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Abstract: The railway timetable rescheduling problem is regarded as an efficient way to
handle disturbances. Typically, it is tackled using a mixed integer linear programming (MILP)
formulation. In this paper, an algorithm that combines both reinforcement learning and
optimization is proposed to solve the railway timetable rescheduling problem. Specifically, a
value-based reinforcement learning algorithm is implemented to determine the independent
integer variables of the MILP problem. Then, the values of all the integer variables can be
derived from these independent integer variables. With the solution for the integer variables,
the MILP problem can be transformed into a linear programming problem, which can be solved
efficiently. The simulation results show that the proposed method can reduce passenger delays
compared with the baseline, while also reducing the solution time.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Railway plays an important role in the modern transporta-
tion system. In many countries, railway transport is exten-
sive and includes daily commuting, long-distance travel,
and cargo transportation. However, the regular operation
of trains is easily affected by disturbances or disruptions.
There could be many reasons for railway disturbances
and disruptions, such as extreme weather, worker strikes,
and system failures. In essence, timetable rescheduling can
manage disturbances without impeding the capacity of the
railway network. However, disruptions carry a greater im-
pact than disturbances, potentially rendering the original
timetable unfeasible and causing significant delays. Rail-
way disturbances and disruptions normally require real-
time timetable rescheduling to reduce initial delays and
to prevent further propagation of these delays. Therefore,
developing effective rescheduling algorithms is critical to
the operation of railway systems. In this paper, we investi-
gate the timetable rescheduling approach for disturbances.
An efficient rescheduling algorithm should minimize the
influence of disturbances.

Various problem formulations have been introduced in
the literature to address the railway timetable reschedul-
ing problem (Fang et al., 2015). These problem formula-
tions include mixed logical dynamical systems (Liu et al.,
2023a), alternative graphs (D’Ariano et al., 2007), dis-
crete event models (Wang et al., 2015), and event-activity
networks (Zhu and Goverde, 2021). Most of these formu-
lations result in a mixed-integer nonlinear programming
(MINLP) problem or a mixed-integer linear programming
(MILP) problem (D’Ariano et al., 2007; Luan et al., 2018).

To solve the resulting mixed-integer programming prob-
lems, many studies have considered optimization-based
approaches (Liu et al., 2023b; Luan et al., 2018; Yin et al.,
2022; Liu et al.,, 2024). The main advantage of using
optimization-based approaches is that they are easy to
implement and straightforward. However, the main disad-
vantage is that most optimization-based methods cannot
meet the time requirements for large railway timetable
rescheduling problems.

Reinforcement learning (RL) is a machine learning tech-
nique where an agent learns how to map states to ac-
tions, to maximize a numerical reward signal (Sutton and
Barto, 2018). Specifically, at each time step, the agent
first measures the state of the environment and then takes
an action according to its current policy. The agent then
may receive a reward from the environment. The learning
target of the agent is to learn an appropriate strategy so
that it can maximize the accumulated reward. Because
of its negligible online computation time and ability to
address uncertainties, RL has been successfully applied in
the research of transportation systems, including urban
traffic management problems (Sun et al., 2023, 2024),
power systems (Fu et al., 2024), and cooperative train
control problems (Wang et al., 2023).

There are also a few studies that use RL to solve the
railway timetable rescheduling problem. Most literature
considers a traffic controller as the agent that directly takes
actions to control the railway system, which is regarded as
the environment in RL. To find the best possible action in
this RL setting, most existing research uses value-based,
model-free RL algorithms, including Q-learning (Semrov
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et al., 2016; Khadilkar, 2019; Zhu et al., 2020) and deep Q-
network (DQN) (Ning et al., 2019). The RL-based railway
timetable rescheduling approach typically can be divided
into the offline training part and the online implementa-
tion part, and the online part can be executed efficiently
thereby realizing real-time control. However, the optimal-
ity of solutions obtained by the learning-based approach
cannot be guaranteed. Furthermore, the method used for
learning the value function significantly influences the
performance of the corresponding approach (Tang et al.,
2022). Meanwhile, constraint satisfaction and the conver-
gence of the approach can also be potential drawbacks of
RL-based approaches.

This paper focuses on integrating RL and optimization to
address railway disturbances, and the main contribution
of the paper is twofold: (1) we develop a method combin-
ing both RL and optimization for the railway timetable
rescheduling problem, where the integer variables are ob-
tained by RL and then the continuous variables are ob-
tained by solving a linear programming problem; (2) we
are the first to apply a double deep Q network (DDQN)
to train the agent for the timetable rescheduling problem,
where a fully connected input layer and a ReLU layer for
nonlinear terms are developed for the ) network.

The rest of the paper is organized as follows ! . In Section 2,
the formulation of the railway timetable rescheduling prob-
lem is presented. Section 3 introduces the proposed RL-
based railway timetable rescheduling method. In Section 4,
a case study is presented to illustrate the performance of
the developed approach. Section 5 concludes this paper.

2. RAILWAY TIMETABLE RESCHEDULING
PROBLEM

This section starts with defining the decision variables,
followed by the timetable rescheduling model, and the re-
sulting MILP problem for railway timetable rescheduling.

2.1 Decision Variables

Reordering and retiming are typically applied when dis-
turbances occur. To account for that, continuous variables
are defined to consider the operation times of the train,
and the integer variables are introduced to consider train
orders. Specifically, the continuous variables are defined as
follows:

a;,s: arrival time of train ¢ at station s;

d; s: departure time of train ¢ from station s;

Ti,s: dwelling time of train ¢ in station s;

Tiu,s: TUunning time of train ¢ between station v and
station s.

Then, the integer variables consist of the departure and
arrival orders. The departure order is defined as follows:

de,p _ 1, if d@s — dj7s > 0; (1)
1018 0, otherwise,

where (53 ?f’s represents the departure order between train

i and j at station s. Similarly, the arrival order is defined

as

1 This paper is the compact version of the master thesis of Zhang
(2023).

arr 1, if Ajs — Q5.5 > 05
08 0, otherwise,

(2)
where 67 ; represents the arrival order between train ¢ and

j at station s.
2.2 Railway Timetable Rescheduling Model

In what follows several constraints governing the decision
variables in Section 2.1 are explained. For train ¢ in the
railway system, the train operation should satisfy the
dwelling constraint and running time constraints:

di,s = Qj,s + Ti,s» (3)
A s = di,s; + 7"1;73;78, (4)
where s; represents the preceding station of station s on

the route of train ¢. The dwelling time 7; ; and running
time 7; ,, s should satisfy

min
Ti,s Z Ti,s ’ (5)
min
Ti,u,s Z Ti,u’sa (6)
where 770" is the minimum dwelling time of train 7 at
;

min

station s, and 7;%" is the minimum running time of train
¢ between station v and s.

In principle, the train cannot depart earlier than the
originally scheduled departure time:

dis > Dy, (7)

ais > A s, (8)
where D; ; and A; ; represent the original departure time
and arrival time of train i at station s.

To describe the headway constraint of trains departing
from a shared station, the parameter 3; ;. for the depar-
ture of two trains is defined as follows:

1, if train 7 and j use the same track

Bij,s = for their departure at station s; (9)
0, otherwise.
Bijs=1: Bijs=0:
train j

station s station s

station s

Fig. 1. Illustration of departure situation parameter 3; ; s

Similarly, as shown in Fig. 2, the parameter 0; ;, for the
arrival of two trains is defined as follows:

1, if train ¢ and j use the same track

i s = for their arrival at station s; (10)

0, otherwise.

Then, the departure-departure headway between trains ¢
and j at station s should satisfy:
dis —djs > W™ = M(2 = B s — 855,

1,758

(11)
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0ijs=1 05 =0
train j

station s station s

station s

Fig. 2. Illustration of arrival situation parameter 0; ;

where H™" denotes the minimum headway, and M rep-
resents a large positive constant. Eq. (11) indicates that
only when 3; ; s = 1 and d; 5, = 1, the departure headway
constraints should be considered; otherwise (11) holds
automatically.

For the consistency of the departure order, we have

e + Ot = 1. (12)

Similar to (11) and (12), the arrival-arrival headway con-
straints are defined as follows:

Qiys — s > B — M(2 =05, —67F,),  (13)
6+ 65 =1 (14)

For the station with more than one platform, reordering
can be applied, and we have

>, O -6y <& -1
JET()\{i}
where T (s) is the set of all trains that pass the station
s, and &, is a parameter indicating the total number of
platforms in station s. Eq. (15) represents that at most
&s — 1 trains can change their order with train ¢ at station
s with &, platforms.

(15)

Furthermore, the arrival orders and departure orders be-
tween two connected stations should satisfy

.. osarr . gdep
6i,j,s;0l,]756i7j,s - ﬂi,j7s;91,]756i7j’8;'

(16)
Constraint (16) indicates that if train ¢ and train j use
the same track to travel from station s; to station s, their
arrival order 47”7 must be as the same as their departure
order 6 _.

INEEF

2.3 The MILP Problem Formulation

In this paper, the objective is to minimize delays for all
passengers at all stations. The objective function of the
railway timetable rescheduling problem is formulated as

follows:
J= Z Zpi,s(ai,s - Ai,s)a
seSieT

where S and 7T are sets of all stations and all trains
respectively, p; s represents the number of passengers on
train ¢ with the destination of station s, A; , is the original
arrival time of train 7 at station s from the pre-defined
timetable. In this paper, the value of p; 5 is assumed to be
known, which in general can be estimated based on the
historical data.

(17)

The railway timetable rescheduling problem is then given
as
min J:= Z Zpi,s(ai,s —Ais)
s€SieT
st. dis=ais+Tis,
Ais = di,s; + Tisi s
dis > D; s,
ais > Ais,

min
Tijus = Ti s
min
7—7,,3 2 Ti75 ]

di,s - dj,s > hmin
6de.p —|— 6(,1ep = 1

2,758 2:%,8

—M2-Bi . —0tr), (18)

1,758

Gie = G 2 WP~ M(2— 6,50 — 6,
0+ 0, =1,

>, B - <61,
JET (s)\ {4}
BrgrBii 03 = B 5 0igBh
i,jeT, seS§.

The optimization problem in (18) is an MILP problem.

3. RL-BASED RAILWAY TIMETABLE
RESCHEDULING

In this section, the underlying setting to be used in RL
is introduced. Then, the RL-based algorithm is developed
for timetable rescheduling.

3.1 Environment Settings

In this paper, the environment is a combination of the
railway network and the MILP problem. Specifically, at
each time step, the RL agent makes decisions based on the
real-time state of the railway system. After receiving the
integer solutions from the RL agents, the MILP problem
is transformed into a linear programming problem. After
the linear programming problem is solved, the complete
solution, i.e. the new timetable, will be applied to the
railway network until the next time step.

Environment Update In this paper, the railway system is
formulated as an event-triggered and time-based system.
When a train ¢ arrives at station s, the railway timetable
rescheduling problem is triggered if the following condition
holds:

(Ti,s +a;s > Ri,s + Ai,s) A (fs > 1) (19)
The first part of (19) describes that train 4 is delayed when
it arrives at station s, and the second part indicates that
reordering is possible when station s has more than one
platform.

State  To build the connection between consecutive steps,
a set 7Y is introduced to include the most recently de-
parted trains on each track from the initial station sq.
The state representation of the RL environment is given
as follows:

A= (p7 Qs 680 y s TO)7 (20)
where p is the vector representing all variables related
to the number of passengers, as, is the vector denoting
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the arrival times of all trains at the initial station sg, ds,
denotes the vector of train orders at the initial station sq,
and p represents the existing delays.

Action  The action of the RL agent is the independent
integer variable of the MILP problem. There are two main
reasons for not selecting all integer variables as the action.
First, the action space may become too large to allow for
efficient learning. Second, the action space may not be fully
feasible, which will cause further problems with reward
design and environment updates.

According to the layout of the railway network, we de-
fine the following preprocessing principles to prune some
binary variables and find independent integer variables:

e The order between two trains on the same track
cannot be changed.

e At the intersection point where multiple tracks merge
into one track, the order between the trains that have
already passed this intersection and trains that have
not yet passed cannot be changed.

e Conjugate orders are always dependent on each other
according to (12) and (14).

The main aim of the preprocessing is to reduce the solution
space by removing infeasible solutions, thereby ensuring
constraint satisfaction in the RL approach and improving
solution efficiency.

Reward Function  For the reward function, the negative
value of the objective function given in (17) is used as

follows:
r=—-K Z Zpi,s(ai,s - Ai,s)7
sESET
where K is a scaling constant.

(21)

3.2 Reinforcement Learning Algorithm

As a variant of the DQN method (Mnih et al., 2015), the
double deep Q network (DDQN) uses two different net-
works to select and evaluate the action in order to address
the problem of overestimation. The DDQN approach (van
Hasselt et al., 2016) is implemented to train the agent,
where the target network is used to evaluate and the online
network is applied to select the action. In this context,
DDQ@QN is generally considered superior to DQN due to
its ability to mitigate overestimation bias by decoupling
action selection and evaluation using two separate neural
networks (van Hasselt et al., 2016).

The Q network consists of an input layer, two hidden
layers, and one output layer, and the structure of the
neural network structure is presented in Fig. 3.

The target employed by the DQN approach is defined as
follows:

Yo = V1 +ymax Q(Ap1, wing ), (22)
where 7, represents the parameters of the target @
network for DQN, A;;;1 denotes the state at step t +
1, and w represents the action defining all independent
variables. For a clear comparison, the target equation can
be rewritten as

ye = Wip1 +7Q(At+17argmgXQ(At+1,W;nt_);m_)- (23>

Hidden Layer 1
Fully Connected

Hidden Layer 2
Fully Connected

Hidden Layer 3

Fully Gonmected Action Value Output

State Input

RelU Layer

©

RelLU Layer

©

RelU Layer

©

State Size

00000000
--00000000:---

s OO0 0000 00s==-

Fig. 3. Structure of the Q-network

The DDQN approach uses two different convolutional
neural networks to select and evaluate the action. In
this context, the existing online network of the DQN,
represented by ) in this paper, is chosen to select the
action, and the target network, represented by Q in this
paper, is chosen to evaluate. Therefore, the target equation
could be written as

Yo = Vi1 +7Q(Ars1, arg max QA1 w,me);my ), (24)
where two networks for selection and evaluation in the
DDQN approach are not fully decoupled, since the target
network () remains a periodic copy from the online network

Q.

The procedure of the RL-based algorithm is illustrated in
Fig. 4.

Environment \

Complete Railway
Solution Model

Mi'p (Cast State)

Delay Reward Reward
Function

MILP W State
Problem

Integer

Solution

Encoding

Linear

/

Action ‘

(Independent Integer Variables) &

Fig. 4. Procedure for solving the timetable rescheduling
problem

4. CASE STUDY

In this section, we conduct a small-scale case study to
illustrate the effectiveness of the developed framework. We
assume that passenger demands are known so that we can
demonstrate the performance of the developed approach
under deterministic conditions.

Part of the Dutch railway network from Utrecht (Ut) to ’s-
Hertogenbosch (Ht) is used for the simulation. The layout
of the railway network is shown in Fig. 5. The simulation is
conducted through MATLAB R2022b on a MacBook Pro
14.2 2017 with 3.1 GHz Intel i5 CPU and 8 GB RAM.



314 Hengkai Zhang et al. / IFAC PapersOnLine 58-10 (2024) 310-315

@+ oion
-@-  intermediate stop
[ =] destination [
L] L] L] L] L] L] L] L]
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Fig. 5. Layout of the railway network

Optimization problems in the case are solved by using
Gurobi Optimizer v10.0.1rcO (mac64[x86]).

For the timetable, five trains are considered every 30
minutes. Among these trains, three are Intercity trains,
and two are Sprinter trains. From Fig. 5, it can be seen that
there are two separate tracks from Station Ut to Station
Htnc, and thus we do not need to consider the train order
from Station Ut to Station Htnc. In this context, the initial
station sy of the RL agent is set to be Station Htnc.

The line parameters are defined as follows. For all de-
parture parameters 3; ;s = 1 and for all arrival param-
eters 0; ;s = 1. The minimum safety headway is set to
hmin = 90s. Only Station Htnc and Station Gdm have two
platforms, for all other stations £ = 1. In this paper, a
margin of 7% is accepted for the running time and dwelling
time. These parameters are calculated as follows:

min __ . min __ .
Tins = 0.93R; o s Tis = 0930 s,
where R;, s represents the original running time of train

i between station v and s from the timetable, and I; ; is
the original dwelling time of train ¢ at station s.

For every step, five trains are considered. From the layout
of the railway network, it is clear that reordering is only
possible at Station Htnc and Station Gdm. For Station
Htne, since there are two tracks, 3 independent binary
variables could determine the orders of these four trains.
Similarly, for Station Gdm, there are five trains and
still two platforms, 4 independent binary variables are
considered. In total, there are seven independent binary
variables for the railway timetable rescheduling problem
at one single step. Therefore, the Q network consists of
the following layers: the first layer is a fully connected
input layer with an output dimension of 256, followed
by a ReLU layer for non-linearity. After that, two fully
connected layers of 256 x 256 with ReLU activation after
each of them are added. In the end, the input dimension
of the output layer is also 256. For the reward function,
the constant K is set to be 10~%. Specifically, the rest of
parameters for training the RL agent are given in Table 1.

Table 1. Some parameters of training RL agent

Parameter Notation Value
Size of Layer 1 - State Size x 256
Size of Layer 2, 3 - 256 x 256
Size of Output Layer - 256 x Action Size
Experience Buffer Length N 10000
Batch Size - 128
Learning Rate ¢ 0.001
Initial Exploration Rate €0 0.8
Epsilon Decay Rate - 0.001
Discount Factor T 0.99
Regularization Factor - 0.0001
Reward Scaling Constant K 10—+

In this case study, the influence of multiple extra delays
in Station Htns is studied. Every new train may get an
extra delay in the new step. The delay item p is a five-
dimensional vector represented by p = (1, 2, t43, tha, f5),
where p; denotes the delay of train i. The probability
of adding extra delay for each train is 50%. The exact
values of these delays are given in Table 2, where U(0,1)
represents a uniform distribution between 0 and 1.

Table 2. Delays of trains for case study

Delay Initial Step Other Steps
H1 0 dl,thC - Dl,thc
w2 8+4-U(0,1) 14+2-U(0,1)
ps  A+4-U(0,1) 24 U(0,1)
Ha 5+3-U(0,1) 242-U(0,1)
M5 5+4-U(0,1) 1+ U(0,1)

0 T T T T T T ‘

! ‘

Reward
&
——

Episode Reward
—— Average Reward

L L L L
0 500 1000 1500 2000 2500 3000 3500

Episode Number

Fig. 6. Episode reward during training process

The average reward during the training process is given in
Fig. 6. It can be seen that the agent learned very fast in
the first 500 epochs. After about 800 episodes, the learning
curve has become relatively stable. The average reward
after 3000 epochs is -1.1636. The test results are given in
Table 3.

Table 3. Simulation results for railway
timetable scheduling
Method Delay Improvement CPU Time
Baseline (FIFO) 38751 min - 41.3 s
Optimization 7139 min 81.95% 125 s
RL-based Method 9582 min 75.08% 8.2s

Compared with the baseline, both approaches make
a significant improvement. Specifically, compared with
the baseline, the performance of the RL-based method
increases by 75.08%, while the improvement of the
optimization-based approach is about 81.95%. Although
the RL-based method underperforms the optimization-
based method, the gap between these two approaches is
small. For one epoch, the RL-based method takes about
8.2 s on average for execution, while the local optimization-
based method takes about 12.5 s. Therefore, the RL-based
approach reduces execution time by around 34.8%, and
hence can be considered as a viable approach to mitigate
passenger delays while also reducing solution time.
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5. CONCLUSIONS

In this paper, an integrated algorithm that combines RL
and linear programming has been developed for the rail-
way timetable rescheduling problem. A double DQN ap-
proach with a fully connected input layer and a ReLU layer
is applied to train the agent in finding the integer variables.
Given these variables, optimization is then used to solve
the resulting LP in order to find the remaining continuous
time variables of the problem. Simulation results indicate
that the developed approach can help to reduce passenger
delays while the solution time is reduced.

Topics for future research include extending the integrated
approach to large-scale railway networks, developing a
more elaborated approach that considers more detailed
passenger demands, and performing an in-depth assess-
ment for more complex case studies.
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