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SUMMARY

This thesis contributes to the effective and efficient application of unsteady adjoint meth-
ods to Adaptive Mesh Refinement (AMR) for Large Eddy Simulation (LES). Three aspects,
i.e. subgrid-scale model error, storage cost of high-dimensional data, and stability of the
adjoint problem for turbulent flows, were studied to make adjoint-based mesh adapta-
tion feasible for time-dependent high-fidelity simulations.

The effectiveness of adjoint-based error estimation is initially demonstrated using
linear advection-diffusion problems. An adjoint-based AMR strategy is further devel-
oped and analysed for unsteady 1D Burgers problems with a multi-frequency forcing
term. Then we introduce a Reduced-Order Representation (ROR), which uses the Proper
Orthogonal Decomposition (POD) to replace full-order primal solutions when solving
the adjoint problem backward in time. Numerical results demonstrate the effectiveness
of using RORs for adjoint-based AMR.

An enhanced online algorithm for POD analysis is proposed to deal with high-dimen-
sional LES data, resulting from the nonlinearity and unsteadiness that require us to store
a time history of primal states for solving the adjoint problem. The enhanced algorithm
is based on the incremental Singular Value Decomposition, but exploits the decompo-
sition of full-order solutions into reconstructed and truncated solutions. Two lower-
bound estimators are proposed to equip the enhanced algorithm with a posteriori error
analyses. Numerical experiments demonstrate that the algorithm can significantly im-
prove the efficiency of online POD analysis while computational accuracy is maintained
with an appropriate number for the truncation of POD modes. Furthermore, the en-
hanced algorithm scales well in parallel and the improvement of computing efficiency is
independent of the number of processors.

The unsteady adjoint problem is investigated for 2D and 3D cylinder flows. Using
RORs significantly reduces the memory requirement for storing primal flow solutions for
both 2D and 3D cylinder flow. Dynamic features of the adjoint field are well presented
with using RORs, although there are differences in regions around and upstream of the
cylinder using a small number of POD modes. Error distributions can be well predicted
with POD-based RORs, especially in regions with large errors. The exponential growth
of adjoint solutions in the 3D turbulent flow is found to be attenuated when using RORs
for solving the adjoint problem.
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
Computational Fluid Dynamics (CFD) supplies an effective pathway to quantify the ef-
fect of turbulence for practical problems [1], such as enhancing the performance of
transportation capability and lowering the noise level of aircraft [2]. Aerodynamic anal-
yses in the aviation industry usually involve high Reynolds number (high-Re) turbulent
flows that contain a vast range of time and length scales. Direct Numerical Simula-
tion (DNS) is a method to directly solve the Navier–Stokes equations on a high-resolution
mesh so that the whole range of scales is well resolved and thus the physics of turbulence
is accurately captured. However, the computational cost of DNS for three-dimensional
problems is too high for practical applications because of the significant increases in
computing cost with increasing Re. Different numerical methods are needed to effi-
ciently evaluate flow quantities, model turbulent flows, and capture complex physical
phenomena.

The Reynolds-averaged Navier–Stokes (RANS) method is widely used [3] due to its
efficiency and effectiveness. The RANS equations describe time-averaged flow charac-
teristics using the Reynolds decomposition, in which Reynolds stress terms are modelled
by a turbulence model that makes use of ensemble-averaged quantities. However, RANS
methods are particularly unreliable for flows that are highly unsteady or involve mix-
ing layers and large pressure gradients, such as the flow over airfoils at high angles of
attack [4], supersonic engine inlets [5], flow separation or reattachment.

An alternative, known as Large Eddy Simulation (LES) [6], is to resolve the large and
dynamically most important scales of the flow while representing only the effects of
smaller and less significant scales using a model. LES has shown to be highly success-
ful in situations where the computational mesh is fine enough to resolve an appropriate
range of large scales. However, there are some prerequisites necessary to make the com-
putation of LES affordable and precise for practical problems.

Firstly, for high-Re turbulent wall-bounded flows, LES needs very high grid resolu-
tions, which is almost as high as that required for DNS within the inner part of bound-
ary layers. Reducing the computing cost as much as possible without sacrificing accu-
racy is important for the application of LES. For this purpose, users need to generate a
high-quality computing mesh, where the mesh size should be small enough to capture
relevant flow structures in different physical regions but computationally feasible. How-
ever, the quality of manually-generated meshes strongly depends on the users’ experi-
ence. Although highly experienced CFD engineers are possibly able to generate suitable
meshes that ensure the required prediction accuracy at a tractable computational cost,
the complexity and multiscale property of turbulent flow problems make it difficult for
us to have a priori knowledge on where and how the grid needs to be refined [7]. Of-
ten many trial-and-error attempts are required to understand where to refine the grid,
which impedes the employment of LES for practical designs. If the flow is heterogeneous
and difficult to anticipate, standard meshes can provide inappropriate local levels of re-
finement [8, 9] and thus lead to either poor solutions or reduced efficiency. Engineer-
ing problems also involve complex geometries, making the generation of a high-quality
mesh more demanding. While state-of-the-art computing power enables well-resolved
highly-accurate LES for a wide range of practical engineering problems [1, 2], the diffi-
culties mentioned often hamper application of LES to design optimization and critical
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design decisions.

Adaptive mesh refinement (AMR) or mesh adaptation is the most effective approach
to interaction-free high-accuracy simulations. AMR can provide numerical simulations
with a high-quality mesh while keeping the computing cost tractable. Through generat-
ing the mesh with suitable levels of refinement, the calculation accuracy is improved au-
tomatically and the manual effort is avoided, leading to autonomous and reliable simu-
lations [1]. However, the application of AMR in an LES framework is not straightforward.
Classical a priori estimates based on truncation error are inappropriate for LES since a
significant part of the solution must remain unresolved for efficient LES and this classi-
cal AMR method would lead to DNS-like meshes. Viable a priori estimates [10, 11] use
physical models or multi-level approaches to detect regions where the unresolved scale
model provides poor predictions. However, the final grids based on these a priori esti-
mates are usually sub-optimal regarding computational cost because a priori methods
treat all local flow features equally without accounting for their different contributions
to a Quantity of Interest (QoI), such as lift and drag of an aircraft wing. This limitation
can be overcome using adjoint-based error estimates, which use adjoint solutions of the
Navier–Stokes (NS) equations to estimate the local contribution to the error of a QoI.
This approach has been applied successfully to sensitivity analysis on shape optimiza-
tion in steady flow problems [12, 13], the computation of turbulent flows [14], and mesh
adaptation in steady and unsteady flows [15, 16].

The adjoint problem in unsteady NS fluid flows contains a time derivative term and
needs to be marched backward in time whereas the primal flow problem advances for-
ward in time, a salient difference from the steady case. Due to the nonlinearity of NS
equations, the adjoint problem, a linear system, depends on primal flow states at each
time step. Therefore, solving the unsteady adjoint problem requires access to all flow
states over the time period necessary to reliably calculate statistics of a QoI, such as the
mean drag and lift. This storage requirement is intractable for LES, particularly in practi-
cal problems, as we have not only a high number of degrees-of-freedom (DoF) for spatial
fine-scale resolutions but we also need a small time step to resolve turbulence fine-scale
dynamics and a long time period for the accurate estimate of statistics. This leads to in-
tractable storage requirements for primal flow solution data. Developing techniques to
overcome these difficulties is crucial for improving the efficiency of solving the adjoint
problem and estimating the error of a QoI’s approximation. The associated challenges
and ways to handle them are discussed in Section 1.3 after the fundamentals and devel-
opment of adjoint-based mesh adaptation are reviewed in Section 1.2.

1.2. FUNDAMENTALS OF ADJOINT-BASED MESH ADAPTATION

1.2.1. GENERAL MESH ADAPTATION STRATEGIES

Systematic mesh adaptation requires (I) error estimates that determine where to refine
the mesh and (II) mesh adaptation strategies that define how to change the mesh. In
the early development of AMR, feature-based methods were applied to provide error es-
timates that can effectively reduce the discretization error [17, 18]. For instance, Roy
[19] examined four types of approaches, i.e., solution gradients, solution curvature, dis-
cretization error and truncation error, and found that the adaptation based on trun-
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cation errors provided superior results in his study. Other physical-based criteria or
heuristic indicators, such as wall distance, vorticity, shock sensors, small-scale kinetic
energy [20], and sub-scale error estimators [21], have been applied to drive mesh adap-
tation. While the sub-domains to be enriched can be recognized, the expert-user knowl-
edge is required to determine which kind of features should be considered for driving
the AMR, which indeed limits their efficient utilization. Feature-based error estimates
are less efficient for identifying the regions necessary for the accurate computation of
a specific QoI. Feature-based adaptive schemes can fail to self-terminate or can pro-
duce erroneous values for the predicted QoI at termination [22]. For instance, one study
reported that for the ONERA M6 wing at M a = 0.84 with the angle of attack of 3 deg,
feature-based adaptation does not focus adaptation near the trailing edge where the grid
has a great influence on the drag and lift prediction [23].

Mesh adaptation is categorized into r-adaptation, p-adaptation, and h-adaptation.
r-adaptation [24] is a mesh movement method where the positions of mesh points are
changed while maintaining the number of mesh cells. In an AMR content, this can in-
duce chaotic behaviours [25]. Alternatively, the approximation order of the numerical
scheme can be changed locally via p-adaptation. Finally, the number of mesh cells can
be altered, known as h-adaptation (mesh refinement). Isotropic or anisotropic mesh
adaptation can be considered for p-adaptation and h-adaptation. Oliver [26] reported
that h-adaptation allows the easy generation of anisotropic meshes, especially for bound-
ary layer elements in high-Re flows, while p-adaptation is known to be more efficient for
sufficiently regular solutions.

The main objective of mesh adaptation is to keep a good balance between com-
puting cost and solution accuracy. The parameter designed for determining where the
mesh should be enriched is the error indicator, ηn , which is also referred to as adapta-
tion intensity [23] or error intensity [27]. The error indicator is often defined based on
the error estimate εn of each cell using its absolute value, viz. ηn = |εn |. The cells to
be refined are chosen, for example, by using a fixed fraction of the largest error indi-
cators. Such fractions must be chosen to prevent an excessive number of iterations or
over-refinement [9]. The most common refinement strategies are given below.

1. Refinement of a prescribed percentage of the mesh (5% [28, 29], 10% [14, 30, 31])
with the largest error indicators.

2. Refinement based on a local parameter defined as ηn > λ etot
N , with λ= 1 [22, 32],

a decreasing λ starting at λ> 1 [33], or a scaled λ defined as etot∑N
i=1 ηi

[23].

3. Refinement based on a normalized error indicator [27], i.e. ηn > ηl i m =μ+crel∗σ,
where μ and σ denote the mean value and standard derivation of ηn and crel is a
relaxation factor usually larger than 0.5.

1.2.2. ADJOINT-BASED MESH ADAPTATION STRATEGIES

According to the U.S. National Research Council [34], the best practice in verification
and validation is to identify simulation outputs (i.e. QoIs) and then assess the accuracy of
these outputs. Output-driven mesh adaptation based on the adjoint method follows this
strategy by solving a second set of equations for a dual solution that represents the sen-
sitivity of the QoIs. It is also referred to as goal-oriented [35] or adjoint-weighted residual
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method [15]. The adjoint problem itself is also referred to as the dual problem [36] while
the original flow problem is referred to as the primal problem.

There are continuous and discrete adjoint methods. Continuous adjoint methods
are firstly derived based on the continuous primal equation and then discretized after-
wards. In contrast, discrete adjoint methods are formulated from the discretized primal
problem. Duraisamy et al. [37] compared the application of discrete and continuous ad-
joint methods for error estimation and mesh adaptation for supersonic inviscid flows
with strong shocks. For their test cases and discretization schemes, they found that the
discrete adjoint methods are capable of estimating the relative error between the fine
and coarse meshes more accurately whereas continuous adjoint methods appear to be
marginally better at estimating the true error in the limit of well-converged flow and ad-
joint solutions.

The adjoint variables act as a "bridge" between the gradient (or perturbation) of the
QoI and the derivative (or perturbation) of the flow equations, both in steady [36, 38] and
unsteady problems [39]. The adjoint connects local error sources to the QoI. Thus the
mesh regions that have a large influence on the calculation of the QoI can be determined
based on the flow residual and associated adjoint solutions.

Adjoint-based error estimation has been widely studied for mesh adaptation in dif-
ferent frameworks, including finite-element methods (FEM) [15], finite-volume meth-
ods (FVM) [23, 35, 40] and discontinuous Galerkin (DG) methods [41]. There are several
review papers on adjoint-based mesh adaptation for steady linear and nonlinear flows
[9, 15, 42, 43]. These consider both discrete and continuous formulations as well as mesh
adaptation strategies for laminar and turbulent aerodynamic applications.

The general procedure [14, 44, 45] for adjoint-based mesh adaptation is summarized
in Algorithm 1. The user-specified total tolerance (etot) controls the terminating condi-
tion of the mesh adaptation, although other criteria, such as relative tolerance and the
number of adaptations, can also be used. ηk

n is the adjoint-based error indicator and
denotes the local error contribution of the n-th cell in a k-th adaptive mesh, which is
used to determine the regions that will be refined [19, 22, 32, 46–49]. The error indica-
tor relies on the error estimation from adjoint solutions. Adjoint-based error estimation

Algorithm 1 A general procedure for mesh adaptation

1. Given a prescribed total error tolerance (etot), start from an initial coarse mesh T k
h ,

with k = 0.
2. Compute the discrete flow solution uH ∈VH , on the current mesh T k

H .
3. Compute the approximation of the adjoint solution vH ∈VH on the same mesh.
4. Interpolate the flow and adjoint solutions onto a fine space.
5. Evaluate the error indicator ηk

n based on the solutions in a fine space, where n
denotes the index of mesh cells. If

∑
n |ηk

n | < etot, then terminate mesh adaptation.
6. Flag the mesh cells in T k

H with a selected criterion, such as a fixed fraction of ele-
ments/cells with large error indicators.

7. Enrich the flagged cells to generate a new mesh T k+1
H and go to step 2.
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requires adjoint solutions on a fine space, of which the computation is expensive. Vari-
ous techniques have been used to deal with this issue so as to make the error estimation
computable as follows.

1. Reconstructing high-order solutions based on coarse solutions

• using an embedded finer mesh [23],
• using quadratic [33, 50] or cubic [51] polynomials,
• using least-squares operator penalizing first derivative differences [22] or patch

recovery post-processing [45].

2. Solving the adjoint problem on a chosen richer space

• by increasing the approximation order [46, 52],
• by using several fine-mesh iterations with the projection of coarse mesh so-

lution as an initial value [26].

3. Evaluating the error of the adjoint solution using its derivatives [53, 54].

Reconstruction is an efficient way to estimate the error, although this method does not
incorporate the physics of the problem. Error evaluation using derivatives [53, 54] gives
an upper bound for error estimation and this leads to overestimating the error. The com-
putation of the adjoint approximation in a finer space is accurate but expensive for three-
dimensional problems [45].

1.2.3. ADJOINT-BASED MESH ADAPTATION FOR STEADY FLOWS
Mesh adaptation based on adjoint methods is a mature technique for steady-state simu-
lations (including RANS). Pierce and Giles [43, 51] systematically presented the construc-
tion of adjoint methods for linear and nonlinear problems, and applied them to error
analyses of steady 1D/2D Poisson and quasi-1D Euler solutions. Such error estimations
have been deployed to facilitate mesh adaptation in subsonic and transonic airfoil flow
by Hartmann et al. [46] and Müller et al. [55], who found that mesh adaptation based on
adjoint sensors is superior to that based on featured-based sensors. Venditti et al. [40]
explored a similar adjoint-based adaptive mesh for 2D inviscid compressible flows [22,
56] after the development and verification of the approach on quasi-1D flows [40, 57].
The advantages of adjoint-based AMR relative to gradient-based adaption are demon-
strated by their studies. Park [23] employed the adjoint method to drive unstructured
mesh adaptation in three-dimensional applications, extending work by Venditti et al.
[22] to 3D wing-body and high-lift configurations.

Nemec et al. [33] applied the adjoint-based technique to cut-cell FVM on Cartesian
grids with applications to 3D inviscid compressible flows with sonic booms and around
launch-vehicle configurations. Dwight [35, 58] related the added dissipation used in
FVM to the accuracy of the function error via an adjoint method and applied this method
to inviscid flows past a 2D NACA0012 airfoil and a 3D ONERA M6 wing. Other application
examples are adjoint-based error indicators and mesh adaption for RANS simulations of
a four-element airfoil [27] or a turbine distributor [59]. In these applications, comput-
ing cost was reduced drastically using the adjoint-based mesh adaptation comparing
uniform mesh refinement. Shi et al. [30] verified the effectiveness of an adjoint-based
adaptation approach using a high-order correction via reconstruction formulation.
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In the FEM framework, adjoint-based error estimation and mesh adaptation have
been studied for different problems. Becker et al. [15] summarized the development
of a posteriori error analyses of elliptic, parabolic and hyperbolic problems, and then
applied adjoint-based error estimation for practical applications. Becker et al. [16] an-
alyzed adjoint-based mesh adaptation on a 2D incompressible circular cylinder flow.
Through their work, the adjoint-based method was shown to provide a basis for the con-
struction of economical meshes with considerable computing accuracy. Hartmann et al.
[46] developed adjoint-based error estimation for a DG method and applied it to define
a suitable mesh for the computation of the desired output quantities. They validated
the procedure on transonic nozzle flows, as well as subsonic/supersonic airfoil flows.
Kouhi et al. [32] utilized adjoint-based mesh adaptation with a finite calculus scheme
for a Galerkin FEM, which added streamlined and transverse stabilization terms to the
discretization. They demonstrated the capability of this adaptive approach in subsonic,
transonic and supersonic regimes. Output-based mesh adaptation was demonstrated in
high-order DG framework by Ceze et al. both for 2D [41] and 3D [60] turbulent flows.

In fluid flow problems, it is quite common to encounter anisotropic physical phe-
nomena such as boundary layers, shock waves, and wakes, for which uniform mesh en-
richment is not optimal. Some research works [47, 61, 62] consider these properties and
use anisotropic mesh adaptation to efficiently obtain the solution. Alauzet et al. [48] re-
viewed the development and progress of anisotropic mesh adaptation based on adjoint
variables in inviscid flows, relying on anisotropic ratios and quotients from the optimal
goal-oriented metric. This is also an active field in mesh adaptation research.

1.2.4. ADJOINT-BASED MESH ADAPTATION FOR UNSTEADY FLOWS

The application of adjoint-based mesh adaptation to unsteady problems remains an
active research field, although the basic approach has demonstrated its effectiveness
for both incompressible and compressible turbulence flows as listed in Table 1.1. Lin-
ear time-dependent model problems including heat and acoustic wave equations were
studied by Becker et al. [15] with DG framework. Barth [44] extended adjoint-based mesh
adaptation with the DG method to 2D compressible NS flows. Hoffman et al. [54] com-
bined stabilized Galerkin FEM with the adjoint method to adjust the mesh in incom-
pressible flow problems. They extended this method to high-Re turbulent flows by us-
ing a wall shear stress model [14, 28] as well as to inviscid compressible flows with least
squares stabilization [31] and residual-based artificial viscosity [29]. In the first method,
the stabilization functions as a subgrid model in LES. The temporal and spatial adap-
tations were separately studied and controlled by the local error indicators in turbulent
flows by Fidkowski [63] and Besier et al. [64]. Adjoint-based unsteady wake problems
were studied by Krakos et al. [65] for application to anisotropic mesh adaptation in the
DG method. However, the unsteady adjoint methods have received less attention than
their steady counterparts because of their associated difficulties.

1.3. CHALLENGES IN ADJOINT-BASED AMR FOR LES
The application of adjoint-based mesh adaptation for LES presents new challenges. The
unsteadiness and nonlinearity, as mentioned above, produce high-dimensional data in
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Table 1.1: A summary of adjoint-based mesh adaptation in unsteady flow problems

Flow types Incompressible Compressible

Inviscid

1. High-Re wing-body flow [14]
2. Standard 3D high-lift Model [28]
3. 2D wedge/cylinder [31] & 3D

sphere supersonic flow [29]

Viscous

1. Bluff body [53, 54]
2. Couette flow [49]
3. Laminar cylinder flow [64]
4. Sphere flow [66]

1. 2D scalar advection-diffusion [63]-
reaction [67] problem

2. 2D cylinder subsonic flow [44]
3. Subsonic [63, 65] & transonic [67]

airfoil gust encounter
4. Pitching and plunging airfoil [63]
5. Impulsively-started airfoil [65, 67]

unsteady flow problems, which requires a good trade-off between data storage, compu-
tational cost and solution accuracy. Furthermore, model error and discretization error
are both influenced by the grid spacing or filter width. Stability is another crucial aspect
for solving the unsteady adjoint problem in turbulent flows [39, 68]. These challenges
in the application of the unsteady adjoint method to LES are described in detail below,
leading to interesting research questions that we will explore and answer in this thesis.

1.3.1. HIGH-DIMENSIONAL DATA FOR TIME-DEPENDENT PROBLEMS
Whether the adjoint problem is solved efficiently and reliably determines the accuracy
and effectiveness of the a posteriori error estimation. Considering time-dependent prob-
lems, the primal flow states, as coefficients for the adjoint problem, are needed in every
time step when the adjoint problem is solved backward in time. It is apparent to con-
sider storing the complete time series of primal solutions so as to provide primal flow
information. However, their storage in memory is prohibitively expensive for large-scale
turbulence problems. In order to handle this difficulty, some researchers choose to store
the solution over a whole time interval on hard disk [64, 67, 69, 70], although the cost of
data communication between hard disk and solver is much higher than directly access-
ing memory. Others choose to store snapshot solutions with a certain frequency and
interpolate intermediate values in time [14, 28, 54]. An alternative is to make use of the
checkpointing technique [71], which stores the primal solutions at selected states (so-
called "checkpoints") and then recomputes them locally as needed. This technique has
been employed for sensitivity analysis of statistical quantities in dynamical systems [72]
and cylinder flows [39]. The disadvantage of this technique is the computational cost of
repeated computations of the states between checkpoints.

Efficient techniques to solve the adjoint problem [44] are still required for error esti-
mation in space-time problems. Order-reduction techniques show great potential for re-
ducing the memory requirement of the primal flow states. A Reduced-Order Model (ROM)
is a low-dimensional mathematical model that approximates a nonlinear system and
thus allows for rapid evaluation of the specific output of a system. This characteristic
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of ROMs makes them popular for problems in fluid dynamics [73–77]. ROMs are of-
ten built based on a Proper Orthogonal Decomposition (POD) [78–80], which is a well-
known method to identify fluid structures based on their energy content. POD utilizes
a small set of bases (POD modes) and their corresponding coefficients to express the
flow field. These modes are extracted from the information of flow field snapshots (i.e.,
ur ,r = 1,2, · · · ,m). Through the eigendecomposition of the correlation matrix of those
snapshots (ur ), POD modes (i.e., φi , i = 1,2, · · · , M) are selected as the sufficient number
of eigenvectors whose eigenvalues account for the most kinetic energy of the correla-
tion matrix. M denotes the truncation number of POD modes and is usually much less
than the spatial dimensional of primal solutions. The flow solution is approximated as a
linear combination of POD modes, amounting to

ũ(x, t ) =
M∑

i=1
ci (t )φi (x) , (1.1)

where ci is the parameter related to flow states and ũ(x, t ) denotes the low-order re-
construction. A ROM to determine the ci (t ) can be obtained by a Galerkin projection
employing the POD modes, φi (x). However, there are several aspects that need to be
rigorously considered to take advantage of the substantial computational reduction of
ROMs. Firstly, a limited number of modes should suffice to represent the system. This
can be verified by whether the decay of eigenvalues is sufficiently rapid or not. Secondly,
the sampling of snapshots for the POD should include dynamic features that are impor-
tant to describe flow characteristics. The greedy algorithm [81] or the evaluation of the
information captured by POD can be used to meet this requirement. Besides, a ROM
should consider essential dynamical structures of the flow problem and thus be capa-
ble of representing the flow physics through these selected modes. The flow manifold
should be a local branch of the nonsingular solutions in parameter space for the con-
struction of a ROM.

The computation of ci (t ) using Galerkin projection has been applied to steady [81]
and unsteady [82] viscous problems. However, the truncation of POD modes results
in the neglect of part of the underlying characteristics of a dynamical system. As a re-
sult, some Galerkin ROMs lack long-time stability [81, 83]. Another approach is to com-
pute the coefficients, ci (t ), directly from snapshot solutions. This can be achieved by
means of the least-square method and interpolated for other times via radial basis func-
tions [84] or neural networks [85], for instance. To distinguish this approach from the
Galerkin projection, the latter approach is called a reduced-order representation (ROR)
in this thesis since there is no model to be solved. Given that there is no need to predict
the primal solutions in the future when we solve the unsteady adjoint problem, the ci (t )
of a ROR can be reproduced from the primal flow solutions previously solved from the
governing equations, avoiding the re-computation of primal solutions.

The computation cost of standard batch SVD (or offline POD method) is proportional
to O (nm2), where n denotes the DoF and m represents the number of snapshots. This
becomes computationally intractable for LES since both of n and m are large values.
The issue of high-dimensional data can be handled by performing online POD analysis
using the incremental Singular Value Decomposition (SVD) [86, 87]. Incremental SVD
is an alternative way to achieve POD analysis without recording flow solutions. It was
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applied to unsteady flow simulations in Ref. [88]. Baker et al. [87] noted that the cu-
mulative cost of the incremental SVD, O (nm3), is higher than the batch SVD, O (nm2),
which leads to a high computational cost for long-time statistical simulations. Selection
of snapshots [89, 90] and an error estimator [91] were proposed to reduce the matrix
size required for the incremental SVD and thus constrained the increase of the associ-
ated computational cost. But this kind of improvement is obtained by sacrificing part of
the snapshot solutions. In contrast, the truncation of POD modes has been considered
for the incremental SVD and used for adjoint-based optimization in unsteady flows [92].
However, it remains vague how to choose the truncation for a practical problem. This is
a key point for the application to LES.

1.3.2. MODEL ERROR

When the adjoint method is used in mesh adaptation for steady RANS simulations, the
numerical error is controlled by the grid spacing. As a result, the error solely depends
on the turbulence model when a sufficiently fine mesh is used. In that sense, the mesh
adaptation is only used to reduce the discretization error in RANS. However, mesh adap-
tation in LES is different from RANS since the grid size in LES will affect not only the
truncation error of the numerical discretization but also the model error [93]. If the
model error is assumed to be smaller than the numerical error or proportional to the
numerical error, then the numerical error could be estimated with confidence [7]. How-
ever, this is not always the case for LES. Because of the competition between the model
error and numerical error, some researchers maintain a fixed filter width to verify the
mesh independence of LES [94]. If the filter width is modified, grid-converged solutions
would be changed as well. In implicit LES, the model error is linked to the discretization
error which depends on the computational mesh. Therefore, these two factors should
be carefully treated in error estimation for LES.

The convergence of a QoI has a relation with the general convergence of the solution
but can be different from the latter. Certainly, the convergence of the flow solution leads
to obtaining a QoI with absolute confidence. However, LES can give the well-converged
QoI, such as lift or drag, before a DNS-like refinement is reached. For filter-based or
implicit LES, the mesh convergence of a QoI is defined as the convergence with respect
to the computing mesh size, which can be determined by the mesh adaptation process.

Adjoint-based error estimation requires the computation of the adjoint solution on
a fine space, which can be expensive for large-scale problems. This can be avoided us-
ing reconstruction on a finer mesh [7, 93]. Generally, there is no physical support for
interpolated or reconstructed error estimators and thus one must have less confidence
in these error estimations [67]. We noted that the sub-grid model in LES describes the
unresolved/fine-scale solution and represents the influence on the resolved scales in
LES. Sub-grid models can thus also be used for the computation of the solution in a
fine space.

Considering the multiscale features of turbulent flows, the Variational Multiscale
Method (VMM) [95–97] is a good choice for modelling turbulent flows since VMM solves
the flow problem at different scales. Specifically, the VMM divides the flow variables
into resolved and unresolved scales, with the unresolved scales being modelled. This
approach serves as an alternative numerical algorithm for LES. The unresolved scale
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is typically modelled using the residual of resolved-scale flow solutions to circumvent
the complexity of finding unresolved-scale solutions in non-linear multi-dimensional
problems. Bazilevs et al. [98] presented the LES-type VMM for incompressible turbu-
lent flows and validated it on forced homogeneous isotropic turbulence and turbulent
channel flows. Akkerman et al. [99] examined the impact of basis functions continuity
in VMM using non-uniform rational B-splines (NURBS) and found that the NURBS ba-
sis functions outperformed standard finite elements in turbulent flow calculations while
the impact of continuity becomes more significant for higher Re cases. Hulshoff et al.
[100] developed two methods to deal with the wall-stress boundary conditions in VMM
for simulating turbulent flows and found that the method using wall jump values was
more suitable for practical application. Chen et al. [101] employed residual-based VMM
to solve the flow past a cylinder mounted above a flat plate and found that the calculation
of hydrodynamic forces agreed well with the traditional LES approaches. The unresolved
scale can be regarded as the computational error in the multiscale LES and thus it can
be utilized to estimate the error in the QoI. Granzow et al. [102] illustrated the VMM-
based error estimation and mesh adaptation in 2D linear advection-diffusion problems.
However, adjoint-driven mesh adaptation in a VMM framework for unsteady nonlinear
problems remains rare.

1.3.3. CHAOTIC NATURE OF TURBULENCE

Turbulent flows are inherently chaotic, which means small variations in design param-
eters can cause significant changes in the flow field. Consequently, this sensitivity to
variations can lead to a substantial impact on the value of a QoI, and it becomes in-
creasingly difficult to compute the gradient accurately. The adjoint problem is typically
employed to compute the gradient of a QoI with respect to design parameters. How-
ever, due to the chaotic nature of turbulent flows, the adjoint field can undergo signif-
icant changes or even diverge, posing challenges in solving the adjoint problem. Anti-
diffusion is also present in the unsteady adjoint equations, increasing the difficulty of
computing bounded solutions by time marching methods. The resulting stability issues
when solving the adjoint problem for turbulent flows have received considerable atten-
tion. Lea et al. [68] reported that the sensitivity of a time-averaged QoI can grow expo-
nentially for long computational times in the Lorenz (1963) system that retains essen-
tial chaotic behaviour of turbulent flows. An ensemble-adjoint method was developed
to compute the averaged sensitivity from different initial conditions at an intermediate
time scale. Using Direct Numerical Simulation (DNS), Wang et al. [39] showed the di-
vergence of drag-based adjoint solutions for the turbulent flow around a cylinder at a
Reynolds number of 500. Numerous remedies have been proposed, including ensemble
sensitivity [103], least-squares shadowing (LSS) [104], space-split sensitivity [105], and
additional artificial viscosity [106]. Key methods for controlling the stability of adjoint
problems include modifications of the averaged-time length or finding a substitute for
the chaotic primal solution, for example, one defined on a shadowing trajectory in phase
space.

Different techniques have been employed to reduce the computing cost and large
storage requirements of LSS. The Multiple Shooting Shadowing (MSS) method was pro-
posed in Ref. [107], which considers the norm of the distance between reference and
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shadowing trajectories at checkpoints rather than all time steps. Shawki et al. [108] im-
proved the computing efficiency of the MSS algorithm using a block diagonal matrix-
free preconditioner. A non-intrusive LSS method was developed in Ref. [109] to reduce
the computing cost of LSS using a linear combination of one inhomogeneous tangent
solution and several homogeneous tangent solutions. The resulting computing cost is
proportional to the number of unstable/positive Lyapunov Exponents. Lasagna et al.
[110] formulated a periodic shadowing method for flows with periodic boundary con-
ditions in time. This method can bound adjoint solutions for an infinite orbit length
and the sensitivities can be computed exactly for every orbit. Conversely, Hoffman et
al. [14, 111] observed stable adjoint solutions at high Reynolds numbers computed with
wall-modelled boundary conditions. The stability of the adjoint method is still a vital
topic for practical applications. How to define stable and efficient adjoint methods for
turbulent flow problems remains an important but open question.

1.4. THESIS OBJECTIVE
This thesis will address the above challenges and pave the way to intervention-free LES
for practical engineering analyses, assessment and optimization. To make adjoint-based
error estimation tractable and accurate for LES, the issue of excessive storage require-
ments for high-dimensional snapshot data will be addressed using reduced-order rep-
resentations based on incremental SVD. The resulting methodology is presented and in-
vestigated in different flow problems. The issue of determining appropriate truncation
levels will also be tackled. The research questions below are considered.

• What kind of factors are important for reliable adjoint-based error estimation in
a VMM framework for the computation of a QoI? How do they influence mesh
adaptation in unsteady problems?

• How can an appropriate truncation number for online POD analysis be chosen
when using incremental SVD for unsteady problems? What are the effects on ac-
curacy and parallel performance for high-dimensional data sets?

• How does using a ROR impact the efficiency of adjoint-based error estimation and
the dynamics of adjoint problems for unsteady flows? How does using a ROR affect
the growth of adjoint solutions for turbulent flows?

1.5. THESIS OUTLINE
The remainder of this dissertation consists of the following sections:

• Chapter 2 studies error estimation using VMM-driven adjoint solutions for steady
linear and nonlinear model problems.

• Chapter 3 investigates how to make the ROR feasible for high-dimensional prob-
lems using an enhanced parallel incremental SVD.

• Chapter 4 demonstrates the applicability of adjoint-based AMR and the effects of
the ROR choice on AMR in one-dimensional forced Burgers problems.

• Chapter 5 presents the impacts of using RORs on the adjoint problem and adjoint-
based error estimation for multi-dimensional transient flow problems, including
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the dynamics of the adjoint system, the accuracy and efficiency, as well as the sta-
bility in 3D turbulent flows.

• Chapter 6 summarizes the main findings of the present work and provides recom-
mendations for future developments.
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The modelling error in LES plays an important role in the error estimation based on
the adjoint method. We consider the Variational Multiscale Method (VMM) to evaluate
the unresolved-scaled solution and then approximate the actual flow solution in error
estimation. The associated adjoint equation is introduced to achieve output-based error
analysis. Computational results for advection-dominant problems are presented to ver-
ify and validate the efficiency and accuracy of adjoint-based error estimates compared
with mesh-refined calculations.

2.1. INTRODUCTION
The accurate prediction of integral statistical quantities, such as lift, drag, thrust and en-
gine efficiency [112], is of primary interest in design, optimization and characterization
analyses in engineering aerodynamic applications. The adjoint method can be used to
connect the local error of flow solutions with the error in a Quantity of Interest (QoI) [9].
Thus adjoint-based error estimation is utilized to achieve mesh adaptation in FEM [14,
31, 51, 102] and FVM [22, 40]. In the literature, the continuous adjoint is widely used in
FEM whereas the discrete adjoint is typically applied in FVM, with differences in the for-
mulation and the implementation of the adjoint problem. Adjoint-based error estimates
were reported to improve the prediction of QoI values without extensively adding extra
computing cost compared to results from uniformly refined meshes in literature.

Turbulent flow simulations require representing the effects of different flow scales,
such as from Kolmogorov scale to macro-scale (e.g. the chord length of a 2D airfoil).
LES based on the VMM was proposed to efficiently represent such multiscale phenom-
ena [95]. The VMM can be used to formulate subgrid models used in LES by dividing the
flow solution into resolved and unresolved scales. The effects of the unresolved scales are
here modelled based on the residual of resolved flow solutions in order to circumvent the
complexity of finding unresolved-scale solutions in non-linear multi-dimensional prob-
lems. Actually, the unresolved scale represents the discretization error in the VMM and
thus can be employed to calculate the estimated error in the QoI. Through the combina-
tion of the adjoint solution and VMM, the accuracy of error estimation can be improved
significantly, as will be shown in Section 2.5.

This chapter is organized as follows. The related adjoint problem is explained for
linear problems in Section 2.2, where the adjoint identity is emphasized in continuous
and discrete spaces, respectively. In Section 2.3, we describe the framework of VMM-
based LES and the associated implementation for flow and adjoint problems. General
adjoint-based error estimation is discussed in Section 2.4. The conventional estimation
used in classical FEM is introduced and four variants of a VMM-driven estimator are
proposed. The validation and evaluation of these error estimations are presented in nu-
merical results of linear advection-diffusion problems in Section 2.5. We summarize the
application of the adjoint method to error estimation in VMM.

2.2. ADJOINT PROBLEM

2.2.1. MODEL DESCRIPTION
Let Ω⊂Rndim be an open bounded computing domain in ndim dimensions. Its boundary
is represented by ∂Ω. For fluid problems with homogeneous Dirichlet boundary condi-
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tions, V is the solution space V = {u|u ∈ H(Ω),u|∂Ω = 0}, where H(Ω) is a Hilbert space
defined in Ω. The corresponding space for adjoint solutions is V ∗. The abstract model
problem for flow solutions, u ∈ V , is described as follows

{Lu = f , x ∈Ω

u = 0, x ∈ ∂Ω ,
(2.1)

where L is a linear second-order differential operator, such as the one in Poisson and
advection-diffusion problems, and f is a given function in R. The equivalent weak form
of this linear problem is demonstrated as finding u ∈ V such that

(ω,Lu) = (ω, f ), ∀ω ∈ V , (2.2)

where (·, ·) denotes the inner product in V with the definition of

(p, q) =
∫
Ω

pq dΩ, p ∈ V , q ∈ V . (2.3)

2.2.2. RELATED ADJOINT PROBLEM
The adjoint problem is introduced to connect the local residual to the QoI and the ad-
joint solutions are used to estimate the approximation error of the QoI. The adjoint equa-
tion is determined by the flow problem and the QoI. Let us consider a physical QoI,
J (u) ∈R, as a volume integral output [51, 102] with the definition

J (u) = (g ,u) , (2.4)

where g ∈ V ∗.
The adjoint identity is the basis for the introduction of the adjoint problem. It is

derived by integration by part as follows

(v,Lu) = (L∗v,u) , (2.5)

where v ∈ V ∗,u ∈ V , and L∗ is the adjoint operator.
Piecewise basis functions are widely utilized in FEM to discretize Partial Differential

Equations (PDEs). The computing domain is normally discretized into non-overlapping
cells Ωe in the discrete space Vh , with cell boundary ∂Ωe ,e = 1,2, . . . , Ncells. The subscript
h denotes the average cell size of a computational mesh. For the demonstration of the
next parts, two union notations are presented here: the union of cell interiors Ω′ and the
union of cell interfaces and boundaries ∂Ω′, viz.

Ω′ =
Ncells⋃
e=1

Ωe , ∂Ω′ =
Ncells⋃
e=1

∂Ωe , (2.6)

where Ncells denotes the number of mesh cells.
For the adjoint identity in discrete space, the right-hand term (L∗v,u) in Equation (2.5)

consists of a Dirac distribution in the domainΩ owing to the slope discontinuity of shape
functions. This relation is elaborated as follows,

(v,Lu) = (L∗v,u)Ω′ − ((�B∗v	,u)+ (v,�Bu	)
)
∂Ω′ = (L∗v,u)Ω , (2.7)
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where B and B∗ are the boundary operators corresponding to L and L∗, respectively. �·	
represents the jump operator at cell interfaces and is defined as

�·	 = (·)interface right − (·)interface left = (·)+− (·)− . (2.8)

Equation (2.7) gives a union expression and L∗ includes the boundary integration over
the entire computing domain Ω. Taking the linear advection-diffusion problem in one
dimension as an example, we explain the adjoint identity as the following

(v,Lu) =
∫
Ω

v(λ∇u −νΔu)dΩ

=
Ncells∑
e=1

∫
Ωe

v(λ∇u −νΔu)dΩe

=
Ncells∑
e=1

[∫
Ωe

(−λ∇v −νΔv)u dΩe +
(
λuv −νv

du

dx
+νu

dv

dx

)∣∣∣∣
∂Ωe

]
= (L∗v,u)Ω′ + (λuv −νv

du

dx
+νu

dv

dx
)

∣∣∣∣
∂Ω′

= (L∗v,u)Ω .

(2.9)

The adjoint problem is then defined as

{L∗v = g , x ∈Ω

v = 0, x ∈ ∂Ω .
(2.10)

with an equivalent weak form

(ω,L∗v) = (ω, g ), ∀ω ∈ V ∗ . (2.11)

2.3. FORMULATION OF THE VMM
A brief description of the VMM technique in LES is stated in this section, and the process
of solving the primal and adjoint equations using this approach is presented.

2.3.1. THE FRAMEWORK OF VMM
In VMM, the flow solution is decomposed into resolved scales u and unresolved scales
u′, i.e. u = u + u′, where u ∈ V ,u′ ∈ V ′, V and V ′ are subsets of V , and V ⊕ V ′ = V .
The u and u′ are also referred to as computable coarse-scale and fine-scale solutions.
By applying this decomposition to the weak form Equation (2.2), the model problem is
re-expressed as

(ω,L(u +u′)) = (ω, f ), ∀ω ∈ V . (2.12)

By considering test functions ω in the same space as u, ω can be similarly decomposed
as ω and ω′. Equation (2.12) is then divided into two subproblems

(ω,Lu)+ (ω,Lu′) = (ω, f ), ∀ω ∈ V , (2.13)

(ω′,Lu)+ (ω′,Lu′) = (ω′, f ),∀ω′ ∈ V ′ . (2.14)



2.3. FORMULATION OF THE VMM

2

19

The key process of VMM is to identify an approximation of the unresolved scales u′ in
terms of u so that the governing equation of the resolved scales can be solved indepen-
dently. To this end, the unresolved-scale Green’s function g ′(x; y) [95, 113] is employed
with the following definition

{L∗g ′(x, y) = δ(x − y) in Ω

g ′(x, y) = 0 on ∂Ω .
(2.15)

Replacing the ω′ in Equation (2.14) with g ′(x, y), we can obtain the analytical expression
for u′, i.e.

u′(y) =−
∫
Ω

g ′(x, y)(Lu − f )dΩ=−
∫
Ω

g ′(x, y)R(u)dΩ , (2.16)

where R(·) = L(·)− f is the residual operator of the resolved scales. It can also be written
using an integral operator M ′ as

u′(y) = M ′R(u) , (2.17)

where M ′(·) = −∫Ω g ′(x, y)(·)dΩ. Substituting the expression of u′ into Equation (2.13),
the resolved-scale problem is expressed as

(ω,Lu)+ (L∗ω, M ′R(u)) = (ω, f ), ∀ω ∈ V . (2.18)

This equation is referred to as the general formulation of VMM. This model is precise for
the resolved scales and can be used in the spectral FEM directly. However, the computa-
tion is costly because of the double integration in the second term in Equation (2.18), es-
pecially for multi-dimensional engineering problems. Thus, u′ is approximated to pro-
vide an equivalent contribution to the resolved-scale problem. This is discussed in the
following section.

2.3.2. DISCRETE FORMULATION OF VMM
The FEM is normally used to solve Equation (2.18). When piecewise shape functions
are used, u and ω are smooth over element interiors, but their slopes are discontinuous
across element interfaces. This gives rise to additional jump terms for the integral over
the domain using integration by parts. Here, (L∗ω, M ′R(u)) is thus regarded as a repre-
sentation for the expression including the jump across elements. L∗ can be viewed as a
Dirac distribution [95] in the entire computing domain Ω.

In the discrete setting, uh ,ωh ∈ Vh and ω′
h ,u′

h ∈ V ′
h denote the resolved and unre-

solved solutions, where Vh and V ′
h are the resolved and unresolved spaces, respectively.

The algebraic operator τ is introduced as

τ=−M ′ . (2.19)

Substituting it into Equation (2.18), the resolved-scale problem can be expressed as

(ωh ,Luh)+ (L∗ωh ,−τR(uh)
)= (ωh , f ), ∀ωh ∈ Vh , (2.20)
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which requires finding an explicit formulation for τ. An element Green’s function g
′
e (x, y)

is introduced to approximate the exact one in Equation (2.15),

{L∗g
′
e (x, y) = δ(x − y) in Ωe

g
′
e (x, y) = 0 on ∂Ωe ,

(2.21)

we define a computable form of τ by using the average value on the element interior,

τ≈ τe = 1

meas(Ωe )

∫
Ωe

∫
Ωe

g
′
e (x, y)dΩe,x dΩe,y , (2.22)

where meas(Ωe ) is the measured size of mesh cells. For the one-dimensional linear
advection-diffusion problem, for example,

λ∇u −νΔu = f , (2.23)

an analytic element Green’s function[113] can be found by solving problem 2.21, allow-
ing τe to be approximated by

τe = 1

he

∫
Ωe

∫
Ωe

g
′
e (x, y)dΩe,x dΩe,y = he

2λ
(cothα− 1

α
) , (2.24)

where α = λhe /(2ν) and he is the element length. Using the residual operator R, the
discrete VMM in Equation (2.20) is then equivalent to(

L∗ωh ,−τR(uh)
)=−(ωh ,R(uh)), ∀ωh ∈ Vh . (2.25)

2.3.3. VMM FORMULATION FOR ADJOINT PROBLEM
The adjoint problem is solved using the same VMM used for the primal problem. The
domain space V ∗ is chosen as equal to V . Thus the adjoint solution is decomposed
into the resolved-scale solution v and unresolved-scale solution v ′, i.e. v = v +v ′, where
v ∈ V , v ′ ∈ V ′. After introducing the adjoint fine-scale Green’s function g ′∗(x, y) and the
integral operator M ′∗, the general formulation of VMM for the adjoint problem is

(ω,L∗v)+ (Lω, M ′
∗R∗(v)) = (ω, g ), ∀ω ∈ V , (2.26)

where R∗(·) = L∗(·)− g , is the adjoint residual operator of the resolved scales, and the
unresolved scales in the adjoint problem are represented as

v ′(y) = M ′
∗R∗(v) , (2.27)

where M ′∗(·) =−∫Ω g ′∗(x, y)(·)dΩ.
Here, the discrete space for the primal problem is also used to solve the adjoint prob-

lem, such that Vd = Vh . The corresponding discrete formulation of the adjoint problem
is obtained using an element-averaged Green’s function τ∗e , expressed as

τ∗e = 1

meas(Ωe )

∫
Ωe

∫
Ωe

g
′
∗,e (x, y)dΩe,x dΩe,y . (2.28)

Consequently, the discrete adjoint problem is

(ωh ,L∗vh)+ (Lωh ,−τ∗R∗(vh)
)= (ωh , g ),∀ωh ∈ Vh . (2.29)
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2.4. ADJOINT-BASED ERROR ESTIMATION
Truncation error is introduced when the discrete solution uh is used to evaluate the QoI.
In order to get precise high-fidelity computation, we need to identify this error. In this
section, we derive error approximations for the general formulation and for classical
FEM and VMM respectively.

2.4.1. ERROR ESTIMATION FORMULA
Here, we present a general framework for adjoint-based error estimation. Let ũ be an
obtainable approximation value, and the corresponding deviation ũ′ = u − ũ from the
exact u. When a linear QoI is defined as J (u) = (g ,u), the approximation error can be
expressed by

ε= J (u)− J (ũ) = (g ,u)− (g , ũ) = (g ,u − ũ) = (g , ũ′) . (2.30)

With consideration of the adjoint operator and the following definitions,

Lũ = f̃

L∗ṽ = g̃ ,
(2.31)

we re-write Equation (2.30) as

ε= J (u)− J (ũ)

= (g ,u − ũ)

= (g̃ ,u − ũ)+ (g − g̃ ,u − ũ)

= (L∗ṽ ,u − ũ)+ (g − g̃ ,u − ũ) by definition

= (ṽ ,L(u − ũ))+ (g − g̃ ,u − ũ) adjoint opeator

= (ṽ , f − f̃ )+ (g − g̃ ,u − ũ) by linearity and definition

=− (ṽ ,R(ũ))︸ ︷︷ ︸
Adjoint Eorrection

+ (R∗(ṽ), ũ −u)︸ ︷︷ ︸
Remaining Error

. by residual operator

(2.32)

The first term is referred to as adjoint correction and is computable from the adjoint so-
lution and the residual of the primal problem. The second term is named the remaining
error. This is unobtainable since the exact solution (u) of the primal problem usually is
unknown.

2.4.2. ERROR REPRESENTATION IN CLASSICAL FEM
In the classical FEM, an error estimation is obtained by replacing ũ and ṽ with uh and vh ,
respectively. The adjoint-based error estimation is then re-expressed in terms of these
discrete solutions as follows

ε= (g ,u)− (g ,uh)

= (gh ,u −uh)+ (g − gh ,u −uh)

=−(vh , fh − f )+ (gh − g ,uh −u) ,

(2.33)

where fh = Luh and gh = L∗vh are the source terms approximated using discrete solu-
tions.
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2.4.3. CONTINUOUS VMM ERROR EXPRESSION
We now derive the error estimation for the general VMM formulation (Equation (2.18)).
u and v are used to replace aforementioned ũ and ṽ in Equation (2.32), where the unre-
solved scales are u′ and v ′. The below relation can then be written

εvmm = J (u)− J (u) = (g ,u′) = (g ,−τR(u)) . (2.34)

This is a direct way to calculate the error estimation, which does not need the solution of
the adjoint problem. When the adjoint solution is used, the error estimation is re-stated
as

εvmm,1 = (g ,u −u)+ (g − g ,u −u)

= (L∗v ,u′)+ (L∗v −L∗v ,u′)
=−(L∗v ,τR(u))+ (R∗(v),τR(u)) ,

(2.35)

where, g = L∗v . Note, from Equation (2.35), that both terms in the first expression are
dependent on the adjoint solution. Using the adjoint identity gives us the following re-
lation

(L∗v ,−τR(u)) = (L∗v ,u′) = (v ,Lu′) = (v ,−R(u)) (2.36)

(R∗v ,τR(u)) = (L∗v −L∗v ,u′) = (v ′,Lu′) = (τ∗R∗(v),R(u)) . (2.37)

Combining these two expressions, four categories of adjoint-based error estimation can
be generated for the VMM. The first is given in the last line of Equation (2.35). The other
three are as follows

εvmm,2 =−(v ,R(u)) + (R∗v ,τR(u)) (2.38)

εvmm,3 =−(v ,R(u)) + (τ∗R∗(v),R(u)) (2.39)

εvmm,4 =−(L∗v ,τR(u))+ (τ∗R∗(v),R(u)) (2.40)

The last expression is the same as the one suggested by Granzow et al. [102].

2.4.4. DISCRETE VMM ERROR EXPRESSION
To use the VMM for error estimation, we need to derive a formulation in the discrete
space. In fact, two different paths can be utilized to represent the error estimation in a
discrete space: starting from the universal error formula or starting from the previous
continuous expression. The latter is used here to compute the adjoint-based error es-
timation in a discrete space. The resolved-scale solution u, from here, is replaced by
uh in discrete space; at the same time, u′

h is the substitute of u′, and û = u −uh −u′
h .

Substituting these relations into Equation (2.34), we obtain

εvmmd = J (u)− J (uh) = (g ,u −uh) = (g ,u′
h + û) = (g ,−τR(uh))+ (g , û) , (2.41)

where the residual operator is R(uh) = f −Luh , and u′
h =−τR(uh). The representations

derived by the adjoint solution and adjoint identity are given as follows:

εvmmd ,1 = − (L∗vh ,τR(uh))+ (R∗(vh),τR(uh)) + (L∗v, û) (2.42)

εvmmd ,2 = − (vh ,R(uh)) + (R∗(vh),τR(uh)) + (−R∗(vh), û) (2.43)

εvmmd ,3 = − (vh ,R(uh)) + (τ∗R∗(vh),R(uh))+ (v̂ ,−R(uh)) (2.44)

εvmmd ,4 = − (L∗vh ,τR(uh))+ (τ∗R∗(vh),R(uh))+ (v̂ ,−R(uh))+ (L∗(vh), û) (2.45)
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It is obvious that the terms involving representation errors (û and v̂) make supple-
mented contributions to the error estimation, which are distinct from the continuous
one. However, these terms are beyond the computation of the discrete VMM because
of unknown variables û and v̂ . Thus we neglect the terms with those factors so that the
simplified expressions are

ε̃vmmd ,1 = − (L∗vh ,τR(uh))+ (R∗(vh),τR(uh)) (2.46)

ε̃vmmd ,2 = − (vh ,R(uh)) + (R∗(vh),τR(uh)) (2.47)

ε̃vmmd ,3 = − (vh ,R(uh)) + (τ∗R∗(vh),R(uh)) (2.48)

ε̃vmmd ,4 = − (L∗vh ,τR(uh))+ (τ∗R∗(vh),R(uh)) (2.49)

2.5. NUMERICAL RESULTS
In this section, we investigate the error estimation of a QoI in one-dimensional lin-
ear problems and discuss the effectiveness and accuracy of various error estimations.
Adjoint-based error estimations are from both classical FEM and VMM.

2.5.1. VERIFICATION USING A POISSON PROBLEM
The Poisson problem is first considered to demonstrate the process of error estimation
and to evaluate its effectiveness. The governing equation of the primal problem is

d2u

dx2 = f , (2.50)

where the source term is f = x3(1− x)3 and x ∈ [0,1], with the homogeneous boundary
condition u(0) = u(1) = 0. The analytic solution to this Poisson problem is

u(x) = 1

56
x(1−x7)− 1

14
x(1−x6)+ 1

10
x(1−x5)− 1

20
x(1−x4) . (2.51)

The QoI is defined by J (u) = (g ,u), where g = sin(πx). The associated adjoint equation is

d2v

dx2 = g , (2.52)

subject to homogeneous boundary conditions as well.
We use the classical FEM to solve the flow and adjoint equations on the same mesh.

Linear basis functions are used to obtain the primal and adjoint solutions at grid nodes.
Cubic reconstruction is employed to estimate the error of the approximated QoI.

THE VERIFICATION OF FLOW AND ADJOINT SOLVER

The accuracy of the flow solver is illustrated by the comparison between discrete and an-
alytical solutions. Figure 2.1(a) shows flow solutions solved using 8 elements compared
with the analytical solution. Good agreement is observed but there are still truncation
errors in numerical solutions as shown in Figure 2.1(b). Figure 2.1(c) shows the approxi-
mation error of the source term reconstructed by a cubic spline.

Similar results for the adjoint problem are shown in Figure 2.2. In both cases the
errors are small. Consequently, the current FEM solver is verified based on these results
and we can employ it to investigate error estimation based on the adjoint method.
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(a) Flow solutions & source term (b) Error of flow solutions (c) Error of source term

Figure 2.1: Flow solutions, associated error distribution, and approximated error of source term in the flow
problem.

(a) Adjoint solutions & source term (b) Error of adjoint solutions (c) Error of source term

Figure 2.2: Adjoint solutions, approximated source term, and corresponding error distribution in the adjoint
problem.

ADJOINT-BASED ERROR ESTIMATION FOR THE POISSON PROBLEM

The adjoint correction is computed using two different approximations. As shown in
Table 2.1, the first ("Adjoint Correction") uses adjoint solutions while the second ("Cor-
rection without adjoint") is the direct calculation without adjoint solutions. The two
values compare well with each other, which validates the error estimation using adjoint
solutions.

Table 2.1: Comparison of error estimations in a Possion problem solved by 8 elements.

Exact error Approximated error Adjoint Correction Correction without adjoint

-2.14168e-08 -2.14171e-08 2.13345e-08 2.13342e-08

Figure 2.3 shows how the computation of the QoI converges with the increase of the
number of elements. Obviously, the accuracy of the approximation is drastically im-
proved when the adjoint correction is added to the QoI estimation. This improvement is
also noted from the comparison of approximated error in Figure 2.4, where the error with
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adjoint correction is referred to as "errWithCorr" whereas the one without correction is
referred to as "errNonCorr".

Figure 2.3: The approximation of the QoI. Figure 2.4: Exact and estimated errors of the QoI.

The rate of convergence of the approximation error is −4 since the cubic spline can
capture the high-order term in the flow equation whose solutions are polynomial, al-
beit the equations are solved by linear basis functions. The corrected error is super-
convergent, with a slope of −6. Actually, this arises from the computation of the associ-
ated adjoint correction term and remaining error, which are presented in Figure 2.5 with
the slope of −4 and −6, respectively.

Figure 2.5: The convergence of adjoint correction
and remaining error.

Figure 2.6: Comparison of error estimations with
the influence of round-off errors.

The influence of round-off errors on the error estimation can be seen in Figure 2.6.
After the remaining error is below the round-off error, there exists a slight difference
between the estimated error and exact approximation error, whereas the remaining error
still decreases with the same rate of convergence. In this case, the exact solution is used
to estimate the remaining error in a finite space as well as to evaluate the accuracy of
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the error estimation. However, it is impossible to know the exact solution in practical
problems. Instead, it is common to use high-resolution flow solutions to represent the
exact values, as discussed in the next section.

2.5.2. ADJOINT-BASED ERROR ESTIMATION IN CLASSICAL FEM
The steady linear advection-diffusion problem considered here is governed by

λ∇u −νΔu = f , (2.53)

where λ = 1,ν = 0.1, x ∈ [0,1]. A manufactured solution, u(x) = sin(πx), is used in this
problem so that we can analyze the accuracy of error estimation. The source term of the
primal flow problem is given as follows

f =λπcos(πx)+νπ2 sin(πx) . (2.54)

Using the adjoint identity, (v,Lu) = (L∗v,u), the corresponding adjoint problem is

−λ∇v −νΔv = g , (2.55)

where g = sin(πx) is selected in this case, and the homogeneous boundary conditions
are applied. The classical FEM, which uses linear basis functions, is employed to solve
the primal and adjoint problems in this case. We verified the computing accuracy of the
approximation of a QoI, adjoint correction and remaining error using the analytic solu-
tion as the mesh is uniformly refined. The adjoint-based error estimation was discussed
afterward.

APPROXIMATION OF THE QOI
Discrete solutions are used to make an estimate of the QoI, which can be improved us-
ing the adjoint correction. Figure 2.7 shows the approximated QoI compared to the cor-
rected one. The approximation without correction is over-estimated compared to the
exact one but becomes convergent after using 64 elements. In contrast, the adjoint-
based corrected approximation is underestimated and converges much more efficiently
(with 8 elements) than the one without correction.

ANALYTICAL DEMONSTRATION OF THE RATE OF CONVERGENCE

The rate of convergence is determined by the error of the primal and adjoint solutions.
The rate of convergence of adjoint correction, (vh , fh− f ), satisfies the following theorem.

Theorem 1. If the primal residual error is O(hp ), which means fh − f =O(hp ), the rate of
convergence of the adjoint correction term is −p.

Proof. The adjoint correction is expressed as follows:

(vh , fh − f ) =
∫
Ω

vhO(hp )dΩ≈ Const∗O(hp ) . (2.56)

Therefore, when the mesh size is halved, the adjoint correction term is

(vh/2, fh/2 − f ) ≈ Const∗
(

h

2

)p
. (2.57)
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Figure 2.7: Approximation of a QoI in a linear advection-diffusion problem as the mesh is uniformly refined.
"approxVal" denotes approximated value while "approxImpVal" represents the corrected approximation.

Considering these two expressions, the rate of convergence of the adjoint correction is
obtained as

Rate of convergence = log(vh/2, fh/2 − f )− log(vh , fh − f )

l g (2N )− l g (N )

≈
log
(
Const∗ ( h

2 )p
)
− log(Const∗ (hp ))

log2
)

=−p ,

(2.58)

where N and 2N are the number of mesh elements before and after mesh refinement.

The same rule can be used to analyze the remaining error, (gh − g ,uh −u). If the
source term gh involves up to m-order derivatives of vh , the residual of the source term
in the adjoint problem is m degree less than the residual of the adjoint solution. This
is to say that gh − g = O(hp−m). Therefore, the remaining error is O(h2p−m) and the
corresponding rate of convergence in log-log coordinates is −(2p −m), which is super-
convergent when the adjoint correction is added to the approximated QoI.

For this advection-diffusion problem (m = 2), linear basis functions are employed to
solve the primal and adjoint problem so that uh −u = O(h2), vh − v = O(h2), i.e. p = 2.
The rate of convergence of the adjoint correction and remaining error is thus −2 and −4.
The numerical results, shown in Figure 2.8, agree with this analysis. Figure 2.9 shows the
convergence history of the exact and remaining errors. The superimposed dashed lines
have slopes of -2 and -4, respectively. It is observed that the exact error is second order
while the remaining error is fourth order. A similar trend has been highlighted by Pierce
et al. [51].
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Figure 2.8: Convergence history of adjoint correc-
tion and remaining error.

Figure 2.9: Comparison between exact and re-
maining errors of a QoI.

DISCUSSION ON ADJOINT-BASED ERROR ESTIMATION

The error estimate computed by the adjoint problem is compared with results obtained
by mesh doubling. Figure 2.10 shows the variation of QoI’s errors computed using uniformly-
refined meshes as well as using adjoint solutions. The values obtained using adjoint so-
lutions are more accurate than the ones from the refined mesh. Taking the mesh with 16
elements for example, the accuracy of doubling the number of elements is improved by
about 0.6 orders of the original value, whereas the improvement using adjoint solutions
is around two orders. Therefore adjoint-based error estimation is much more efficient
and accurate (approximately 1.5 orders higher) than using a uniformly-refined mesh in
this case. For multidimensional problems, the advantage is more distinct as the cost of
flow solutions rises significantly. On the other hand, this benefit becomes more signifi-
cant with the increase of mesh cells.

Figure 2.10: Adjoint-based error estimation with
comparison to uniform mesh refinement.

Figure 2.11: Remaining error estimation by solu-
tions with different resolutions.

For this linear advection-diffusion problem, the analytical solution of u is known and
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used to compute the reaming error precisely. Generally, we do not know the exact values
of flow solution u. Thus the remaining error needs to be estimated, such as by using
a higher-order interpolation based on the discrete solution uh . We estimate this value
using linear and cubic flow solutions (see Figure 2.11). In these results, the prediction
of remaining error by solutions with various resolutions captures a trend similar to the
actual one. Table 2.2 gives the corresponding numerical data. In this case, 60%−80% of
the actual remaining error is acquired by the estimating method. In summary, the main
part of the remaining error is obtained by this approach.

Table 2.2: Comparison between the actual and estimated remaining error on uniformly-refined meshes.

Number of elements Actual remaining Error Estimated remaining Error Percentage

4 2.842120E-03 1.943790E-03 68.39%
8 1.891390E-04 1.232690E-04 65.17%

16 1.386140E-05 8.720330E-06 62.91%
32 9.465190E-07 5.857840E-07 61.89%
64 6.201620E-08 3.808310E-08 61.41%

128 3.971920E-09 2.429910E-09 61.18%
256 2.513540E-10 1.534870E-10 61.06%
512 1.580860E-11 9.644550E-12 61.01%

1024 9.758380E-13 6.044150E-13 61.94%
2048 6.203980E-14 3.782700E-14 60.97%
4096 3.873140E-15 2.363390E-15 61.02%
8192 2.349410E-16 1.454740E-16 61.92%

16384 8.524250E-18 6.775300E-18 79.48%

2.5.3. VMM-DRIVEN ERROR ESTIMATION
The aforementioned results were obtained with the classical FEM. Here, four types of
error estimation based on the VMM are studied in a convection-dominant case and
their results are compared with that of the classical FEM. The parameters of this linear
advection-diffusion problem are selected as λ = 1,ν = 0.025, f = 1, x ∈ [0,1] with homo-
geneous boundary conditions. The Péclét number is Pe = λl/ν = 40, where l = 1 is the
reference length. The analytical solution is

u(x) = 1

λ

(
x − 1−ePe x

1−ePe

)
(2.59)

The QoI is given by J (u) = (g ,u), where g = sin(πx).

ERROR ESTIMATION USING THE CLASSICAL FEM
The adjoint-based error estimation is evaluated using primal and adjoint solutions solved
by the classical FEM. Figure 2.12 illustrates the adjoint correction and remaining error
term in this framework. These terms give a good prediction of the error of the approx-
imated QoI with or without correction, respectively. However, the error estimation ex-
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hibits different characteristics when the number of elements is less than 16. The rea-
son is that the advection-dominant problem produces a sharp layer on the right do-
main boundary and the discrete flow solutions are not accurate over this region (see Fig-
ure 2.13). As a result, the adjoint correction term cannot improve the QoI value as shown

Figure 2.12: Adjoint correction and remaining er-
ror in classical FEM.

Figure 2.13: Flow solutions solved by 8 elements
in FEM and VMM.

in Figure 2.14(a). Conversely, the adjoint solution can improve the approximation of the
QoI when the deviation of flow solutions is not severe over a computing domain.

(a) Classical FEM (b) VMM

Figure 2.14: Approximation of the QoI in the linear advection-diffusion problem with sharp flow gradients
solved by classical FEM and VMM.

ERROR ESTIMATION USING IN VMM
Figure 2.14(b) shows that the QoI’s approximation was improved significantly using the
VMM compared with the computations by classical FEM. The corrected approximation
is more efficient than the non-corrected one in the VMM. When the adjoint identity is
applied to compute the adjoint correction (the red-circle dashed line), the prediction
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of the QoI becomes more accurate than the result without this operation (the orange
dashed line).

Four error estimations developed in the VMM are compared in Figure 2.15. ε̃vmmd ,1

and ε̃vmmd ,4 present a similar trend for the estimated error while ε̃vmmd ,2 and ε̃vmmd ,3

agree well with the each other. ε̃vmmd ,2 and ε̃vmmd ,3 capture the changes of the actual
error ("errNonCorr") when the resolution of the discrete solutions is high, whereas the
other two underestimate the error. In fact, the main reason for this difference is the
calculation of the adjoint correction term which is the primary component of the error
estimation. The adjoint correction before applying the adjoint identity underestimates
the value since there is a remaining component involving û which is neglected. This
missing part is included after employing the adjoint identity to the adjoint correction.
Figure 2.16(a) depicts this improvement. Furthermore, the estimations of remaining

Figure 2.15: Comparison of four error estimations using the VMM for the linear advection-diffusion problem
with sharp flow gradients.

error before and after applying adjoint identity have a good agreement for this one-
dimensional linear case. When we examine the corresponding error as shown in Fig-
ure 2.16(b), the error without using adjoint identity ("errWithCorrNonAI") is higher than
the one using adjoint identity ("errWithCorrAI"). The finer the computational mesh, the
larger the difference between them.

The rates of convergences using classical FEM and VMM are compared side-by-side
in Figure 2.17. Here, ε̃vmmd ,2 is used to predict the error estimate in the VMM. When the
adjoint correction is not considered to improve the approximation of the QoI, the VMM-
driven error estimate ("VMM errNonCorr") converges at the slope of -4 with the uniform
mesh refinement while the one using classical FEM ("Classical FEM errNonCorr") shows
a slope of -2. In contrast, if the adjoint correction is used for improving the QoI’s com-
putation, the error estimate in classical FEM reaches a slope of -4 and the slope of error
estimation in VMM is ever higher, particularly on fine meshes. Overall, using the ad-
joint method can substantially improve the accuracy of approximating the QoI both in
the VMM and classical FEM. The VMM-based error estimation is more efficient than the
one from classical FEM, both for the results with and without adjoint correction. Fur-
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(a) Adjoint correction and remaining error (b) Error estimations

Figure 2.16: Computations of adjoint correction, remaining error, and error estimations with and without ad-
joint identity in the VMM for the linear advection-diffusion problem with sharp flow gradients.

thermore, the VMM-based error estimation is super-convergent compared to that from
the classical FEM.

Figure 2.17: The comparison of error estimations between classical FEM and VMM for the linear advection-
diffusion problem with sharp flow gradients.

2.6. SUMMARY
This chapter presents the study of adjoint-based error estimation for linear advection-
diffusion problems with classical FEM and VMM. Through this study, we draw several
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conclusions that will be useful for the subsequent study as follows.

• The adjoint solution can provide a correction term to improve the approximated
QoI both in classical FEM and VMM. Flow solutions with low and high resolutions
can capture the main part of the remaining error.

• Computing a QoI with adjoint-based correction is more accurate and efficient
than the one with uniform mesh refinement under similar computing cost. It is
anticipated that this benefit will be more obvious in multi-dimensional problems
since the increase of computation on solving NS equations is non-linear and this
cost increases dramatically in two/three-dimensional problems.

• The adjoint identity introduces the boundary integral to error estimation when
we reformulate the relations by partial integration. A crucial aspect of adjoint-
based error estimation is its need to match the continuous requirement of first
derivatives across element interfaces if the boundary jump term is unknown in
FEM.

• The rate of convergence of the adjoint correction and the remaining error in a clas-
sical FEM framework are −p and −(2p −m), if the source term fh and gh involve
up to m-order derivative of uh and vh , respectively, and the flow and adjoint solu-
tions are obtained by a p-order scheme, i.e. uh −u =O(hp ) and vh −v =O(hp ). On
the other hand, the adjoint correction and remaining error are super-convergent
when using the VMM.

• Four types of adjoint-based error estimation are proposed for the simulations based
on the VMM. The error estimates after applying the adjoint identity, ε̃vmmd ,2, ε̃vmmd ,3,
are effective for computing the approximation error of the QoI and these VMM-
based error estimates are more efficient than the traditional technique obtained
with classical FEM.
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High-fidelity simulations produce high-dimensional data, which is especially chal-
lenging to store for solving the adjoint problem backwards in time. To this end, we in-
troduce a primal solution order-reduction technique. An enhanced online algorithm is
proposed to build a Reduced-Order Representation (ROR) of the full-order primal solu-
tion, which enables the flow solution to be accessed efficiently when the adjoint problem
is solved. This algorithm is based on the incremental Singular Value Decomposition de-
veloped for POD analysis on the fly. We examine the serial and parallel performance of
the algorithm for large-scale data sets here.

3.1. INTRODUCTION
Modal analysis has been an essential tool for understanding complex physical features
and unsteady nonlinear phenomena governed by partial differential equations (PDEs).
It is especially useful for large-scale systems since it can reveal underlying mechanisms
by extracting dominant flow structures [78]. One modal analysis technique is the Proper
Orthogonal Decomposition (POD) [79, 80], also known as the Karhunen-Loeve proce-
dure or Principal Component Analysis (PCA). It has been widely used to find an optimal
combination of basis functions that effectively represent the original full-order system.
Such bases can be used to build a reduced-order model (ROM) for high-dimensional
full-order data sets [115], which is useful for many applications, such as fluid-structure
interactions [73, 74], optimization [75, 116], uncertainty quantification [76, 117], and
optimal control [77, 118, 119]. With the development of supercomputers and the im-
provement of experimental techniques, we can now obtain high-fidelity solutions for
complicated flow phenomena and potentially provide insights into unrevealed mecha-
nisms. But these high-dimensional solutions pose a challenge for the computation of a
POD.

Common approaches to compute the POD for a given dataset (X ∈Rn×m) have been
discussed in Refs. [78, 120], which includes eigenvalue decomposition, the method of
snapshots, and singular value decomposition (SVD). The POD was introduced to fluid
dynamics by Lumey [121] using an eigenvalue decomposition of the covariance ma-
trix (i.e. R = X X ᵀ). When the number of degrees of freedom (DoF) (viz. the number
of rows) is larger than the number of snapshots (the number of columns), the method
of snapshots [122] can be used to solve the eigenvalue decomposition on an easy-solved
matrix C = X ᵀX and then POD modes can be computed with the snapshot solutions
(see Section 3.2.2). Due to the relation of the POD with the eigenvalue decomposition,
SVD [123] can also be applied on X directly to find the POD modes, which has been
shown to be more robust against round-off error [78]. These different approaches need
the complete snapshot matrix before performing the POD. The chosen approach de-
pends on the different structure of data sets, as shown in Figure 3.1. Typical high-fidelity
data, such as that from large-eddy simulations, are of high dimension in terms of DoF
and snapshots, making it prohibitively expensive for these offline approaches (see Fig-
ure 3.1).

In order to address this issue, researchers have developed alternative methods, such
as recursive POD [124, 125], randomized SVD [126, 127], and incremental SVD [86, 87].
The incremental SVD (iSVD) considered here can be used for high-dimensional POD
analysis online, without storing the data. The iSVD is initialized with a small given data
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Figure 3.1: Common approaches for solving POD with applications on different structures of data sets, and the
necessity of developing effective algorithms for high-dimensional data.

set with a known SVD and then updates the SVD in real-time during the simulation as
new snapshots become available. The incremental SVD was proposed by Brand [86]
for the incomplete data sets in computer vision and audio feature extraction. Fareed
et al. [88] extended the iSVD algorithm with a weighted inner product and gave an error
analysis [128] with a computed error bound for its approximation. Although the iSVD
is capable of performing POD analysis online, the cumulative cost over all snapshots,
O (nm3), can be higher than that of offline approaches [87].

This limitation can be overcome by reducing the size of a snapshot matrix or improv-
ing the algorithm. The former can be achieved by the adaptive selection of snapshots [89,
90], which removes redundant information and thus reduces the data size. An example
of the latter is to perform a low-rank incremental SVD with a prescribed number of POD
modes. This has been used to efficiently solve unsteady adjoint equations [92, 129] in
nonlinear problems, although the selection of truncation number has been ad hoc or
heuristic. Phalippou et al. [91] proposed a new incremental SVD algorithm using an er-
ror estimator, which incorporates the lost information of skipped snapshots and missed
singular values, which allows online truncation of the POD modes and the on-the-fly se-
lection of the independent snapshots. However, the number of POD modes computed
can rise significantly as the necessary snapshots are added.

Given that, in practice, a low-rank representation usually only needs a handful of
POD modes, we propose truncating POD modes online as the incremental SVD pro-
ceeds, which we refer to as the enhanced iSVD. We also develop an aggregated expres-
sion for the complete solution snapshots and construct two estimators for evaluating
the energy captured by the low-order approximation. These enable us to determine the
number of POD modes necessary based on cumulative energy.

The parallel POD has been studied using domain decomposition techniques [130,
131], and thus it is natural to consider the parallelization algorithm for incremental SVD
[132, 133] to make it more efficient and competitive in practical applications. Choi et
al. [134] employed the incremental SVD for reduced-order models in space and time,
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and studied large-scale particle transport simulations with the parallel incremental SVD.
Therefore, we also investigate the parallel performance of the proposed enhanced online
algorithm.

The remainder of this chapter is organized as follows. In Section 3.2, we present the
methodologies for building PODs offline and online, including an overview of three ba-
sic offline POD approaches, the standard incremental SVD for online PODs, and the en-
hanced online algorithm and its parallelization implementation adapted from [133]. The
enhanced online algorithm is further discussed in Section 3.3, with the development of
an aggregated expression for the snapshot matrix and the establishment of a priori es-
timators. Serial numerical experiments are used to demonstrate the impacts of the en-
hanced process in this section. The parallel performance of the enhanced online algo-
rithm is then investigated with high-dimensional data sets generated from an unsteady
one-dimensional Burgers problem in Section 3.4. Finally, we conclude the chapter with
Section 3.5.

3.2. METHODOLOGIES
There are different ways to achieve a POD analysis in literature, including offline POD
and online POD. The offline POD requires access to the entire set of flow solution snap-
shots. However, finite computational memory can constrain the use of offline approaches
for practical problems. In contrast, the online (or incremental) approach considers each
snapshot solution one by one and builds the POD on the fly, making it useful for re-
alistic large-scale problems. We will present the details of the offline and online POD
approaches in Section 3.2.2 and Section 3.2.3. An enhanced incremental SVD (which is
referred to as enhanced online algorithm) is proposed to improve the efficiency of the
online POD in Section 3.2.4, followed by the design of parallelization for this enhanced
online POD in Section 3.2.5.

3.2.1. DEFINITION OF POD
The goal of POD analysis is to identify an optimal combination of basis vectors for repre-
senting the original full-order dataset. Given a dataset including all snapshots u(i )(x) ∈
V (Ω), i = 1,2, · · · , Nt, x ∈ Ω, we seek to find a set of functions ϕ(x) ∈ V to represent the
dataset so that the mean square projection on all snapshots is maximized, i.e.

max
ϕ∈V

1

Nt

Nt∑
i=1

|〈u(i ),ϕ〉|2
〈ϕ,ϕ〉 , (3.1)

where 〈·, ·〉 denotes a inner product defined on Ω, and 〈u(i ),ϕ〉 describes a projection of
the solution snapshot u(i ) onto a function ϕ. This maximization problem is equivalent
to the following eigenvalue problem [77, 79, 121]

Kφ=λφ , (3.2)

where φ denotes the optimal function and

Kφ= 1

Nt

Nt∑
i=1

u(i ) 〈u(i ),φ〉 = 1

Nt

Nt∑
i=1

∫
Ω

u(i )(x)u(i )(x ′)φ(x ′)dx ′ . (3.3)
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It is noted that K is expressed in a continuous function over Ω. For the discrete solutions
X ∈ Rn×m , the problem Equation (3.2) can be interpreted as finding the eigenvalue λ j

and eigenvectors φ j from
R φ j =λ jφ j , (3.4)

where R = X X ᵀ ∈ Rn×n 1 is the covariance matrix with the inner product defined as
〈a,b〉 = aᵀb.

3.2.2. OFFLINE POD
There are three different approaches to computing the POD offline after gathering com-
plete snapshots into a solution matrix. By solving the eigenvalue problem in Equa-
tion (3.4), we can obtain the POD modes φ( j ), where j = 1,2, · · · ,min(n,m). For practical
applications, the number of DoF of the computational mesh (n) can be larger than the
number of snapshots (m), leading to a huge covariance matrix that is difficult to solve
directly. The method of snapshots [122] was proposed to overcome this difficulty by
instead finding the eigenvalue decomposition of C = X ᵀX . Its eigenvalues and eigen-
vectors are λ j and ψ( j ), where j = 1,2, · · · ,m. The POD modes are then computed as
follows

φ( j ) = Xψ( j )/
√
λ j . (3.5)

The eigenvalue decomposition of X X ᵀ can also be related to the SVD of X . In the follow-
ing, the SVD will be done using the LAPACK library [78], which gives X = V ΣW ᵀ, where
Σ,V and W are the singular value matrix, left and right singular vector matrix, respec-
tively. Each column of V denotes one POD mode φ( j ), and the coefficients α j (ti ), i =
1,2, · · · ,m are determined by Σ and W . The resulting offline POD is utilized as a refer-
ence for comparison with online PODs introduced in the next sections. Based on the
POD analysis, the reduced-order solution ũ(x, ti ) is calculated by

ũ(x, ti ) = ū(x)+
M∑

j=1
α j (ti )φ( j )(x) , (3.6)

where φ( j ), j = 1,2, · · · , M denote the selected POD modes, and M is usually smaller than
min(n,m). ū represents the mean value.

3.2.3. STANDARD INCREMENTAL SVD FOR ONLINE POD
The core updating step of the incremental SVD is demonstrated in Proposition 1 before
explaining the standard and enhanced incremental SVD algorithm.

Proposition 1. Suppose we have a dense matrix U with a known SVD expressed as U =
VΣWᵀ, where Σ ∈ Rk×k ,V ∈ Rn×k and W ∈ Rk×k are a singular value matrix, left and right
singular vector matrix, respectively. When a new column c ∈Rn×1 is added to formulate a
new updated Uu = [U c], a bordered-diagonal sparse matrix Q is formulated as

Q =
[

Σ d
0 p

]
, (3.7)

1Strictly speaking, R should be expressed as X X ᵀ/Nt, but R = X X ᵀ has been widely used in literature for
convenience since its eigenvectors are the same. The influence of Nt is thus lumped into the magnitude of
eigenvalues. (also referred to see [78])
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where d = Vᵀc,h = c −Vd , p =�
hᵀh. After applying SVD on Q as Q = VQΣQ Wᵀ

Q , we can
have a SVD of the new updated matrix Uu as

Uu = Vu ΣQ Wᵀ
u , (3.8)

where ΣQ , Vu and Wu are the new singular value matrix, left and right singular vector
matrix, respectively, given as

Vu = [V j ]VQ , Wu =
[

W 0
0 1

]
WQ , (3.9)

where j = h/p.

Proof. Considering a new column c, we can project it onto a space spanned by V as
d = Vᵀc. Then the orthogonal component of c is given as h = c −Vd = p j , where p =�

hᵀh and j = h/p. c can be re-expressed as a sum of the orthogonal and projected
components as c = p j +Vd . This leads to

Uu = [U c] = [VΣWᵀ p j +Vd ] = [V j ]

[
Σ d
0 p

] [
W 0
0 1

]ᵀ
= [V j ] Q

[
W 0
0 1

]ᵀ
.

(3.10)
Apparently, Q is a bordered-diagonal sparse matrix with only the last column fully filled
as shown in Figure 3.2.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

u1 u2 un un+1

[
Σ d
0 p

]

Figure 3.2: The bordered-diagonal matrix Q

We can easily obtain Q’s SVD as Q = VQΣQ Wᵀ
Q , resulting in

Uu = [V j ]VQ ΣQ

([
W 0
0 1

]
WQ

)ᵀ
= V′

u ΣQ W′
u
ᵀ , (3.11)

where V′
u = [V j ]VQ ,W′

u =
[

W 0
0 1

]
WQ . Here, a decomposition of Uu has been formu-

lated with a diagonal matrix, ΣQ . This decomposition will be an SVD only if V′
u and W′

u
are orthogonal matrices. For V′

u , we have

V′
u
ᵀV′

u = Vᵀ
Q

[
Vᵀ
j ᵀ
]

[V j ]VQ = Vᵀ
Q

[
VᵀV Vᵀ j
j ᵀV j ᵀ j

]
VQ . (3.12)
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Since VᵀV = I, the Vᵀ j is computed as

Vᵀ j = Vᵀ c −Vd

p
= 1

p
(Vᵀc −VᵀVd) = 1

p
(d −d) = #»

0 . (3.13)

Thus, we have j ᵀV = (Vᵀ j )ᵀ = #»
0
ᵀ

. j ᵀ j is determined as

j ᵀ j =
(

h

p

)ᵀ h

p
= hᵀh

p2 = 1. (3.14)

Since Vᵀ
Q VQ = I, we have V′

u
ᵀV′

u = I, i.e. Vu = V′
u is an orthogonal matrix. Similarly, due

to WᵀW = I and Wᵀ
Q WQ = I, we can prove W′

u is also an orthogonal matrix as

W′
u
ᵀW′

u = Wᵀ
Q

[
Wᵀ 0
0 1

][
W 0
0 1

]
WQ = Wᵀ

Q

[
WᵀW 0

0 1

]
WQ = I . (3.15)

Consequently, Proposition 1 is confirmed.

Based on the above, the standard incremental algorithm is formulated as shown in
Algorithm 2. After the projection of c onto V , the matrix Q is formulated, where small
projections less than a threshold of tol [88] are neglected to avoid the effects of round-
off errors. A standard SVD then is applied to Q before the updating process. It is then
decided if the added column will increase the rank of the updated matrix (lines 8-13).
Here the subscript denotes the index of row and column starting from 1 (VQ(1:k,1:k) is
a sub-matrix of VQ with first k-th rows and columns, for instance). The truncation of
small singular values less than a prescribed threshold tolsv is used to improve efficiency
without affecting the accuracy of the updated modes. Finally, the updated modes are
re-orthogonalized by the modified Gram-Schmidt process if non-orthogonality occurs
among them, which improves the robustness of the algorithm. Hence, the standard in-
cremental SVD is applied on all snapshots to build POD online after its initialization with

Σ= ‖c 0‖2 ,V = c/Σ(1,1) ,W = [1] , (3.16)

where c 0 denotes the first snapshot solution.

3.2.4. ENHANCED INCREMENTAL SVD FOR ONLINE POD
Albeit the standard incremental SVD can achieve online POD analysis, the total compu-
tational cost is more expensive than the offline method. In practice, however, the num-
ber of POD modes (M) necessary for building an accurate reduced-order model can be
far smaller than the number of DoF (n) and snapshots (m). Thus, to improve the com-
puting efficiency, we introduce the truncation of a selected number of POD modes into
the incremental SVD algorithm as shown in Algorithm 3 between line 14 and line 16,
leading to an enhanced incremental SVD. This is referred to as enhanced online algo-
rithm (EOA) in the following content. This truncation can remarkably reduce the com-
puting cost of incremental SVD. This improvement comes with a sacrifice in the accuracy
of POD analysis due to the influence of neglected high-order modes. However, this sac-
rifice is often within a reasonable range and it can be controlled by adding more POD
modes during the incremental process. This will be demonstrated by the following nu-
merical results.
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Algorithm 2 Standard incremental SVD for building POD

Input: V ∈Rn×k ,Σ ∈Rk×k ,W ∈Rk×k ,c ∈Rn×1,tol,tolsv

Output: V ,Σ,W

1: k = nColumns(V )
2: d =V ᵀc, p = (|(c −V d)ᵀ(c −V d)|)1/2 � Part 1: Projection
3: if p < tol then

4: Q =
[

Σ d
0 0

]
5: else

6: Q =
[

Σ d
0 p

]
� Part 2: SVD solution

7: VQ ,ΣQ ,WQ = SVD (Q)
� Part 3: LSV update

8: if (p < tol) OR (k ≥ n) then

9: V =V VQ(1:k,1:k) , Σ=ΣQ(1:k,1:k) , W =
[

W 0
0 1

]
WQ(1:k+1,1:k)

10: else
11: j = (c −V d)/p

12: V = [V j ]VQ , Σ=ΣQ , W =
[

W 0
0 1

]
WQ

13: k = k +1
� Part 5: Small SV truncation

14: if (Σ(k−1,k−1) > tolsv) AND (Σ(k,k) < tolsv) then
15: k = k −1
16: Σ=Σ(1:k,1:k), V =V(:,1,k), W =W(:,1:k)

� Part 6: Reorthogonalization
17: if |V ᵀ

(:,k)V(:,1)| > min(tol,ε×n) then � ε is double-precision machine epsilon
18: V = ModifiedGramSchmidt(V )

3.2.5. PARALLEL DESIGN OF ENHANCED ONLINE ALGORITHM
There exist two different frameworks to parallelize the iSVD in literature. Iwen et al. [132]
proposed a hierarchical approach to computing local iSVD in each processor followed by
a global agglomerative iSVD for all processors. This avoids data communication during
local operations but does not complete the POD analysis across all processors at each
incremental step. The computing cost of global operations increases when increasing
the number of processors. Alternatively, one may note that the incremental SVD involves
multiplications between vectors and matrices, and thus their parallelization can be used
to improve computing performance. Arrighi et al. [133] developed a framework for the
POD, libROM, using parallel operations on matrices and vectors. This approach gives
a global POD analysis at each incremental step. We develop our method based on this
open-source library, originally intended for standard incremental SVD, and improve it
by introducing the enhanced process using the same parallel data structure.

In libROM, both vectors and matrices are stored in a distributed way so that the SVD



3.2. METHODOLOGIES

3

43

Algorithm 3 Enhanced incremental SVD for building POD

Input: V ∈Rn×k ,Σ ∈Rk×k ,W ∈Rk×k ,c ∈Rn×1,tol,tolsv

Output: V ,Σ,W

1: k = nColumns(V )
2: d =V ᵀc, p = (|(c −V d)ᵀ(c −V d)|)1/2 � Part 1: Projection
3: if p < tol then

4: Q =
[

Σ d
0 0

]
5: else

6: Q =
[

Σ d
0 p

]
� Part 2: SVD solution

7: VQ ,ΣQ ,WQ = SVD (Q)
� Part 3: LSV update

8: if (p < tol) OR (k ≥ n) then

9: V =V VQ(1:k,1:k) , Σ=ΣQ(1:k,1:k) , W =
[

W 0
0 1

]
WQ(1:k+1,1:k)

10: else
11: j = (c −V d)/p

12: V = [V j ]VQ , Σ=ΣQ , W =
[

W 0
0 1

]
WQ

13: k = k +1
� Part 4: Enhanced process

14: if (k > M) then
15: Σ=Σ(1:M ,1:M), V =V(:,1:M), W =W(:,1:M)

16: k = M
� Part 5: Small SV truncation

17: if (Σ(k−1,k−1) > tolsv) AND (Σ(k,k) < tolsv) then
18: k = k −1
19: Σ=Σ(1:k,1:k), V =V(:,1,k), W =W(:,1:k)

� Part 6: Reorthogonalization
20: if |V ᵀ

(:,k)V(:,1)| > min(tol,ε×n) then � ε is double-precision machine epsilon
21: V = ModifiedGramSchmidt(V )

of Q can be computed locally. They are distributed to np processors equally or unequally
for parallel computational operations, as illustrated in Figure 3.3. A vector is split into np

parts stored in np processors, respectively. The matrix is stored in a similar way but for
each column. This ensures that one part of the computational mesh will be operated
by only one processor. Different types of computations between matrices and vectors
are summarized in Table 3.1, where a local operation represents an operation with data
that is undistributed or stored on every processor, whereas a global operation denotes
an operation with distributed data. The parallel enhanced online algorithm developed
here is based upon such distributed computations.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

v1 v2 vn vn+1

Matrix

Proc 0

Proc 1

Proc np

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vector

Proc 0

Proc 1

Proc np

Figure 3.3: Parallelization design of matrices and vectors in incremental SVD

Table 3.1: Parallelization operations in incremental SVD

Different types of data Local operations Global operations

Vectorᵀ · Vector undis*· undis → undis dis†· dis → undis

Matrix · Vector undis · undis → undis dis · undis → dis

Matrixᵀ · Vector undis · undis → undis dis · dis → undis

Matrix · Matrix undis · undis → undis dis · undis → dis

Matrixᵀ · Matrix undis · undis → undis dis · dis → undis

* denotes the undistributed data.
† denotes the distributed data.

3.3. PERFORMANCE OF THE ENHANCED ALGORITHM IN SERIAL
The number of selected POD modes (M) is an important parameter as it determines the
accuracy of reconstructed low-order solutions. There are different methods to deter-
mine this number, including heuristic and statistical methods [135]. A common way is
to quantify the energy captured by selected POD modes, namely the cumulative energy
eM ,

eM =
∑M

i=1σ
2
i∑min(m,n)

i=1 σ2
i

, (3.17)

where σi denotes the singular values. eM , typically larger than 90% [120], provides a way
to evaluate whether the POD can rationally represent the full-order solutions. Specific
thresholds of the cumulative energy captured, such as 99%, have been shown effective
for representing the original system in literature [74, 77, 118, 119].

An aggregated expression of the solution matrix is formulated for the enhanced on-
line algorithm, by which the solution matrix is divided into the reconstructed and trun-
cated components. Using this expression, we establish two estimators for the lower
bound of the cumulative energy during the incremental process. We present this ag-
gregated expression in Section 3.3.1 and the lower-bound estimators in Section 3.3.2,
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followed by the investigation of their performance using an unsteady Burgers problem
under serial computations in Section 3.3.3.

3.3.1. AN AGGREGATED EXPRESSION FOR THE ENHANCED ALGORITHM
In this section, we analyze the influence of the enhanced process on the incremental
SVD, focusing on the accuracy of reconstructed solutions based on selected POD modes.
Assuming that we select M POD modes as the reduced basis functions, the reconstructed
solution is expressed as Ũ M =V MΣM W ᵀ

M , where V M ,ΣM ,W M are the first M-truncated
matrices of V ,Σ,W , respectively. We can express the solution data matrix at any k-th
incremental step as follows

U k =

⎧⎪⎨⎪⎩
Ũ k k � M

Ũ k +U
′
k k = M +1

Ũ k +U
′
k +
∑k−1

i=M+1 U
′(k)
i k � M +2

, (3.18)

where U k ,k = 1,2, · · · ,n is a sub-matrix of the entire solution matrix X defined by the first
k columns. Ũ k = Ṽ k Σ̃kW̃

ᵀ
k denotes the reconstructed solution after the k-th incremental

step, defined as

Ṽ k =
{

V (k)

V (k)
(:,1:M)

Σ̃k =
{
Σ(k)

Σ(k)
(1:M ,1:M)

W̃ k =
{

W (k) ,k � M

W (k)
(:,1:M) ,k � M +1

, (3.19)

where Σ̃k and Ṽ k ,W̃ k denote the sigular value matrix and singular vector matrices. U
′
k =

V (k)
(:,M+1) Σ

(k)
(M+1,M+1)W

(k)
(:,M+1)

ᵀ
is the truncated solution at the k-th incremental step, and

it is a zero matrix when k � M . U
′(k)
i (k � M + 2, k > i � M + 1) represents solutions

truncated at the i -th step but extended to the k-th step, and it is defined by

U
′(k)
i = [U

′
i

#»
0 · · · #»

0︸ ︷︷ ︸
k−i

] . (3.20)

This implies

U
′(k+1)
k = [U

′
k

#»
0 ], k � M +1

U
′(k+1)
i = [U

′(k)
i

#»
0 ], k � M +2,k > i � M +1.

(3.21)

The first and second expressions in Equation (3.18) require the same operations as
the standard incremental SVD, while the truncated solution U

′
M+1 exists in the second

expression. The third expression is the scenario we usually meet in practice, which is
proved as follows.

Proof. When k � M , the expression is identical to the standard incremental SVD. This
is to say that U k = V (k)Σ(k)W (k)ᵀ = Ũ k . When k = M +1, we have U M+1 = [U M c M+1] =
[Ũ M c M+1]. The SVD is utilized to obtain

U M+1 =V (M+1)Σ(M+1)W (M+1)ᵀ

=V (M+1)
(:,1:M)Σ

(M+1)
(1:M ,1:M)W

(k)
(:,1:M)

ᵀ +V (M+1)
(:,M+1)Σ

(M+1)
(M+1,M+1)W

(k)
(:,M+1)

ᵀ
�Additivity

:= Ṽ M+1Σ̃M+1W̃
ᵀ
M+1 +v (M+1)

M+1 σ(M+1)
M+1 w (M+1)

M+1
ᵀ

�Defined

:=�U M+1 +U
′
M+1 ,

(3.22)
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which gives the second expression. It is noted that U
′
M+1 will be truncated since we only

consider M POD modes. The third expression is proved using mathematical induction
as follows.

Base case: When k = M +2, the solution data is expressed as

U M+2 = [U M+1 c M+2]

= [�U M+1 +U
′
M+1 c M+2]

= [�U M+1 c M+2]+ [U
′
M+1

#»
0 ]

= [�U M+1 c M+2]+U
′(M+2)
M+1 ,

(3.23)

We apply the SVD on [�U M+1 c M+2], resulting in

[�U M+1 c M+2] =V (M+2)Σ(M+2)W (M+2)ᵀ

=V (M+2)
(:,1:M)Σ

(M+2)
(1:M ,1:M)W

(M+2)
(:,1:M)

ᵀ +V (M+2)
(:,M+1)Σ

(M+2)
(M+1,M+1)W

(M+2)
(:,M+1)

ᵀ

:= Ṽ M+2Σ̃M+2W̃
ᵀ
M+2 +v (M+2)

M+1 σ(M+2)
M+1 w (M+2)

M+1
ᵀ

:=�U M+2 +U ′
M+2 ,

(3.24)

where �U M+2 = Ṽ M+2Σ̃M+2W̃
ᵀ
M+2 and U ′

M+2 = v (M+2)
M+1 σ(M+2)

M+1 w (M+2)
M+1

ᵀ
. Consequently, the

solution is stated as U M+1 =�U M+2 +U ′
M+2 +U

′(M+2)
M+1 , i.e. U M+2 is true.

Inductive step: Assume that the induction hypothesis holds for a particular k � M + 2,
meaning

U k = Ũ k +U ′
k +

k−1∑
i=M+1

U
′(k)
i . (3.25)

When n = k +1, the updated solution matrix is expressed as

U k+1 = [U k ck+1] = [Ũ k +U ′
k +

k−1∑
i=M+1

U
′(k)
i ck+1]

= [Ũ k ck+1]+ [U ′
k

#»
0 ]+ [

k−1∑
i=M+1

U
′(k)
i

#»
0 ]

= [Ũ k ck+1]+U
′(k+1)
k +

k−1∑
i=M+1

U
′(k+1)
i = [Ũ k ck+1]+

k∑
i=M+1

U
′(k+1)
i ,

(3.26)

We apply the SVD on [Ũ k ck+1] and express it as follows

[Ũ k ck+1] =V (k+1)Σ(k+1)W (k+1)ᵀ

=V (k+1)
(:,1:M)Σ

(k+1)
(1:M ,1:M)W

(k+1)
(:,1:M)

ᵀ +V (k+1)
(:,M+1)Σ

(k+1)
(M+1,M+1)W

(k+1)
(:,M+1)

ᵀ

:= Ṽ k+1Σ̃k+1W̃
ᵀ
k+1 +v (k+1)

M+1 σ
(k+1)
M+1 w (k+1)

M+1

ᵀ

:= �U k+1 +U
′
k+1 ,

(3.27)
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where �U k+1 = Ṽ k+1Σ̃k+1W̃
ᵀ
k+1 and U ′

k+1 = v (k+1)
M+1 σ

(k+1)
M+1 w (k+1)

M+1

ᵀ
. Therefore, we deduce

that

U k+1 = �U k+1 +U ′
k+1 +

k∑
i=M+1

U
′(k+1)
i . (3.28)

In other words, the statement U k+1 also holds true, and we establish the inductive step.

Conclusion: As we have proved the base case and the inductive step, the original state-
ment U n holds for every natural number n � M +2.

3.3.2. LOWER-BOUND ESTIMATORS OF CUMULATIVE ENERGY

By virtue of the above-mentioned aggregated expression, we establish two lower-bound
estimators for the cumulative energy after applying the enhanced process. Since we can
evaluate the summation of singular values by the Frobenius norm (F -norm) of matrices,

i.e. ‖A‖F =
√∑min{m,n}

i=1 σ2
i (A), the energy ratio of the M-selected POD modes is com-

puted as

eM =
∑M

i=1σ
2
i∑min(m,n)

i=1 σ2
i

= ‖Ũ‖2
F

‖U‖2
F

. (3.29)

Then these two lower-bound estimators at the k-th incremental step are given as

ek
con = ‖Ũ k‖2

F(
‖Û k‖F +F (k)

1

)2 (3.30)

and

ek
simp = ‖Ũ k‖2

F

‖Û k‖2
F +F (k)

2

, (3.31)

where Û k = Ũ k +U
′
k , and thus ‖Û k‖2

F = ‖Ũ k‖2
F +‖U

′
k‖2

F due to the orthogonality of POD

modes at k-th incremental step. F (k)
1 and F (k)

2 are given by

F (k)
1 =

k−1∑
i=M+1

‖U
′(k)
i ‖F = F (k−1)

1 +‖U ′
k−1‖F, k � M +2 (3.32)

F (k)
2 =

k−1∑
i=M+1

‖U
′(k)
i ‖2

F = F (k−1)
2 +‖U

′
k−1‖2

F, k � M +2, (3.33)

where F (M+1)
1 = 0 and F (M+1)

2 = 0. These are only dependent on the solution truncated
in previous steps and are utilized to evaluate the error at the next step. Using these two

formulas enables us to avoid storing all ‖U
′(k)
j ‖F, i = M +1, · · · ,k−1, and have a recursive

approach to compute the ‖U k‖2
F.

ek
con is derived by the Cauchy–Schwarz inequality of the Frobenius inner product, viz.
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〈A,B〉F � ‖A‖F ‖B‖F. We can evaluate ‖U k‖2
F as

‖U k‖2
F = ‖Û k‖2

F +‖
k−1∑

i=M+1
U

′(k)
i ‖2

F +2
k−1∑

i=M+1
〈Û k ,U

′(k)
i 〉F

= ‖Û k‖2
F +

k−1∑
i=M+1

k−1∑
j=M+1

〈U ′(k)
i ,U

′(k)
j 〉F +2

k−1∑
i=M+1

〈Û k ,U
′(k)
i 〉F

� ‖Û k‖2
F +

k−1∑
i=M+1

k−1∑
j=M+1

‖U
′(k)
i ‖F‖U

′(k)
j ‖F +2

k−1∑
i=M+1

‖Û k‖F ‖U
′(k)
i ‖F

= ‖Û k‖2
F +F (k)

1 F (k)
1 +2F (k)

1 ‖Û k‖F =
(
‖Û k‖F +F (k)

1

)2
.

(3.34)

Then the first lower-bound estimator of ek
M is derived as

ek
M = ‖Ũ k‖2

F

‖U k‖2
F

� ‖Ũ k‖2
F

‖Û k‖2
F +F (k)

1 F (k)
1 +2F (k)

1 ‖Û k‖F

:= ek
con . (3.35)

This estimator can be conservative in practice because the way chosen to bound ‖U k‖2
F

can produce a larger value. Therefore, this estimator provides a conservative evaluation
of the cumulative energy. However, this feature can guarantee that all dominant modes
are included using the enhanced incremental SVD. If we use this estimator to determine
the number of POD modes, it will recover the standard incremental SVD when the value
of the estimator is beyond the threshold.

Based on Equation (3.18), however, we can have an accurate computation for the
Frobenius norm of U k as stated in Proposition 2, which will be used to construct the
other estimator, ek

simp.

Proposition 2. Suppose that we have the expression of U k as shown in Equation (3.18),
the Frobenius norm of U k is given as

‖U k‖2
F =

⎧⎪⎨⎪⎩
‖Ũ k‖2

F k � M

‖Ũ k‖2
F +‖U

′
k‖2

F k = M +1

‖Ũ k‖2
F +‖U

′
k‖2

F +
∑k−1

i=M+1 ‖U
′(k)
i ‖2

F k � M +2

, (3.36)

Proof. The F -norm for the truncated solutions U
′(k)
i is given before the detailed proof. It

satisfies the following equation

‖U
′(k)
i ‖F = ‖U

′
i‖F ,k � M +2, i = M +1, · · · ,k −1. (3.37)

This is an inherent property of U
′(k)
i , which can be verified using Equation (3.20) and the

definition of F -norm.
When k � M+1, this expression is satisfied as there is no difference from the standard

incremental SVD. We will prove the general case by mathematical induction as follows.



3.3. PERFORMANCE OF THE ENHANCED ALGORITHM IN SERIAL

3

49

Base case: When k = M +2, the solution data is expressed as

‖U M+2‖2
F = ‖U M+1 c M+2‖2

F

= ‖U M+1‖2
F +‖c M+2‖2

2 �Definition of F -norm

= ‖�U M+1‖2
F +‖U

′
M+1‖2

F +‖c M+2‖2
2 �When k = M +1

= ‖�U M+1 c M+2‖2
F +‖U

′
M+1‖2

F �Definition of F -norm

= ‖�U M+2 +U
′
M+2‖2

F +‖U
′
M+1‖2

F �E quati on (3.24)

= ‖�U M+2‖2
F +‖U

′
M+2‖2

F +‖U
′
M+1‖2

F �Orthogonality

= ‖�U M+2‖2
F +‖U

′
M+2‖2

F +‖U
′(M+2)
M+1 ‖2

F �Equation (3.37) .

(3.38)

Therefore, ‖U k‖2
F is satisfied when k is equal to M +1.

Inductive step: Assume that the induction hypothesis holds for a particular k � M + 2,

viz. ‖U k‖2
F is expressed as

‖U k‖2
F = ‖Ũ k‖2

F +‖U
′
k‖2

F +
k−1∑

i=M+1
‖U

′(k)
i ‖2

F , (3.39)

when n = k +1, we can obtain the F -norm of the solution matrix as

‖U k+1‖2
F = ‖U k c k+1‖2

F

= ‖U k‖2
F +‖c k+1‖2

2 �Definition of F -norm

= ‖Ũ k‖2
F +‖U

′
k‖2

F +
k−1∑

i=M+1
‖U

′(k)
i ‖2

F +‖c k+1‖2
2 �Equation (3.39)

= ‖Ũ k c k+1‖2
F +‖U

′
k‖2

F +
k−1∑

i=M+1
‖U

′(k)
i ‖2

F �Definition of F -norm

= ‖�U k+1 +U
′
k+1‖2

F +‖U
′
k‖2

F +
k−1∑

i=M+1
‖U

′(k)
i ‖2

F �Equation (3.27)

= ‖�U k+1‖2
F +‖U

′
k+1‖2

F +‖U
′
k‖2

F +
k−1∑

i=M+1
‖U

′(k)
i ‖2

F �Orthogonality

= ‖�U k+1‖2
F +‖U

′
k+1‖2

F +
k∑

i=M+1
‖U

′(k+1)
i ‖2

F , �Equation (3.37)

(3.40)
which proves that the statement for ‖U k+1‖2

F is held, thereby establishing the inductive
step.

Conclusion: As the base case and the inductive step have been proved, the original state-
ment ‖U n‖2

F holds for every natural number n � M +2.

The second estimator is given as

ek
M = ‖Ũ k‖2

F

‖U k‖2
F

= ‖Ũ k‖2
F

‖Ũ k‖2
F +‖U

′
k‖2

F +‖
k−1∑

i=M+1
U

′(k)
i ‖2

F

= ‖Ũ k‖2
F

‖Û k‖2
F +F (k)

2

:= ek
simp .

(3.41)
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It is worth noting that during the incremental process Ũ k is a combination of M-selected
modes for the complete solution U k when k � M . The approximation of solution matrix
with the first M POD modes is the most optimal combination [82]. In other words, the
summation of its first k singular values is larger than or equal to those from any other
rank-k approximation, thereby leading to

∑M
i=1σ

2
i (Ũ k ) � ∑M

i=1σ
2
i (U k ). As a result, this

estimator is a lower bound for the cumulative energy captured by standard iSVD.

3.3.3. IMPACTS OF TRUNCATION NUMBER ON THE ENHANCED ALGORITHM
The truncation number of the enhanced process generally can be larger than the num-
ber of selected POD modes (M). We refer to this truncation number as Me in the subse-
quent text. The gap between Me and M can compensate for interactions with high-order
modes that are not chosen yet, yielding more accurate M-selected POD modes. In this
section, we investigate the impact of different Me for the enhanced process on the lower-
bound estimators and POD modes, using the solutions from a one-dimensional (1D)
unsteady Burgers problem. Results are presented for serial iSVD and enhanced iSVD
computations.

We consider a space-time domain Ω : [0,1]× I : [0,20]. The Burgers equation is often
used as a mathematical model for applications that involve shock wave propagation in
viscous flows or idealized turbulence [136], and it is expressed as

∂u

∂t
+u

∂u

∂x
−ν

∂2u

∂x2 = f , (3.42)

where u is the solution, with boundary conditions u(0, t ) = u(1, t ) = 0 and an initial con-
dition u(x,0) = 0. ν, the viscosity coefficient, is chosen as 0.01 here, and f ∈R is a known
forcing term as

f (x, t ) = 1+ 5

30

3∑
i=1

sin(iπt )sin(iπx) . (3.43)

This forcing term f is introduced to produce a solution with large fluctuations and a
boundary layer near the right boundary. The primal problem is discretized by piecewise
linear bases in space and solved by the variational multiscale method with 256 elements.
We apply a four-stage second-order Runge-Kutta time marching scheme to solve this
unsteady problem with a time step of Δt = 0.001. The time interval of [0,10] is utilized
for flow development before a statistical steady state is reached during the time period
of [10,20].

The data used is sampled every 20 time steps in a time interval [10,12], generating a
solution matrix of 257∗100. We applied the enhanced online algorithm to analyze this
dataset and compare it with the reference values obtained by the standard iSVD. Fig-
ure 3.4 shows the cumulative energy computed based on two estimators, econ and esimp,
and the reference value at the terminating step when different truncation numbers (Me )
of the enhanced process are considered. As expected, a great portion of the solution en-
ergy is captured as Me is increased. It is noted that the estimator econ lies far below the
actual value when Me is small but does converge to the actual value for Me > 10. esimp is
also lower than the reference value, but it provides a more accurate estimate than econ.
In this case, a difference of less than 0.1% is observed for M = 3, which is considered
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Figure 3.4: Cumulative energy of two estimators, econ and esimp at the terminating step (100 steps), compared
with the reference value from the standard incremental SVD, with different numbers (Me ) for the enhanced
online process.

sufficiently accurate for practical purposes. Using M = 4 captures 99.96% of the energy
and reduces the computation run time by a factor of 125 relative to a full iSVD. Figure 3.5
presents the change of cumulative energy for these two estimators during the incremen-
tal process when Me is equal to 1, 2 and 3, respectively. We can observe esimp is more
accurate than econ over the whole incremental process.
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Figure 3.5: Cumulative energy computed by estimators, econ and esimp, and reference value from the stan-
dard incremental SVD during the incremental process for first three truncation numbers (Me ) of the enhanced
process.

It is noted that F (k)
2 can be related to the aforementioned F (k)

1 as

(
F (k)

1

)2 = F (k)
2 +2

k−1∑
i=M+1

k−1∑
j=i+1

‖U
′(k)
i ‖F‖U

′(k)
j ‖F . (3.44)
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Considering the non-negative values of ‖Û k‖F and F (k)
1 in Equation (3.30), we have F (k)

2 �
(F (k)

1 )2 and thus esimp is more accurate than econ. Although the performance of the en-
hanced iSVD depends on the problems considered, these two estimators equip the user
of the enhanced iSVD with a priori knowledge of the accuracy of the POD analysis, al-
lowing the computing cost for a desired accuracy to be minimized.

Figure 3.6 shows the comparison of the POD modes computed based on different
enhanced iSVDs and standard iSVD. As shown in Figure 3.6(a), the shape of the first POD
mode computed from the enhanced algorithm with Me = 1 is significantly different from
the reference, while increasing Me reduces this discrepancy.
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Figure 3.6: Comparisons of the first three POD modes computed by enhanced and standard iSVDs, with trun-
cations numbers of Me = 1,2,3, respectively.

This phenomenon can be observed for the second and third modes as well. Table 3.2
shows the first three eigenvalues under these three enhanced iSVDs in comparison with
the ones from standard iSVD. We can see that increasing Me allows the POD analysis
to capture more kinetic energy, but also improves the accuracy of the dominant modes.
Me = 3 is enough to produce an accurate POD analysis for the current problem with a
relative eigenvalue error less than 0.1%.

Table 3.2: First three eigenvalues computed by different enhanced iSVDs in relative to the reference from the
standard iSVD.

Reference
Truncation number (Me )
3 2 1

First eigenvalue 27.00840 27.00677 26.54177 24.13557
Second eigenvalue 11.48709 11.48611 10.99621
Third eigenvalue 4.682270 4.678387

3.4. NUMERICAL RESULTS IN PARALLEL
In this section, we investigate the parallel performance of the enhanced online algorithm
using both a synthetic matrix and numerical solutions from the 1D unsteady Burger
problem. For the latter case, we generate two types of data, a matrix with more DoF
(n > m) and a matrix with more snapshots (n < m), to study the impacts of the enhanced
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process on computing expense. All computations were performed on a 32-core node of
a Beowulf Linux cluster equipped with AMD Opteron(tm6136) processors and 128 GB of
RAM.

The enhanced online algorithm is divided into six parts, as shown on the right side
of Algorithm 3, to identify the main contributors to computing cost and to study their
parallel performance. These parts consist of projection, SVD solution, LSV (left singular
vectors) update, enhanced process, small SV (singular values) truncation, and reorthog-
onalization. In addition, we define the major parallel operations as the summation of
the projection, LSV update and reorthogonalization, which will be studied in the subse-
quent cases.

3.4.1. ANALYSIS ON A SYNTHETIC MATRIX
A synthetic matrix of 320000×50 is formed based on randomized values from a uniform
distribution. Strong scaling performance is evaluated by performing the analysis on this
matrix using up to 32 cores. Figure 3.7(a) shows the total time consumption for standard
and enhanced iSVDs. The computing cost of the standard iSVD is much higher than
that of the enhanced one, even up to two orders higher in this case. Although using a
very small number of modes can affect the accuracy of POD analysis, the main dynam-
ics can normally be captured by relatively few modes, resulting in considerably lower
computing costs. Figure 3.7(b) shows the truncated speedup defined as the ratio of the
total time consumption of the standard iSVD to that of the enhanced iSVD. All enhanced
iSVDs are able to achieve constant improvement, which indicates the high scalability of
the enhanced algorithms.
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Figure 3.7: Time consumption of standard incremental SVD and enhanced online algorithm in parallel for a
320000-by-50 synthetic matrix, and the truncated speedups of these enhanced iSVDs. np denotes the number
of cores.

The parallel speedups for the total incremental time, major parallel operations, and
LSV update are shown in Figure 3.8. Results from a standard iSVD and three enhanced
iSVDs are shown. All of them scale well in parallel. For the speedup of the LSV update,
the enhanced iSVDs produce scaling performance similar to the standard one, linearly
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below the ideal value. This good agreement is observed in the major parallel operations
as well, although this is less significant. The speedup of the total incremental time by
the enhanced iSVDs increases linearly but is much lower than the standard iSVD as we
use more cores. Furthermore, using a smaller number Me for the enhanced process can
degrade the speedup to some extent. This is because the enhanced process reduces the
computing cost of the major parallel operations, and thus the proportion of the com-
puting cost from other undistributed operations becomes more and more apparent with
increased cores, which is explained in detail below. However, this degradation is not sig-
nificant compared to the speedup improvement.
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Figure 3.8: The speedup of standard/enhanced parallel incremental SVDs for the total incremental time, major
parallel operations and LSV update for a 320000-by-50 synthetic matrix.

The time ratio of the computing cost for different parts is given in Figure 3.9. Among
these six parts, the LSV update is the major contributor to the total computing time for
both standard and enhanced iSVDs. However, the enhanced algorithm mitigates this
contribution. The smaller the number Me for the enhanced process is, the lower the
contribution of the LSV update is to the total cost. The enhanced process reduces the di-
mension of VQ and WQ , and thus multiplications involving these matrices are changed
to relatively cheap calculations. For a small Me , the computing cost of the projection
becomes significant. Additionally, the state vectors are generated by randomized val-
ues and are independent, leading to good orthogonality of the singular vectors. Thus
reorthogonalization is not a significant cost for this problem.

3.4.2. UNSTEADY FLOW PROBLEM

The Burgers problem of Section 3.3.3 is used to generate large-scale matrices for parallel
performance studies. We construct two types of matrices, a matrix with more DoF and a
matrix with more snapshots. We refer to the former as a deep matrix and the latter as a
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Figure 3.9: The time ratio of computing cost for different parts during the standard/enhanced parallel incre-
mental SVDs, including the projection, SVD solution, LSV update, reorthogonalization, enhanced process,
small SV truncation.

wide matrix. Using interpolations of the original data set, the deep matrix of 327681×200
is used to study a strong scaling performance, in which each core holds at least 10000
data points. The wide matrix (257×2000) is used to perform a weak scaling study.

A DEEP MATRIX WITH MORE DOF
This scenario corresponds to when we solve the problem with a fine mesh but we only
need to gather a small number of snapshots for modal analyses in order to study the
dominant flow structures. A small number of snapshots may arise, for instance, because
linearly dependent solutions are skipped for the analysis, using a selection of snapshots [89,
91].

Figure 3.10 shows the computing time of the enhanced and standard iSVDs for this
case and the speedup of the enhanced online algorithm. We can observe that the com-
puting cost of both standard and enhanced iSVDs is constantly reduced when using
more cores. The enhanced algorithm is capable of improving the computational effi-
ciency at a stable rate when multiple cores are used.

Figure 3.11 shows the parallel speedup of computing cost for the total incremental
process, major parallel operations and LSV update for the standard incremental SVD and
enhanced online algorithm. For the total incremental time, a good strong-scaling per-
formance is observed, occasionally outperforming the ideal value. The performance for
major parallel operations behaves in a similar vein, although the parallel speedup of the
LSV update is well below the ideal value. The pseudo hyper-speedup results from the
computational cost of the reorthogonalization. Figure 3.12(a) presents the number of
reorthogonalizations versus the number of cores. It decreases as the number of cores in-
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Figure 3.10: Time consumption of standard incremental SVD and enhanced online algorithm in parallel, and
the truncated speedup of the enhanced process for a 327681-by-200 deep matrix.

np
5 15 25 35

LSV update

np
5 15 25 35

Major parallel operations

np

P
ar

al
le

l s
p

ee
d

u
p

5 15 25 35
0

10

20

30

40

50 Standard
M=100
M=25
M=5
M=1
Ideal value

Total incremental process

Figure 3.11: The parallel speedup of standard/enhanced parallel incremental SVDs for the total incremental
time, major parallel operations and updating left singular vectors on a thin matrix.

creases. The computational cost of reorthogonalition can benefit from the cancellation
of round-off errors when using more cores. Figure 3.12(b) compares the orthogonality
values computed by the standard iSVD with 1 and 32 cores respectively. The number of
orthogonality values exceeding the threshold in the 1-core case is larger than that num-
ber with 32 cores.

Figure 3.13 shows the time ratio of each part for the standard and enhanced iSVDs.
These ratios for all iSVDs keep roughly a constant value in parallel. The LSV update and
reorthogonalization are two main contributors to the computing cost. When using a



3.4. NUMERICAL RESULTS IN PARALLEL

3

57

np

N
u

m
b

er
 o

f 
re

o
rt

h
o

g
o

liz
at

io
n

0 5 10 15 20 25 30 35
-20

0

20

40

60

80

100

120

140
Standard
Me=100
Me=25
Me=5
Me=1

(a) Reorthogonalization number

Incremental steps

O
rt

h
o

g
o

n
al

it
y 

va
lu

e

0 5 10 15 20 25 30 35 40 45 50
10-14

10-13

10-12

10-11

10-10

10-9

1 core
32 cores

Threshold

R
eo

rt
h

o
g

o
n

al
iz

e
N

o
t 

re
o

rt
h

o
g

o
n

al
iz

e

(b) Orthogonality values for standard iSVD

Figure 3.12: The number of reorthogonalizations of the standard incremental SVD and enhanced online al-
gorithm in parallel, and the comparison of orthogonality values computed for 1-core and 32-core cases for a
deep matrix (327681×200).

small Me , the contribution of projection also plays a crucial role in computing cost.
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Figure 3.13: The time ratio of computing cost for different parts during the standard/enhanced parallel incre-
mental SVDs on a 327681-by-200 deep matrix, including the projection, SVD solution, LSV update, reorthogo-
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Normalized time consumption Since the re-orthogonalization relies on the arithmeti-
cal operations that are affected by the round-off error, the number of reorthogonaliza-
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tions varies when we run the problem with different numbers of cores. Therefore the
scaling performance is oscillatory rather than monotonic, making the results of the scal-
ing study difficult to interpret. We thus use the number of re-orthogonalizations to nor-
malize the reorthogonalization computing time to obtain

tnormal = ttotal − treorthogonal(1− 1

nreorthogonal
) , (3.45)

where ttotal and tnormal denote the computing time before and after the normalization.
treorthogonal and nreorthogonal represent the computing cost and the number of reorthog-
onalizations. When the nreorthogonal = 0, the computing time will be kept the same; oth-
erwise, the normalized process will be utilized. Figure 3.14 shows the parallel speedups
of normalized computational time, which now shows scaling just below the ideal value.
This demonstrates the scalability of the enhanced online algorithm.
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Figure 3.14: Parallel speedups of standard incremental SVD and enhanced online algorithm on a deep matrix
(327681×200), with the normalized computing time for the total incremental process, major parallel opera-
tions and LSV update.

A WIDE MATRIX WITH MORE SNAPSHOTS

There is another typical scenario where we are interested in statistical steady phenom-
ena. In this case, we consider a large number of snapshots exceeding the number of DoF
of a computational mesh. Figure 3.15(a) presents the total computing time of the stan-
dard and enhanced iSVDs for a wide matrix (257× 2000). Here, we examine the weak
scaling in which the increase of computing time is reasonably small while the number
of cores is raised. As shown in Figure 3.15(b), the truncated speedup of the enhanced
algorithm remains constant although this value is degraded for the case of Me = 1. Fig-
ure 3.16 shows the computing cost of the major parallel operations and LSV update. The
cost of major parallel operations exhibits a trend similar to that of the total computing
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time. However, the computing time of the LSV update shows a constant computing cost
while increasing the number of cores. The enhanced online algorithm is thus weakly
scalable for this wide matrix.
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Figure 3.15: Time consumption of standard incremental SVD and enhanced online algorithm in a weak study
on a wide matrix (257×2000), and the truncated speedup by the enhanced process.
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Figure 3.16: Time consumption of the major parallel operations and LSV update with the standard incremental
SVD and enhanced online algorithm during a weak scaling study for a wide matrix (257×2000).

IMPROVEMENT TO COMPUTATIONAL PERFORMANCE BY THE ENHANCED ALGORITHM

The truncated speedup of the proposed enhanced online algorithm is shown to be con-
stant for both deep and wide matrices. Considering that the dominant computational
cost results from LSV update, we can estimate this improved value by an a priori analysis
of the computing complexity, as described in Proposition 3.

Proposition 3. Suppose we have a dense matrix U n×m, the float-point operations of the
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LSV update in the standard iSVD can be estimated by O (tstandard),

tstandard =
{

2n[ m
6 (m +1)(2m +1)−1]+3n, n � m

2n[ n
6 (n +1)(2n +1)−1+n2(m −n)]+3n, n < m .

(3.46)

If we use Me = ke , ke < min(n,m), for the enhanced iSVD, these float-point operations can
be reduced to O (tenhanced),

tenhanced = 2n[
ke

6
(ke +1)(2ke +1)−1+ (ke +1)2(m −ke )]+3n . (3.47)

The tenhanced is equivalent to tstandard when ke = min(n,m).

Proof. We first verify the expression for a deep matrix (n � m). For the standard iSVD,
we need an initialization with the float-point operations (FLOPs) of O (3n) before pro-
ceeding with the LSV update. We can evaluate the FLOPs in each LSV update as O (2nl 2),
where l denotes the number of snapshots. This relies on [U j ]n×l and V l×l

Q . The LSV
update starts with the second snapshot (l = 2) after the initialization. Therefore we can
estimate the complexity of the total computational cost as

tstandard = 2n(22 +·· ·+m2)+3n = 2n[
m

6
(m +1)(2m +1)−1]+3n . (3.48)

Likewise, we can compute the complexity of the enhanced iSVD by replacing the cost
with O (2n(ke +1)2) after ke -th incremental step, leading to

tenhanced = 2n[22 +·· ·+k2
e + (ke +1)2 + (ke +1)2 · · ·+ (ke +1)2]+3n

= 2n[
ke

6
(ke +1)(2ke +1)−1+ (ke +1)2(m −ke )]+3n .

(3.49)

For a wide matrix (n < m), tenhanced is the same as shown for the deep matrix, and
tstandard can be computed by

tstandard = 2n(22 +32 +·· ·+n2 +n2 +·· ·+n2)+3n

= 2n[
n

6
(n +1)(2n +1)−1+n2(m −n)]+3n .

(3.50)

When ke = min(n,m) for a deep or wide matrix, the enhanced iSVD is equivalent to
the standard iSVD, leading to tenhanced = tstandard. Consequently, Proposition 3 is con-
firmed.

As the computing cost mainly results from matrix/vector multiplications, we can as-
sume that the LSV update is the leading contribution as shown in Sections 3.4.1 and 3.4.2.
We can then estimate the truncated speedup of the enhanced online algorithm as O (η),

η= tstandard

tenhanced
. (3.51)

For convenience, O is ignored for the description of the computing complexity in the
following content if there are no conflicts.
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When the truncation number Me is small, the computing cost of the LSV update
is not the only large contribution due to the reduction of the size of V ,V Q . In such
situations, the computing cost of projection becomes crucial, as shown in Figures 3.9
and 3.13. Its computing complexity can be estimated based on the number of FLOPs in
the projection, as summarized in Table 3.3.

Table 3.3: Float-point operations in the projection part at the k-th incremental step with V n×(k−1)(k ≥ 2)

Input operation Float-point operations

d =V ᵀc O (2n(k −1))
V d O (2n(k −1))

c −V d O (n)
(c −V d)ᵀ(c −V d) O (2n)

Total O (4nk −n)

For a standard iSVD of a deep matrix, we can express the computing complexity of
projection over the entire incremental process as

t pr o j
s = 4n(2+3+·· ·+m)−n ∗ (m −1) = 2n(m +2)(m −1)−n(m −1) . (3.52)

This complexity for a wide matrix is stated as

t pr o j
s = 4n(2+3+·· ·+n +n +·· ·+n)−n ∗ (m −1)

= 2n(n +2)(n −1)+4n2(m −n)−n(m −1) .
(3.53)

The computing complexity for the enhanced iSVD is expressed as

t pr o j
e = 4n[2+3+·· ·+ke + (ke +1)+·· ·+ (ke +1)]−n(m −1)

= 2n(ke +2)(ke −1)+4n(ke +1)(m −ke )−n(m −1) .
(3.54)

By virtue of supplementing the cost of projection, we can estimate the truncated
speedup as O (ηpr o j ),

ηpr o j = tstandard + t pr o j
s

tenhanced + t pr o j
e

, (3.55)

which consists of the LSV update and projection. The difference between η and ηpr o j is
the impact of the projection on the incremental SVDs.

Figure 3.17(a) compares the computations of η and ηpr o j using the numerical dataset
from the above-mentioned deep matrix. These two estimations are similar when pre-
dicting the truncated speedup for a large number ratio re = ke /m, while the ηpr o j is
more accurate for small re values. This is because the projection makes a great differ-
ence in the computational cost of the enhanced iSVD for smaller truncation numbers
ke , i.e. a small re here. In addition, the performance for the wide-matrix case bears a
striking resemblance to that of the deep matrix, as shown in Figure 3.17(b). Note that
computing complexity is utilized to quantify the intrinsic time requirements of the algo-
rithm, whereas the actual run time will depend on the computer hardware and software
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implementation. Therefore, the computing complexity gives only an indication of the
run time. Furthermore, the actual run time can also be affected by other operations that
are here neglected but can have an effect when the ratio re /ke is small, as shown in Fig-
ure 3.13. Overall, the estimation with the projection gives a reasonable prediction for
improved efficiency.
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Figure 3.17: A priori analyses on the efficiency improved by the enhanced online algorithm for incremental
SVD over (a) a deep matrix (327681×200) and (b) a wide matrix (257×2000), compared with the physical data.

3.5. SUMMARY
We developed an enhanced online algorithm based on the incremental SVD for modal
analysis, e.g. POD, which can efficiently perform the POD analysis on the fly. Two lower-
bound estimators are formulated to give a posteriori analysis of the enhanced online al-
gorithm so that the accuracy of the reconstructed solution from POD modes can be cal-
culated. esimp is shown to be more accurate and effective for evaluating the cumulative
energy captured by selected POD modes. Numerical results demonstrate this algorithm
can significantly improve efficiency compared with the standard incremental SVD. The
eigenvalues can be influenced if a very small truncation number (Me ) is considered for
the enhanced process, but good accuracy can be obtained with a reasonable Me . What’s
more, it is shown that the enhanced online algorithm can be scaled well in parallel. This
is also true for standard incremental SVD. But it is more efficient to build POD modes
with the enhanced online algorithm. The speedup of the enhanced algorithm is inde-
pendent of the number of cores.
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Parts of this chapter have been published in Computer Methods in Applied Mechanics and Engineering 379,
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The potential of adjoint-based mesh adaptation for LES is analysed based on a 1D
Burgers problem with a multiple-frequency forcing term. A POD-based Reduced-Order
Representation (ROR) is introduced to reduce the storage requirement for the LES ad-
joint problem. We investigate the effect of the ROR on the accuracy of the adjoint and
the resulting AMR outputs.

4.1. INTRODUCTION

Large Eddy Simulation (LES), in which one resolves large-scale turbulent structures while
modelling the impact from smaller turbulent scales, has the potential to deliver reliable
flow predictions for many applications [137]. LES can resolve an appropriate range of
large scales when the computational mesh is well defined [8]. In practice, the construc-
tion of a computational mesh for LES usually involves trial and error, even for engineer-
ing experts, since it is difficult to anticipate the effects of complex flow features, such
as laminar-turbulent transition, boundary layer separation or vortex interactions, on a
desired Quantity of Interest (QoI). It is thus natural to consider Adaptive Mesh Refine-
ment (AMR) [1] for automatically constructing the computational mesh.

Adjoint methods have been developed to determine local contributions to the error
in a chosen QoI so that the adapted mesh can provide the highest accuracy per degree of
freedom. The accuracy and efficiency of adjoint-based AMR have been demonstrated in
a wide range of steady problems, as mentioned in Section 1.2. Although there are studies
about the application of adjoint-based mesh adaptation to unsteady simulations, the ap-
plication of adjoint-based AMR to LES poses new challenges, as discussed in Section 1.3,
i.e. high-dimensional data, model error, chaotic features of turbulence. The work here
focuses on the high computing costs of adjoint solutions. We will investigate how to
overcome unfeasible storage requirements and incorporate the modelling error in AMR.

We propose the use of Reduced-Order Representations (RORs) to efficiently repre-
sent the primal solution when solving unsteady adjoint problems. The performance of
this approach is studied using the 1D Burgers equation, which is often used in the devel-
opment of numerical schemes for turbulent flows due to its convective nonlinearity and
forward energy cascade. We place the problem in the context of AMR for LES by consid-
ering a time-averaged QoI and by employing coarse meshes, with which the influence of
the subgrid-scale model is significant. The enhanced online algorithm is considered to
reduce the computing cost of constructing a ROR for high-dimensional LES data.

This chapter is organized as follows. A paradigm for mesh adaptation in LES is de-
scribed in Section 4.2, in which an LES model and discretization scheme, adjoint method,
a posteriori error estimation, and mesh adaptation strategy are formulated. Section 4.3
describes the use of a standard ROR and an EOA ROR for adjoint-based AMR. After the
validation of error estimation on a Burgers problem with a manufactured solution in
Section 4.5, we present numerical experiments with the proposed AMR approach on an
unsteady non-linear Burgers problem with a multi-frequency forcing term in Section 4.6.
Results obtained using full-order solutions, a standard ROR and an EOA ROR are com-
pared in Section 4.7. Concluding remarks appear in Section 4.8.
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4.2. A PARADIGM FOR ADJOINT-BASED MESH ADAPTION

4.2.1. PROBLEM FORMULATION AND DISCRETIZATION
We consider the one-dimensional (1D) Burgers equation over a space-time domain Ω :
[0,1]× I : [0,T]. The Burgers equation is often used as a mathematical model for applica-
tions that involve shock wave propagation in viscous flows or idealized turbulence [136].
The Burgers equation is expressed as

N (u) = ∂u

∂t
+u

∂u

∂x
−ν

∂2u

∂x2 = f , (4.1)

where N (·) is a non-linear operator and u is the solution with boundary conditions
u(0, t ) = u(1, t ) = 0 and an initial condition u(x,0) = u0. ν is the viscosity coefficient
and f ∈ R is a known forcing term. Note that we use a 1D problem here to explore the
methodology; however, the approaches considered can be directly extended to multi-
dimensional problems.

VARIATIONAL MULTISCALE METHOD

We employ the finite-element method to solve the primal problem with Dirichlet bound-
ary conditions using the weak form

R(u,ω) = (ut ,ω)− (uu/2,ωx )+ (νux ,ωx )− ( f ,ω) = 0,∀ω ∈ V , (4.2)

where ω ∈ V are weighting functions and V = V (Ω) denotes both the solution space and
weighting space. R(·, ·) denotes the weak form of the residual operator and (·, ·) is the L2

inner product. The inner product used in this chapter is defined by the spatial domain
Ω by default.

The Variational Multiscale Method (VMM) [95, 98] is then used to derive a form suit-
able for LES. In VMM, the flow solution is split into two components, the resolved scales
ū and the unresolved scales u′. The unresolved-scale equations are driven by the strong
residual, i.e. R(ū) = N (ū)− f . The simplest algebraic model for u′ uses a quasi-static
subscale assumption and a volume-averaged Green’s function to write u′ ≈ −τR(ū). For
the current problem, we use this approximation along with an expression for τ from
Wang et al. [138], viz. τ = [ 4

h2 ū2 + 3πν2( 4
h2 )2]−1/2. Substituting u = ū +u′ into Equa-

tion (4.2), the weak form is then:

A (ū,ω) = (ūt ,ω)− (
1

2
ūū,ωx )+ (νūx ,ωx )− ( f ,ω)− (ūu′,ωx )− (

1

2
u′2,ωx )− (νu′,ωxx ) = 0,

(4.3)
where it has been assumed u′ = 0 on the boundary. By virtue of u′ = −τR(ū), ū is ex-
clusively determined from Equation (4.3). In analogy with LES, the last three terms of
Equation (4.3) correspond to a model for the effects of the subgrid scales.

DISCRETIZATION

When numerically solving the flow problem, we replace ū by ūh , leading to a discrete
system

Ah(ūh ,ωh) = 0,∀ωh ∈ Vh , (4.4)
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where the subscript h denotes element size within a computational mesh with Nv de-
grees of freedom. ūh ∈ Vh is abbreviated to uh in the subsequent text where there is no
conflict. The semi-discrete technique is used to discretize this unsteady model prob-
lem. Specifically, we use piecewise linear basis functions for spatial discretization and
a four-stage Runge-Kutta scheme to advance the primal problem in time from t = 0 to
t = T. Note that the (νu′,ωxx ) term in Equation (4.3) is zero in this case due to the use of
piecewise linear functions.

4.2.2. ADJOINT METHOD

The adjoint method is used to provide estimates of local contributions to the error in a
chosen QoI, allowing for the construction of goal-oriented adapted meshes. In unsteady
simulations, a QoI is often a statistical function of the primal solution. In this chapter,
we consider a volume-integrated statistical function J̄ (u) = 1

T

∫
I J (u)dt = 1

T

∫
I(g ,u)Ω dt ,

where g is a real function from R→R and J̄ (u) ∈R. I represents the temporal space. Note
that although only results for linear QoI will be discussed in later sections, the adjoint
equation and error expressions given below are also valid for non-linear QoI.

By virtue of a Lagrange function, the adjoint equation derived for the current prob-
lem is

L ∗
u v =−∂v

∂t
−u

∂v

∂x
−ν

∂2v

∂x2 = gu , (4.5)

where v is the Lagrange multiplier or adjoint variable with homogeneous boundary con-
ditions v(0, t ) = v(1, t ) = 0 and an initial condition v(x,T) = 0. L ∗

u (·) is a linearised ad-
joint operator which relies on the primal solution u. gu is a Fréchet derivative of J (u),
defined as

(gu , ũ) := lim
ε→0

J (u +εũ)− J (u)

ε
, ∀u, ũ ∈ V . (4.6)

The adjoint residual operator is expressed as R∗
[u](·) =L ∗

u (·)− gu with respect to a given
u. We solve the adjoint problem using the same VMM employed for the primal problem.

4.2.3. A POSTERIORI ERROR ESTIMATION FRAMEWORK

Before developing an a posteriori error estimation, we consider two fundamental prop-
erties, the adjoint identity and the averaging Fréchet operator. The adjoint identity, which
can be easily verified by partial integration, is

(L ∗
u v, ũ)Ω×I = (v,Luũ)Ω×I + (v, ũ)Ω|t=t0 , (4.7)

for ∀v,u, ũ ∈ V . I is referred to time integration. The last term originates from the con-
tribution of non-zero values at statistical-starting time t0. Lu is the Fréchet derivative of
N (u),

Luũ := lim
ε→0

N (u +εũ)−N ((u)

ε
, ∀u, ũ ∈ V . (4.8)

We can formulate the averaging Fréchet operator, L̄ ∗
(u1,u2)(·), by integrating Equa-

tion (4.5) of u from u1 to u2, which enables us to estimate the error for non-linear prob-
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lems. By defining u = u1 +θ(u2 −u1), the adjoint equation is integrated as

L̄ ∗
(u1,u2)v ≡

∫1

0
L ∗

u=u1+θ(u2−u1)v dθ
E quati on (4.5)=

∫1

0
gu=u1+θ(u2−u1)dθ ≡ ḡ(u1,u2) ,

(4.9)
where the subscripts, u1 and u2, denote the integration domain and ḡ(u1,u2) represents
an averaged value of gu on this domain. Considering the definition in Equation (4.6), we
can use this ḡ(u1,u2) to express the difference of a QoI as

J (u1)− J (u2) = (ḡ(u1,u2),u1 −u2) . (4.10)

For the unsteady Burgers problem, we have L̄ ∗
(u1,u2)v =L ∗

u1+u2
2

v . Likewise, the aver-

age linearized operator in Equation (4.9) maintains the adjoint identity as follows

(L̄ ∗
(u1,u2)v,u)Ω×I = (v,L̄(u1,u2)u)Ω×I + (v,u)Ω|t=t0 , (4.11)

where v,u,u1,u2 ∈ V . L̄(u1,u2)(·) is the averaging operator of Lu(·) by integrating u from
u1 to u2, which satisfies

L̄(u,uh )(uh −u) =N (uh)−N (u) =R(uh) . (4.12)

Substituting u1 = u and u2 = uh into Equations (4.9) to (4.11), we introduce an ex-
pression for estimating the error ε of the QoI

ε= J̄ (u)− J̄ (uh)

=− 1

T
(vh ,R(uh))Ω×I − 1

T
(vh ,uh −u)Ω|t=t0︸ ︷︷ ︸

Adjoint correction

+ 1

T
(R∗[

u+uh
2

](vh),uh −u)Ω×I︸ ︷︷ ︸
Remaining error

=
Ncells∑
e=1

εe , (4.13)

where Ncells denotes the number of elements at the current AMR level. The error es-
timation is divided into two parts, adjoint correction and remaining error. There is a
temporal contribution to the adjoint correction due to the non-zero value of u at the
starting time of the statistical time period, which does not appear in steady simulations.
In practice, R∗

[
u+uh

2 ]
(vh) is replaced by R∗

[uh ](vh), where uh is the discrete primal solution.

Here, the VMM is used to approximate the exact solution u as uh +u′
h . The resulting

error estimation can be constrained to each element as shown in the last equal sign of
Equation (4.13), and expressed in terms of elemental error estimators εe .

4.2.4. MESH ADAPTATION STRATEGY
We start from a very coarse uniform mesh and only use refinement. A local error indi-
cator, ηe , is determined from the elemental error estimator as ηe = |εe | to facilitate mesh
adaptation. Different adaptation strategies [9] can be developed based on ηe . We em-
ploy a prescribed percentage (10%) of mesh cells with the largest errors as the criterion
for mesh refinement [14, 30]. The resulting procedure of adjoint-based AMR is presented
in Figure 4.1. In each mesh refinement loop, the error estimation and adaptation strat-
egy are executed to generate a new computational mesh for the next AMR level.
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Figure 4.1: A general procedure of mesh adaptation based on the adjoint method for unsteady simulations.

Without additional treatment, the smoothness of the mesh will deteriorate during
AMR. Thus, a balancing step is introduced to improve mesh smoothness, as shown in
Algorithm 4. The basic principle is that a cell will be flagged for refinement if the ratio
between the size of this cell and the size of its neighbors would become larger than 2.
This balancing step is recursively executed until there are no more elements that need to
be refined.

Algorithm 4 Balancing procedure for AMR

refined = 1
while refined > 0 do � Loop if refinement is needed

refined = 0, temp = cellFlag
for i ≤ N do � Loop all cells indexed from 1 to N

if cellFlag(i ) = 1 then � A marked cell
if i �= 1 and cellFlag(i −1)=0 then

if Length(ei )
Length(ei−1) < 1 then
temp(i −1) =1, refined += 1 � Flag the adjacent cell

if i �= N and cellFlag(i +1)=0 then

if Length(ei )
Length(ei+1) < 1 then
temp(i +1) =1, refined += 1 � Flag the adjacent cell

cellFlag = temp

4.3. POD-BASED REDUCED-ORDER REPRESENTATION FOR AMR

In order to make adjoint-based AMR affordable for LES, we represent the primal flow
problem in a low-order space that can be accessed efficiently. For unsteady flow prob-
lems, Reduced-Order Models (ROM) based on projection have been widely used. In this
case, one projects representative modes (typically a truncated set of POD modes) onto
the governing equations to obtain a low-order system. For the current application, how-
ever, there is no need to predict the primal solution beyond the original dataset. Thus
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representative modes and their coefficients can be used directly as a Reduced-Order
Representation (ROR) of the primal solution in the adjoint problem. In the following, we
initially construct the ROR by applying the standard SVD implemented in LAPACK [78]
to store primal solution data, which results in exact POD modes. We refer to this method
as the offline SVD. The procedure then used for ROR-driven AMR is described in Sec-
tion 4.3.1. For realistic applications, however, very large datasets would need to be con-
sidered, making the cost of an offline SVD prohibitive. Therefore, we also introduce an
enhanced online algorithm to build the ROR based on an incremental SVD [86, 88], de-
scribed in Section 4.3.2. This produces approximations for the POD modes and their
amplitudes.

4.3.1. OFFLINE ROR
The standard approach constructs a ROR offline by gathering complete snapshots into a
solution matrix and then applying the SVD analysis, which gives the POD modes (φ) and
coefficients (α) at once. Figure 4.2 shows the distribution of POD modes, eigenvalues
and cumulative energy from the solution of a typical Burgers problem, which is also the
starting situation for AMR. In this case, the first mode represents a significant part of the
instantaneous solution as it accounts for 66.5% of the total energy. The ROR solution is
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Figure 4.2: POD analysis of a Burgers problem solved on a stationary mesh with 5 primal flow variables.

then expressed as

u(x, ti ) = ū(x)+
M∑

j=1
α j (ti )φ( j )(x) , (4.14)

whereφ( j ), j = 1,2, · · · , M , denote a low number of selected POD modes, and ū represents
the mean value. As shown in Figure 4.3, the AMR procedure is modified by replacing the
primal solution in the adjoint problem with a ROR determined using the standard SVD.
We refer to this as AMR using an offline ROR. Note that the adjoint problem is still solved
in a full-order space. The offline ROR is utilized as a benchmark for the online RORs
introduced in the next section.
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Figure 4.3: A general procedure of mesh adaptation based on adjoint method and ROR for unsteady simula-
tions.

4.3.2. ENHANCED ONLINE ALGORITHM FOR RORS

The modal decomposition of large flow datasets can lead to intractable storage require-
ments [88]. To overcome this, we introduce an enhanced online algorithm (EOA) based
on the incremental SVD [86, 88]. Algorithm 3 describes this enhanced online algorithm
for building a ROR online. The improvement is achieved by incorporating the trunca-
tion of a selected number of POD modes (M) into the incremental algorithm as shown
in Algorithm 3 between line 14 and line 16, leading to the EOA. This is because the num-
ber of POD modes necessary for building an accurate ROM is usually far fewer than the
number of variables and time steps.

We present the validation of the proposed mesh adaptation strategy and describe the
performance of AMR computations using POD-based RORs. We consider Equation (4.1)
with ν = 0.01 and a QoI defined as J̄ (u) = 1

T (sin(πx),u)Ω×I . To avoid the influence of
temporal discretization errors, a small time step, Δt = 10−3, is used for solving both pri-
mal and adjoint problems. This value gives negligible time discretization errors for the
complete range of AMR meshes considered in the numerical results. Adjoint-based er-
ror estimations are obtained using Equation (4.13) with cubic spline reconstructions for
the primal and adjoint solutions. We first verify the error estimation using a manufac-
tured solution in Section 4.4. Then, the effectiveness of the proposed AMR strategy is
validated on a Burgers problem with a multi-frequency forcing term in Section 4.5. The
use of offline and online RORs is studied in Section 4.6 and Section 4.7, respectively.

4.4. VERIFICATION OF ADJOINT-BASED ERROR ESTIMATION
First of all, the error estimation procedure is verified using a force f corresponding to
the manufactured solution u(x, t ) = sin2(πt )sin(πx), from t = 0 to t = 20. This exact
solution is used to compute the actual value of the QoI. Discrete solutions of the pri-
mal and adjoint problems are shown in Figure 4.4(a). The adjoint solution is propagated
in a direction opposite to the primal velocity. The most sensitive regions are not those
with the largest primal solution or weighting function values, making it difficult to use
feature-based AMR for this case. Figure 4.4(b) depicts the QoI’s approximation and cor-
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responding error as the mesh is refined uniformly. The computed QoI converges to the
exact value and the error estimation displays a good agreement with the actual value.

(a) Instantaneous solutions
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Figure 4.4: Instantaneous solutions for a manufactured Burgers problem and associated error analysis of a
volume-integrated output on uniformly refined meshes. Solid lines denote the values computed from analyt-
ical solutions while dashed lines are the approximation from numerical solutions and the adjoint-based error
estimation with VMM.

4.5. VALIDATION OF ADJOINT-BASED AMR WITH FULL-ORDER

SOLUTIONS
We now introduce a forcing term f to produce a solution with large fluctuations and a
boundary layer near the right boundary

f (x, t ) = 1+q(x)∗
N f∑
i=1

gi (t )sin(ki x) , (4.15)

where N f = 3 and the gi (t ) are chosen so |gi (t )| ≤ 1, specifically,

gi (t ) = sin(iπt ),k1 = iπ . (4.16)

q(x) = 5/30 is a coefficient used to tune the amplitude of the forcing term at various wave
numbers so that the fluctuations can be controlled independently. The primal problem
is advanced from t = 0 to t = 20 while the adjoint problem is solved backward from t = 20
to t = 10. The temporal interval (t ∈ [0,10]) is sufficiently long to allow the primal flow
problem to arrive at a statistically steady state. Instantaneous solutions are shown in
Figure 4.5. The primal solution changes periodically and a reverse propagation of the
adjoint solution can be observed as well.

The mesh adaptation strategy of Section 4.2.4 is compared with uniform mesh re-
finement for this case. Here, the reference value of the QoI is calculated on a fine mesh
with 256 elements, as there is no analytical solution. Figure 4.6 presents the QoI and as-
sociated errors with increasing levels of mesh refinement determined by the proposed
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(a) Primal solutions (b) Adjoint solutions

Figure 4.5: The distribution of primal and adjoint solutions for the Burgers problem with a forcing term.

AMR procedure. The AMR technique is clearly more accurate than uniform enrichment
for a given number of degrees of freedom. The corresponding error also converges faster
but in a less regular manner.
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Figure 4.6: AMR analyses compared with uniform refinement, (a) QoI and (b) associated approximating error.

4.5.1. DISCUSSIONS OF ERROR ESTIMATION
The convergence of the error estimate is shown in Figure 4.7(a), where we mark three dif-
ferent regions. In region 1, the error estimation is reasonably accurate compared to the
actual error although the adjoint correction changes significantly. The adjoint correction
is not enough to capture the dominant variation of error estimation in this region, which
is also affected by the remaining error term. In region 2, a good error estimate is primar-
ily obtained from the adjoint correction, although the remaining error still contributes
favourably. In region 3, the error estimate is less reliable, while the adjoint correction has
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a trend similar to that of the total error estimation.

(a) AMR with full-order solutions (b) Error analyses with u from a fine mesh

Figure 4.7: Convergence of actual error, error estimation and adjoint correction during (a) AMR based on full-
order primal solutions and (b) error analyses with u from a fine mesh (384 cells).

The computational mesh has few elements in region 1 and thus the accuracy of re-
solved solutions is limited. The VMM unresolved-scale model is thus vital for some cases
in this region, leading to a significant influence of the remaining error. When combined
with the adjoint correction, a good prediction is obtained. As the mesh is refined towards
region 2, more of the solution is resolved and the adjoint correction begins to be domi-
nant. This is actually the scenario we usually meet in literature or practical problems, i.e.
we start AMR with a mesh that can capture important features based on experience and
the adjoint correction is used to improve the computation of a QoI. In region 3, we reach
a range of fine meshes with high spatial resolutions, where the computed QoI manifests
an oscillatory convergence to the exact value. In this region, the remaining error is as
important as the adjoint correction. Since the remaining error relies on the exact primal
solution, u, the accuracy of the VMM unresolved-scale model can have a significant im-
pact on its evaluation. Non-uniform meshes from AMR can affect the reliability of the
unresolved-scale model due to its reliance on mesh size. When comparing the remain-
ing error computed by VMM and an accurate reference u from a fine mesh (384 cells)
as shown in Figure 4.7(b), we can see that VMM overestimates the value, leading to a
less reliable error estimation in region 3. In spite of this, the approximation of the QoI
in region 3 is still improved as the actual error keeps reducing. This may be because the
relative size of local error contributions can be recognized by the error estimation.

4.6. OFFLINE ROR-DRIVEN ADJOINT-BASED AMR
We consider the same problem used in Section 4.5 to investigate how the ROR influ-
ences the performance of adjoint-based AMR. Since the error estimation in Section 4.5
is computed from full-order primal solutions, we refer to it as the baseline AMR. As an
alternative, two RORs are considered, one with four POD modes and the other with one
POD mode. Naturally, a ROR will produce a good representation of the primal solution
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if all significant POD modes are included. In this case, four POD modes are sufficient
to capture 99.9% of the total energy (shown in Figure 4.2). In contrast, the one-mode
ROR is an extreme case, with a less accurate reconstruction of the primal solution but
high computing efficiency. The mesh adaptation starts with a coarse mesh of 6 cells and
terminates after 10 AMR levels with the aforementioned strategy.

4.6.1. ROR WITH FOUR POD MODES
The computation of the QoI from ROR-driven AMR is compared to that of the baseline
AMR in Figure 4.8(a). Both converge to the actual value in a quantitatively similar way, as
do their approximation errors shown in Figure 4.8(b). Figure 4.9 demonstrates that the
mesh refinement patterns computed based on the four-mode ROR agree well with those
from the baseline AMR. Figure 4.10(a) depicts the development of cumulative energy
within various AMR levels. Four POD modes can still capture more than 99.9% of the
total energy even for the fine meshes obtained during later AMR levels. Thus, the four-
mode ROR-driven AMR does not behave differently from the baseline AMR.
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Figure 4.8: Grid convergence of (a) the QoI and (b) the associated error from AMR based on full-order solu-
tions ( ), a four-mode ROR ( ) and a one-mode ROR ( ).

4.6.2. ROR WITH ONE POD MODE
We now study an extreme situation with only one mode used to construct the ROR. As
before, Figure 4.8 compares values of the QoI and their corresponding errors. The QoI’s
approximations from a one-mode ROR are similar to those from the baseline AMR, al-
though there are differences at some AMR levels. But this AMR method is still much
better than uniform refinement. From the mesh refinement pattern shown in Figure 4.9,
we can observe that the meshes obtained from the one-mode ROR AMR are not com-
pletely the same as those from the baseline AMR. The one-mode ROR changes the AMR
sequence in coarse mesh regions at the 3rd AMR level, for example, but reaches the same
computational mesh at the 4th AMR level. On the other hand, the actual error is affected
by using only one mode as the mesh becomes fine in later AMR levels (see Figure 4.9).
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Figure 4.10: Cumulative energy on different AMR levels computed with (a) a four-mode ROR and (b) a one-
mode ROR.

The cumulative energy for this one-mode ROR is shown in Figure 4.10(b). Since the first
POD mode accounts for 65-75% of total energy during AMR, it can describe the main
features of the primal solution across all AMR levels. Thus, the calculation from the one-
mode ROR still considerably outperforms uniform refinement.

4.6.3. IMPACT OF ROR TRUNCATION ON ADJOINT SOLUTIONS AND ERROR

INDICATORS
Figure 4.11 presents discrete adjoint solutions on two different computational meshes
encountered during AMR, a coarse mesh in Figure 4.11(a) and a fine mesh in Figure 4.11(b).
The adjoint solutions are calculated based on full-order primal solutions, a four-mode
ROR and a one-mode ROR, respectively. On a coarse mesh, the one-mode ROR is able to
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produce adjoint solutions with both features and magnitudes similar to those obtained
using full-order solutions. This implies good error estimates. As the AMR proceeds to
finer meshes, the one-mode ROR is unable to present high-wavenumber information
and thus produces relatively smooth adjoint solutions, as in Figure 4.11(b) for instance.
Thus the error estimation with the one-mode ROR is affected. Conversely, the four-mode
ROR includes both low- and high-wavenumber information and thus provides good es-
timates over both meshes.

(a) Mesh at starting AMR level (b) Mesh at 7th AMR level

Figure 4.11: Discrete adjoint solutions on (a) a coarse mesh at starting AMR level and (b) a fine mesh at 7th
AMR level, computed based on full-order primal solutions, a four-mode ROR and a one-mode ROR.

The primal solutions reconstructed from the RORs are also compared to the full-
order one on the 7th AMR iteration in Figure 4.12(a). We can observe that the one-mode
ROR is able to give a good prediction for oscillations with large magnitudes but filters
medium- and small-amplitude oscillations. The associated adjoint solution reflects this
characteristic and becomes smoother as well. In that sense, their elemental error indica-
tors ηe exhibit different distributions, as shown in Figure 4.12(b). Based on full-order so-
lutions, the algorithm marks cell 2 and cell 6 for refinement. However, the ones obtained
using a one-mode ROR are cell 2 and cell 1. Consequently, a slightly different mesh is ob-
tained in the one-mode ROR-driven AMR. This is because the high-wavenumber com-
ponents of the primal solution play an important role in the error estimation on fine
meshes, and those are not captured when using only one POD mode. It seems that us-
ing a very low-order ROR can be effective when the QoI’s calculation is not dependent
on smaller scales of the primal solution. As shown in Figure 4.12(b), a four-mode ROR,
which includes higher-wavenumber features, is capable of reliably reconstructing the
primal solution and the corresponding error indicators.

4.6.4. IMPACT OF ROR TRUNCATION ON ERROR ESTIMATION
Figure 4.13 shows the change of error estimation and adjoint correction during AMR
obtained using one-mode and four-mode RORs. The four-mode ROR-driven AMR has
good error predictions in regions 1 and 2, but overestimates errors in region 3, as does
the baseline AMR. The error estimation from the one-mode ROR is accurate in region 1
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(a) Spatial distribution
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Figure 4.12: Comparison of (a) reconstructed primal solutions and (b) error indicators at 7th AMR level with
full-order primal solutions, a four-mode ROR and a one-mode ROR.

but overestimates errors in regions 2 and 3. Still, the first POD mode is capable of captur-
ing the dominant solution feature crucial in region 2, and thus gives a sufficiently accu-
rate estimate for AMR. But this advantage vanishes in region 3 where the high-frequency
spatial information becomes important as well. The adjoint correction is the dominant
error estimation term in the last two regions and is affected by the filtering of higher
wavenumbers.

(a) One-mode (b) Four-mode
Figure 4.13: Actual and estimated errors computed by ROR-driven AMR based on (a) one mode and (b) four
modes.

4.6.5. IMPACT OF ROR TRUNCATION ON MEMORY EFFICIENCY
We define an efficiency metric, η, to quantify the memory reduction when utilizing a
ROR. The memory required to store full-order primal solutions is proportional to Nfull =
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NvNt while a ROR needs NROR = M Nv+Nv+M Nt, where Nv and Nt denotes the number
of variables and time steps respectively. The efficiency metric is then defined as

η= 1− NROR

Nfull
= 1− Nv +Nt

NvNt
M − 1

Nt
. (4.17)

A ROR requires less memory while η> 0, and vice versa. Furthermore, larger η indicates
higher ROR efficiency, with the asymptote ofηasy = 1− 1

Nt
. Figure 4.14 shows the variation

of this metric for one- and four-mode RORs during AMR. It is observed that the efficiency
increases monotonically for both RORs as the mesh is refined, leading to a significant
memory reduction. The one-mode ROR, as expected, is more memory efficient than the
four-mode ROR while their difference is reduced as the mesh is refined.
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Figure 4.14: Comparisons of the efficiency metric in one- and four-mode RORs during AMR (Nt = 10001).

4.6.6. IMPACT OF MEAN VALUE ON ADJOINT-BASED AMR
As the one-mode ROR showed a similar convergence trend for the computation of the
QoI, we further investigate the influence of mean values (a zero-mode ROR) on the adjoint-
based AMR. There are two ways to do this, solving the unsteady adjoint problems with
mean value or solving the steady adjoint problem. We study it in the first way since the
second can be achieved by the steady state in the first one. Figure 4.15 show the conver-
gence of QoI and associated errors as the mesh is refined by using adjoint-based AMR
with full-order solutions, one-mode ROR, and mean values. We can observe that the re-
sults computed based on mean values converge in the same way compared to the one
from a one-mode ROR. So do the actual errors. We can see that the mean value plays an
important role in the computation of QoI in this case. This also explains why the one-
mode ROR can give an accurate evaluation during AMR. This benefit results from the
type of chosen QoIs that could be different in realistic LES.

The adapted meshes based on mean-value adjoint-based AMR are presented in Fig-
ure 4.16. It is observed that all adapted meshes are the same except for the terminating
one (near the right boundary). It actually becomes a pretty fine mesh at the terminat-
ing AMR level and the high-frequency spatial information makes a significant difference
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Figure 4.15: The computation of QoI and associated errors during AMR based on full-order solutions, one-
mode ROR and mean values.

in computing the QoI. This is consistent with behavior of AMR with a one-mode ROR.
The adjoint solution at starting and 7th AMR levels are compared as well, as shown in
Figure 4.17. Using the mean value for solving the adjoint problem can maintain major
structures of adjoint fields although producing a time-invariant adjoint solution after a
short transition. This is because the fluctuations of adjoint solutions based on the full-
order solution change locally and the sensitive regions almost keep at a constant range,
making it less challenging even for the case with mean values. More realistic turbulent
cases should be considered to validate the effectiveness of this proposed method.
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(a) Starting AMR level (b) 7th AMR level

Figure 4.17: Comparison of adjoint solutions computed based on full-order solutions, one-mode ROR and
mean values at (a) starting and (b) 7th AMR level.

4.7. ONLINE ROR FOR ADJOINT-BASED AMR
In this section, we investigate the use of the EOA ROR and apply it to the same Burgers
problem considered in Section 4.6. The online ROR without the enhanced process is
referred to as the standard online ROR herein.

4.7.1. IMPACT OF THE EOA ROR
ON POD ANALYSIS

Figure 4.18 compares first eigenvalues from the offline, standard online and EOA RORs,
as well as the shapes of their associated POD modes. The standard online ROR can pro-
duce results identical to those from an offline ROR using both one and four POD modes,
validating the standard incremental algorithm.

The eigenvalues and POD modes from a one-mode EOA ROR agree well with the
standard online ROR except for the last two AMR levels. This reflects the characteris-
tics mentioned in region 3, where high-wavenumber features become important on fine
meshes. The truncation of higher-order POD modes during the single-mode EOA re-
moves many of these features. Additionally, this truncation also has a notable impact on
the distribution of POD modes at the final AMR level as shown in Figure 4.18(a). In con-
trast, using the four-mode EOA ROR has no detrimental effect on both the eigenvalues
and POD modes, as shown in Figure 4.18(b). Therefore, one way to improve the repre-
sentation of model interactions is to increase the number of POD modes used for the
identification of EOA ROR.

ON THE APPROXIMATION OF A QOI
The approximations of the QoI and its error from EOA ROR are presented in Figure 4.19.
We can observe that the EOA ROR does not alter the convergence history of the compu-
tation, preserving the same accuracy of calculations from the offline ROR-driven AMR
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Figure 4.18: Mesh convergence of the first eigenvalue and first POD mode for enhanced online (red), standard
online (blue), and offline (green) ROR with (a) one and (b) four modes.

technique, even for the one-mode case. Although the POD mode obtained from the one-
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Figure 4.19: Comparisons of QoI and actual error during AMR using enhanced online and offline ROR with (a)
one and (b) four modes.

mode EOA ROR differs from that obtained with the offline ROR, the resulting QoI is still
reasonably accurate, as shown in Figure 4.19(a). In fact, the mesh refinement patterns
are the same as those obtained with the offline SVD.

4.7.2. DISCUSSIONS OF THE EOA ROR
RECONSTRUCTED PRIMAL SOLUTION

In order to analyze the mechanism for this phenomenon, we choose three spatial posi-
tions with small (P1), medium (P2) and large (P3) mean values, as shown in Figure 4.20.
The QoI’s good agreement is partly because the reconstructions of primal solutions from
the offline ROR and EOA ROR have similar trends over time. This is true even at the 10th
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AMR level, as presented in Figure 4.20(b), although there are differences in terms of their
amplitudes at P2 and P1. The discrepancies result from only using one POD mode, which
by design attempts to approximate instantaneous primal solutions with large dominant
amplitudes and thus needs to sacrifice some accuracy of medium- and small-amplitude
oscillations. Note that since the QoI is a statistical value over time, its calculation can
benefit from the cancellation of temporal fluctuations. In addition, the EOA ROR pro-
vides the same accuracy as the standard online ROR until the 8th AMR level, as shown in
Figure 4.20(a).
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Figure 4.20: Reconstructed primal solutions from standard online (red), enhanced online (blue), and of-
fline (green) ROR with one POD mode at the 8th and 10th AMR level. P1, P2 and P3 denote three different
spatial positions, i.e. P1 (x = 1/6), P2 (x = 1/2), P3 (x = 5/6).

THE STATISTICAL VALUE OF A QOI
Taking the QoI used here for an example, we can calculate it as

∫
Ω sin(πx)ūi dΩ, where

ūi denotes the time-averaged solution. The QoI will be identical as long as the time-
averaged value ūi stays the same. Since the one-mode ROM preserves the dominant
large-scale features, the mean value can be predicted reliably as shown in Table 4.1.

Table 4.1: The comparison of mean values at three spatial positions between standard ROM and enhanced
online ROM

Spatial Positions Standard ROM Enhanced Online ROM

P1 0.5012696 0.5012696
P2 0.9489279 0.9489279
P3 1.249128 1.249128

4.7.3. COMPARISON OF COMPUTING TIME
Figure 4.21 compares the computing time to build a ROR by the offline, standard online
and enhanced online algorithms during AMR. Figure 4.21(a) shows this computing time
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for a one-mode ROR. The standard online ROR requires more computing time than the
offline ROR. In contrast, the EOA ROR is much faster, and the advantage becomes more
and more apparent as the mesh is refined. This property is also observed for the four-
mode ROR, as shown in Figure 4.21(b), although it is less efficient at the starting AMR
levels. Generally, the computing time of the offline and standard online ROR increases
as the mesh is refined. However, the computing time of the EOA ROR grows much more
slowly. The results demonstrate that the EOA ROR could be promising for realistic LES
applications.
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Figure 4.21: Computing time of constructing offline (green), standard online (red) and enhanced online (blue)
ROR with (a) one and (b) four POD modes during AMR.

4.8. SUMMARY
We investigated the performance of the adjoint-based method on a 1D LES model prob-
lem based on the Burgers equation with a multi-frequency forcing term, and studied the
impact of using offline and online RORs on the proposed method. The main findings are
summarized as follows.

• The effectiveness of combining adjoint-based error estimation with VMM has been
verified using an unsteady Burgers problem with a manufactured solution.

• A POD-based ROR is introduced to represent the primal solution from the non-
linear unsteady simulation so as to remove the storage bottleneck that would oth-
erwise occur when we solve the adjoint problem backward in time. The procedure
is evaluated using a Burgers problem with a multi-frequency forcing term. From
numerical experiments, adjoint-based AMR is shown to be more efficient than tra-
ditional uniform refinement.

• The results show that AMR can start from very coarse meshes. The QoI estimate
converges reliably during AMR, and reaches a high level of accuracy at moderate
levels of refinement. For the cases considered here, using the ROR for primal solu-
tions does not significantly affect the performance of AMR. Specifically, the adap-
tive results from a four-mode ROR, which can capture 99.9% of total energy, have
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good agreement with the results from a full-order solution-driven AMR. Using a
single-mode ROR leads to suboptimal meshes since the first POD mode accounts
for only 65-75% of total energy, but the AMR procedure still considerably outper-
forms uniform refinement.

• Incremental SVD is introduced to build a ROR on the fly and an enhanced online
algorithm is proposed to further improve the efficiency of building a ROR so that
it can be applied for realistic LES. The results show that the enhanced algorithm
does not affect the quick convergence of the QoI computed by ROR-driven adjoint-
based AMR. The time consumption of building a ROR is significantly reduced by
using the EOA.
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Using the enhanced online algorithm, a reduced-order representation of the primal
solution is effectively built for high-dimensional 2D/3D problems here. The impact of
RORs on solving the adjoint problem is studied for unsteady flows past a 2D/3D circular
cylinder, in terms of accuracy, efficiency and stability.

5.1. INTRODUCTION
In Chapter 4, we demonstrated the effectiveness of using reduced-order representa-
tions (RORs) for solving the unsteady adjoint problem of the 1D forced Burgers prob-
lem. Since POD techniques are not affected by the dimension of the physical domain,
it can be expected that the efficiency of the enhanced online algorithm will translate to
higher-dimensional problems. Nevertheless, the applicability of the proposed method
to multidimensional applications needs to be investigated since the physical character-
istics become more complicated and challenging in 2D and 3D flow problems.

In this chapter, we examine the effects of using a primal ROR on the accuracy of ad-
joint solutions and adjoint-based error estimates for unsteady 2D and 3D flow problems.
The development of the adjoint system for 2D/3D cases is presented in Section 5.2, in-
cluding the associated boundary conditions. The enhanced online algorithm is coupled
with OpenFOAM in Section 5.3, which provides the order-reduction technique for solv-
ing the unsteady adjoint problem. The impact of RORs on the adjoint problem is studied
for 2D circular cylinder flows, at Re = 100 and Re = 500, and a 3D circular cylinder flow
at Re = 500. We examine the impacts on the adjoint field in Section 5.4, the computing
accuracy and efficiency in Section 5.5, and on the adjoint-based error estimation of the
drag in Section 5.6. The impact of using RORs on the adjoint stability of turbulent flows
is also discussed.

5.2. ADJOINT FORMULATION FOR UNSTEADY 2D/3D FLOWS
Although the continuous and discrete adjoint methods are studied for error estimation
in the literature, the continuous adjoint method is considered here. This is because the
continuous adjoint method has been used widely in OpenFOAM [139–141] and it allows
us to implement the algorithm efficiently. The adjoint system is derived for incompress-
ible flows with different boundary conditions. Although the derivation is demonstrated
for cylinder flows, the procedure can be applied to other applications starting from the
general expressions used here.

5.2.1. PRIMAL FLOW MODEL
We consider the unsteady Navier–Stokes equations for incompressible flows,

Rp =−∂u j

∂x j
= 0

Ru
i = ∂ui

∂t
+u j

∂ui

∂x j
+ ∂p

∂xi
− ∂

∂x j

(
ν

(
∂ui

∂x j
+ ∂u j

∂xi

))
= 0,

(5.1)

where i , j = 1,2 for 2D problems or i , j = 1,2,3 for 3D problems. ν represents the dy-
namic viscosity coefficient and ui and p are flow velocity and pressure.
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Figure 5.1: The computational geometry and domain of a cylinder.

We consider flows past a cylinder as shown in Figure 5.1. On the upper and lower
sides of the domain, symmetry conditions are applied. Periodic boundary conditions
are applied in spanwise direction. A constant free stream velocity is imposed at the inlet
while a pressure boundary condition is imposed at the outlet. On the surface of the cylin-
der, a no-slip boundary condition is prescribed. The values used for these conditions are
summarized in Table 5.1.

Table 5.1: Velocity (ui ) and pressure values for boundary conditions used in a cylinder flow problem

Primal variables Inlet Outlet No-slip Free-slip Periodic

Velocity (ui , i = 1,2,3) ui = u0
i

∂ui
∂n = 0 ui = 0 u j n j = 0 ui = up

i

Pressure (p) ∂p
∂n = 0 p = 0 ∂p

∂n = 0 ∂p
∂n = 0 p = pp

5.2.2. ADJOINT SYSTEM
In unsteady flow problems, we are often interested in time-averaged QoIs, such as lift
and drag. In general, such a QoI can be expressed as

J = 1

T

∫
I

∫
Ω

JΩ dΩdt + 1

T

∫
I

∫
∂Γ

JΓ dΓdt , (5.2)

where the JΩ and JΓ denote the contribution to the QoI per volume and surface area
respectively. ∂Γdenotes the boundary, which can be just part of the boundary of the fluid
domain Ω. T represents the time length for averaging the QoI over a temporal space I .
This formula can be used for different types of QoIs although their specific expressions
depend on the problems considered.

The Lagrange equation is introduced as

L = L(vi , p,ui , q ;β) = J + 1

T

∫
I

∫
Ω

(qRp + vi Ru
i )dΩdt , (5.3)

where vi , q are Lagrange (adjoint, co-state [142]) variables, and β denotes design vari-
ables that can be changed by users. Design variables can be parameters for changing
geometry in optimization problems or mesh size during AMR, for instance.
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Given that the flow variables (i.e. ui , p) are controlled by the design variables, there
are three categories of independent variables in the Lagrange function, i.e. β, vi , q . Thus
the variation of Lagrange function, δL, is expressed as

δL = δL

δβ
δβ+ δL

δvi
δvi + δL

δq
δq . (5.4)

The solution of the Lagrange function requires

δL = 0, ∀δβ,δvi ,δq . (5.5)

This is equivalent to

δL

δβ
δβ= 0, (5.6a)

δL

δvi
δvi = 0, (5.6b)

δL

δq
δq = 0, (5.6c)

∀δβ,δvi ,δq . Equations (5.6b) and (5.6c) are satisfied because of the conservation of
mass and momentum (i.e. Equation (5.1)). Therefore, the condition Equation (5.6a) is
what needs to be solved, which defines the associated adjoint problem. If the L only
involves algebraic operations, this extrema condition is stated as

δL

δβ
= ∂L

∂β
= 0. (5.7)

Otherwise, we need to consider the variation for PDEs rather than simply computing
derivatives. Considering Equation (5.3), we can derive the adjoint problem by

δL

δβ
= δJ

δβ
+ 1

T

∫
I

∫
Ω

δ(qRp + vi Ru
i )

δβ
dΩdt �

δdΩ

δβ
= 0

= δJ

δβ︸︷︷︸
I

+ 1

T

∫
I

[∫
Ω

q
δRp

δβ
dΩ+

∫
Ω

vi
δRu

i

δβ
dΩ

]
dt︸ ︷︷ ︸

II

�q, vi independent of β .
(5.8)

The order of variation and integration were exchanged above since the integration can
be regarded as a summation and the domain is not changed when considering error es-
timations (i.e. δdΩ

δβ = 0). The terms I denotes the component from the QoI and II is that
from physical constraints. These will be derived separately in the subsequent subsec-
tions.

QoI’s contribution Term I is expressed as

I = δJ

δβ
= 1

T

∫
I

[∫
Ω

δJΩ
δβ

dΩ+
∫
∂Γ

δJΓ
δβ

dΓ

]
dt , (5.9)
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where ∫
Ω

δJΩ
δβ

dΩ=
∫
∂Ω

(∂JΩ
∂β

+ ∂JΩ
∂ui

δui

δβ
+ ∂JΩ

∂p

δp

δβ

)
dΩ∫

∂Γ

δJΓ
δβ

dΓ=
∫
∂Γ

(
∂JΓ
∂β

+ ∂JΓ
∂ui

δui

δβ
+ ∂JΓ

∂p

δp

δβ
+ ∂JΓ
∂ui , j

∂

∂x j

(
δui

δβ

))
dΓ .

(5.10)

∂JΓ
∂ui , j

denotes the contribution from velocity gradients, such as the stress tensor of ve-

locity. δ
δβ is regarded as differential when operating on derivatives. The variation ( δ

δβ )
is treated normally for algebraic operations using the chain rule while the variation is
applied directly to the whole term involving derivatives. The chain rule is applied to the
velocity ui rather than gradient operators or tensors. Taking the drag for an instance, the
drag is expressed by the gradient of velocity, where the δ

δβ is applied inside the gradi-

ent. Therefore, ∂JΓ
∂ui , j

denotes the counterpart to the velocity tensor during the derivation

rather than an operator for computing derivatives.

Volume integration The term II includes volume integration which we split into two
components for convenience

II = 1

T

∫
I

∫
Ω

q
δRp

δβ
dΩdt︸ ︷︷ ︸

IIA

+ 1

T

∫
I

∫
Ω

vi
δRu

i

δβ
dΩdt︸ ︷︷ ︸

IIB

.
(5.11)

Integration-by-parts is applied, treating each index as an independent variable. The
term IIA involves in the continuity equation and is re-expressed as

IIA = 1

T

∫
I

∫
Ω

q
δRp

δβ
dΩdt = 1

T

∫
I

∫
Ω

q
δ

δβ
(−∂ui

∂xi
)dΩdt � Equation (5.1)

= 1

T

∫
I

∫
Ω
−q

∂

∂xi
(
δui

δβ
)dΩdt

= 1

T

∫
I

[∫
∂Ω

−q
δui

δβ
ni dΓ+

∫
Ω

∂q

∂xi

δui

δβ
dΩ

]
dt � Integration-by-parts .

(5.12)

Term IIB involves the momentum equations and is stated as

IIB = 1

T

∫
I

∫
Ω

vi
δRu

i

δβ
dΩdt

= 1

T

∫
I

∫
Ω

vi
δ

δβ

(
∂ui

∂t
+u j

∂ui

∂x j
+ ∂p

∂xi
− ∂τi j

∂x j

)
dΩdt

= 1

T

∫
I

∫
Ω

vi
∂

∂t

(
δui

δβ

)
︸ ︷︷ ︸

IIB ,temporal

dΩdt

+ 1

T

∫
I

∫
Ω

(
v j

∂u j

∂xi

δui

δβ︸ ︷︷ ︸
IIB.0

+vi u j
∂

∂x j

(
δui

δβ

)
︸ ︷︷ ︸

IIB.1

+vi
∂

∂xi

(
δp

δβ

)
︸ ︷︷ ︸

IIB.2

−vi
∂

∂x j

(
δτi j

δβ

)
︸ ︷︷ ︸

IIB.3

)
dΩdt .

(5.13)
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It is noted that the index is switched in IIB.0 so that we have a consistent expression of
velocity variation. The term IIB is further split into a temporal part, IIB ,temporal, and a
spatial part, IIB ,spatial, with IIB ,spatial = IIB.0 + IIB.1 + IIB.2 + IIB.3, which will be discussed
separately.

After integration-by-parts is applied in temporal direction for IIB ,temporal, we obtain

IIB ,temporal =
1

T

∫
I

∫
Ω

vi
∂

∂t

(
δui

δβ

)
dΩdt

= 1

T

∫
Ω

(
vi

δui

δβ

∣∣∣tend

tstart
−
∫

I

∂vi

∂t

δui

δβ
dt

)
dΩ

= 1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ− 1

T

∫
I

∫
Ω

∂vi

∂t

δui

δβ
dΩdt .

(5.14)

Likewise, integration-by-parts is applied in the spatial directions for IIB ,spatial while the

temporal integration is neglected. The term (IIB.0) can be used directly since the
δu j

δβ is
outside of derivatives. The remaining terms are derived using the integration-by-parts
as below,

IIB.1 =
∫
Ω

vi u j
∂

∂x j

(
δui

δβ

)
dΩ=

∫
∂Ω

vi u j
δui

δβ
n j dΓ−

∫
Ω

∂(vi u j )

∂x j

δui

δβ
dΩ (5.15)

IIB.2 =
∫
Ω

vi
∂

∂xi

(
δp

δβ

)
dΩ=

∫
∂Ω

vi
δp

δβ
ni dΓ−

∫
Ω

∂vi

∂xi

δp

δβ
dΩ (5.16)

IIB.3 =
∫
Ω
−vi

∂

∂x j

(
δτi j

δβ

)
dΩ

=
∫
∂Ω

−vi
δτi j

δβ
n j dΓ+

∫
Ω

∂vi

∂x j

δτi j

δβ
dΩ

=
∫
∂Ω

−vi n jν

[
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

)]
dΓ+

∫
Ω

∂vi

∂x j
ν

[
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

)]
dΩ

=
∫
∂Ω

−vi n jν

[
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

)]
dΓ

+
∫
∂Ω

νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
δui

δβ
dΓ−

∫
Ω

∂

∂x j

(
ν
∂vi

∂x j
+ν

∂v j

∂xi

)
δui

δβ
dΩ .

(5.17)

The sensitivities of primal variables
(
δui
δβ ,

δu j

δβ

)
are isolated in these terms. Finally, the
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expression of the term IIB is expressed as

IIB = IIB ,temporal + IIB.0 + IIB.1 + IIB.2 + IIB.3

= 1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ− 1

T

∫
I

∫
Ω

∂vi

∂t

δui

δβ
dΩdt

+ 1

T

∫
I

{∫
Ω

v j
∂u j

∂xi

δui

δβ
dΩ+

∫
∂Ω

vi u j
δui

δβ
n j dΓ−

∫
Ω

∂(vi u j )

∂x j

δui

δβ
dΩ

+
∫
∂Ω

vi
δp

δβ
ni dΓ−

∫
Ω

∂vi

∂xi

δp

δβ
dΩ+

∫
∂Ω

−vi n jν

[
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

)]
dΓ

+
∫
∂Ω

νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
δui

δβ
dΓ−

∫
Ω

∂

∂x j

(
ν
∂vi

∂x j
+ν

∂v j

∂xi

)
δui

δβ
dΩ

}
dt ,

(5.18)

where the underlined terms involve volume integrations while the remaining terms in-
volve boundary integrations. All above-mentioned terms are summarized in Figure 5.2.

δL
δβ I= II+

IIA IIB

IIB,temporal IIB,0 IIB,1 IIB,2 IIB,3

Figure 5.2: The expansion of the variation of the Lagrange function.

Then we first expand the term II as

II = IIA + IIB = IIΩ+ II∂Ω , (5.19)

where IIΩ and II∂Ω denote those terms involving volume and boundary integrations, re-
spectively. They are defined as

IIΩ = 1

T

∫
I

∫
Ω

(
−∂vi

∂xi

δp

δβ
+
[
−∂vi

∂t
+ v j

∂u j

∂xi
− ∂(vi u j )

∂x j
− ∂

∂x j

(
ν

(
∂vi

∂x j
+ ∂v j

∂xi

))
+ ∂q

∂xi

]
δui

δβ

)
dΩdt

= 1

T

∫
I

∫
Ω

(
Rq δp

δβ
+Rv

i
δui

δβ

)
dΩdt ,

(5.20)

II∂Ω = 1

T

∫
I

[∫
∂Ω

vi ni
δp

δβ
dΓ+

∫
∂Ω

(
−qni + vi u j n j +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

))
δui

δβ
dΓ

+
∫
∂Ω

−ν(vi n j + v j ni
) ∂

∂x j

(
δui

δβ

)
dΓt

]
dt + 1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ

= 1

T

∫
I

∫
∂Ω

(
Dq δp

δβ
+Dv

i
δui

δβ
+P v

i j
∂

∂x j

(
δui

δβ

))
dΓdt + 1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ ,

(5.21)
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where the notations of Rq ,Rv
i ,Dq ,Dv

i ,P v
i j are defined by

Rq =−∂vi

∂xi
(5.22a)

Rv
i =−∂vi

∂t
+ v j

∂u j

∂xi
− ∂(vi u j )

∂x j
− ∂

∂x j

(
ν

(
∂vi

∂x j
+ ∂v j

∂xi

))
+ ∂q

∂xi
(5.22b)

Dq = vi ni (5.22c)

Dv
i =−qni + vi u j n j +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
(5.22d)

P v
i j =−ν(vi n j + v j ni ) . (5.22e)

It is noted that the adjoint systems including the adjoint equations and boundary
conditions, can be different if we derive them using a conservative expression of the
convective term in Equation (5.1). In fact, this expression can be obtained by applying
integration-by-parts on IIB.0 in space. Specifically,∫

Ω
v j

∂u j

∂xi

δui

δβ
dΩ=

∫
∂Ω

v j u j
δui

δβ
ni dΓ−

∫
Ω

u j
∂

∂xi

(
v j

δui

δβ

)
dΩ

=
∫
∂Ω

v j u j
δui

δβ
ni dΓ−

∫
Ω

u j
∂v j

∂xi

δui

δβ
dΩ−

∫
Ω

u j v j
∂

∂xi

(
δui

δβ

)
dΩ

=
∫
∂Ω

v j u j
δui

δβ
ni dΓ−

∫
Ω

u j
∂v j

∂xi

δui

δβ
dΩ−

∫
Ω

u j v j
δ

δβ

(
∂ui

∂xi

)
dΩ

=
∫
∂Ω

v j u j ni
δui

δβ
dΓ−

∫
Ω

u j
∂v j

∂xi

δui

δβ
dΩ ,

(5.23)
where the integration in time is left out for convenience. This results in the same expres-
sions shown in Equation (5.22), except for Ru

i and Du
i ,

Rv
i =−∂vi

∂t
−u j

∂v j

∂xi
− ∂(vi u j )

∂x j
− ∂

∂x j

(
ν

(
∂vi

∂x j
+ ∂v j

∂xi

))
+ ∂q

∂xi
(5.24a)

Dv
i =−qni +u j (v j ni + vi n j )+νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (5.24b)

The notation (Rv
i ,Dv

i ) will be used to generalize the derivation from this point. We use
the conservative expressions for the numerical experiments in the following sections.

Recalling Figure 5.2, the sensitivity of the Lagrange function is ultimately expressed
as

δL

δβ
= I+ II

= 1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ+ 1

T

∫
I

∫
Ω

(
∂JΩ
∂β

+ R̂q δp

δβ
+ R̂v δui

δβ

)
dΩdt

+ 1

T

∫
I

∫
∂Ω

(
∂JΓ
∂β

+ D̂q δp

δβ
+ D̂v

i
δui

δβ
+ P̂ v

i j
∂

∂x j

(
δui

δβ

))
dΓdt ,

(5.25)
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where the following expressions are employed

R̂q = ∂JΩ
∂p

+Rq

R̂v = ∂JΩ
∂ui

+Rv
i

D̂q = ∂JΓ
∂p

+Dq

D̂v
i = ∂JΓ

∂ui
+Dv

i

P̂ v
i j =

∂JΓ
∂ui , j

+P v
i j .

(5.26)

These expressions consider the contribution of the QoI while Equations (5.22a) to (5.22e)
only consider the constraints.

Hence, the adjoint system, including adjoint equations and boundary conditions, is
formulated by satisfying the Equation (5.6a). More specifically, the adjoint equations
are obtained from the domain integral by setting terms with the sensitivity of the primal
variables to zero, i.e.

R̂q = ∂JΩ
∂p

+Rq = 0

R̂v = ∂JΩ
∂ui

+Rv
i = 0.

(5.27)

The associated boundary conditions for the adjoint problem are determined by the bound-
ary integral that should be zero, as follows

D̂q = ∂JΓ
∂p

+Dq = 0

D̂v
i = ∂JΓ

∂ui
+Dv

i = 0

P̂ v
i j =

∂JΓ
∂ui , j

+P v
i j = 0.

(5.28)

The QoI will change the final expression of adjoint equations and boundary conditions.
Therefore, the specific expressions of Equations (5.27) and (5.28) need to be determined
with respect to a particular problem.

ADJOINT EQUATIONS FOR THE DRAG

When the QoI is chosen as the drag for cylinder flows, it is expressed as

J = 1

T

∫
I

∮
S

(−pn j +τi j ni )r j dS dt , (5.29)
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where τi j = ν
(
∂ui
∂x j

+ ∂u j

∂xi

)
and r j denotes the drag direction. In other words, JΓ = (−pn j +

τi j ni )r j and JΩ = 0. The adjoint equations are then

Rq =−∂vi

∂t
−u j

∂v j

∂xi
− ∂(u j vi )

∂x j
− ∂

∂x j

(
ν(

∂vi

∂x j
+ ∂v j

∂xi
)
)+ ∂q

∂xi
= 0

Ru
i =−∂vi

∂xi
= 0.

(5.30)

The pressure term is positive in the flow problem, while the adjoint pressure term is also
positive. This is because the adjoint pressure is derived based on the continuity equation
that is given with a minus sign. Meanwhile, the influence of the pressure term is reflected
in the adjoint continuity equation.

The initial condition for the unsteady adjoint is determined by

1

T

∫
Ω

vi
δui

δβ

∣∣∣tend

tstart
dΩ= 0. (5.31)

Since the flow velocity is known at t = tstart, it cannot be altered and thus its varia-

tion (δui
δβ ) is zero. Given that there is no contribution to the drag at the ending time,

tend, and the flow solutions are not known yet, the velocity variation (δui
δβ ) can be arbi-

trary values when the design variables are changed. Therefore, the adjoint velocity vi

has to be zero in order to satisfy the condition Equation (5.31), i.e. Equation (5.6a). In
that sense, we have the initial condition at t = tend for the adjoint problem,

vi = 0, (5.32)

and thus the adjoint problem should be solved backward in time.

5.2.3. ADJOINT BOUNDARY CONDITIONS

The boundary conditions for the adjoint problem are derived as follows. When the drag
is considered as the QoI, the term I is re-expressed as

I = 1

T

∫
I

∫
∂Γ

δJΓ
δβ

dΓdt = 1

T

∫
I

∫
∂Γ

(∂JΓ
∂ui

δui

δβ
+ ∂JΓ

∂p

δp

δβ

)
dΓdt , (5.33)

since the drag relies on the ui , p as shown in Figure 5.3(a). Given that the drag is defined

JΓ

ui

p β

(a) General expression

JΓ

τij ui

p β

(b) With stress tensor
Figure 5.3: The sketch of a drag function and the flow and adjoint variables.
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by the stress tensor as shown in Figure 5.3(b), the term I can be also stated as

I = 1

T

∫
I

∫
∂Γ

(
∂JΓ
∂τk j

δτi j

∂β
+ ∂JΓ

∂p

δp

δβ

)
dΓdt

= 1

T

∫
I

∮
S

(
ni r j

δτi j

δβ
−n j r j

δp

δβ

)
dS dt �Equation (5.29)

= 1

T

∫
I

∮
S

(
ni r jν

δ

δβ

(
∂ui

∂x j
+ ∂u j

∂xi

)
−n j r j

δp

δβ

)
dS dt � ν is a constant

= 1

T

∫
I

∮
S

(
ni r jν

[
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

)]
−n j r j

δp

δβ

)
dS dt � Order exchange

= 1

T

∫
I

∮
S

(
ν
(
ni r j +n j ri

) ∂

∂x j

(
δui

δβ

)
−ni ri

δp

δβ

)
dS dt ,

(5.34)
where S is the cylinder wall surface, part of the whole boundary ∂Ω. Therefore, ∂JΓ

∂p , ∂JΓ
∂ui

and ∂JΓ
∂ui , j

will vanish in all boundaries except the cylinder wall surface, in which they are

read as
∂JΓ
∂p

=−ni ri

∂JΓ
∂ui

= 0

∂JΓ
∂ui , j

= ν(ni r j +n j ri ) .

(5.35)

Each boundary of the computational domain Ω in Figure 5.1 is considered in detail be-
low.

INLET

At the inlet, Dirichlet boundary conditions are applied to the primal velocity so that

δui

δβ
= 0. (5.36)

The boundary-integral component in Equation (5.25) is then stated as

δL

δβ
(∂Ω) = 1

T

∫
I

∫
∂Ω

(
Dq δp

δβ
+P v

i j
∂

∂x j

(
δui

δβ

))
dΓdt . (5.37)

The Lagrange condition requires this component to be zero, i.e.

Dq = 0

P v
i j = 0.

(5.38)

Thus we have

Dq = vi ni = vn = 0, (5.39)
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which indicates the normal component of adjoint velocity is zero. There are two ways
to derive the boundary condition from P v

i j . Firstly we can project P v
i j onto the normal

direction ni

ni P v
i j =−ν(ni vi n j +ni v j ni ) = 0

=⇒ni vi n j +ni v j ni = vnn j +ni ni v j = v j = 0.
(5.40)

Therefore, the adjoint velocity u j satisfies the zero Dirichlet boundary condition at the
inlet. Alternatively, we can expand the pv

i j based on the summation indices i , j as

P v
11 = 0 → v1n1 + v1n1 = 0 =⇒ v1 = 0

P v
12 = 0 → v1n2 + v2n1 = 0 =⇒ v2 = 0 � Due to v1 = 0

P v
13 = 0 → v1n3 + v3n1 = 0 =⇒ v3 = 0. � Due to v1 = 0

(5.41)

Consequently, the components of adjoint velocity are zero. The adjoint pressure is not
determined from those conditions. Therefore, the zero Neumann boundary condition is
applied [141].

CYLINDER SURFACE

At the cylinder wall surface, zero Dirichlet and zero Neumann boundary conditions are
applied to the primal velocity and pressure, respectively. Therefore, we have

δui

δβ
= 0, n j

∂

∂x j

δp

δβ
= 0. (5.42)

In order to satisfy the Lagrange condition, the surface integrals should be set to zero, viz.

D̂q = ∂JΓ
∂p

+Dq =−ni ri + vi ni = 0

P̂ v
i j =

∂JΓ
∂ui , j

+P v
i j = ν(ni r j +n j ri )−ν(vi n j + v j ni ) = 0.

(5.43)

The condition of D̂q implies that the normal component of the adjoint velocity is iden-
tified as

vn = rn . (5.44)

The other condition of P v
i j can be simplified using the projection as follows

ni P̂ v
i j = niν(ni r j +n j ri )−niν(vi n j + v j ni )

= 2ν
[
r j − v j +n j (rn − vn)

]
� Equation (5.44)

= 2ν(r j − v j ) = 0

⇒ v j = r j .

(5.45)

This can be derived using the expansion method as well. Consequently, the adjoint ve-
locity is a constant vector, i.e. ri , which is consistent with in literature [39]. A zero Neu-
mann boundary condition is chosen for the adjoint pressure.
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OUTLET

At the outlet, the primal boundary conditions are given by ∂ui
∂n = 0, p = constant, and thus

we have δp
δβ = 0,n j

∂
∂x j

(
δui
δβ

)
= 0. The stress τi j at the outlet is physically independent of

the design variables [140] when the outlet is far away from the object. Thus we have
δτi j

δβ = 0,

δτi j

δβ
= ν

δ

δβ

(
∂ui

∂x j
+ ∂u j

∂xi

)
= ν

(
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

))
= 0. (5.46)

Projecting Equation (5.46) onto vi and n j , we have

vi n j
δτi j

δβ
= 0 (5.47)

Therefore, we have

P v
i j

∂

∂x j
(
δui

δβ
) =−ν(vi n j + v j ni

) ∂

∂x j

(
δui

δβ

)
=−vi n j ν

(
∂

∂x j

(
δui

δβ

)
+ ∂

∂xi

(
δu j

δβ

))
=−vi n j

δτi j

δβ
= 0.

(5.48)

Thus the last part of the boundary-integral component in Equation (5.25) vanishes and
we have the Lagrange condition

δL

δβ
(∂Ω) = 1

T

∫
I

∫
∂Ω

Dv
i
δui

δβ
dΓdt . (5.49)

Dv
i should be set to zero, i.e. Dv

i = 0, to satisfy the Lagrange condition. Consequently, we
have

Dv
i =−qni +u j (v j ni + vi n j )+νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
= 0. (5.50)

The adjoint boundary conditions are derived by projecting the Equation (5.50) onto nor-
mal (ni ) and tangential directions. When using the conservative variables, the boundary
condition for adjoint pressure is derived as

ni Dv
i =−q +u j (v j + vnn j )+νni n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
=−q + v j u j + vnun +2νn j

∂vn

∂x j
= 0

⇒ q = v j u j + vnun +2νn j
∂vn

∂x j
.

(5.51)
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The boundary condition for the adjoint velocity is determined by

Dv
i −nk Dv

k ni =−qni +u j (v j ni + vi n j )+νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
−
[
−qni + v j u j ni + vnunni +2νni n j

∂vn

∂x j

]
= un(vi − vnni )+νn j

(
∂(vi − vk nk ni )

∂x j
+ ∂v j

∂xi
−ni nk

∂v j

∂xk

)
= 0

⇒ un v‖i +νn j

(
∂v‖i

∂x j
+ ∂v j

∂x‖i

)
= 0.

(5.52)

where v‖i denotes the tangent velocity and x‖i stands for the tangent direction.

Discretization for cylinder flows The adjoint pressure can be computed by

q = v j u j + vnun +2νn j
∂vn

∂x j
, (5.53)

where the primal and adjoint velocities can be interpolated at the boundary and the
gradient term is discretized by

νn j
∂vn

∂x j
= ν

∂vn

∂n
≈ ν

vn,P − vn,N

Δh
, (5.54)

as long as the adjoint velocity is known. Equation (5.52) states that the velocity is an im-
plicit function. Equation (5.54) is thus solved with the discrete system for the domain.
However, this will change the matrix structure and make implementation more compli-
cated in OpenFOAM. Rather than using a coupled approach, the boundary condition
for the adjoint velocity is evaluated using the solution at the last time step. The adjoint
velocity is decomposed into normal and tangential components for evaluation. The nor-
mal component is constructed from the face flux (F f ), i.e. un = F f /‖S‖. The tangential
component (v‖i ) is governed by

un v‖i +νn j

(
∂v‖i

∂x j
+ ∂v j

∂x‖i

)
= 0. (5.55)

The viscous terms in this equation are approximated as follows

νn j
∂v‖i

∂x j
= ν

∂v‖i

∂n
≈ ν

v‖i ,P − v‖i ,N

Δh

νn j
∂v j

∂x‖i
= ν

∂vn

∂x‖i
= νn j

(
∂v j

∂xi
− ∂v j

∂xk
nk ni

)
= νn j

∂v j

∂xi
−ν

∂vn

∂n
ni .

(5.56)

Since νn j
∂v j

∂x‖i
is independent of the tangential component of the adjoint velocity, it is

treated as a known value when we solve this equation for the tangential component.
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νn j
∂v j

∂xi
is evaluated by the velocity gradient and surface normal vector while ν∂vn

∂n is
computed by Equation (5.54). The discretization of Equation (5.55) is expressed as

un v‖i ,P +ν
v‖i ,P − v‖i ,N

Δh
+νn j

∂v j

∂xi
−ν

∂vn

∂n
ni = 0. (5.57)

Here we have two ways to solve this equation. One way is

v‖i ,P =− 1

un

[
ν

Δh

(
vo
‖i ,P − v‖i ,N

)
+νn j

∂v j

∂xi
−ν

∂vn

∂n
ni

]
, (5.58)

where vo denotes the solution at the previous time step. The other way is

v‖i ,P =− 1

un + ν
Δh

[
− ν

Δh
v‖i ,N +νn j

∂v j

∂xi
−ν

∂vn

∂n
ni

]
. (5.59)

Although the first way has been applied in the OpenFOAM tutorial, the second one pro-
vides a more accurate computation, which is used in the current study.

FAR FIELD

For the far-field boundary, Dirichlet boundary conditions are used for the primal velocity

and pressure, viz. p = constant,ui = constant. Therefore we have δui
δβ = 0, δp

δβ = 0. Thus
the boundary integral in Equation (5.25) becomes

δL

δβ
(∂Ω) = 1

T

∫
T

∫
∂Ω

P v
i j

∂

∂x j

(
δui

δβ

)
dΓdt . (5.60)

The Lagrange condition requires P v
i j = 0 and thus the adjoint velocity is zero, i.e. vi = 0,

because of Equation (5.41). As there is no constraint for the adjoint pressure, a zero
Neumann boundary condition is used for the adjoint pressure.

PERIODICITY

For arbitrary periodic boundaries, their wall normal unit vectors are reversed to each
other, viz. nΓ1 =−nΓ2 , as shown in Figure 5.4. The primal boundary conditions are given
as uΓ1

i = uΓ2
i , pΓ1 = pΓ2 . The boundary conditions for the adjoint velocity and pressure

are also periodic, i.e. vΓ1
i = vΓ2

i , qΓ1 = qΓ2 . This can be proved as follows.

Figure 5.4: The sketch of the periodic boundary condition.
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The flow states are identical at periodic boundaries. In other words, the geometry of
periodic boundaries is identical and the gradient of scalar variables is also the same. In
that sense, we have

uΓ1
i = uΓ2

i , pΓ1 = pΓ2 ,
∂uΓ1

i

∂x j
= ∂uΓ2

i

∂x j

⇒ δuΓ1
i

δβ
= δuΓ2

i

δβ
,

δpΓ1

δβ
= δpΓ2

δβ
,

∂

∂x j

(
δuΓ1

i

δβ

)
= ∂

∂x j

(
δuΓ2

i

δβ

)
.

(5.61)

The boundary integral in Equation (5.25) becomes

δL

δβ
(Γ1 +Γ2)

= 1

T

∫
I

∫
Γ1

(
Dq,Γ1

δpΓ1

δβ
+Dv,Γ1

i

δuΓ1
i

δβ
+P v,Γ1

i j

∂

∂x j

(
δuΓ1

i

δβ

))
dΓdt

+ 1

T

∫
I

∫
Γ2

(
Dq,Γ2

δpΓ2

δβ
+Dv,Γ2

i

δuΓ2
i

δβ
+P v,Γ2

i j

∂

∂x j

(
δuΓ2

i

δβ

))
dΓdt

= 1

T

∫
I

∫
Γ1

((
Dq,Γ1 +Dq,Γ2

) δpΓ1

δβ
+
(
Dv,Γ1

i +Dv,Γ2
i

) δuΓ1
i

δβ
+
(
P v,Γ1

i j +P v,Γ2
i j

) ∂

∂x j

(
δuΓ1

i

δβ

))
dΓdt .

(5.62)
This is because Γ1 has an integral path that is the same as for Γ2. The Lagrange condition
will lead to

Dq,Γ1 +Dq,Γ2 = 0 (5.63a)

Dv,Γ1
i +Dv,Γ2

i = 0 (5.63b)

P v,Γ1
i j +P v,Γ2

i j = 0. (5.63c)

Equation (5.63a) is stated as vΓ1
i nΓ1

i + vΓ2
i nΓ2

i = 0 or vΓ1
n = −vΓ2

n . Furthermore, we can

project Equation (5.63c) onto nΓ1
i as

nΓ1
i

(
P v,Γ1

i j +P v,Γ2
i j

)
=−νnΓ1

i

(
vΓ1

i nΓ1
j + vΓ1

j nΓ1
i

)
−νnΓ1

i (vΓ2
i nΓ2

j + vΓ2
j nΓ2

i )

=−ν
(
vΓ1

n nΓ1
j − vΓ2

n nΓ2
j

)
−ν
(
vΓ1

j − vΓ2
j

)
=−ν

(
vΓ1

n + vΓ2
n

)
nΓ1

j −ν
(
vΓ1

j − vΓ2
j

)
=−ν

(
vΓ1

j − vΓ2
j

)
= 0 ⇒ vΓ1

j = vΓ2
j .

(5.64)

This gives proof of the periodicity for adjoint velocity, viz. vΓ1
i = vΓ2

i .

The boundary of adjoint pressure is derived by projecting Equation (5.63b) onto nΓ1
i
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as

nΓ1
i

(
Dv,Γ1

i +Dv,Γ2
i

)
=−qΓ1 +uΓ1

j vΓ1
j +uΓ1

j nΓ1
j vΓ1

i nΓ1
i +νnΓ1

i nΓ1
j

⎛⎝∂vΓ1
i

∂x j
+
∂vΓ1

j

∂xi

⎞⎠
+qΓ2 −uΓ2

j vΓ2
j −uΓ2

j nΓ1
j vΓ2

i nΓ1
i −νnΓ1

i nΓ1
j

⎛⎝∂vΓ2
i

∂x j
+
∂vΓ2

j

∂xi

⎞⎠
= qΓ2 −qΓ1 = 0 ⇒ qΓ1 = qΓ2 .

(5.65)

FREE-SLIP WALL

On a free-slip boundary, the normal component of the primal velocity is zero, un =
u j n j = 0, and the primal pressure satisfies a zero Neumann boundary condition in the

normal direction. We thus have
δ(u j n j )

δβ = 0, ∂
∂n

(
δp
δβ

)
= 0. The normal component of pri-

mal velocity variation vanishes, but the tangential part can change freely, leading to the

requirement for zeroing δui
δβ . Given that there is no contribution from the QoI, the La-

grange conditions give
Dq = 0, Dv

i = 0, P v
i j = 0. (5.66)

Based on the derivation for the inlet boundary, Dq = 0 and P v
i j = 0 are equivalent to

vi = 0. The boundary condition for adjoint pressure is given by projecting Dv
i = 0 onto

ni . When using the conservative variables, this leads to

ni Dv
i =−q +u j (v j + vnn j )+νni n j

(
∂vi

∂x j
+ ∂v j

∂xi

)
=−q +2νn j

∂vn

∂x j
= 0 ⇒ q = 2νn j

∂vn

∂x j
.

(5.67)

SYMMETRY PLANE

Symmetry boundary conditions will be used for primal flow variables, i.e. the primal flow
variables are symmetric with respect to a plane. Thus the normal gradient of the velocity

at this plane is zero, i.e. zero Neumann boundary condition, un = 0, ∂p
∂n = 0,

∂u‖
∂n = 0.

Therefore, we have
δun

δβ
= 0,

∂

∂n

(
δp

δβ

)
= 0,

∂

∂n

(
δu‖
δβ

)
= 0. (5.68)

The symmetry boundary condition should be also applied for the adjoint pressure and

velocity, i.e. vn = 0, ∂q
∂n = 0,

∂v‖
∂n = 0, which is done as follows.

At the symmetry boundary,
∂u‖
∂n = 0 is the constraint in the tangential direction. We

use ι (i.e. ιi ) to describe the unit vector in this direction and n ·ι= 0. Actually, this condi-
tion denotes two boundary conditions inside the symmetry plane, and their directions
are orthogonal to each other, viz. ι= t+s,t ·s= 0.

Given that there is no contribution from the QoI, the surface integral in Equation (5.25)
is simplified as

δL

δβ
(∂Ω) = 1

T

∫
I

∫
∂Ω

(
Dq δp

δβ
+Dv

i
δui

δβ
+P v

i , j
∂

∂x j

(
δui

δβ

))
dΓdt . (5.69)
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The term involving P v
i , j is expanded as

P v
i , j

∂

∂x j

(
δui

δβ

)
=−ν(vi n j + v j ni )

∂

∂x j

(
δui

δβ

)
=−νvi n j

∂

∂x j

(
δui

δβ

)
−νv j

∂

∂x j

(
�
��

δun

δβ

)
=−νvi n j

∂

∂x j

(
δunni +u‖ιi

δβ

)
=−νvi n j

∂

∂x j

(
ni
�
��

δun

δβ
+ ιi

δu‖
δβ

)
=−νvi ιi

�����

∂

∂n

(
δu‖
δβ

)
= 0.

(5.70)

As a consequence, the integral term involving P v
i , j is eliminated automatically. The La-

grange conditions require
Dq = 0, Dv

i = 0. (5.71)

For Dq = 0, this reads as
Dq = vi ni = vn = 0. (5.72)

For Dv
i = 0, we have

Dv
i =−qni +u j vi n j +u j v j ni +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (5.73)

It is noted that the term involved −qni is expressed as

1

T

∫
I

∫
∂Ω

−qni
δui

δβ
dΓdt = 1

T

∫
I

∫
∂Ω

−q���

δun

δβ
dΓdt = 0. (5.74)

This means there is no specific requirement for the adjoint pressure q . The zero gradient
condition is applied to q here as is commonly recommended. The remaining terms are

Dv
i = u j vi n j +u j v j ni +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
=��un vi +u j v j ni +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
= u j v j ni +νn j

(
∂vi

∂x j
+ ∂v j

∂xi

)
= u j v j ni +ν

(
∂vi

∂n
+ ∂vn

∂xi

)
= 0.

(5.75)

Projecting it onto ι results in

u j v j��ni ιi + ιi

(
∂vi

∂n
+ ∂vn

∂xi

)
= ∂(vi ιi )

∂n
+ ∂vn

∂xi
ιi =

∂v‖
∂n

+ ∂vn

∂xi
ιi = 0. (5.76)

The gradient of vn can be split into directional derivatives as

∂vn

∂xi
= ∂vn

∂x j
n j ni + ∂vn

∂x j
ι j ιi

⇒ ∂vn

∂xi
ιi = ∂vn

∂x j
n j��ni ιi + ∂vn

∂x j
ι j ιi ιi = ∂vn

∂x j
ι j = ∂vn

∂ι
.

(5.77)
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Since vn is always equal to zero as shown in Equation (5.72), the directional derivative of
vn in this plane is zero, leading to ∂vn

∂ι = 0. Therefore, we have

∂vn

∂xi
ιi = ∂vn

∂ι
= 0

⇒ ∂v‖
∂n

+ ∂vn

∂xi
ιi =

∂v‖
∂n

= 0,

(5.78)

which gives the symmetry boundary condition for the adjoint velocity.

5.2.4. NUMERICAL DISCRETIZATION
The primal and adjoint problems are discretized using the finite-volume method (FVM).
The semi-discrete system is solved with the PIMPLE algorithm. We demonstrate this
method for both primal and adjoint problems in this section.

FINITE VOLUME METHOD

Gauss’s theorem is applied in FVM to convert the volume integral to surface integrals as∫
Ω
∇�φdΩ=

∫
∂Ω

φ� dS , (5.79)

where φ denotes any fields (e.g. pressure, velocity), and � represents any operators, e.g.
inner (∇·φ), outer (∇φ), and cross (∇×φ). Thus we have∫

Ω
∇·φdΩ=

∫
∂Ω

φ ·n dS∫
Ω
∇φdΩ=

∫
∂Ω

φn dS ,
(5.80)

The values at cell faces need to be evaluated using interpolation schemes. Figure 5.5
shows the face (S f ) where we need to evaluate the variables. Essentially, all values will be
computed based on solutions from the present (P) and neighbor (N) cells. The neighbor
cells can be generally extended to outer layers for high-order schemes. Here linear inter-
polation is used for the numerical discretization. Geometric information is determined
by the computational mesh, such as the distance vector (d ), surface normal vector (n),

surface vector (S f ), the length ratio of face center to present cell center (λ= ‖d P,Cf‖
‖d‖ ) and

neighbor cell center (1−λ). Then the face value (φCf) can be computed by interpolating
the values from cell centers (φP,φN) as

φCf = (1−λ)φP +λφN
or=λPφP +λNφN , (5.81)

where λP +λN = 1. This technique can be applied for both primal and adjoint fields at
cell faces.

PIMPLE ALGORITHM FOR PRIMAL PROBLEM

The unsteady incompressible Navier-Stoke equations (viz. Equation (5.1)) is re-stated in
a vector format as

R =∇·u = 0

Ri = ∂u

∂t
+∇· (uu)−∇· (ν∇u)+∇p = 0,

(5.82)
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Figure 5.5: Interpolation for the face variables at the face center (Cf) between present (P) and neighbor (N)
cells.

where u denotes the velocity vector, i.e. ui , i = 1,2,3 in 3D problems. It is worth men-

tioning that ∇· (ν∇u) = ∂
∂x j

(
∂ui
∂x j

)
is an expression for the viscous term. However, ∇u by

definition is
∂u j

∂xi
. Thus, (∇u)T = ∂ui

∂x j
should be used here. For convenience, we replace

∇ · [ν(∇u)T] with an expression ∇ · (ν∇u) = ∂
∂x j

(
∂ui
∂x j

)
. Let us postulate that the finite

volume is given at t ∈ I : [t n , t n+1], in which the flow solution at t = t n is known. The
nonlinear convection term is linearized about un so that the system to be solved is

R =∇·u = 0

Ri = ∂u

∂t
+∇· (un u)−∇· (ν∇u)+∇p = 0.

(5.83)

The nonlinearity is then treated by the outer correctors in the PIMPLE algorithm.
The FVM is applied by integrating Equation (5.83) on a spatial volume (ΔV ). Using

Gauss theorem with a linear interpolation scheme, the volume integration is converted
into surface integrals as∫

V
∇· (un u)dV =

∫
S

n ·un u dS =∑
S f

∫
S f

n ·un u dS

≈∑
S f

S f ·un
f u f =

∑
S f

F f u f

=∑
S fi

F fi

[
(1−λi )uP +λi uNi

]
�Linear interpolation

−
∫

V
∇· (ν∇u) dV =−∑

S f

∫
S f

n ·ν∇udS ≈−∑
S f

νS f ·∇u

=−∑
S fi

ν
uNi −uP

‖d‖ ‖S fi ‖ =
∑
S fi

ν
‖S fi ‖
‖d‖

(
uP −uNi

)
∫

V
∇p dV ≈ΔV ∇p .

(5.84)

Here uP denotes the flow solution at the current cell and uNi is the solution in neighbor
cells. uNi is introduced for the splitting operation used in the PIMPLE algorithm. n
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stands for the surface normal vector. F f = S f ·un
f represents face flux and S f is the area

vector of face f . λi denotes the interpolation weight, which is 0.5 for linear interpolation.
d is the distance vector from the current cell center and neighbor cell center. The time
gradient of velocity is approximated at the cell center, resulting in a semi-discretization
system

∂uP

∂t
=− f (u, p) , (5.85)

where

f (u, p) = 1

ΔV

∑
S fi

F fi

[
(1−λi )uP +λi uNi

]+ 1

ΔV

∑
S fi

ν
‖S fi ‖
‖d‖ (uP −uNi )+∇p . (5.86)

The backward Euler time scheme is considered here to demonstrate the PIMPLE algo-
rithm. The full-discretization system is then obtained as

un+1
P −un

P

Δt
=− f (un+1, pn+1) , (5.87)

where Δt = t n+1 − t n . This system can be expressed in a matrix format as follows

APun+1
P +∑ANun+1

N = SP −∇pn+1 , (5.88)

where

AP = 1

Δt
+ 1

ΔV

∑
S fi

F fi (1−λi )+ 1

ΔV

∑
S fi

ν
‖S fi ‖
‖d‖

AN = 1

ΔV

(
F fi λi −ν

‖S fi ‖
‖d‖

)
SP = 1

Δt
un

P .

(5.89)

Here, AP represents the diagonal matrix coefficients while AN denotes off-diagonal ma-
trix coefficients. This notation allows for compact descriptions of the algorithm and its
implementations in OpenFOAM. Combined with the continuity equation for un+1, viz.

∇·un+1 = 0. (5.90)

we have the complete system for un+1, pn+1.
In the PIMPLE algorithm, the velocity and pressure are solved separately and itera-

tively to obtain the approximated solution (u�

P ,u�
N , p�) satisfying

APu�

P +∑ANu�
N = SP −∇p� . (5.91)

u�

P ,u�
N and p� can be obtained at different levels, and �,�,� stand for where the solu-

tion is solved; but they need to be solved iteratively to obtain correct values for un+1
P , pn+1.

Subtracting Equation (5.91) from Equation (5.88), the error equation is derived as

APu
′
P +
∑

ANu
′
N =−∇p

′
. (5.92)
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where
u

′
P = un+1

P −u�

P

u
′
N = un+1

N −u�
N

p
′ = pn+1 −p� .

(5.93)

For any solution from Equation (5.91), the solution error is governed by Equation (5.92).
The solution correction can be obtained by solving this error equation. There are two
different approaches to dealing with Equation (5.92) as follows.

Approach without correction The PIMPLE algorithm combines the SIMPLE and PISO
algorithm [143]. For the predictor step, the velocity field u∗

P is solved implicitly by

APu∗
P +∑ANu∗

N = SP −∇pn . (5.94)

For first correction step, subtracting Equation (5.94) from Equation (5.88), the we
have the correction equation

APu
′
P +
∑

ANu
′
N =−∇p

′
. (5.95)

where
u

′
P = un+1

P −u∗
P

u
′
N = un+1

N −u∗
N

p
′ = pn+1 −pn .

(5.96)

The error in current cell (u
′
P) is treated as the dominant factor here. This is to say that

the error contributions from neighbor cells (u
′
N) are ignored. Then we have the approxi-

mation
APu

′
P ≈−∇p

′
. (5.97)

Considering Equations (5.94) and (5.95), the corrected velocity (u∗∗
P ) is calculated by

u∗∗
P = u∗

P +u
′
P

= A−1
P

(−∑ANu∗
N +SP

)− A−1
P ∇pn − A−1

P ∇p
′

= HbyA∗ − A−1
P ∇p∗ ,

(5.98)

where
HbyA∗ = A−1

P

(−∑ANu∗
N +SP

)
. (5.99)

The notation of HbyA∗ is widely used as a variable in OpenFOAM since it is easy to un-
derstand and program the algorithm. From continuity of velocity, i.e. ∇ ·u∗∗

P = 0, the
Poisson for the corrected pressure is

∇· (A−1
P ∇p∗)=∇·HbyA∗ . (5.100)

Then the pressure (p∗) is obtained by solving Equation (5.100). After that, the velocity is
computed by Equation (5.98). In fact, the corrected velocity and pressure satisfy

APu∗∗
P +∑ANu∗

N = SP −∇p∗ . (5.101)
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For the second corrector step, the new error equation is formulated by subtracting
Equation (5.101) from Equation (5.88), as shown below

APu
′
P +
∑

ANu
′
N =−∇p

′
. (5.102)

where

u
′
P = un+1

P −u∗∗
P

u
′
N = un+1

N −u∗
N

p
′ = pn+1 −p∗ .

(5.103)

This is simplified again into Equation (5.97). The second corrected velocity (u∗∗
P ) is cal-

culated using Equations (5.97) and (5.101) as

u∗∗∗
P = u∗∗

P +u
′
P

= A−1
P

(−∑ANu∗∗
N +SP

)− A−1
P ∇p∗ − A−1

P ∇p
′

= HbyA∗∗ − A−1
P ∇p∗∗ ,

(5.104)

where

HbyA∗∗ = A−1
P

(−∑ANu∗∗
N +SP

)
. (5.105)

The continuity of velocity ∇·u∗∗∗
P = 0 leads to the Poisson for the second corrected pres-

sure as

∇· (A−1
P ∇p∗∗)=∇·HbyA∗∗ . (5.106)

Then the pressure (p∗∗) is obtained by solving Equation (5.106). After that, the velocity
is updated by Equation (5.104). In fact, this corrected velocity and pressure satisfy

APu∗∗∗
P +∑ANu∗∗

N = SP −∇p∗∗ . (5.107)

We consider two correction steps in the current study although more correction steps
can be used. Within the two corrector steps, there are similarities in the computations,
such as updating HbyA∗, solving the pressure Poisson equation. The corrector step can
be generalized for multiple corrector steps. Consequently, the PIMPLE algorithm is sum-
marized as follows

• Outer loop for PIMPLE (pimple loop)

– Solve the u∗ using the Equation (5.94) with known pn .

– Inner loop for PIMPLE (pimple corrector)

· Update HbyA∗ using u∗
N, i.e. HbyA∗ = A−1

P

(−∑ANu∗
N +SP

)
.

· Solve the pressure Poisson equation, Equation (5.100), for p∗.

· Calculate the u∗∗
P using Equation (5.98).

· Save the u∗∗
P , p∗ for next corrector.
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Approach with correction This approach utilizes a different way to approximate the
correction. The same predictor step shown in Equation (5.94) is used for solving the
velocity field u∗

P. Therefore, the solution error satisfies Equation (5.95). For a more ac-
curate computation, the velocity error of the current cells is assumed to be the weighted
average of the neighbor cells, i.e.

u
′
P ≈
∑

ANu
′
N∑

AN
. (5.108)

Then we have
∑

ANu
′
N = (

∑
AN)u

′
P, which is used to replace all u

′
N with u

′
P. Substituting

into Equation (5.95), the correction equation is expressed as

(AP +
∑

AN)u
′
P =−∇p

′
. (5.109)

The velocity correction is expressed as

u
′
P =−A−1

t ∇p
′
, (5.110)

where
At = AP +

∑
AN . (5.111)

Adding up Equations (5.94) and (5.110), the corrected velocity (u∗∗
P ) is calculated by

u∗∗
P = u∗

P +u
′
P

= A−1
P

(−∑ANu∗
N +SP

)− A−1
P ∇pn − A−1

t ∇p
′

= HbyA∗ − (A−1
P − A−1

t

)∇pn − A−1
t ∇p∗ ,

(5.112)

where HbyA∗ is defined by Equation (5.99). From continuity of u∗∗
P , i.e. ∇ ·u∗∗

P = 0, so
the Poisson equation for corrected pressure is

∇· (A−1
t ∇p∗)=∇·HbyA∗ − (A−1

P − A−1
t

)∇pn . (5.113)

Then the pressure (p∗) is obtained by solving Equation (5.113). After that, the velocity is
computed by Equation (5.112). In fact, the corrected velocity and pressure satisfy

APu∗∗
P +∑ANu∗∗

N = SP −∇p∗ . (5.114)

This can be proved as follows. Equation (5.112) is re-arranged as

u∗∗
P = A−1

P

(−∑ANu∗
N +SP

)− A−1
P ∇pn − A−1

t ∇p
′

⇒
APu∗∗

P =−∑ANu∗
N +SP −∇pn − AP A−1

t ∇p
′

= −∑ANu∗
N +SP −∇pn + APu

′
P �Equation (5.110)

=−∑ANu∗
N +SP −∇pn −∇p

′ −∑ANu
′
N �Equation (5.109)

=−∑ANu∗∗
N +SP −∇p∗ ,

(5.115)
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where
u∗∗

P = u∗
P +u

′
P

u∗∗
N = u∗

N +u
′
N

p∗ = pn +p
′
.

(5.116)

For the second corrector step, the velocity correction is computed by Equation (5.110).
The corrected velocity (u∗∗∗

P ) is stated as

u∗∗∗
P = u∗∗

P +u
′
P

= A−1
P

(−∑ANu∗∗
N +SP

)− A−1
P ∇p∗ − A−1

t ∇p
′

= HbyA∗∗ − (A−1
P − A−1

t

)∇p∗ − A−1
t ∇p∗∗ ,

(5.117)

where
p∗∗ = p∗ +p

′
. (5.118)

The continuity of velocity u∗∗
P will induce the Poisson for the corrected pressure

∇· (A−1
t ∇p∗∗)=∇·HbyA∗∗ − (A−1

P − A−1
t

)∇p∗ . (5.119)

Then the pressure (p∗∗) is obtained by solving Equation (5.119). After that, the velocity
is computed by Equation (5.117). Likewise, the corrected velocity and pressure satisfy

APu∗∗∗
P +∑ANu∗∗∗

N = SP −∇p∗∗ . (5.120)

The above-mentioned corrector steps can be generalized for multiple corrector steps.
Thus, the PIMPLE algorithm with correction is summarized as follows

• Outer loop for PIMPLE (pimple loop)

– Solve the u∗ using the Equation (5.94) with known pn .

– Inner loop for PIMPLE (pimple corrector)

· Update HbyA∗ using u∗
N, i.e. HbyA∗ = A−1

P

(−∑ANu∗
N +SP

)
.

· Solve the pressure Poisson equation, Equation (5.113), for p∗.

· Calculate the u∗∗
P using Equation (5.112).

· Save the u∗∗
P , p∗ for next loop.

The matrix coefficients are reconstructed when the velocity object is constructed in
each outer loop of the PIMPLE algorithm. Thus the nonlinearity is addressed.

PIMPLE ALGORITHM FOR ADJOINT PROBLEM

The adjoint problem governed by Equation (5.30) is described in a vector format as

Rq =−∇·ua = 0

Ru
i =−∂ua

∂t
−∇ua ·u︸ ︷︷ ︸

ATC

−∇· (uua)−∇· (ν∇ua)+∇pa = 0, (5.121)
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where the adjoint transported convection (ATC) term distinguishes the adjoint equation
from the primal problem. ua , pa denote the adjoint velocity vector and adjoint pressure.

The FVM is applied on an arbitrary volume, ΔV , with t ∈ I : [t n , t n+1], in which the
solution at t = t n+1 is known for the adjoint problem since it is solved backward in time.
Similar to the flow problem, the time-dependent adjoint problem in Equation (5.121) is
solved with a semi-discretized form as follows,

∂ua,P

∂t
= 1

ΔV

∫
V

(−∇ua ·u −∇· (uua)−∇· (ν∇ua)+∇pa
)

dV , (5.122)

where V represents the control volume and ua,P represents the adjoint velocity at current
cell. Applying this on each mesh cell with the linear interpolation scheme at face S fi , we
obtain the expression in the discrete space. The adjoint transported convection (ATC)
term is expressed as

∫
V
−∇ua ·u dV ≈−

∫
V
∇ua dV ·uP

=−∑
S f

∫
S f

n(ua ·uP)dS

≈−∑
S f

(ua,Cf ·uP)S f

=−∑
S fi

[
(1−λ fi )ua,P +λ fi ua,Ni

] ·uP S fi �Equation (5.81)

=−∑
S fi

[
(1−λ fi )S fi ua,P ·uP +λ fi S fi ua,Ni ·uP

]
,

(5.123)
where the subscripts P and Cf denote where the variables are defined, i.e. at the cell
center of the present cell and the face center, respectively. The subscript N denotes that
adjoint variables are defined at the cell center of neighbour cells. The outer product of
S fi ua,P ≡ S fi ⊗ua,P can be computed by the vector/matrix multiplications as S fi uT

a,P.

Likewise, the convection and viscous terms are evaluated as

∫
V
−∇· (uua)dV =−

∫
S

(n ·u)ua dS

=−∑
S f

∫
S f

(n ·u)ua dS

≈−∑
S f

(
S f ·uCf

)︸ ︷︷ ︸
F f

ua,Cf

=−∑
S fi

S f · [(1−λi )uP +λi uN]
[
(1−λ fi )ua,P +λ fi ua,Ni

]
=−∑

S fi

F fi

[
(1−λ fi )ua,P +λ fi ua,Ni

]
,

(5.124)
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∫
V
−∇· (ν∇ua) dV =−

∫
S

n · (ν∇ua)dS

=−∑
S f

∫
S f

n · (ν∇ua)dS

≈−∑
S f

S f · (ν∇ua)Cf

≈−∑
S fi

‖S fi ,d‖
(νua)Ni − (νua)P

‖d fi ‖
�Equation (5.126)

=∑
S fi

ν
‖S fi ,d‖
‖d fi ‖

(ua,P −ua,Ni ) .

(5.125)

F f is the convection face flux. The face gradient on an orthogonal mesh can be calcu-
lated by

S f · (ν∇ua)Cf = |S f |n · (ν∇ua)Cf = |S f | (ν
∂ua

∂n
)Cf = ‖S f ‖

(νua)N − (νua)P

‖d‖ , (5.126)

where d represents the distance vector from the present-cell center to the neighbor-cell
center (or face center at boundaries). This gradient flux needs to be corrected on a mesh
with non-orthogonal cells.

The term involving ATC will be evaluated explicitly in the PIMPLE algorithm and is
stated as

SATC = 1

ΔV

∫
V
−∇ua ·u dV . (5.127)

Then the system is given as

∂ua,P

∂t
= 1

ΔV

∫
V

{−∇· (uua)−∇· (ν∇ua)+∇pa}dV +SATC , (5.128)

Substituting Equations (5.124) and (5.125) into Equation (5.128), we obtain the fol-
lowing system of ordinary equations

∂ua,P

∂t
= f (ua , pa) = AS,Pua,P +

∑
S fi

AS,Ni ua,Ni +∇pa +SATC , (5.129)

where the AS,P and AS,Ni denote the coefficient matrices for velocity values of at the
present and neighbor cells, and they are expressed as

AS,P = 1

ΔV

⎛⎝−∑
S fi

F fi (1−λ fi )I+∑
S fi

ν
‖S fi ,d‖
‖d fi ‖

I

⎞⎠

AS,Ni =− 1

ΔV

(
F fi λ fi +ν

‖S fi ,d‖
‖d fi ‖

)
I ,

(5.130)

where I denotes the identity matrix.
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Since we know actual solutions at t n+1, viz. un+1
a and pn+1

a , we need to compute
un

a , pn
a that satisfy Equation (5.129). The Euler backward scheme is used to demonstrate

how to solve Equation (5.129) but other time integration schemes can be used as well.
Then we have

un
a,P −un+1

a,P

Δt
=− f (un

a , pn
a ) , (5.131)

where
f (un

a , pn
a ) = An

S,Pun
a,P +

∑
S fi

An
S,Ni

un
a,Ni

+SATC +∇pn
a .

(5.132)

The superscript in An
S,P denotes that the uP should be used at t n , independent of adjoint

velocity un
a . These superscripts are ignored in the following content if there is no conflict

in understanding. The ATC term is computed explicitly by

Sn+1
ATC = 1

ΔV

∫
V
−∇un+1

a ·un dV

≈− 1

ΔV

∑
S fi

[
(1−λ fi )S fi un+1

a,P ·un
P +λ fi S fi un+1

a,Ni
·un

P

]
.

(5.133)

We should use un
a,P rather than un+1

a,P in Equation (5.133), but it affects the left-hand ma-

trix. Instead, through this substitute, the ATC term will be evaluated explicitly at t = t n+1

in the PIMPLE algorithm and becomes a source term in the discrete system. This is easy
to implement in OpenFOAM although it could reduce the convergence rate. In order to
guarantee the solution accuracy, the ATC term will be updated in each outer loop of the
PIMPLE algorithm, which is similar to the idea of corrections in the PISO algorithm.

Then the un
a , pn

a satisfy

Aa,Pun
a,P +

∑
S fi

Aa,Ni un
a,Ni

= Sa,P −∇pn
a ,

(5.134)

where

Aa,P = 1

Δt
I+ AS,P =

⎛⎝ 1

Δt
− 1

ΔV

∑
S fi

F fi (1−λ fi )+ 1

ΔV

∑
S fi

ν
‖S fi ,d‖
‖d fi ‖

⎞⎠ I

Aa,Ni = AS,Ni =− 1

ΔV

(
F fi λ fi +ν

‖S fi ,d‖
‖d fi ‖

)
I

Sa,P = 1

Δt
un+1

a,P −Sn+1
ATC .

(5.135)

At the same time, the adjoint velocity should satisfy the mass conservation,

∇·un
a,P = 0. (5.136)

Since Equations (5.134) and (5.136) have forms similar to those of Equations (5.88) and (5.90),
the adjoint problem can be solved with approaches mentioned above with and without
corrections. The PIMPLE algorithm for the adjoint problem with correction is presented
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here. In each outer loop of the PIMPLE algorithm, we first solve u∗
a,P in the predictor

step,
Aa,Pu∗

a,P +
∑
S fi

Aa,Ni u∗
a,Ni

= Sa,P −∇pn+1
a , (5.137)

where pn+1
a is the known value at t n+1. Then the correction equation is obtained by

subtracting Equation (5.137) from Equation (5.134),

Aa,Pu
′
a,P +

∑
S fi

Aa,Ni u
′
a,Ni

=−∇p
′
a , (5.138)

where
u

′
a,P = un

a,P −u∗
a,P

u
′
a,N = un

a,N −u∗
a,N

p
′
a = pn

a −pn+1
a .

(5.139)

Considering the assumption used in Equation (5.108), the correction equation Equa-
tion (5.138) is simplified into

(Aa,P +
∑

Aa,N)u
′
a,P =−∇p

′
a . (5.140)

The adjoint velocity correction is approximated by

u
′
a,P =−A−1

a,t∇p
′
a , (5.141)

where
Aa,t = Aa,P +

∑
Aa,N . (5.142)

Considering Equations (5.137) and (5.141), the corrected velocity (u∗∗
a,P) is calculated by

u∗∗
a,P = u∗

a,P +u
′
a,P

= A−1
a,P

(
−∑Aa,Nu∗

a,N +Sa,P

)
− A−1

a,P∇pn+1
a − A−1

a,t∇p
′
a

= HbyA∗
a −
(

A−1
a,P − A−1

a,t

)
∇pn+1

s − A−1
a,t∇p∗

a ,

(5.143)

where HbyA∗
a is defined

HbyA∗
a = A−1

a,P

(
−∑Aa,Nu∗

a,N +Sa,P

)
. (5.144)

Due to ∇·u∗∗
a,P = 0, the Poisson equation for corrected pressure is read as

∇·
(

A−1
a,P∇p∗

a

)
=∇·HbyA∗

a −
(

A−1
a,P − A−1

a,t

)
∇pn+1

a . (5.145)

Then the adjoint pressure (p∗) is obtained by solving Equation (5.145). After that, the
velocity is computed by Equation (5.143). In fact, the corrected velocity and pressure
should satisfy

Aa,Pu∗∗
a,P +

∑
Aa,Nu∗∗

a,N = Sa,P −∇p∗
a . (5.146)

This is similar to Equation (5.137), and thus the second/later corrector steps can be ap-
plied in this way. The PIMPLE algorithm with correction is summarized for the adjoint
problem as follows
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• Outer loop for PIMPLE (pimple loop)

– Solve the u∗
a using the Equation (5.137) with known pn+1.

– Inner loop for PIMPLE (pimple corrector)

· Update HbyA∗
a using u∗

a,N, i.e. HbyA∗
a = A−1

a,P

(
−∑Aa,Nu∗

a,N +Sa,P

)
.

· Solve the pressure Poisson equation, Equation (5.145), for p∗
a .

· Calculate the u∗∗
P using Equation (5.143).

· Save the u∗∗
a,P, p∗

a for next loop.

It is noted that Sa,P is only updated in outer loops.

COUPLING BETWEEN ADJOINT AND FLOW SOLVERS

The pointer list (PtrList<T>) in OpenFOAM is used to store the primal solution and reuse
it when we solve the adjoint problem backward in time, as shown in Figure 5.6. Since
the primal solution is stored in a pointer list, we need to know the solution index so
that we can access consistent values for the adjoint solver. This can be computed based
on physical time. It is assumed that the primal and adjoint problems are solved using
the same time step, avoiding interpolation errors. Alternatively, we can use the index
counter for the primal solution. The primal solution requires a huge amount of stor-
age for the many time steps used in unsteady flow problems. This storage issue will be
circumvented when we apply the online SVD that will be discussed in the next section.

5.2.5. VALIDATION ON STEADY CYLINDER FLOW AT Re = 40
We consider the flow past a 2D circular cylinder at Re = 40 and first solve the unsteady
adjoint problem. The cylinder diameter (Ld ) is 2 m and the inlet velocity is 1 m/s. The
kinematic viscosity of fluid ν=μ/ρ is chosen as 0.025.

The second-order backward method is used for the time-marching scheme. The
second-order linear upwind method is used for the convective term while the Gauss the-
orem is used for the viscous term. The linear interpolation scheme is considered for the
computation of face flux or variables. The gradient is computed by the least-squares
scheme.

The velocity is solved by Preconditioned bi-conjugate gradient (PBiCG) with DILU
preconditioner while the pressure equation is solved by the geometric agglomerated al-
gebraic multigrid solver (GAMG). The parameters for the PIMPLE algorithm are set as
shown in Table 5.2.

Table 5.2: Parameters in PIMPLE algorithm

Parameters Values

momentumPredictor yes
consistent true
nOuterCorrector 3
nCorrectors 2
nNonOrthogonalCorrectors 2



5.2. ADJOINT FORMULATION FOR UNSTEADY 2D/3D FLOWS

5

115

Figure 5.6: Coupling the primal and adjoint solver with access to the primal solutions.

GRID CONVERGENCE AND DOMAIN CONVERGENCE

The computational grid was designed to have the first layer satisfying y+ ≤ 1, i.e. the cell
height of 0.05. There is an O-shape structure around the cylinder and H-shape outside
to the boundaries, as shown in Figure 5.7(a). This kind of mesh was used to capture the
boundary layer and control the mesh density of the wake.

A convergence study on the size of the computational domain was carried out first.
The cylinder is located at center of the domain. For the small computational domain,
the inlet is imposed 10Ld before the cylinder while the outlet is at 15Ld after the cylinder.
The upper and lower boundaries are chosen at 10Ld from the cylinder. The medium and
large domains are doubled and quadrupled relative to the smallest one. For the 2D case,
there is only one cell in the z direction with a length of 1 m. The calculation for the drag
converges when the computational domain is enlarged, as shown in Table 5.3.
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Table 5.3: Numerical parameters for the grid sensitivity study Computation grids for a 2D circular cylinder at
Re = 40.

Grid G 1 G 2 G 3

Domain size
Lx ×Ly 25Ld ×20Ld 50Ld ×40Ld 100Ld ×80Ld

Grid parameters
Number of mesh cells 12800 16800 15800

CD 1.61159 1.54277 1.51569

Grid convergence G 3
1 G 3

2 G 3
3

Number of mesh cells 15800 63200 252800
CD 1.51569 1.51693 1.51667

The grid convergence was studied using the largest computational domain, i.e. G 3,
with the computational meshes shown in Figure 5.7. In fact, the variation of drag com-
putation CD is less than 0.01% (see Table 5.3).

(a) Coarse (b) Medium (c) Finest

Figure 5.7: Computational meshes used in grid convergence study for the flow past a cylinder at Re = 40.

VALIDATION FOR FLOW SOLVER

A steady state is obtained after 700 non-dimensional time units. Table 5.4 compares the
computations from the coarse mesh (G 3

1 ) with the results in literature. The computation
for separation angle and recirculation bubble length agrees well with the reference data.

The pressure coefficient is computed by

Cp = p −p∞
1
2ρU 2∞SREF

, (5.147)

where SREF = Ld Lz denotes the reference area. The pressure coefficient over the cylinder
surface agrees well with the literature, as shown in Figure 5.8. Thus we use this mesh for
the analysis of the adjoint problem in the following study.
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Table 5.4: Computation of drag coefficient (CD ), separation angle (θsep), and recirculation bubble
length (Lr /d) for a 2D circular cylinder at Re = 40.

CD θsep (°) Lr /Ld

Park et al. [144] 1.51 126.41 2.24
Kim et al. [145] 1.51 – –

Dennis et al. [146] 1.522 126.2 2.345
Meyer et al. [147] 1.56 134.6 2.28

Present 1.51569 125.93 2.125

Theta

C
p

0 30 60 90 120 150 180
-1.5

-1

-0.5

0

0.5

1
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Re=40 Computation Park
Re=40 Experiment Grove
Re=40 Large Domain

Figure 5.8: Pressure coefficients along the cylinder surface at Re = 40, compared to the computational [144]
and experimental [148] data in literature.

ADJOINT PROBLEM

The adjoint problem is solved using the PIMPLE algorithm from t = 900s to t = 700s,
with a time step equivalent to the one used in the primal problem, viz. Δt = 0.1s. Fig-
ure 5.9 shows the evolution of l2-norm of the adjoint velocity, with time looping right to
left. It is observed that the adjoint velocity field gradually arrives at a steady state after a
quick transition from the homogeneous initial condition. Figure 5.10 shows the instan-
taneous distribution for the magnitude of adjoint velocity. It is observed that the adjoint
velocity field develops uniformly around the cylinder during a short transition period.
The adjoint velocity field progresses upstream from the cylinder with a form similar to
a jet. This jet also expands in the y-axis direction before settling down to a steady state.
The field remains symmetric during the whole computational process. The drag is sen-
sitive to the regions near the cylinder surface and upstream of it where the adjoint field
shows large values. This agrees well with the study of a steady flow problem in [39]. A
manufactured solution was used to verify the numerical solver for the adjoint problem
and to study the mesh convergence of the adjoint problem. We employ a computational
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mesh and outlet boundary condition that are different from what Wang et al. [39] used,
but the results bear a strong resemblance, which is observed for the case at Re = 100 and
500. Therefore, it is believed that the computation of the adjoint field is accurate and
reliable for the current study.

Figure 5.9: The evolution of l2-norm of adjoint velocity for the steady flow past a 2D cylinder at Re = 40.

Figure 5.10: The magnitude of the adjoint velocity near the cylinder surface at t = 899.9,899.7,898,700 for a 2D
cylinder flow at Re = 40.

5.3. AMALGAMATION OF ONLINE SVD IN OPENFOAM
The online POD analysis is achieved using libROM as described in Chapter 3 and it is
coupled with OpenFOAM here. The interfaces between two libraries are developed and
validated for a 2D cylinder flow at Re = 300.

5.3.1. INTERFACE DESIGN
There are two interfaces that ought to be designed, i.e. an interface to generate libROM
objects which can access the OpenFOAM data and an interface to reconstruct the reduced-
order solution for OpenFOAM using libROM. These interfaces have been implemented
using pointers for exchanging data between libROM and OpenFOAM, reducing the mem-
ory requirement for large-scale problems.
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We take a vector field in OpenFOAM (volVectorField) to demonstrate the interfaces.
Since OpenFOAM does not allow reallocation of memory for objects or variables, we
first declare an OpenFOAM object (volVectorField), and then initialize the object in
libROM (CAROM::Vector) with the data address of volVectorField. In this way, the mem-
ory assigned by OpenFOAM is reused in libROM.

The interface from volVectorField to CAROM::Vector is described here and shown in
Listing 5.1. UList.data() denotes the address of the first vector in volVectorField. We
need to utilize a Vector to gain the information (see line 11 in Listing 5.1). The size of the
data is computed using the list length and vector size.

Listing 5.1: Creation of libROM::Vector using OpeFOAM::volVectorField.

1 // Declaration of volVectorField
2 volVectorField U_test1 (" U_test1 ", Ua);
3
4 // A reference to the first element of the UList
5 volVectorField :: value_type & tmpT = U_test1 [0];
6
7 // Data length of a VectorField
8 label nRow = U_test1 .size ()*tmpT.size ();
9

10 // Declaration of CAROM :: Vector
11 CAROM :: Vector snapVec ( U_test1 [0].v_ , nRow , false , false);

The solution reconstruction is done after the SVD/POD analysis. The amplitude at
a specific time is computed using the singular values and right singular vectors. Then
a volVectorField is declared before reconstructing the reduced-order solution. The
function in libROM is used to return the calculation by pointer or reference, and thus
we can access the data directly. Listing 5.2 shows the interface used to reconstruct the
volVectorField solution from libROM data. The implementation of the enhanced on-
line algorithm in OpenFOAM is shown in Algorithm 5.

Listing 5.2: Creation of OpeFOAM::volVectorField using libROM::Vector.

1 // Create volVectorField
2 volVectorField U_recon (" U_recon ", Ua);
3
4 // Use a reference for reconstruction
5 CAROM :: Vector snapRom ( U_recon [0].v_ , nRow , false , false );
6
7 // Create a reference to the amplitude
8 CAROM :: Vector & ampVecRef = * ampVec ;
9

10 // Access POD modes
11 const CAROM :: Matrix * d_out;
12 d_out = inc_basis_generator . getSpatialBasis ();
13
14 d_out ->mult(ampVecRef , snapRom ); // Reconstructed solution
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Algorithm 5 Implementation of the enhanced online algorithm in OpenFOAM

Declaration of parameters and variables for incremental SVD.
Initialize the enhanced online algorithm.
while Time loop for flow solver do � Loop for snapshots

Read the volVectorField.
Define a CAROM::Vector using the data of volVectorField.
Take this sample for the enhanced online algorithm.
Obtain the POD modes, singular values, and right singular vectors.

Output POD modes.

5.3.2. VALIDATION OF THE ONLINE SVD
The cylinder flow at Re = 300 is used to validate the online SVD/POD analysis. Enhanced
incremental SVD is applied to the velocity field. We use 20 snapshots in four vortex-
shedding periods. Figure 5.11 shows the x-component of the first four POD modes. They
agree well with the results shown in Figure D.2 in [149].

(a) (b)

(c) (d)

Figure 5.11: X-component of POD modes for a cylinder flow at Re =300 using 20 snapshots in four vortex
shedding periods, (a)-(d) first to fourth POD modes.

As shown in Figure 5.12, the first two POD modes have a similar amount of energy
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and thus are of equal importance for unsteady motions. They result from periodic vor-
texes and they exhibit a spatial-phase shift. This phase shift is also observed for the pair
of third and fourth POD modes. The first six POD modes capture 99.86% of the total
energy.
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Figure 5.12: The eigenvalues and cumulative energy for a 2D cylinder flow at Re = 300.

Figure 5.13 shows the computational cost per incremental step using a mesh with
12800 volume cells. The cost increases significantly when a large truncation number is
used. The cost of the standard incremental SVD can be much higher than solving the
flow problem per step. The SVD then becomes the bottleneck for flow analyses. For the
current study, truncations less than 50 were considered, which did not add significant
costs.
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Figure 5.13: The computation time per incremental step with different truncation numbers for the enhanced
online algorithm. The number of mesh cells is 12800. The blue dashed line denotes the fitted line for the trend.
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5.3.3. USAGE OF ONLINE SVD WITH FLOW AND ADJOINT SOLVERS
Given that simulations for engineering applications can be high dimensional, a proto-
type is designed for using primal, ROR and adjoint solvers, as shown in Figure 5.14. Route
1 is used to solve the primal solution if we only have limited knowledge of the flow prob-
lem. Then we can start the simulation with the primal solver and adjoint solver, as shown
in route 2. However, the resulting computational cost can be high. By virtue of using a
ROR for large systems, we can instead follow route 3. At this point, it is possible to solve
the adjoint with RORs directly (see route 3.B). On the other hand, the POD results can
be stored in files without solving the adjoint equations, viz. route 3.A, and used for the
computation of adjoint solutions as in route 4.

Figure 5.14: Different ways to run primal and adjoint solvers with/without a ROR solver.

5.4. IMPACTS OF RORS ON ADJOINT FIELD
We now employ RORs constructed with the enhanced online algorithm to the following
unsteady flows around a cylinder, 2D at Re = 100,500 and 3D at Re = 500. The 2D flow
past a circular cylinder at Re = 100 exhibits periodic vortex shedding. It has been re-
ported that the system has a neutral Lyapunov exponent [39]. The 2D cylinder flow at
Re = 500 plays an important role in understanding vortex-induced vibration [150]. The
3D cylinder flow at Re = 500 is turbulent and is used to investigate the effect of RORs on
the growth of adjoint solutions in chaotic problems. Furthermore, the impacts of using
RORs on the adjoint field are investigated, including the adjoint dynamics, computa-
tional accuracy and storage reduction as well as adjoint-based error estimations.

5.4.1. NUMERICAL SETUPS
The cylinder diameter (Ld ) is chosen to be 1 meter. The freestream velocity is chosen
as 1 m/s and thus the viscosity coeffic‘ient ν is determined by the Reynolds number, i.e.
0.01 m2/s for Re = 100 and 0.002 m2/s for Re = 500. The computational mesh uses a
domain on G 3. The boundary cells are sized to have y+ near the cylinder surface that
is less than 1. There are 160 grid cells located on the cylinder surface and 25600 vol-
ume cells for the 2D cylinder cases. The 3D mesh is generated by extruding the 2D mesh
for 4Ld in the spanwise direction (the z-axis here), with a uniform discretization using
80 cells. A second-order scheme is used for spatial discretization and a second-order
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backward time scheme is used for discretization in time. The gradient of adjoint velocity
and pressure is solved with the linear interpolation scheme. The flow and adjoint prob-
lems are solved using the PIMPLE algorithm as mentioned in Table 5.2. Their time steps
are kept the same using a value computed based on the estimated Courant–Friedrichs–
Lewy (CFL) number.

5.4.2. PRIMAL FLOW COMPUTATIONS
We first validate the primal flow computation for the three cases. In each case, the primal
flow solver starts from a uniform field at the freestream velocity. The flow field is solved
for 500 dimensionless time units (10 flow-through time periods) before computing time-
averaged values.

2D CYLINDER FLOW AT Re = 100
The flow simulation at Re = 100 arrives at a statistically steady state after the transition

period shown in Figure 5.15(a). The Strouhal number (St = f Ld
Uref

) is used to describe
shedding vortexes, where f denotes the vortex shedding frequency and Uref is equal to
the freestream velocity. The vortex shedding frequency is analyzed by performing a Fast
Fourier Transform (FFT) on lift coefficients as shown in Figure 5.15(b). The computed
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Figure 5.15: The time series of lift and drag coefficients and the frequency spectrum of lift coefficients for the
flow past a 2D cylinder at Re = 100.

St is equal to 0.16478, which has an excellent agreement with the data in literature as
shown in Table 5.5.

The time period for vortex shedding is 6.068 based on the FFT analysis. We consider
30 vortex-shedding periods for averaging the flow fields , e.g. pressure, velocity and drag
coefficient. The time-averaged separation angle is determined by the point of zero wall
shear stress and the time-averaged recirculation bubble length is obtained by the zero
value of the x-component velocity or the minimum velocity magnitude. They compare
well with the data in literature as shown in Table 5.5. In addition, a good match with
reference data is obtained for the mean drag coefficient and peak lift coefficient while
the time-averaged wall pressure coefficients also compare well with the reference, as
shown in Figure 5.16.
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Table 5.5: Time-averaged drag coefficient (C D ), peak lift coefficient (CL,peak), separation angle (θsep), recircu-
lation bubble length (Lr /Ld ), and Strouhal number (St ) for a 2D circular cylinder at Re = 100.

C D CL,peak θsep (°) Lr /Ld St

Park et al. [144] (Body-fitted mesh) 1.33 0.3321 117 1.3878 0.16468
Kim et al. [145] (Cartesian grid) 1.33 0.32 – – 0.165

Henderson [151] (Unstructured mesh) 1.35 – – – –
Meyer et al. [147] (Cartesian grid) 1.26 0.34 119 – 0.165

Karniadakis et al. [152] (Structured grid) – – – – 0.168
Present 1.3346 0.325 116.97 1.4 0.16478
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Figure 5.16: Pressure coefficients along the cylinder surface at Re = 100 compared to the reference [144].

2D CYLINDER FLOW AT Re = 500
Table 5.6 shows the computation of 2D cylinder flow at Re = 500 compared to results
from literature. Using frequency analysis, a time period of Tvortex = 4.485 was found
for the vortex shedding. The St number is in good agreement with the reference data.
This is also true for the mean drag coefficient and the peak of the lift coefficient. The
averaging time was chosen as 21Tvortex = 94.185 ∼ 94. Figure 5.17(a) shows the profile
of time-averaged velocity compared to the data in Ref. [153]. It agrees well in the wake
region near the cylinder although there exists a discrepancy at downstream positions.
This could be because of the coarse mesh in the far wake region. Figure 5.17(b) shows
the vorticity field for the current case from which a rapid dissipation of vorticity can be
observed in the far wake region.

3D CYLINDER FLOW AT Re = 500
Figure 5.18 shows the time history of CD and CL and the frequency spectrum of CL .The
dominant frequency is obtained at f1 = 0.2099 while the secondary tone frequency is
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Table 5.6: Time-averaged drag coefficient (C D ), peak lift coefficient (CL,peak), and Strouhal number (St ) for a
2D circular cylinder at Re = 500 with comparison to reference data in literature.

St C D CL,peak

Blackburn et al. [150] 0.228 1.46 1.2
Henderson [151] – 1.445 –
Baek et al. [153] 0.235 1.529 1.247

Present 0.223 1.409 1.14
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Figure 5.17: Profile of the x-component of the time-averaged velocity at different positions in the wake region
for a 2D cylinder flow at Re = 500 and the distribution of vorticity. Solid lines denote the present computations
while the green cycles are the data from [153].

f2 = 0.622, which is consistent with the calculation in Ref. [154] (see Figure S5). The time
period for vortex shedding is Tvortes = 1/ f1 ≈ 4.76. We consider 21 cycles, i.e. 21Tvortes ≈
100, for computing the time-averaged quantities. Table 5.7 compares the computation
for St , the mean value of drag coefficient, and the root-mean-square of lift coefficients
with data from literature. Our computations are well within the range reported in the
literature.

Computations using a small and a large time step (the CFL numbers is roughly 1.7
and 4.3) are compared in Table 5.7. The St number from the large time step is similar to
that from the small time step (less than 5% deviation). The difference of the mean drag
coefficient is within 3.4% although the variation of CL,rms is more significant. Figure 5.19
shows the time-averaged pressure coefficients. They have a reasonable agreement with
the reference before separation. Using a small CFL number results in a more accurate
prediction in the rear region of the circular cylinder.

The iso-surface of Q-criterion [161] is used to demonstrate coherent structures in
turbulent flows. A large-Q value denotes the region in which the local vorticity is more
dominant than the shear strain rate. Figure 5.20 shows the iso-surfaces of Q = 0.1 at two
time instants using small and large CFL numbers. The one with a small CFL number ex-
hibits more complex structures with small scales. However, they have similar large-scale
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Figure 5.18: Time series of lift and drag coefficients and the associated frequency spectrum of lift coefficients
for a 3D cylinder flow at Re = 500.

Table 5.7: Time-averaged drag coefficient (C D ), root-mean-square of lift coefficients (CL,rms), and Strouhal
number (St ) for the 3D turbulent flow past a circular cylinder at Re = 500 compared to the data in literature.

St C D CL,rms

Zdravkovich [155] – 1.154 –
Lienhard [156] – 1.163 –
Roshko [157] (experimental) 0.208 – –
Sirisup et al. [158] 0.22 – –
Chen et al. [154] (fine mesh) 0.208 1.176 0.3195
Chen et al. [154] (coarse mesh) 0.206 1.195 –
Norberg [159] 0.2059 – 0.2395
Present (large CFL) 0.2099 1.188 0.3586
Present (small CFL) 0.20 1.149 0.2934

coherent structures both near the cylinder surface and in the wake region. Therefore,
the adjoint solution and adjoint-based error of the 3D flow will be computed using the
large CFL number.

5.4.3. ADJOINT DYNAMICS
In this section, we examine the dynamics of the adjoint problems of the three cases using
their full-order primal solutions.

2D CYLINDER FLOW AT Re = 100
The primal flow problem arrived at a statistically-steady state after t = 500. The flow
problem is then solved from t = 500 to 600 while the adjoint problem is solved from
t = 600 to 500. This time interval includes 16 vortex shedding periods, which is the same
time length considered in Ref. [39].
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Figure 5.19: Distributions of time-averaged pressure coefficients for the flow past a 3D circular cylinder at
Re = 500, compared to the data of LES [160].

Figure 5.20: Instantaneous vortex shown by iso-surfaces of Q = 0.1 for a 3D cylinder flow at Re = 500 with
small (left) and large (right) CFL numbers, colored by x-component of flow velocity. The pressure is displayed
using a grey scale with dark grey representing high pressure and light grey color representing low pressure.

Figure 5.21 shows the l2 norm of adjoint velocity over the computational domain.
The adjoint velocity field increases monotonically for the first several time units and
then grows with a small variation to a large oscillation. These are called the initial growth
phase (phase I) and transit phase (phase II) here. The phase II lasts for 3 vortex-shedding
periods. After that, the adjoint field gradually settles down to a periodic state. This is re-
ferred to as the settle-down phase. The oscillatory frequency of the adjoint flow is iden-
tical to that of the drag since the drag is the QoI and the adjoint problem is modulated
by the change of the instantaneous drag.

Figure 5.22 shows the evolution of the magnitude and stream trace of adjoint velocity
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Figure 5.21: The l2-norm of adjoint velocity for the 2D cylinder flow at Re = 100.

backward in time from t=598 to 580, with two contour lines for non-dimensional stream-
wise flow velocity. We can observe that the adjoint field becomes more and more violent
in the wake region from which the adjoint eddies initiate. These adjoint eddies are in-
duced by periodic vortex shedding and propagated towards the cylinder and upstream.
They are developed to larger and more regular eddies into the upstream region.

Figure 5.22: Evolution of the magnitude and stream trace (grey lines) of adjoint velocity for the flow around a 2D
cylinder at Re = 100 from t=598 to 580. The thick black lines denote two contour lines of the non-dimensional
stream-wise flow velocity at 0 and 0.8.

After the adjoint field is fully developed, periodic adjoint eddy shedding is observed.
A bean-shaped eddy is also seen behind the cylinder, as has been reported by Ref. [39].
Figure 5.23 shows the evolution of the bean-shaped eddy as the adjoint problem is solved
backward in time. The bean-shaped adjoint eddy forms in the shear region (i.e. near
u = 0 in the wake). As observed by Wang et al. [39], this eddy will grow and stretch in the
x-direction. This induces a λ-shaped eddy, which is split into two elongated eddies here-
after. One of the daughter eddies (the lower eddy here) is transported upstream and be-
comes smaller when passing by the cylinder surface. It grows rapidly as it moves into the
upstream region before the cylinder, where the adjoint field exhibits high magnitudes
and spreads out in the upstream direction afterwards. The other daughter eddy (the
upper eddy here) is first captured into the wake just behind the cylinder and then van-
ishes in the upper region near the cylinder surface. This is because the division of the
bean-shaped eddy happens when the vortex shedding is moving downward in the y-
axis. Therefore, the upper eddy is shed downward, which forces the upper eddy towards
the cylinder surface and leads to its disappearance. In contrast, the lower daughter eddy
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is moved away from the cylinder surface and grows in the upstream region. The region
where the daughter eddy disappears is then occupied by a subsequent daughter eddy
originating from the next bean-shaped adjoint eddy, starting the next cycle of the adjoint
field. An observation is that an upper bean-shaped eddy (named based on where the
eddy originates) will induce adjoint eddies in lower-upstream regions whereas a lower
bean-shaped eddy induces eddies in upper-upstream regions. A jet region is formed up-
stream after the adjoint field settles down.

Figure 5.23: Evolution of adjoint eddies (white circles) for the flow around a 2D cylinder at Re = 100 after
the adjoint flow is settled down. The thick black lines denote two contour lines x-component of the non-
dimensional stream-wise flow velocity at 0 and 0.8.

Figure 5.24 compares the x ad y components, and the magnitude of the adjoint veloc-
ity in one vortex shedding period. The shear layer of the x ad y components denotes the
adjoint eddies mentioned above. The x-component of the adjoint velocity contributes
significantly to the magnitude of the adjoint velocity. The y component has an important
influence in the wake region behind the cylinder, with a notable contribution in the up-
per and lower regions during downward and upward vortex shedding, respectively. This
is distinct from the steady cylinder flow case.

Figure 5.24: Comparison of the magnitude (top), x-component (middle) and y-components (bottom) of adjoint
velocity in one vortex shedding period, from t = 516 to 511, for a 2D cylinder flow at Re = 100.

2D CYLINDER FLOW AT Re = 500
Figure 5.25 shows the history of the l2-norm of the adjoint velocity as the adjoint prob-
lem is solved backward in time using full-order primal solutions. It shows that the adjoint
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field develops monotonically during phase I and then grows gradually in an oscillatory
manner during phase II. It settles down for a long time period afterwards.
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Figure 5.25: The l2-norm of adjoint velocity for the 2D cylinder flow at Re = 500.

As shown in Figure 5.26, the bean-shaped adjoint eddy is also formed near the shear
layer as well, but the adjoint eddy structures become more complex after the phase II

Figure 5.26: Evolution of adjoint eddies (white circles) for a flow around a 2D cylinder at Re = 500 after the
adjoint flow was settled down (t = 543−538 in phase III). The thick black lines denote two contour lines of the
non-dimensional stream-wise flow velocity at 0 and 0.8.

compared with the case at Re = 100. This eddy is split into two daughter eddies. One
eddy is propagated upstream and amplified while the other vanishes near the cylinder
surface, as in the low-Re case. Noted two other small eddies are generated as the daugh-
ter eddy moves past the cylinder. They exhibit an aligned pattern while moving away
from the cylinder. These eddies will gradually merge into a large eddy when they move
further upstream after x =−8D , as shown in Figure 5.27. In general, there are small ed-
dies near the cylinder and large eddies away from the cylinder. Note that in the primal
2D flow vortices tend to merge, resulting in an inverse energy cascade. This is a key dif-
ference between the 2D and 3D cases. The adjoint eddies, in this case, are more diverse



5.4. IMPACTS OF RORS ON ADJOINT FIELD

5

131

in both scale and spatial distribution than those in the low-Re case. The figures show
the evolution of an upper-daughter eddy whilst the next lower-daughter eddy emerges
in the next cycle during the split of the adjoint bean-shaped eddy.

Figure 5.27: The adjoint eddies in upstream regions and the merging of adjoint eddies (see the white cycle) in
phase III for the 2D cylinder flow at Re = 500.

Figure 5.28 compares the magnitude of the adjoint field with its associated x and y
components. The x component primarily attributes to the adjoint field, especially up-

Figure 5.28: The magnitude of adjoint vorticity and associated x/y components for the 2D cylinder flow at
Re = 500.

stream. More diverse structures are observed downstream of the cylinder surface for
both components. It is noted that the triple-eddy pattern appears in the y-component
in upstream regions, which can account for the aligned adjoint eddies.

Figure 5.29 compares the contour lines for the magnitude of the adjoint velocity dur-
ing the entire evolution. It is observed that the adjoint field is developed upstream after
phase II (see t = 580). A statistically-steady state is reached in phase III (see snapshots
at t = 560,540,520). The adjoint field begins to grow as the high-value regions expand at
t = 500. There are significant contributions in the vortex street during this phase. How-
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ever, this growth is less significant since it is still within the same order of magnitude for
the adjoint velocity, as shown in Figure 5.25.

Figure 5.29: The magnitude of adjoint velocity for the 2D cylinder flow at Re = 500 at different times. Solid lines
denote the x-component of the primal velocity, u = 0,0.8.

3D CYLINDER FLOW AT Re = 500
The adjoint problem is solved in t ∈ [500,530] during which the turbulent flow is fully
developed. Figure 5.34(a) shows the magnitude of the l2-norm of the adjoint velocity
obtained using full-order primal solutions. It exhibits reasonable agreement with the
reference slope from [39], as shown in Figure 5.34(a).

The iso-surface of adjoint velocity is shown in Figure 5.30, colored by spanwise ad-

joint vorticity (ωadjoint
z ) with blue and red representing ω

adjoint
z < 0 and ω

adjoint
z > 0, re-
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spectively. Darker colors denote larger vorticity values. Two-dimensional coherent struc-

Figure 5.30: Iso-surfaces of Q = 1 for the adjoint velocity in a 3D cylinder flow at Re = 500, colored by spanwise

adjoint vorticity (ω
adjoint
z ) using blue representing ω

adjoint
z < 0 and red representing ω

adjoint
z > 0. The darker of

color, the larger of vorticity value.

tures are observed during t = 529−527. They are advected upstream, leading to stream-
line coherent structures. As the adjoint field is further developed, These structures be-
come more abundant in regions away from the cylinder and more significant in the up-
stream direction. The change of the adjoint field is similar to the observation in the 2D
case. It is noted that high-value adjoint vorticity occurs in the near wake regions up-
stream of the cylinder, which is similar to the observation in Ref. [39]. In fact, this is
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where the flow shear stress rate changes significantly and the adjoint field originates.

5.4.4. INFLUENCE OF RORS ON THE ADJOINT MAGNITUDE
The full-order primal solution is substituted by the POD-based RORs. Now we consider
ROR-driven adjoint solutions for which we compare the results to the computation using
full-order solutions, referred to as the baseline. Figure 5.31 shows the eigenvalues and
associated cumulative energy for the ROR cases. The truncation number is set to 30 for
the enhanced online algorithm in all three problems. This captures at least 95% of the
total energy. We study the l2-norm of the adjoint velocity magnitude since it represents
the energy of the adjoint system. The impacts of the ROR are investigated on the adjoint
l2-norm when the adjoint problem is solved backward in time.

THE ONLINE POD ANALYSIS FOR THREE CASES

The POD analysis was completed using the enhanced online algorithm. The eigenval-
ues of the three cases are shown in Figure 5.31. For the 2D cylinder flow at Re = 100,
the eigenvalues often appear in pairs in terms of their contributions to the total energy.
The first and second POD modes account for 96.4% of the total energy. The cumulative
energy approaches 100% quickly as the number of POD modes is increased. Using the
first 6 POD modes can recover more than 99.9% of the total energy, indicating a good
approximation for the primal flow problem. When the Reynolds number is increased to
500, there exist two dominant POD modes which can capture 93.6% of the total energy.
However, it requires 10 POD modes to recover 99.9% of the total energy as there are more
dynamic features than the low-Re cylinder flow.
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Figure 5.31: Eigenvalues (left) and cumulative energy (right) for the 2D flow past past a 2D cylinder at Re =
100,500 and the 3D cylinder turbulent flow at Re = 500.

For the 3D cylinder flow at Re = 500, the first and second POD modes play an im-
portant role in capturing the total energy while the later decay of eigenvalues becomes
much more smooth than the 2D flow problem. The pair of dominant POD modes results
from the periodic vortex shedding which is the main feature of this flow problem. Other
high-order POD modes contribute to small-scale flow structures in the 3D domain. As
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the three-dimensional flow shows chaotic features, the difference between these high-
order POD modes is reduced compared to the 2D case and thus the convergence of cu-
mulative energy becomes slow, with 29 POD modes capturing 94.8% of the total energy.
Increasing the number of POD modes would enable us to recover more turbulent flow
dynamics. However, the computational cost increases significantly. Therefore, the trun-
cation number for the 3D turbulent flow is fixed at 30.

2D CYLINDER FLOW AT Re = 100
Figure 5.32 shows the l2-norm of the magnitude of adjoint velocity using different RORs
for the 2D cylinder flow at Re = 100. Using only the time-averaged primal velocity gives
us a stationary adjoint solution. In this case, only the starting phase follows the same
route as the baseline case. It is worth mentioning that this steady state differs from the
time-averaged value of the unsteady adjoint solution. As the POD analysis is applied to
the primal velocity rather than the velocity fluctuation, we refer to the most significant
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Figure 5.32: Comparison of the adjoint l2-norm when the adjoint problem is solved using different reduced-
order representations (RORs), which is computed using mean-flow mode and 2, 4, 6, 8, and 29 POD modes for
the flow past a cylinder at Re = 100.

mode as the mean-flow mode. The remaining POD modes are referred to as the first
mode, second mode, and so on. The temporal coefficient scales the reduced-order so-
lution to the amplitude of the mean-flow mode during the reconstruction of the primal
flow solutions. Actually, using the mean-flow mode to reconstruct the primal solution
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produces similar evolution of adjoint l2-norm to the one obtained from the mean pri-
mal solution.

When we add the first and second POD modes, the phase II and phase III are well
captured although the oscillatory amplitude of the adjoint field is overestimated in both
peak and trough values. Adding high-order POD modes can reduce the discrepancy.
When 6 or 8 POD modes are used to reconstruct the primal solution, the difference in
the l2-norm of the adjoint solution becomes invisible. When we consider a large number
of POD modes, i.e. 29 here, the l2-norm of adjoint velocity has an excellent agreement
with that obtained using full-order solutions.

2D CYLINDER FLOW AT Re = 500
Figure 5.33 shows the impact of using different RORs on the l2-norm of the adjoint ve-
locity. As before, using only the mean-flow mode will produce a steady adjoint solution.
When we include the first and second POD modes (the dominant ones), the magnitude
of the adjoint solution shows shedding oscillations but grows faster and higher than the
baseline. Adding the 3rd and 4th POD modes regularizes the adjoint problem for a long
time whilst the 5th and 6th POD modes seem to stimulate the instability of the adjoint
problem. However, the adjoint field becomes more stable for cases with more than 8
POD modes. The case with 10 POD modes is less accurate than the case with 8 POD
modes, but it does limit the overestimation during t = 500−520. Using 12 POD modes
provides a reasonable agreement with the baseline. Figure 5.33(h) compares the l2-norm
of the adjoint velocity using 29 POD modes (ROR29) with the baseline case. The dy-
namics of adjoint magnitude are well captured using the ROR with 29 POD modes. It is
observed that the POD modes play different roles in solving the adjoint problem. The
low-order POD modes are important for capturing the kinetic energy but do not neces-
sarily stabilize the adjoint problem.

3D CYLINDER FLOW AT Re = 500
Different RORs are now employed to solve the adjoint problem for the 3D turbulent
flow. As shown in Figure 5.34(a), using the solution from the mean-flow mode induces
a steady adjoint solution while adding more POD modes produces dynamic character-
istics. The unbounded growth of adjoint solutions is suppressed using RORs. In this
case, increasing the number of POD modes improves the prediction accuracy in early
time states (530−516) as shown in Figure 5.34(h). This can be observed at t = 524, 522
and 518. Meanwhile, using a higher-order ROR leads to irregular convergence of the
adjoint field during t = 516− 505. In particular, the adjoint magnitude using ROR10 is
closer to that from full-order solutions than that from ROR20, as shown in Figure 5.34(g).
This could be because the POD modes are responsible for improving the accuracy of ad-
joint solutions for a certain time, either at the early or later time states, rather than the
whole computational time interval when the adjoint problem is solved. Adding more
POD modes will make the adjoint field more similar to the one based on the full-order
flow solution for later time states, but this is left for future study. Nonetheless, using a
truncation number of 30 still recover the large-scale coherent structures, as shown in
Figure 5.35(e) and Figure 5.35(f).

Figure 5.35 shows the iso-surface of Q = 0.1 for reduced- and full-order primal so-
lutions, colored by the spanwise vorticity (ωz ). Using just the mean-flow mode (ROR0)
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Figure 5.33: Comparison of adjoint l2-norm when the adjoint problem is solved using different reduced-order
representations (RORs), which is computed using mean-flow mode and 2, 4, 6, 8, 10, 12 and 29 POD modes for
the flow past a 2D cylinder at Re = 500.

results in a simple counter-rotating vortex pair. The vortex-shedding dynamic feature
appears when adding the first and second POD modes. Adding more POD modes leads
to more small-scale primal structures. Using 29 POD modes induces iso-surfaces resem-
bling those obtained from the full-order solutions.

The iso-surfaces of Q = 1 for the adjoint velocity using various RORs are compared
to that from the full-order solution in Figure 5.36, which is colored with the value of

the spanwise adjoint vorticity (ωadjoint
z ). The adjoint field obtained using the mean-flow

mode (ROR0) exhibits steady structures around the cylinder. Large-scale structures in
the adjoint field are captured as we add POD modes, even just with the first and second
POD modes. Increasing the number of POD modes also enables the production of ad-
joint structures in upstream and near-wake regions. Large-scale adjoint coherent struc-
tures appear in upstream regions for ROR2 and ROR4. Smaller structures appear when
using more high-order POD modes. Using 29 POD modes produces coherent structures
with a remarkable resemblance to those obtained using the full-order solutions.
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Figure 5.34: Comparison of the l2-norm of the adjoint velocity solved by different reduced-order representa-
tions (RORs) with that from full-order primal solutions. RORs are computed using the mean-flow mode and
2, 4, 10, 20 and 29 POD modes for the turbulent flow past a 3D cylinder at Re = 500. The grey long-dashed
line denotes the reference slope of the growth from Ref. [39]. These results are compared in (g) early time
states (530−516) and (h) later states (516−505).

5.5. ACCURACY AND EFFICIENCY
In order to quantitatively evaluate the impacts of RORs, we employ the l2-norm of the
error when comparing RORs with the full-order primal solution, viz.

εPrimal =
√

1

Ncells
‖uROR −u‖2 , (5.148)

where Ncells denotes the number of mesh cells. uROR and u denote the reduced- and
full-order solutions respectively. This is referred to as the primal error hereafter and rep-
resents the spatially-averaged error. Likewise, the adjoint error based on RORs is cal-
culated with respect to the adjoint solution (ua) obtained using the full-order primal
solution,

εAdjoint =
√

1

Ncells
‖ua,ROR −ua‖2 . (5.149)
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(a) ROR0 (b) ROR2 (c) ROR10

(d) ROR20 (e) ROR29 (f) Full-order solutions

Figure 5.35: Iso-surfaces of Q = 0.1 for the reduced-order and full-order primal solutions in the 3D cylinder
flow at Re = 500, colored by vorticity (ωz ) using blue representing ωz < 0 and red representing ωz > 0. The
darker of color, the larger of vorticity values.

(a) ROR0 (b) ROR2 (c) ROR10

(d) ROR20 (e) ROR29 (f) Full-order solutions

Figure 5.36: Iso-surfaces of Q = 1 for the adjoint velocity based on the reduced-order and full-order primal

solutions in the 3D cylinder flow at Re = 500, colored by the adjoint vorticity (ω
adjoint
z ) using blue representing

ω
adjoint
z < 0 and red representing ω

adjoint
z > 0. The darker of color, the larger of vorticity values.
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ua,ROR denotes the adjoint solution obtained using a ROR. εPrimal and εAdjoint describe
the instantaneous but spatial-averaged error for each snapshot. To compare with the
solution fields, the primal or adjoint error is normalized by the l2-norm of the instan-
taneous primal or adjoint solution magnitude at the corresponding time, leading to the
relative error. To evaluate performance over a computational time interval, a mean error
is defined by averaging the instantaneous errors in time as

εmean = 1

Nt

Nt∑
i=1

εi
Sol , (5.150)

where εi
Sol can be εPrimal for the primal solutions or εAdjoint for the adjoint solutions at

the i -th snapshot and Nt denotes the number of snapshots.

5.5.1. 2D CYLINDER FLOW AT Re = 100
Figure 5.37(a) shows the evolution of relative primal errors εPrimal when we use the mean-
flow mode and 2, 4, 6, 8, and 29 POD modes to reconstruct the ROR. Although using just
the mean-flow mode is a naive approximation for this case, doing so produces primal
errors lower than 0.1 during the computational time interval. The relative primal error is
around 10% as shown in the Figure 5.37(a), indicating that the mean value accounts for
a significant contribution to the primal solution. Increasing the number of POD modes
can significantly reduce the remaining primal error. The ROR with 8 POD modes pro-
duces velocities with a difference of less than 0.001. The reconstruction using 29 POD
modes can achieve a lower error of 10−5. It is noted that the error remains relatively con-
stant during the computing time interval. The relative adjoint error is higher and less
regular than the primal error.
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Figure 5.37: Error evolutions of the reduced-order primal solutions, associated adjoint velocity and adjoint
pressure for the flow past a 2D cylinder at Re = 100 when we use mean-flow mode, and 2, 4, 6, 8 and 29 POD
modes. Absolute and relative errors are shown in the top and bottom rows, respectively.

Figure 5.37(b) shows the associated adjoint errors. If we only use the mean value of
the primal velocity to solve the adjoint, the resulting adjoint error is an order of mag-
nitude greater than the primal error. This is consistent with the discrepancy shown in
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Figure 5.32(a). The adjoint error using 4 POD modes is less regular. Although using 4
POD modes improves the accuracy during the phase II of the adjoint field, the adjoint
error grows up to large values in the statistical-steady state. This is because using 4 POD
modes can stabilize the development of the adjoint field but the adjoint solution is over-
estimated during the settle-down phase afterwards, in which the small-scale primal so-
lution is of fundamental importance for accurately approximating the adjoint solution.
For all RORs, the magnitude of the adjoint error is roughly one order higher than the
associated primal error during phase III. However, a high-accurate ROR primal solution
reconstructed from 29 POD modes, for instance, can generate the adjoint field within
the same order of magnitude despite large oscillations. Note that the error for the ad-
joint pressure behaves in a manner similar to that of the adjoint velocity.

To illustrate the impacts of RORs in space, Figure 5.38 shows the magnitude of in-
stantaneous error of the reduced-order primal velocity, and associated adjoint velocity
and pressure at t = 500 when we use different RORs. It is noted that using the mean val-
ues (ROR0) will lead to large errors in wake regions since the vortex-shedding structure
is neglected. There is a significant difference in the adjoint solutions in the upstream
jet region. This defect is reduced when we consider the first and second POD modes to
reconstruct the primal solution. Neglecting high-order POD modes has an impact on
the computation of small scales in the vortex street. There is only a tiny region with light
error streaks for the adjoint velocity and pressure when we use 8 POD modes for build-
ing the ROR. This effect disappears with considering a more accurate ROR with 29 POD
modes.

The efficiency metric (see the definition in Equation (4.17)) indicates the memory
saved by the ROR compared to the full-order solution. The larger value of the efficiency
metric, the less memory cost of the ROR. Figure 5.39 shows this efficiency metric for the
2D cylinder flow at Re = 100 in the time interval of t = 500−600 and the corresponding
mean primal and adjoint errors (Equation (5.150)) using various RORs. The ROR with 8
POD modes produces a good accuracy of the adjoint solution (less than 0.01 error) while
only requiring 0.24% of the memory. A lower error level (roughly 10−5) can be achieved
with a memory cost of less than 1%, as shown for ROR29.

5.5.2. 2D CYLINDER FLOW AT Re = 500
Figure 5.40 shows the relative primal error and associated adjoint error when we solve
the adjoint problem backward in time with different RORs. The primal error is reduced
by increasing the number of POD modes, as expected. However, there is a complex im-
pact on the adjoint field. Using the mean primal solution (i.e. ROR0) induces an adjoint
error with an order of magnitude similar to that of the adjoint solution and this error
is kept at a constant level. The adjoint error that of using low-order RORs (e.g. ROR2,
ROR4, ROR6) grows and becomes larger than that of the steady adjoint, resulting in the
divergence of the adjoint field at large times. However, once more than 8 POD modes
are added, stability is regained. Adding high-order POD modes can generate the adjoint
solution with low errors in the current study. Using ROR29 to solve the adjoint problem
gives a computation with a relative error in the order of magnitude at 0.01.

Figure 5.41(a) shows the mean error and the efficiency metric for the cases using var-
ious RORs. The reconstruction accuracy of the primal velocity is constantly improved as
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Figure 5.38: Instantaneous error magnitude of reduced-order primal velocity (left), and associated adjoint
velocity (middle) and pressure (right) at t = 500 for the flow past a 2D cylinder at Re = 100. Different rows from
top to bottom denote results using the mean-flow mode, 2, 4, 6, 8 and 29 POD modes.
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different RORs for the 2D cylinder flow at Re = 100.
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Figure 5.40: Relative errors of the reduced-order primal velocity, associated adjoint velocity using different
RORs for the flow past a 2D cylinder at Re = 500.

more POD modes are used. The mean adjoint error is reduced with a less regular pat-
tern. However, using ROR6 or ROR2 leads to a high error. This is because low-order RORs
can cause the divergence of the adjoint field. It is observed that the convergence for this
case is slower than the low-Re cylinder flow since the flow field becomes more complex
and dynamic. Figure 5.41(b) shows the mean value of the l2-norm of the adjoint veloc-
ity for cases using different RORs. The RORs with low numbers of POD modes (ROR2,
ROR6) produce a large discrepancy. However, the mean value of adjoint velocity is well
resolved as the number of POD modes is increased, with errors decreasing (though not
monotonically).

5.5.3. 3D CYLINDER FLOW AT Re = 500
Figure 5.42 shows the impact of using RORs on the accuracy and efficiency of the 3D
cylinder turbulent flow. As for the 2D cases, increasing the number of POD modes re-
duces the mean error of both primal and adjoint solutions, where the primal error is
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Figure 5.41: The time-averaged error of primal and adjoint velocity using different RORs and the mean value
of the associated magnitude of adjoint velocity for the flow past a 2D cylinder at Re = 500. The green dashed
lines denote the reference values from full-order primal solutions.

lower. Accurate computation of the adjoint field requires a relatively high number of
POD modes for the 3D turbulent flow. It is also observed that the convergence of the 3D
problem is slower than that of the 2D case. This is because using 29 POD modes captures
94.804% of kinetic energy in the 3D simulation, instead of the 99.9976% captured by 29
modes in the 2D case. However, using a ROR still significantly reduces the memory cost
for the 3D turbulent flow simulation, with 29 POD modes using only 5% of the memory
of the full-order solution. Meanwhile, the reconstruction cost of reduced-order solu-
tions is trivial compared to the cost of solving the adjoint problem. Figure 5.43 shows
the error evolution of the primal and adjoint velocity with different RORs when the ad-
joint problem is solved backward in time. When increasing the number of POD modes,
the improvement of the adjoint velocity is observed in early time states (i.e. t = 530−516
in region 1), while it becomes less regular in region 2 for later time states (t = 516−505).
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Figure 5.42: Time-averaged error of primal and adjoint velocity over t ∈ [525,530] using different RORs for the
flow past a 3D cylinder at Re = 500.
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This is similar to the impact of RORs on the adjoint field presented in Figures 5.34(g)
and 5.34(h). In other words, different POD modes have an influence on the solution ac-
curacy in different time intervals. The large errors in region 2 result from a constrained
growth of the adjoint field, which produces the adjoint solution with lower magnitudes.
However, using RORs with a sufficient number of modes gives a reasonable prediction of
the adjoint field, at least for the length of time considered here.
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Figure 5.43: Error evolution for the primal and adjoint velocity over t ∈ [505,530] using different RORs for the
turbulent flow past a 3D cylinder at Re = 500.

5.6. EFFECT OF RORS ON ERROR ESTIMATION
We now consider the effect of using a ROR on the quality of adjoint-based error estima-
tion. To do so we apply the discrete adjoint method to the 2D and 3D cylinder flow at
Re = 500 described above. In FVM, the discrete adjoint method has been widely used for
steady problems [162]. By virtue of applying this technique on each time step, we can
use discrete adjoint solutions and the flow residual to provide the error estimation for
unsteady flow problems. At each time step, we have the algebraic system of the discrete
solution vector û = [u p]ᵀ, the solutions on a coarse mesh, as

Aû = F , (5.151)

where F is the right-hand vector and A denotes the left-hand matrix. The residual is
defined in this space as

R(û) ≡ Aû −F = 0 , (5.152)

where R(·) is the residual operator. The error estimation of a QoI [163] can be approxi-
mated by

δJ = Jh(ûh)− JH (ûH ) ≈−ûT
a,h Rh(ûH

h ) . (5.153)

where ûa,h and ûh denotes the adjoint and flow solutions a fine mesh. The subscript
h of R means the residual is evaluated on the fine space. ûH

h denotes the flow solution
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interpolated from a coarse mesh (ûH ) to a fine mesh,

ûH
h = I H

h ûH , (5.154)

where IH
h is a lossless interpolation operator. For time-dependent problems, the error

estimation can be expressed as

ΔJ = 1

T

∫
I
δJ dt ≈ 1

Nt

Nt∑
n=1

δJ =− 1

Nt

Nt∑
i=1

ûT
a,h Rh(ûH

h ) = 1

Nt

Nt∑
n=1

ΔJ n , (5.155)

where ΔJ n stands for the error estimation on each time step. It is expanded in space as

ΔJ n =−ûT
a,h Rh(ûH

h ) =−
[

uT
a,h Ru

h (uH
h , p H

h )+pT
a,h Rp

h (uH
h )
]
=

Ncell∑
i=1

ΔJ n
i , (5.156)

where ΔJ n
i denotes the error estimation on the i -th mesh cell with an expression of

ΔJ n
i =−

[
uT

a,hi
Ru

h (uH
hi

, p H
hi

)+qT
a,hi

Rp
h (uH

hi
)
]

. (5.157)

This can be achieved by Algorithm 6. The error estimation is referred to as the QoI error
estimator on each cell. The absolute value of the QoI error estimator is also considered
for validating the impacts of RORs on error estimation because this is often used as a
mesh adaptation criterion. ûh and ûa,h are interpolated from uROR and ua,ROR on a
coarse mesh when a ROR is used for evaluating the error estimation.

Algorithm 6 Procedure for the adjoint-based error estimation in 2D/3D problems

1. Generate a fine mesh (Gh) by uniformly refining the coarse mesh (GH ).

2. Interpolate the primal and solution onto the fine mesh, i.e. uH
h , p H

h ,uH
a,h , p H

a,h .

3. Compute the flow residual on the fine mesh, viz. Ru
h ,R q

h .

4. Evaluate the error estimation for all mesh cells.

5.6.1. 2D CYLINDER FLOW AT Re = 500
Figure 5.44 shows the distribution of instantaneous (ΔJ n

i ) and time-averaged QoI er-
ror estimators (ΔJi ) using full-order solutions and RORs. The instantaneous and time-
averaged error estimators obtained with full-order solutions are shown in Figure 5.44(a)
and Figure 5.44(b). The instantaneous estimators show large-error regions in the vortex
street. This means that the mesh cells in this region should be refined to improve the
computational accuracy of drag. In contrast, the time-averaged estimators show a sym-
metric distribution with three significant regions: the near-wake region, the intermediate-
wake region, and the far-wake region. The near-wake region exists due to the high local
flow gradients. The high-error regions in the intermediate and far wake have peak-to-
peak wavelengths in [1.2,1.6] (the black dashed lines). The time-averaged convection
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(a) (b)

(c) (d)

(e) (f)
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(i) (j)

(k) (l)

Figure 5.44: Instantaneous (left) and time-averaged (right) QoI error estimators computed using full-order
flow solutions and different reduced-order representations (RORs), which is computed using 29, 20, 10, 2 POD
modes and mean-flow mode for the flow past a 2D cylinder at Re = 500. Solid lines denote the streamwise flow
velocity u = 0 (black), 0.6 (gray) and 0.8 (white).
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speed in the streamwise region is 1.1m/s, and thus the characteristic time for these re-
gions is in [1.1,1.45]. The results shown are for snapshots sampled atΔts = 1, but increas-
ing the frequency of snapshots by twice or four times has no influence on the distribu-
tions in these regions. Figure 5.45 shows the instantaneous residuals of continuity and
momentum at t = 501. These have a consistent pattern, particularly for the momentum
residual which has a large blotch. The coarse mesh could result in these high residuals
in the intermediate and far wake regions. The mesh is too coarse to resolve the shedding
wavelength, especially in the large blotch, thus initiating the high residual values. Alter-
natively, the interpolation scheme used to obtain the solutions on a fine mesh introduces
high error in these regions and has a significant influence on the residual accuracy.

(a) (b)
Figure 5.45: Instantaneous residuals for the (a) continuity and (b) momentum for the interpolated solutions
on a fine mesh at t = 501 for the flow past a 2D cylinder at Re = 500.

When we only use the mean value of the primal solution, the instantaneous estima-
tors (Figure 5.44(k)) follow the vortex shedding pattern whilst their values are lower than
that from the full-order solutions. This is because a steady adjoint field is obtained under
this scenario. The time-averaged estimators (see Figure 5.44(l)) show a symmetric pat-
tern in near-wake regions, but it differs from the one based on the full-order solutions. In
that sense, the time-averaged error estimators using the ROR0 present the characteristics
of the mean-flow field while ignoring the transient dynamics. The time-averaged estima-
tors could lead to a mesh suitable for steady simulations but not sufficient for unsteady
simulations. Adding first and second POD modes (Figure 5.44(i) and Figure 5.44(j)) pro-
duces estimator distributions similar to the ones based on the full-order solutions for the
instantaneous and time-averaged values, albeit with larger magnitudes. The three sig-
nificant regions in the wake are observed clearly in this case. When the number of POD
modes is further increased, the distribution of error estimators increasingly resembles
the full-order case, with the difference becoming trivial when using a ROR with 20 POD
modes.

To evaluate the influence on QoI error estimators, the difference of time-averaged
error estimators is defined by

εΔJ = 1

Ncells

Ncells∑
i=1

∥∥∥ΔJ ROR
i −ΔJ full−order

i

∥∥∥ , (5.158)

where ΔJ ROR
i and ΔJ full−order

i denote the time-averaged error estimator in the i -th mesh
cell using RORs and full-order solutions. The absolute difference is given by

εabs
ΔJ = 1

Ncells

Ncells∑
i=1

∥∥∥ |ΔJ ROR
i |− |ΔJ full−order

i |
∥∥∥ . (5.159)
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These two differences are shown in Figure 5.46. The error of QoI error estimators, for
both the actual values and their absolutes, is reduced with an increasing number of POD
modes although the convergence is not regular. The ROR with 20 POD modes shows a
low difference in the current case while further increasing the number of POD modes
increases the difference. This could be because the higher POD modes are related to
the small-scale features, which have a complex influence on the computation of error
estimators. The difference of the absolute values is lower than 10−3 for all cases while in-
creasing the number of POD modes further reduces this difference with a good efficiency
metric.

Figure 5.46: Difference between the time-averaged QoI error estimators using different RORs and that from
full-order flow solutions for the flow past a 2D cylinder at Re = 500. The triangle-blue line denotes the differ-
ence computed based on actual values of error estimators (εΔJ ) while the circle-red line represents that from

the absolute of error estimators (εabs
ΔJ ).

5.6.2. 3D CYLINDER FLOW AT Re = 500
The QoI error estimation for the 3D turbulent flow is studied using different RORs in this
section. The analyses are conducted for both short-time and long-time periods sampled
by Δts = 1. This is because the solution characteristics in a long-time period differ from
the baseline due to the reduction of the adjoint growth. This property can make the ad-
joint problem more tractable for turbulent flows. However, it is important to determine
if the ability to estimate the QoI error is maintained for such long times, which will be
addressed below.

SHORT-TIME PERIOD

A short-time period (t ∈ [525,530]) is first considered. Figure 5.47 shows the slice of in-
stantaneous error in x-y and x-z planes at t = 525. For convenience, the QoI error esti-
mator computed from the full-order primal solution is referred to as the baseline value.
The instantaneous QoI error estimators in the baseline case exhibit vortex-shedding
characteristics. The spanwise distribution is nearly homogeneous in near-wake regions
and regions before the cylinder. The regions with large errors localize around the shear
layer (i.e. u = 0). Other significant regions occur along the vortex-shedding street.
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Figure 5.47: Instantaneous QoI error estimators in x-y (left, at z = 0) and x-z (right, at y = 0) planes evaluated
at t = 525 for the flow past a 3D cylinder at Re = 500, based on full-order flow solutions and different reduced-
order representations (RORs) that are computed using 20, 10, 4, 2 POD modes and mean-flow mode. Solid
lines denote the streamwise primal velocity, u = 0 (black) and 0.6 (grey).

When we use the mean primal solution (ROR0) for solving the adjoint problem, the
distribution of the instantaneous QoI error estimators differs from that using full-order
unsteady solutions. The former has a lower magnitude with less chaotic features in the
spanwise direction. Adding the first and second POD modes results in an error distribu-
tion much more similar to the baseline distribution and magnitude. The resemblance
to the baseline is increased as higher-order POD modes are added to the ROR, as shown
in Figure 5.47. A ROR with 20 POD modes is capable of capturing the regions with large
errors both in streamwise and spanwise directions.

Time-averaged QoI error estimators for the baseline and using RORs are shown in
Figure 5.48. The distribution of QoI error estimators with ROR0 misses the early shear
layer and central wake regions (x > 3Ld ) while captures the large error regions in near
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wake. This reasonable prediction in the plane of y = 0 is because of the short time period,
in which the adjoint field is less dynamic and the momentum residuals are well captured
in these regions as shown in Figure 5.49. The time-averaged error estimators with a small
sampling step, as shown in Figure 5.50, depicts that using ROR0 can overestimate the
error in the regions upstream of the cylinder (x < −Ld ). When a ROR with the first two

Figure 5.48: Time-averaged QoI error estimators in x-y (left, at z = 0) and x-z (right, at y = 0) planes for the flow
past a 3D cylinder at Re = 500 over a short-time period t ∈ [525,530], based on full-order flow solutions and
different reduced-order representations (RORs) that are computed using 20, 10, 4, 2 POD modes and mean-
flow mode.

dominant POD modes, those regions are recognized well although they are narrow and
sparse compared to the baseline. The structure of QoI error estimators becomes similar
to the baseline as more POD modes are considered, with small-localized regions in the
cylinder wake. Using ROR20 provides a much closer distribution in the x-y plane while
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it is still a bit thin in the spanwise plane. Note that the QoI error estimators in regions
before the cylinder shows a two-dimensional feature in the spanwise direction.

Figure 5.49: Instantaneous distribution of the magnitude of momentum residuals (first row), the magnitude
of continuity residual (second row), x-component of adjoint velocity (third row), and adjoint pressure (fourth
row) in x-z (y = 0) planes for the flow past a 3D cylinder at Re = 500, based on full-order flow solutions (left) and
ROR0 (right) using only the mean-flow mode. Solid lines denote the streamwise primal velocity, u = 0 (black)
and 0.6 (grey).

Figure 5.50: Time-averaged QoI error estimators in x-z (y = 0) planes for the flow past a 3D cylinder at Re = 500
over a short-time period t ∈ [525,530] with a small sampling step of Δt = 0.1, computed based on full-order
flow solutions and ROR0 using only the mean-flow mode.

LONG-TIME PERIOD

Figure 5.51 shows the instantaneous QoI error estimators at t = 505 where we consider a
long-time period (t ∈ [505,530]) for the adjoint problem and associated error estimation.
The QoI error estimator using mean-flow solutions (ROR0) is much lower than the base-
line and the dominant large-error regions are not well recognized. However, adding POD
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modes for the ROR improves the estimate of the instantaneous QoI error. When we use
the first two dominant POD modes (ROR2), the most significant regions with high QoI
error estimators are found in the near cylinder wake. Other far-wake regions, which are
neglected using a ROR2, are gradually identified with increasing numbers of POD modes.
The distribution of QoI error estimators with 20 POD modes shows a resemblance to the
baseline for the regions with high adjoint-based errors.

Figure 5.51: QoI error estimators in x-y (left, at z = 0) and x-z (right, at y = 0) planes evaluated at t = 505
for the flow past a 3D cylinder at Re = 500, based on full-order flow solutions and different reduced-order
representations (RORs) that are computed using 20, 10, 2 POD modes and mean-flow mode. Solid lines denote
the streamwise primal velocity, u = 0 (black) and 0.6 (grey).

The time-averaged QoI error estimators over this long-time period are presented in
Figure 5.52. As shown in Figure 5.52(b), the time-averaged error estimates exhibit the in-
homogeneous distribution of high-error regions in the spanwise direction. This is simi-
lar to the adjoint Q-structure as shown in Figure 5.30, in which those structures become
more and more significant in the upstream regions of the cylinder as the adjoint problem
is solved backward in time. This may also be because of the relatively limited time length
used here, which is 25 non-dimensional time units, compared to the vortex-shedding
period of 4.76. It is expected that the error estimates are homogeneous in the spanwise
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direction if we use a time long enough. However, the stability of the adjoint problem
needs to be treated carefully. We focus on the impacts of using RORs on the distribution
of error estimates here.

Figure 5.52: Time-averaged QoI error estimators in x-y (left, at z = 0) and x-z (right, at y = 0) planes for the flow
past a 3D cylinder at Re = 500 over a long-time period t ∈ [505,530], based on full-order flow solutions and
different reduced-order representations (RORs) that are computed using 20, 10, 2 POD modes and mean-flow
mode.

The impact of RORs on the mean QoI error estimators is similar to the instantaneous
case. Again, the distribution with only mean values of the primal flow solutions merely
captures a small region after the cylinder while other RORs with POD modes identify
much more regions with high QoI error over the flow domain. Increasing the number
of POD modes to 20 indeed gives us a good x-y prediction for the error distribution.
It is noted that using high-order POD modes is necessary to replicate the distribution
structure of QoI error estimators in the regions before the cylinder, where it exhibits a
2D distribution in the short-time analysis. Using a ROR with 20 POD modes can identify
the high-error regions before the cylinder and in the cylinder wake. Overall, using the
ROR with a proper number of POD modes (20 or more) preserves the ability to seek the
region that should be refined for the current turbulent flow.
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Figure 5.53 shows the difference of the QoI error estimators between using different
RORs and full-order solutions for the 3D turbulent case. Decreasing trends are observed
for both short- and long-time period errors as the number of POD modes is increased.
The results from the short-time period show a good agreement between the actual and
absolute values of QoI error estimators. This attributes to the good convergence for the
adjoint field in region 1 as shown in Figure 5.43(b). The deviation between the actual
and absolute values in both cases points out that the sign of QoI error estimators can
be different when RORs are used. This is probably because the truncation number of
POD modes, in this case, leads to neglecting the multiscale of flow solutions and the
flow development is delayed compared to that of full-order solutions.
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Figure 5.53: Difference between the time-averaged QoI error estimators using different RORs and that from
full-order flow solutions for the flow past a 3D cylinder at Re = 500. The triangle-blue line denotes the differ-
ence computed based on actual values of error estimators (εΔJ ) while the circle-red line represents that from

the magnitude of error estimators (εabs
ΔJ ).

5.7. SUMMARY
The unsteady adjoint problem is formulated for multi-dimensional fluid flow problems
in this chapter. The coupling of the PIMPLE solver with the enhanced online algorithm
for POD analysis is first described. Then the impacts of RORs on adjoint solutions and
adjoint-based error estimation for 2D and 3D flow past a circular cylinder are discussed.
The main achievements are as follows.

• A general procedure was presented for the derivation of adjoint equations and
their associated boundary conditions. The initial condition was prescribed at the
end time for the adjoint problem using a homogeneous boundary condition.

• Interfaces between OpenFOAM and libROM were developed to allow access to
memory for both scalar and vector fields created and solved in OpenFOAM. These
interfaces reduce the duplication of simulation data and make the online proce-
dure feasible for high-dimensional simulations. The online POD analysis was ver-
ified using the 2D cylinder flow at Re = 300.
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• The accuracy of the flow solver for 2D and 3D cylinder flows was demonstrated
with comparison to data in literature before it was applied for the analysis of the
transient adjoint problem. The adjoint solver was validated by considering steady
flow past a 2D cylinder at Re = 40. The steady adjoint was found to be consistent
with the results reported in the literature.

• The unsteady adjoint solver was validated by considering a vortex-shedding flow
past a 2D cylinder at Re = 100. The evolution of the adjoint field is categorized into
three phases, including initial growth (phase I), transit (phase II), and a settling-
down phase (phase III). The adjoint field becomes a statistically-steady state dur-
ing the settling-down phase.

• Using the ROR can significantly reduce the memory requirement (only 1% here)
for primal solutions of the 2D cylinder flow at Re = 100. A ROR with 8 POD modes
produces the adjoint field with a lower error (around 1%) while RORs with a lower
number of POD modes show a difference in regions around the cylinder and up-
stream.

• The adjoint field exhibits more dynamic characteristics in a high-Re 2D cylinder
flow at Re = 500 than at Re = 100. The adjoint field develops faster and adjoint vor-
texes merge after the phase II. The adjoint field can grow without bound over long
times when we only use 2, 4, or 6 POD modes. As more POD modes are added, the
adjoint field gradually becomes more and more similar to the one based on full-
order solutions. A reasonable accuracy (errors less than 2%) is obtained using 29
POD modes while requiring only 0.34% of the memory for the full-order solution.
Using the time-averaged flow solution results in adjoint-based error estimation in
which the distribution of QoI error estimators is distinct from the baseline. Adding
first and second POD modes incorporates the dynamics of the flow field although
the resulting magnitudes are of the estimators larger than those of the baseline.
The full pattern of QoI error estimators is recovered when we use 10 or more POD
modes, which then accurately capture the large-error regions for computing the
drag.

• For the 3D cylinder turbulent flow, the adjoint field is shown to grow exponen-
tially using the full-order solutions, which is in good agreement with the literature.
However, using a ROR reduces the growth of the transient adjoint field. The co-
herent structures of the adjoint fields are reasonably captured with relatively few
POD modes. When the ROR is built with 29 POD modes, the dynamics of primal
and adjoint fields are recovered well. Meanwhile, increasing the number of POD
modes leads to a more accurate representation of the QoI error estimation for both
the short-time and long-time periods. In contrast, using only the mean-flow mode
produces results distinct from the baseline. Using a ROR with 20 POD modes can
give us a good prediction for the distribution of large QoI error estimators with less
than 4% of the storage requirement of the full-order solutions.



6
CONCLUSIONS AND OUTLOOK

157



6

158 6. CONCLUSIONS AND OUTLOOK

6.1. CONCLUSIONS
This research work addressed the challenges encountered when applying adjoint-based
error estimation to unsteady high-fidelity simulations. To this end, we studied adjoint-
based error estimation and mesh adaptation for 1D model problems, developed an en-
hanced online algorithm for POD analysis of high-dimensional data, and investigated
the impacts of using RORs on 2D and 3D cylinder flows. Numerical experiments show
the potential memory savings using RORs for solving the adjoint problem for unsteady
flows. The main contributions of this work are in four different areas as described below.

In Chapter 2, the effectiveness of adjoint-based error estimation in VMM was studied
for linear advection-diffusion problems. Firstly, the adjoint-based correction was shown
to provide an efficient way to evaluate a QoI compared to using uniform mesh refine-
ment. Secondly, VMM-driven error estimation was shown to provide super convergence
and more accurate solutions than traditional FEM. The results indicate that using ad-
joint solutions and unresolved-scales solutions is crucial for accurate error estimation
in VMM. It is anticipated that the benefit of using the adjoint method is more obvious
in 2D/3D problems because adjoint-based error estimation allows us to solve the flow
problem on a relatively coarse mesh while the computational cost increases dramati-
cally for solving the NS equations of 2D/3D problems on a fine mesh.

In Chapter 3, an enhanced online algorithm for POD analysis was developed to deal
with the high dimensionality of LES primal solutions. This method is based on the in-
cremental SVD, which can efficiently perform the POD analysis as the flow problem is
solved. Two lower-bound estimators were established to evaluate the energy captured
by the selected POD modes, which allow for a posteriori estimation of the accuracy of a
ROR. The choice for mode truncation number and the resulting cost reduction are case
dependent in practice. Our error estimator can guide users by detecting if the value of
this user-defined parameter is appropriate. It is reasonable to assume that future users
have some experience with their application field and can therefore make a reasonably
conservative estimate. Even if this estimate is very conservative, the cost reduction can
still be significant. Our experience with large 3D flow simulations indicates that less than
1% of the full modal basis is typically required for a physical analysis [164]. Numerical re-
sults demonstrate that the enhanced online algorithm can significantly reduce the com-
putational cost compared with the standard incremental SVD while maintaining good
accuracy. The enhanced online algorithm was shown to scale well in parallel and its
speedup remained constant when using multiple cores. Overall, the results of this chap-
ter imply that the enhanced online algorithm will be useful for the engineering analysis
of high-dimensional problems.

In Chapter 4, we developed an adjoint-based mesh adaptation strategy for unsteady
1D Burgers problems augmented by an enhanced online algorithm for building POD-
based RORs. These were used to replace the full-order primal solution when solving the
adjoint problem, and the error estimators for an AMR algorithm were evaluated using
these RORs and adjoint solutions. Numerical results showed that the QoI estimate con-
verged reliably on very coarse meshes during adjoint-based AMR and reached a high
level of accuracy at moderate levels of refinement. Using a ROR with four POD modes
(capturing 99.9% of total energy) reproduced the convergence history of a full-order
solution-driven AMR. Although using a single-mode ROR led to suboptimal meshes, the



6.2. OUTLOOK

6

159

QoI obtained was still better than the one obtained using uniform refinement. The en-
hanced online algorithm allows for efficient ROR-driven adjoint-based AMR while not
altering the fast convergence from ROR-driven AMR. As it is a purely data-based tech-
nique, the enhanced online algorithm can be expected to deliver similar or greater re-
ductions in the memory required for the adjoint-based mesh adaptation in 2D/3D prob-
lems.

In Chapter 5, we derived an unsteady adjoint formulation for 2D/3D flow problems,
which can be extended to various QoIs. The enhanced online algorithm developed in
Chapter 3 was amalgamated into OpenFOAM using two interfaces. The unsteady adjoint
solver was analyzed on 2D and 3D cylinder flows. Steady adjoint solutions were found
when the adjoint problem is solved with only the time-averaged primal solution. When
using the full-order solution, the 2D cylinder adjoint solution at Re = 100 was found
to undergo three phases: initial growth (phase I), transit (phase II), and settling-down
phase (phase III). It arrived at a statistically-steady state during phase III. Using RORs
was found to significantly reduce the memory requirement with a limited effect on the
adjoint field. For example, a difference around 1% was observed for the adjoint field
using a ROR with 8 POD modes while requiring less than 0.3% of the storage of full-order
primal solutions.

The evolution of a 2D cylinder adjoint field was observed to behave similarly for
Re = 100 and Re = 500, with the latter having more dynamic features. The Re = 500
adjoint field also developed faster in phase II and was found to grow significantly when
only 2, 4, or 6 POD modes were used. As more POD modes were added, the adjoint field
gradually became similar to the one based on full-order solutions. Using 29 POD modes
for the Re = 500 produced adjoint solutions with a difference of less than 2% at only
0.34% of storage requirement. The QoI error estimation using only the mean flow so-
lution showed a pattern distinct from the one using full-order unsteady solutions. This
indicates that the regions that are important for determining drag can be different for
steady and unsteady simulations.

For a 3D turbulent flow past a circular cylinder at Re = 500, the growth of the ad-
joint field is exponential as the problem is solved backward in time. Nevertheless, this
unbounded growth was reduced by using RORs. Using a ROR with 29 POD modes pro-
duced adjoint solutions with dynamic features similar to those obtained using full-order
solutions. This ROR required less than 5% of the storage requirement of the full-order
solutions, with an error lower than 5.2%. It was able to predict the regions with high QoI
error estimators for short-time and long-time periods, in both streamwise and spanwise
directions. This indicates that using an appropriate ROR can make the adjoint-based
sensitivity analysis of LES predictions more tractable.

6.2. OUTLOOK
We have paved ways to reduce the computational cost of solving the adjoint problem for
LES using RORs constructed with an enhanced online algorithm. However, there is still
some work to do before applications to engineering problems.

There are different subgrid models used in LES. We chose the VMM to investigate
the adjoint-based error estimations and AMR in this work. Considering other subgrid
models, such as implicit subgrid models [165, 166], would be a further step to explore
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the utility of adjoint-based mesh adaptation for practical applications.
The quality of a ROR can be efficiently evaluated by the error estimates proposed in

this work. However, the choice of a truncation number still requires user input. The
algorithm can be further improved by developing a method for choosing the truncation
number automatically. In addition, the thresholds used in the incremental SVD need
to be adjusted for various problems. To minimize the influence of round-off errors, the
development of user-independent criteria for choosing such thresholds would be useful.

Typically, POD analysis is usually carried out on slices or sub-domains of flow prob-
lems in high-fidelity simulations. This is because of the demanding memory require-
ment for storing the data for the whole domain. The proposed algorithm avoids the
storage requirement and thus can be used for such analysis over the whole computa-
tional domain, which will provide us with a global view of the dynamics in complex flow
fields. It is believed that this enhanced algorithm can also benefit DMD [167] for analyz-
ing high-dimensional and complex flow problems.

We found that using RORs in adjoint-based error estimation can effectively identify
the regions that have largest effects on the accuracy of predictions for 2D and 3D prob-
lems. Thus, using RORs in AMR is the next step in developing feasible adjoint-based
AMR for engineering problems. The current study showed that some RORs can produce
results similar to those of full-order primal solutions but some induce unlimited growth
of the adjoint solutions. It is conjectured that different POD modes play different roles
in solving the adjoint problem. We typically select the first to fifth POD modes to build
a ROR if the truncation number is selected to be 5, for instance. This ROR may lead to
an unlimited growth of adjoint solutions while a different ROR using first to fourth POD
modes and a seventh POD mode could give more stable adjoint solutions. Consequently,
the study of how to select POD modes for building RORs would be useful to understand
the mechanism on which a reliable ROR relies and thus to find a proper ROR for solv-
ing the adjoint problem. Recently, researchers have solved the steady adjoint problem
using time-averaged primal solutions from LES. This has been shown to be effective for
shape optimization for flows with separation [168] and mesh adaption for LES [169, 170].
We observed that the steady adjoint obtained when using mean primal solutions gives a
distribution that significantly differs from the unsteady case. It would be interesting to
study the difference between those approaches and establish guidelines for the usage of
adjoint-based methods in steady and unsteady problems.
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