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Analysis of of apparently spontaneous yawing oscillations

for a ship under way.

Dr. C. de Wit, Delft Univ. of Techn., Dept of Mathematics & Informatics.

Summary.

In this paper a mathematical model is presented to explain the
phenomenon of course oscillations of a ship, sailing in a mean
straight course with a constant mean speed.

With this model, periodic course changing can be simulated as
a result of simultaneous periodic rolling and pitching and
emphatically without the input of any rudder action.

The frequency spectrum of this course error appears to conaist
of two narrow bands around the frequencies rp + rr and fp- rr,
where rp and rr are the ship's natural pitching and rolling
frequencies. On top of this, the course error is found to have

a non zero time average.
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1. Introduction.

Agsume a ship of some 20,000 tons to be salling in a choppy sea.
The sea waves have a significant height of 4 to 5 meters and
the mean wave direction is not coinelding with the longship's

or thwartship's directions.

The mean state of the ship is assumed to be stationary, meaning
that the mean speed and the mean course are constant in time.

The wind waves are supposed to act as disturbances of this mean
steady state , resulting in periodic movements of tﬁ. ship's
gravity centre G ,like heaving, i.e. movements in a vertical
direction, and swaying, i.e. irregular movements in the beam
direction.

As a lumped mass, the ship ls assumed to be oacillating about

the longship’s and thwartship's axes through G . These oscil-
-lations are commonly known as rolling and pitching.

A ldst phenomenon that is known to occur is periodic yawing, 1.e.
periodic movements of the compass lubber mark with respect to
the ship's compass, which is assumed to maintain ita horizontal
and azimuthal position.

This yawing is often caused by a disturbing couple around the
ship's V.-lxil. exerted by the joint disturbing action of

wind and waves upon the ship's hull,

This disturbance may result in a deviation of the ship's course
from its mean value. In that case it is usually counteracted by
a rudder angle.

If the ship is equipped with an automatic steering device, the
result of these time changing vertical disturbances and the cor-
=responding rudder counter actions will be some kind of quasi-
=periodic course changing about a mean course.

There 1s however a second periodic yawing movement, consisting
of periodic course changing with a rather high frequency of §
to 10 periods per minute. These oscillations have been expe-
-rienced to occur in the absence of any rud- mc
=der action, It is this particular movement, that this :—gF
paper is concerned with.

The special and exceptiohal nature of this phenomenon is that,
although it has been met with in practice, there is no plausible
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hydrodynamic explanation for it, like there is for periodic rolling
and pitching.

A certain roll or pitch angle is always counteracted by some
restoring moment, arising from the fact that the centre of buoy-
=ancy B is beyond the vertical line through the centre of

gravity G .

However, if a course error s not being counteracted by a couple
around the vertical axis, generated by a certain rudder angle,
there is no first order explanation for the fact, that the ship
turns back to her previous course.

In the following paragraph this apparent spontaneous yawing is
modelled as a result of combining the oscillating rolling and .
piteching movements.

A mathematical model for spontaneous periodic yawing.
We first introduce some notations and conventions.
With the origin in G, we work with a right handed co-ordinate

system, attached to the ship.

For the ship in a purely steady state, i.e. sailing on a plane
water- surface with a constant speed, the X;—direction is adopted
as the horizontal direction of the ship's stem , the Y;—dirac-
-tion is the horizontal direction of the starboard beam and the
V;-dlreotion is pointing vertigally downward.
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In this co-ordinate system a positive angular velocity vector Y
pointing into the X;-direction. corresponds with a rolling to
starboard. Analogously, a positive thwartship's angular velocity
!p' pointing i{nto the Y:-dlrectlon. correapondd with an upward
turn of the ship's stem.

The roll dngle ¢ and the pitch angle @ are defined as the
angles between the Y;-axis - for ¢ = and the x;-axls - for 0 -
with the horizontal plane. In consequence with the above mentioned
sign conventions, a roll angle is positive, Lf the ship heels to
starboard and a pitch angle 1s positive, if the stem direction

is above the horizon.

Let us now conaider figure 2.a on page 5, showing a sphere with
radius R . The sphere's centre coincides with the ship's gravity
centre G . TV 1is the vertical diameter.

The horizon on this sphare is the great circle NESW. GN polnts
into the true North direction etc.

The ship has a positive pitch © and a positive roll angle ¢ .
A and B are the intersections of the sphere with the ship's
momentary X:- and Y;-axea. We thus have

arc TA = ®8/2 s« © , arc AD 2 0 ,
arc TB = /2 + 9 , arcFB=¢ , arc AB = /2 .

In this skew state, the ship's course can be def'ined in two ways.
The most common way is to define it as the azimuthal direction
of the longship's axis cx; . This course is denoted as 'a .
According to international standard rules the ship's
compass bowl should be mounted with the outer gimbal
axis parallel to the GX;-axts. This means, that the
azimuthal course 'a 18 the course, indicated on
the - assumed to be horizontal - compass card by the
longship's lubber mark. '
Prom a hydrodynamical point of view however, it seems more logi-
=cal to conclude that, in the absence of any rudder action, the
horizontal direction into which the ship moves, is the line of
intersection of the longship's plane X; G v; with the horizone
=tal plane. In figure 2.a this is the line GH .
In the sequel these cohraes will be called the azimuthal and
the longship's course respectively, denoted as 'a and '1 .
In figure 2.a we see that 'a = difc ND and !1 2 arc NH .







Sinte B 1is a pole to the great cirele throgh A and H , we can
conclude that arc BH = 1/2 .,
With BP l FH we now see that arc HF = X/2 , so that

arc NP = ?1 . 12,
This implies that, the time derivative of the longship's course
!1 is equal to the azimuthal velocity of B ,
We are how ip a position to astablish differential equations for
the change in time of the angles 0 , ¢ , ra and '1 i
The ghip is agsumed to be rotating about the X;-axis with an
dngular velocity L and about the Y;-axis with an angular
velocity wp .
Figure 2.b shows, how the ship is momentarily rotating about
the line GC in the ship's X8 G Ys-plane with the angular velo-
ety LA (wi + wi)i .
The distance from A to this axis GC is R sin G1 » 30 A has an
upward linear velocity

Vp s "tﬂ sin 61 = R up .

For the arc velocity of A along the sphere we find

"A =VA/R=\IP -
A i; moving upward in a direction, perpendicular to AB.
Analogously, we find that B has a downward arc velocity "r ’
directed 90° from BA.
Denoting the time derivatives of © » # etc. as g , g etc.
and putting 4 BAT = a | 4 ABT =B , we see that

6 = wpcos(u - %/2) = wpsin a

¢ = wcos(r/2 -B) = veing
For the time derivatis of ,a and !1 we find
iacos 0 = upsin(n -n/2) ,

ilcos ® == wsin(x/2 -8) ,
s0 ia 2 - wpcos afcos @

11 = = wWcosBl/cos g .




Applying the rule of cosines in triangle TAB, we find
cos( x/2 + ® ) = sin( x/2 = B )cos a
cos( #/2 - 0 ) = sin( 2/2 + ¢ )cos B ,

We thus come to the differential equations

6 = up(l - sin® e/cos’® )i : (2.1.a)
é = wr(i - sinza /coazv )i , . (2.1.b)
ia = upsin 9/ cose ¥ (2.1.¢)
'1 = = w sin BICOSZQ . (2. 1.d)

Given the initial values of @0 , ¢ , 'a and 11 , We can now see,
what happens to these quantities, 1if wp and v, are given as

functions of time.

Simulation of the time behaviour of the azimuthal and the long-
=ship's courses on a rolling and pitching ship.

For the rolling and pitching velocities we adopt the time functions

W @ Ar cos{ 2 g rrt) g

Ww = A cos( 2 ft),
p p p

These time functions can be seen as the responses of the ship to
disturbing inputs, caused by wind and swell waves. The responding
frequencies Fr and fp are known to be rather close to the ship's
own rolling and pitching frequencies rrn and Fpn . The small
differences between fr and rrn and between Fp and rpn

are mainly due to the fact, that the basic second order differen=-

=tial equations usually have a small damping coefficient,

The simultaneous set (2.1) was integrated numerically with Heun's

predictor-corrector method with the initial conditions
8(0) = oq(0) = Ya(U) = 71(0) 29 =
In a first example the author selected

Ar & Ap s 12/108 radians per second,
112 sec™’ , £z 1/6 sec”! .
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These values corresdpond with - discoupled - rolling and pitching

amplitudes of 10° and 5° and with rolling and pitching periods of
sec
i2

The resulting graphs of !a and '1 are shown in figures 3,a&b.

and 6%%¢ respectively.

The second example shows the effect of periodic pitching with 59
amplitude and 53¢ period with rolling with 12° amplitude and

‘zaec period. The resulting graphs are shown in figures 4.a&b.

Analysis of the liiiearized model.

With |g| § 0.2 rad. and [e] £ 0.1 rad. the differential
equations (2.%.a,b,c&d) can be linearized without a serious

loss of accuracy.

Putting sin ¢ = ¢ + O( 03) v
sino = @ + 0(ad)
cos g = 1 + Of Qz) '
cos A s 1 + 0(@°)

and omitting terms of 0O qz) and of 0(92), the set (2.1) can

be reduced to

é = v,
= ow. o,
¥, * “wp
il =-wd .

Adopting wp = Apcos(z K Fpt) 6
W, = Arcos(E % frt) .
and taking 6(0) = ¢(0) = 0 , we find
p(t) = Ar 9in(2 « Frt)/(Z R Fr) N

() = sin(2 & Fpt)/(? " Fp)

A
b
Assuming zero initial conditions for Va and Vl , we have,

as a consequence of (4.3) to (4.8)
!a(b) =z ApAr(-cos(Z l(fp+fr)t)/(fp+Fr) +
2
+cos(2 u(rp-rr)t)/(rp-rr))/(a X fr)

2,2 2
- ApAr/(u " (Fp - fr)) .

(u.1)
(4.2)
(4.3)
(u.4)
(4,5)

(4.6)
(4.7)
(u.8)
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!1(t):ApAr(cos(2l(fp+fr)t)/(Fp+rr)+cos(21(r -Fr)b)/(Fp-fr))IBI Fp)
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In the first example this would amount to

Y (t) = - 0.29%%c08(90%t) + 0.87%%cos(30%%t) - 0.58° ,

Y.(t) = 0.14%%¢08(90%%) + 0.44%%cos(30°%t) - 0,58° ,

and in the second example thi§ would lead to

Y, (t) = < 0.37%cos(102°°t) + 0.90%%cos(42%t) - 0.53° ,

Y, (t) = 0.15%cos(102°¢t) + 0.37%%cos(k2%¢) - 0.53° .

These expressions give rise to the following conclusions:

(1) Both the azimuthal and the longship's courses have
double periodic oscillations with frequencies equal
to the sum and the difference of the pltching and
rolling frequencies.

(11) Both yawing movements have a non zero time average.

In the assumed examples this time average of the

course deviation from the steady course amounts to

AY = u': 2 2
s - ApAr/( (Fp - rr>) .



