Henser, 2012; Chorus, 2013).   

 In this paper, we specifically focus on the Random Regret Minimization (RRM) framework as 

an alternative decision heuristic (Chorus, 2010). Conceptually, RRM’s decision-rule differs from its 

RUM-counterpart by postulating that choices are determined by the desire to minimize anticipated 

regret. Within the RRM model, regret is conceptualized as the emotion that is felt when an alternative 

performs worse than another alternative on a specific attribute. The fact that regret depends on the 

performance (at the attribute level) relative to other available alternatives introduces a context 

dependency not present in the conventional RUM framework which relies on linear-in-parameters 

specifications of utility functions. Where this linear-in-parameters RUM model assumes fully 

compensatory behaviour across attributes, the RRM model is associated with a specific form of semi-

compensatory behaviour. An important implication of this property is that the RRM-model predicts a 

market share bonus for so-called compromise alternatives with an ‘in-between’ performance on all 

attributes (e.g., Chorus and Bierlaire, 2013).  
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 Chorus et al. (2013a) point out that, at the aggregate level and for most datasets, the RUM and 

RRM model appear to perform similarly in terms of model fit and predictive ability on hold out data. 

Interestingly enough, it is found that – notwithstanding the small differences between the two 

paradigms in terms of model fit and predictive ability – RUM and RRM do have the potential to 

generate markedly different predictions regarding relative attribute importance, willingness to pay, 

elasticities, and market share forecasts. Hensher et al. (2011) is one of several empirical examples 

confirming that the differences in functional form between the RUM and RRM model translate into 

different behavioural implications such as elasticities. It is exactly those elasticities and associated 

choice probabilities that determine the responsiveness of individuals to changing circumstances, and 

they explain why specific segments of the population make alternative decisions. Moreover, this may 

cause diverging patterns in forecasting methods. Accordingly, the key question is how RRM models 

can be put to use effectively for supporting travel demand forecasts. 

We will argue that – given the small differences between the two model types in terms of 

model fit and predictive ability – one fruitful approach to use RRM for supporting travel demand 

forecasts would be to simultaneously employ the two choice model types (RUM and RRM/Hybrid 

RUM-RRM) for the analysis and prediction of choice behaviour. The outcomes of the different 

models (in terms of, for example, elasticities and/or market share forecasts) may then be used to obtain 

what may be called ‘behavioural confidence intervals’ and/or to perform what may be called 

‘behavioural sensitivity analyses’. That is, to the extent that RUM and RRM generate different 

outcomes, it makes sense to consider each model type (and associated outcome) a possible scenario. 

Confronted with these different behavioural scenarios, policy-makers and planners may then apply 

conventional techniques for dealing with multiple scenarios with the aim of developing ‘behaviourally 

robust’ policies  i.e., policies that are likely to turn out effective, irrespective of which behavioural 

scenario (RUM or RRM/Hybrid RUM-RRM) in the end turns out to be the most correct one. An 

alternative approach based on model averaging techniques (Hoeting et al. 2007; Wagenmakers and 

Farrell, 2004) is also suggested. Such approaches allow for increasing the robustness of predictions 

while taking uncertainties about which is the correct model into account.  

This paper starts by introducing both the linear-in-parameters RUM model and the RRM 

model (Section 2). Section 3 provides an overview of recently performed empirical comparisons 

between the two models in terms of model fit, predictive ability on hold out data, and policy-relevant 

output. Observed differences and similarities are further illustrated using simulated data. Section 4 

then pays attention to potential implications for forecasting exercises when both the RUM and RRM 

model provide a roughly similar fit, but generate alternative predictions. Section 5 provides an update 

of a project that is being undertaken by the authors, in collaboration with Significance consultancy and 

the Dutch Ministry of Infrastructure and the Environment: the aim of the project is to build an RRM-

based counterpart of the existing RUM-based Dutch National Model and to use the outcomes of the 
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two National Models jointly as input for a behavioural sensitivity analysis along the lines suggested 

above. Section 6 concludes and discusses potentially fruitful avenues for further research. 

2. ALTERNATIVE DECISION HEURISTICS: RUM VS. RRM 

Discrete choice models form a key element in many travel demand forecasting models. Forecasts can 

be based on applications of the full model, where sample enumeration methods (see Ben-Akiva & 

Lerman, 1985 or Train 2009) are applied to derive choice probabilities over the available alternatives 

for specific groups of individuals and combined with weights to forecast aggregate market shares. 

Such applications can be present in the trip generation stage, but also in the stages where the choice for 

mode of transport, route and time-of-day are modelled. More generally, Daly (2013) describes the 

expected demand Qi for alternative i by Equation (1) where wk represents the number of individuals of 

type k, Pik(xk) the probability of choosing alternative i given xk, qik(xk) the quantity demanded when i is 

chosen. Note that the latter is generally normalized to unity in discrete choice models. Finally, xk 

summarizes the characteristics of the individuals of type k, but also incorporates product 

characteristics of the available alternatives as perceived by the individual.  

 

    i k ik k ik k
k

Q w P x q x  (1) 

  

Other applications of discrete choice models in forecasting are based on the parameter outcomes of the 

models and rely more on the willingness-to-pay estimates or elasticities as behavioural output of the 

choice model. Overall, the dependence of these forecasting methods on the underlying choice 

probabilities make them heavily dependent on assumptions from the side of the analyst concerning the 

applied decision rule and associated mathematical model of behaviour. These assumptions will be the 

focus of this paper.  

Equation (2) describes the standard logit choice probability associated with the Random 

Utility Maximization (RUM) framework, where Pik represents the probability that type k will select 

alternative i when presented with alternatives j=1,…, J. 
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Deterministic utility Vik is commonly assumed to be a linear function of characteristics xik describing 

the alternative, i.e. Vik =  xik𝛽. The linear specification implies that individuals are willing to make 

trade-offs between any two characteristics at a constant rate, as represented by the ratio of marginal 

utilies - i.e the β’s. The Random Regret Minimization (RRM) model works with choice probabilities 
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of a similar form (see Equation (3)), but the deterministic regret function Rik exhibits several essential 

differences from Vik.           
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Where in the RUM model utility only depends on the characteristics of alternative i, regret Rik depends 

on the performance of the alternative on each characteristic m relative to the performance of other 

alternatives on that same characteristic.
1
 The deterministic regret function is described in Equation (4), 

where regret arises when alternative i performs worse than alternative j on characteristic m. The regret 

of alternative i is increasing with the number of attributes on which alternative i is outperformed, the 

importance of those attributes (as denoted by the associated parameter), and with the number of 

alternatives by which alternative i is outperformed (as denoted by the summation over j ≠ i). This 

introduces a clear context or choice set dependency not present in the linear-in-parameters RUM 

model.  

   

    ln 1 exp 


  ik m jm im

j i m

R x x  (4) 

 

The functional form also implies that performing increasingly better on an attribute (relative to the 

competition) does not lead to constant decreases in regret of alternative i. In fact, marginal binary 

regret rapidly approaches zero when (xjm-xim)<0 and converges to 𝛽m when (xjm-xim) is sufficiently 

large (when 𝛽m>0) (Chorus, 2010).
2
 In other words, when an alternative already has a strong 

performance on a particular attribute, relative to a competing alternative, then further improving its 

performance on that attribute leads to (very) small decreases in regret. However, when that alternative 

already has a poor performance on the respective attribute, then further deteriorating its performance 

on that attribute leads to large increases in regret. Contrary to the linear-additive RUM model, the 

implied marginal rates of substitution across attributes are therefore also no longer constant. They 

depend to a large extent on the composition of the choice set and imply a particular form of semi-

compensatory behaviour in the sense that further deterioration of an attribute on which the alternative 

already performs poorly is very difficult to compensate by means of an improvement of an attribute on 

which the alternative already performs strongly. Willingness to pay for an improvement of a quality-

                                                      
1
 It is important to note that the independence of irrelevant alternatives (IIA) axiom no longer holds in the RRM 

framework, also when – as is the case in Logit-specifications – error components are i.i.d., since attribute levels 

of all other alternatives enter the regret function of alternative i. 
2
 Note that the subscripts k is removed from (xjm-xim) for notational convenience. 
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attribute therefore crucially depends on the performance of the alternative and its competition in terms 

of price and the quality-attribute relative to other alternatives in the choice set (Chorus, 2012a). 

 These differences in the marginal rate of substitution between the RUM and RRM model have 

direct implications for the distribution of choice probabilities across alternatives and associated 

elasticities. For example, RRM-models predict that it is more effective (in terms of avoiding regret) to 

select a compromise alternative with an intermediate performance on most or all attributes. Even when 

such a compromise alternative fails to have a strong performance on any of the attributes (relative to 

the other alternatives in the set), RRM-models predict that it will still only generate modest levels of 

regret as long as it does not have a particularly poor performance on any of the attributes. This is a 

direct consequence of the model property that good characteristics do not compensate for the large 

amounts of regret associated with bad characteristics (Chorus and Bierlaire, 2013). Hensher et al. 

(2011) derive the elasticities for the RRM model, which are remarkably different from those implied 

by the RUM model (see Train, 2009, pp. 59).
3
  

 Similar to accounting for heterogeneity in preferences across individuals, it is unlikely that all 

individuals base their decisions on the same decision rule. Intermediate specifications of the RUM and 

RRM model have been developed recently, i.e. so-called Hybrid RUM-RRM models, but these only 

account for variations in decision rules at the level of travel characteristics (e.g. Chorus et al. 2013c). 

That is, some characteristics are treated in the standard RUM approach, while others are treated based 

on the RRM approach. Overall, a uniform decision rule is still imposed across respondents in these 

hybrid models. Hess et al. (2012) is one of the few papers allowing for heterogeneity in the decision 

rule using a latent class approach. Due to the limited set of empirical studies allowing for such 

heterogeneity and given that Hess et al. (2012) use an older RRM-specification which differs from the 

one we focus on in this paper, we will only be able to compare the empirical performance of RRM, 

RUM and hybrid RUM-RRM at the sample level and not across individuals. In the remaining sections, 

we are particularly interested in the predictions of each of these overall models in terms of choice 

probabilities and elasticities associated with specific choice tasks.     

3. EMPIRICAL PERFORMANCE OF THE RRM AND RUM MODEL 

Since its recent introduction, the Random Regret Minimization (RRM) approach to discrete (travel) 

choice modelling has gained attention among a yet small but growing group of choice modellers, 

leading to a growing body of theoretical and empirical literature on RRM. The majority of empirical 

RRM-studies feature comparisons with linear-additive RUM models in the context of one or more 

stated or revealed choice datasets (e.g., Boeri et al., 2013; Beck et al., 2013; Hensher et al., 2011; 

Kaplan and Prato, 2012; Thiene et al., 2012). In Chorus et al. (2013a), we summarize a set of 19 

journal papers which empirically contrasted the RUM and RRM model. These studies are co-authored 

                                                      
3
 Note that in a binary choice setting, the RUM and RRM model generate equivalent choice probabilities and 

therefore also embody equivalent elasticities and welfare measures. 
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by a total of 28 scholars and published in fields such as transportation, urban planning, environmental 

economics, and health economics. Most studies are associated with multiple empirical comparisons 

translating in to an overall number of 33 datasets for which the RUM and RRM model have been 

contrasted in the international peer-reviewed literature. Comparisons between RRM and RUM are 

generally made in terms of dimensions as diverse as model fit, predictive ability, willingness to pay, 

elasticities, and (or) market share forecasts. 

3.1 Model fit and external validity 

Chorus et al. (2013a) stipulate that in terms of model fit the RRM model or a hybrid RRM/RUM 

generally performs better than the conventional RUM model, but that differences are generally small 

(although statistically significant). Similar results are obtained when contrasting the external validity 

of both models. Results are somewhat ambiguous, however, since some studies report a higher model 

fit for one of the two models, in combination with a worse out-of-sample predictive ability. These 

results are, however, not surprising due to the close connection between the RUM and RRM model. 

First, both models are usually estimated in the same econometric form (i.e., MNL or Mixed Logit 

specification). Second, they have the same number of degrees of freedom, i.e. the same number of 

parameters describing the same set of characteristics, which are applied to exactly the same data. 

Third, in a binary choice setting both models provide identical model outcomes. Chorus (2010) 

established that utility differences in this case are identical to the regret differences between the two 

available alternatives. The RUM and RRM model start to diverge when additional alternatives are 

added to the choice sets. In the RUM model, utility levels of the current set of alternatives are not 

affected by adding new alternatives to the set. In the RRM model, regret changes when the choice set 

composition changes (including the situation where new alternatives are added to the set), as is clearly 

seen upon inspecting Equation (4).  

A close connection thus exist between the RUM and RRM model, where the levels of βm and x 

largely determine the extent to which similar results are obtained between both models in terms of 

overall model fit: both models attempt to describe the same set of choices over the same choice sets 

and using an equivalent number of parameters. Especially since the β’s are optimized during the 

estimation process, similar levels of the overall log-likelihood can be expected. In some choice tasks 

the RRM model will perform better and in other choice tasks the RUM model will. The same 

conclusions can be drawn with respect to model validation on hold-out samples. As long as the 

decision process (and experimental design) between the estimation and hold out sample are 

comparable, the RUM and RRM model are likely to generate a comparable aggregate fit (i.e., 

averaged over all observations), where the context dependence in the RRM model may again translate 

into a better or worse performance for particular observations. There are not many a priori 

expectations on the direction of such differences at the aggregate level, which warrants additional 

future research on the implications of varying experimental designs and varying choice set sizes on the 
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relative performance of the RUM and RRM model.
4
 One finding however, which appears to be rather 

robust (e.g. Chorus & Bierlaire, 2013) is that when an outspoken compromise alternative is present in 

a particular choice situation, the RUM-model tends to underestimate its popularity and the RRM-

model is likely to provide a better fit with choice observations made in the context of that choice 

situation, also at the aggregate level.   

To further illustrate the close connection between the two models, we simulate two synthetic 

datasets. In each choice task every individual is presented with J=3 alternatives, which are described 

by M=3 attributes. The x values for all alternatives and characteristics are drawn from a uniform 

distribution between [0,1] and the model parameters are set to βm=2. In the first dataset, generated 

choices are based on the standard RUM model, and in the second dataset the RRM rule is applied. 

Both datasets are estimated using both the RUM and RRM model providing a 2x2 experimental set-

up. Table 1 presents the log-likelihood values for a dataset comprising 5,000 observations. Differences 

in model fit are in line with intuition (RUM model fitting better on RUM data, etc.); they are rather 

small and have a maximum of 26 LL points in the case of the RRM data.  

 

Table 1: LogLikelihood results for two simulated datasets (RUM-RRM) using two alternative models (RUM-RRM) 

 Data  

Model RUM RRM 

RUM -4.345,9 -3.651,5 

RRM -4.351,2 -3.625,4 

Obs 5.000  

 

The close connection between the RUM and RRM  in aggregate model fit can be further illustrated by 

plotting the (smoothed) kernel density of the choice probabilities for the chosen alternatives based on 

the four cases (see Figure 1). The higher log-likelihood for the RRM data observed in Table 1 is 

illustrated by a larger share of high choice probabilities in the two associated models. This higher 

likelihood of both models on the RRM data is a consequence of the fact that the same parameter size is 

used for generating RUM and RRM data (βm=2), while the RRM model – due to its addition of strictly 

positive binary regrets – generates smaller parameters than RUM for choice sets containing more than 

2 alternatives (see Chorus 2012a).  

Most important, the kernel densities point out that on average both the RUM and RRM model 

can approximate the observed choices about equally well translating into a similar model fit. Hensher 

et al. (2011) provide similar kernel density plots which display some divergence when their data are 

applied using the two alternative models. In their case, the RRM model provides a better model fit of 

12 LL points, and the observed difference in the kernel density plot can be explained by the use of 

non-synthetic (i.e less well-behaved) data. The fact that on average similar choice probabilities are 

                                                      
4
 For example, Hensher’s ‘Design-of-designs’ approach may turn out useful in this context (Hensher et al. 2006). 
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assigned to the chosen alternatives does not imply that both models assign similar choice probabilities 

to particular choice tasks. Furthermore, it is exactly those differences that are important when using 

the results from discrete choice models in forecasting travel demand based on for example Equation 

(1). We pay more attention to these differences in the next subsection.    

            

Figure 1: Kernel density plot of the choice probabilities for the chosen alternatives 

 

3.2 Choice probabilities, market shares and elasticities  

While the kernel densities in Figure 1 show a close match at the aggregate level when the RUM and 

RRM data are applied to the same synthetic dataset, Figure 2 highlights that, at the choice task level, 

differences in the (absolute) choice probability between the RUM and RRM model for the chosen 

alternative can be as large as 17,2 percentage points for the RRM dataset and 7,9 percentage points for 

the RUM dataset. Similar differences in choice probabilities are observed by Chorus et al. (2013b) in 

choices for alternative fuel vehicles (AFVs). In their case, in no less than 7% of all cases, the two 

models identify different alternatives as the most popular ones. In our synthetic set-up, both models 

only predict an alternative winner in about 3% of the cases for both datasets. A nice property of the 

RRM model is that these differences in choice probabilities can easily be related to the composition of 

the choice task, i.e. the relative performance of alternatives, and the levels of model parameters. The 

compromise effect is one of these effects, which has been revealed in various papers for specific 

choice situations. Chorus and Bierlaire (2013) show that, in line with theoretical expectations, the 

RRM model predicted a substantially higher choice probability than the RUM model (27 vs. 23%) to a 

‘compromise’ route in a route choice experiment amongst Dutch commuters. Similar compromise 

effects are illustrated by Chorus et al. (2013b) in two exemplary choice sets amongst AFVs, and de 

Bekker-Grob and Chorus (2013) in a health economics case study on osteoporosis drug treatments and 

human papillomavirus vaccinations.    
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Figure 2: Probability differences between the RUM and RRM model for the chosen alternative 

  

The implications of these differences in choice probabilities for market shares, or aggregate demand 

are less clear, since they are weighted across different types of agents and the choice situations they 

face (see Equation (1)) . First, differences in choice probabilities potentially cancel out over the 

population of interest, particularly when predictions are based on a range of future scenarios drawn 

from a stated choice design. Such designs typically describe a broad range of trade-offs to identify 

marginal sensitivities, but also make it more likely that the predicted choice probabilities vary in 

different directions between the RUM and RRM model. In real world forecasting exercises, usually a 

more focussed scenario is applied making it more likely that different predictions between the RUM 

and RRM model become apparent. These aggregate effects have, however, not been studied in the 

existing empirical literature. Second, the fact that different types of agents are affected differently by a 

policy change may be an important source of information to policy makers, even if the overall impacts 

on aggregate demand are limited.  

 Of equal importance in forecasting exercises is how choice probabilities, and market shares, 

respond to changes in product characteristics or travel conditions. Elasticities are generally used for 

this purpose and are directly comparable between the RUM and RRM model. Elasticities measure the 

percentage change in the choice probability of choosing a particular alternative as a result of a one 

percentage change in the value of one of the characteristics. Due to the dependency of elasticities on 

the current choice probabilities and levels of the characteristics, the elasticities vary by choice task in 

both the RUM and RRM model (see Train, 2009 and Hensher et al. 2011).
5
 Unfortunately, the routine 

to derive elasticities in NLOGIT takes the average of the elasticities over all observations (weighted or 

not) and thereby possibly average out important differences between the RRM and RUM model (see 

the above discussion regarding averaging market shares in stated choice scenarios). Obviously, the 

weights wk assigned to specific types of agents in Equation (1) may also affect the differences in 

elasticities between the two decision rules in forecasting exercises.  

                                                      
5
 Specifically, in the RUM model elasticities are highest when choice probabilities are similar across alternatives, 

i.e. the choice task is undecided.  
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The four studies (i.e. Chorus and Bierlaire 2013; Greene et al. 2012; Hensher et al. 2011 and 

Thiene et al. 2012) which present a comparison of elasticities between the RUM and RRM model do 

this at the aggregate level, but are rather unclear on the weights applied to derive these measures. 

Moreover, only the paper by Chorus and Bierlaire (2013) investigates confidence intervals around 

these elasticities, making it hard to evaluate whether differences in elasticities between the RUM and 

RRM model that are reported in the other three studies are significant or not. We provide a brief 

overview of what has been found in these four papers. Thiene et al. (2012) report that, for six of the 

eight attributes considered in their stated preference study of recreational choice in the Italian Alpes, 

the RRM model translated into higher elasticities than the RUM model. The size of this difference 

turns out to be around 10% when examining the ratio of RUM and RRM elasticities, but elasticities 

are low in general. The latter is also reflected by the fact that when park entrance fees are increased by 

15% choice probabilities only increase by approximately 3% in the RUM model and 2% in the RRM 

model.
6
 Greene et al. (2012) find, similar to Thiene et al. (2012), that cost elasticities are smaller in a 

hybrid-RRM model specification compared to the RUM model. This finding is, however, not 

confirmed by Hensher et al. (2011) and Chorus and Bierlaire (2013). The former consistently find 

higher elasticities for the RRM model, although absolute differences with the RUM model are 

generally small. In Chorus and Bierlaire (2013) the differences in elasticities between the two models 

are even smaller. The derived confidence intervals even show significant overlap between the RUM 

and RRM elasticities questioning the existence of these differences. The latter highlights the 

importance of examining the standard errors of these elasticities. Although the formula for the 

elasticities is difficult and analytical standard errors are hard to define, the Krinsky and Robb (1986, 

1989) method can be applied to simulate the required confidence intervals. Alternatively, Bayesian 

estimation methods can easily be applied for the same purpose.          

We now examine the differences in elasticities at the choice task level for our synthetic 

dataset, specifically focusing on how choice probabilities of alternatives respond to changes in their 

own characteristics. For the RUM dataset, we find that elasticities range between 0 (no response) and 

approximately 1.9. this range is comparable when the RRM model is applied to this data. The range 

increases to approximately 2.9 in the RRM dataset, which is a direct consequence of the chosen 

parameters (see the discussion presented earlier in the context of higher likelihood for RRM-data), but 

remains highly comparable between the RUM and RRM model. On average, the RUM model shows 

elasticities which are only about 0.01-0.02 higher than those for the RRM model. More interesting is 

again the spread and the density of those deviations across choice tasks, which again reveal that both 

positive and negative differences are observed between both models. Sometimes the RUM model 

provides a higher response, while in other cases the RRM model displays higher elasticities. For 

example, respondents respond more heavily in RUM models than in RRM models when the 

                                                      
6
 The RUM model displays a higher elasticity than the RRM model explaining the higher responsiveness.  
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alternative under consideration already performs relatively well on that particular characteristic. This 

can be directly related to the formulation of the regret function, which provides a higher weight to 

negative performance than to a positive performance. Due to its good performance the change in regret 

and therefore the elasticity will be only minor in this particular situation.         

3.3 Willingness-to-pay and welfare measures 

An alternative output of discrete choice models used for predicting demand or the welfare applications 

of policy changes are willingness-to-pay measures, which describe the extent to which individuals are 

willing to pay for improvements in the particular characteristics. Similarly, the concept of the logsum 

(or the associated metric of consumer surplus) can be applied to assess whether individuals are better 

off in one choice set relative to another (e.g. De Jong et al. 2007a). The RUM model is well 

established within the welfare economics literature and has convenient properties to analyse such 

welfare changes, particularly when a linear cost coefficient is specified (implying an assumption of 

absence of income effects associated with the transport policy). The context dependence of the RRM 

model complicates welfare analysis and a well-established framework is currently not yet established, 

but current research initiatives are looking into these issues. Accordingly, only a limited empirical 

comparison can be discussed in this subsection.  

 With respect to willingness-to-pay (WTP) measures, the concept of indifference is critical. 

Chorus et al. (2013c) and Chorus (2012a), for example, develop the marginal rate of substitution 

between two attributes in the RRM model by assuming that the regret associated with the specific 

alternative under consideration remains constant. This approach, however, neglects the property of the 

regret function that the regret of every alternative is affected when an attribute level changes of any 

alternative. Accordingly, keeping the regret of one alternative constant does not necessarily imply that 

a considered alternative is equally likely to be chosen in the ‘old’ and ‘new’ situation, nor that the 

individual is indifferent between the choice set in the ‘old’ and ‘new’ situation. This is one of the 

issues that needs to be addressed in future research. In line with results discussed in the previous 

subsections, Chorus et al. (2013c) show that the RRM model describes a richer range of WTP 

estimates which are driven by the composition of the choice-set and can directly be related to the semi-

compensatory behaviour underlying the RRM model. Similar types of differences (up to 20%) in WTP 

estimates are found by de Bekker-Grob and Chorus (2013).   

The logsum can be established for both the RUM and RRM model without any of the issues 

mentioned above. It describes the expected maximum (minimum) utility (regret) of a choice set. 

Chorus (2012a) shows that in contrast to the RUM model, the RRM logsum does not necessarily 

improve when an alternative’s performance is improved on one attribute. Take for example the 

situation where a previously very poorly performing alternative improves its performance on an 

attribute. When, despite this improvement, the choice probability of the alternative remains low, the 

main effect of this improvement in one of its attributes is that regret levels of the more popular 
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alternatives rise, leading to an increase in expected regret associated with the choice set. An extension 

of the RRM logsum to the related concept of consumer surplus is, however, not yet supported due to 

the non-linear cost-coefficient.
7
          

4. DECIDING BETWEEN RUM AND RRM IN FORECASTING 

The small differences (and sometimes mixed findings) relating to model fit and external validity 

between the RUM and RRM model often make it hard to decide which of the two models should be 

applied to predict market shares or to generate other relevant model outputs. This is especially the case 

when the behaviourally responses predicted by the two models for specific contexts are substantially 

different. The latter is most likely going to be the case when a choice situation includes one or more 

outspoken compromise alternatives, or when market shares are predicted for alternatives with a very 

strong or very poor base performance on relevant attributes. The parsimonious nature of the RRM 

model, and its compatibility with popular software packages such as Biogeme and NLOGIT, makes it 

relatively easy for researchers to estimate both models and generate predictions based on both 

estimated models simultaneously. When prediction is possible, the researcher may apply (arbitrary) 

selection criteria to pick one of the two models whilst ignoring the predictions of the other.
8
 

Obviously, this does not take into account the uncertainty associated with which of the two models is 

actually most likely to represent the true behavioural process.  

A second approach would be not too choose either of the two, but to implement them both in 

the prediction stage, after conducting similar types of sensitivity analyses to both models. This way, 

policies can be designed that are ‘robust from a behavioural perspective’, i.e., robust across different 

decision rules. Indeed, this approach will take into account the analyst’s uncertainty associated with 

both models, but it remains hard to judge the weight that needs to be assigned to either prediction 

(RUM versus RRM). This brings us to a third, and probably most preferred, approach (especially 

when combined with the ‘behavioural robustness approach’). Wagenmakers and Farrell (2004) cover 

the topic of model selection and propose the use of Akaike (or Bayesian) Information Criterion based 

weights. These Akaike weights provide the researcher additional insights into the relative performance 

when contrasting a range of competing models. The approach is closely related to the Bayesian 

concept of model averaging (e.g. Hoeting et al. 2007), where the predictive density for the concept of 

interest based on each considered model is weighted by the posterior model probability. The latter 

measures the probability that after observing the data a particular model is the correct model. Simple 

rules of probability, including the marginal likelihood, can be applied to derive these weights. In 

comparison, the Akaike weights are based on the AIC statistic of a model, which is like the marginal 

                                                      
7
 This could be solved in a Hybrid-RUM-RRM setting where the cost coefficient is treated as a linear-in-

parameters utility attribute.  
8
 It might very well be the case that analysts prefer to stick to the standard RUM model due to its proven track 

record. The model needs little introduction and its outcomes can be easily interpreted. The properties of the 

RRM model are still relatively unknown and its outcomes somewhat harder to interpret. It still needs to earn its 

reputation.   
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likelihood based on the model fit combined with a penalty for the number of parameters that are 

estimated. The benefit of this third approach is that a single point estimate can be provided in the 

forecasting exercise whilst taking into account the uncertainty associated with the underlying decision 

rules.  

Overall, the RRM model appears to be ready to be applied in travel demand forecasting 

exercises not directly aimed at deriving welfare implications of changing travel conditions. To date no 

forecasting applications of the model are known to the authors of this paper. Although this is an 

obvious research gap, we do note again that at the aggregate level predictions between the RUM and 

RRM model may not differ that much. This, however, needs to be tested empirically.  

5. TOWARDS AN RRM-BASED NATIONAL DEMAND MODEL 

In the Netherlands research efforts are currently undertaken to develop an RRM-based counterpart of 

the RUM-based Dutch National Model (e.g., Daly & Sillaparcharn, 2008; Willigers & de Bok, 2009, 

Significance, 2012). The Dutch National Model, abbreviated as the LMS, has been developed as a tool 

for policy evaluation of large transport projects in the 1980s (De Jong et al. 2007b). It produces 

medium to long-term forecasts on a national scale. Despite the aggregate nature of its outputs, choices 

associated with transport are modelled at the disaggregate level of the individual or at the level of the 

households, based on RUM-premises. This disaggregate specification of the LMS provides a 

behavioural foundation from which to analyse and predict future mobility patterns. In the current 

version, the LMS 2011, three core models can be identified: the tour-frequency model (by travel 

purpose), destination/mode/time-of-the-day model (by travel purpose), and a route assignment model 

(Significance, 2012). Each stage yields input for the next stage and iterative procedures are included to 

take into account demand-supply interactions, such as congestion. Nine travel purposes are 

distinguished such as commuting, education, shopping, business and other work-based travel.
9
  

In this section we discuss, at the level of the sub-models, some of the challenges that lie ahead 

when replacing the underlying RUM-based choice models by its RRM counterpart. For reasons of 

conciseness we limit our discussions to tour-frequency models and the mode-destination-time-of-day 

model. Similar kinds of challenges lie ahead for the route assignment models as for the tour-frequency 

and mode/destination/time-of-day models. 

5.1 Tour-frequency models 

Tour frequency models generate the number of trips for each specific travel purpose. Figure 3 shows 

how the tour-frequency is modelled: as a series of binary choice situations. The probability that a 

decision maker will undertake a tour (which is defined as a two-way trip) depends on socio-

                                                      
9
 To forecast future demand the LMS uses a so-called pivot-point procedure, i.e. the model is geared to predict 

changes relative to an observed base-year situation. As the base-year situation can usually be rather accurately 

measured, this so-called pivot point procedure improves the accuracy in the forecasts (see Daly 2005 for a 

discussion on this method). 
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demographics (such as age, sex, holding a driving license, etc.), zone characteristics, as well as the 

accessibility characteristics. For many travel purposes accessibility is found to positively affect the 

number of tours. The measure of accessibility that enters the tour-frequency models as an explanatory 

variable is the logsum (e.g. Ben-Akiva and Lerman, 1985; Geurs and van Wee, 2004). This logsum is 

directly imputed from the underlying mode–destination–time-of-the-day model. 

From a methodological perspective, no substantial challenges are expected when replacing the 

underlying RUM-based tour-frequency models by its RRM counterparts. At first sights, there is even 

no need at all to replace the RUM-based tour frequency model with RRM-based models. After all, in 

binary choice situations RRM and RUM yield identical outcomes (Chorus, 2010). However, the regret 

logsum is fundamentally different from the RUM logsum (Chorus 2012b).
10

 Therefore, as the RRM-

logsum enters the tour-frequency model, outcomes of RRM-based and RUM-based tour frequency 

models can be expected to divert as a result of this seemingly subtle difference.  

 

Figure 3: Tour generation in the Dutch National Model 

5.2 Destination/mode/time-of-day models 

Destination/mode/time-of-day models capture the joint choice of travel mode, destination and time-of-

the-day. At this stage the tours generated in the previous stage are assigned to destinations which are 

reached by specific modes at specific times. The model comprises around 1380 zones (destinations); 

six different modes of transport, namely: car-driver, car passenger, train, bus/tram/metro, bicycle, and 

walking; and distinguishes nine periods of time-of-day. The latter results in 45 possible combinations 

in the day to depart and return. 

These choices across travel modes, destinations, and the time-of-day are correlated. For 

instance, it is generally found that there is higher substitution between alternative time-of-day periods 

than between alternative modes (Hess et al. 2007). As the multinomial logit model implies 

proportional substitution across alternatives, the MNL model is not able to accommodate for such 

substitution patterns.  Accordingly, to capture such correlations – while still featuring a closed-form 

expression for choice probabilities – the LMS uses Nested Logit models. Key when estimating nested 

                                                      
10 The regret logsum is the expected maximum regret associated with the decision maker’s choice set. 
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logit models is to identify the most appropriate nesting structure (i.e. such that the nesting coefficients 

do not exceed the theoretical constraint of one when estimated). In the LMS for most travel purposes 

either one of the following nesting structures is found: mode, above time-of-day, above destination, or 

mode, above destination, above time-of-day.  

It is relatively easy to specify the RRM model in a Nested Logit form. The RRM model is as 

flexible as the RUM model with regard to error term specifications. Therefore, in principle, no 

challenges are expected in this regard. However, despite the growing number of studies using RRM 

models, Nested Logit RRM model specifications are absent in the literature. As such, little is known 

on estimation of nesting coefficients in RRM models. It seems possible that different nesting 

structures may be found to be most appropriate under RRM than under RUM – potentially having 

substantial effects on forecasts. 

A more substantial challenge lying ahead when replacing the underlying RUM-based choice 

models by RRM counterparts stems from the large number of alternatives present in the 

mode/destination/time-of-day choice model. In the LMS it is assumed that each decision maker 

considers all available alternatives. As such, the resulting number of alternatives for which choice 

probabilities need to be computed is considerable. This implies that it is very important that choice 

probabilities can be computed with relative computational ease. Unfortunately, the computation of 

choice probabilities using RRM becomes computationally burdensome when choice set sizes are large 

which is the case for the destination/mode/time-of-day choice. This is a direct consequence of the fact 

that regret is choice set dependent (see Eq. 4): to compute an alternative’s choice probability all 

attributes differences across all alternatives need to be evaluated since attributes of each alternative 

enter the regret function. Accordingly, the number of computations required to calculate RRM choice 

probabilities grows rapidly with the choice set size and the number of attributes per alternative.  

Fortunately in this regard, methods for sampling of alternatives in Random Regret 

Minimization models have been proposed recently (Guevara et al. 2013). These authors analytically 

show, and illustrate using synthetic data, that consistent, and efficient estimators are obtained when 

estimating RRM models (with an extended regret function) on sampled choice sets of considerably 

smaller size than the universal set. Nonetheless, it should be emphasized that estimation on synthetic 

data is only a first step towards a solid understanding of RRM-based estimation on sampled choice 

sets. There is a need for follow up research in this regard, using empirical data. More generally 

speaking, further exploration of sampling of alternatives in RRM models is needed such as relating to 

the stability of estimates as a function of the particular properties of the applied sampling method. 

In all, it can be concluded that a number of methodological challenges lie ahead in the 

development of an RRM-based national demand model. From a scholarly and methodological 

viewpoint, this raises the opportunity to further extend the scope of RRM-models, and to study 

differences between RRM and RUM at a far more aggregate level than has currently been done. 

Furthermore, since differences in aggregate forecasts between the two National Models (RUM and 
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RRM) can be expected, tackling these challenges in the process of developing an RRM-based National 

Model serves an important societal cause as it may ultimately contribute to better-informed policy-

making by providing insights on the robustness of travel demand forecasts and transport project 

evaluation. 

6. CONCLUSIONS 

In recent years, the Random Regret Minimization framework has evolved rapidly as an alternative 

decision heuristic to the Random Utility Maximization framework in discrete choice models. The 

growing range of empirical comparisons between the two behavioural frameworks reveals that in most 

cases the RRM model is able to describe observed behaviour about equally well as the standard linear-

in-parameters RUM model, at least at the aggregate level. For specific choice situations, the two 

models may however generate remarkably different choice probabilities, elasticities and other related 

model outputs. In this paper, we have summarized the empirical comparisons and illustrated 

differences and similarities between the two frameworks using synthetic data. What can be concluded 

is that the RRM model offers, in terms of estimation, an equally parsimonious alternative to the RUM 

model, which describes a different range of behaviour based on the premises of regret minimization 

and semi-compensatory behaviour. A clear progression in understanding the properties of the model 

relative to the RUM model can be observed and the observed deviations are generally a clear 

consequence of the context dependency embedded in the RRM model.          

 The next challenge for the RRM model is to find its way into real world applications, 

including forecasting exercises based on discrete choice models. Based on the existing literature, it can 

be established that for specific choice situations the predicted market shares (and elasticities) between 

the RUM and RRM models can differ substantially. Specifically when compromise alternatives are 

considered. However, when a range of future scenarios is evaluated across different types of agents 

differences between the RUM and RRM model may cancel out at the aggregate level. The size and 

direction of these differences are hard to identify a priori and this is therefore identified as a clear topic 

for future research. Important in this perspective is also the comparable performance in model fit (and 

external validity on hold-out samples) making it hard to select one of the two models to predict 

demand. Selecting either of the two neglects the uncertainty regarding the ‘true’ underlying decision 

rule. We have proposed two alternative approaches dealing with this issue. One option is to apply the 

two models simultaneously and compare range of the predictions between the two models. This will 

enable policy makers to develop robust policies that accommodate both utility maximisers and regret 

minimisers. The difficulty is still to assign a degree of importance to both frameworks, particularly 

when predictions diverge. We propose the use of model averaging techniques as a second option. 

Akaike weights or Bayesian Model Averiging can be applied to weight the predictions of either model 

and generate a point estimate whilst taking into account the uncertainty regarding the behavioural 
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model. The readily availability of the RRM model in existing model packages and the relative ease to 

estimate both models in a Bayesian fashion will open up opportunities to apply the latter strategy.  

Overall, the RRM model seems ready to be applied in forecasting exercises. It is able to 

generate choice probabilities and other required model outputs such as the logsum. The levels of these 

statistics may vary from the RUM model, and therefore generate alternative predictions. This is clearly 

an interesting topic of future research. Therefore, we have illustrated the possible implications and 

challenges of applying the RRM model to the Dutch National Model in the final section of this paper. 

An exercise which is on-going work by the authors of this paper. A challenge that still remains is the 

use of the RRM model for evaluating the welfare implications of changing travel conditions. 
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