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Chapter 1
Introduction

This chapter explains the fundamental objective of this thesis and gives an overview
of the related details. This study is about the control system design of a dynamic

positioning (DP) vessel. A DP vessel is a vessel whose motion is controlled by a
dynamic positioning system rather than by the conventional motion control techniques
like mooring or anchoring.

1.1 What is a Dynamic Positioning (DP) System?

A DP system is a computer controlled system. The objective of this system is to
keep the vessel within specified position and heading limits exclusively by using the
propulsion system consisting of thrusters and propellers. Different types of thrusters,
for instance, tunnel thrusters which produce thrust in sideway directions and azimuth
thrusters which are fitted under the hull of vessel, are used to produce the desired ef-
fects. Azimuth thrusters can be rotated through 360 degrees and thus produce thrust
in all directions in the horizontal plane. This is particularly useful because the envi-
ronmental forces and moments change over time both in magnitude and direction.

A vessel in sea is subjected to various forces and moments due to waves, wind,
sea currents, propulsion system, and unmodeled disturbances due to the environmen-
tal effects and the propulsion system. In practice, a floating vessel cannot maintain
a completely static position at sea. Therefore, for practical reasons, position keeping
means maintaining the desired position and heading within limits that reflect the envi-
ronmental effects and the system capability. This limit may vary from centimeters to
meters depending upon the nature of the operation. For instance, centimeter accuracy
is desired for the operations like automatic berthing of ships and maneuvering in shal-
low and confined waters. An efficient DP system would be the one which achieves
these goals with minimum fuel consumption and also tolerates transient errors or fail-
ures in the propulsion and measurement systems.

A complete DP system consists of three major parts: the vessel’s power system,
the thrusters system, and the DP control system. Figure 1.1 shows an overview of a
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DP system, [77].
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Figure 1.1: Major components of a DP system

1.1.1 Applications of DP Systems
DP vessels are used to achieve a variety of objectives in the offshore industry. The
main vessel types used for various offshore operations include diving support vessels,
drilling vessels (drill ships and semi-submersible drill ships), floating production stor-
age and offloading (FPSO) units, landing platform docks, maritime research vessels,
mine sweepers, pipe laying ships, platform supply vessels and anchor handling ves-
sels, shuttle tankers, and survey ships. Figure 1.2 shows an FPSO unit, a naval vessel
and a supply vessel.

Figure 1.2: A supply vessel, a naval ship and an FPSO vessel in sea (from left to right).

Dynamic positioning is vital in various offshore operations. From the operational
aspects (for example in case of heavy lifts) it is important to maintain the vessel within
precise navigational limits. For this, a very stable and accurate position keeping is
required. There are situations in which a failure in position keeping, i.e., failure in
maintaining the position and heading angle, may result in serious safety and financial
hazards. For instance, in case of diving vessels a failure in position keeping may
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result in the death or injury of the divers. In situations where the operation is being
carried out very close to a fixed structure, then a position keeping failure may result
in a collision. Consequently, damage to the structure or vessel, equipment, or a delay
in the operation may occur. For instance, if a drilling vessel working in deep waters
makes widely twitchy movements then it will cause damage to riser pipes or drilling
pipes and subsequently the drilling operation will be abrupted.

The position keeping failure may occur because of multiple reasons; technical
failure of the DP equipment, operator’s error, extreme weather conditions not incor-
porated in the control design strategy, etc. In many ships and various operations, the
overactuation feature is included to enhance the operational continuity by reducing
the chances of failure of the propulsion and measurement systems. This feature gives
rise to the problem of optimal allocation because in the presence of this feature there
can be many possible combinations of actuators to yield a specific control action.

With the growing demand of the offshore industry, the development in the DP
technologies is proliferating to meet the stringent safety, production and exploration
demands. This has made the users and the manufacturers of the DP systems strive
hard towards more refinements in the DP related equipments and expertise. Conse-
quently, there have been developments in all the faculties of the DP technologies like
navigation, control, propulsion and power units, and other subsidiary components.

DP systems have emerged as a popular replacement for the conventional position
keeping techniques: anchoring and jack-up barge. While the conventional tools have
no or limited maneuverability, DP systems have excellent maneuverability and can
be easily moved from one place to another. No additional external equipment like
the anchoring tugs are required for DP systems. The anchoring may take several
hours but DP has very quick setup. The conventional techniques are limited by the
sea obstructions and sea depth but DP systems do not have such limitations. For
more information on the design, principles, and applications of dynamic positioning
systems interested readers are referred to [23].

1.1.2 Focus of this Research

It is clear from the foregoing discussion that a DP system consists of several compo-
nents. The focus of this thesis is the design and analysis of the positioning control
system of the vessel, a sub-component of the DP control system. This component
may well be considered as the heart of the DP system as it interacts with the rest of
the components of the DP system. There can be different control design objectives
depending upon the nature and demands of a DP operation. Some of these control ob-
jectives include position and heading regulation, path following, trajectory tracking,
and wave-induced motion reduction. We focus on the position and heading regulation.

The basic element of a positioning control system is a mathematical model of the
vessel which is an approximation of the reality. We consider a nonlinear vessel model
from [24] and this model serves as a prototype for this study. The model will be intro-
duced in Chapter 2. We study the design and analysis of the control laws to stabilize
(or regulate) the model to a desired equilibrium point. From a physical point of view,
we desire to maintain the position and heading of the vessel within desired limits. In
control design, it is important to take into account the size and the dynamic response



4 Chapter 1. Introduction

of the thrust devices which must be adequate to cope with various environmental con-
ditions in different offshore operations. In practice, the maximum thrust forces and
moments to maintain the position and heading in different environmental conditions
are estimated and then the capability of the thrust devices to meet the demands is
analyzed. This study is called a capability study.

The prototype vessel model is nonlinear due to the heading angle of the vessel.
In [8], the state dependent coefficient (SDC) parametrization is introduced which is a
strategy to transform the nonlinear system into a pseudo-linear form. The advantage
of this approach is that it provides an opportunity to use concepts from linear system
theory to study the nonlinear vessel model. We use the SDC framework throughout
this thesis to study the control system design for the DP vessel.

The stability analysis is the an important feature of many control system designs.
An unstable system may be potentially dangerous. Qualitatively, a dynamic system is
called stable if starting from a position somewhere near its equilibrium or operating
point implies that it will stay around the point ever after. Due to complex and exotic
behavior of the nonlinear systems, more refined concepts of stability such as (local and
global) asymptotic stability are required to describe the behavior of nonlinear systems.
The asymptotic behavior implies that beside being stable, the system will converge to
its equilibrium or operating position as time goes on.

Lyapunov stability theory is the most commonly used tool to study the stability
properties of nonlinear systems. The prototype vessel model has a typical nonlinearity,
when described in pseudo-linear form by using the SDC parametrization. We begin
our study with the stability analysis of pseudo-linear systems similar to the prototype
DP vessel system. The special form of the vessel model motivated us to combine the
Lyapunov stability theory with linear matrix inequalities (LMIs) to come up with a
new method to analyze the global asymptotic stability of the pseudo-linear systems of
the form similar to the prototype vessel model.

PID controllers are commonly used in practice. We use the SDC framework to
come up with the nonlinear version of the PID controller by using the state dependent
algebraic Riccati equation (from now on we call it the SDARE) technique for the
design of a stabilizing control law for the DP vessel. The computation of the controller
and the observer gains require online computation of the solution of the SDARE. It
can require large computation time, especially, for large systems. There are various
off-the-shelf methods for the solution of the SDARE. We come up with a new method,
the Fourier series interpolation (FSI) method, to solve the SDARE corresponding to
the DP vessel model. The FSI method reduces the computation time for the SDARE
in comparison with the Schur decomposition method.

The port-Hamiltonian formulation has also become a popular technique to study
physical systems since a decade. We transform the DP vessel model into port-Hamiltonian
form and then use the IDA-PBC design approach to come up with a family of control
laws. These control laws may also be seen as the nonlinear version of the well-known
PID controllers, in the port-Hamiltonian framework.
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1.2 An Overview of this Thesis

Chapters 1 and 2 contain the basic introductory material about the main theme of this
thesis. Our focus in this thesis is to address the control system design problem for
dynamic positioning of a sea vessel. The first chapter of this thesis introduces the
dynamic positioning problem. The DP system is illustrated and the importance of
dynamic positioning is highlighted by describing its applications in various offshore
and onshore operations. The second chapter introduces the details of the mathematical
model we use in this thesis to describe the vessel motion. It highlights the necessary
details of the vessel motion in mathematical form.

The main subject of the third chapter is the study of global asymptotic stability of
a special type of nonlinear systems which are similar to the prototype vessel model.
The SDC framework is used to express the nonlinear system in a pseudo-linear form
and then the stability is analyzed based on the properties of the state dependent system
matrix. Two counterexamples are presented in this chapter. The first counterexample
shows that the conditions, that the system matrix in pseudo-linear form is continuous,
Hurwitz, and exponentially bounded, as reported in the literature on this subject, are
not sufficient for global asymptotic stability of the pseudo-linear system. In the second
counterexample, in addition to the set of conditions mentioned in the first counterex-
ample, additionally, we also assume that the system matrix is periodic. It is shown
that the extended set too does not constitute the set of sufficient conditions for global
asymptotic stability of the pseudo-linear system. Apart from this, we also propose in
this chapter, a method for proving global asymptotic stability of the special pseudo-
linear systems by combining the Lyapunov stability theory and the LMIs.

The fourth chapter addresses the control system design problem. The SDARE
based control design and estimation technique is used to design an SDARE controller
and an SDARE observer for dynamic positioning of the vessel. The fifth chapter is
about the FSI method for the approximation of the solution of the SDARE. The FSI
method reduces the online computations of the solution of the SDARE by performing
the computationally expensive tasks offline. The sixth chapter is also about the control
system design problem of the DP vessel. The main idea is to transform the vessel
model in the port-Hamiltonian structure and then use the IDA-PBC design approach to
address the control design problem. The thesis is concluded with the seventh chapter
which briefly summarizes the thesis and provides some concluding remarks. The
hindsight ideas for future research are also presented in this chapter.

1.3 Contributions of this Thesis

We study the stability analysis of nonlinear systems in the SDC framework. There
had been some existing results on this subject. Our main contribution on this topic
are two counterexamples. It is claimed in the literature that it is sufficient for global
asymptotic stability of a pseudo-linear system that the system matrix in its SDC form
is continuous, Hurwitz, and exponentially bounded. In a first counterexample, we
show that this claim is not valid. Motivated by the special type of state dependence
of the system matrix in DP vessel model, we assume additionally that the system
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matrix is periodic and show by means of another counterexample that an additional
condition also does not guarantee the stability of the nonlinear system. Each of these
counterexamples have separately been published, see [58] and [59].

The special form of the nonlinearity in the vessel model and the Lyapunov stability
theory has lead us to propose a new approach to prove global asymptotic stability of
the special type of pseudo-linear systems which resembles the prototype DP vessel
model. This approach makes use of the LMIs to achieve global asymptotic stability.
The approach is useful in particular for the vessel model and in general for the systems
having similar structure as the vessel model.

Another contribution is the SDARE controller design for the DP vessel. The model
based SDARE controller is a state feedback controller. The complete state of the DP
vessel model is not available in practice. Therefore, a state observer is also required.
We also used the SDARE observer to find the state estimate. It has been shown that the
SDARE controller in combination with the SDARE observer gives the desired stability
and performance of the DP vessel. Alongside the SDARE controller and observer, a
numerical method for the approximation of the solution of the SDARE is proposed.
We call this the Fourier series interpolation (FSI) method. This method is proved to
be very handy in reducing the online computation time of the SDARE for controller
and observer gains computations. The concept of the FSI method has been presented
in a conference paper, see [57].

The final contribution of this thesis is the use of the port-Hamiltonian structure
and the passivity theory for the first time for DP vessel control design. We propose a
family of passivity based controllers for the DP vessel. Passivity idea is very attractive
in a sense that it helps in assigning the physical meaning to various variables and
quantities. The stability and performance of the family of the IDA-PBC designs are
discussed. This idea was presented at a conference (see [55]) and it has recently been
accepted in a journal (see [56]).



Chapter 2
Mathematical Model of a Sea
Vessel

The details of a vessel model for DP considerations are presented in this chapter.
The prototype vessel model described in this chapter will be used in the subse-

quent chapters for studying the control system design of the DP vessel.

2.1 Motion of a floating Vessel
In this section, we explain various terms associated with the motion of the vessel in
the sea. Motion of a floating vessel can be described by six degrees of freedom (DOF),
i.e., a vessel can move in six different directions. We can categorize the six DOF in
two categories:

1. The translational motion in the following three directions,

• Surge: motion in backward (aft/stern) and forward (bow/fore) directions

• Sway: motion along sideways (transversial directions): starboard (right side of
the ship) and port (left side of the ship) directions

• Heave: motion in upward and downward directions

2. The rotational motion in the following three directions,

• Roll: rotation about the surge axis

• Pitch: rotation about the sway axis

• Yaw: rotation about the heave axis

Various modes of motion and the forces acting on the vessel are shown in Figure 2.1
and summarized in Table 2.1. A DP system is concerned primarily with control of

7
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HEAVE

YAW

SWAY

PITCH

SURGEROLL

Figure 2.1: Six DOF of motion and forces acting on a floating vessel [Figure courtesy
of www.km.kongsberg.com].

Table 2.1: Nomenclature of the vessel motion
axis x y z

Translation surge sway heave
position x y z
velocity u v w

force X Y Z
+ direction forward starboard downward

Rotation roll pitch yaw
angle φ θ ψ

rate p q r
torque K M N

+ direction starboard fore down right turn

the vessel in the horizontal plane, i.e., only the motions along surge, sway and yaw
directions are considered for DP purposes.

In Table 2.1, X and Y represent the forces in the surge and sway directions and N
denotes the turning effect because of the thrusters and environmental effects.

Dynamic positioning literature is very rich in terminology. For the convenience
and interest of the reader, we briefly explain some important terms. A superstructure
is an upward extension projected above the main deck of the vessel. The parallel lines
marked on the hull of a vessel indicating the depth to which the vessel sinks under
various loads, are called the water lines. The maximum legal load amount on a vessel
is characterized by the top most water line. The distance from the top most water line
to the edge of the lowest upper deck level is called the freeboard.

A vessel has got a volume which means that when it is placed on the surface of
the water, it will displace water which is equal in volume to the volume of the part of
the vessel immersed inside the surface of the water. The upward force on the vessel
exerted by this displaced volume of water is called the force of buoyancy. The force
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of buoyancy depends on characteristics of water: it is low for fresh and warm water
and it is high for cold and saline water which has more density. The center of mass
of the water displaced by the vessel is called the center of buoyancy. The point at
which the weight of the vessel is considered to act is called the center of gravity. The
point of intersection of the vertical lines through the center of gravity and the center
of buoyancy is called the metacenter.

The rear or aft part of the vessel is called the stern. Usually, during the night time,
the stern of the vessel is indicated with a white navigation light on it. The foremost
part of the vessel, opposite to the stern part, when the vessel is underway, is called the
bow. The right hand side of the vessel as perceived by a person on board facing the
bow is called the starboard. The opposite part of the vessel on the left hand side will
then be called the port. All these terms are linked with the main deck of the vessel
and has nothing to do with the location of the superstructure on the deck. Figure 2.2
illustrates all these terms.

Super Structure

Water line 

Free board 

Aft or Stern

Fore or Bow

Star-board side

Port side

Figure 2.2: Commonly used terms in literature on dynamic positioning

2.2 Mathematical Model Describing the Dynamics of a
floating Vessel

Modern DP control systems for ships use controllers based on a mathematical model
of the ship. This mathematical model describes the hydrodynamic, damping, environ-
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mental and control forces and moments acting on the vessel. For rigorous details on
the mathematical modeling of the dynamics of the floating vessel, interested readers
are referred to [24] and for an up-to-date study we refer to [19] and [68]. The informa-
tion from the measurement systems is transmitted to the controller and signals from
the controller are sent to the propulsion systems consisting of the thrusters and pro-
pellers (planted at at least one of the aft, starboard, port and fore sides), propellers, and
rudders to generate the desired activity to maintain the required position and heading
of the vessel. Figure 2.3 shows an overview of the working of the DP system.

Optimum

Controller

Thruster

Allocation

Mathematical Model

SDP SYSTEM

Data from Reference

Systems and Sensors

Feed

Forward

Wind

Figure 2.3: Flow chart of the DP control system (Figure courtesy of
www.techteach.no).

The testbed vessel model used in this thesis is introduced in this chapter and the
details describing the motion of a floating vessel are also explained. In the subsequent
chapters, this model will be used for various design and analysis purposes. This sec-
tion is divided into three major subsections. In the first one, dynamical equations of
motion are explained. In the second subsection, we discuss how the perturbations or
the environmental disturbances are incorporated into the mathematical model of the
vessel dynamics. In the last subsection, the measurement model is explained.

2.2.1 The Dynamical Equations of Motion of the Vessel

The study of the dynamical equations of motion of a mechanical system can be divided
into two parts: the kinematic equations of motion which deal with the geometrical
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aspects of the equations of motion, and the kinetic equations of motion which deal
with the analysis of the forces causing the motion.

The Kinematic Equations of Motion

A floating vessel has six degrees of freedom. Two frames of reference are used to
describe the motion: an Earth-fixed inertial frame of reference and a body-fixed rel-
ative frame of reference. Figure 2.4 explains the description of both frames of ref-
erence. For DP purposes, only the motion in the horizontal plane is considered. Let
η = [x y ψ]T describe the position (x, y) and heading ψ of the vessel in the inertial
frame of reference and ν = [u v r]T describe the velocities of the vessel in the relative
frame of reference. Then, the kinematic equations of motion in vectorial form are
given by

η̇ = J(ψ)ν. (2.1)

where the transformation matrix is given by

J(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (2.2)

The kinematic transformation (2.2) relates the body-fixed velocities to the derivative
of the positions in the inertial frame of reference. Note that the transformation matrix
is non-singular and orthogonal, i.e., J(ψ)JT (ψ) = JT (ψ)J(ψ) = I3, ∀ψ ∈ R. This
property is very important from the design and stability analysis perspective as we
will see in the subsequent chapters. Also, we see that there is no uncertainty associated
with (2.1) as it describes the well-known geometrical aspects of the model.

For conventional ships, it is an appropriate assumption that both the pitching
and rolling motions are oscillatory with zero mean and limited amplitude. Also due
to metacentric stability1, there exist restoring moments in roll and pitch directions.
Therefore, only the rotation matrix in yaw will be used to describe the kinematic
equations of motion.

The Kinetic Equations of Motion

The nonlinear kinetic equations of motion can be formulated by using Newtonian or
Lagrangian mechanics, for instance see [24] for a detailed study. In this work, the
equations in the Newtonian formulation based on Newton’s second law of motion are
considered. The nonlinear kinetic equations of motion in vectorial form can be written
as

ν̇ = −M−1Dν + M−1τ + M−1JT (ψ)b, (2.3)

τ = Buu. (2.4)

1Metacentric stability is the tendency of the vessel to remain upright due to its center of gravity being
below its center of buoyancy.
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Figure 2.4: The Earth-fixed and the vessel-fixed frames of reference.

In (2.3) and (2.4), the vector τ = [X,Y,N]T ∈ R3×1 represents the control forces
and moment acting on the vessel in the body-fixed frame of reference, provided by
the propulsion system of the ship consisting of propellers and thrusters. The vector
u ∈ Rr×1 (r ≥ 1) describes the control inputs and the matrix Bu ∈ R

3×r is a constant
matrix describing the actuator configurations. The vector u is the command to the
actuators, which are assumed to have much faster dynamic response than the vessel;
thus the coefficient Bu represents the mapping from the actuator command to the force
generated by the actuators. In the following chapters, we assume a fully actuated
vessel model and we will take Bu = I3. In the forthcoming chapters, we therefore use
the vectors τ and u interchangeably, unless it is specified. The matrices M and D are
3 × 3 inertia and damping matrices, respectively. The vector b ∈ R3×1 represents the
slowly varying bias forces and moments in the Earth-fixed inertial frame of reference,
due to the waves, wind, sea currents, and other environmental factors surrounding the
vessel.

For DP consideration, the inertia matrix has the following form

M =

 m − Xu̇ 0 0
0 m − Yv̇ mxG − Yṙ

0 mxG − Nv̇ Iz − Nṙ

 ∈ R3×3, (2.5)

where m is the vessel mass, Iz is the moment of inertia about the vessel-fixed z-axis,
and xG denotes the longitudinal position of the center of gravity of the vessel with
respect to the relative frame of reference. The added masses due to acceleration in the
surge, sway, and yaw directions are defined as

Xu̇
M
=
∂X
∂u̇
, Yv̇

M
=
∂Y
∂v̇
, Nṙ

M
=
∂N
∂ṙ
, Yṙ

M
=
∂Y
∂ṙ
, Nv̇

M
=
∂N
∂v̇
. (2.6)
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Note that the inertia along the surge direction is decoupled from the inertia effects
along the sway and yaw directions. Due to small velocities and starboard-port sym-
metries of the vessel, the added mass in sway due to the angular acceleration in yaw
is equal to the added mass in yaw due to sway acceleration, i.e., Yṙ = Nv̇. Hence,
in DP applications, it is assumed that the matrix M is symmetric and strictly positive
definite, i.e., M = MT > 0. This assumption is very useful for the purpose of analysis.

The vessel motion generates waves. This means energy is transferred from vessel
to the fluid and this energy is modeled by the linear damping term. The linear damping
matrix D for DP is taken as

D =

 −Xu 0 0
0 −Yv −Yr

0 −Nv −Nr

 ∈ R3×3. (2.7)

In most DP applications, the damping matrix is assumed to be real, non-symmetrical,
and positive definite. However, for low speed applications where the damping matrix
is reduced to (2.7), it can be assumed that Nv = Yr. In such a case, we assume the
damping matrix D to be real, symmetric, and positive definite. The damping compo-
nents in surge, sway, and yaw directions are defined by

Xu
M
=
∂X
∂u
, Yv

M
=
∂Y
∂v
, Nr

M
=
∂N
∂r
, Yr

M
=
∂Y
∂r
, Nv

M
=
∂N
∂v
. (2.8)

Decoupling of the surge mode from the sway and yaw modes is beneficial for the
convergence of parameter estimation algorithms, see [28]. An a priori estimate of the
mass and damping parameters of the vessel can be obtained by using semi-empirical
methods and hydrodynamic computations. See [22] for details about the identification
and estimation of vessel model parameters. Often the estimates of mass and damping
parameters are updated based on the data obtained from the practical experiments in
calm waters.

2.2.2 The Disturbances Model

The forces acting on a sea vessel can be categorized in two main categories [37]: the
internal and the external forces and moments. The internal forces and moments are
formulated as functions of acceleration, velocities, propeller propulsions, and rudder
excitations. These have partially been discussed in the previous subsection. Here
we explain the external forces acting on the vessel. These forces are also termed as
external disturbances. The external disturbances can be distinguished into 3 major
categories [83]:

• Additive disturbances - These are the disturbances due to wind, waves, sea cur-
rents, etc. These forces act additively on the vessel. To model and analyze these
forces, the model of the ship is extended by adding additional states.

• Multiplicative disturbances - A vessel in sea is also subject to the time varying
parameters such as load conditions, water depth, trim, speed changes, etc. These
disturbances are called multiplicative disturbances.
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• Measurement disturbances - These are the disturbances due to the wrong func-
tioning or noise in the measurement devices like DGPS and gyro compass.

The external disturbances due to unmodeled dynamics, waves, wind, and sea cur-
rent acting on the vessel, are distinguished into two categories: second order2 low
frequency (LF) disturbances and first order3 wave-induced wave frequency (WF) dis-
turbances. See for instance, [26], [29], and [51]. Along this thesis, we call the motion
of the vessel corresponding to these disturbances the LF motion and the WF motion,
respectively. The total vessel motion is then defined to be the sum of the LF and WF
motions. The effect of the WF disturbances is incorporated in the measurement model,
described in the next section. Figure 2.5 illustrates the concept of the slowly varying
LF and the oscillatory WF motions.

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

Time [sec]

A Description of LF and WF Motion

WF Motion

LF Motion

LF and WF Motion

Figure 2.5: The LF and the WF motions

In what follows, both the LF and WF disturbances are characterized by respective
dynamical models. In the following, some explanation of these dynamic models is
given.

Second Order LF Disturbances

The LF disturbances are also sometimes termed as slowly varying bias forces and
moment in surge, sway, and yaw directions. The low frequency motions are caused

2The order refers to the fact that the magnitude of these disturbances is proportional to the square of the
wave amplitude

3The order refers to the fact that the magnitude of these disturbances is proportional to the wave ampli-
tude
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by the forces generated by the thrusters and propellers, wind forces, wave-induced
forces, and hydrodynamic forces. In marine control applications, these forces and
moment can be described, [24], by the first order Markov process given by

ḃ = −T−1b + Ψwb, (2.9)

where b ∈ R3×1 is a vector of bias forces and moment, the vector wb ∈ R
3×1 represents

the zero-mean Gaussian white noise process, i.e., wb ∼ N(0,Qc,b), T ∈ R3×3 is a
diagonal matrix of positive bias time constants and Ψ ∈ R3×3 is a diagonal matrix
scaling the amplitude of the noise vector wb. The matrix T is known as the time
constant. In this context it will have relatively large values as sea states change very
slowly. We can also interpret (2.9) as a low-pass filter.

In many applications, see for instance [27, 80], it is considered more appropriate
from a physical point of view to use ḃ = Ψwb to describe the bias model. This
may be described as integration of the noise signal which in fact is a random walk
phenomenon. Thus bias forces and moments are sometimes modeled as a random
walk process. Another case could be that the bias forces and moment are constant.
Then the bias model will be ḃ = 0.

First Order Wave-Induced WF Disturbances

The fundamental assumption for the development of the WF motion model is that the
sea state is known and can be described by a spectral density function. The first order
wave-induced WF disturbances in surge, sway, and yaw directions are modeled as
second order harmonic oscillations which are driven by Gaussian white noise process.
It was Balchen who first modeled the WF motion in this way, [6]. For each of the
three directions, the WF disturbances model in the frequency domain is given by

ξi(s) =
σis

s2 + 2ζiω0is + ω2
0i

wξi(s), i = 1, 2, 3 (2.10)

where ω0i is the dominating (sometimes also termed as undamped) wave frequency,
ζi is the relative damping ratio, and σi is the wave intensity parameter. The input wξi

represents the Gaussian white noise process, i.e., wξi ∼ N(0,Qc,ξi). The damping ratio
ζi is a measure to describe how the oscillations in the system (2.10) decay when a
disturbance is introduced. Normally, the damping ratio defines the level of damping
(under-damped, over-damped, critically-damped, and undamped) of the system. The
dominating wave frequency ω0i is obtained by spectral analysis.

In state space representation, the WF disturbances model for each direction can be
written as

ξ̇(i)
1 = ξ(i)

2

ξ̇(i)
2 = −ω2

0iξ
(i)
1 − 2ζiω0iξ

(i)
2 + σiwi, i = 1, 2, 3 (2.11)

A compact state space realization of the WF model is given by[
ξ̇1

ξ̇2

]
=

[
O3 I3

−Ω2 −2ZΩ

] [
ξ1

ξ2

]
+

[
O3

Σ

]
wξ, (2.12)
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where ξ1 = [ξ(1)
1 , ξ(2)

1 , ξ(3)
1 ]T , ξ2 = [ξ(1)

2 , ξ(2)
2 , ξ(3)

2 ]T , Ω = diag{ω01, ω02, ω03}, Z =

diag{ζ1, ζ2, ζ3}, and Σ = diag{σ1, σ2, σ3}. The matrix O3 ∈ R
3×3 is a zero matrix.

The WF motion parameters ω0, ζ, and σ depend on the sea states, structure of the
vessel and the direction of the incident waves. The vector wξ describes the Gaussian
white noise process, i.e., wξ ∼ N(0,Qc,ξ) The state vector may or may not have a
physical interpretation depending on the particular state-space realization used.

For DP operations only the LF motion is required to be controlled. This is im-
portant to avoid unnecessary power consumption and possible wear and tear of the
actuators. Therefore, the oscillatory WF motion is required to be filtered or separated
from the LF motion. The WF response is required to be controlled in certain oper-
ations like ride control of a passenger vessel, where reducing pitch and role motion
helps avoiding motion sickness. The stochastic nature of environmentally induced
forces and moments has made the Kalman filter an essential part of the modern sea
vessel motion control systems.

Filtering of the WF motion can be done either by using appropriate classical fil-
tering techniques or it can be done by state estimation. Using filtering techniques, it
is important to know the threshold frequency. Another problem with the filtering ap-
proach is possible phase lag due to delay of the signals. For an estimation approach,
we need to know the parameters of the system. Even in the linearized case, parameters
are required. It is also important to keep in mind that the linearized model may not be
a good approximation of the actual model or system.

2.2.3 The Measurement Model
The position and heading of the vessel in the inertial frame of reference can be mea-
sured by using a differential global positioning system (DGPS) and a gyro-compass.
For reliability, some vessels have multiple sensors. The measurement model can be
described, using the superposition principle, by the following vector equation

y = yb + yξ + υ, (2.13)

where yb = η and yξ = ξ1 are, respectively, the position and heading measurements
of the vessel corresponding to the LF and the WF motions and the vector v ∈ R3×1

is the Gaussian white noise process, i.e., υ ∼ N(0,Rc). The vector v describes the
measurement noise.

2.2.4 Wave Filtering
In (2.13), the measured output is assumed to essentially contain the LF and WF mo-
tion components. The separation of the WF component from the LF component is
termed as wave filtering. This action is also important to avoid thruster modulation, a
phenomenon which gives rise to high frequency fluctuations in the thrust demand in
the control loop. Knowledge of the sea states is required to determine the WF mo-
tion of the vessel. Sea states can be distinguished in 9 different forms (calm, smooth,
rough, high, phenomenal, etc.) depending on the significant wave height [24].

Low-pass, notch, and deadband filters were the most commonly used wave filter-
ing techniques in earlier DP systems, for instance see [82]. The main drawback of



2.3. Summary of the Mathematical Model 17

these techniques was the problem to meet the high gain control requirements due to a
significant phase lag. In earlier DP systems, wave filtering was accomplished by us-
ing a proportional controller with a deadband non-linearity. This deadband produced a
null control action until the control signal was inside the deadband. The length of this
deadband could be increased by the operator with changing weather conditions. This
change in length was termed as ‘weather’ as it was subject to the weather conditions
[82].

2.3 Summary of the Mathematical Model

For more insight and a clear picture of the model of a dynamic positioning vessel, we
summarize all the modeling details from the previous section of this chapter. The LF
motion model is described by combining the equations (2.1), (2.3), and (2.9), and it is
given by

η̇ = J(ψ)ν, (2.14)

ν̇ = −M−1Dν + M−1τ + JT (ψ)b, (2.15)

ḃ = −T−1b + Ψwb. (2.16)

In matrix form, we can write the LF motion model as η̇ν̇ḃ
 =

 O3 J(ψ) O3

O3 −M−1D M−1JT (ψ)
O3 O3 −T−1

︸                                  ︷︷                                  ︸
Ab(ψ)

 ηνb
︸︷︷︸

xb

+

 O3

M−1

O3

︸    ︷︷    ︸
Bb

τ +

 O3

O3

Ψ

︸  ︷︷  ︸
Eb

wb, (2.17)

The output equation of the LF model is

yb =
[

I3 O3 O3

]︸               ︷︷               ︸
Cb

 ηνb
 + υ. (2.18)

The dynamics of the WF motion model and its output are given by[
ξ̇1
ξ̇2

]
=

[
O3 I3

−Ω2 −2ZΩ

]
︸                ︷︷                ︸

Aξ

[
ξ1
ξ2

]
︸ ︷︷ ︸

xξ

+

[
O3

Σ

]
︸  ︷︷  ︸

Eξ

wξ, (2.19)

yξ =
[

I3 O3

]︸       ︷︷       ︸
Cξ

[
ξ1

ξ2

]
. (2.20)

The complete model of motion of the vessel can be described by augmenting both
the LF and WF models and it can be written in the following form.
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
η̇
ν̇
ḃ
ξ̇1
ξ̇2

 =


O3 J(ψ) O3 O3 O3
O3 −M−1D M−1 JT (ψ) O3 O3
O3 O3 −T−1 O3 O3
O3 O3 O3 O3 I3
O3 O3 O3 −Ω2 −2ZΩ

︸                                                            ︷︷                                                            ︸
A(ψ)


η
ν
b
ξ1
ξ2

︸  ︷︷  ︸
x

+


O3

M−1

O3
O3
O3

︸     ︷︷     ︸
B

τ +


O3 O3
O3 O3
Ψ O3
O3 O3
O3 Σ

︸           ︷︷           ︸
E

[
wb
wξ

]
︸  ︷︷  ︸

w

.

(2.21)

The output of (2.21) can be obtained by using the superposition principle, see (2.13),
and is written in matrix form as

y =
[

I3 O3 O3 I3 O3

]︸                            ︷︷                            ︸
C


η
ν
b
ξ1

ξ2

 + υ. (2.22)

The complete model of the vessel in compact form is written as

ẋ =A(ψ)x + Bτ + Ew, (2.23)

y =Cx + υ. (2.24)

The vectors w and v represent the Gaussian white noise processes, i.e., w ∼ N(0,Qc)
and υ ∼ N(0,Rc), where Qc = diag{Qc,b,Qc,ξ}. The system (2.23)-(2.24) is a pseudo-
linear system because of dependency of the system matrix A(ψ) on the heading angle.
We call this pseudo-linear form the state dependent coefficient (SDC) parametrization
of nonlinear system. Chapter 3 explains the concept of the SDC parametrization in
more detail.

2.4 Properties of the Model
In this thesis, we deal with the control design and estimation problems of the DP vessel
discussed in the previous sections. For this purpose, it is important to know certain
properties of the vessel model which play a fundamental part in the control design and
estimation techniques which we are going to use in the subsequent chapters. These
properties include controllability, observability, stabilizability, and detectability. In
the following, we recall some important results about these properties in the context
of the pseudo-linear systems, presented in [7] .

Definition 2.4.1. (Controllability in terms of rank condition) The pseudo-linear
system of the form (2.23)-(2.24) with an n-dimensional state vector is pointwise con-
trollable iff the rank of the controllability matrix

C =
[

B A(ψ)B A2(ψ)B · · · An−1(ψ)B
]
, (2.25)

is n, for each ψ ∈ R. In other words, we also say the pair (A(ψ), B) is pointwise
controllable.
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Definition 2.4.2. (Observability in terms of rank condition) The pseudo-linear sys-
tem of the form (2.23)-(2.24) with an n-dimensional state vector is pointwise observ-
able iff the rank of the observability matrix

O =



C
CA(ψ)
CA2(ψ)

...

CAn−1(ψ)


, (2.26)

is n, for each ψ ∈ R. In other words, we also say the pair (C, A(ψ)) is pointwise
observable.

It can easily be checked that the controllability matrices corresponding to the sys-
tems (2.17) and (2.21) have rank 6 for all ψ ∈ R, i.e., only the position and the veloci-
ties can be controlled. This is not restrictive as the LF bias forces and the WF motions
cannot be controlled. The observability matrices corresponding to both the systems
have full column ranks for all ψ ∈ R. So the systems are pointwise observable, i.e.,
we can build the states of the system from the knowledge of the input and the output.

The stabilizability and detectability are weaker conditions than the controllability
and observability, respectively. These properties are important from the point of view
of the existence of the solution of the SDARE. In the following, we define a necessary
and sufficient condition for the pointwise stabilizability and detectability of a pseudo-
linear system, see [7] for more details.

Definition 2.4.3. (Pointwise Stabilizability) The pseudo-linear system of the form of
(2.23)-(2.24) with an n-dimensional state vector is pointwise stabilizable iff

rank
(
λI − A(ψ) B

)
= n, (2.27)

for each eigenvalue λ of A(ψ) which has a non-negative real part (Re(λ ≥ 0)) and for
all ψ ∈ R. In other words, we also say the pair (A(ψ), B) is stabilizable.

Definition 2.4.4. (Pointwise Detectability) The pseudo-linear system of the form
(2.23)-(2.24) with an n-dimensional state vector is pointwise detectable iff

rank
(
λI − A(ψ)

C

)
= n, (2.28)

for each eigenvalue λ of A(ψ) which has a non-negative real part (Re(λ ≥ 0)) and for
all ψ ∈ R. In other words, we also say the pair (C, A(ψ)) is detectable.

Due to the special structure of the system matrices Ab(ψ) in (2.17) and A(ψ) in
(2.21), the eigenvalues of the system matrices do not change with the variable ψ. The
only non-negative eigenvalue of both Ab(ψ) and A(ψ) is 0 with algebraic multiplicity
3. This makes it an easy task to compute the rank conditions (2.27) and (2.28). It
can be checked that the rank is 9 for both stabilizability and detectability conditions
corresponding to Ab(ψ) and it is 15 for A(ψ). Thus both the systems (2.17) and (2.21)
are pointwise stabilizable and detectable.
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Chapter 3
SDC Parametrization and
Stability Analysis of Autonomous
Nonlinear Systems1

The stability analysis of nonlinear systems has always been a challenging task. This
is mainly because of phenomena like finite escape time and limit cycles, see for

instance [32], [59], [79], [81], and [88]. Numerous techniques for stability analysis of
nonlinear systems have been proposed over time, for further details see [43], [45], and
[86]. One such approach is to first write the nonlinear system dynamics in linear-like
form using a state dependent coefficient (SDC) parametrization and then analyze the
possible extension of the results of linear systems theory for the stability analysis of
nonlinear systems. The SDC representation provides a systematic way to analyze the
extension of the results of linear systems theory for the stability analysis of nonlinear
systems.

3.1 State Dependent Coefficient Parametrization
Let Ω ⊆ Rn and f (x) be a vector function from Ω to Rn. Consider the following
nonlinear system

ẋ = f (x), x0 = x(t0), (3.1)

where x ∈ Ω is the state of the system. If the vector function f : Ω −→ Rn, is
continuously differentiable and f (0) = 02, then it is always possible to write f (x) =

A(x)x, see [46]. Let us call the matrix A(x) the state dependent coefficient (SDC)

1Section 3.4.1 and Section 3.5.1 of this chapter have been published in the form of two separate articles
in the IMA Journal of Mathematical Control and Information, see [58] and [59].

2When it is clear from context (by the domain and codomain of the function) we write, e.g., f (0) = 0
for f (0) = 0, and A(0) for A(0)

21
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parametrization of f (x). It is important to mention that the SDC parametrization is
not unique unless f (x) is a scalar function. For example, if A1(x) and A2(x) are two
distinct parametrizations of f (x) then for 0 ≤ α ≤ 1,

αA1(x)x + (1 − α)A2(x)x = α f (x) + (1 − α) f (x) = f (x),

i.e.
αA1(x) + (1 − α)A2(x)

is also a parametrization of f (x). In fact infinitely many parametrizations are possible
but one has to chose only those which are appropriate for the desired objectives. For
more details on the SDC parametrization, interested readers are referred to [36] and to
the references therein.

An important property of the SDC parametrization is that it preserves the lineariza-
tion of nonlinear systems. If A(x) is any parametrization of f (x) then A(0) = 5 f |x=0.
The following Lemma from [7] establishes this fact.

Lemma 3.1.1. For any SDC parametrization A(x) of f (x) with f (x) continuously
differentiable and f (0) = 0, A(0)x is the linearization of f (x) at the zero equilibrium.

Proof. See [7]. �

From here onward, we will use the notions of the coefficient matrix A(x) and
the system matrix interchangeably. Consider the following pseudo-linear autonomous
system

ẋ = A(x)x, x0 = x(t0). (3.2)

In the remainder of this chapter, we analyze the stability properties of the pseudo-
linear system (3.2). Our approach is based on the properties of the system matrix A(x)
in (3.2). In the following, we state four conditions on this matrix. To analyze the
stability properties of (3.2), we will test all these conditions in the order in which they
are stated.

C.1 The matrix function, A : Ω −→ Rn×n is a C1 function3

C.2 A(x) is pointwise asymptotically stable (Hurwitz) matrix, i.e., all eigenvalues of
A(x) lie in the open left half plane for all x ∈ Ω. Consequently, we see that the
origin x̄ = 0 is the only equilibrium point of the system (3.2).

C.3 The system matrix, A(x), is exponentially bounded i.e., ||eA(x)t || ≤ M for some
real M > 0 and ∀x ∈ Ω, ∀t ∈ [0,∞).

C.4 A(x) is a periodic function with a period θ, i.e., A(x + θ) = A(x), ∀ x ∈ Ω.

In Chapter 2, we have introduced a mathematical model of a vessel. The system
matrix of this model is a periodic function of the heading angle of the vessel. This fact
is the motivation behind the fourth condition (C.4). The first two conditions imply that

3C1(Ω ⊆ Rn,Rn×m) := {A : Ω −→ Rn×m | A is continuous, ∂xi A exists and are continuous for all
i = 1, 2, ..., n}.



3.2. Local Asymptotic Stability Analysis 23

there is only one isolated equilibrium point, x̄ = 0, of (3.2). Therefore, the stability
analysis of (3.2) will be with reference to this equilibrium point. The conditions C.1
and C.2 are sufficient to prove local asymptotic stability. The conditions C.3 and C.4
are imposed to analyze global asymptotic stability.

3.2 Local Asymptotic Stability Analysis

We start with the local asymptotic stability considerations. It can be defined as follows
[73]:

Definition 3.2.1. An equilibrium point x̄ of the nonlinear system (3.2) is (locally)
asymptotically stable if it is stable, and if in addition there exists some r > 0 such that
||x(0)|| < r implies that x(t)→ x̄ as t → ∞.

Since A(x) is continuously differentiable, therefore, col{A(x)} ∈ C1. By col{A(x)},
we mean the set of columns of A(x). Applying the Mean Value Theorem [54] to
col{A(x)}, we can write

col j{A(x)} = col j{A(0)} +
∂col j{A(z j)}

∂x
x, j = 1, 2, ..., n (3.3)

where the vector z j is a point, on the line connecting the origin and the point x, which
yields equality in the jth equation of (3.3). By col j{A(x)}, we mean the jth column of
A(x). Using (3.3) in (3.2), we can write

ẋ = A(0)x +
[

∂col1{A(z1)}
∂x x ∂col2{A(z2)}

∂x x ... ∂coln{A(zn)}
∂x x

]
x,

= A(0)x +

n∑
j=1

n∑
i=1

xix j
∂col j{A(z j)}

∂xi
.

Multiplying and dividing the second term by ||x|| and defining

ψ(x, z1, z2, ..., zn) M=
n∑

j=1

n∑
i=1

xix j

||x||
∂col j{A(z j)}

∂xi
,

we get,

ẋ = A(0)x + ψ(x, z1, z2, ..., zn)||x||. (3.4)

Since

lim
||x||→0

ψ(x, z1, z2, ..., zn) = 0, (3.5)

and A(0) is Hurwitz, x̄ is a locally asymptotically stable equilibrium point of (3.4).
This means, that the conditions C.1 and C.2 ensure that x̄ is a locally asymptotically
stable equilibrium point of (3.2).
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3.3 Global Asymptotic Stability Analysis
Now we proceed to the global asymptotic stability considerations. The requirements
for global asymptotic stability of a nonlinear system of the form (3.2) are the follow-
ing.

i. There is only one equilibrium point, x̄ ∈ Ω, of the system.

ii. The equilibrium point is locally asymptotically stable.

iii. lim
t→∞

x(t, x0) = x̄, ∀ x0 ∈ Ω, i.e., starting from any point x0 ∈ Ω, the state of the
system converges to the equilibrium point x̄ as time goes to infinity.

The conditions C.1 and C.2 are not sufficient to guarantee global asymptotic sta-
bility of (3.2). Global asymptotic stability of nonlinear systems in this form was first
studied by Banks and Mhana [8]. They came up with the following result:

Proposition 3.3.1. If Ā(x) is a continuous matrix-valued function which is asymptot-
ically stable for each x, then the equation

ẋ = Ā(x)x, x(0) = x0, (3.6)

is asymptotically stable for all x0.

This statement of Banks and Mhana is an optimistic extension of the eigenvalue
based stability test for linear systems, to analyze the stability of the pseudo-linear
systems (3.2). Ultimately, it was proved wrong, independently, in [47] and [81] by a
simple counterexample. The counterexample is the following nonlinear system

ẋ =

[
−1 x2

1
0 −1

]
x, x0 = x(t0). (3.7)

This system satisfies Banks and Mhana’s hypothesis: A(x1) is continuous and asymp-
totically stable. But if the initial condition is taken as x0(0) = [2 2]T , then simple
calculations yield the following solution of (3.7):

x1(t) =
2x2(t)

x2
2(t) − 2

and x2(t) = 2e−t

for all t ∈ [0,Tc) with Tc = ln
√

2. It is obvious that as t tends to Tc then x2 tends to√
2 and consequently x1 tends to∞. Therefore, the system (3.7) is not asymptotically

stable for all x0. Such a departure of a state variable to infinity at a finite time is called
the finite escape time phenomenon. From this counterexample it is obvious that the
pointwise asymptotic stability of the system matrix A(x) does not help us to draw any
conclusion about the stability of the nonlinear system (3.2).

In the following two sections, we continue with global asymptotic stability anal-
ysis. In Section 3.4, global asymptotic stability is analyzed with respect to the expo-
nential boundedness of the system matrix. In Section 3.5, it is analyzed with respect
to the periodicity assumption on the system matrix.
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3.4 Exponential Boundedness and Global Asymptotic
Stability

In this section, we continue with the findings of Langson and Alleyne and ultimately
give a counterexample to show that global asymptotic stability is not guaranteed when
the system matrix is exponentially bounded. Langson and Alleyne [47] studied this
topic further and concluded the following:

Proposition 3.4.1. Consider the system ẋ = A(x)x, where A : Rn −→ Rn×n is uni-
formly continuous in x and A(x) is a stable matrix ∀x ∈ Rn. The origin of the given
system is an asymptotically stable equilibrium point.

Corollary 3.4.1. If the hypothesis of Proposition 3.4.1 is satisfied with ||eA(x)t || ≤

M for some real M > 0 and ∀x ∈ Rn, ∀t ∈ [0,∞), then the system ẋ = A(x)x is
asymptotically stable for any arbitrary finite initial condition.

In the following subsection, a counterexample [58] to these statements is pre-
sented. We construct a system where the hypotheses of Langson and Alleyne men-
tioned in Proposition 3.4.1 and Corollary 3.4.1 are satisfied, that is nonetheless not
globally asymptotically stable.

3.4.1 A Counterexample Showing that the Exponential Bounded-
ness of the System Matrix does not Guarantee Global Asymp-
totic Stability

Example 3.4.1. We start with the following SDC formulation of a nonlinear system
in a general setting

ẋ =

[
a b − c(x)

−b − c(x) a

]
x, x0 = x(t0), (3.8)

where a, b ∈ R and c(x) is a smooth function: c : R2 → R. We show that the coefficient
matrix in (3.8) satisfies the hypothesis of Langson and Alleyne, for certain choices of
the parameters a and b, and the scalar function c(x): a < 0 and b > |c(x)| for all
x ∈ R2.

1. Continuity: From the description of the coefficient matrix in (3.8), it is obvi-
ous that the coefficient matrix is continuous: A : R2 → R2×2 is a continuous
function.

2. Asymptotic Stability: The general expression for the eigenvalues of the system
matrix in (3.8) has the following form

λ1,2 = a ±
√

c2(x) − b2. (3.9)

Clearly, if a < 0 and b2 > c2(x) for all x ∈ R2, then A(x) is Hurwitz (asymptot-
ically stable).
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3. Exponential Boundedness: Under this subject, we derive a general expression
for the upper bound of the matrix exponential of the coefficient matrix in (3.8).
For the sake of convenience, in the sequel we write c instead of c(x). We proceed
as follows

e

 a b − c
−b − c a

t
= e


 a 0

0 a

+
 0 b − c
−b − c 0


t

= e

 a 0
0 a

t
e

 0 b − c
−b − c 0

t

= eate

 0 b − c
−b − c 0

t
. (3.10)

We use here the fact that if A1 and A2 commute then eA1+A2 = eA1 eA2 . Now
consider the following transformation to make the anti-diagonal entries of the
matrix in the second exponent of (3.10) the additive inverse of each other.

[
1 0
0 γ−1

] [
0 b − c

−b − c 0

] [
1 0
0 γ

]
=

[
0 −k
k 0

]
,[

0 (b − c)γ
(−b − c)γ−1 0

]
=

[
0 −k
k 0

]
.

Solving the pair of equations

(b − c)γ = −k and γ−1(−b − c) = k,

for γ and k, we get

γ = ±

√
b + c
b − c

and k = ±
√

b2 − c2.

We know that

eAt = Te(T−1AT )tT−1. (3.11)

Therefore, by taking the positive value of γ, we have

e

 0 b − c
−b − c 0

t

=

[
1 0
0 γ

]
e

 0
√

b2 − c2

−
√

b2 − c2 0

t [ 1 0
0 γ−1

]
.

Hence, we can write (3.10) as
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e

 a b − c
−b − c a

t

= eat
[

1 0
0 γ

]
e

 0
√

b2 − c2

−
√

b2 − c2 0

t [ 1 0
0 γ−1

]
. (3.12)

We know that

e

 0 x
−x 0


=

[
cos x sin x
− sin x cos x

]
. (3.13)

Taking the norm (we use the spectral norm) on both sides of (3.12) and using
(3.13), we get

∥∥∥∥∥∥∥∥∥∥∥e

 a b − c
−b − c a

t
∥∥∥∥∥∥∥∥∥∥∥

≤ eat

∥∥∥∥∥∥
[

1 0
0 γ

]∥∥∥∥∥∥ ·
∥∥∥∥∥∥
 cos

√
b2 − c2t sin

√
b2 − c2t

− sin
√

b2 − c2t cos
√

b2 − c2t

∥∥∥∥∥∥ ·
∥∥∥∥∥∥
[

1 0
0 γ−1

]∥∥∥∥∥∥ .
(3.14)

We have derived the general expressions for the eigenvalues, (3.9), and the upper
bound of the matrix exponential, (3.14), for the system matrix in (3.8). Now, we show
that the hypothesis of Langson and Alleyne, is satisfied if we take a suitable combi-
nation of the parameters a and b with scalar function c(x). For example, we take
a = −0.1, b = 3, and c(x) = − 8

π2 tan−1 x1 tan−1 x2. Then e−0.1t ≤ 1, 1
√

5
< γ <

√
5, and∥∥∥∥∥∥

 cos
√

b2 − c2t sin
√

b2 − c2t
− sin

√
b2 − c2t cos

√
b2 − c2t

∥∥∥∥∥∥ = 1,

∥∥∥∥∥∥
[

1 0
0 γ−1

]∥∥∥∥∥∥ ≤ √5 and

∥∥∥∥∥∥
[

1 0
0 γ

]∥∥∥∥∥∥ ≤ √5.

Therefore from (3.9) and (3.14), we have

Re(λmax) = −0.1 and

∥∥∥∥∥∥∥∥∥∥∥e

 −0.1 3 − c(x)
−3 − c(x) −0.1

t
∥∥∥∥∥∥∥∥∥∥∥ ≤ 5,

for all x ∈ R2 and t ∈ [0,∞).
The system matrix has the following form

A(x) =

[
−0.1 3 + 8

π2 tan−1 x1 tan−1 x2

−3 + 8
π2 tan−1 x1 tan−1 x2 −0.1

]
. (3.15)
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It is clear from the foregoing discussion that the system matrix in (3.15) is continu-
ous, asymptotically stable (Hurwitz), and exponentially bounded. Thus the hypothesis
of Langson and Alleyne is satisfied.
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Figure 3.1: Phase-portrait of the system dynamics (3.8)

Fig. 3.1 shows the phase-portrait of the system dynamics in (3.8) using the system
matrix (3.15) with an initial condition, x0 = [1.2 0]T . It indicates that the states of
the system move away from the origin as time goes to infinity although the coefficient
matrix satisfies the sufficient conditions (as claimed in [47]) for global asymptotic
stability. N

3.5 Periodicity and Global Asymptotic Stability
From the counterexample in the previous section, it is clear that the hypothesis of
Langson and Alleyne is not sufficient to endorse global asymptotic stability of non-
linear systems of the form (3.2). At this point, a natural question is, what additional
conditions would be required to establish global asymptotic stability of nonlinear sys-
tems of the form (3.2)? In addition to the smoothness conditions and exponential
boundedness, we study the case that A(x) is also a θ−periodic matrix, i.e.,

A(x) = A(x + θ) for all x ∈ Ω and some θ ∈ R. (3.16)

Condition C.4, that the system matrix A(x) is periodic, ensures that the finite escape
time phenomenon will not occur. If a function is continuous and periodic on Ω then it
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must be bounded. In the following proposition, we prove how the periodicity condition
rules out the possibility of the finite escape time phenomenon.

Proposition 3.5.1. Suppose that the system (3.2) satisfies the usual regularity (smooth-
ness) conditions. If the system matrix in (3.2) is continuous, Hurwitz and periodic then
the system has bounded solutions for all times t < ∞.

Proof. The solution of (3.2) exists, because regularity conditions are assumed to be
satisfied, and can be written as

x(t) = x0 +

∫ t

0
A(x(s))x(s)ds. (3.17)

Since the system matrix A(x) is continuous, Hurwitz, and periodic for all x ∈ Ω, it
must be bounded. Therefore, ∃M > 0, s.t. ||A(x)|| < M, ∀x ∈ Rn. Taking the norm
on both sides of (3.17) and using the fact that A(x) is bounded, it follows that

||x(t)|| ≤ ||x0|| +

∫ t

0
M||x(s)||ds.

Using Gronwall’s Lemma [85, Chapter 1, page:5], we get
||x(t)|| ≤ ||x0||eMt.

This expression shows that the state of the system is bounded for all t < ∞, i.e., the
state does not blow up in finite time. This completes the proof. �

Further research on this topic results in yet another counterexample which leads
us to the conclusion that adding the periodicity condition alone does not suffice to
guarantee global asymptotic stability. The details are explained in the following sub-
section.

3.5.1 A Counterexample Showing that the Periodicity of the Sys-
tem Matrix does not Guarantee Global Asymptotic Stability

Example 3.5.1. This example has two parts: first we analyze the system matrix and
then analyze the corresponding system.

Analysis of Coefficient Matrix

In order to present the counterexample, we first consider the matrix

A(x1) =

(
2α −2

2 + 4α2 −4α

)
, (3.18)

where α = sin2 x1 + ε, with ε ∈ R such that 0 < ε < 1. Hence, α is a real number such
that 0 < α ≤ 1 + ε < 2 for any x1 ∈ R.

Note that the matrix A(x1) is periodic with period π, i.e., A(x1) = A(x1 + π) for all
x1 ∈ R. Further, note that A(x1) depends on x1 in a continuous way.

With ε as above, the eigenvalues of A(x1) are given by
λ1,2 = −α ± i

√
4 − α2,
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where “i” denotes the imaginary unit. Clearly, the eigenvalues of A(x1) are complex,
since 4 − α2 > 0. Furthermore, the eigenvalues of A(x1) are located in the open left
half of the complex plane, since α > 0. Hence, for all x1 ∈ R, the matrix A(x1) is a
so-called Hurwitz matrix, i.e., all eigenvalues of A(x1) have a negative real part.

An eigenvector for the eigenvalue λ1 = −α + i
√

4 − α2 is given, for instance, by
the nonzero complex-valued vector

v1 =

(
2

3α

)
+ i

(
0

−
√

4 − α2

)
.

It can indeed be verified that A(x1)v1 = λ1v1. Note that A(x1) is a real-valued
matrix, but that A(x1)v1 and λ1v1 are complex-valued expressions. Then, equating the
real and imaginary parts of A(x1)v1 and λ1v1, it follows that

A(x1)
(

2
3α

)
= −α

(
2

3α

)
−
√

4 − α2

(
0

−
√

4 − α2

)
and

A(x1)
(

0
−
√

4 − α2

)
=
√

4 − α2

(
2

3α

)
− α

(
0

−
√

4 − α2

)
.

Combining the expressions, it follows that

A(x1)
(

2 0
3α −

√
4 − α2

)
=

(
2 0

3α −
√

4 − α2

)  −α
√

4 − α2

−
√

4 − α2 −α

 ,
or

A(x1)T = T D,

with

T =

(
2 0

3α −
√

4 − α2

)
, D =

 −α
√

4 − α2

−
√

4 − α2 −α

 .
By the restrictions on ε and α, it is clear that matrix T is invertible. Hence, it

follows that
A(x1) = T DT−1,

and, consequently, that
eA(x1)t = TeDtT−1. (3.19)

Because of the special form of the matrix D, it follows (see any book on differential
equations such as [10, page. 332]) that for all t ≥ 0,

eDt = e−αt

 cos
√

4 − α2t sin
√

4 − α2t
− sin

√
4 − α2t cos

√
4 − α2t

 .
The matrix on the right-hand side in the above equation has a finite norm. Indeed,

considering the Frobenius norm, i.e., the square root of the sum of squared moduli of
all matrix elements, see [33], it follows that the Frobenius norm of the real matrix cos

√
4 − α2t sin

√
4 − α2t

− sin
√

4 − α2t cos
√

4 − α2t

 ,
is equal to

√
2. The Frobenius norm of eDt is then given by

√
2e−αt. The Frobenius

norms of the matrices T and T−1 are given by
√

8 + 8α2 and
√

2+2α2

4−α2 , respectively.
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Let ·||F denote the Frobenius norm. It is well-known (or easy to prove) that the
Frobenius norm is sub-multiplicative, i.e., ||UV ||F ≤ ||U ||F ||V ||F for any two square
matrices U and V of the same size. Therefore, it follows from (3.19) that for all t ≥ 0,∥∥∥eA(x1)t

∥∥∥
F ≤ ‖T‖F

∥∥∥eDt
∥∥∥

F

∥∥∥T−1
∥∥∥

F ≤
√

8 + 8(1 + ε)2
√

2e−αt

√
2 + 2(1 + ε)2

4 − (1 + ε)2 .

Since α > 0, it follows that 0 ≤ e−αt ≤ 1, for all t ≥ 0. Hence, for all t ≥ 0,∥∥∥eA(x1)t
∥∥∥

F ≤ 2
√

2
(2 + 2(1 + ε)2)√

4 − (1 + ε)2
.

So, there exists a number M ∈ R, depending on ε, such that
∥∥∥eA(x1)t

∥∥∥
F ≤ M, for all

t ≥ 0 and for all x1 ∈ R.

Recapitulating, the matrix A(x1) defined in (3.18), with α = sin2 x1 + ε and with ε
a fixed number such that 0 < ε < 1, satisfies the following conditions:

• A(x1) is Hurwitz for all x1 ∈ R, i.e., all eigenvalues of A(x1) have negative real
part for all x1 ∈ R,

• A(x1) depends continuously on x1,

• eA(x1)t is “uniformly” bounded in t ≥ 0 and x1 ∈ R, i.e., there exists an M ∈ R
such that

∥∥∥eA(x1)t
∥∥∥

F ≤ M, for all t ≥ 0 and x1 ∈ R.

In [47], it is claimed that the above conditions are sufficient for global asymptotic
stability of the associated differential equation. In [58], we showed that this claim is
not correct.

Here, in addition to the above properties, we also have that

• A(x1) is periodic with period π, i.e., A(x1) = A(x1 + π) for all x1 ∈ R.

However, this additional property in general, does not offer anything extra as far as
global asymptotic stability is concerned. This is shown in the following analysis of the
differential equation.

Analysis of the Differential Equation

To show that the above conditions are generally not sufficient to guarantee global
asymptotic stability, we consider the differential equation

ẋ = A(x1)x, with x =

(
x1

x2

)
, (3.20)

where A(x1) is as defined in (3.18), with α = sin2 x1 + ε, and with ε a fixed number
such that 0 < ε < 1.

Because A(x1) is Hurwitz for all x1 ∈ R, see the previous subsection, A(x1) is
invertible for all x1 ∈ R. Therefore, differential equation (3.20) has only one equi-
librium point, namely the origin. Moreover, since A(x1) is Hurwitz for x1 = 0, it fol-
lows that the linearization of (3.20) around the origin, given by ẋ = A(0)x, is locally
asymptotically stable. It is then well known, see for instance [85], that there exists a
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neighborhood of the origin such that solutions of (3.20), starting in this neighborhood,
converge to the origin for time going to infinity. However due to the non-linearity of
(3.20), and often also in general, there are initial conditions for which this conver-
gence does not take place. Indeed, as numerical simulations show, there are initial
conditions such that the resulting solution does not converge.

More specifically, for ε = 0.05, clearly satisfying 0 < ε < 1, starting from x1(0) =

1, x2(0) = 0, the solution of the differential equation spirals outwards. It further
more follows from simulations that for x1(0) = 1.5, x0 = 0, the resulting solution
spirals inwards, but does not converge to the origin. As a consequence, by a Poincaré-
Bendixson kind of reasoning, see [85], both the solutions converge to a limit cycle that
intersects the x1−axis between 1 and 1.5. See also Figure 3.2, where the solutions are
displayed starting from x1(0) = 1, x2(0) = 0 and x1(0) = 1.5, x2(0) = 0, respectively.

In Figure 3.2, the limit cycle to which the two solutions converge is depicted by
a dash-dotted red line. This limit cycle intersects the positive x1−axis around x1 =

1.265. Figure 3.2 also contains a second smaller limit cycle, also depicted by a dash-
dotted red line. This second limit cycle intersects the positive x1−axis around x1 =

0.460. It bounds the neighborhood around the origin in which solutions converge to
the origin. Outside this neighborhood, the solutions converge towards the larger limit
cycle.
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Figure 3.2: Phase portrait of the system dynamics (3.20).

Figure 3.2 indicates that the solution starting in certain initial states never reaches
the only equilibrium state, as time goes to infinity, although the coefficient matrix
satisfies the conditions in [47]. Hence, the origin, being the only equilibrium state, is
not globally asymptotically stable. Also it is clear that the additional requirement of
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periodic state dependency of the coefficient matrix does not help in attaining global
asymptotic stability.

Concluding Remarks

From the foregoing discussion, it is clear that the conditions C.1, C.2, and C.3 are not
sufficient to guarantee global asymptotic stability of a non-linear system written as a
pseudo-linear system in state dependent coefficient form (3.2), even with the periodic-
ity condition as well, see [58]. N

3.6 An LMI Based Approach for Global Asymptotic
Stability

In general, periodicity of the system matrix does not imply global asymptotic stability
of (3.2). However, this assumption helps in analyzing its global asymptotic stability as
we have seen in Example 3.5.1. For instance, we assume that the system matrix A(x)
is a function of a single state component and it is θ−periodic as well. Then (3.16)
becomes

A(x1 + θ) = A(x1), for all x1 ∈ R and θ ∈ R, (3.21)

where, without loss of generality, x1 is the first component of the state vector.
The eigenvalue criterion is a well-known approach to analyze asymptotic stability

of linear systems. It is stated as follows [15, Chapter 7, page:203].

Theorem 3.6.1. Eigenvalue Criterion for Stability. The system

ẋ = Ax, x(0) = x0, (3.22)

is asymptotically stable if and only if all the eigenvalues of the matrix A have negative
real parts.

Before the advent of fast computing machines like modern age computers, compu-
tation of eigenvalues was a cumbersome task. In 1892, a Russian mathematician, A.
M. Lyapunov (1857-1918) proposed a method to analyze asymptotic stability of linear
systems. This method does not require eigenvalue computation. Lyapunov narrated
his method as follows [15, Chapter 7, page:205].

Theorem 3.6.2. Lyapunov Stability Theorem. The system (3.22) is asymptotically
stable if and only if, for any symmetric positive definite matrix Q, there exists a unique
symmetric positive definite matrix P satisfying the equation:

PA + AT P = −Q. (3.23)

In (3.23), we can easily transform the matrix equation into a matrix inequality to
get

PA + AT P ≺ 0, ∵ −Q ≺ 0. (3.24)
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For a given N × N matrix P, the constraint P(�) � 0 would denote that the matrix P is
positive (semi-)definite and the constraint P(�) ≺ 0 would denote that the matrix P is
negative (semi-)definite.

In this section, an LMI based approach is proposed and discussed to establish
global asymptotic stability of the pseudo-linear systems of the form (3.2) when the
system matrix has the form (3.21). The motivation for this approach comes from
[71, Chapter 4] where asymptotic stability of linear systems is analyzed subject to
parameter uncertainties. We see a similar situation in (3.21) where the system matrix
depends on a single state component which varies periodically with period θ.

This approach has two steps. The first step is to formulate an LMI feasibility
problem using the concept introduced in the Theorem 3.6.2. The solution of this LMI
feasibility problem gives a constant symmetric positive definite matrix. In the second
step, we use the solution matrix from the LMI feasibility problem (Step I) to prove
the global asymptotic stability of the system under consideration by using a quadratic
Lyapunov function. The details of this approach are as follows.

Step I- LMI Feasibility Problem Formulation

Inspired by the Lyapunov Stability Theorem, we propose an equivalent result for the
pseudo-linear system (3.2). Before proceeding further, it is important to mention that
the LMI solver SeDuMi which we use in the sequel, does not distinguish between �
and � (likewise between ≺ and �). Therefore, we formulate the LMI feasibility prob-
lem with non-strict equality constraints. The system (3.2) is pointwise asymptotically
stable if and only if for each x1 ∈ R, ∃ P(x1) = PT (x1) � 0 s.t.

AT (x1)P(x1) + P(x1)A(x1) + In � 0. (3.25)

It is important to mention that, without loss of generality, we take Q = In as a constant
identity matrix. The choice Q = In helps us in stability analysis by ensuring strict
inequalities, as we will see in the sequel. Intuitively, we are interested to investigate
whether there exists a constant matrix P = PT � 0 for which the following holds

AT (x1)P + PA(x1) + In � 0, ∀ x1 ∈ R. (3.26)

Therefore, if the LMI in (3.26) holds true for all x1 in the principal interval [− θ2 ,
θ
2 ]

then it will hold for all x1 ∈ R.
To verify this we proceed as follows. We mark k (sufficiently large) number of

points on [− θ2 ,
θ
2 ) and formulate an LMI feasibility problem as follows:

Does there exist a P = PT � 0 which satisfies the LMI in (3.26) at k points, x1k ∈

[− θ2 ,
θ
2 )?

This gives rise to k + 1 LMIs. The system matrix A(x1) is θ-periodic which means that
it will be same at x1 = − θ2 and x1 = θ

2 . Hence, to ensure that all LMIs are distinct,
we take x1k ∈ [− θ2 ,

θ
2 ). Mathematically, we formulate the LMI feasibility problem as

follows:
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Does there exist a symmetric matrix P which satisfies the following set of LMIs

P − In � 0
AT (x11)P + PA(x11) + In � 0
AT (x12)P + PA(x12) + In � 0

...

AT (x1k)P + PA(x1k) + In � 0


? (3.27)

We solve this LMI feasibility problem with YALMIP package (see [50] for more de-
tails) in MATLABT M using the solver SeDuMi (see [78] for more details).

Step II- Global Asymptotic Stability Analysis

Here we explain how we use the solution of the LMI feasibility problem to estab-
lish global asymptotic stability of the system under consideration. Before proceeding
further, we recall the important Barbashin-Krasovskii theorem from [43, Chapter 4,
page:124] which we use in the stability analysis.

Theorem 3.6.3. Let x̄ = 0 be an equilibrium point for (3.2). Let V : Ω −→ R be a
continuously differentiable function such that

V(0) = 0 and V(x) > 0, ∀x , 0, (3.28)

||x|| −→ ∞ ⇒ V(x) −→ ∞, (3.29)

V̇(x) < 0, ∀x , 0, (3.30)

then x̄ = 0 is globally asymptotically stable.

We define a quadratic Lyapunov function as:

V(x) = xT Px. (3.31)

Here P = PT � 0 is the solution of the LMI feasibility problem (3.27). Differentiating
(3.31) w.r.t ‘t’

V̇(x) = xT [AT (x1)P + PA(x1)]x. (3.32)

The function in (3.31) satisfies all requirements stated in Theorem 3.6.3 provided

AT (x1)P + PA(x1) � −In ≺ 0, ∀x1 ∈ R.

Therefore, global asymptotic stability of the system (3.2) can immediately be estab-
lished if the LMI feasibility problem, (3.27), has a feasible solution. We illustrate our
approach by the following example.
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Example 3.6.1. We consider a fourth order nonlinear system of the form (3.2). We
begin by defining a system matrix of the following form.

Ā(x1) = A0 + A1 cos x1 + B1 sin x1. (3.33)

We generate the constant matrices A0, A1, and B1 at random using the standard Gaus-
sian distribution with mean 0 and standard deviation 1. In particular, we randomly
generate A0 as a diagonal matrix and A1 and B1 as full matrices. Thus we form a
system matrix which is continuous and periodic. To obtain a continuous, periodic,
and Hurwitz matrix, we define,

β
M
= (1 + δ)λmax(Ā(x1)), ∀x1 ∈ [−π, π], (3.34)

where δ > 0 is a small number and λmax denotes the maximum real part of the eigen-
values of Ā(x1). Then the matrix

A(x1) = Ā(x1) − βI, (3.35)

where I is the identity matrix of the size of Ā(x1), will be Hurwitz. Figure 3.3 shows
the behavior of the state dynamics of a system of the form (3.2), having system matrix
(3.35) and A0, A1, and B1 are as given later in this example, with four different arbi-
trarily chosen initial conditions. We see that the states converge asymptotically to the
origin. This indicates that the states of the system may converge asymptotically to the
origin for all initial conditions x0 = (x1, x2, x3, x4) ∈ R4.

In retrospect of the theory discussed earlier, the first step is to formulate an LMI
feasibility problem. We present three different results each with a different choice of the
number of LMIs in the feasibility problem. The system matrix (3.35) is 2π− periodic.
We mark (k =)120, 300, and 440 points on the interval [−π, π). In this way, we form a
system of 121, 301, and 441 LMIs analogous to (3.27). As has been mentioned earlier,
we generate the set of matrices A0, A1, and B1 at random. We see in our experiments
that for all such sets of matrices, the state dynamics of the nonlinear system, with
arbitrarily chosen initial states, converge asymptotically to the origin. In a particular
set, we have the following matrices

A0 =


0.3146 0 0 0

0 0.8596 0 0
0 0 0.1287 0
0 0 0 0.0166

 ,

A1 =


−0.0728 0.9884 0.6450 0.2224
−0.9943 −0.5990 −1.3099 1.8713
−0.7474 1.4766 −0.8674 0.1100
−0.0308 −0.8138 −0.4742 −0.4113

 ,

B1 =


0.5112 −0.2958 1.6777 0.3630
−1.1991 −0.1680 1.9969 −0.5670
−0.0964 0.1795 0.6970 −1.0442
0.4458 0.4211 −1.3664 0.6971

 .
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Figure 3.3: Behavior of the state dynamics of the system (3.2)-(3.35) with four
arbitrary initial conditions (a).( π5 , 3,−4, 5), (b).( 2π

5 ,−2, 6,−4), (c).(− π2 ,−3,−7, 9),
(d).(− 3π

4 ,−6, 6, 7).

We solve the three LMI feasibility problems consisting of 121, 301, and 441 LMIs
and we get the following feasible solutions, respectively. For k = 120, in 9 iterations,
SeDuMi yields

P1 =


3.4727 −0.0050 −0.5492 0.0835
−0.0050 2.8798 −0.4821 −0.0967
−0.5492 −0.4821 4.1219 0.1140
0.0835 −0.0967 0.1140 3.7498

 .
The eigenvalues of the matrix P1 are 2.6626, 3.2274, 3.7827, and 4.5515. Since all
eigenvalues are positive, P1 is a symmetric positive definite (SPD) matrix. For k =

300, in 7 iterations, SeDuMi yields

P2 =


4.3305 −0.0830 −0.6174 0.1847
−0.0830 3.5683 −0.4611 −0.0278
−0.6174 −0.4611 5.0721 −0.0345
0.01847 −0.0278 −0.0345 4.6450

 .
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The eigenvalues of the matrix P2 are 3.3606, 4.0759, 4.6743, and 5.5051. Since all
eigenvalues are positive, P2 is an SPD matrix. For k = 440, in 7 iterations, SeDuMi
yields

P3 =


8.8841 −0.2495 −1.1634 0.4852
−0.2495 7.3402 −0.8016 0.0303
−1.1634 −0.8016 10.3775 −0.2747
0.4852 0.0303 −0.2747 9.5379

 .
The eigenvalues of the matrix P3 are 6.9676, 8.4366, 9.5000, and 11.2355. Since all
eigenvalues are positive, P3 is an SPD matrix.

Now, a quadratic Lyapunov function V(x) = xT Pi′ x, i′ = 1, 2, 3 satisfies all the
conditions for global asymptotic stability stated in Theorem 3.6.3. Therefore, this
fourth order nonlinear autonomous system is globally asymptotically stable. N

Figure 3.4 shows the maximum eigenvalue profiles of AT (x1i )Pi′ + Pi′A(x1i ) for
all x1i ∈ [−π, π), i = 1, 2, ..., k vs x1 corresponding to LMI systems consisting of
121, 301 and 441 constraints. We see that the curves lie below the horizontal axis.
This implies that the symmetric matrices AT (x1i )Pi′ + Pi′A(x1i ), ∀ x1i ∈ [−π, π], are
negative definite and the pattern of the eigenvalues profiles shows that they become
more negative-definite as the size of the system of LMIs grows.

The above described LMI based Lyapunov method to prove global asymptotic
stability of the systems of the form (3.2), depends on the solution of the LMI feasibility
problem. If the LMI feasibility problem does not have a feasible solution then we
cannot directly deduce global asymptotic stability with this method. Nevertheless,
this method may still be useful with a naive modification in the LMI constraints. The
following subsection explains this situation.

3.6.1 Infeasibility of the LMI Feasibility Problem
Example 3.6.2. Consider the following autonomous nonlinear system

[
η̇
ν̇

]
=

[
O3 J(ψ)
O3 −M−1D

] [
η
ν

]
+

[
O3

M−1

]
τ. (3.36)

This model has been introduced in Chapter 2 where more details about the model can
be found.

We see that the system matrix in (3.36) is not Hurwitz. But by verifying the rank
condition of (2.27), we find that it is a stabilizable system. We use the following
stabilizing state feedback control law

τ =
[
−MJT (ψ) D − 2M

] [ η
ν

]
. (3.37)

This results in a continuous, Hurwitz, and 2π−periodic feedback system matrix given
by

Ac(ψ) =

[
O3 J(ψ)
−JT (ψ) −2I3

]
. (3.38)
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Figure 3.4: Profiles of the maximum eigenvalues of the symmetric matrices
AT (x1i)Pi′ + Pi′A(x1i), ∀ x1i ∈ [−π, π], i = 1, 2, ..., k and i′ = 1, 2, 3 vs state com-
ponent x1.

Figure 3.5 shows the state dynamics of the closed loop system (3.36)-(3.37) with four
different arbitrarily chosen initial conditions. Clearly, the states converge asymptoti-
cally to the origin.

We formulate an LMI feasibility problem as described in (3.27) by using the closed
loop system matrix (3.38). The outcome from the LMI solver SeDuMi is: the LMI fea-
sibility problem is infeasible. This means, the LMI based Lyapunov stability approach
is not working in this case. N

Remark 3.6.1. Consider a naive modification in the inequality constraints (3.27)
which results the following form

AT
c (ψ)P + PAc(ψ) +

[
O3 O3

O3 I3

]
� 0. (3.39)

We get a feasible solution for this LMI feasibility problem from SeDuMi. But we
cannot use Theorem 3.6.3 because V̇(x) is only positive semidefinite in this case. We
require LaSalle’s Principle for stability analysis in such situations.
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Figure 3.5: Behavior of the state dynamics of the system in Example
3.6.1 with four arbitrary initial conditions (a).(2, 2, π6 , 0, 0, 0), (b).(2,−2, π3 , 0, 0, 0),
(c).(−1,−1,− 8π

9 , 0, 0, 0), (d).(−10, 4,− 2π
3 , 4,−3, 4).

Remark 3.6.2. A more practical and useful form of (3.37) can be

τ =
[
−MJT (ψ) R − 2M

] [ η
ν

]
, (3.40)

where R denotes the additional damping effect introduced via controller action.

To investigate the infeasibility issue in more detail, an analytic approach to the
LMI feasibility problem associated with the system in Example 3.6.2, is presented in
the following subsection.

Analytic approach to the LMI problem

For the closed loop system matrix (3.38), we would like to find an SPD matrix P s.t.

AT
c (ψ)P + PAc(ψ) ≺ 0, ∀ψ ∈ [−π, π].

Suppose that P has the following form

P =

[
Pa PT

b
Pb Pc

]
.
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For the sake of convenience, from here onward in this subsection, we omit the argu-
ment ψ from J(ψ). Now consider,

AT
c P + PAc ≺ 0,

⇐⇒

[
O3 −J
JT −2I3

] [
Pa PT

b
Pb Pc

]
+

[
Pa PT

b
Pb Pc

] [
O3 J
−JT −2I3

]
≺ 0,

⇐⇒

[
−JPb − (JPb)T PaJ − 2PT

b − JPc

(PaJ − 2PT
b − JPc)T (PbJ)T + PbJ − 4Pc

]
≺ 0. (3.41)

Or equivalently,

⇐⇒ −

[
−JPb − (JPb)T PaJ − 2PT

b − JPc

(PaJ − 2PT
b − JPc)T (PbJ)T + PbJ − 4Pc

]
� 0. (3.42)

It is a well-known fact that a symmetric matrix is positive definite if and only if all the
leading principal minors of the matrix are positive, see [43]. Therefore, we focus on
the leading principal block diagonal entry

−JPb − (JPb)T .

The inequality 3.42 holds true only if

JPb + (JPb)T � 0, ∀ψ ∈ [−π, π]. (3.43)

In the sequel, we show that the necessary condition (3.43) for (3.42) to hold true, does
not hold.

Consider Pb in the following form

Pb =

[
Pb11 ∗

∗ ∗

]
,

where Pb11 is a 2 × 2 block entry while the entries of Pb which are not relevant for the
analysis are marked by asterisks. Since (3.43) must be true for all ψ ∈ [−π, π], we take
the following two cases:

Case 1. ψ = 0,

JPb + (JPb)T =

[
Pb11 + PT

b11
∗

∗ ∗

]
.

Case 2. ψ = π,

JPb + (JPb)T =

[
−Pb11 − PT

b11
∗

∗ ∗

]
.

Now the inequality (3.43) holds only if the following holds

Pb11 + PT
b11
� 0 and − Pb11 − PT

b11
� 0.
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This is an improbable scenario. Therefore, about the LMI feasibility problem of Ex-
ample 3.6.2, we conclude the following

“@ P = PT � 0 s.t. AT
c (ψ)P + PAc(ψ) ≺ 0, holds true for all ψ ∈ [−π, π].”

In the foregoing discussion, we have proved analytically that the LMI problem
corresponding to the system (3.36) has no solution. In the following, we continue
with global stability analysis of the system (3.36) by using Lyapunov stability theory
and LaSalle’s invariance theorem.

3.6.2 Further Analysis for Global Asymptotic Stability
Before proceeding further, we recall an important result from stability theory which
was first formulated by J. P. LaSalle, see Appendix B for more details. It is stated as
follows [43, Chapter 4, page:128]:

Theorem 3.6.4. The LaSalle’s Invariance Theorem (Principle). Let Ω0 ⊂ Ω be a com-
pact set that is positively invariant with respect to a nonlinear system: ẋ = f (x), x0 =

x(t0). Let V : Ω −→ R be a continuously differentiable function such that V̇(x) ≤ 0 in
Ω0. Let E be the set of all points in Ω0 where V̇(x) = 0. Let M be the largest invariant
set in E. Then every solution starting in Ω0 approaches M as t → ∞.

An invariant set is defined as:

Definition 3.6.1. (Invariant Set) A set M is an invariant set for a dynamic system
if every system trajectory which starts from a point in M remains in M for all future
time.

The system matrix (3.38) has a special structure with a skew symmetric part. We
try to use this structure to analyze global asymptotic stability of the system. Let us
consider a Lyapunov function of the form

V(x) = xT x. (3.44)

Differentiating the Lyapunov function, we get

V̇(x) = xT
[

O3 J(ψ)
−JT (ψ) −2I3

]
x,

⇒ V̇(x) = −4νTν,

⇒ V̇(x) ≤ 0, ∀ x , 0.

Now,

V̇(x) = 0, ⇒ ν = 0, and η is arbitrary.

Therefore,

El = {x : V̇(x) = 0}

= {ν = 0, η is free}.
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The next step is to find the largest invariant subset of El. Suppose η(t) and ν(t) is a
solution pair of closed loop system (3.36) and (3.37) that belongs identically to El.
Then

ν(t) ≡ 0, ⇒ ν̇(t) ≡ 0,

⇒ −JT (ψ)η(t) ≡ 0,

⇒ η(t) ≡ 0. (3.45)

Therefore, from (3.45), we conclude that the only solution of the closed loop sys-
tem (3.36) and (3.37) which stays identically in El, is the trivial solution. Hence
(η, ν) = (0, 0) is a globally asymptotically stable equilibrium point of the the closed
loop system (3.36) and (3.37) .

3.7 Summary and Conclusions

This chapter focuses on the stability analysis of a special type of nonlinear systems.
They can be transformed to pseudo-linear form by using the SDC framework. The
system matrix in the new representation depends on a single state variable. Local
asymptotic stability is easy to analyze but the major topic of interest in this chapter
is global asymptotic stability analysis. We start with a brief review of the past results
on this topic. The main contributions are two counterexamples. Example 3.4.1 shows
that the exponential boundedness of the system matrix together with the continuity and
Hurwitzness conditions does not imply global asymptotic stability of the nonlinear
dynamical system (3.2). Example 3.5.1 shows that, in addition, even if the periodicity
of the system matrix is assumed, it does not ensure global asymptotic stability of (3.2).

However, as a consequence of the periodicity of the system matrix, we introduce
another method to prove the global asymptotic stability of the pseudo-linear system
(3.2). This method combines the concepts of the Lyapunov stability theory and the
LMIs. This approach is motivated from the idea of LPV approach introduced in [71]
to the pseudo-linear systems of the form (3.2). We use the periodicity of the system
matrix together with the Lyapunov stability theory and the LMIs to formulate an LMI
feasibility problem. This LMI feasibility problem is solved by using the YALMIP
interface under MATLAB. YALMIP uses SeDuMi (an LMI solver) which transforms
the LMI feasibility problem into a convex optimization problem. The positive (semi-
)definite solution of the LMI feasibility problem is then used to get a quadratic Lya-
punov function. Global asymptotic stability is then followed by Lyapunov stability
theory.

We first explained this method by using an academic example of a fourth order
pseudo-linear system. Afterwards, we proceed to prove global asymptotic stability of
the nominal vessel model (3.36) subject to a naive state feedback controller (3.37). It
turns out that the LMI feasibility problem associated with the closed loop system ma-
trix (3.38) does not have a feasible solution. This outcome is then proved analytically.
More investigation to this bottleneck revealed that a small modification in the LMI
feasibility problem, see (3.39), resolves this problem. The consequence of this mod-
ification is that the derivative of the Lyapunov function will be positive semidefinite
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in this situation. In this case, the LaSalle’s invariance principal is used to establish
global asymptotic stability of the pseudo-linear system.



Chapter 4
State Dependent Riccati Equation
Based Control Design1

The use of DP systems for the positioning control of ships started in the early sixties.
The first DP control system used the conventional PID type control law together

with a notch filter, to control each of the surge, sway, and yaw motions. The purpose of
the notch filter was to filter out the effects of the WF motions from the feedback loop.
There were two main disadvantages of this approach: the integral action of the PID
controller is very low due to the coupling between the surge, sway, and yaw motions
and there is a phase lag in the control loop due to the notch filter.

The disadvantages of the PID control law motivated a Norwegian company, Kongs-
berg, to initiate efforts to invent new DP control systems using the concepts of optimal
control theory and Kalman filtering from the modern control theory. These efforts
made way for the modern concepts for wave filtering like state estimators or observers.
Observers are more useful than the classical filtering techniques because they also give
estimates of the unknown states of the system.

Observer based wave filtering techniques have been reported by many researchers,
for instance see [1], [29], and [51]. One such approach is reported in [74] and it
is based on the state dependent algebraic Riccati equation, also known as SDARE.
An SDARE observer is proposed to estimate the states of a DP vessel model. This
observer was then separately used in combination with a backstepping controller [74]
and a PID controller [75].

In this chapter, we extend the ideas of LQR theory to address the nonlinear control
design and estimation problems for the DP vessel. The nonlinear model of the vessel
motion described in Chapter 2 can be assumed as a pseudo-linear system by consid-
ering the SDC parametrization which is discussed in Chapter 3. Our aim is to study
the SDARE controller and observer design techniques in connection with the control
design problem of a DP vessel. The state dependent algebraic Riccati equation plays

1Part of this work has been published in the proceedings of the UKACC International Conference on
Control (CONTROL 2010), see [57].
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a fundamental role in this theory. We will see that the SDARE controller is a state
feedback or an output feedback controller.

4.1 Optimal Control Problem and the SDARE
We mimick the LQR problem for the linear systems to address the control design
problem of the pseudo-linear vessel system. Let us start by defining the optimal con-
trol (OC) or linear quadratic regulation (LQR) problem for the pseudo-linear system
describing the sea vessel motion. We adapt the definition of the LQR problem from
[15] to customize it according to the pseudo-linear model under consideration.

Definition 4.1.1. (LQR/OC problem for pseudo-linear system of vessel model)
Given matrices Q and R, find a control signal u(t) such that the quadratic cost function

J(x0,u(t)) =
1
2

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (4.1)

is minimized, subject to

ẋ = A(ψ)x(t) + Bu(t), x(t0) = x0. (4.2)

In (4.1) and (4.2), the n-dimensional vector x ∈ Rn describes the state of the
system, Q = HT H ∈ Rn×n (HT ∈ Rn×p) is a symmetric positive semidefinite (SPSD)
matrix, u ∈ Rm is the control input vector, R ∈ Rm×m is an SPD matrix, A(ψ) ∈ Rn×n is
the system matrix, and the matrix B ∈ Rn×m describes the controller configuration.

The matrices Q and R in (4.1) are called weighting or penalty matrices. These
are also called the tuning parameters of the SDARE controller as the performance
of the SDARE controller can be manipulated by playing around with these matrices.
Although we assume Q and R to be constant matrices, they can be state dependent as
well. Physically, the expression xT (t)Qx(t) describes the deviation of the state vector
from the origin (equilibrium state) and the expression uT (t)Ru(t) describes the control
cost.

In [7], it has been proved that the problem defined in Definition 4.1.1 has a subop-
timal solution. The following theorem states this result.

Theorem 4.1.1. (The SDARE controller) Consider a nonlinear system in the SDC
form

ẋ = A(x)x + B(x)u. (4.3)

The SDC form implies that the matrices A(x) and B(x) are continuous in x for all
||x|| ≤ r̂, r̂ > 0, see Section 3.1. Assume further that the matrices A(x), B(x), and Q
are such that the pair (H, A(x)) is detectable and the pair (A(x), B(x)) is stabilizable
for all x ∈ Ω ⊆ Br̂(0)2, where Ω is a nonempty neighborhood of the origin.

Then the system (4.3) with control

u(x) = −Kc(x)x, (4.4)

2Br̂(0) = {x ∈ Rn : ||x|| < r̂}
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where the controller gain is

Kc(x) = R−1BT (x)Πc(x), (4.5)

is locally asymptotically stable. In (4.5), Πc(x) is the solution of the SDARE associated
with (4.1) and (4.3), which is given by

Πc(x)A(x) + AT (x)Πc(x) + Q − Πc(x)B(x)R−1BT (x)Πc(x) = 0. (4.6)

Proof. See [7]. �

4.2 Control System Design for the DP Vessel
In this section, we illustrate the SDARE-based controller and observer design tech-
nique for the control system design of the DP vessel. A DP vessel model is given in
Chapter 2. The SDARE (4.6) in context of the vessel model becomes

Πc(ψ)A(ψ) + AT (ψ)Πc(ψ) + Q − Πc(ψ)BR−1BT Πc(ψ) = 0. (4.7)

This is a special SDARE in the sense that only the system matrix depends on state
and this state dependence too is only on a single state component in a periodic way.
Many solutions of (4.7) could be possible, but the one which is positive (semi-)definite
is desired for most of the applications. The sufficient conditions for the pointwise
existence of the solution of the SDARE (4.7) as given in [54], are: the pairs (A(ψ), B)
and (H, A(ψ)) are, respectively, pointwise stabilizable and detectable for all ψ ∈ R.

We divide our study into two steps. First, we assume that there is no WF motion in
the measured output and only the LF motion is to be regulated. Later on, we assume
that the WF motion component is also present in the measured output.

4.2.1 Nonlinear Regulation Problem for the LF Model
The LF motion as described in Chapter 2 is given by

η̇ =J(ψ)η, (4.8)

ν̇ = − M−1Dν + M−1JT (ψ)b + M−1τ, (4.9)

ḃ = − T−1b + Ψwb, (4.10)

yb =Cbη + υ, (4.11)

where η = [x, y, ψ]T is position coordinate vector, ν = [u, v, r]T is velocity coordinate
vector, b ∈ R3 describes the environmental disturbances, and τ represents the control
forces and torque. The vectors wb and υ represent the process and measurement noise,
respectively. They are described by the zero-mean Gaussian white noise processes,
i.e., wb ∼ N(0,Qc,b) and υ ∼ N(0,Rc). We study the LF motion regulation problem by
dividing it in two parts. In the first part, we assume that the bias forces are completely
given or their estimate is available. In the second part, we assume that slowly varying
bias forces and moments are unknown and hence should be estimated.



48 Chapter 4. SDARE-based control Design

I. Disturbance vector b is known

We assume that the disturbance vector b is known or its estimate b̂ is available and
there is no measurement noise. The LF model in the SDC form may then be written
as [

η̇
ν̇

]
=

[
O3 J(ψ)
O3 −M−1D

] [
η
ν

]
+

[
O3

M−1

]
u +

[
O3

M−1JT (ψ)

]
b, (4.12)

yb =
[

I3 O3

] [ η
ν

]
. (4.13)

The corresponding controllability and observability matrices are given by

Cb =

[
O3 J(ψ)M−1 · · · J(ψ)(−M−1D)4M−1

M−1 −M−1DM−1 · · · (−M−1D)5M−1

]
, (4.14)

and

Ob =


I3 O3

O3 J(ψ)
...

...

O3 J(ψ)(−M−1D)4

 . (4.15)

The matrices defined in (4.14) and (4.15) have full row and column ranks, respectively.
Therefore, the system (4.12) is both pointwise controllable and observable. Therefore,
by using Theorem 4.1.1, we define a locally asymptotically stable SDARE controller
for (4.12) as follows

u = −R−1M−1
[

Π21(ψ) Π22(ψ)
] [ η
ν

]
− JT (ψ)b. (4.16)

The control law (4.16) can be described as a state feedback law with a feedforward
term ‘−JT (ψ)b’. Moreover, Π21(ψ) and Π22(ψ) comes from

Πc(ψ) =

[
Π11(ψ) Π12(ψ)
Π21(ψ) Π22(ψ)

]
. (4.17)

which is the symmetric solution of the SDARE associated with (4.1) and (4.12). From
(4.13), it is clear that we can only measure the position of the vessel and its velocities
are not available for feedback. But we can also write (4.16) as

u = −R−1M−1
[

Π21(ψ) Π22(ψ)JT (ψ)
] [ η
η̇

]
− JT (ψ)b. (4.18)

This control law can be seen as PD-type control law with feedforward term ‘−JT (ψ)b’.

Stability analysis of the controller (4.16)

The local asymptotic stability of the state feedback SDARE controller follows from
Theorem 4.1.1. We prove by using the LMI based technique discussed in Chapter
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3 that the SDARE feedback controller stabilizes the vessel globally asymptotically
around the origin. We can write the SDARE state feedback controller, (4.16), as

u = −
[

K1(ψ) K2(ψ)
] [ η
ν

]
− JT (ψ)b. (4.19)

The closed loop system (4.12) and (4.19) is given by[
η̇
ν̇

]
=

[
O3 J(ψ)

−M−1K1(ψ) ∗

]
︸                        ︷︷                        ︸

Acl(ψ)

[
η
ν

]
. (4.20)

It is a well-known fact that the SDARE controller results in an asymptotically
stable closed loop matrix, see for instance [7]. Therefore, the closed loop system
matrix (4.20) is pointwise Hurwitz. Using the LMI approach (see Chapter 3 for more
details), it turns out that there exists an SPD matrix P such that

AT
cl(ψ)P + PAcl(ψ) +

[
0 0
0 I3

]
≤ 0, ∀ψ ∈ [0, 2π]. (4.21)

Now we consider the quadratic Lyapunov function: V(x) = xT Px. Differentiating
w.r.t. ‘t’, we get

V̇(x) = xT (AT
cl(ψ)P + PAcl(ψ))x,

≤ xT
[

0 0
0 −I3

]
x, using (4.21),

≤ −νTν,

≤ 0.

Since V̇(x) ≤ 0, therefore, we use LaSalle’s invariance principle to further analyze
the stability of the closed loop system. For this we first find the set of points where
V̇(x) = 0.

El = {x : V̇(x) = 0},

= {ν = 0, η is free}.

Now we need the invariant sets of the closed loop system. To show that the origin is
the only equilibrium point of the closed loop system, we need to show that no solution
other than the trivial solution stays identically in El, i.e., η(t) ≡ 0 and ν(t) ≡ 0 for all
‘t’.

Let η(t) and ν(t) be a solution pair of the closed loop system (4.20) that belongs
identically to El. Then

ν(t) ≡ 0, ⇒ ν̇(t) ≡ 0,

⇒ −M−1K1(ψ)η(t) ≡ 0. (4.22)
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To show that η(t) ≡ 0, we need to prove that K1(ψ) is a non-singular matrix. We prove
this by contradiction. Suppose that it is singular then ∃ v , 0 such that

M−1K1(ψ)v = 0,

⇒

[
O3 J(ψ)

−M−1K1(ψ) ∗

] [
v
0

]
= 0

[
v
0

]
.

This implies that λ = 0 is an eigenvalue of the closed loop system matrix in (4.20).
But it is a well-known fact that the closed system (4.20) is pointwise asymptotically
stable (all eigenvalues lie in the left half plane). Therefore, it is a contradiction. Hence,
K1(ψ) is nonsingular.

Therefore, from (4.22), we conclude that the only solution of the closed loop sys-
tem which stays identically in El is the trivial solution. Hence (η∗, ν∗) = (0, 0) is a
globally asymptotically stable equilibrium point of the the closed loop system (4.20)
which means that the SDARE controller (4.19) globally asymptotically stabilizes the
vessel.

II. Disturbance vector b is unknown

We now assume that the LF disturbances are slowly varying (as described by the first
order Markov process ḃ = −T−1b + Ψwb) but unknown and should be estimated. The
LF motion in this case, in the SDC form, is described as η̇ν̇ḃ

 =

 O3 J(ψ) O3

O3 −M−1D M−1JT (ψ)
O3 O3 −T−1


 ηνb

 +

 O3

M−1

O3

 u +

 O3

O3

Ψ

 wb, (4.23)

yb =
[

I3 O3 O3

]  ηνb
 + v. (4.24)

The controllability and observability matrices for (4.23)-(4.24) are given by

Cb =

 O3 J(ψ)M−1 · · · J(ψ)(−M−1D)7M−1

M−1 −M−1DM−1 · · · (−M−1D)8M−1

O3 O3 · · · O3

 , (4.25)

and

Ob =


I3 O3 O3

O3 J(ψ) O3

O3 −J(ψ)M−1D J(ψ)M−1JT (ψ)
...

...
...

 . (4.26)

Since the matrices M, D, and JT (ψ) are non-singular, the controllability matrix (4.25)
has rank 6. This means that only the states η and ν are controllable. This is not
restrictive as the bias forces are always uncontrollable. The observability matrix (4.26)
has full rank for all ψ ∈ R. An SDARE associated with (4.23) is given by

Πc(ψ)Ab(ψ) + AT
b (ψ)Πc(ψ) + Q − Πc(ψ)BbR−1BT

b Πc(ψ) = 0. (4.27)
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Using Theorem 4.1.1, a locally asymptotically stable SDARE-based suboptimal
control law is given by

u = −R−1M−1
[

Π21(ψ) Π22(ψ) Π23(ψ)
]  ηνb

 . (4.28)

The gain of the SDARE controller is defined by

Kc(ψ) = R−1M−1
[

Π21(ψ) Π22(ψ) Π23(ψ)
]
, (4.29)

where Π21(ψ), Π22(ψ), and Π23(ψ) are obtained from the solution of the SDARE (4.27).
The control law (4.28) can be described as a state feedback controller. From (4.24), we
notice that only the LF position and heading can be measured by the sensors. There-
fore, a state estimator is required to estimate the complete state. A suboptimal locally
asymptotically stable SDARE controller for the system (4.23)-(4.24) will be

u = −R−1M−1
[

Π21(ψ̂) Π22(ψ̂) Π23(ψ̂)
] 
η̂
ν̂

b̂

 . (4.30)

Since the system (4.23)-(4.24) is pointwise observable, the corresponding dual system
will be pointwise controllable. Therefore, we can design a suboptimal locally asymp-
totically stable SDARE observer, see [7]. The following theorem states this result.

Theorem 4.2.1. (The SDARE state estimator) Assume that a system in SDC form

ẋ = A(x)x + B(x)u, (4.31)

y = C(x)x, (4.32)

is such that f (x) = A(x)x and ∂ f (x)
∂x j

, j = 1, 2, ..., n are continuous in x for all ||x|| ≤
r̂, r̂ > 0 and x = 0 is a stable equilibrium point of (4.31). Assume further that the
pair (A(x),C(x)) is pointwise detectable and the matrices A(x) and C(x) are locally
Lipschitz for all x ∈ Ω ⊆ Br̂(0), where Ω is a nonempty neighborhood of the origin.
Then the estimated state given by

˙̂x = A(x̂)x̂ + B(x̂)u + Ko(x̂)(y − ŷ), (4.33)

will converge locally asymptotically to the state. In (4.33), Ko(x̂) is the observer gain
and is given by

Ko(x̂) = Πo(x̂)CT V−1. (4.34)

In (4.34), Πo(x̂) is the solution of the dual SDARE

Πo(x̂)AT (x̂) + A(x̂)Πo(x̂) + U − Πo(x̂)CT V−1CΠo(x̂) = 0, (4.35)

associated with the system (4.31)-(4.32).

Proof. See [7]. �
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An SDARE observer for the system (4.23)-(4.24) is given by
˙̂η
˙̂ν
˙̂b

 =

 O3 J(ψ̂) O3

O3 −M−1D M−1JT (ψ̂)
O3 O3 −T−1



η̂
ν̂

b̂

 +

 O3

M−1

O3

 u + Ko(ψ̂)(yη − ŷη), (4.36)

ŷη =
[

I3 O3 O3

] 
η̂
ν̂

b̂

 . (4.37)

The third term in (4.36) corrects the observer model by a nonlinear feedback of the
difference between the measured output yη and the estimated output ŷη. The observer
gain Ko(ψ̂) in (4.36) is defined by

Ko(ψ̂) =

 Π11(ψ̂)
Π21(ψ̂)
Π31(ψ̂)

 · V−1, (4.38)

where Πi1, i = 1, 2, 3 are obtained from the solution of the corresponding dual SDARE
of the form (4.35).

So far we have defined a suboptimal locally asymptotically stable nonlinear con-
trol law (4.30) and a suboptimal locally asymptotically stable nonlinear observer (4.36).
A combination of both is called a nonlinear compensator. The separation properties
for combination of linear controllers and observers are well defined, see for instance
[60]. The separation principles for the nonlinear compensators are not well established
yet. The following theorem from [7] states one particular result about stability of an
SDARE compensator.

Theorem 4.2.2. (The SDARE state compensator) Assume that the system in SDC
form (4.31)-(4.32) is such that f (x) = A(x)x and ∂ f (x)

∂x j
, j = 1, 2, ..., n are continuous

in x for all ||x|| ≤ r̂, r̂ > 0. Assume further that A(x) and B(x) are continuous. Let the
matrices A(x), B(x), and C(x) are chosen such that the pair (A(x),C(x)) is detectable
and the pair (A(x), B(x)) is stabilizable for all x ∈ Ω ⊆ Br̂(0), where Ω is a nonempty
neighborhood of the origin.

Then (x, e) = (0, 0) is a locally asymptotically stable point. Here, e = x − x̂ is the
error between the state x from (4.31) and the state estimate x̂ from (4.33).

Proof. See [7]. �

A combination of the SDARE controller (4.30) and observer (4.36) is an SDARE
pseudo-linear compensator illustrated in a block diagram shown in Figure 4.1 and is
given by[

ẋ
˙̂x

]
=

[
Ab(ψ) −BbKc(ψ̂)

Ko(ψ̂)Cb Ab(ψ̂) − BbKc(ψ̂) − Ko(ψ̂)Cb

] [
x
x̂

]
+

[
Eb O
O Ko(ψ̂)

] [
wb

v

]
wb.

(4.39)
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Figure 4.1: A nonlinear compensator for LF model

4.2.2 Nonlinear Regulation Problem for the Complete Model

Now, we take into account the effect of the wave frequency (WF) motion in the mea-
surement. The WF motion in each of the surge, sway, and yaw directions is modeled
as a second order harmonic oscillation, see Chapter 2 for more details. The WF motion
model is given by

[
ξ̇1

ξ̇2

]
=

[
O3 I3

−Ω2 −2ZΩ

] [
ξ1

ξ2

]
+

[
O3

Σ

]
wξ, (4.40)

yξ =
[

I3 O3

] [ ξ1

ξ2

]
, (4.41)

where the diagonal matrix Ω = diag{ω01, ω02, ω03} is such that each of the ω0i’s rep-
resents the dominating wave frequency and the diagonal matrix Z = diag{ζ1, ζ2, ζ3}

is such that each of the ζi’s represents the relative damping ratio in surge, sway, and
yaw direction,respectively. The diagonal matrix Σ = diag{σ1, σ2, σ3} scales the noise
vector wb and its elements represents the wave intensity in each degree of freedom.

The response of the WF disturbances is incorporated in the model by assuming that
the total ship motion is the sum of the LF motion and the WF motion components.
The precept of the DP problem is to attenuate only the LF motion. Therefore, the
WF motion component must be removed from the measured output when designing
an output feedback controller. As mentioned earlier, there are various methods for
wave filtering. We use the state estimation technique for wave filtering. For this, we
augment the LF and WF models and assume that the superposition principle holds
true, so that we can add the outputs of both the LF and WF models. The complete
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(augmented) model can be written as
η̇
ν̇
ḃ
ξ̇1
ξ̇2

 =


O3 J(ψ) O3 O3 O3

O3 −M−1D M−1JT (ψ) O3 O3

O3 O3 −T−1 O3 O3

O3 O3 O3 O3 I3

O3 O3 O3 −Ω2 −2ZΩ




η
ν
b
ξ1
ξ2

 +


O3

M−1

O3

O3

O3

 u

+


O3 O3

O3 O3

Ψ O3

O3 O3

O3 Σ


[

wb

wξ

]
, (4.42)

y =yb + yξ + v

=
[

I3 O3 O3 I3 O3

]

η
ν
b
ξ1

ξ2

 + v. (4.43)

The controllability matrix of (4.42) is given by

C =


O3 J(ψ)M−1 −J(ψ)M−1DM−1 · · · −J(ψ)(M−1D)13M−1

M−1 −M−1DM−1 (M−1D)2M−1 · · · (M−1D)14M−1

O3 O3 O3 · · · O3

O3 O3 O3 · · · O3

O3 O3 O3 · · · O3

 ,
(4.44)

Since the matrices J(ψ), M, and D have full row rank for all ψ ∈ R, the controllability
matrix has rank 6. This means that only η and ν are controllable states while the
slowly varying disturbances and wave frequency motion are not controllable. This
is not restrictive as the objective is to control only the low frequency motion. Using
Theorem 4.1.1, a locally asymptotically stable SDARE controller for (4.42) is defined
by

u = −R−1BT Πc(ψ)x

= −R−1M−1
[

Π21(ψ) Π22(ψ) Π23(ψ) Π24(ψ) Π25(ψ)
]

η
ν
b
ξ1

ξ2

 , (4.45)

where Π2i(ψ), i = 1, 2, 3, 4, 5 are obtained from the SDARE associated with (4.1) and
(4.42). Again as we know that only the position measurement is available. Therefore,
to realize the controller (4.45), we need estimates of the states. Then this control law
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will be

u = −R−1M−1
[

Π21(ψ̂) Π22(ψ̂) Π23(ψ̂) Π24(ψ̂) Π25(ψ̂)
]

η̂
ν̂

b̂
ξ̂1

ξ̂2


. (4.46)

Before addressing the observability of (4.42), we recall the following result from
[74].

Theorem 4.2.3. Consider the system

ẋ1 = A1x1, (4.47)

ẋ2 = A1x2, (4.48)

y = C1x1 + C2x2, (4.49)

where x1 ∈ R
n1 and x2 ∈ R

n2 are states and y ∈ Rp is the output of the system. If A1

and A2 have no common eigenvalues, i.e.,

σ(A1) ∩ σ(A2) = φ, (4.50)

then the system (4.47)-(4.49) is observable iff (C1, A1) and (C2, A2) are both observ-
able.

Proof. See [74]. �

The systems (4.23) and (4.40), respectively, describe the slowly varying low fre-
quency and wave frequency motions with different eigenfrequencies. Therefore, the
system matrices Ab(ψ) and Aξ in (4.23) and (4.40) do not have any common eigenval-
ues. Moreover, the observability matrices (4.26) and

Oξ =


I3 O3

O3 I3
...

...

 (4.51)

have full row ranks. Therefore, the subsystems (Ab(ψ),Cb) and (Aξ,Cξ) of the system
(4.42) are observable. This means that by Theorem 4.2.3, we can conclude that the
system (4.42)-(4.43) is pointwise observable for all ψ ∈ R.
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An SDARE observer for the system (4.42)-(4.43) is defined by

˙̂η
˙̂ν
˙̂b
˙̂ξ1
˙̂ξ2


=


O3 J(ψ̂) O3 O3 O3

O3 −M−1D M−1JT (ψ̂) O3 O3

O3 O3 −T−1 O3 O3

O3 O3 O3 O3 I3

O3 O3 O3 −Ω2 −2ZΩ




η̂
ν̂

b̂
ξ̂1

ξ̂2


+


O3

M−1

O3

O3

O3

 u

+ Ko(ψ̂)(y − ŷ), (4.52)

ŷ =
[

I3 O3 O3 I3 O3

]

η̂
ν̂

b̂
ξ̂1

ξ̂2


. (4.53)

The observer gain Ko(ψ̂) in (4.52) is given by

Ko(ψ̂) = Πo(ψ̂)CT V−1

=


Π11(ψ̂) + Π14(ψ̂)
Π21(ψ̂) + Π24(ψ̂)
Π31(ψ̂) + Π34(ψ̂)
Π41(ψ̂) + Π44(ψ̂)
Π51(ψ̂) + Π54(ψ̂)

 · V
−1 (4.54)

where Πi1(ψ̂) and Πi4(ψ̂), i = 1, 2, 3, 4, 5 are obtained from the solution of the dual
SDARE associated with the (4.42)-(4.43).

A combination of the nonlinear controller (4.46) and the nonlinear observer (4.52)
is called a nonlinear compensator and is shown in Figure 4.2. The nonlinear SDARE
compensator is given by[

ẋ
˙̂x

]
=

[
A(ψ) −BKc(ψ̂)

Ko(ψ̂)C A(ψ̂) − BKc(ψ̂) − Ko(ψ̂)C

] [
x
x̂

]
+

[
E O
O Ko(ψ̂)

] [
w
v

]
.

(4.55)

Before concluding this section, it is important to mention that in reality, the WF
model is considered as a disturbance to the model. For designing a control law, it is
desired that the effects of the WF disturbances do not enter into the feedback loop.
In this particular example, it is required that no part of the disturbance vectors ξ1 and
ξ2 enters in the control action. Here, the controller gain matrix turns out to have the
form, Kc(ψ̂) = [Kc1(ψ̂),Kc2(ψ̂),Kc3(ψ̂),O3,O3] which ensures the attenuation of the
disturbance; in the feedback the product term, Kc(ψ)x̂, eliminates ξ̂1 and ξ̂2 from the
feedback loop.
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Figure 4.2: Nonlinear compensator

4.3 Simulation Results
Suppose the objective is to design a controller to stabilize the vessel around the origin.
By the stabilized mode we mean that the vessel is positioned at rest at (x, y) = (0, 0)
and its heading is along the positive x−axis.

For numerical simulations to illustrate the effectiveness of the SDARE controllers
and observers designed in the previous subsection, we use the data of a supply vessel
from [51]. For simplicity of numerics, Bis-scaled [25] normalized parameters of the
vessel model are used. The normalized matrices M and D are:

M =

 1.1274 0 0
0 1.8902 −0.0744
0 −0.0744 0.1278

 , D =

 0.0358 0 0
0 0.1183 −0.0124
0 −0.0124 0.0308

 .
(4.56)

We assume that the ship is at a point (x, y) = (−10,−10) making an angle ψ(= 4 rad)
with the positive x-axis. The control objective is to steer the system to the stable
equilibrium position or the desired set-point, (x, y) = (0, 0) and heading along the
positive x-axis.

First we consider the nominal case, i.e., when the disturbance vector b is known.
Suppose b = [0.05, 0.05, 0.01]T and we use the control law (4.18) in (4.12). We
present the simulation results corresponding to the following weighting matrices.
Q = 103 diag{0.1, 1, 0.1, 0, 0, 0} and R = 102 I3.

Figure 4.3 shows the position and heading profiles as they evolve with time. It is
clear that the regulation to the desired point is steady and smooth. Figure 4.4 shows:
(a) the trajectory profile of the vessel, (b) the cost functional profile, and (c) the norm
of the state vector. Figure 4.5 shows change in the heading of the vessel along the
trajectory. Figure 4.6 shows the controller recommended force in each degree of free-
dom of the vessel. Once more, it is clear that the actuator input to the vessel is steady
and smooth with a smooth overshoot.
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As we have already mentioned that the weighting matrices can be tuned to im-
prove the performance of the controller. We elaborate this feature in the following.
For instance, we penalize the velocities and take Q = 103 diag{0.1, 1, 0.1, 1, 1, 1}. Fig-
ures 4.7 and 4.8 show the control input signals and the heading orintation of the vessel
corresponding to the new weighting matrix Q. It is clear that new profiles for the
heading orientation and the control input signal are smoother than the previous pro-
files. To emphasize more on tuning factor, we include another heading orientation
profile corresponding to R = 100 I3, see Figure 4.9.

0 2 4 6 8 10 12 14 16 18 20

−10

−5

0

x 
[m

]

(a)

0 2 4 6 8 10 12 14 16 18 20

−10

−5

0

y 
[m

]

(b)

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

Time [sec]

ψ
 [r

ad
]

(c)

Figure 4.3: The position and heading profiles of the vessel as obtained from the closed
loop system (4.12) and (4.18)

.
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Figure 4.4: The evolution of the trajectory, cost, and the norm (of the state vector)
profiles associated with the vessel as obtained from the closed loop system (4.12) and
(4.18).
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Figure 4.5: The heading orientation over the trajectory of the vessel as obtained from
the closed loop system (4.12) and (4.18).
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Figure 4.6: The profiles of the individual components of the control input vector as
obtained from (4.18).
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Figure 4.7: The heading orientation over the trajectory of the vessel as obtained from
the closed loop system (4.12) and (4.18) after changing the weighting matrices Q and
R.
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Figure 4.8: The profiles of the individual components of the control input vector as
obtained from (4.18) after changing the weighting matrices Q and R.
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Figure 4.9: The heading orientation over the trajectory of the vessel as obtained from
the closed loop system (4.12) and (4.18) after further changing the weighting matrices
Q and R.
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Next, we consider the case when the bias vector b is unknown. We consider ex-
actly the same situation regarding the control objective and the initial position of the
vessel, as in the nominal case. The simulation results show the performance of the
SDARE-based control law and the SDARE observer to achieve the desired objective.

For the simulation results shown in the following figures, we use the bias time
constant as T = diag{100, 100, 100} while the controller weighting matrices are

Q = 10−1 diag{100, 100, 10, 1, 1, 1, 0, 0, 0} and R = 10−1 diag{1, 1, 0.01},

and the observer weighting matrices are

U = 100 diag{1, 1, 1, 1, 1, 1, 1, 1, 10} and V = 10−2 diag{1, 1, 1}.

Figure 4.10 shows the measured position and heading profiles and their estimates
obtained from the SDARE observer. As desired, the profiles show a steady and smooth
estimation of the noisy measurements. Figure 4.11 shows the profiles of linear velocity
in surge and sway directions and the angular yaw velocity and their estimates. Figure
4.12 shows the profiles of the bias estimates in surge, sway, and yaw directions. Figure
4.13 shows: (a) the trajectory profile, (b) the cost functional profile, and (c) the norm
of the state vector and its estimate. Figure 4.14 shows the heading orientation with the
trajectory. The profile shows a smooth and steady path and orientation of the vessel.
Figure 4.15 shows the control input signals from the controller in each degree of free-
dom. The profiles show that the controller adjusts in the start and then signals become
steady and smooth. From all these figures, we see that the SDARE compensator states
show nice asymptotic convergence to the desired point.

To emphasize the role of the weighting matrices, we include some more simula-
tions. For instance, we take

Q = 10−2 diag{100, 100, 10, 1, 1, 1, 0, 0, 0} and R = 10−3 diag{1, 1, 0.01}.

This means that we reduce the penalty on both the vectors x and u. Figures 4.16 and
4.17 show the corresponding profiles of the trajectory and the control input signals.
The vessel takes a relatively longer route but its smoother than the one we obtained
with the previous weighting matrices. The control input signals are also amplified as
expected.
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Figure 4.10: The profiles of the actual and the estimated position and orientation as
obtained from (4.39).
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Figure 4.11: The actual and the estimated surge, sway, and yaw velocities as obtained
from (4.39).
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Figure 4.12: The bias estimates in surge, sway, and yaw directions as obtained from
(4.39).
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Figure 4.13: The trajectory and the profiles of the cost functional and the norms of the
measured state and its estimate as obtained from (4.39).
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Figure 4.14: The heading orientation along the trajectory as obtained from (4.39).
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Figure 4.15: The control input signals for each degree of freedom as computed from
(4.30).
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Figure 4.16: The heading orientation along the trajectory as obtained from (4.39) after
changing weighting matrices Q and R and the observer tuning matrices U and V .
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Figure 4.17: The control input signals for each degree of freedom as computed from
(4.30) after changing weighting matrices Q and R and the observer tuning matrices U
and V .
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Finally, we consider the case when the WF motion is also playing a role. For the
simulation results shown in the following figures, we use the bias time constant as
T = diag{100, 100, 100}, the dominating wave frequencies as Ω = diag{0.9, 0.9, 0.9},
the relative damping ratios as Z = diag{0.2, 0.2, 0.2}, the controller weighting matrices
as

Q = 10−1 diag{100, 100, 10, 1, 1, 1,O1×9}, and R = 10−1 diag{1, 1, 0.01}

and the observer weighting matrices as

U = 100 diag{1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1} and V = 10−1 diag{1, 1, 1}.

Figure 4.18 shows the profiles of the measured position and heading, and their es-
timates obtained from the SDARE observer. The profiles depict a smooth and steady
regulation of the vessel to the desired position. Figure 4.19 shows the velocity pro-
files of the vessel motion and their estimates along surge, sway, and yaw directions.
Figure 4.20 shows the bias estimates obtained from the SDARE observer. Figure 4.21
shows: (a) the trajectory of the vessel motion, (b) the cost functional profile, and (c)
the norm of the measured state vector and its estimate. In Figure 4.22, we show the
heading orientation along the trajectory. The traectory and orientation are nice and
smooth. Figure 4.23 shows the control input signal in each degree of freedom com-
puted from (4.46). As in the previous case, the control signals need some adjustment
in the beginning and then become smooth and steady.

To further elaborate the importance of the weighting matrices, we add some more
simulation results. Now, Lets take the matrices

Q = 10−2 diag{100, 100, 10, 1, 1, 1,O1×9} and R = 10−3 diag{1, 1, 0.01}.

Figures 4.24 and 4.25 show the corresponding trajectory and control input signals.
It can be seen that the vessel follows a relatively longer path but its slightly better
than the previous path. The control input signals are amplified with this choice of the
tuning matrices.

Further lets modify the observer weighting matrix U: we now take

U = 100 diag{10, 10, 10, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1}.

Figures 4.26 and 4.27 show the corresponding profiles of the trajectory and the control
input signals. The trajectory profile has further improved and control input profiles
show an increased control input.
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Figure 4.18: The position and heading profiles of the vessel motion as obtained from
the compensator (4.55).
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Figure 4.19: The velocities and their estimates along surge, sway, and yaw directions
as obtained from (4.55).
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Figure 4.20: The bias estimates in surge, sway, and yaw directions as obtained from
(4.55).
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Figure 4.21: The trajectory and profile of the cost functional and the norms of the
measured state vector and its estimate corresponding to the closed loop system (4.55).
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Figure 4.22: The heading orientation along the trajectory as obtained from (4.55).
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Figure 4.23: The control input signals for each degree of freedom as obtained from
(4.46).
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Figure 4.24: The heading orientation along the trajectory as obtained from (4.55) after
changing weighting matrices Q and R and the observer tuning matrices U and V .
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Figure 4.25: The control input signals for each degree of freedom as obtained from
(4.46) after changing weighting matrices Q and R.
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Figure 4.26: The heading orientation along the trajectory as obtained from (4.55) after
further changing weighting matrices Q and R and the observer tuning matrices U and
V .
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Figure 4.27: The control input signals for each degree of freedom as obtained from
(4.46) after further changing weighting matrices Q and R and the observer tuning
matrices U and V .
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4.4 Conclusions
We study the regulation problem of a DP vessel by using the SDARE technique.
We extend the concept of the LQR problem to nonlinear system by using the SDC
parametrization. This gives rise to an SDARE which must be solved to obtain a sub-
optimal solution of the nonlinear regulation problem.

The DP vessel model shows that only the position and heading measurements
are available from the sensors. This is an inadequate information for the SDARE
control design problem which requires complete state knowledge. Using the stabi-
lizability and detectability of the vessel model together with the duality concept, we
propose a suboptimal locally asymptotically stable SDARE observer. The combina-
tion of the locally asymptotically stable SDARE regulator and SDARE observer is a
locally asymptotically stable SDARE compensator.

We divide the study of the DP vessel regulation problem in two steps. First, we
study the LF motion regulation without taking into account the WF motions. We begin
by considering a nominal case (the bias disturbance vector is known or its estimate is
available) and come up with a PD-type control law with a feedforward term. The
controller is proved to be globally asymptotically stable by using the LMIs and the
Lyapunov stability theory.

Afterwards, we assume that the bias vector is unknown and the measured signals
from the sensors are contaminated by noise. We combine the concept of the SDARE
regulation and estimation (to estimate the position, velocity, and bias vectors) to come
up with a locally asymptotically stable SDARE compensator. Second, we take into
account both the LF and WF motions and use again the SDARE method to address the
regulation and estimation problems. A locally asymptotically stable compensator is
obtained by combining locally asymptotically stable controller and estimator. We use
the data of a supply vessel for simulation experiments. Simulation results presented in
this chapter confirm the asymptotic stability of the SDARE regulator and the SDARE
estimator.
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Chapter 5
The Fourier Series Interpolation
Method1

In Chapter 4, the controller and observer gains are state dependent. They are required
to be determined by online solving the concerned SDAREs. These SDAREs have a
special form in which the coefficient matrix depends on a single state component in a
periodic way. In this chapter, we propose a new method for solving these SDAREs.
This method is based on the Fourier series. This method reduces the online compu-
tation time for the solution of these SDAREs by performing the major computational
task offline.

The earliest traces of the use of the algebraic Riccati equation in control related
problems can be found in the works on the solution of the LQ optimal control and
filtering problem [41] and on approximation methods in optimal control [67]. To date
its scope has been extended to address problems of nonlinear state regulation and
estimation, estimator based feedback control synthesis, H∞−control, H2−control, and
nonlinear filter design, for instance see [7], [14], [31], [52], and [66]. Recently, the
state dependent Riccati equation based technique has been used in nonlinear optimal
vehicle control in [2].

The SDARE has emerged in many practical applications. Especially, the SDARE
has become an important research topic in ongoing developments in the areas of con-
trol and estimation theory. It has been regarded as an efficient tool to tackle problems
related with the nonlinear control design, filtering, synthesis, and analysis. Conse-
quently, emphasis has been put on developing computationally efficient solution meth-
ods for the SDARE.

In a broader perspective, we divide the solution methods in two categories: itera-
tive and direct. Both type of methods have positive and negative features. Mainly, the
direct methods are computationally faster than the iterative methods, especially when
the problem is poorly conditioned or when a good-quality initial guess is not available.

1This work has been published in the proceedings of the UKACC International Conference on Control
(CONTROL 2010), see [57].
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On the other hand, the direct methods require more storage capacity than the iterative
methods. Some of the well-known direct methods are the Taylor series method [7],
the generalized eigenvector approach [15], the matrix sign function method [17], the
information filter algorithm [39], and the Schur decomposition method [49]. Some
of the well-known iterative methods are the Kleinman algorithm [3], the interpolation
methods [7], the Newton-method and its modified forms [9, 18, 40], solution via spec-
tral factorization, the doubling algorithm [13, 44], and the Chandrasekhar algorithm
[72].

In (4.5), we observe that the controller gain is not fixed but it varies with the
state of the system. The computation of the controller gain requires the solution of the
SDARE (4.6). Therefore, in the feedback loop, the controller gain is computed online.
As pointed out in [12] the reduction in the online computation time of the solution of
the SDARE is a major issue because of its high computational cost. In this chapter, we
propose the Fourier series based numerical method for the solution of the SDARE of
type (4.7) which reduces the online computations. Henceforth, we call this method the
Fourier series interpolation (FSI) method. This method of solution is computationally
very simple and hence, it is valuable in the situations where online computation of the
solution of the SDARE is required.

5.1 The Fourier Series Interpolation (FSI) Method
First we explain why it is reasonable to use the Fourier series for the solution of the
algebraic Riccati equations of the type (4.7). Then we will illustrate the details of the
FSI method. For a general formulation of the FSI method, we make a slight change of
notation in the SDARE (4.7). We consider the following form

Π(x1)A(x1) + AT (x1)Π(x1) + Q − Π(x1)BR−1BT Π(x1) = 0, (5.1)

where x1 ∈ R, without loss of generality, is the first component of the state vector
x ∈ Rn, A(·) ∈ Rn×n is a C∞ function2, Π(·) ∈ Rn×n, and B ∈ Rn×m.

The matrix function A(·) is smooth and θ−periodic, i.e., A(x1) = A(x1 + θ) for all
x1 ∈ R. The solution matrix Π(·), provided it exists, is also a smooth and θ−periodic
function, see [16]. At this point, we recall two important results from [35] which
endorse the idea of using the Fourier series for finding an approximate solution of the
SDARE (5.1). First, we recall the Fourier convergence theorem due to Dirichlet.

Theorem 5.1.1. (The Fourier Convergence Theorem) Let f be a piecewise smooth
function on the interval −L ≤ x ≤ L, then the Fourier series of f converges
1. to f (x), if f is continuous at x ∈ (−L, L).
2. to the average of the two limits,

1
2

[ f (x+) + f (x−)],

if f has a jump discontinuity at x ∈ (−L, L), where f (x−) and f (x+) means, respec-
tively, the left and the right hand limits of the function f at point x.

2C∞(R,Rn×m) := {A : R −→ Rn×m | A is Ck for all k ≥ 0}.
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The periodic extension of a 2L−periodic function is always admissible. The fol-
lowing corollary gives the necessary and sufficient condition for the continuity of the
periodic extension of a piecewise smooth function.

Corollary 5.1.1. For a 2L−periodic piecewise smooth function f , the periodic exten-
sion of f is continuous for all x ∈ R if and only if f is continuous and f (−L) = f (L).

In the context of the vessel model, the solution Πc(ψ) of the SDARE (4.7) is a
smooth matrix function with period θ. Therefore, by the above results, it is possible to
represent the matrix function Π(·) in the form of a Fourier series. This means that the
Fourier series of Π(·) exists and converges to Π(x1) for all x1 ∈ R. Thus we write

Π(x1) =
A0

2
+

∞∑
k=1

(
Ak cos

(
2kπx1

θ

)
+ Bk sin

(
2kπx1

θ

))
. (5.2)

The Fourier coefficients A0, Ak ∈ R
n×n and Bk ∈ R

n×n for k = 1, 2, 3, ..., are defined by

Ak =
2
θ

∫ θ
2

− θ
2

Π(x1) cos
(

2kπx1

θ

)
dx1, k = 0, 1, 2, 3, .... (5.3)

and

Bk =
2
θ

∫ θ
2

− θ
2

Π(x1) sin
(

2kπx1

θ

)
dx1, k = 1, 2, 3, .... (5.4)

Let us now recall a well-known result by Riemann and Lebesgue which is stated
in the following lemma.

Lemma 5.1.1. (The Riemann-Lebesgue Lemma) If f is an integrable function on
[− θ2 ,

θ
2 ] then

lim
k→∞

∫ θ
2

− θ
2

f (x) sin kx dx = 0,

and

lim
k→∞

∫ θ
2

− θ
2

f (x) cos kx dx = 0,

From the fact that the series on the right hand side of (5.2) is convergent and
from the statement of the Lemma 5.1.1, it follows that the Fourier coefficients with
sufficiently high indices are negligibly small (their norms are of order zero) and can
be left out. Therefore, for any small positive number ε, there exists an integer N′ such
that ||An||2 < ε and ||Bn||2 < ε, ∀n > N′. We use the spectral matrix norm in this
chapter.

We explain the procedure to compute the Fourier coefficients as follows. First, we
decide a stopping criterion for the computation of the Fourier coefficients. We define
a tolerance level say ε′ > 0, such that the process of the computation of the Fourier
series coefficients stops when∥∥∥∥∥∥∥Π(x1) −

A0

2
+

N∑
k=1

(
Ak cos

(
2kπx1

θ

)
+ Bk sin

(
2kπx1

θ

))
∥∥∥∥∥∥∥

2

< ε′, (5.5)
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is satisfied for all x1 ∈ [− θ2 ,
θ
2 ).

Then, we start with N = 1 such that there are 2N +1(= 3) Fourier coefficients to be
determined. Equation (5.2) holds identically true for all x1 ∈ [− θ2 ,

θ
2 ). Take m > 2N+1

points x1t ∈ [− θ2 ,
θ
2 ), t = 1, 2, ...,m. To each point x1t ∈ [− θ2 ,

θ
2 ), there corresponds an

equation of the following form

A0

2
+

N∑
k=1

(
Ak cos

(
2kπx1t

θ

)
+ Bk sin

(
2kπx1t

θ

))
= Π(x1t ). (5.6)

In this way, we get the following nonhomogeneous system of m linear matrix equa-
tions



1
2 cos

2πx11
θ · · · cos

2Nπx11
θ sin

2πx11
θ · · · sin

2Nπx11
θ

1
2 cos

2πx12
θ · · · cos

2Nπx12
θ sin

2πx12
θ · · · sin

2Nπx12
θ

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
1
2 cos 2πx1m

θ · · · cos 2Nπx1m
θ sin 2πx1m

θ · · · sin 2Nπx1m
θ





A0
A1
.
.
.

AN
B1
.
.
.

BN


=


Π1
Π2
.
.
.

Πm

 ,

where Πi = Π(x1i ). We can write this in short form as

AX = B (5.7)

However, note that the dimensions of the matrices in (5.7) do not conform with
the usual matrix multiplication rules. We use the Kronecker matrix product to remove
this discrepancy. For this we multiply the matrixA from right by In in the Kronecker
sense. This results in

(A⊗ In)X = B. (5.8)

The equation (5.8) can be solved in the least-squares sense, minimize
∥∥∥∥(A⊗In)X−B

∥∥∥∥2
.

The solution X to this problem yields 2N + 1 Fourier coefficients. The Fourier series
approximation of the solution of the SDARE (5.1) is then given by

Π(x1) ≈
A0

2
+

N∑
k=1

(
Ak cos

(
2kπx1

θ

)
+ Bk sin

(
2kπx1

θ

))
. (5.9)

Now the stopping criterion (5.5) is tested. This can be done by plotting ε′ − g(x1)
vs x1 on the interval [− θ2 ,

θ
2 ), where g(x1) is the LHS of (5.5). To get a smooth sketch,

we take enough points on the interval. This will also ensure that we did not overlook
any sharp peaks or discontinuities. If the stopping criterion is satisfied (plot lies above
x1-axis) then we stop. Otherwise, we repeat the above procedure for the next integer
value of N(= 2) and so on, and continue until the stopping criterion is satisfied. The
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algorithm for finding the Fourier coefficients is summarized below3.

Algorithm 5.1.1: Computation of the Fourier Coefficients (FCs)

input: The tolerance parameter ε′ and an integer N(= 1).

assumption: The m number of interpolation points must satisfy m > 2N + 1.

output: The Fourier Coefficients A0, A1, A2, ..., AN , B1, B2, ..., BN .

for N ← 1 to some f inite large natural number
step 1: Take m > 2N + 1.

step 2: Take xti ∈ [− θ2 ,
θ
2 ), i = 1, 2, 3, ...m.

step 3: Solve (5.1) at m interpolation points to get Π1,Π2, ...,Πm. (i)

step 4: Use statement (i) of this algorithm and (5.6) to get (5.7).

step 5:
{

Use Kronecker matrix product to get a linear system of
equations (5.8).

step 6:
{

Solve the linear system (5.8) to get the desired Fourier
coefficients.

if the tolerance condition is satis f ied

then
{

Fourier Coe f f icients A[0], A[1], ..., A[N], B[1], B[2], ...., B[N]
are obtained.

else
continue the f or loop until tolerance condition is satis f ied.

The main step of the algorithm is step 6 of the for loop. The repetition of the loop
continues until the stopping criteria is satisfied. We conclude this section with the
following remark about the above algorithm.

Remark 5.1.1. We take the number m of distict points in [− θ2 ,
θ
2 ), greater than the

number of Fourier coefficients 2N+1 to be determined to generate an over-determined
system of linear equations. The system (5.8) has a solution because rank(A ⊗ In) =

rank(A⊗ In,B).

5.2 Performance Analysis

In this section we explain why the FSI method is effectively a better method for online
computation of the solution of the SDARE than “care” in terms of computation time.
We do so on the basis of flop count. Equations (4.20), (4.39) and (4.55) describe the
feedback dynamics of the SDARE nonlinear compensator. The presence of Kc(ψ̂) and
Ko(ψ̂) therein indicates that two SDAREs have to be solved at each iteration when
the ode systems (4.20), (4.39) and (4.55) are solved numerically. This demands a
computationally efficient method for finding the solution of the SDARE.

3The author is thankful to Professor Donald Kreher for his help on the pseudocode environment.
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We compare the FSI method with the Schur decomposition method [15]. The
MATLAB routine “care” is based on this method. For each ψ, the SDARE (4.7)
reduces to a continuous time algebraic Riccati equation (CARE)

ΠA + AT Π + Q − ΠBR−1BT Π = 0, (5.10)

We solve the closed loop system equations by using the MATLAB solver ode45. Dur-
ing the process of computation of the numerical solution of the closed loop system,
MATLAB routine “care” is called multiple times to solve (5.10). In the following we
explain some details of the Schur decomposition method for a better understanding of
the computational complexity of this method.

The Schur decomposition method requires two major computations for solving the
SDARE. First step is the reduction of the Hamiltonian matrix to an ordered real Schur
form (RSF). The Hamiltonian matrix associated with (5.10) is given by

H =

[
A −BR−1BT

−Q −AT

]
. (5.11)

The following result ensures that the Hamiltonian matrix (5.11) does not have any
eigenvalue on the imaginary axis.

Theorem 5.2.1. (Relationship between the Hamiltonian Matrix and the Riccati
Equations) Let (A,B) be stabilizable and (A,Q) be detectable. Then the Hamiltonian
matrixH has n eigenvalues with negative real parts, no eigenvalues on the imaginary
axis, and n eigenvalues with positive real parts. In this case the CARE (5.10) has a
unique stabilizing solution Π.

Now using the QR-factorization, H can be transformed into RSF form according
to the following result.

Theorem 5.2.2. (The Real Schur Triangularization Theorem) LetH be a 2n × 2n
Hamiltonian matrix. Then there exists a 2n × 2n matrix Qrs such that

QT
rsHQrs = Rrs =


R11 R12 · · · R1k

0 R22 · · · R2k
...

...
...

...

0 0 0 Rkk

 , (5.12)

where each Rii is either a scalar or a 2 × 2 matrix. The scalar diagonal entries corre-
spond to real eigenvalues, and each 2×2 matrix on the diagonal has a pair of complex
conjugate eigenvalues. The matrix Rrs is known as the RSF ofH .

The eigenvalues in (5.12) are not ordered so an additional step is made to get an
ordered RSF which is important for the next step which uses the invariant subspace of
the stable eigenvalues of H to solve (5.10). The following definition and subsequent
theorem and corollary summarize the concluding step of the Schur decomposition
method.
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Definition 5.2.1. (Basis of an Invariant Subspace from RSF) Let

QT
rsHQrs = Rrs =

[
R11 R12

0 R22

]
, (5.13)

and let us assume that eigenvalues of R11 and R22 respectively are the negative and
positive eigenvalues of the Hamiltonian matrix H . Then the first p columns of Qrs,
where p is the order of R11, form an orthonormal basis for the invariant subspace
associated with the stable eigenvalues ofH .

Theorem 5.2.3. A matrix Π is a solution of the CARE (5.10) if and only if the columns

of
(

I
Π

)
span an n-dimensional invariant subspace of the Hamiltonian matrixH .

Corollary 5.2.1. If the columns of
(

Π1

Π2

)
span an n-dimensional invariant subspace

of the Hamiltonian matrix H associated with the CARE (5.10) and Π1 is invertible,
then Π = Π2Π−1

1 is a solution of the CARE (5.10).

The Schur method is based on reduction of the Hamiltonian matrix H to RSF
which is done by QR factorization. The exact flop count is not possible as QR-
factorization is an iterative procedure. However, by the empirical observations it is
assumed that on average each eigenvalue requires 2 QR-factorizations, [15]. The QR-
factorization of a matrix requires O(n3) flops which means that the RSF obtained in
the first step of the Schur decomposition method also requires O(n3) flops. The order-
ing of the eigenvalues in RSF requires O(n) flops. In the second step, the computation
of Π = Π2Π−1

1 is done by using the least-squares algorithm and this also requires
O(n3) flops. Therefore the Schur decomposition requires O(n3) flops each time CARE
(5.10) is solved online. On the other hand, the FSI method requires simple matrix
addition (O(n2) flops) and scalar-matrix multiplication (O(n2) flops). Therefore, the
FSI method requires O(n2) flops when the online solution of (5.10) is computed by
this method.

The computationally expensive task in FSI method is the computation of the Fouri-
er coefficients which is done offline, only once. From the algorithm given in Section
5.1, we see that the computation of the Fourier coefficients involve two major steps.
First, the computation of the solution of the SDARE at a known (m) number of points.
Second, the solution of a linear system of equations. Each requires O(n3) flops.

Based on the foregoing discussion, we conclude that the FSI method reduces the
online computations in a feedback dynamics based on an SDARE control law. In
Table 5.1, by using the simulation results discussed in Section 4.3, we quantitatively
demonstrate that the FSI method reduces the online computation time for the solution
of the SDARE. Each of the closed loop systems (4.20), (4.39) and (4.55) are solved
with the MATLAB routine ode45 on a time interval [0, 30]. Table 5.1 shows a com-
parison between the computer time required to solve the closed loop systems with the
FSI method and by the MATLAB routine “care”. We notice that with the increase in
the size of the system, the performance of the FSI method is still comparable to its
performance with a lower order system. The simulations have been performed on an
Intel Centrino duo running at the frequency of 2 GHz having 2 GB RAM.
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Table 5.1: Performance Analysis
Online comput. Online comput. Percentage (%) reduc.

time (sec) time (sec) in online
with “care” with FSI method computation time

For (4.20) 11 6 45
11 6.8 37

118 48 59
For (4.39) 96 67 30

274 192 32
For (4.55) 191 90 53

467 252 46
495 276 44

Looking at the profile summary obtained from the MATLAB, we notice that “care”
is called 2164, 2479, and 17948 times when (4.20) is solved on interval [0, 30]. It
is called 12352 and 34406 times when (4.39) is solved on interval [0, 30] and it is
called 12406, 34547, and 34405 times when (4.55) is solved on interval [0, 30] for
each Kc(ψ̂) and Ko(ψ̂). The times for the offline computations of the Fourier series
coefficients are 0.1, 0.13, and 0.15 seconds, respectively. This computational evidence
supports the argument made on the basis of the flop counts earlier in this section. That
is the FSI method is capable of solving the CARE faster than the Schur decomposition
method. Particularly, this is useful in situations where the online solution of the Riccati
equation is required.



Chapter 6
Port-Hamiltonian Formulation
and Passivity Based Control
Design1

This chapter focuses on the design of the control law for dynamic positioning as-
suming that the filtering and estimation problems have been solved, i.e., the

measured output contains only the noise free LF position and heading measurements
and the disturbances vector is either known or its estimate is available. The Port-
Hamiltonian framework is a very useful concept which offers more capacity to im-
prove the performance of the controllers and to analyze stability properties. Passivity-
based techniques were first introduced in [38], [53], and [87] in the early 1970’s. These
techniques have been used since then in many applications, for instance in underwater
vehicles [4], the control of electrical machines [21], the design of power system stabi-
lizers [61], adaptive control for rigid robots [63], underactuated mechanical systems
[64], power converters [69], and magnetic levitation systems [70].

A nice feature of the passivity-based control design is the physical meaning of the
resulting control laws and concepts, such as storage energy or dissipation, which play
a fundamental role in analyzing stability and the performance of the controller. Sta-
bility properties, based on the Lyapunov theory, can easily be studied for the closed
loop systems obtained. The passivity based approach has two versions. The classical
Euler Lagrange (EL-PBC) allows the change in the potential energy function and the
generalized inertia matrix, see [65]. In the last decade, the Interconnection and Damp-
ing Assignment Passivity Based Control (IDA-PBC) methodology has emerged as an
easy and a (quasi) step-by-step methodology to obtain passivity based controllers, see
for instance [65]. IDA-PBC also allows changes in the interconnection matrix.

This chapter introduces the port-Hamiltonian model of a vessel with 3 degrees
of freedom in a horizontal plane. The obtained port-Hamiltonian equations are the

1This work has been published in the proceedings of the Dynamic Positioning Conference DP2010 in
Houston, see [55]. It is also to appear at the IET Journal of Control Theory and Applications, see [56].
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starting point for the design of controllers using the IDA-PBC technique. The main
contribution of this chapter is a family of passivity-based controllers, in the port-
Hamiltonian framework, which uses the energy shaping of the closed loop system
to ensure (local/global) asymptotic stability. The resulting control laws are of output-
feedback form and are robust in presence of eventual disturbances.

6.1 Hamiltonian-Based Control

6.1.1 Port-Hamiltonian Modeling
A large class of physical systems of interest in control applications can be modeled
in the general form of port-Hamiltonian systems (PHS), see [84]. PHS generalize
the Hamiltonian formalism of classical mechanics to physical systems connected in
a power-preserving way and encodes the detailed energy transfer and storage in the
systems, and is thus suitable for control schemes based on IDA-PBC.

A PHS can be written, in an implicit form, as

ẋ = (J(x) − R(x))∂H(x) + G(x)u, (6.1)

where x ∈ Rn is the state (or Hamiltonian variables) vector, J(x) ∈ Rn×n is the skew-
symmetric interconnection matrix (J = −JT ), R(x) ∈ Rn×n is the dissipation (or
damping) matrix (symmetric positive semi-definite, R = RT ≥ 0), G(x) ∈ Rn×m is
the external connection matrix, u ∈ Rm is the control input vector, and H(x) is the
Hamiltonian (energy or storage) function2. In this formulation, the matrix R describes
the energy losses of the system, the interconnection matrix J describes the flow of
energy inside the system, and the port matrix G describes the flow of energy from
outside (for instance from the controller) to the system. In a passivity based control
design approach, the controller can be considered as a source injecting energy into the
system.

The so-called passive output, y ∈ Rm, is given by

y = GT (x)∂H(x), (6.2)

and the product uT y usually has unity of power. In the literature on port-Hamiltonian
systems, the so-called passive output is a relative degree one output.

6.1.2 The IDA-PBC Technique
The Interconnection and Damping Assignment Passivity Based Control (IDA-PBC),
[65], is a technique for designing controllers based on the port-Hamiltonian frame-
work. It uses the passive stability properties to ensure the convergence of the system
to the desired fixed point.

The main idea behind the IDA-PBC is to define a new closed loop (or target)
system with a Hamiltonian structure. The design problem summarizes into finding a

2The ∂x (or ∂, if no confusion arises) operator defines the gradient of a function of x, and in what follows
we will take it as a column vector.
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control law such that the system behaves as

ẋ = (Jd − Rd)∂Hd, (6.3)

where Jd(x) = −JT
d (x), Rd(x) = RT

d (x) ≥ 0 and Hd(x) has a minimum at the desired
regulation point xd, xd = arg min(Hd(x)). The stability of this system can easily be
proved by using Hd as a Lyapunov function (Ḣd(x) = − (∂Hd)T

Rd∂Hd ≤ 0, see for
instance, [62] and [65] for a detailed discussion).

The design procedure reduces to finding matrices Jd(x) and Rd(x) and a desired
closed loop energy function Hd(x), which solve the so-called matching equation

(J − R)∂H + Gu = (Jd − Rd)∂Hd. (6.4)

Then, the control law becomes

u =
(
GT G

)−1
GT ((Jd − Rd)∂Hd − (J − R)∂H) . (6.5)

A drawback of the IDA-PBC controllers is that they are, in general, not able to
reject disturbances. To remove this discrepancy of the control design, usually a dy-
namic extension of the system is introduced to obtain an integral action on the output
error. Extension of the closed loop dynamics in the IDA-PBC framework can be done,
in a natural way, only for passive outputs, see [62]. A completely different approach
addresses non-passive outputs (or higher relative degree one outputs). In this case, a
Hamiltonian based controller with an integral action can be obtained via a change of
variables, see [20].

Let us assume that the xo ∈ R
r are the higher relative degree one (or non-passive)

outputs. The main idea is to introduce a new variable ze ∈ R
r, which is used to enforce

the equilibrium point of the closed loop system to the desired one, and a change of
variables z = f (x, ze) ∈ Rn−r to cast the target system in a Hamiltonian structure as
follows  ẋo

ż
że

 =

 Jo − Ro Jzo − Rzo Je

−JT
zo − RT

zo Jz − Rz O3

−JT
e O3 O3

 ∂Hde. (6.6)

The power-preserving interconnection structure of the proposed target system is de-
fined by Jo = −JT

o ∈ R
r×r, Jz = −JT

z ∈ R
(n−r)×(n−r), Jzo ∈ R

r×(n−r) and Je ∈ R
r×r.

Dissipation is given by Ro = RT
o ∈ R

r×r, Rz = RT
z ∈ R

(n−r)×(n−r), and Rzo ∈ R
r×(n−r).

Finally, the Hamiltonian function, Hde takes the form

Hde = Hd(xo, z) +
1
2

zT
e Ke ze, (6.7)

where Hd has a minimum at the desired regulation point (xd
o, f (xd

o, 0), 0).
Following the idea of the IDA-PBC technique, the stability is guaranteed if the

dissipative matrix is positive semidefinite, i.e., Ro ≥ 0, Rz > 0 and Ro−RzoR−1
z RT

zo ≥ 0.
The key point of the PHS structure in (6.6) is that the existence of a minimum of

Hde in xd
o, implies ∂xo Hd |xd

o
= 0 which, evaluated in the ze dynamics,

że = −JT
e ∂xo Hd (6.8)

ensures that xd
o is an equilibrium point.
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6.2 Dynamic Positioning Problem

A dynamic positioning (DP) system is a computer controlled system which automati-
cally maintains a vessel’s position and heading by using propellers and thrusters. The
computer program contains a mathematical model of the vessel which includes infor-
mation pertaining to the wind and current drag of the vessel and the location of the
thrusters. This knowledge, combined with the sensor information, helps the computer
calculate the required steering angle and thruster output for each thruster.

Generally, in DP problems, only position and heading measurements are available.
This leads to the use of observers to estimate the state (mainly the velocities and
the bias term) which are required for feedback into the control law. This problem
is studied in many papers. Some examples include a nonlinear observer designed
in [26], a passivity-based scheme considered in [29] and [51], and the Luenberger
observer used in [76].

Furthermore, the measured position and heading signals are noisy and, also, with
two different frequency components (see Figure 2.5, Chapter 2). The total ship motion
can be seen as a superposition of a low frequency component (due to the wind, sea
currents and thruster forces and moments) and an oscillatory term (the so-called wave-
induced wave frequency motion), which represents the effect of the waves. See [24]
for more details.

However, DP only considers the slow variations and, consequently, the motion due
to the waves should be removed before it enters in the controller algorithm. Kalman
filtering techniques were proposed in [30] and [34]. See [27] for a recent overview. As
pointed out in [29], Kalman filters require the use of a linear model, and the nonlinear
motion should be linearized at various operation points. To overcome this drawback, a
wave-frequency observer is added to compensate the wave disturbances, see [29] and
[51].

Due to the important role of the estimation and filtering process, the motion control
system in the DP problem can be grouped in two basic subsystems: the observer
system (or wave filter), and the controller, see Figure 6.1.

Figure 6.1: Basic scheme of components of a ship motion-control system.

Various controllers have been proposed to stabilize the ship to the desired position.
PI controllers are often used [24], however more advanced techniques are applied to
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this problem resulting in interesting control algorithms. Backstepping design, which
also includes the observer stage, is presented in [26] and [74]. In [51] the stability
of a PD-type controller with a passive observer is proved using a separation principle
argument. Recently, sampled-data control theory has also been applied to the DP
problem for designing the control law [42]. As mentioned at the start of this chapter,
we assume that the estimation and filtering problem has been solved and our focus is
the control design for dynamic positioning using the port-Hamiltonian framework.

6.3 Ship Model in Port-Hamiltonian Framework

6.3.1 Ship Model in Cartesian Coordinates
We recall here the vessel model from Chapter 2. In this chapter, we consider a model
in the following form.[

η̇
ν̇

]
=

[
O3 J(ψ)
O3 −M−1D

] [
η
ν

]
+

[
O3

M−1

]
τ +

[
O3

M−1JT (ψ)

]
b. (6.9)

The details of the vectors and the matrices in (6.9) are given in Chapter 2. The en-
vironmental disturbances due to the sea currents, waves, and wind are represented by
b = [b1 b2 b3]T ∈ R3 in the Earth-fixed reference frame. This bias term is constant
in the Earth-fixed reference frame, under assumption of constant or slowly varying
currents.

In this chapter, it is assumed that these natural effects (sometimes called bias forces
and moments), which can also be modeled as a first-order Markov process, [24, Chap-
ter 3, page:89], are either known or an estimate of the bias vector is available. We
assume that the measurement system gives us noise free position and orientation mea-
surements and that the wave frequency (WF) components from the measured output
are filtered or estimated. Hence, in this chapter, we skip the dynamics of the bias and
the WF components.

The main goal in the dynamic positioning problem is to stabilize the ship in a given
η-coordinate. Without loss of generality, our objective is to design an appropriate con-
trol law τwhich stabilizes the system to the origin (x, y, ψ) = (0, 0, 0). Additionally, as
the measurement of the relative velocity vector is not available, the control law should
be independent of ν, and must be able to reject unknown disturbances or uncertainties.

6.3.2 Ship Model in Port-Hamiltonian Coordinates
We can write the system described in (6.9) in a PHS form (6.1) by using as a state
xT = [qT , pT ] ∈ R6, where q = [q1 q2 q3]T ∈ R3 represents the Earth-fixed position
and heading, and the momentum p = [p1 p2 p3]T ∈ R3, is defined as p = Mν.
Substituting η = q and ν = M−1 p in (6.9), we get the following system

ẋ = (J(q3) − R) ∂H + Gττ + Gb(q3)b (6.10)

with the following interconnection and damping matrices

J(q3) =

[
O3 J(q3)

−JT (q3) O3

]
, R =

[
O3 O3

O3 D

]
, (6.11)
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the external connection matrices

Gτ =

[
O3

I3

]
, Gb(q3) =

[
O3

JT (q3)

]
, (6.12)

and the Hamiltonian function given by

H =
1
2

pT M−1 p. (6.13)

Note that the Hamiltonian function contains only a kinetic energy term, associated
with the momentum variable. A potential energy, artificially added by the controller
will play a key role to stabilize the ship in the desired position. From (6.2), we observe
that the passive output for the system (6.10) is the velocity vector which does not
correspond to the actual output of the system, the position and the orientation. This
is an important consideration for the control design, especially for the dynamic IDA-
PBC control design in Section 6.5.

Two different energy functions are proposed in this chapter. We start by illustrat-
ing the methodology using a quadratic and a trigonometric Hamiltonian function and
recover a simple classical IDA-PBC controller which guarantees asymptotic stability.
The energy shaping, based on a trigonometric function, improves the heading control.
These controllers do not produce the desired regulation properties in the presence of
unknown disturbances. Consequently, in order to achieve the desired performance, a
dynamic extension is proposed, and it results in a control law that can be interpreted
as a nonlinear version of the conventional PID controller. A salient feature of the pro-
posed controllers is that they do not require the relative velocity measurements and,
thanks to a dynamic extension, they also ensure a good regulation behavior even in
presence of disturbances or unknown (or non-estimated) terms.

6.4 Classical IDA-PBC Design
A family of output feedback controllers can be obtained via the IDA-PBC methodol-
ogy. In the design process, a nominal case is considered (i.e., where the disturbances
are assumed to be completely known), and then the stability against an unknown dis-
turbance vector is also analyzed.

As presented in Section 6.1, the control laws are obtained from matching the dy-
namical system (6.10) with the target dynamics (6.3). To solve this, the desired inter-
connection matrix is fixed as in (6.10), i.e.,

Jd =

[
O3 J(q3)

−JT (q3) O3

]
, (6.14)

the dissipation matrix set as

Rd =

[
O3 O3

O3 Rp

]
, (6.15)

where Rp ∈ R
3×3 is a symmetric positive definite matrix (Rp = RT

p > 0), and the closed
loop energy function, Hd(x), is shaped as

Hd(q, p) = Ψ(q) +
1
2

pT M−1 p, (6.16)



6.4. Classical IDA-PBC Design 89

where Ψ(q) has a minimum at the origin, i.e., ∂qΨ|q∗=0 = 0 and ∂2
qΨ|q∗ = 0 > 0. This

implies that the desired energy function has the minimum at the desired stabilizing
point (q∗, p∗) = (0, 0). From a physical point of view, the controller adds some po-
tential energy, in the q coordinates, with respect to the original Hamiltonian function
(6.13).

From the resulting matching equation (6.4), the equality corresponding to the first
row is automatically satisfied while, from the second equality, we obtain the following
control law

τ = −JT (q3)(∂qΨ + b) − (Rp − D)M−1 p. (6.17)

From the q dynamics in (6.10), we get p = MJT (q3)q̇, and defining KD := Rp−D,
the state feedback algorithm (6.17) takes the form

τ = − JT (q3)∂qΨ − KDJT (q3)q̇ − JT (q3)b, (6.18)

which can be seen as a nonlinear output feedback PD (Proportional-Derivative) con-
troller with a feed-forward term, −JT (q3)b. Notice that with the choice Rp = D, the
controller simplifies because KD = 0. But, we keep the general result because, as
we point out in the simulations that by increasing the dissipation of the system, the
performance of the closed loop system improves considerably .

Proposition 6.4.1. Consider the dynamical system (6.10) in a closed loop with the
control law (6.18), where the origin q = 0 is a local minimum of Ψ(q), and that
the bias vector b and the matrix D are known. Then, the desired regulation point
(q∗, p∗) = (0, 0) is locally asymptotically stable. Furthermore, if q = 0 is the global
minimum of Ψ(q), then (q∗, p∗) = (0, 0) is globally asymptotically stable.

Proof. Substituting (6.18) in (6.10), we get a PHS in the form (6.3) with (6.14) and
(6.15) as follows:

ẋ =

[
O3 J(q3)

−JT (q3) −D

] [
O3

M−1 p

]
+

[
O3

I3

] [
−JT (q3) −KDJT (q3)

]
∂Hd+[

O3

−JT (q3)

]
b +

[
O3

JT (q3)

]
b

=

[
J(q3)M−1 p

−JT (q3)∂qHd − Rp∂pHd

]
=

[
O3 J(q3)

−JT (q3) −Rp

] [
∂qHd

∂pHd

]
= (Jd − Rd) ∂Hd. (6.19)

Using the Hamiltonian function (6.16) as a Lyapunov function, we get

Ḣd = (∂Hd)T ẋ

= (∂Hd)T
[

O3 J(q3)
−JT (q3) −Rp

]
∂Hd

=

[ (
∂qΨ

)T (
M−1 p

)T
]T

[
O3 O3

O3 −Rp

] [
∂qΨ

M−1 p

]
= − pT

(
M−1

)T
RpM−1 p ≤ 0. (6.20)
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Since Ḣd is negative semidefinite, equilibrium point theorems do not establish asymp-
totic stability of the closed loop system (6.19). However, invoking LaSalle’s invari-
ance principle, asymptotic stability can be proved.

The set of points at which Ḣd vanishes is

El ={(q, p) : p = 0 and q is free}. (6.21)

The invariant points of the closed loop system (6.19) are given by

Ml ={(q∗, p∗) : p∗ = 0 and q∗ is such that ∂qΨ(q)|q∗ = 0}. (6.22)

In case, q∗ = 0 is the global minimum of the function Ψ(q) then the set Ml consists of
only the origin (q∗, p∗) = (0, 0). This means that the largest invariant subset Ml of El is
a singleton set. Hence the closed loop system (6.19) converges globally asymptotically
to the desired point. In case, q∗ = 0 is only a local minima of Ψ(q) then the set
Ml may consists of multiple points. The closed loop system then converges locally
asymptotically to the set Ml. �

The role of the energy function in this study is similar to that of a Lyapunov func-
tion. From the Lyapunov stability theory, we know that the stability properties of a
dynamical system and the minima of the Lyapunov function have a close connection.
In the sequel, we explain how this connection can be exploited to improve the perfor-
mance of the controllers in this study. In (6.18), we have a rather general expression
for the control law depending on Ψ(q). What follows are two special cases, a quadratic
and a trigonometric, of the control law depending upon two different energy shapings.

6.4.1 A Quadratic Energy Shaping
The simplest function with a global minimum at the origin has a quadratic form:
Ψ(q) = 1

2 qT Kq, where K = KT > 0 is a gain matrix. It is easy to see that q = 0
is the only minimum of Ψ(q) and the desired energy function (6.16) becomes

Hd1(q, p) =
1
2

qT Kq +
1
2

pT M−1 p, (6.23)

which implies, from (6.18), the following control law

τ = −JT (q3)(Kq + b) − KDJT (q3)q̇. (6.24)

Using Proposition 6.4.1, we can conclude that the closed loop system (6.10) with
(6.24), is globally asymptotically stable.

6.4.2 A Trigonometric Energy Shaping
Inspired by the energy function of a pendulum, we propose to shape the desired Hamil-
tonian containing a trigonometric function with the form

Ψ(q) =
1
2

qT
12C12q12 + c3(1 − cos q3), (6.25)
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where q12 = [q1 q2]T , C12 = diag{c1, c2} and c1, c2, c3 > 0. This function, has multiple
local minima at q = (0, 0, a2π), where a ∈ Z. With this choice the desired energy
function (6.16) becomes

Hd2(q, p) =
1
2

qT
12C12q12 + c3(1 − cos q3) +

1
2

pT M−1 p. (6.26)

Figure 6.2 illustrates the difference between the two proposed energy shapings (6.23)
and (6.26) in terms of the level surfaces.

 d 1 3H q ,q

3q

1q

 d1 1 3H q ,q

 d2 1 3H q ,q

22

11

Figure 6.2: Comparison between the quadratic and the trigonometric functions, Hd1

and Hd2, respectively, in the coordinates q1 and q3.

The main motivation for this kind of energy shaping is that, for certain applications
where there are no constraints (for instance, links with external objects), stabilization
in q3 = 0 or q3 = 2π is exactly the same. Figure 6.3, shows a possible scenario, where
the path for stabilizing in q3 = 2π is shorter than stabilizing in q3 = 0.

The Hamiltonian (6.26) with the target closed loop system defined by (6.14) and
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Trigonometic pathQuadratic path

y
yr

xr

Figure 6.3: A possible scenario when it is advantageous to use the trigonometric en-
ergy function instead of the quadratic energy function.

(6.15), implies that the control law (6.18) takes the final form as

τ = −JT (q3)C

 q1

q2

sin q3

 − KDJT (q3)q̇ − JT (q3)b, (6.27)

where C = diag{c1, c2, c3} is a positive definite gain matrix.
As in the previous subsection, using Proposition 6.4.1, we can conclude that the

closed loop system (6.10) with (6.27), is (locally) asymptotically stable.

6.5 Extended IDA-PBC Design

6.5.1 Motivating Problem

The control law (6.18) assumes that b is known and that (6.10) perfectly models the
ship motion. In practical situations, the ship model only represents some simple dy-
namics of the actual system and furthermore the bias vector, b, has to be estimated. Let
us study the influence of unmodeled behaviors, wrong estimations or, in the general
case, the presence of disturbances.

In order to analyze the performance of the proposed passivity-based controller, we
study the following perturbed system[

q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −D

]
∂H +

[
O3

I3

]
τ +

[
O3

JT (q3)

]
b +

[
O3

I3

]
∆, (6.28)
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where ∆ ∈ R3 is a vector which represents the disturbances. As a first approximation,
and only to motivate the use of the extended dynamics, we consider this vector as a
constant.

The system (6.28) in a closed loop with (6.18) results in the following system[
q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −Rp

]
∂Hd +

[
O3

I3

]
∆, (6.29)

which has an equilibrium point which satisfies ∂Ψ|q=q∗ = J(q∗3)∆ and p∗ = 0. It
implies that in presence of disturbances, the closed-loop system (6.28) with control
law (6.18) has a different equilibrium than (0, 0). However, stability should also be
further analyzed.

Moreover, in the special case where the disturbances are also affected by JT (q3)
given by[

q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −D

]
∂H +

[
O3

I3

]
τ +

[
O3

JT (q3)

]
b +

[
O3

JT (q3)

]
∆, (6.30)

it can be seen that some stability properties still remain. With the control law (6.24),
global asymptotic stability can be proved by shifting the Hamiltonian function to the
new equilibrium point, i.e., with

H̃d1 =
1
2

(q − q∗)T K(q − q∗) +
1
2

pT M−1 p (6.31)

as a Lyapunov function, where q∗ = K−1∆. See Appendix A for more details.
Similarly, the control law (6.27) derived by using the trigonometric energy shaping

in (6.30), gives the following closed-loop system[
q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −Rp

] [
∂qHd2

∂pHd2

]
+

[
O3

JT (q3)

]
∆, (6.32)

where ∂qHd2 = C

 q1

q2

sin q3

 and ∂pHd2 = M−1 p. The new set of equilibrium points of

(6.32) is

q∗ =

[
∆1

c1
,
∆2

c2
, arcsin

(
∆3

c3

)
− 2kπ

]T

, and p∗ = 0, k ∈ Z. (6.33)

The new set of equilibrium points (6.33) is not a set of minima of (6.26). Unlike the
quadratic case, shifting of (6.26) to the new equilibrium (6.33) does not make them a
set of minima of the shifted Hamiltonian function. This is because of the presence of
transcendental term in (6.26). Therefore, we require another Hamiltonian function for
the stability analysis of (6.32).

We seek another Hamiltonian function (energy shaping) H̃d2(q, p) which has a
minimum value at (q∗, 0), i.e., we require

∂qH̃d2(q, p)|q∗ = 0, ∂pH̃d2(q, p)|p∗ = 0, and ∂2H̃d2(q, p)|(q∗,p∗) > 0. (6.34)
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Let us define

H̃d2 (q, p) =
1
2

c1

(
q1 −

∆1

c1

)2

+
1
2

c2

(
q2 −

∆2

c2

)2

+ c3ψ̃3(q3) +
1
2

pT M−1 p, (6.35)

where ψ̃3(q3) is such that

∂q3 ψ̃3|q∗3 = 0,

⇒ ∂q3 ψ̃3 = sin q3 −
∆3

c3
.

Integrating both sides,

ψ̃3(q3) = − cos q3 −
∆3

c3
q3 + e1,

where e1 is a constant of integration. Without loss of generality, we take e1 = 1, then

ψ̃3(q3) = 1 − cos q3 −
∆3

c3
q3. (6.36)

Therefore, the new desired energy function is

H̃d2(q, p) =
1
2

c1

(
q1 −

∆1

c1

)2

+
1
2

c2

(
q2 −

∆2

c2

)2

+ c3

(
1 − cos q3 −

∆3

c3
q3

)
+

1
2

pT M−1 p.

(6.37)

The Hessian of H̃d2(q, p) is given by

∂2H̃d2 =

[
∂2

qH̃d2 ∂2
qpH̃d2

∂2
pqH̃d2 ∂2

pH̃d2

]
=

[
∂2

qH̃d2 O3

O3 M−1

]
,

where

∂2
qH̃d2 =

 c1 0 0
0 c2 0
0 0 c3 cos q3

 .
Using the Schur complement argument, the Hessian, ∂2H̃d2|(q∗,p∗) is positive definite
iff ∂2

qH̃d2|(q∗,p∗) > 0. This requires

c3 cos q∗3 > 0,

⇒ c3 cos
(
sin−1 ∆3

c3

)
> 0,

⇒

√
1 −

(
∆3

c3

)2

> 0,

⇒
∆3

c3
< 1.
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Using the LaSalle’s principle, local asymptotic stability of this new set of equilibria
can be proved with the Hamiltonian function

H̃d2(q, p) =
1
2

(
q12 − q∗12

)T C12
(
q12 − q∗12

)
+ c3

(
1 − cos q3 − q3

∆3

c3

)
+

1
2

pT M−1 p,

(6.38)
which has local minima if ∆3

c3
< 1. More details of this result have been explained in

Appendix A. Figure 6.4 explains this condition for existence of the set of minima for
the energy function (6.38).

Figure 6.4: Visualization of the condition for existence of the set of minima of (6.38).

Summarizing, the presence of unknown disturbances results in a bad positioning
of the ship. Although a high gain in the K and C matrices (in controllers (6.24) and
(6.27), respectively) implies stabilization close to the desired equilibrium point. This
may not be a rational strategy due to practical limitations of the propulsion units.
This discrepancy in the desired performance of the control law motivates the use of a
dynamic extension in order to achieve the stabilization at the desired point.

6.5.2 Target Extended System

In [5], it has been proved that if a system cannot be stabilized by using the classical
IDA-PBC approach then it is impossible to stabilize the system by dynamic extension.
This result is not restrictive in our case; our system is stabilizable but the discrepancy is
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that it does not stabilize to the desired equilibrium point. To overcome this drawback,
we introduce an integral action by dynamic extension.

A dynamic extension for a non passive output, maintaining the port-Hamiltonian
structure, is possible by means of a change of coordinates. The controller is designed
for a nominal case, without disturbances, and then the presence of unknown terms
is analyzed. Following the idea in [20], we introduce a new state variable, ze ∈ R

3,
which is used to enforce the equilibrium point of the closed-loop system to the desired
one, and a change of variables z = f (q, p, ze). We define the target system, with the
form of (6.6), as  q̇

ż
że

 =

 O3 J(q3) J(q3)
−JT (q3) −Rz O3

−JT (q3) O3 O3


 ∂qHde

∂zHde

∂ze Hde

 , (6.39)

where Rz = RT
z ≥ 0, is a 3 × 3 matrix to be defined. The desired Hamiltonian function

is defined as

Hde(q, z, ze) = Ψ(q) +
1
2

zT M−1 z +
1
2

zT
e Ke ze (6.40)

where Ke = diag{ke1, ke2, ke3} > 0. As earlier in the classical IDA-PBC design, Ψ(q)
must be designed with a minimum in the desired regulation point. Then, the Hamilto-
nian function (6.40) has a minimum at (q∗, z∗, z∗e) = (q∗, 0, 0).

Matching the q dynamics, from (6.10) and (6.39), the change of variables z is
defined as

z = p− MKe ze. (6.41)

The state feedback control law is obtained from the second row of (6.39) and the time
derivative of (6.41),

τ = −KPJT (q3)∂qΨ − KDM−1 p + KI ze − JT (q3)b (6.42)

że = −JT (q3)∂qΨ (6.43)

where we define

KP := (MKe + I3), (6.44)

KD := Rz − D, (6.45)

KI := Ke. (6.46)

Similarly to the classical IDA-PBC controller in the previous section, using p =

MJT (q3)q̇, the control law (6.42)-(6.43) takes the following form

τ = −KPJT (q3)∂qΨ − KI

∫
JT (q3)∂qΨdt − KDJT (q3)q̇ − JT (q3)b (6.47)

which has the same structure as a nonlinear PID controller with a feed-forward term,
−JT (q3)b.

Proposition 6.5.1. Assume that q is measurable, and that the disturbances vector b
and the matrices M and D are known. If Ke = diag{ke1, ke2, ke3} > 0, and Ψ(q) has



6.5. Extended IDA-PBC Design 97

a (local) minimum at the origin, q = 0, then the system (6.10) in a closed loop with
(6.47), is (locally) asymptotically stable at the point (q, z, ze) = (0, 0, 0).

Furthermore, if q = 0 is a global minimum of Ψ(q), then the origin of (6.47) is
globally asymptotically stable.

Proof. The closed-loop system (6.10) with (6.47) takes the form of (6.39). Then, the
Hamiltonian function (6.40) is a Lyapunov-candidate function and its time derivative
is

Ḣde = −zT
(
M−1

)T
RzM−1 z ≤ 0. (6.48)

Then, the stability can be proved invoking LaSalle’s invariance principle as we already
show in proof of Proposition 6.4.1. �

Equation (6.47) is a rather general formulation of the control law. What follows
are two special cases depending on two different formulations of the energy shaping
(6.40).

6.5.3 A Quadratic Energy Shaping

Let us first take the same quadratic energy shaping as in Section 6.4, Ψ(q) = 1
2 qT Kq

with K = diag{k1, k2, k3} > 0, the Hamiltonian function (6.40) becomes

Hde1(q, z, ze) =
1
2

qT Kq +
1
2

zT M−1 z +
1
2

zT
e Ke ze. (6.49)

with a global minimum at the origin, (0, 0, 0). The control law (6.42)-(6.43) becomes

τ = −KPJT (q3)Kq + KI ze − KDJT (q3)q̇ − JT (q3)b (6.50)

że = −JT (q3)Kq. (6.51)

From Proposition 6.5.1 the controller (6.50)-(6.51) ensures the global asymptotic sta-
bility.

6.5.4 A Trigonometric Energy Shaping

The trigonometric energy shaping proposed in the previous section can also be con-
sidered for the extended controller. Taking again

Ψ(q) =
1
2

qT
12C12q12 + c3 (1 − cos q3) , (6.52)

where q12 = [q1 q2]T and C12 = diag{c1, c2}, and c1, c2, c3 > 0 the desired Hamiltonian
function (6.40) becomes

Hde2(q, z, ze) =
1
2

qT
12C12q12 + c3 (1 − cos q3) +

1
2

zT M−1 z +
1
2

zT
e Ke ze. (6.53)

As previously mentioned, this function has multiple local minima at q∗ = (0, 0, a2π),
a ∈ Z. Using Proposition 6.5.1, this case ensures local asymptotic stability, and the
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control law (6.42)-(6.43) becomes

τ = −KPJT (q3)C

 q1

q2

sin q3

 + KI ze − KDJT (q3)q̇ − JT (q3)b (6.54)

że = −JT (q3)C

 q1

q2

sin q3

 (6.55)

where C = diag{c1, c2, c3}.

6.5.5 Analysis in Presence of Disturbances
The main contribution of the extended dynamics excels in the presence of unknown
disturbances. As before, let us analyze the closed-loop system in the presence of
disturbances. First, we consider constant (or, at least, very slow) disturbances. Taking
the perturbed system (6.28) with the designed control law (6.47), we obtain q̇

ż
że

 =

 O3 J(q3) J(q3)
−JT (q3) −Rz O3

−JT (q3) O3 O3


 ∂qΨ

M−1 z
Ke ze

 +

 O3

I3

O3

 ∆. (6.56)

From the ze dynamics, and due to ∂qΨ|q∗ = 0, this system has the following equilib-
rium point3

q∗ = 0 (6.57)

z∗ = MR−1
z ∆ (6.58)

z∗e = −KeR−1
z ∆. (6.59)

Notice that, contrary to the classical controller as discussed in Section 6.5.1, in the
presence of unknown disturbances, the origin is still the equilibrium in the position
coordinates.

The question that now arises is about the stability of (6.56). A simple stability
analysis is possible using the error coordinates z̃ = z − z∗ and z̃e = ze − z∗e. Shifting
the energy function (6.40) to the new equilibria, we get

H̃de(q, z̃, z̃e) = Ψ(q) +
1
2

z̃T M−1 z̃ +
1
2

z̃T
e Ke z̃e, (6.60)

and (6.56) can be written as
q̇
˙̃z
˙̃ze

 =

 O3 J(q3) J(q3)
−JT (q3) −Rz O3

−JT (q3) O3 O3


 ∂qΨ

M−1 z̃
Ke z̃e

 . (6.61)

This closed-loop system still has the desired structure (6.6), with a energy function
which has a minimum at (6.57)-(6.59). The asymptotic stability is automatically guar-
anteed.

3Notice that for the case of the trigonometric controller, the equilibria become q∗ = (0, 0, a2π).
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In a more realistic case, the disturbance could be considered as a vector which
depends on time, i.e., ∆ = ∆(t). Then, we can no longer study the stability of an
equilibrium point, and we only can expect that the solution of the system becomes
bounded due to the special structure of the closed-loop system, that can be seen as a
forced oscillator with damping in the z̃ coordinates.

6.6 Simulations
In order to test the performance of the designed controllers we performed some nu-
merical simulations. For this validation we used the data of a supply ship from [26].
The (Bis-scaled non-dimensional [24]) matrices M and D are given by

M =

 1.1274 0 0
0 1.8902 −0.0744
0 −0.0744 0.1278


and

D =

 0.0358 0 0
0 0.1183 −0.0124
0 −0.0124 0.0308

 .
The bias vector has been set to b = [0.05, 0.05, 0.01]T . For all simulations, we consid-
ered that the initial conditions of the ship are (q1, q2) = (−10,−10), and the heading
angle q3 = 4 rad, and the desired stabilization position is the origin. The desired head-
ing direction is along the positive x-axis. More generally, the starting heading angle
is set greater than π to show the ability of the so-called trigonometric controller to
stabilize to the closer minimum, in this case 2π.

6.6.1 Simulation Results for the classical IDA-PBC design
In this subsection, we present the simulation results for the classical (quadratic and
trigonometric) control laws (6.24) and (6.27), respectively. The gain matrices we used
are K = C = diag{0.05, 0.05, 0.01} and Rp = diag{0.75, 0.75, 0.1}. Precisely, for this
system, we enlarged the damping (about one order of magnitude in the first and third
components), to improve the performance. In Figure 6.5 we show the trajectories
of the same classical controller (the quadratic case) with extra dissipation, setting
Rp to the values proposed before, and keeping the original damping, Rp = D. This
comparison justifies the use of the extra damping to obtain more suitable paths.

Figure 6.6 shows the trajectories of the position coordinates q1 and q2, and the
heading angle, q3, of the quadratic and the trigonometric versions. Both controllers
stabilize the ship at the desired position and angle. The notable point is the difference
in the orientation profiles. While the quadratic controller stabilizes the heading angle
at q3 = 0, the trigonometric controller does so at q3 = 2π.

Figure 6.7 compares the trajectories in the q1q2-plane for two versions of the clas-
sical IDA-PBC design. In both cases, the performance is similar but, even though the
controllers for the q1 and q2 coordinates are the same (with the same gain values),
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Figure 6.5: Simulation results: ship position trajectories in the q1, q2 plane, for the
classical IDA-PBC (quadratic controller) design with extra damping (solid line) and
the original damping coefficient (dashed line).
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Figure 6.6: Simulation results: ship position coordinates, q1 and q2, and heading
angle, q3, for the quadratic (solid line) and trigonometric (dashed line) controllers of
the classical IDA-PBC design.

the trajectories take different paths. This fact is associated with the different heading
angle trajectories.
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Figure 6.7: Simulation results: ship position trajectories in the q1q2-plane, for the
quadratic (solid line) and trigonometric (dashed line) controllers of the classical IDA-
PBC design together with the respective heading orientation.

6.6.2 Simulation Results in Presence of Disturbances
In this subsection, we present the simulation results in the presence of disturbances.
The key point is to show that the controllers from the extended IDA-PBC design ap-
proach are able to reject unknown terms. For this scenario we assume that the dis-
turbance due to the bias term, b, is not available. Consequently, the feed-forward
term, JT (q3)b, is removed in all the tested controllers. The gain matrices for the clas-
sical controllers, (6.24) and (6.27), are the same as in the previous subsection. The
corresponding gain matrices used for the controllers from extended IDA-PBC design,
(6.51) and (6.55), are Rz = diag{0.75, 0.75, 0.4}, K = C = diag{0.05, 0.05, 0.025} and
Ke = diag{0.01, 0.01, 0.015}.

In Figure 6.8, q trajectories for the four controllers are plotted. Clearly the con-
trollers from IDA-PBC design steer the ship to the desired equilibrium position while
the controllers from the classical IDA-PBC design fails to do so and have a steady
state error. This difference between the performance of both the controllers can also
be seen from the respective trajectory profiles. See Figure 6.9.
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Figure 6.8: Simulation results: ship position coordinates, q1 and q2, and heading
angle, q3, for the both the quadratic and trigonometric versions of the controllers from
the classical and extended IDA-PBC designs.
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Figure 6.9: Simulation results: ship position trajectories in the q1, q2 plane, for the
both the quadratic and trigonometric versions of the controllers from the classical and
extended IDA-PBC designs.

6.7 Conclusions

A passivity-based approach called IDA-PBC is used to obtain a set of output feedback
controllers for the dynamic positioning of a ship. This methodology is based on the
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port-Hamiltonian description which gives a physical interpretation of the dynamical
systems. Under this point of view, the controller design problem is addressed as to
shape the energy function of the closed loop system. After a general formulation we
propose two different controllers: first with a quadratic energy function and second,
inspired by the physics of a pendulum, with a trigonometric energy function. Also, the
presence of disturbances is studied and it turns out that the control laws obtained by
using the classical IDA-PBC methodology, do not stabilize the system at the desired
position. This discrepancy is the starting point for a second set of controllers which
consist of a dynamic extension of the system which provides stability at the desired
regulation point, also in presence of disturbances. Simulations are done to validate
and compare the performance of the controllers designed.

It is worth mentioning that the obtained control laws, with a general form of state
feedback, can be easily converted to output feedback algorithms that only require
the position measurement. Furthermore, they exhibit a simple structure that can be
interpreted as non-linear versions of PID controllers. An important observation is that
the trigonometric energy shaping improves the heading angle control. We also observe
that by keeping the differential term, which physically increases the damping effect,
in the controller formulation helps in getting a smoother trajectory profile.

Future work can be aimed at determining other energy functions, Ψ(q), to improve
the performance, as well as to consider the optimization of the resulting path. Further
analysis depending on the nature of the disturbance vector (including the wave fre-
quency and wind models) is required. Also, this work could be a starting point for a
new design, using the port-Hamiltonian perspective, of the complete motion-control
system (controller and observer) for a DP problem.
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Chapter 7
Conclusions and
Recommendations for Future
Work

In this chapter, we summarize the main conclusions of this work and present some
recommendations for future work based on our knowledge and experiences acquired
during the process of reaching to this point. The first major topic studied in this thesis
is the stability analysis of a special type of nonlinear system in which nonlinearity
appears only in the dynamics of a single state variable. The study is based on the
SDC framework which transforms the nonlinear system in a pseudo-linear form with
a state dependent system matrix. The stability analysis of such systems is based on
the properties of the system matrix. From the perspective of the DP system we are
interested in the asymptotic behavior of the system. The local asymptotic stability of
the system is easy to establish, the major concern always remains the analysis of the
global asymptotic stability.

From the first counterexample discussed in Section 3.4.1, we can conclude that the
conditions that the system matrix is continuous, pointwise Hurwitz, and exponentially
bounded are not sufficient to ascertain the global asymptotic stability of the pseudo-
linear system. In the prototype vessel model, the system matrix is a periodic function
of the heading angle of the vessel. The periodicity assumption also ensures that the
states of the system are bounded, i.e., they will not blow up at finite time. Further
research has proved that the extended set of conditions that the system matrix is con-
tinuous, pointwise Hurwitz, exponentially bounded, and periodic does not constitute
the set of sufficient conditions for the global asymptotic stability of the pseudo-linear
system. This fact is explained in the second counterexample presented in Section
3.5.1. This study concludes that more research is required to explore the set of suf-
ficient conditions which establish the global asymptotic stability of the pseudo-linear
systems with a system matrix depending on a single state variable.

The periodicity property of the vessel model has lured us to combine the Lyapunov
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stability theory with the LMIs to come up with a new approach to prove the global
asymptotic stability of the pseudo-linear system which has a periodic system matrix.
This approach has proved successful to establish the global asymptotic stability of the
vessel model, in particular. Further research is required to investigate the additional
features like for instance, the best solutions of the LMI feasibility problem, the impact
of the number of LMIs on the solutions of the LMI feasibility problem, conditions for
existence and non-existence of the solutions of the LMI feasibility problem, etc.

We present the SDARE technique for control design of the vessel model. The
design objective is to stabilize the vessel at the desired equilibrium point. The SDARE
technique gives a state feedback controller which means that the complete state of
the system should be known. This is not the case for the vessel model in this work
as only the noisy position and heading measurements are available through sensors
(GPS and gyro). So it is required to estimate the remaining states of the vessel model.
We have also used the SDARE technique to address the estimation problem. The
SDARE technique has many characteristic features. It addresses the performance of
the controller and the observer by specifying a performance index. The state and
the control weights can be adjusted to influence the performance. For instance, an
increase in the state weighting matrix Q results in a faster regulation of the vessel
at the expense of a greater control effort. Generally, the SDC parametrization is not
unique and this feature offers an extra degree of freedom for design and performance
improvements. While the technique offers ways to use the results from linear system
theory, it maintains the nonlinear character of the system which is not the case in
linearization methods like the extended Kalman filter (EKF) etc.

The simulation results show promising performance of the SDARE technique
when applied to address the regulation problem of a DP vessel. The controller and
the observer gains can be tuned by using the weighting matrices, to obtain the desired
performance. This study is limited to the regulation problem of the DP vessel. An ex-
tension of the SDARE technique to address the path following and trajectory tracking
problems of the DP vessel remains still an open research topic.

We present the FSI method which is a fast solution method for the specific type
of the SDARE associated with a pseudo-linear system whose system matrix depends
on a single state variable in a periodic way. This method is based on the Fourier
series and involves the concept of interpolation. The emphasis of the FSI method is
on offline computation of the Fourier series coefficients. It has been shown that it
makes the online computation of the solution of the SDARE faster by reducing the
online computations. The method is particularly useful for the systems having a small
time constant or fast dynamic response. For such systems, the actuators are required
to have a faster dynamic response than the system they are controlling. The method
was motivated by the periodicity of the pseudo-linear vessel model. The vessel system
in this work is a slow system (with a large time constant), the FSI method has shown
good results in comparison with the MATLAB routine “care” which uses the Schur
decomposition to solve the SDARE. This work is limited to just one application of the
FSI method on the vessel model. The search for more applications of the FSI method
on physical systems is still open for future research.

In this work, the use of the port-Hamiltonian system formulation to study the con-
trol design problem of the DP vessel has revealed some important and interesting
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features. The Hamiltonian (storage) function is a powerful component in this formu-
lation. We have seen that it not only simplifies the stability analysis but also offers
more options to improve the performance of the controller. This can be done by using
different formulations of the Hamiltonian function to design different controllers. The
performance of the controllers can then be analyzed to see which one suits the desired
performance objective. This fact is clear from the trigonometric and quadratic formu-
lations of the Hamiltonian function. A better heading control of the vessel is obtained
from the trigonometric controller than the quadratic controller.

The dissipation (damping) matrix in the desired dynamics in the IDA-PBC design
technique is very important from the perspective of the tuning of the controller gain
matrices. It makes it possible to manipulate the damping of the system. Through the
controller action, we can increase the damping of the system and it eventually helps
us to steer the vessel along a stable and smooth trajectory.

This study addresses only the regulation problem with passivity based approach
using the port-Hamiltonian formulation. With the encouraging results obtained, the
possible extension of this concept to address more involved problems like path fol-
lowing, trajectory tracking, and state estimation is a challenging and interesting topic
for future research.
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Appendix A
Proof of Asymptotic Stability of
(6.32) at (6.33)

The objective is to show that (6.33) is an asymptotically stable equilibrium point of
the perturbed closed loop system (6.32). For convenience of the reader, we recall both
equations mentioned above.[

q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −Rp

] [
∂qHd2

∂pHd2

]
+

[
O3

JT (q3)

]
∆, (A.1)

where

Hd2(q, p) =
1
2

qT
12C12q12 + c3(1 − cos q3) +

1
2

pT M−1 p. (A.2)

The equilibrium point of (A.1) is given by

q∗ =
[

∆1
c1

∆2
c2

arcsin
(

∆3
c3

)
− 2kπ

]T
, and p∗ = 0, k ∈ Z. (A.3)

To prove the above mentioned asymptotic stability, we proceed as follows. Let us
consider the following closed loop system.[ ˙̃q

˙̃p

]
=

[
O3 J(q3)

−JT (q3) −Rp

] [
∂q̃H̃d2

∂ p̃H̃d2

]
, (A.4)

where q̃ =

 q1 − q∗1
q2 − q∗2

q3

, p̃ = p, and

H̃d2(q̃, p̃) =
1
2

q̃T
12C12 q̃12 + c3

(
1 − cos q3 −

∆3

c3
q3

)
+

1
2

p̃T M−1 p̃. (A.5)

As a first step, we use the LaSalle’s invariance principle to prove asymptotic sta-
bility of (A.4). The energy function (A.5) is a scalar valued function and its first partial
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derivatives exist. Differentiating it w.r.t ‘t’, we get

˙̃Hd2 =
(
∂H̃d2

)T ˙̃x

=
(
∂H̃d2

)T
[

O3 J(q3)
−JT (q3) −Rp

]
∂H̃d2

= − p̃T
(
M−1

)T
RpM−1 p̃ ≤ 0, (A.6)

where x̃ =

[
q̃
p̃

]
. The set of points where ˙̃Hd2 = 0 is given by

El ={x̃ ∈ R6 : ˙̃Hd2 = 0}

={ p̃ = 0 and q̃ is free}. (A.7)

The equilibrium (invariant) points of (A.4) are

q̃∗ =
[
q̃1, q̃2, q̃3

]T
=

[
0, 0, arcsin(

∆3

c3
) − 2kπ

]T

, and p∗ = 0, k ∈ Z. (A.8)

The largest invariant subset Ml of El consists of the equilibrium points (A.8). Hence,
LaSalle’s invariance principle implies that the closed loop system (A.4) converges
locally asymptotically to either one of the equilibrium points.

As second step, we show that both the closed loop systems (A.1) and (A.4) are
equivalent. It is a straightforward observation that q̃ and q have the same dynamics.
We show the equivalence of the dynamics of p̃ and p.

˙̃p = − JT (q3)∂q̃H̃d2 − Rp∂ p̃H̃d2

= − JT (q3)∂qHd2 − Rp∂pHd2 + JT (q3)∆

= ṗ. (A.9)

Hence, (A.1) and (A.4) are equivalent. This implies that if (A.8) is an asymptotically
stable equilibrium point of (A.4) then (A.3) is an asymptotically stable equilibrium
point of (A.1).

Similarly, asymptotic stability of[
q̇
ṗ

]
=

[
O3 J(q3)

−JT (q3) −Rp

] [
∂qHd1

∂pHd1

]
+

[
O3

JT (q3)

]
∆, (A.10)

where

Hd1(q, p) =
1
2

qT Cq +
1
2

pT M−1 p. (A.11)

w.r.t. the equilibrium point (q∗, p∗) = (−K−1∆, 0) follows. The asymptotic stability in
this case will be global because the point (q∗, p∗) = (−K−1∆, 0) is global minimum of
the shifted Hamiltonian function associated with (A.11).



Appendix B
Glossary

This appendix contains definitions and additional details of some notions used in this
thesis.

BIS-Scaling

Scaling is done to normalize the vessel steering equations of motion. This helps to
study the scaled models of the vessel and then compare and analyze the performance
of the full scale vessel models. This idea is more economical both in terms of time
and money, than doing the full scale experiments in the sea. There are two main meth-
ods of scaling: the Prime-system of SNAME introduced in 1950 and the Bis-system
introduced in 1970 by Norrbin. The Prime-system uses the instantaneous velocity to
normalize the time unit. Therefore, it is not used for the DP vessels or other low speed
applications.

The Bis-system uses the length unit Lpp (length between fore and aft perpendic-

ulars), body mass density ratio µ = m
ρ∇

, and the time unit
√

Lpp

g as the basic scaling
parameters. The parameters µ, ρ, ∇, and g represent the level of buouncy, mass density
of the fluid, hull contour displacement, and acceleration due to gravity, respectively.
The scaling parameters for other variables like velocity, acceleration, etc. can be found
in terms of these basic scaling parameters.

First order wave-induced forces

First order wave-induced wave forces (loads or disturbances) are forces whose mag-
nitude is proportional to the wave height and their frequency is the same as that of the
incident waves. These forces are also called WF forces (disturbances or loads).

Gaussian white noise process

In Chapter 2, we have mentioned that the process and measurement uncertainties are
stationary Gaussian random white noise process. For the convenience of the reader,
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some details of this concept are presented here. The vector w(t) =

 w1(t)
w2(t)
w3(t)

 consists

of three uncorrelated independent Gaussian white noise processes: w1(t), w2(t), and
w3(t). This implies the mean

E(w(t)) = 0, (B.1)

and covariance

E
(
w(t)wT (s)

)
= Wδ(t − s). (B.2)

The δ in (B.2) represents the Dirac delta (or continuous time impulse response) func-
tion and is given by

δ(t − s) =

{
∞ if t = s
0 if t , s

(B.3)

Kronecker Product

Let A ∈ Rm×n and B ∈ Rp×q. Then the Kronecker (direct or tensor) product of A and B
is defined as the matrix

A ⊗ B =


a11B · · · a1mB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq. (B.4)

LaSalle’s Invariance Theorem (Principle)

An important result in stability theory which was independently formulated by N. N.
Krasovskii and E. A. Barbashin in Russian in 1959, see [11] for its translated version
in English, and by J. P. LaSalle in 1960, see [48]. It is stated as follows

“Let Ω0 ⊂ Ω be a compact set that is positively invariant with respect to (3.2). Let
V : Ω −→ R be a continuously differentiable function such that V̇(x) ≤ 0 in Ω0. Let
E be the set of all points in Ω0 where V̇(x) = 0. Let M be the largest invariant set in
E. Then every solution starting in Ω0 approaches M as t → ∞.”

Second order wave-induced forces

Second order wave-induced wave forces (loads or disturbances) are forces whose mag-
nitude is proportional to the square of the wave height. These forces are also called
LF forces (disturbances or loads).
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Summary

Dynamic positioning (DP) refers to maintaining the position and heading of a sea
vessel under specified limits by exclusively using thrusters and propellers. This

was usually achieved by using conventional techniques like anchoring and mooring,
until the late sixties. Since then more sophisticated DP systems are being used for
dynamic positioning.

A DP system consists of three main units: a power system, a DP control system,
and a thruster system. A vessel whose motion is controlled by DP system is called a
DP vessel. With the fast growing offshore industry, the demand for more accurate and
stable DP systems has increased to ensure safety of the DP operations.

The focus of this research is the control system design for DP vessels. Starting
point of the study of the DP control system design is a mathematical model of the sea
vessel. Two motion components of the vessel motion in sea are distinguished: a low
frequency (LF) motion component and a wave frequency (WF) motion component.
The LF motion is due to the slowly varying forces and moments due to the control
actions, waves, wind, and sea currents. The WF motion is caused by the first order
wave-induced wave loads. The measurement signal from the sensors (GPS and gyro)
essentially contains both motion components.

An important consideration in the control system design for many dynamic posi-
tioning problems is to compensate only the LF motion of the vessel. This is to avoid
unnecessary wear and tear of the propulsion units. As the measurement signal plays
an important role in the control design procedures, filtering of the WF component
from the measurement signal is essential so that only the LF component is transmitted
to the controller. This problem of separating the LF motion component from the WF
motion component is called wave filtering.

An important aspect of control system design is its stability. In this thesis, we
first study the local and the global aspects of the asymptotic stability of the DP vessel.
The vessel model, we consider in this thesis, is nonlinear. This nonlinearity is due
to a single state variable which represents the heading angle of the vessel. The so-
called state dependent coefficient (SDC) parametrization will transform the nonlinear
vessel model into a pseudo-linear form with the system matrix being a function of the
heading angle.

Some results on the global asymptotic stability studies of similar systems are reca-
pitulated. Then we discuss two counterexamples to analyze the sufficient conditions
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for the global asymptotic stability of the pseudo-linear system. In the first counterex-
ample, we consider a system matrix which is a function of a single state component.
We show that it is continuous, Hurwitz, and exponentially bounded. We further show
that these conditions are not sufficient to establish global asymptotic stability of the
corresponding pseudo-linear system. In the second counterexample, in addition to
the above mentioned set of conditions for the system matrix, we also assume that
the system matrix is periodic in the single state component. We show that this still
does not lead to the set of sufficient conditions for global asymptotic stability of the
pseudo-linear system.

For the case of a periodic dependence of the system matrix on a single state com-
ponent, we propose a technique to prove the global asymptotic stability of the pseudo-
linear system. This technique is a combination of the linear matrix inequalities (LMIs)
and the Lyapunov stability theory. We use this technique to prove the global asymp-
totic stability of the nominal (all the external disturbances are known or there are no
disturbances) vessel model with a naive state feedback controller in Chapter 3 and
with the Riccati equation based controller in Chapter 4.

In this thesis, the so-called state dependent algebraic Riccati equation (SDARE)
technique is used to address the regulation problem of the DP vessel. We start with a
nominal case when there is no WF motion involved and measurements are noise free.
The SDARE control design is used to regulate the vessel to the desired equilibrium
position. We then proceed with the so-called nonnominal case in which the distur-
bance vector is unknown and the measurements also contain noise. The disturbance
vector is modeled as a first order Markov process. Therefore, the disturbance vector
can be concatenated with the state of the vessel model.

The SDARE control design is a state feedback method. Therefore, knowledge
of the entire state of the system is required. The output equation in the model of
the DP vessel indicates that only the noisy position and heading measurements are
available for feedback. Therefore, an observer is required to estimate the complete
state of the system. The pseudo-linear SDARE observer is used to get these state
estimates. We conclude the SDARE control design concept by taking into account the
WF component in the measurement model. In this case, the noisy measurements are
contaminated with the WF component as well, which requires wave filtering. We use
the SDARE technique to address the estimation and filtering problems. Simulation
experiments performed by using the data of a supply vessel have shown good results
as far as the performance of the SDARE controller and observer is concerned.

We present the Fourier series interpolation (FSI) method which reduces the com-
putation time of the algebraic Riccati equation. The effectiveness of the FSI method
is shown in the SDARE approach for the DP control system design. This is especially
useful in situations where the solution of the SDARE is required online. The fast
computation of the SDARE may be required in the cases when this technique is used
with systems whose dynamic response is fast/high. The idea of the method discussed
in this thesis is limited to the special case of the SDARE whose coefficient matrices
depend on a single state component in a periodic way. The underlying idea behind the
reduction in computation time of the solution of the SDARE is the offline computation
of the Fourier coefficients which effectively reduces the online computations.

The regulation problem of the DP vessel is also addressed by using the port-
Hamiltonian formulation. In this context, we study only the control design problem.
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The estimation and wave filtering are assumed to be addressed separately and we
move on from this point to address the control design problem. The interconnection
damping assignment passivity based control (IDA-PBC) design technique is used to
introduce two control laws: the classical IDA-PBC design and the extended IDA-PBC
design. The former controller provides the desired performance in the nominal case
but it fails to stabilize the system at the desired location in presence of unknown ex-
ternal disturbances. To address this bottleneck in the design, the extended IDA-PBC
design is introduced to yield the desired performance.

There are two notable features in the port-Hamiltonian based study of the DP
problem. The first one is that there is an additional degree of freedom in the form of the
Hamiltonian (also sometimes referred to as the energy of the system) function which
helps in improving the performance and analysis of the controller. The second feature
of the port-Hamiltonian formulation is that it offers the freedom to add additional
damping through the controller action which helps in improving the performance of
the controller and it simplifies the tuning of the gains.

To explain the effects of the Hamiltonian formulation on the performance of the
controller, we consider two different formulations of the Hamiltonian function: a
quadratic and a trigonometric. Simulation results have revealed that each formulation
gives a different heading angle profile of the vessel in cases when the initial heading
angle is above π radians. The profile corresponding to the trigonometric formula-
tion gives the optimal heading angle profile. The effect of additional damping is also
explained by a simulation result.

In conclusion, the search for the sufficient conditions for global asymptotic sta-
bility of the pseudo-linear systems with state dependency of the system matrix on a
single state component, is still open for further research. The DP problem has a wide
range of issues associated with it. This study is mainly focussed on the regulation of
the DP vessel to a desired equilibrium point. The ideas and techniques introduced in
this dissertation can be employed also to study various other DP problems like path
following, trajectory tracking, etc. The study of the port-Hamiltonian framework for
filtering and estimation problems of the DP vessel also remains an interesting and
challenging research problem.
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Samenvatting

Dynamisch positioneren (DP) is een term uit de scheepvaart die betrekking heeft
op het regelen van de positie en behouden van de koers van een vaartuig, binnen

voorgeschreven grenzen en uitsluitend door middel van boegschroeven en propellers.
Tot in de tweede helft van de zestiger jaren werd dit voornamelijk gedaan door conven-
tionele technieken, zoals verankering en meertrossen. Sindsdien is men gaandeweg
overgegaan op complexere DP systemen.

Een DP systeem omvat drie hoofdbestanddelen: een stroomvoorzieningssysteem,
een DP regelsysteem, en een boegschroef systeem. Een DP vaartuig is een vaartuig
wiens sturing wordt geregeld door een DP systeem. Dankzij de snelle groei van de
offshore industrie, stijgt de vraag naar nauwkeurigere en stabielere DP systemen die
de veiligheid van DP operaties waarborgen.

In dit onderzoek ligt de nadruk op het regelsysteem voor DP vaartuigen. Hier-
toe moet allereerst een mathematisch model van het vaartuig worden gemaakt. De
beweging van een vaartuig op zee kan worden opgesplitst in twee componenten: een
lage golffrequentie (LF) component en een hogere golffrequentie (GF) component. De
LF component wordt veroorzaakt door de traag veranderende krachten en momenten
door de regeling, en door golven, wind, en zeestromingen. De WF component wordt
veroorzaakt door de impact van eerste orde golven. Deze twee componenten kunnen
worden reconstrueerd uit het meetsignaal van de bewegingssensoren (GPS en gyro).

Een belangrijk aspect van het ontwerp van een DP regel systeem is dat men bij
voorkeur alleen wil anticiperen op de LF component van de beweging. Dit voorkomt
onnodig gebruik (en dus slijtage) van de propellers. Daarom is het van belang om zo
nauwkeurig mogelijk de WF component uit het meetsignaal te filteren. Dit probleem
wordt wave filtering genoemd.

Stabiliteit is een belangrijk aspect van een regelsysteem. In dit proefschrift beschouw-
en we zowel lokale als de globale asymptotische stabiliteit van een DP vaartuig.
Het mathematische model voor een vaartuig is niet-linear. Het niet-linear zijn wordt
veroorzaakt door één toestandsvariabele die de koershoek van het vaartuig beschrijft.
Door middel van een zogenaamde toestands-afhankelijke coëfficienten parameteriza-
tie (SDC parametrization) kan het niet-lineare stelsel worden omgeschreven in een
psuedo-lineair stelsel, waarvan de systeem matrix een functie is van de koershoek.

Enkele resultaten betreffende globale asymptotische stabiliteit worden in dit proef-
schrift kort samengevat. Vervolgens bespreken we een tweetal tegenvoorbeelden die
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informatie verschaffen over voldoende voorwaarden voor globale asymptotische sta-
biliteit van het pseudo-lineaire systeem. Het eerste tegenvoorbeeld betreft een sys-
teemmatrix die afhangt van één toestandsvariabele. We laten zien dat deze systeem-
matrix continu, Hurwitz, en exponentieel begrensd is. Echter, dit blijkt niet voldoende
voor globale stabiliteit van een desbetreffende pseudo-lineair systeem. Ons tweede
tegenvoorbeeld toont aan dat, als naast de bovengenoemde eigenschappen van de sys-
teemmatrix ook nog wordt aangenomen dat deze periodiek is, dit nog steeds niet hoeft
te leiden globale asymptotische stabiliteit.

Voor het geval dat de systeemmatrix periodiek afhangt van één variabele, wordt
een aanpak geponeerd die geschikt zou kunnen zijn om de globale asymptotische sta-
biliteit van het systeem aan te tonen. Deze aanpak is gebaseerd op een combinatie van
lineaire matrix ongelijkheden (LMIs) en de Lyapunov stabiliteits theorie. Wij passen
deze aanpak toe om de globale asymptotische stabiliteit aan te tonen van een nomi-
naal vaartuigmodel met twee verschillende regelingen: In hoofdstuk 3 beschouwen we
een naive state feedback regelsysteem, en in hoofdstuk 5 een regelsysteem gebaseerd
op de Riccatti vergelijking. Een nominaal vaartuigmodel is een model waarbij alle
eventuele externe verstoringen bekend worden verondersteld.

In dit proefschrift wordt de regeling van het DP vaartuig gerealiseerd met behulp
van de zogenaamde toestandsafhankelijke algebraı̈sche Riccatti vergelijking (SDARE).
We beginnen met het eenvoudige geval dat er geen sprake is van een WF beweg-
ingscomponent en het meetsignaal geen ruis bevat. We gebruiken het SDARE regel-
systeem dat een vaartuig in de gewenste evenwichts positie brengt. We vervolgen
ons onderzoek door het geval te beschouwen dat de verstoringsvector onbekend is en
het meetsignaal ruis bevat. De verstoringsvector wordt gemodelleerd door een eerste-
orde Markov process. Het gevolg daarvan is dat de verstoringsvector ingebracht kan
worden in de toestand van het vaartuig.

Het SDARE regelsysteem is een feedback systeem. Daarom is het nodig beschikk-
ing te hebben over de toestand (positie, richting) van het systeem. Echter, de vergeli-
jking met behulp waarvan de positie en richting van een DP vaartuig kan worden
bepaald, bevat ruis. Daarom moet een waarnemer worden ontworpen die de daadw-
erkelijke toestand en richting schat. De pseudo-lineaire SDARE observer is gebruikt
om deze schattingen te maken. Als laatste toevoeging aan het ontwerp van het SDARE
regelsysteem wordt het effect van de WF bewegingscomponent meegenomen. In dit
geval moet uit de meetsignalen met ruis ook nog de WF component worden gefilterd.
We gebruiken de SDARE teckniek om de ruis en de WF component weg te filteren.
Simulaties op basis van de data van een bestaand vaartuig laten zien dat de SDARE
regelaar en waarnemer goed presteren.

We presenteren de Fourier reeks interpolatie (FSI) methode, die de rekentijd voor
het oplossen van de algebraische Riccati vergelijking verkort. Deze methode blijkt
effectief voor de SDARE aanpak van het ontwerp van een DP regelsysteem. In het bi-
jzonder is de aanpak nuttig als de oplossing van SDARE online nodig is. De snelheid
van SDARE kan nodig zijn in systemen waarvan de dynamische response hoog/snel is.
In dit proefschrift bestuderen we deze aanpak slechts voor SDARE waarvan de coëffi-
cient matrices afhangen van één toestandscomponent, en wel op een periodieke wijze.
Het achterliggende idee van de reductie in rekentijd van de oplossing van SDARE is
dat de Fourier coëfficienten offline bepaald worden, hetgeen de rekentijd van de online
berekeningen effectief reduceert.
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Naast SDARE beschouwen wij ook de port-Hamiltoniaanse formulering voor het
regelsysteem van een DP voertuig. In deze context beschouwen we alleen het ontwerp
van de regelaar. Wij presenteren dus geen aanpak voor het filteren van de ruis en de
WF component. Voor de regelaar gaan wij uit van de interconnection damping as-
signment passivity based control (IDA-PBC). Hierbij maken we verschil tussen het
klassieke IDA-PBC ontwerp en het uitgebreide IDA-PBC ontwerp. Het klassieke on-
twerp leidt tot een goed gedrag bij het nominale geval. Echter, indien er onbekende
externe verstoringen zijn, is het systeem met een klassieke IDA-PBC niet stabiel. De
uitgebreide IDA-PBC heeft dit probleem niet.

De port-Hamiltoniaanse aanpak van het DP probleem heeft twee aantrekkelijke
eigenschappen. Ten eerste is er een extra vrijheidsgraad in de vorm van de Hamiltoni-
aan (ook wel de energie van het systeem genoemd). De tweede aantrekkelijke eigen-
schap van de port-Hamiltoniaanse aanpak is dat het de mogelijkheid biedt een extra
demping aan de acties van de regelaar toe te voegen. Beide eigenschappen verbeteren
de prestaties van de regelaar, en de tweede eigenschap vereenvoudigt het afstellen.

Wat betreft de keuze van de Hamiltoniaan beschouwen wij twee verschillende for-
muleringen: een kwadratische en een trigonometrische Hamiltoniaan. Uit simulaties
is gebleken dat de twee methoden ieder een ander koersprofiel geven van het vaartuig
als de initiële koers meer dan π radialen is. Het profiel horende bij de trigonometrische
formulatie geeft het optimale profiel. Het effect van extra demping wordt geanalyseerd
met behulp van een simulatie.

Kort samengevat is de zoektocht nog open betreffende een algemene voldoende
voorwaarde voor globale asymptotische stabiliteit van een pseudo-linear systeem waar-
van de systeemmatrix middels een enkele parameter van de toestand afhangt. Het on-
twikkelen van een DP systeem brengt veel uitdagingen met zich mee. Dit proefschrift
beschouwt in eerste instantie of een regelsysteem van een DP voertuig het vaartuig in
een gewenst evenwicht kan brengen. De ideeën en technieken die in dit proefschrift
zijn ontwikkeld kunnen ook worden gebruikt om andere DP gerelateerde problemen
te bestuderen, zoals het volgen en bijhouden van de koers. Een ander interessant en
uitdagend onderzoeksprobleem blijft het ontwikkelen van een filter voor ruis en voor
de WF component in het port-Hamiltoniaanse framework.



130



Acknowledgments

Iam immensely elated to write the acknowledgments for my thesis. It is the culmina-
tion of my PhD research and an end to my formal student life. It all started almost

30 years ago from a far-flung, two-room primary school in my native village Dhurnal.
Starting from a school which still doesn’t have electricity, I had never thought that
one day I would end my student life by completing a PhD from a university like TU
Delft. This long journey was not a stroll. There were many ups and downs. Therefore,
first of all, I express my utmost gratitude to Almighty Allah who helped me to remain
steadfast and made it possible for me to complete a PhD from one of the world’s best
technical universities, after such a humble start.

I especially thank my supervisor Jacob and promoters Geert Jan (my promoter for
first two years of my PhD) and Arnold (my promoter till the end of my PhD). I wish to
extend my profound thanks to Jacob and Geert Jan for providing me the opportunity
to join TU Delft as a PhD student in the mathematical system theory group. I thank
Arnold, Geert Jan, and Jacob for their persistent confidence and trust in me. They
always motivated and encouraged me in times of doldrums and stagnation during my
PhD research. They provided me with many opportunities to improve my scientific
and professional skills by sending me to many scientific events during my tenure as
a PhD student. I thank Arnold and Jacob for several reviews of my thesis draft and
giving useful feedback which helped me to improve its contents and presentation.

My primary interaction was with Jacob. He has been very supportive, candid,
helpful and patient throughout my stay in Delft. We had numerous productive and
useful discussions. I learnt a lot of professionalism from him, of which this thesis is
just a subset. He provided me annual breaks to visit my family which really helped
me and my family. Thank you Jacob for all these favors and your help.

This part of acknowledgment is not complete without mentioning the warm hos-
pitality and honor that Geert Jan, Elke, Jacob and Yvon have given to my wife and
children when they came to the Netherlands. Especially, I admire the amiable and
friendly nature of Elke and Yvon: amazingly my kids became their intimate friends in
one meeting.

I would like to express my gratitude to Dori, Evelyn, Dorothee, and Cindy for their
kind support in various office matters and related documentation at the department
during my PhD tenure. Most of my contact was with Dori. She is a wonderful person.
Her interaction with colleagues is very passionate, like a mother I would say. She

131



132 Acknowledgments

made me feel at home! Many thanks to Dori and Dorothee for arranging wonderful
days out with DIAM.

Special thanks to Carl and Kees for their support in Windows- and Linux- related
issues. They were always around when I needed them. They were always kind to
answer my silliest questions! Thank you for making my computers function smoothly.

I would like to appreciate the assistance provided by Nuffic and CICAT. I would
like to thank Mrs. Minkman (and her colleagues) for the smooth dispersal of the
monthly stipend which made my stay in the Netherlands free from any financial is-
sues. Franca Post from CICAT deserves special thanks from me, my wife, and my
children for her contribution in our family reunion in Delft. Those were the best days
during my stay in the Netherlands and Franca deserves the credit for providing us with
those joyous moments. Besides this extraordinary occasion, she helped a lot in various
office matters and related documentation. Thank you Franca!

I shared an office with many people. I thank Kateřina, Diana, Adolfo, Arnau,
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