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Abstract 
With the increasing availability of genomic data, biologists aim to find more accurate descriptions of evolutionary histories influenced by secondary 
contact, where diverging lineages reconnect before diverging again. Such reticulate evolutionary events can be more accurately represented in 
phylogenetic networks than in phylogenetic trees. Since the root location of phylogenetic networks cannot be inferred from biological data under 
several evolutionary models, we consider semi-directed (phylogenetic) networks: partially directed graphs without a root in which the directed 
edges represent reticulate evolutionary events. By specifying a known outgroup, the rooted topology can be recovered from such networks. 
We introduce the algorithm SQUIRREL (Semi-directed Quarnet-based Inference to Reconstruct Level-1 Networks) which constructs a semi- 
directed level-1 network from a full set of quarnets (four-leaf semi-directed networks). Our method also includes a heuristic to construct such 
a quarnet set directly from sequence alignments. We demonstrate SQUIRREL’s performance through simulations and on real sequence data 
sets, the largest of which contains 29 aligned sequences close to 1.7 Mb long. The resulting networks are obtained on a standard laptop 
within a few minutes. Lastly, we prove that SQUIRREL is combinatorially consistent: given a full set of quarnets coming from a triangle-free 
semi-directed level-1 network, it is guaranteed to reconstruct the original network. SQUIRREL is implemented in Python, has an easy-to-use 
graphical user interface that takes sequence alignments or quarnets as input, and is freely available at https://github.com/nholtgrefe/squirrel.
Keywords: semi-directed phylogenetic network, rooted phylogenetic network, quarnet, traveling salesman problem, sequence alignment, network 
reconstruction.
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Introduction
Secondary contact, where diverging lineages come into con
tact and hybridize before continuing to diverge, is common
place in evolution. This process is poorly described by most 
phylogenetic reconstruction methods which generally assume 
a bifurcating tree model. Secondary contact has been widely 
documented for diverse sets of taxa, including viruses (e.g. 
HIV and SARS-CoV-2, see Worobey et al. 2008; Pekar et al. 
2021; Jiao et al. 2024), bacteria (e.g. Diop et al. 2022), plants 
(e.g. Ehrendorfer 1959; Rieseberg et al. 2003), birds (e.g. 
Taylor and Larson 2019), fish (e.g. Meier et al. 2019; Du 
et al. 2024), invertebrates (e.g. Zhang et al. 2016), and pri
mates, including humans (e.g. Patterson et al. 2006; Green 
et al. 2010). Through secondary contact, introgression—the 
exchange of genetic material between hybridizing lineages— 
may occur by means of complex processes, often involving 
multiple rounds of backcrossing.

Evolutionary histories shaped by secondary contact can be 
more accurately represented by rooted phylogenetic level-1 
networks than by strictly bifurcating rooted phylogenetic 
trees. Rooted phylogenetic level-1 networks are directed acyc
lic graphs that are largely tree-like in structure, describing pat
terns of divergence, but include localized reticulations where 

lineages have merged through reticulate events (see, e.g. 
Fig. 1a and see the Materials and Methods for a more formal 
definition). Application of these networks is highly desirable, 
but their construction is computationally intensive, and their 
use has remained out of reach for most biologists. Results re
ported here, including an efficient algorithm and software, ad
dress the challenge of building phylogenetic level-1 networks, 
thus offering the possibility of finding a more realistic descrip
tion of biological diversity.

Our results are achieved by considering semi-directed 
(phylogenetic) networks (Solís-Lemus and Ané 2016), in 
which there is no root and only branches representing reticu
late events carry information about direction (see the 
Materials and Methods for a more formal definition). These 
networks have gained considerable interest recently (see, e.g. 
Solís-Lemus and Ané 2016; Allman et al. 2019; Kong et al. 
2024; Warnow et al. 2024; Wu and Solís-Lemus 2024; 
Frohn et al. 2025), as it has been shown that under certain 
models of evolution it is theoretically impossible to infer the 
root of a rooted phylogenetic network directly from data 
(Baños 2019; Gross et al. 2021; Xu and Ané 2023). For an ex
ample of a semi-directed level-1 network, see Fig. 1b. In case 
an outgroup is available, this can be used to root the semi- 
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directed network (Solís-Lemus and Ané 2016), as illustrated in 
Fig. 1a and b. Several identifiability results have been recently 
proven for semi-directed level-1 networks. In particular, it was 
shown that such networks can be theoretically recovered from 
data under various models of evolution (Baños 2019; Gross 
et al. 2021; Xu and Ané 2023). By focusing on semi-directed 
networks, we offer a tractable way for reconstructing phylo
genetic level-1 networks.

Recently, two algebraic approaches have been introduced to 
construct semi-directed level-1, four-leaved networks, or 
quarnets (see Fig. 1c): QNR-SVM (Barton et al. 2022) and 
an algorithm in Martin et al. (2023). These methods take as 
input sequence data and both employ algebraic invariants to 
infer quarnets under the Jukes–Cantor model (Barton et al. 
2022; Martin et al. 2023) and the Kimura 2-parameter model 
(Martin et al. 2023). To infer evolutionary relationships for 
larger data sets, methods are therefore required to puzzle to
gether such quarnets into larger networks (see, e.g. Schmidt 
et al. 2002 and Oldman et al. 2016 for two of the earliest al
gorithms where this approach was used for trees and rooted 
networks, respectively). It is known that the quarnets coming 
from a semi-directed level-1 network uniquely characterize the 
network (Huber et al. 2024) and that theoretically they can be 
puzzled together efficiently to reconstruct the network (Frohn 
et al. 2025). However, a set of quarnets stemming from real 
data will unavoidably contain erroneous quarnets, thus creat
ing the need for a more robust algorithm.

In this paper, we introduce SQUIRREL (Semi-directed 
Quarnet-based Inference to Reconstruct Level-1 Networks): 
an efficient software tool and algorithm that builds a semi- 
directed level-1 network from a given full set of quarnets 
(that is, a dense set that contains one quarnet for each subset of 
four taxa). We complement SQUIRREL with a fast heuristic method 
to construct quarnets from sequence data: the δ-heuristic (see the 
Materials and Methods for a formal description). Note that vari
ous existing algorithms and programs can be used to infer level-1 
networks (both rooted and semi-directed) from biological data 
that are based on alternative approaches. For example, 
PHYLONET (Than et al. 2008; Yu and Nakhleh 2015), SNAQ 
(Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017), and 
PHYNEST (Kong et al. 2024) are all software tools using 
likelihood-based algorithms operating under a coalescent model. 

SNAQ builds semi-directed networks, whereas both PHYNEST 
and PHYLONET focus on rooted networks. These methods assume 
an upper bound on the number of reticulate events and either 
take gene trees (PHYLONET and SNAQ) or sequence data 
(PHYNEST) as input, after which they perform a potentially time- 
consuming search through the space of networks to optimize a 
likelihood criterion. On the other hand, NANUQ (Allman 
et al. 2019) and the recent extension NANUQ+ (Allman et al. 
2024b) do not employ a likelihood framework and instead use 
concordance factors on four-taxon subsets to produce a semi- 
directed level-1 network up to contracting triangles (3-cycles) 
and identifying the locations of reticulations in 4-cycles. This ap
proach is faster but requires other methods to compute the input 
gene trees first, which itself can be a challenging step (Chifman 
and Kubatko 2014; Simmons and Gatesy 2015; Zhang and 
Mirarab 2022; Steenwyk et al. 2023). Other approaches use 
Bayesian methodology to construct rooted networks [e.g. 
SPECIESNETWORK {Zhang et al. 2018a}] but are not yet able to scale 
to larger data sets. Lastly, LEV1ATHAN (Huber et al. 2010) and 
TRILONET (Oldman et al. 2016) take a combinatorial stance to
wards the network construction problem; they take as input a set 
of rooted three-leaf trees (LEV1ATHAN ) or rooted three-leaf net
works (TRILONET ) and output a rooted level-1 network, with 
TRILONET including a heuristic to generate rooted three-leaf net
works from sequence data.

We now present a brief overview of how SQUIRREL works; a 
formal description of the algorithm (plus supporting figures) is 
given in the Materials and Methods section. As with NANUQ 
and to a lesser extent SNAQ , SQUIRREL constructs networks up 
to the contraction of triangles (see Fig. 1b), thus resulting in a 
binary triangle-free semi-directed level-1 network (i.e. a net
work with no cycles that contain just three vertices). Since tri
angles are relatively difficult to infer correctly (Gross et al. 
2021), SQUIRREL does not use the location of any triangles in 
the quarnets and instead only employs tf-quarnets (triangle- 
free quarnets; see Fig. 1c). As shown in Frohn et al. (2025), 
by considering tf-quarnets , we still maintain enough informa
tion to theoretically construct the complete semi-directed 
level-1 network up to contracting its triangles. If quarnets 
with triangles are given in the input, tf-quarnets are obtained 
by contracting the triangles. Hence, each tf-quarnet is either a 
quartet tree or contains a 4-cycle.

(a) (b) (c)

Fig. 1. a) A rooted phylogenetic level-1 network on 12 taxa represented by numbers 1–12, with the dashed reticulation edges pointing towards 
reticulation vertices which represent reticulate events. b) The semi-directed topology of the rooted network, which is a triangle-free semi-directed level-1 
network on 12 leaves, again with the reticulation edges dashed. This network uniquely determines the rooted network by specifying leaf 1 as an outgroup. 
c) Some of the quarnets induced by the semi-directed network. When ignoring the leaf labels, these are all six possible level-1 quarnet shapes. The top left 
quarnet is a quartet tree, the bottom right quarnet is the only one that contains a cycle of length 4 (4-cycle), and the other four quarnets contain one or two 
triangles (3-cycles). The tf-quarnets (triangle-free quarnets) can be obtained from the quarnets by contracting each of the triangles to a single node. The 
quartet tree and quarnet with a 4-cycle are both already triangle-free.
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Given a dense set of weighted tf-quarnets , SQUIRREL first 
uses all of the tf-quarnets that are quartet trees to build a 
sequence of nonbinary phylogenetic trees, using an algo
rithm from Berry and Gascuel (2000) and employing tech
niques from the QUARTETJOINING algorithm (Grünewald 
et al. 2009) that constructs phylogenetic trees from quartet 
trees. Within each of the nonbinary phylogenetic trees in 
the sequence, the internal vertices with high degree are re
placed by a suitable cycle. In particular, SQUIRREL repeated
ly solves the TRAVELING SALESMAN PROBLEM (TSP, see, e.g. 
Bellman 1962; Held and Karp 1962) with suitably defined 
distances to create a cyclic ordering of the subnetworks 
around the cycles. This results in a sequence of candidate 
level-1 networks, from which SQUIRREL returns the one 
that agrees, in a well-defined sense, with most of the origin
al tf-quarnets . If an outgroup is specified, this network can 
in turn be transformed into a rooted network.

We emphasize that any method that is able to create a dense 
set of tf-quarnets from biological data (possibly incorporating, 
e.g. incomplete lineage sorting) could be used to generate input 
for SQUIRREL . Furthermore, SQUIRREL takes into account 
weights the tf-quarnets might have, which can be used to mod
el confidence or bootstrap support. Reassuringly, SQUIRREL is 
consistent in the sense that it will reconstruct the correct net
work if all tf-quarnets are derived from a triangle-free semi- 
directed level-1 network, a fact that we prove in Theorem 1
in the Materials and Methods section.

Results
Simulation Study
Following the simulation studies for LEV1ATHAN (Huber et al. 
2010) and TRILONET (Oldman et al. 2016), we analyze what 
effect noise in a set of tf-quarnets has on the performance 
of SQUIRREL . To this end, we generate 100 random triangle- 
free semi-directed level-1 networks for every number n ∈ 
{10, 15, 20, 25, 30, 35} of leaves (see supplementary 
material Section B, Supplementary Material online for 
the generating algorithm). For each network N , the reticula
tion number r(N ) (i.e. the number of reticulations) is 
chosen uniformly at random from {0, . . . , ⌊n/3⌋}. This results 
in a set of 600 random networks N , each inducing a set Q(N ) 
of tf-quarnets . For each network N and each perturbation 
ratio ε ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, we cre
ate a noisy set of tf-quarnets Qε(N ) by changing the 
undirected underlying topology of a fraction of the tf-quarnets 
uniformly at random which is given by ε. Then, if this 
creates a 4-cycle, we pick a random location for the reticula
tion. We use this scheme for the creation of noise to prevent 
4-cycles from only changing their reticulation and 
keeping their circular ordering. Such a perturbation will barely 
influence the output of the algorithm, since reticulations of 
4-cycle tf-quarnets are only used to determine the location of 
reticulations in 4-cycles of the final networks. The resulting 
5,400 = 600 × 9 sets of unweighted tf-quarnets Qε(N ) 
are used as input for SQUIRREL . The average computation 
times ranged from below a second for the networks with the 
fewest leaves to below two minutes for the networks with 35 
leaves.

To measure how well SQUIRREL reconstructs the original net
works from these noisy tf-quarnet sets, we compute two simi
larity scores for every input network N and output network 
M. The first score is the tf-quarnet consistency score (modeled 

after a similar score in Huber et al. 2010 and Oldman et al. 
2016) which is defined as

C(N ,M) =
|Q(N ) ∩ Q(M)|
|Q(N )|

. (1) 

This score measures what fraction of the tf-quarnets induced 
by N are also induced by the constructed network M. We 
also consider its symmetric counterpart: the tf-quarnet sym
metric consistency score, defined as

S(N ,M) =
|Q(N ) ∩ Q(M)|
|Q(N ) ∪ Q(M)|

. (2) 

Both scores are always in the interval [0, 1] and attain a value 
of 1 if and only if N =M, which follows from Frohn et al. 
(2025). The boxplots in Fig. 2 show the distribution of the 
two scores for different perturbation ratios ε and leaf set sizes 
n. As expected, both scores decrease for larger values of ε. 
However, the decrease seems fairly limited, with both consist
ency scores averaging above 0.91 even for sets containing only 
50% of the original tf-quarnets .

To investigate in what way noise in a set of tf-quarnets influ
ences the structure of the reconstructed networks, we compute 
the difference in the reticulation numbers r(N ) − r(M) be
tween the input networks N and output networks M. The 
boxplots in Fig. 3 show the result of this experiment, again 
for different values of ε and n. Up to a value of ε = 0.1, 
SQUIRREL reconstructs networks with the correct reticulation 
number in almost all cases. For higher values, the differences 
are more spread out, while the average difference slowly be
comes positive. Thus, it seems that SQUIRREL slightly favors 
networks with fewer reticulations for high values of ε, al
though the average absolute differences remain below a rea
sonably small 1.5. A possible explanation could be that by 
not considering triangles in the quarnets, the signal in the 
data indicating reticulate events is weakened.

We also perform a study with simulated nucleotide sequen
ces to test the performance of the δ-heuristic combined with 
SQUIRREL , using a similar approach to the simulations pre
sented in Holland et al. (2002) and Oldman et al. (2016). 
For each of our 600 previously generated networks, we simu
late one multiple sequence alignment (MSA) for every se
quence length k ∈ {1, 10, 100 kb, 1 Mb} as follows. Briefly, 
we first root every semi-directed network N uniformly at ran
dom on some edge (making sure that it is a valid root location) 
to create a rooted phylogenetic network. We then use the soft
ware tool SEQ-GEN (Rambaut and Grass 1997) to simulate 
MSAs of equal length along all displayed trees of the rooted 
phylogenetic network under the K2P model with transition- 
transversion bias 4 (as in Holland et al. 2002; Oldman et al. 
2016). The MSAs of the displayed trees are then concatenated 
to create one MSA with the desired length k. Since our 
δ-heuristic treats every site of the MSA independently, this 
way of generating MSAs is asymptotically equivalent to gener
ating MSAs under the K2P network-based Markov model 
with reticulation parameters of 0.5 (see, e.g. Gross et al. 
2021).

The branch lengths (i.e. the expected number of substitu
tions along each edge) that are used for the simulations are de
termined as follows. Given an edge (u, v) of one of the rooted 
phylogenetic networks, we let p(u,v) be the average length (in 
terms of number of edges) of all unique paths from the root 
to any leaf that contain the edge (u, v). Then, we assign the 
edge (u, v) a branch length of 0.3/p(u,v), which ensures that 
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every path in the network from a root to a leaf roughly has a 
total length of 0.3, as is the case in the simulations by Holland 
et al. (2002) and Oldman et al. (2016).

We then use the 2,400 = 600 × 4 simulated MSAs as input 
for our δ-heuristic to construct dense sets of weighted 
tf-quarnets , which are in turn used to construct semi-directed 
networks with SQUIRREL . As before, we compare every con
structed semi-directed network M with the original semi- 
directed network N in terms of C-score, S-score and difference 
in reticulation number r(N ) − r(M). The results are depicted 
in Figs. 4 and 5, respectively. We observe that both consistency 
scores increase as the sequence length changes from 1 to 10 kb. 
Additionally, both the average and the variation of the differ
ence in reticulation number decrease. Interestingly, the in
crease of the sequence length from 10 to 100 kb or 1 Mb 
does not seem to have much further effect. As was the case 
in our previous experiment, an increase in the number of 
leaves n of the original semi-directed network improves the 
two considered consistency scores, yet also results in a greater 
spread of the difference in reticulation number between the 
original and constructed network. The latter point can be ex
plained by the fact that smaller networks simply allow for few
er reticulations, thus also bounding the largest possible 
difference in reticulation number.

Biological Data
To illustrate the applicability of SQUIRREL to biological data, 
we consider three data sets on groups of taxa with evidence 
of secondary contact in their evolutionary histories: a large 
set of tf-quarnets generated with the MML algorithm from 
Martin et al. (2023) (named after the authors), a short MSA 
on few taxa from Salemi and Vandamme (2003), and a long 
MSA on many taxa from Vanderpool et al. (2020).

Xiphophorus. We first test the applicability of SQUIRREL to a 
set of tf-quarnets that was generated with the MML algorithm 
(Martin et al. 2023). For each four-taxon subset, this algo
rithm creates a ranking of the possible 4-cycles according to 
some scoring criterion (with the lowest score being the best). 
Based on the scores, it either detects a quartet tree (which we 
give a weight of 1), or it chooses the best 4-cycle, which we 
give a weight of min (1, s2/s1 − 1), where s1, s2 are the two 
lowest (and thus best) scores. In this manner, we take into ac
count how close the scores for the two best scoring 4-cycles 
are.

The data set we consider contains 14,950 weighted 
tf-quarnets on a set of 25 swordtail fish and platyfish (genus 
Xiphophorus) and the single outgroup Pseudoxiphophorus 

Fig. 2. Boxplots showing the spread of C- and S-scores between the input network N and output network M, when applying SQUIRREL to sets of 
tf-quarnets with leaf set sizes n and perturbation ratios ε. The boxplots show the quartiles of the data and its outliers. A single outlier in the case of n = 10 
and ε = 0.5 has a C- and S-score below 0.6 and is omitted from the figure for clarity.

Fig. 3. Boxplots showing the variation of the difference in reticulation number r(N ) − r(M) of the input network N and output network M, when applying 
SQUIRREL to sets of tf-quarnets with leaf set sizes n and perturbation ratios ε. The boxplots show the quartiles of the data and its outliers.
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jonesii. This genus has been widely studied and much evidence 
has been presented for widespread hybridization within the 
genus (see, e.g. Rosenthal et al. 2003; Culumber et al. 2011; 
Cui et al. 2013; Kang et al. 2013; Schumer et al. 2013; 
Solís-Lemus and Ané 2016, and the references therein), mak
ing it difficult to capture the full evolutionary history. 
Traditionally, the genus is divided into four major lineages: 
northern swordtails, southern swordtails, northern platy
fishes, and southern platyfishes (Meyer et al. 2006; Cui et al. 
2013). The best network generated by SQUIRREL (taking less 
than two minutes) had a weighted tf-quarnet consistency score 
of 0.974 and is shown in Fig. 6. However, many of the other 
candidate networks had scores that were very close to the 
score of the best scoring network.

Since the weighted tf-quarnet consistency score measures 
how consistent the network is with the tf-quarnets , taking 
their weights into account [see equation (3) in the Materials 
and Methods], it should be noted that a weighted consistency 
score close to 1 does not necessarily imply a close to 100% lev
el of confidence that the network is correct. Instead, it reflects 
whether the quarnets with high weight (i.e. high confidence in 
their correctness) are consistent with the constructed network, 
making it most useful as a relative measure to assess if there is a 
clear best network or if multiple networks perform similarly 
well. In contrast, the unweighted consistency score [see equa
tion (1)] can be more easily interpreted as an absolute measure 
of performance, but it may discard useful information about 

quarnet confidence if such information is available. A more 
statistically sound way to generate weights for the tf-quarnets 
inferred with the MML algorithm from Martin et al. (2023)
(similar to the bootstrap support in Barton et al. 2022) would 
possibly increase the confidence of SQUIRREL in a single best 
network. Hence, we would welcome further research efforts 
into computing confidence scores for inferred tf-quarnets 
which can be used as input weights for SQUIRREL .

The constructed network clearly divides the three major 
Xiphophorus clades (northern swordtails, southern sword
tails, and platyfishes) but similar to other studies (Meyer 
et al. 2006; Cui et al. 2013) intertwines northern and southern 
platyfishes. Our network has one reticulation edge involving 
an ancestor of both the northern and the southern swordtails. 
Another reticulate event places the northern swordtail 
Xiphophorus cortezi both as a sibling of Xiphophorus neza
hualcoyotl and of the clade (Xiphophorus malinche, 
Xiphophorus birchmanni). This reticulate event aligns with 
previous work in Cui et al. (2013), where the precise place
ment of X. cortezi within this subset of the species (including 
Xiphophorus montezumae) was also uncertain and depended 
on the inference methods used. Furthermore, one of the sub
trees displayed in our network for this subset of the species 
(i.e. the subtree that includes X. montezumae) is the same as 
the subtree of the network inferred by SNAQ (Solís-Lemus 
and Ané 2016; Solís-Lemus et al. 2017). The last reticulate 
event involves the southern platyfish Xiphophorus maculatus, 

Fig. 4. Boxplots showing the spread of C- and S-scores between the input network N and output network M, when applying the δ-heuristic and SQUIRREL 

to MSAs with leaf set sizes n and sequence lengths k. The boxplots show the quartiles of the data and its outliers.

Fig. 5. Boxplots showing the variation of the difference in reticulation number r(N ) − r(M) of the input network N and output network M, when applying 
the δ-heuristic and SQUIRREL to MSAs with leaf set sizes n and sequence lengths k. The boxplots show the quartiles of the data and its outliers.
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for which Cui et al. (2013) report difficulties placing it in the 
mitochondrial DNA tree. Judging from the many different in
ferred networks and possible reticulate events (see again 
Rosenthal et al. 2003; Culumber et al. 2011; Cui et al. 
2013; Kang et al. 2013; Schumer et al. 2013; Solís-Lemus 
and Ané 2016), capturing the evolutionary history of the com
plete genus as a level-1 network might be too much to ask for 
because the truth may not be level-1. As an example, evolu
tionary histories containing many hybridization events be
tween more distantly related species (such as horizontal gene 
transfer) cannot always be captured well by a level-1 network, 
since such events often result in complex networks with many 
nested reticulation events (see, e.g. Soucy et al. 2015, Fig. 5).

HIV. We now consider an MSA of the HIV-1 virus data set 
containing nine sequences of length 9,953 bp which first ap
peared in Salemi and Vandamme (2003). This data set is well- 
studied (Lemey et al. 2009; Huber et al. 2010; Oldman et al. 
2016) and contains sequences of the HIV-1 M-group subtypes 
A, B, C, D, F, G, H, and J as well as a sequence for KAL153 
which is believed to be a recombinant of subtypes A and B 
(see Lemey et al. 2009, Ch. 16). We use our δ-heuristic (for
mally described in the Materials and Methods) to obtain a 
weighted set of tf-quarnets from the MSA and then apply 
SQUIRREL to construct a network, which we root using the out
group C (as in Salemi and Vandamme 2003; Huber et al. 
2010). The δ-heuristic and SQUIRREL constructed a clear best 
scoring network (shown in Fig. 7a) with a weighted tf-quarnet 
consistency of 0.58 within 1 s.

Indeed, SQUIRREL , combined with the δ-heuristic , is able to 
identify KAL153 as a recombinant of subtypes A and B, agree
ing with the analysis in (Lemey et al. 2009, Ch. 16). This com
pares favorably to TRILONET (Oldman et al. 2016), where the 
subtype H was identified as a recombinant (see the constructed 
network in Fig. 7b). LEV1ATHAN (Huber et al. 2010) was able 
to identify KAL153 as a recombinant, but it relies on other al
gorithms to make the step from sequences to gene trees.

Primates. To investigate the performance of SQUIRREL and the 
δ-heuristic on data sets with many taxa and long sequences, we 
consider an MSA from Vanderpool et al. (2020) of length 
1,761,114 bp that contains concatenated sequences for 26 pri
mate species, 2 closely related nonprimate species and the out
group Mus musculus. We first apply the δ-heuristic to the MSA 
to obtain a set of 23,751 weighted tf-quarnets . Subsequently, 
we use SQUIRREL (specifying Mus musculus as the outgroup to 
root it) and obtain the tree in Fig. 8a after a few minutes on a 
standard laptop. The tree coincides exactly with the species 
tree obtained in Vanderpool et al. (2020) using the gene tree- 
based algorithm ASTRAL III (Zhang et al. 2018b), while 
largely agreeing with two previously inferred phylogenies 
(Perelman et al. 2011; Springer et al. 2012). The weighted 
tf-quarnet consistency score of the tree is 0.995, but some of 
the other generated candidate networks (which contain retic
ulations) have scores within 0.003 from this best value, sug
gesting that reticulate events might have occurred.

We investigate this further by looking only at the eight pri
mates in the Cercopithecinae subfamily, for which 
Vanderpool et al. (2020) have demonstrated possible reticu
late events. Combining the δ-heuristic and SQUIRREL we gener
ated a set of candidate networks for these eight species and the 
outgroup Colobus angolensis palliatus. Two of the networks 
had a much higher score than the others and they only differed 
from each other by the addition of a reticulation edge. In par
ticular, the second best scoring network (shown in Fig. 8b) had 
a score of 0.956, while the best scoring network was the sub
tree of the original network with score 0.974 (also shown in 
Fig. 8b, by ignoring the curved reticulation edge). The blobtree 
of the network (obtained by contracting the cycle into a single 
node) exactly matches one of the blobtrees inferred with 
TINNIK (Allman et al. 2024a). The particular reticulate event 
we found was not reported in Vanderpool et al. (2020). 
However, our reticulate event might be more probable since 
it is between species in the same continent (Africa), while the 
study by Vanderpool et al. (2020) mentions possible reticulate 
events between species on different continents (Asia and 
Africa). Lastly, Vanderpool et al. (2020) found evidence for 
a “complex pattern of ancient introgression” (p. 14) within 
the subfamily and state that roughly 40% of the species within 
the subfamily are known to hybridize (Tung and Barreiro 
2017), which suggests that the true nature of the subfamily 
might not be well-represented by a level-1 network. This is fur
ther supported by the fact that the analysis done in 
Vanderpool et al. (2020) with PHYLONET (Than et al. 2008; 
Yu and Nakhleh 2015) and SNAQ (Solís-Lemus and Ané 
2016; Solís-Lemus et al. 2017) also gave ambiguous results, 
while PHYNEST (Kong et al. 2024) yet again concludes with 
a different network.

The Cercopithecinae subfamily (again with outgroup 
C. angolensis palliatus) also featured in Barton et al. (2022)
in the context of using the QNR-SVM algorithm for inferring 
quarnets from a data set. The reason for restricting to a subset 
was stated as the lack of an algorithm that puzzles together 
many quarnets. Instead, the authors puzzle them together by 
hand to obtain a network with a single reticulation that indu
ces 81% of the well-supported quarnets. Using their quarnet 
weighting scheme, SQUIRREL was able to identify a tree indu
cing 85% of the well-supported quarnets. (Here, we used a 
variation of SQUIRREL that takes into account the triangles of 
the quarnets to choose the best scoring network, instead of 
the default of just focusing on the tf-quarnets .) Therefore, 

Fig. 6. Phylogenetic network inferred by SQUIRREL from a dense set of 
weighted tf-quarnets on the genus Xiphophorus (generated from a MSA 
with the MML algorithm from Martin et al. 2023). The four major lineages 
are indicated by the different shaded areas. The reticulation edges are 
curved, while the edges leading to the outgroup Pseudoxiphophorus 
jonesii are in grey.
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SQUIRREL might be a viable tool to puzzle together quarnets ob
tained with an algorithm such as QNR-SVM , while still being 
able to scale to larger data sets unfit for resolving conflicting 
quarnets by hand.

Discussion
We have introduced SQUIRREL : a combinatorially consistent al
gorithm that can puzzle together a dense set of quarnets to cre
ate a semi-directed level-1 network. In addition, when 
combined with the model-based method QNR-SVM (Barton 
et al. 2022) or the MML algorithm (Martin et al. 2023) for in
ferring quarnets, SQUIRREL provides a method to create a 
level-1 network directly from sequence data. To the best of 
our knowledge, SQUIRREL is one of the first methods that allows 
the construction of semi-directed level-1 networks from bio
logical data using collections of quarnets. The only other ap
proaches we are aware of that use quarnet information are 
NANUQ (Allman et al. 2019) and the recently presented 
NANUQ+ (Allman et al. 2024b). Although NANUQ+ uses a 

similar distance-based strategy to SQUIRREL to expand the 
cycles in a network, both NANUQ and NANUQ+ take as in
put a collection of gene trees, rather than a dense set of quar
nets or a sequence alignment.

Any method that creates a dense set of quarnets from bio
logical data could be used as input for SQUIRREL . In particular, 
if such a method is statistically consistent under some model 
(possibly incorporating, e.g. incomplete lineage sorting), the 
combinatorial consistency of SQUIRREL ensures that the com
bined inference is consistent as well. Furthermore, SQUIRREL 

could in principle be combined with methods that may not 
scale well to larger taxa sets but are still able to construct par
tial semi-directed level-1 networks (containing some but not 
all of the studied taxa) from biological data. Indeed, as with 
supertree methods, partial networks on larger sets of taxa 
could be converted to quarnets for SQUIRREL by restricting 
those partial networks to four taxa. This would require a 
rule to decide what to do in case partial networks overlap 
on more than four taxa and they induce conflicting quarnets. 
Hence, a possible direction for future research would be 

(a) (b)

Fig. 7. a) Phylogenetic network inferred by SQUIRREL (using the δ-heuristic to create tf-quarnets ) from an MSA of the HIV-1 data set under consideration. 
The reticulation edges are curved, while the edges leading to the outgroup C are in grey. b) Phylogenetic network inferred by TRILONET (Oldman et al. 2016) 
on the same HIV-1 data set (without the outgroup C ), again with curved reticulation edges.

(a)

(b)

Fig. 8. a) Phylogenetic tree inferred by SQUIRREL (using the δ-heuristic to create tf-quarnets ) from an MSA of the primate data set under consideration, with 
the edges leading to the outgroup Mus musculus in grey. The different shaded areas indicate different taxonomical groups as they appear in Vanderpool 
et al. (2020). The two nonprimate species are Tupaia Chinensis and Galeopterus variegatus. b) In conjunction with the δ-heuristic to create tf-quarnets, 
SQUIRREL inferred two networks with very close weighted tf-quarnet consistency scores from the considered MSA of the subfamily of Cercopithecinae 
(using Colobus angolensis palliatus as outgroup). One of them is the depicted network and the other is the phylogenetic tree obtained from that network 
by ignoring the curved reticulation edge.
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adapting SQUIRREL to work with nondense sets of quarnets 
which could contain any number of quarnets for each subset 
of four taxa.

Using the δ-heuristic , SQUIRREL is able to quickly construct a 
level-1 network directly from sequence data. Our sequence 
simulations show that the δ-heuristic is likely not statistically 
consistent under the tested K2P model. In particular, an in
crease in sequence length beyond 10 kb does not give a visible 
improvement under our simulation settings, which one would 
expect for a statistically consistent quarnet inference method. 
Despite the lack of a statistical basis of the δ-heuristic , it al
ready shows promising similarity scores for MSAs with a 
length of 1 kb when combined with SQUIRREL . Furthermore, 
a major advantage is its speed. As an example, this approach 
was able to construct a network with 29 taxa from an MSA 
of length 1.7 Mb within a few minutes on a standard laptop 
(see the Results section). Hence, we do not see the 
δ-heuristic (combined with SQUIRREL ) as an alternative for 
known model-based methods, but rather as a complementary 
tool. For one, this approach can be used to generate reason
able starting networks for the time-intensive search through 
the network space of likelihood-based methods [such as 
PHYLONET {Than et al. 2008; Yu and Nakhleh 2015}, SNAQ 
{Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017}, and 
PHYNEST {Kong et al. 2024}]. On the other hand, it can be 
used to quickly gain insight into sequence data without the 
need to first infer gene trees with a different tool, as is the 
case for NANUQ (Allman et al. 2019), which requires many 
accurate gene trees to make a good estimate of the concord
ance factors.

With the increasing availability of genome and transcriptome 
data, biologists are also likely to explore the reconstruction of 
separate phylogenetic networks for multiple sets of short or
thologous sequences. Rapid construction of such networks for 
the same set of taxa across different sets of orthologues opens 
up the possibility for comparative analyses. A possible research 
direction in this area would be to combine SQUIRREL’s speed for 
constructing semi-directed level-1 networks with the tf-quarnet 
consistency score or the recently introduced dissimilarity meas
ure for semi-directed networks that generalizes the widely-used 
Robinson–Foulds distance for phylogenetic trees (Maxfield 
et al. 2025), which would permit the rapid comparison of net
works computed for different sets of orthologues. It also leads 
to the interesting problem of finding a consensus of a collection 
of semi-directed networks, which to our best knowledge has not 
yet been addressed in the literature. One approach to this prob
lem could be to treat it as a supernetwork question where all in
put networks have the same leaf set, and use the approach 
suggested earlier in this section.

Our simulations indicate that SQUIRREL can construct net
works closely resembling an underlying network in terms of 
tf-quarnets , even if many of the tf-quarnets are wrongly in
ferred. In particular, both of the considered consistency scores 
average above 0.91 even for sets containing only 50% of the 
original tf-quarnets . This is a significant improvement com
pared to a similar experiment to the triplet/trinet-based 
LEV1ATHAN and TRILONET algorithms, where the trinet con
sistency score (the rooted three-leaf network analogue of our 
tf-quarnet consistency score) dropped below 0.5 for sets still 
containing 75% of the trinets (Oldman et al. 2016). These re
sults can be considered as evidence that SQUIRREL is able to 

construct networks with a high topological resemblance to 
the original network in terms of tf-quarnets , even for a high 
percentage of incorrect tf-quarnets . As mentioned in the 
Result section, even though the tf-quarnets are theoretically 
enough to construct a triangle-free semi-directed level-1 net
work, in practice, contracting the triangles might somewhat 
weaken the signal of reticulation events. Note that theoretical
ly (that is, when all quarnets come from a single network with 
n leaves) only O(n log n) tf-quarnets are required to recon
struct the network, instead of the full set of O(n4) tf-quarnets 
(Frohn et al. 2025). Thus, even sets with many incorrect 
tf-quarnets might still hold enough information to reconstruct 
the original network. This could also explain why a higher 
number of leaves seems to have a positive effect on the similar
ity score: O(n log n) grows slower than O(n4), so the fraction 
of tf-quarnets necessary to reconstruct a network decreases 
when n grows.

Although several methods can construct semi-directed 
level-1 networks, the assumption that a network is level-1 
might be too restrictive in many cases for biological data. A 
major breakthrough would be to develop a practical algorithm 
that is able to construct networks that are more complex than 
level-1 networks. Some theoretical results have already ap
peared towards tackling this problem. For example, it is 
known that semi-directed level-2 networks are uniquely en
coded by the quarnets they induce (Huber et al. 2024). In add
ition, under several models, the circular ordering around the 
blobs of outerlabeled planar networks (a class of semi-directed 
networks more general than semi-directed level-1 networks) is 
also shown to be identifiable (Rhodes et al. 2025). 
Furthermore, the recently introduced TINNIK algorithm 
(Allman et al. 2024a) uses concordance factors computed 
from gene trees to construct the blobtree of networks with ar
bitrary level under the network multispecies coalescent model. 
Although such a blobtree still remains a tree, it does indicate in 
what areas of the underlying network reticulations may have 
occurred. It might also be worth looking for an extension of 
SQUIRREL to nonbinary networks, where high-degree vertices 
are allowed which do not necessarily represent reticulate 
events.

In conclusion, SQUIRREL provides an efficient and combina
torially sound approach for reconstructing semi-directed 
level-1 networks from dense sets of quarnets. The promising 
consistency scores achieved in our tests underscore 
SQUIRREL’s ability to retain network topology even when faced 
with noisy data. Together with our δ-heuristic, SQUIRREL al
lows rapid insight into large-scale sequence data. Looking for
ward, we hope that this approach can complement more 
time-intensive methods and support the preliminary explor
ation of network hypotheses.

Materials and Methods
We start this section by presenting formal definitions sur
rounding phylogenetic networks and quarnets in the first sub
section. The high-level idea of SQUIRREL is described in the 
second subsection, while its subroutines are formalized in 
the third and fourth subsection. We end with the description 
of the δ-heuristic in the fifth subsection, and a brief description 
of the consistency and implementation of SQUIRREL in the sixth 
and seventh subsection, respectively.
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Phylogenetic Networks and Quarnets

Phylogenetic networks. A rooted phylogenetic network on a 
set of at least four leaves X (representing a set of taxa) is a di
rected acyclic graph with a single root, no parallel edges and 
no directed cycles such that (i) the root has two children; (ii) 
each leaf (i.e. a vertex with no children) has one parent and 
is uniquely labeled by an element from X ; (iii) all other vertices 
either have one parent and two children, or two parents and 
one child. A vertex of the latter type is a reticulation (vertex), 
and the two edges directed towards it are reticulation edges. 
See Fig. 9a for an example. Semi-directed phylogenetic net
works, the type of network this paper is concerned with, can 
be obtained from a rooted phylogenetic network by suppressing 
its root and undirecting all edges except for the reticulation 
edges. For the sake of brevity, we refer to these networks simply 
as semi-directed networks. Since the reticulation edges remain 
directed, we can still refer to the reticulation vertices and edges 
of a semi-directed network (see Fig. 9b). We call a semi-directed 
network triangle-free if it does not contain any triangles 
(3-cycles). Note that a semi-directed network without any retic
ulations is an (unrooted) phylogenetic tree in the usual sense.

In this paper, we consider semi-directed networks which are 
level-1 (again see Fig. 9b), meaning that every reticulation is 
part of exactly one undirected cycle (ignoring the directions 
of the reticulation edges). The (possibly nonbinary) phylogen
etic tree obtained by collapsing every such cycle into a single 
vertex is called the blobtree (or tree of blobs) of the semi- 
directed network (see Fig. 9c).

Given a semi-directed network N on X , a partition A |B of 
X (with A and B both nonempty) is a split of N if there exists 
an edge of N whose removal disconnects the leaves in A from 
those in B. Such a split is nontrivial if the corresponding par
tition is nontrivial, that is, if |A|, |B| ≥ 2. As an example, 
{1, 2, 3, 4, 8} | {5, 6, 7} is a nontrivial split of the network 
from Fig. 9b. We sometimes omit the set notation for splits 
with few elements, meaning that we write ab | cd instead of 
the split {a, b} | {c, d} of the set {a, b, c, d}.

Quarnets. A semi-directed network q on a set of four leaves 
L(q) = {a, b, c, d} is called a (semi-directed) quarnet. Recall 
that up to relabeling the leaves, there are six different level-1 
quarnets (see Fig. 1c). Here, we mostly focus on tf-quarnets: 

triangle-free level-1 quarnets. For a given leaf set X = 
{a, b, c, d} and up to relabeling of the leaves, there are only 
two such tf-quarnets on X : the quartet tree and the 4-cycle 
(see Fig. 9d). We often denote a quartet tree by its induced 
split (e.g. ab | cd), while we describe a 4-cycle by its circular or
dering [e.g. (a, b, c, d)] and mention the leaf below the 
reticulation separately. Note that tf-quarnets either have 
no nontrivial split at all, or they have exactly one nontrivial split 
[e.g. for X = {a, b, c, d} the splits ab | cd, ac |bd, or ad |bc].

SQUIRREL: Main Algorithm
SQUIRREL uses as input a set Q of tf-quarnets on some leaf set X
with n = |X| ≥ 4. In particular, this set needs to be dense, 
meaning that it contains exactly one tf-quarnet for each subset 
of four leaves of X (see also the Introduction). Such a set can be 
created from a MSA using QNR-SVM (Barton et al. 2022), the 
MML algorithm (Martin et al. 2023) or our own δ-heuristic 
(see the fifth subsection of this section). We also allow for a 
function w :Q→ [0, 1] to give weights to the tf-quarnets, 
which can e.g. be used to model confidence or bootstrap sup
port. Unweighted tf-quarnets are assumed to have unit 
weights.

The main idea behind the SQUIRREL algorithm is to first build 
a sequence of n − 3 phylogenetic trees on the given n leaves, 
each one less refined than the other (see Algorithm 2). These 
trees will function as candidate blobtrees. By expanding all 
the high-degree nodes in these trees into cycles (and introdu
cing reticulations), we obtain a set of semi-directed candidate 
networks (see Algorithm 3). Finally, out of these networks, we 
choose the network N with the highest weighted tf-quarnet 
consistency score, defined as

C′(Q, N ) =
w(Q ∩ Q(N ))

w(Q)
. (3) 

Here, Q is the input set of tf-quarnets and Q(N ) is the set of 
tf-quarnets which are induced by the output network N . A 
tf-quarnet q is induced by the network N if it is the restriction 
of N to L(q), which is formally defined as the network ob
tained from N by deleting all leaves not in L(q) and exhaust
ively applying the following operations: deleting unlabeled 
leaves, deleting degree-2 reticulations, suppressing nonreticu
late degree-2 vertices, suppressing parallel edges, and 

(a) (b) (c) (d)

Fig. 9. a) A rooted phylogenetic level-1 network N ′ on leaf set X = {1, . . . , 8}, with the dashed reticulation edges pointing towards its reticulation vertices. 
b) The triangle-free semi-directed level-1 network N which can be obtained from N ′ by suppressing its root and keeping only the dashed reticulation 
edges directed. c) The blobtree T of the semi-directed network N , obtained by collapsing all cycles into single vertices. d) Two of the tf-quarnets induced 
by N . When ignoring the leaf labels, these are the two possible tf-quarnet shapes. The top tf-quarnet is a quartet tree and the bottom tf-quarnet is a 
4-cycle.
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suppressing triangles. For completeness, we mention that an 
induced quarnet can be defined similarly but without sup
pressing the triangles.

The pseudo-code of SQUIRREL is shown as Algorithm 1. The 
blobtree construction algorithm (Algorithm 2) and the cycle 
expansion algorithm (Algorithm 3) are explained in detail in 
the following two subsections. Even though this is not speci
fied in the pseudo-code, SQUIRREL does allow the user to specify 
an outgroup as input. Then, it makes sure that all candidate 
networks can be rooted using this outgroup (see also the 
fourth subsection of this section).

SQUIRREL: Constructing Candidate Blobtrees
In the following three steps, we describe how SQUIRREL creates 
the sequence of candidate blobtrees on leaf set X from the 
dense set Q of tf-quarnets . The pseudo-code of this procedure 
is shown as Algorithm 2 at the end of this subsection.

Step A1. We first create a phylogenetic tree T ∗ on X as de
scribed in Berry and Gascuel (2000). Their algorithm takes 
as input a (possibly nondense) set Q′ of quartet trees and re
turns as T ∗ the unique most refined phylogenetic tree on X
which does not induce a quartet with a different nontrivial 
split than one of the quartets in Q′ (see supplementary 
material Section A, Supplementary Material online for a 
more formal definition). By taking Q′ to be the subset of quar
tet trees in our set of dense tf-quarnets Q (see line 1 of 
Algorithm 2), we can employ the algorithm from Berry and 
Gascuel (2000) to obtain T ∗ (see line 2 of Algorithm 2). As 
we show in supplementary material Lemma A.2, 
Supplementary Material online, in the case all tf-quarnets 
are induced by a unique network, T ∗ coincides with the blob
tree of that network.

Step A2. Since the set Q (and thus Q′) is constructed from real 
data, we expect there to be a fair amount of quartets that 
contradict each other. Hence, in practice, the tree T ∗ con
structed in Step A1 will be highly unresolved. To remedy 
this problem, we use a method to refine the tree T ∗, specifical
ly, an adapted version of the QUARTETJOINING algorithm 
(Grünewald et al. 2009). QUARTETJOINING takes as input a 
function ω that assigns a nonnegative real number to each pos
sible nontrivial split of four leaves in X . Starting with the star- 
tree with central vertex v and leaf set X , QUARTETJOINING 

sequentially introduces edges between v and two of its neigh
bors (according to some criterion involving the function ω) un
til the tree is fully resolved.

In our case, we instead start with the tree T ∗ (which might 
already be partially resolved) and adapt QUARTETJOINING to re
solve T ∗ further. This eventually leads to a fully resolved 
phylogenetic tree T 1 on X , which functions as the first tree 
in our sequence of candidate blobtrees (see line 3 of 
Algorithm 2). In our adaptation, instead of considering all 

combinations of neighbors of the central vertex v, we consider 
all such combinations of neighbors of any of the internal (i.e. 
nonleaf) vertices with degree at least 4. We construct the func
tion ω used as input to QUARTETJOINING as follows. For any 
tf-quarnet q ∈ Q with leaf set L(q) = {a, b, c, d} such that q 
is a quartet tree (say with split ab | cd), we set ω(ab | cd) = 
w(q) for the input weight function w mentioned at the begin
ning of the previous subsection. All other nontrivial splits of 
four leaves of X are assigned an ω-value of 0.

Step A3. Finally, we explain how we create the full sequence 
of candidate blobtrees from the phylogenetic tree T 1. Given an 
edge uv of the tree T 1 that induces a nontrivial split A |B, we 
collect all the quartet trees in Q for which their induced splits 
restrict to quartet splits of A |B in a set Q′(A |B) by first 
defining Q(A |B) = {q ∈ Q : |A ∩ L(q)| = 2, |B ∩ L(q)| = 2} 
and then Q′(A |B) = {q ∈ Q(A |B) : q has split A ∩ L(q) |
B ∩ L(q)}. This allows us to define the split-support of uv as

supp(uv) =
w(Q′(A |B))
w(Q(A |B))

, (4) 

i.e. as the weighted ratio of the tf-quarnets in Q that support 
the split induced by the edge uv. For each of the n − 3 edges of 
the tree T 1 we then compute this split-support (see line 4 of 
Algorithm 2). Afterwards, we sort the edges of T 1 in increas
ing order, according to their split-support. To create the trees 
(T 2, . . . , T n−3), we keep contracting the least supported edge 
(see line 6 of Algorithm 2). In other words, the tree T i is ob
tained from T 1 by contracting the i − 1 least supported edges. 
Crucial for our consistency proof in supplementary material 
Section A, Supplementary Material online is that T 1 is a re
finement of T ∗, and therefore one of the trees in the sequence 
(T 1, . . . , T n−3) will be the tree T ∗.

SQUIRREL: Expanding Cycles in a Tree
Once SQUIRREL has constructed the sequence of candidate 
blobtrees using Algorithm 2, we transform them into triangle- 
free semi-directed level-1 networks using the dense set of 
tf-quarnets Q. In this subsection, we describe how we trans
form a phylogenetic tree T —representing one of our candi
date blobtrees—into such a network N . In particular, we 
replace every internal vertex of the given tree by a suitable 
cycle. Since our aim is to build triangle-free networks, we 

Algorithm 1 SQUIRREL

Input: dense set Q of weighted tf-quarnets on X = {x1, . . . , xn}
Output: triangle-free semi-directed level-1 network on X

1 (T 1, . . . , T n−3)← candidate blobtrees, using Algorithm 2
2 (N 1, . . . , N n−3)← semi-directed candidate networks obtained from 

the candidate blobtrees T i, using Algorithm 3
3 return network N i with highest weighted tf-quarnet consistency score

Algorithm 2 Constructing candidate blobtrees

Input: dense set Q of weighted tf-quarnets on  
X = {x1, . . . , xn}

Output: sequence of candidate blobtrees  
(T 1, . . . , T n−3) on X

/* Step A1 */
1 Q′ ← set of all quartet trees in Q
2 T ∗ ← phylogenetic tree on X obtained from Q′, as described in Berry 

and Gascuel (2000)
/* Step A2 */

3 T 1 ← phylogenetic tree on X obtained by applying the adapted 
QUARTETJOINING algorithm to T ∗ and Q
/* Step A3 */

4 compute the split-support for every edge in T 1

5 for i ∈ {2, . . . , n − 3} do
6   T i is constructed from T i−1 by contracting the least supported 

edge
7 end
8 return (T 1, . . . , T n−3)

10                                                                                                                               Holtgrefe et al. · https://doi.org/10.1093/molbev/msaf067
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/4/m

saf067/8098114 by Technische U
niversiteit D

elft user on 24 April 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf067#supplementary-data


replace vertices incident to s ≥ 4 edges by an s-cycle with a re
ticulation (see also the illustration in Fig. 10). To this end, we 
repeat the following three steps for every such internal vertex v 
(starting with the ones with the highest degree). The corre
sponding high-level pseudo-code is shown as Algorithm 3.

Step B1. The first step in our approach is to assign a dense set 
of representative tf-quarnets Q̃v to each internal vertex v of T
with degree s ≥ 4. In particular, the set Q̃v will be a dense set of 
tf-quarnets on the leaf set Y = {y1, . . . , ys}, where each yi rep
resents the set Yi which is part of the partition Y1| · · · |Ys of X
induced by v (see Fig. 10a and b). In the next step, these sets 
will then be used to determine by what cycle to replace v.

First, let f :X → Y be the function that maps every leaf 
x ∈ X , with x being in some set Yi, to the leaf yi (see line 3 
of Algorithm 3). To construct the tf-quarnets in Q̃v (see line 
4 of Algorithm 3), we repeat the following procedure for every 
subset {yi, yj, yk, yl} of four leaves in Y. Let Q{i,j,k,l} = {q ∈ 
Q :L(q) = {xi, xj, xk, xl} with xp ∈ Yp for all p ∈ {i, j, k, l}} be 
the subset of Q containing only tf-quarnets with one leaf in 
each of the four sets Yi, Yj, Yk and Yl. By relabeling the leaves 
of all tf-quarnets in Q{i,j,k,l} with the function f, we obtain a 
multiset of tf-quarnets which all have the same leaf set 
{yi, yj, yk, yl}. With slight abuse of notation, we denote this 
multiset by f (Q{i,j,k,l}). Then, we choose one of the tf-quarnets 
in the multiset f (Q{i,j,k,l}) to assign to Q̃v as the tf-quarnet on 
the four-leaf set {yi, yj, yk, yl} (see next paragraph). As men
tioned before, this is repeated for every subset {yi, yj, yk, yl} 
of four leaves in Y, resulting in a dense set of tf-quarnets on Y.

To choose a tf-quarnet from the multiset f (Q{i,j,k,l}), we first 
choose its skeleton: its underlying undirected graph. In particu
lar, for each of the six possible skeletons t (three quartet trees 
and three undirected 4-cycles) we let w(t) be the sum of weights 
of all tf-quarnets in f (Q{i,j,k,l}) with the given skeleton t. We then 
choose the skeleton t with the highest weight (with ties resolved 
randomly) and assign it a new weight of w(t)/w(f (Q{i,j,k,l})). 
Note that in the unweighted case this simply means that we 
choose the skeleton that appears most in the multiset. We first 
choose the skeleton since determining the location of the reticu
lation in a quarnet from data seems especially hard (Martin 
et al. 2023). If our chosen skeleton is one of the quartet trees, 
we assign that as our tf-quarnet on {yi, yj, yk, yl}. On the other 
hand, if one of the undirected 4-cycles appears most, we still 
need to determine the location of the reticulation. This is 
done by checking which leaf appears most often below the re
ticulation in all 4-cycles with the chosen skeleton.

As an example of this voting procedure to choose a tf-quarnet 
from the multiset f (Q{i,j,k,l}), suppose our multiset f (Q{i,j,k,l}) 
contains only tf-quarnets with weight 1 and is as in Fig. 11.

Then, we choose the 4-cycle with circular ordering 
(a, b, c, d) as our skeleton, after which we assign a to be the 
leaf below the reticulation. The new tf-quarnet is then a 
4-cycle with a weight of 4/7 because that 4-cycle appears 4 
times out of a total of 7 tf-quarnets .

Step B2. The next step of our approach is to determine a cir
cular ordering of the leaves in the set Y based on the 
tf-quarnets in Q̃v. Note that we repeat this for every internal 
vertex v of T with degree at least 4. First, we use the set Q̃v 

to create a distance DQ̃v 
between every pair of leaves in Y

(see line 5 of Algorithm 3). Formally, given two leaves a and 
b in Y, we define the distance DQ̃v 

as follows:

DQ̃v
(a, b) =

0 if a = b,􏽘

q∈Q̃v : a,b∈L(q)

τq(a, b) if a ≠ b.

⎧
⎨

⎩
(5) 

For every tf-quarnet q ∈ Q̃v the exact value of τ depends on the 
weight of q and the position of the leaves a and b within it. In 
particular, the values are defined on the skeleton of the 
tf-quarnets and hence do not depend on the position of the re
ticulations. Given two leaves a and b of a tf-quarnet q (with 
weight w(q) ∈ [0, 1]), we define τq as follows:

τq(a, b)

=
(3 − w(q))/2

if q is the quartet tree ab | cd
or if q is a 4-cycle with a, b

as neighbors,
(3 + w(q))/2 otherwise.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(6) 

Here, we say that two leaves of a 4-cycle are neighbors if they 
are not on opposite sides of the cycle. The τq-values reduce to 1 

(a) (b) (c) (d)

Fig. 10. a) A blobtree on some leaf set X with an internal vertex v inducing the partition Y1| . . . |Ys of X . b) Illustration of the mapping f which maps every 
leaf x of X to a leaf in {y1, . . . , ys}, depending on which set Yi contains x. c) Illustration of Step B2 and B3 of SQUIRREL , where the single internal vertex is 
replaced by a cycle. d) Illustration of how the cycle on the leaves yi is mapped back to a cycle on the sets Yi with the inverse function f −1.

Fig. 11. A multiset of 7 tf-quarnets on leaf set {a, b, c, d}.
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or 2 for tf-quarnets q with a weight of 1. Specifically, two 
leaves on the same side of a split in a quartet tree q have a 
τq-value of 1, otherwise they have a τq-value of 2. Similarly, 
two neighboring leaves in a 4-cycle q have a τq-value of 1, 
while two opposite leaves have a τq-value of 2. See Fig. 12
for an illustration of these values. Note that these pairwise dis
tances between leaves resemble the quartet distances used in 
NANUQ (Allman et al. 2019) and NANUQ+ (Allman et al. 
2024b).

Once the distances DQ̃v 
are computed, we create a complete 

graph G with vertex set Y, where the distances between the 
vertices are given by DQ̃v

. By solving the TSP on this graph, 
we obtain a circular ordering of the elements in Y (see line 6 
of Algorithm 3). The goal of a TSP instance is to find a shortest 
Hamiltonian cycle (or TSP-tour): a cycle that visits each vertex 
exactly once. The default setting for SQUIRREL is to use the 
Held–Karp algorithm (Bellman 1962; Held and Karp 1962) 
for up to and including 13 leaves and to use simulated anneal
ing to heuristically solve instances with more leaves. To obtain 
true consistency (see supplementary material Section A, 
Supplementary Material online) this setting can be changed 
to always solve TSP to optimality, at the cost of a longer run
ning time.

Step B3. After solving TSP, SQUIRREL obtains a circular order
ing θ of the leaves in Y. It remains to determine which leaf yi 

needs to be the leaf below the reticulation in the resulting 
cycle. To ensure SQUIRREL always returns a valid (that is, root
able) semi-directed network, we create a reticulation ranking ρ 
of the leaves in Y instead of picking a single leaf (see line 7 of 
Algorithm 3). If the set Y contains at least five elements, we or
der them according to how often they appear in a 4-cycle of Q̃v 

(as defined in Step B1). That is, the first leaf in our ranking ρ 
appears most often in a 4-cycle and is our first option to be 
the leaf below the reticulation. The case where |Y| = 4 is spe
cial, since Q̃v then only contains a single quarnet. If this is a 
4-cycle, then the leaf below the reticulation of that 4-cycle is 
the first leaf in our ranking ρ. The other three leaves (or in 
the case that the single tf-quarnet is a quartet tree: all four 
leaves) are ordered randomly.

Finally, we map every leaf yi back to the corresponding leaf 
set Yi of the original tree T with the inverse function f −1. 
While slightly abusing notation, this results in an ordering 
f −1(θ) of the sets Yi. Then, we replace the internal vertex v 
in the tree T by a cycle that follows this ordering f −1(θ) (see 
line 9 of Algorithm 3 and Fig. 10b and c for an illustration). 

We determine the location of the reticulation by looking at 
the first element ρ1 of the reticulation ranking ρ. In particular, 
we let the leaf set in f −1(ρ1) be below the reticulation (again see 
line 9 of Algorithm 3). This could possibly create a partially 
constructed network that is invalid: one without a valid root 
location (e.g. if two reticulations are oriented towards each 
other). Hence, if this is the case we instead pick the leaves in 
f −1(ρ2). If this is still an invalid option, we keep iterating 
through the ranking ρ until we find a valid partial network 
(see line 10 of Algorithm 3). Note that This procedure ensures 
that we always return a valid semi-directed network at the end 
of Algorithm 3. Our implementation of SQUIRREL also allows 
the user to specify a known outgroup. Then, a (partially con
structed) semi-directed network is only valid if it is not only 
rootable, but if it can also be rooted at the edge incident to 
the outgroup. Iterating through the reticulation ranking en
sures that we always return a valid semi-directed network at 
the end of Algorithm 3, even in the case of a specified outgroup 
(see supplementary material Lemma A.6 in Section A, 
Supplementary Material online for a proof).

(a) (b)

Fig. 12. Two tf-quarnets q with leaf set {a, b, c, d}: a quartet tree a) and 4-cycle b). The values τq [as defined by equation (6), assuming the quarnets have 
weight 1] between any two leaves are illustrated by the two complete graphs, where the thin grey edges have length 1 and the thick black length 2.

Algorithm 3 Expanding cycles in a tree

Input: dense set Q of weighted tf-quarnets on  
X = {x1, . . . , xn}, phylogenetic tree T on X

Output: triangle-free semi-directed level-1 network on X
1 for internal vertex v of T with degree ≥ 4 do // in decreasing order of 

degree
/* Step B1 */

2  Y1| . . . |Ys ← partition of X induced by v
3  f ← function that maps a leaf x ∈ X to a leaf yi, depending on the set    

Yi that contains x
4  Q̃v ← set of representative quarnets of v on leaf    

set Y = {y1, . . . , ys}
/* Step B2 */

5  compute the distances DQv (yi, yj) for all i, j ∈ {1, . . . , s}
6  θ← optimal TSP-tour on {y1, . . . , yk} with respect to distances DQv

/* Step B3 */
7  ρ← reticulation ranking of the leaves in Y
8  for j ∈ {1, . . . , s} do
9    replace v in T by a cycle C with ordering f −1(θ) and with     

f −1(ρj) below the reticulation
10   if T has a valid root location then
11    break
12   end
13  end
14 end
15 return T
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δ-Heuristic: Inferring Quarnets from Sequence Data
As explained before, two model-based methods that use alge
braic invariants exist to generate tf-quarnets (Barton et al. 
2022; Martin et al. 2023). To allow SQUIRREL to function as 
a stand-alone tool, we also include a method to infer weighted 
tf-quarnets from an MSA on a set of taxa X : the δ-heuristic . 
Our δ-heuristic is based on the concept of δ-plots, which func
tion as a measure of treelikeness for sets of four taxa and 
which were able to pick out recombinants in many simulations 
(Holland et al. 2002). The algorithm also resembles some as
pects of the heuristic to generate trinets from sequences in 
Oldman et al. (2016). We are now ready to present the steps 
to create a dense set of weighted tf-quarnets from an MSA 
on leaf set X .

Step I. For each pair of taxa {a, b}, we consider the gap-free 
subalignment of the MSA on {a, b}. That is, we consider 
only the columns where both taxon a and b contain no gaps. 
Using this subalignment, we assign a distance value hab to 
the pair {a, b}. In particular, hab is the normalized Hamming 
distance: the number of columns of the subalignment where 
taxon a and b differ, divided by the total length of the suba
lignment. Recall that if a tf-quarnet on {a, b, c, d} has a non
trivial split, it has one of the three splits ab | cd, ac |bd or 
ad | bc. For each four-taxon subset and for each of these three 
splits, say ab | cd, we then let hab | cd = hab + hcd.

The δ-value (introduced in Holland et al. 2002) of such a 
subset {a, b, c, d} of X is now defined as follows (assuming 
we have that hab | cd ≥ hac |bd ≥ had |bc):

δ{a,b,c,d} =
hab | cd − hac |bd

hab | cd − had |bc
, (7) 

where δ{a,b,c,d} = 0 if hab | cd = hac |bd = had | bc. Intuitively, the 
δ-value indicates how much support there is from the suba
lignment that the tf-quarnet on {a, b, c, d} has a split. That 
is, if the value of δ{a,b,c,d} is close to 1, we expect the split 
ab | cd to be present.

Step II. With the δ-values computed for each subset of four 
taxa, we partition the 4-taxa sets into two subsets Sλ and Fλ 
for a predefined threshold value λ ∈ (0, 1). The set Sλ will con
tain all 4-taxa subsets for which the δ-value is at least λ, while 
the set Fλ contains those sets with an δ-value smaller than λ. 
We then expect the sets in Sλ to come from a tf-quarnet with 
a nontrivial split, while those in Fλ are likely to have come 
from 4-cycle tf-quarnets . Experiments from Holland et al. 
(2002) show that an average δ-value higher than 0.3 is often 
enough to determine whether recombination was present (or 
equivalently, whether a tf-quarnet has a nontrivial split). 
Hence, we settle for a value of λ = 0.3.

Step III. Every 4-taxa set {a, b, c, d} in Sλ is assigned a quartet 
tree. Its split is simply determined by the split s ∈ 
{ab | cd, ac |bd, ad |bc} for which hs is the highest. On the oth
er hand, the sets in Fλ will be assigned a 4-cycle. Observe that 
any 4-cycle tf-quarnet with circular ordering (a, c, b, d) (irre
spective of the position of the reticulation) can be turned 
into the quartet trees with splits ac |bd or ad |bc by deleting 
exactly one reticulation edge, while this is not possible for 
the quartet tree with split ab | cd. Assuming that the taxa set 
{a, b, c, d} is in the set Fλ and that hab | cd ≥ hac |bd ≥ had | cb, 

we therefore assign a 4-cycle with circular ordering 
(a, c, b, d) to the taxa set. This aligns with the group-based 
models (see, e.g. Gross et al. 2021; Barton et al. 2022) which 
also assume that DNA independently evolves along the trees 
that can be obtained from a network by deleting reticulation 
edges.

We also assign a weight w(q) to each tf-quarnet q, corre
sponding to the difference its δ-value has from λ. In some 
sense, this weight signifies the confidence we have in having es
timated the correct tf-quarnet . In particular,

w(q) =

|δq − λ|
λ

if δq ≤ λ,

|δq − λ|
1 − λ

if δq > λ.

⎧
⎪⎪⎨

⎪⎪⎩

(8) 

Step IV. It remains to determine where to place the reticula
tions in the 4-cycles obtained from the set Fλ. Taking inspir
ation from Holland et al. (2002) and Oldman et al. (2016), 
we first compute the value δ(x) for each taxon x, defined as 
the mean value of all δ-values for four-taxon sets containing 
x. For each 4-cycle, we then let the leaf x with the highest 
δ(x)-value be below the reticulation.

Consistency of SQUIRREL

In supplementary material Section A, Supplementary Material
online, we prove that SQUIRREL is combinatorially consistent 
given, an unweighted dense set of tf-quarnets . We use the 
word “combinatorially” to emphasize that we do not make 
any claims regarding statistical consistency. More formally, 
we prove the following theorem.

Theorem 1 Let N be a triangle-free semi-directed level-1 net
work and let Q be the set of unweighted tf-quarnets induced by 
N , then SQUIRREL applied to Q reconstructs N .

The first ingredient of the proof is the fact that if a set of 
tf-quarnets is induced by a network, the tree T ∗ is equal to 
the blobtree of that network. The other important step of 
the proof is to show that in this case the distances D [as defined 
in equation (6)] form a Kalmanson metric (Kalmanson 1975), 
which have nice properties with respect to the TSP.

Implementation
A graphical user interface (implemented in Python) of 
SQUIRREL and the δ-heuristic is freely available at https:// 
github.com/nholtgrefe/squirrel. The program takes as input 
a sequence alignment in NEXUS or FASTA format, or a file 
specifying a dense set of tf-quarnets [e.g. coming from 
QNR-SVM {Barton et al. 2022} or the MML algorithm 
{Martin et al. 2023}). The interface allows the user to specify 
an optional outgroup, view the different generated candidate 
networks, and export them in the eNewick file-format 
(Cardona et al. 2008) (with an arbitrary rooting if no out
group was specified).

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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