Computer Engineering 2024
Mekelweg 4,
2628 CD Delft
The Netherlands
https://qce.ewi.tudelft.nl/

MSc THESIS

A Dynamically Reconfigurable RISC-V Processor
Based on the MOLEN Paradigm

D.M. van den Berg

Abstract

In this thesis, we present a RISC-V processor that is extended with
the MOLEN ISA extension, thereby granting it dynamic reconfigu-
ration capabilities. The reconfigurable microcode (ppu—code) of the
MOLEN paradigm is modified to be suitable for (FPGA) implemen-
tation in the 64-bit Linux-capable CVA6 RISC-V processor. The
set instruction performs reconfigurations by pointing it to a partial
bitstream address, after which the execute instruction can perform
operations on the reconfigured hardware. To this end, the concept
of nested pu—code is presented, in which the reconfigurable opcodes
are encapsulated in regular RISC-V instructions. Furthermore, a
status instruction is introduced to enable the reconfiguration to be
performed in the background. Consequently, the reconfiguration la-
tency can be hidden, by allowing the CPU to do useful work during
: 4 RISC ® the reconfiguration. Using various experiments, it is demonstrated
that the proposed implementation has a near-optimal reconfiguration
performance and that the reconfiguration latency can be effectively
hidden in typical cases.

Keywords: MOLEN Processor, RISC-V, reconfigurability, microcode

5
TUDelft

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

A Dynamically Reconfigurable RISC-V Processor
Based on the MOLEN Paradigm

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

D.M. van den Berg
born in Dordrecht, the Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

A Dynamically Reconfigurable RISC-V Processor
Based on the MOLEN Paradigm

by D.M. van den Berg

Abstract

In this thesis, we present a RISC-V processor that is extended with the MOLEN ISA ex-
tension, thereby granting it dynamic reconfiguration capabilities. The reconfigurable microcode
(ppi—code) of the MOLEN paradigm is modified to be suitable for (FPGA) implementation in
the 64-bit Linux-capable CVA6 RISC-V processor. The set instruction performs reconfigurations
by pointing it to a partial bitstream address, after which the ezxecute instruction can perform
operations on the reconfigured hardware. To this end, the concept of nested pu—code is pre-
sented, in which the reconfigurable opcodes are encapsulated in regular RISC-V instructions.
Furthermore, a status instruction is introduced to enable the reconfiguration to be performed in
the background. Consequently, the reconfiguration latency can be hidden, by allowing the CPU
to do useful work during the reconfiguration. Using various experiments, it is demonstrated
that the proposed implementation has a near-optimal reconfiguration performance and that the
reconfiguration latency can be effectively hidden in typical cases.

Laboratory : Computer Engineering
Committee Members

Advisor: Dr. ir. J.S.S.M. Wong, CE, TU Delft

Chairperson: Dr. ir. J.S.S.M. Wong, CE, TU Delft

Member: Dr. ir. T.G.R.M van Leuken, SPS, TU Delft

ii

Dedicated to my family and friends

iii

iv

Contents

[List of Figures|

[List of Tables

[List of Acronyms|

[Acknowledgements|

1.2 Problem statement and goals|
1.3 Methodologyl

2 Background|
[2.1 Reconfigurable architectures|. oL
[2.1.1 Application domains| Lo Lo oL
[2.1.2 Reconfigurable granularity|.
[2.1.3 Coarse-Grained Reconfigurable Arrays (CGRAs)[.
2.2 The MOLEN polymorphic processor|

2.4 FPGA platform|.
2.5 RISC-V implementation| L.
[2.5.1 Requirements| Lo

[2.6.1 Overview of existing architectures|
[2.6.2 Comparison|

3.2 RISC-V opcode spacel
3.3 Microcode design|
13.3.1 Reconfiguration microcode|

vii

ix

xii

xiii

[4 Implementation|
4.1 Implementation overview|
4.2 Memory interface|

4.4.1 Partial reconfigurator] L.

4.4.2 MOLEN reconfigurable module|

4.5 Reconfigurable design flow]

4.6 Software design|
|1| i [:glll!:lll:ilszll{il --------

6_Results|
.1 Test setup[.

.2 Tunctional testd.
b.3 FPGA synthesis results| .
[5.3.1 Timing results| . .

5.4 Reconfiguration performance benchmark|

[5.4.1 Benchmark description|. oL

6.1 Summary|

6.3.1 ASIC implementation|

16.3.2 Microcode redesign|

(Bibliography|

vi

27
27
30
31
31
33
34
35
36
38
39

41
41
42
43
43
44
45
45
47
49
49
50
52
93

55
95
o8
99
99
60

66

List of Figures

2.1 The MOLEN machine organization. Image courtesy of [1]. 8
4.1 The CVAG6 architecture with the modified and added components. Image |
| adapted from 2] 29
4.2 The CVAG intertace diagram highlighting the AXI intertaces. The ar- |
| rows point from the AXI master ports towards the AXI slave ports.|. . . 30
4.3 An overview of the implementation of the MOLEN functional unit.| . . . 32
4.4 An overview of the implementation of the partial reconfigurator.| 33
4.5 The MOLEN reconfigurable module, highlighting the inputs and outputs.| 34
4.6 A simplified overview ot the two design flows for a partially reconfig- |
| urable design.| L Lo 37
5.1 Reconfiguration times compared with the theoretical lower limit, running |
[at DO MHz| 46
5.2 Reconfiguration times compared with the theoretical lower limit, running |
[at 55 MHzl e 47
5.3 Waveform data captured at the start of the reconfiguration.| 48
5.4 Reconfiguration time and number of software iterations for the 8x8 Ma- |
| trix multiplication.| oo oo 49
5.5 Average clock cycles per software iteration of the 8x8 matrix multipli- |
[cation benchmark. 50

vii

viii

List of Tables

2.1 Overview of RISC-V cores that have a permissive license and use a clas- |
| sical Hardware Description Language (HDL).| 13

[3.1 32-bit RISC-V instruction formats. Adapted from the RISC-V |
| Instruction Set Architecture (ISA]) specification[a]] 19
8.2 RV32/64G opcode map, inst[1:0]=11. Adapted from Table 24.1 of the |
[RISC-VISAlspecification[3]]. 21
13.3 The proposed RISC-V MOLEN extension, consisting of three R-type |
| instructions. The functi0 field refers to the combined funct7 and functs |

[flelds] 24
5.1 Overview of the functional tests that were performed on the implemented |
| design.| e 42
5.2 Timing results for the base CVA6 and MOLEN CVA6 implementations. |
| A checkmark indicates that all timing constraints are met.|. 44

5.3 Resource utilization of the base CVAG6 design and the modified design.| . 44

X

List of Acronyms

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface

CCA Configurable Compute Accelerator
CCU Custom Configured Unit

CGRA Coarse-Grained Reconfigurable Array
CPU Central Processing Unit

CSR Control and Status Register

DMA Direct Memory Access

FIFO First-In-First-Out

FPCA Fully Pipelined Composable Architecture
FPGA Field Programmable Gate Array
FPU Floating Point Unit

FSM Finite State Machine

HDL Hardware Description Language

HLS High-Level Synthesis

IC Integrated Circuit

ICAP Internal Configuration Access Port
ILA Integrated Logic Analyzer

ISA Instruction Set Architecture

LSU Load Store Unit

LUT Lookup Table

OS Operating System

PC Program Counter

PE Processing Element

PULP Parallel Ultra Low Power

X1

RAM Random Access Memory

RTL Register-Transfer Level

RTOS Real-time Operating System
SIMD Single Instruction, Multiple Data
SoC System on Chip

XREG Exchange Register

xii

Acknowledgements

At the end of the journey that this MSc. project has been, there are some people I would
like to express my gratitude to. Without them, completing this thesis would have been
much harder, or perhaps even impossible.

First of all, I want to thank dr. ir. Stephan Wong, my thesis supervisor, for all of his
advice and guidance. I would also like to thank him for his patience and understanding
when I was putting too much pressure on myself.

I also want to thank dr. ir. René van Leuken for being part of my thesis committee,
as well as for accommodating my thesis defense close to his retirement.

Furthermore, I want to thank my family for their continued support, without which
I probably would not have been able to see this project through to the end.

Finally, I would like to thank Eline, whose insights have helped me to get back on
track when things got tough.

D.M. van den Berg
Delft, The Netherlands
November 12, 2024

xiii

Xiv

Introduction

In this thesis, the design of a dynamically reconfigurable processor is documented. The
MOLEN paradigm is applied to the open-source RISC-V Instruction Set Architecture
(ISA]), resulting in a reconfigurable design that could aid the adoption of reconfigurable
architectures in multiple domains.

In Section the motivation of this project is discussed. Subsequently, the main
research question and goals are formulated in Section These goals are then adapted
into the methodology of the project in Section Finally, the structure of this thesis
is outlined in Section [1.4l

1.1 Motivation

Historically, the widely known observation known as Moore’s law ensured a continuous
progression of the Integrated Circuit ([C) design process, by setting the industry goals.
Back in 1965, it described the transistor scaling as a doubling of the [[C] transistor count
every year [4]. Ten years later, it was adjusted to a doubling every two years [5], a trend
that continued even in recent years.

Another observation that aided in this progression is Dennard Scaling, which de-
scribes that the power density of the transistors stays constant as the size decreases [6].
As a result, the (single-core) processor performance was able to continuously increase by
developing larger and faster cores.

However, Dennard Scaling ceased to hold true around 2005 [7], resulting in increased
power and heat buildups that halted single-core improvements [§]. This problem was
mitigated by switching to multi-core processors, allowing the additional available tran-
sistors (resulting from Moore’s law) to be used for additional cores instead of larger and
faster cores [8] [9].

Though the switch to multi-core has extended Moore’s law, it has become clear in
recent years that CMOS transistor scaling is coming to an end due to physical limitations.
This limit is expected to be a channel length of around 3 nm, but the practical limit
could be even higher [10].

In addition to the absolute scaling limit, recent chips already suffer from another
effect known as dark silicon: due to the end of Dennard scaling, power constraints limit
the amount of transistors that can be used at the same time, causing parts of the chip
to remain “dark” (turned off) [9]. Decreasing the transistor sizes worsens this effect due
to the higher relative power consumption.

Finally, the limited inherent parallelism of typical software applications poses limits
on the simultaneously usable chip area, in which case the power limitations do not even
come into play [9].

2 CHAPTER 1. INTRODUCTION

The previous observations make it clear that new innovations are necessary in order
to continue the performance increases and power decreases. Such innovations can take
place in the following abstraction layers:

1. The architecture deals with the conceptual structure of the design and the func-
tional behavior as observed by the user or developer. This includes the [SAL

2. The implementation (micro-architecture) defines how the architecture is im-
plemented on a logical level.

3. The realization provides the physical structure of the micro-architecture. This
includes the process technology and the physical layout of the transistors in that
technology.

Potentially, changes in the lower abstraction levels will also require changes to the higher
levels. For example, in a shift to quantum computing, all levels would be drastically
changed. By extending the architecture with reconfigurability, compatibility with regular
architectures can be maintained, while at the same time being able to use the available
hardware more efficiently for the specific task at hand. Instead of having a lot of fixed,
specialized units that cannot all be used at the same time due to the dark silicon effect, a
reconfigurable unit provides an effective method of using the available area for functional
units or accelerators that can be used at the same time. For that reason, reconfigurability
is the chosen improvement avenue in the MSc. project described in this thesis. Moreover,
associated with reconfigurability is always the reconfiguration latency of the underlying
(reconfigurable) hardware fabric. Consequently, reconfiguration latencies (or the hiding
thereof) will also be part of our project.

1.2 Problem statement and goals

Based on the motivation of the previous section, the research question can be formulated
as follows:

Will the application of the MOLEN paradigm to a modern processor allow
for hiding reconfiguration latencies?

From this research question, the main goal can be derived, namely to introduce reconfig-
urability to an existing processor by implementing the MOLEN instruction set extension.
Specifically, a functional reconfigurable design will be implemented, by using an existing
RISC-V core and integrating the MOLEN scheme into it. In order to make this feasible,
a minimal working design is considered sufficient. In other words, the goal of the imple-
mentation is to provide a proof of concept rather than a full-fledged design. This means
the MOLEN scheme will be simplified to a minimal version. Specifically:

e Having a single reconfigurable area in which custom designs can be loaded is suf-
ficient. Having multiple reconfigurable areas from the start would increase the
complexity of the implementation towards a full-fledged design, which is not the
goal of this project as stated before.

1.3. METHODOLOGY 3

e The reconfigurable unit is intended for executing single (custom) instructions (or
small sequences of instructions). No branching capabilities will be added.

e A single location will be used for storing the reconfigurable code (the main mem-
ory). No distinction will be made between often and less often used code, simpli-
fying the loading of the programs.

In contrast with the original MOLEN scheme, the pu-code (as introduced in Sec-
tion is intended for use by developers/programmers instead of being hidden from
them like traditional microcode. The reason for that is that the proposed design is a
proof-of-concept, which should enable developers to experiment with the reconfigurable
hardware, instead of locking them out from the specifics.

The desired outcome of this project is an FPGA-based implementation of a (soft-)
RISC-V core with the described reconfiguration capabilities, using the MOLEN instruc-
tion set extension.

1.3 Methodology

In order to achieve the goals from the previous section and be able to answer the research
question, the following set of milestones is followed during the MSc. project described
in this thesis:

1. Literature Study: Compare existing reconfigurable architectures, such that the
use of the MOLEN paradigm for this project can be justified.

2. Minimal working design: A minimal working implementation of a RISC-V
core that is able to run (C) programs. No reconfiguration is performed in this
stage. This design will also function as reference implementation during the final
milestone.

(a) Select the RISC-V core: Choose a core implementation that is suitable
for extension with reconfigurability.

(b) Design the basic SoC: Integrate the chosen core into a SoC containing
memory and all necessary interfaces/buses. If possible, an existing SoC design
could also be chosen, simplifying this milestone.

(c) Test the design: Verify correct working of the design by compiling and
running some basic code.

3. Reconfigurable design: Extend the minimal design with reconfigurability such
that it can execute pu-code.

(a) Design the reconfigurable unit: Design a standalone reconfigurable unit
that is able to reconfigure the hardware and perform instructions on that
hardware, using pu-code.

(b) Integrate the reconfigurable unit: Integrate the reconfigurable unit into
the core by implementing the arbiter that distinguishes between pu-code and

4 CHAPTER 1. INTRODUCTION

regular instructions (as introduced in Section [2.2). This may include a min-
imal compiler/assembler modification such that the set/execute instructions
can be performed.

4. Result verification: Once the design is completed and functional, the perfor-
mance and (resource) costs need to be compared to the standalone RISC-V imple-
mentation without reconfigurability.

(a) Select Application: Choose a suitable application that can highlight the
benefits of the reconfigurable design by allowing the reconfiguration latency
to be hidden. For example, JPEG compression could be chosen in line with
the previous work on the MOLEN architecture. Instead of a real-world appli-
cation, a simplified benchmark may also be chosen.

(b) Implement software-only application: Implement the chosen application
on the regular RISC-V design.

(c) Implement soft-/hardware application: Implement the chosen applica-
tion on the reconfigurable RISC-V design.

(d) Result comparison: Compare the results of both designs in terms of per-
formance and resource usage.

1.4 Thesis structure

The remainder of this thesis is structured in the following way: in Chapter[2] the concepts
that this work builds on are introduced, a RISC-V core is selected for the modifications
of this project, and related work is explored. In Chapter 3] the MOLEN paradigm is
adapted to the RISC-V [[SA] resulting in a proposed [SAl extension. In Chapter [, the
implementation of the proposed extension into the selected RISC-V core is discussed.
The resulting implementation is subjected to a number of experiments in Chapter
Finally, this thesis is summarized and concluded in Chapter [6]

Background

As the research question stated in Chapter [I] pertains to reconfigurable architectures,
this chapter will briefly introduce related concepts and related work to better understand
the work of this MSc thesis project.

First, a general introduction to reconfigurable architectures is given in Section
Subsequently, the MOLEN paradigm is introduced in Section followed by the in-
troduction of the RISC-V architecture in Section The Field Programmable Gate
Array platform that was used for this project is introduced in Section after
which an existing RISC-V implementation is selected for modification with the MOLEN
paradigm in Section Following that, related work is explored in Section Finally,
this chapter is concluded in Section

2.1 Reconfigurable architectures

With the need for reconfigurable architectures being explained in Section[I.1] the current
section can focus on the types of reconfigurable architectures and their use cases. First,
two common application domains are described. Subsequently, the primary architec-
tural classification of reconfigurable systems is introduced. Finally, an introduction to a
common type of reconfigurable architecture is given.

2.1.1 Application domains

Reconfigurability seems to be primarily applied in the following two domains: high
performance computing and embedded systems. This section provides an introduction
into both domains.

In the case of high performance computing, it is usually applied by means of
reconfigurable accelerators (FPGAs). There, speedups of a factor 32 and energy re-
ductions of a factor 36 have been achieved [I1]. Logically, the reconfigurable hardware
increases the (programming) complexity, but frameworks and high level languages can
help mitigate this added complexity. For example, OpenCL can be used for these kind
of accelerators.

The use of a separate reconfigurable accelerator poses a bandwidth limitation on the
speed and amount of data that can be processed at once. A bus must be used to interface
the processor and accelerator, resulting in communication overhead.

In the case of embedded systems, performance and energy efficiency is not neces-
sarily the motivation for applying reconfigurability. Typically, embedded systems need
to deal with time-critical operations, in addition to non time-critical ones. Tradition-
ally, embedded processors took care of the non time-critical tasks, whereas Application
Specific Integrated Circuits (ASICs) performed the time-critical ones. However, [ASIC]

6 CHAPTER 2. BACKGROUND

development results in lengthy design cycles. With [FPGAl performance approaching
[ASIC] performance over the years, FPGAs became the component of choice in typical
embedded systems [12]. Not only did this shorten the design cycle, it also allowed for
loading new configurations onto the reconfigurable fabric when needed.

More recently, embedded processors became capable enough to meet the timing con-
straints of the time-critical tasks, reducing the need for ASICs or FPGAs next to the
processor. However, specialized tasks such as multimedia processing will still require
hardware implementation in order to meet timing constraints. In addition to that, re-
configurable hardware increases the flexibility of the system and allows for future changes
without needing a new platform. Finally, in cases where reconfigurability would not be
required for performance reasons, it could still be useful for energy efficiency, as it al-
lows a smaller processor to be used by implementing the time-critical functions in the
reconfigurable fabric.

2.1.2 Reconfigurable granularity

Different kinds of reconfigurable systems exist. An important architectural distinction
can be made between fine-grained and coarse-grained reconfigurable systems. Fine-
grained reconfigurable systems allow for complete reconfiguration at the lowest level
(gate level), whereas coarse-grained reconfigurable systems only allow a higher-level re-
configuration on a block level.

Though fine-grained systems offer more flexibility, they typically use more power and
run at lower clock speeds. Coarse-grained systems decrease the flexibility but can run at
higher clock speeds and are more energy efficient. However, recent FPGAs often provide
coarse-grained blocks in addition to fine-grained ones. Therefore, the choice of [FPGAI
already influences the reconfigurable granularity.

2.1.3 Coarse-Grained Reconfigurable Arrays (CGRAs)

A specific, common type of coarse-grain reconfigurable architecture is the Coarse-Grained
Reconfigurable Array (CGRAI). Its name is derived from its structure: a[CGRAIl consists
of an array of Processing Elements (PEs). Each [PEl can be seen as a tiny processor that
has access to some memory, logic and arithmetic units. The precise structure of the PEs
varies between implementations and is determined by the use case of the system.
As such, the [PEl structure can vary from a small processor with its own instruction set
to a data flow unit that only has a few instructions. Such a data flow unit can quickly
compute and accumulate results once the inputs are ready. The results can then be
passed around to other PEs.

Though the variety in the [PH structure results in an equal variety in the [CGRAI
use cases and performance, the parallel nature of the structure implies that it is mostly
suitable for speeding up computations on large amounts of data.

2.2. THE MOLEN POLYMORPHIC PROCESSOR 7

2.2 The MOLEN polymorphic processor

Historically, microcode was used to implement (emulate) instructions that could not
be implemented in hardware at that time. Thanks to Moore’s law, those instructions
could then be converted to hardware instructions in later designs. This way, the [SAl
could be developed independently from the technological state of the hardware. Even
though some instructions required emulation using microcode, software developers were
presented with a uniform set of instructions, without being able to distinguish between
microcoded and hardware instructions.

The MOLEN polymorphic processor takes this concept to a new level, by defining re-
configurable microcode (pu-code) [1]. This new kind of microcode can be used to perform
the reconfiguration of the reconfigurable fabric, as well as to execute custom operations
on the configured fabric. Because microcode is used for these operations, a one-time [[SA]
extension is sufficient. This extension contains a set and ezecute instruction. The set
instruction configures the reconfigurable fabric, wheres the execute instruction performs
operations on the configured hardware. Both of these instructions work by taking the
address of the to-be-executed microcode. Microcode execution will then commence at
that address, after which it continues until a special end_op micro-instruction is encoun-
tered. set instructions are derived from the reconfiguration file (bitstream) by splitting
that file into equally sized blocks, to which the set opcode is then appended.

2.2.1 MOLEN ISA extension

The one-time architectural extension required for implementing the MOLEN machine
can be one of the following [J:

e Minimal extension: this extension contains only the essential instructions that
are required for a working implementation. These are set, execute, movtr and
movfr. Here, set and execute reconfigure the Custom Configured Unit (CCUJ) (as
introduced in Section and execute code on the reconfigured [CCUl respec-
tively. The movtz and movfr instructions allow arguments to be written to and
loaded from the exchange registers, respectively. The set instruction is actually a
c-set instruction that configures the entire

e Preferred extension: This extension adds a p-set instruction that (pre-)con-
figures parts of the [CCUL The c-set instruction that was already present then
configures only the remaining part of the Additionally, this extension defines
prefetch instructions for the set and ezecute instructions, that enable microcode
loading before it is needed. This diminishes the loading times.

e Complete extension: This final extension adds a break instruction that allows
synchronization between the Central Processing Unit ([CPU]) and reconfigurable
unit, such that parallel execution can take place. Now, the[CPU]and reconfigurable
unit will run in parallel when an ezecute instruction is issued. Subsequently, the
break instruction is used to wait for the termination of the and reconfigurable
instructions.

8 CHAPTER 2. BACKGROUND

Main Memory |

A

A Y
Instruction Data
Fetch Fetch

l' A

\ 4

. Memory

Arbiter < MUX

A

XREGs <_—l

File <€ >

pp-code

unit = \N—4 T
memory

Register O Core
File Processor

Figure 2.1: The MOLEN machine organization. Image courtesy of [I].

2.2.2 MOLEN organization

An overview of the MOLEN machine organization is depicted in Figure[2.1] The MOLEN
machine extends a regular von Neumann architecture with the following components:

e The Reconfigurable Processor provides (as the name implies) the actual re-
configurable hardware and the control of that hardware. It consists of a
and a pu-code unit. The provides the reconfigurable fabric, whereas the
pp-code unit deals with the microcode initialization, loading, execution and stor-
age. In order to have a tight integration of the reconfigurable hardware with the
other parts of the system and boost performance, the has Direct Memory
Access (DMA]). It should also be noted that the pu-code unit does not decode the
actual micro-instructions, leaving this to the instead (or optionally to a fixed
or hybrid decoder).

e The Arbiter decodes the fetched instructions and issues them to either the Core
Processor (regular instructions) or the pu-code unit (set/ezecute instructions).

e The Exchange Registers (XREGs) enable the Core Processor to pass function
arguments to the reconfigurable unit, and to retrieve the corresponding results.

2.3 The RISC-V architecture

The RISC-V architecture is an open-source[[SAlthat originated in the Parallel Computing
Laboratory (Par Lab) at UC Berkeley [13]. The Par Lab was funded by Intel and
Microsoft to advance parallel computing and ran from 2008 to 2013. Halfway through,
in May 2010, this resulted in the inception of the RISC-V instruction set. This was
followed by the first specification of the [[SAlin 2011 [14]. Influenced by many previous

2.3. THE RISC-V ARCHITECTURE 9

[SAk [15], the RISC-V specification was not originally a goal of the project, but rather
a means to achieve the goals relating to research into parallel processing systems [13].
However, the open nature of the specification attracted worldwide attention, because it
allows anyone to develop their own hardware, while being able to share the software.
Since its inception, work on the RISC-V [SAl has continued, and in 2015 the RISC-V
Foundation was formed to direct the development and stimulate the adoption of the
[SAl [16].

Despite parallel processing systems being the initial motivation for the creation of
the [[SA] it supports a wide range of applications. This is due to the highly modular
design of the [SA] with multiple bases and extensions [3]. Specifically, the following base
instructions sets are defined:

e RV32I: A 32-bit (integer) instruction set covering 40 basic instructions such as
load and store operations.

e RV32E: A 32-bit (integer) instruction set for embedded systems. This instruction
set limits the number of registers to 16, as opposed to 32 for the RV32I instruction
set. It is equal otherwise.

e RV64I: A 64-bit (integer) instruction set. This instruction set is also based on
the RV32I instruction set, but widens the registers to 64 bits. Furthermore, 15
instructions are added to the base RV32I instruction set.

e RV128I: A 128-bit (integer) instruction set. Like the RV64I instruction set, it
expands the register widths, albeit to 128 bits instead of 64. It is primarily intended
for future use cases, when address spaces larger than 64 bits might be required [3].

Because these base instruction sets define only simple operations, several standard ex-
tensions are also defined, providing operations such as integer multiplication and division
or atomic instructions. By making the instruction set modular in this way, it is suitable
for a wide range of applications, ranging from high-performance computing to general
purpose computing and embedded systems.

In addition to its modularity, the instruction set also supports custom extensions and
has special opcodes reserved for such extensions [3]. This enables hardware developers
to include their own (specialized) instructions to make their processor implementation
suitable for the envisioned application domain.

These advantages, as well as the available compiler and simulator support, make the
RISC-V architecture very suitable for extension with reconfigurability. By basing such a
design on the RISC-V[[SA] it is implicitly made suitable for a broad range of applications.
The ability to add custom instructions ensure that the one-time [SA]extension as defined
by the MOLEN paradigm can also be added. Finally, the open nature of the RISC-V [SA]
enables developers to built on previous work and re-use existing open-source processor
implementations instead of having to reinvent the wheel.

10 CHAPTER 2. BACKGROUND

2.4 FPGA platform

The hardware platform that is used for the implementation of this project is the Xilinx
VC707 evaluation kit [I7], which is built around the Virtex-7 XC7VX485T-2FFG1761C
[FPGAL It has 485760 logic cells and 37080 KB of on-chip memory. The board also
includes 1 GB DDR3 memory with speeds up to 1600 Mbps. All in all this should
provide enough resources for the implementation of the project. Partial reconfiguration
is also supported, allowing the intended reconfiguration of this project.

2.5 RISC-V implementation

As mentioned in Section [2.3] a major advantage of the RISC-V [[SAl is that it is open-
source and can be implemented by anyone. As a result, multiple open-source core imple-
mentations have been developed. Instead of having to reinvent the wheel, it is possible to
select an existing RISC-V core and extend it with the proposed reconfigurability. Since
the design of a RISC-V core is not one of the goals of this thesis, the additional efforts
in implementing and testing such a core can be saved.

Instead of just cores, open-source Systems on Chip (SoCs) are available as well. These
SoCs use one of the cores and add memory, peripherals and interconnects to the chip.
This results in a ready-to-use or nearly ready-to-use design. Such a design is preferable
for this project, for the same reason as stated before.

2.5.1 Requirements

Because multiple implementations are available, the most suitable one needs to be se-
lected. To do so, a set of requirements must be specified. Most of those requirements
focus on the core (and [SoCl) being small or simple, in order to aid the implementation
of the reconfigurable extension. The following list of requirements is used:

e Hardware support: The core should be compatible with the Xilinx VC707 board
that is used in this project. Having official support in addition to that would be a
nice-to-have.

e Instruction width: Preferably, the core should be 32-bit to reduce the complexity
of the design. However, a 64-bit core would be acceptable, as long as it fits on the

[FPGAl

e Single core: Instead of using multiple cores and complicating the design, a single
core is sufficient for this project.

e Extensibility: The must accommodate the extension with the proposed
reconfigurability. This includes the ability for DMAl from within the reconfigurable
part of the system.

e Simulation and debugging support: In order to successfully develop hardware
designs, proper simulation and debugging support is essential.

2.5.

RISC-V IMPLEMENTATION 11

Scalar execution: Instead of using redundant functional units to achieve super-
scalar execution, the core should be scalar to reduce its complexity.

Hardware Description Language (HDL)) implementation: The core should
be implemented in one of the classical [HDI languages (VHDL, Verilog or Sys-
temVerilog). Compared to High-Level Synthesis (HLS]) languages, these are more
widely supported and enable more reusability.

Documentation: In order to be usable, the core should have proper documenta-
tion or at least use clean and well-written code.

Community backing: in any open-source project, including implementa-
tions, sufficient community backing is vital to the viability of the project. Projects
with single developers behind them are more prone to being abandoned or insuffi-
ciently maintained than projects with large communities behind them. To ensure
future work on the proposed design is feasible, the selected core should have suffi-
cient community support.

Compliance Suite: The implementation should preferably pass the (draft) RISC-
V compliance suite, since doing so provides guarantees about the correctness and
compatibility of the core.

[ASIC] support: In addition to supporting [FPGAIl synthesis, the should be
suitable for [ASIC| implementation, in order to accommodate future work on the
proposed design.

Permissive license: For the SoC to be usable in this project, the license under
which it is released must allow using, modifying and distributing the source code.
This means that no commercial implementations will be considered.

Operating System (OS] support: To allow a future continuation of this
project, readily available support for an is preferable. This opens the pos-
sibility for future research into integration of the current design.

Using this set of requirements, the available implementations can be evaluated.

An overview of available cores and SoCs on the RISC-V website is used as starting point
[18]. The first step consists of evaluating the available cores. When the suitable cores are
identified, the [SoClimplementations using those cores (or custom cores) can be evaluated.

2.5.2 Core selection

Inspecting the list of available cores, the first observation that can be made is that a
large number of cores is released under a commercial or restrictive license. Following the
requirements, these cores will not be considered for this project. At the time of writing,
66 RISC-V cores are available, of which 35 are released under a permissive license. Of
these 35 cores, 12 are implemented in (novel) high-level languages, such as Chisel or
Bluespec. These cores will not be considered per the requirements, which leaves the 23
cores listed in Table 2.1] for consideration.

12 CHAPTER 2. BACKGROUND

It can be observed from the table that only a few cores offer support out of the
box. Most of these cores support the Zephyr [OS] which is an (embedded) Real-time
Operating System (RTOS]). Preferred over an would be a full-fledged such
as Linux, due to its larger range of use cases. Two of the available cores offer support
for Linux: The CVA6 and the biRISC-V. The biRISC-V core appears to be the work
of a single developer and lacks community backing. By looking further into the CVAG6
core, we can now decide if it suitable or if the requirement of having support must
be dropped.

. Privileged User .
Instruction . . Implementation
Name . specifica- specifica- ISA OS support
width . . language
tion tion
CVAG6 64 1.11 2.3 RV64GC SystemVerilog Linux
CV32E40P 32 1.11 2.1 RV32IMC System Verilog -
Ibex 32 1.11 2.1 RV32I[M]C/RV32E[M]C System Verilog -
Kronos 32 1.11 2.1 RV321 System Verilog -
Roli\}l(;glc 32/64 1.10 2.2 RV32I/RV641 SystemVerilog -
RSD 32 unknown unknown RV32IM System Verilog Zephyr
SCR1 32 1.10 2.2 RV32I[MC]/RV32E[MC] System Verilog Zephyr
SweRV EH1 32 1.11 2.1 RV32IMC System Verilog -
SweRV EH2 32 1.11 2.1 RV32IMAC System Verilog -
SweRV EL2 32 1.11 2.1 RV32IMC SystemVerilog -
Taiga 32 unknown unknown RV32IMA SystemVerilog -
biRISC-V 32 1.11 2.1 RV32I[M] Verilog Linux
DarkRISCV 32 - incomplete RV321 Verilog -
Hummingbird 32 1.10 2.2 RV32IMAC Verilog ;
E200
mRISC-V 32 unknown unknown RV32IM Verilog -
PicoRV32 32 - unknown | RV32I[MC]/RV32E[MC] Verilog -
SERV 32 incomplete unknown RV321 Verilog Zephyr
SSRV 32 1.10 unknown RV32IMC Verilog -
Maestro 32 - incomplete RV321 VHDL -
ORCA 32 unknown unknown RV32IM VHDL -
ReonV 32 unknown unknown RV321 VHDL -
RVO01 32 1.7 2.0 RV32IM VHDL -
RPU 32 - unknown RV321 VHDL Zephyr

Table 2.1: Overview of RISC-V cores that have a permissive license and use a classical [HDL]

NOILLVINHWHTdINT A=DSTH "6°¢

€1

14 CHAPTER 2. BACKGROUND

The CVAG6 processor [2] is a 64-bit, 6-stage in-order single-core processor with a focus
on efficiency. It was developed as part of the Parallel Ultra Low Power (PULDP)) platform,
a collaboration between ETH Ziirich and the University of Bologna to research ultra-low-
power architectures. The core was originally named Ariane, but it was donated to the
OpenHW Group and renamed to CVAG6 in June 2020. The core has a wide community
and extensive documentation. It is actively maintained at the time of writing. [ASIC|
synthesis is also supported, which was demonstrated by creating a 1.7 GHz implemen-
tation in 22 nm technology. The modular and well-structured design make it suitable
for the addition of custom extensions. As such, the requirements of the previous
section are met, and the CVAG6 processor is selected for the [SAl extension of
this project.

The CVAG is not just a core, but a platform containing the core. This means
other platforms do not need to be considered, and no has to be developed
manually around the core. It also means that the second milestone of Section [L.3] is
simplified to loading the CVA6 design onto the [FPGA] and verifying that the [0S can
boot.

It should be noted that, during the course of the MSc. project described in this
thesis, a 32-bit version of the CVAG6 core was developed, which can be implemented by
selecting the appropriate configuration options in the design files. However, because the
development of the proposed implementation had already started before that time, no
attempt was made to transform the design into a 32-bit version. Although doing so
would be a trivial task, it would not substantially change the results of this project.

2.6 Related work

In order to justify the MOLEN paradigm as the architecture to implement, other recon-
figurable architectures must first be reviewed. Though the original MOLEN dissertation
[12] also reviews related work, almost two decades have passed since then. Therefore, a
new literature study must be performed to look into alternative reconfigurable designs.
In this section, an overview of existing architectures is first presented, after which they
are compared to each other and to the MOLEN paradigm.

2.6.1 Overview of existing architectures

The Fully Pipelined Composable Architecture (EPCA)) [19] is a loosely coupled
[CGRAl meaning it acts as a separate co-processor instead of being integrated into the
processor pipeline. It consists of an array of [PE] clusters, each containing a set of PEs. It
aims to parallelize all operations from the user application, or even dynamically duplicate
single operations if resources remain unused.

The Configurable Compute Accelerator (CCAJ) [20] is a [CGRAI that is de-
signed to efficiently implement many common dataflow subgraphs. Such a subgraph is
essentially a slow execution path in the application code. By collapsing these subgraphs
into new instructions that can be executed on the [CCAl the execution bottlenecks can
be removed. This process can happen dynamically at run time, or statically at compile
time. The consists of a matrix of two types of functional units. One type performs

2.6. RELATED WORK 15

addition, subtraction and logical operations, whereas the other type can only perform
the logical operations.

Blocks [21] is a novel [CGRAldesign that separates the data and control paths. There
is a focus on energy efficiency, including the reconfiguration energy overhead. Blocks
primarily performs well in applications where data-level parallelism is present. Its[CGRAI
consists of 6 different kinds of functional units, connected by a data network for direct
data transfers. The control network allows the instruction fetcher and decoder units to
be arbitrarily connected to one or more functional units, allowing Single Instruction,
Multiple Data (SIMDI) processors to be constructed. As such, VLIW-like instructions
can be created and used.

The Dynamically Specializing Execution Resources (DySER) [22] architec-
ture is a focusing on both data-level parallelism and functionality specializa-
tion. Functionality specialization means that custom hardware is used to optimize the
application-level performance (in the same way as the architecture). The [CGRAI
consists of 6 functional units, that perform integer and floating point operations. DySER
was compared to a GPU and implementation, and outperformed both of them
while significantly reducing the energy consumption.

The Advanced Space-Time Reconfigurable Architecture (ASTRA) [23] is
an [FPGAl based design that uses CLBs as (fine-grained) building blocks, instead of the
coarse-grained blocks of the previous architectures. The unique feature of this architec-
ture is that these ASTRA cells can be configured in either spatial or temporal mode.
In temporal mode, the least amount of cells is used, at the cost of a higher latency.
In spatial mode, the amount of cells is maximized such that the latency is minimized.
Different applications can use the different modes at the same time.

The Chameleon [24] architecture is a that consists of multiple [PE] arrays.
The configuration of the arrays is specified using 32-bit words, that can be translated
from high-level instructions. The Chameleon architecture is tailored for MapReduce (big
data) applications, in which it is able to achieve significant energy savings.

SmartCell [25] is a power efficient that is specialized towards data streaming
applications. It consists of blocks containing four PEs and a switch box. The cells
are connected by a three-level interconnection network. A Serial Peripheral Interface
(SPI) is used to reconfigure the cells, enabling low reconfiguration times. On a set of 7
benchmarks, SmartCell was able to use 75% less power than an [FPGAl implementation.

The Polymorphic Pipeline Array (PPA) [26] is a[CGRAl that focuses on mobile
multimedia applications. It consists of an array of simple cores that are coupled using a
mesh-style interconnect. Each core can execute its own instruction stream and consists
of four PEs. However, multiple cores can be combined into a larger (logical) core, such
that fine-grained parallelism can be accommodated more easily. In that case, the logical
cores can be used to create pipelines, such that multiple consecutive operations can be
performed without additional communication overhead in between. The complexity of
this design is high, as schedules need to be generated for the execution, and dynamic
hardware allocation is applied.

Heterogeneous Arrays for Reconfigurable and Transparent Multicore Pro-
cessing (HARTMP) [27] is an architecture consisting of Dynamic Adaptive Proces-
sors (DAPs). Each DAP is a single-threaded processor, using a reconfigurable datapath.

16 CHAPTER 2. BACKGROUND

In this way, thread-level parallelism is available as result of the total amount of DAPs.
Instruction-Level Parallelism (ILP) is achieved by means of the reconfigurable datapaths.
Larger cores allow for a higher ILP. Despite having different core sizes, a homogeneous
[[SAlis used, hiding the heterogeneity of the cores from the programmers.

The Dual-Track Coarse-Grained Reconfigurable Architecture (DT-CGRA)
[28] is a [CGRA] design tailored for stream processing in the machine learning domain.
It consists of a set of Stream Buffer Units (SBUs) and a Computing Array (CA). The
SBUs cache the input and output data, as well as the intermediate results. The CA
forms the actual [CGRA] and consists of different types of reconfigurable cells, some of
which are specialized to calculate interpolations and power functions. The rows of cells
are connected with a multi-channel data bus, which in turn are connected to the SBUs
using a crossbar.

2.6.2 Comparison

From the presented set of architectures, two observations stand out. The first one is
that coarse-grained architectures seem to be the preferred choice in recent designs. This
is because they allow for a lower power consumption and higher performance than fine-
grained systems. Furthermore, the reconfiguration times can be significantly lower [24].
However, they also limit the flexibility of the system significantly: most designs seem to
be focused on optimizing inner loops of user programs, typically present in computations
on large datasets. The functional units can be seen as small general-purpose processors.
In some cases, they approach regular processor cores, or can be used to construct
cores [21]. Because of this, they mostly improve the performance by exploiting paral-
lelism. However, recent CPUs already consist of multiple cores and (hardware) threads.
Often, user applications tend to be sequential in nature, and current multi-core process-
ing remains under-utilized (within single applications). In this situation, adding more
parallelism will not be useful. The MOLEN paradigm resolves this issue by not necessar-
ily adding parallelism, but by adding support for any kind of custom operation that can
be synthesized to the reconfigurable fabric. This ensures a greatly increased flexibility,
without compromising the ability to exploit parallelism. As many parallel units can be
implemented in the reconfigurable fabric as allowed by the size of the fabric.

The other observation is that most designs are tailored for specific applications. This
might improve the performance and energy efficiency for their respective applications, but
reduces their overall usability. Especially when used with a general-purpose processor
can this observation be disappointing. By implementing the MOLEN paradigm on a
RISC-V processor, the design of this thesis is applicable to a broad range of applications.
Fine-grained reconfigurability and the modular design of the RISC-V [[SAl enable this.

The clear disadvantages of the proposed design are the expected reconfiguration over-
head and energy efficiency penalty of using a fine-grained reconfigurable fabric. However,
recent FPGAs contain an increasing amount of coarse-grained blocks (such as DSPs).
Therefore, these problems have already diminished to a certain degree and are expected
to continue to do so in the future.

A final remark on the disadvantages further supports the proposed design as viable
architecture: MOLEN does not enforce using fine-grain reconfigurability. All that is

2.7. CONCLUSIONS 17

defined by the machine organization is that a is available. By making that
coarse-grain reconfigurable, the reconfiguration overhead diminishes and the energy ef-
ficiency penalty disappears. At the same time, the power of the MOLEN paradigm is
preserved, depending on the design of the PEs. The currently proposed, fine-grained
design, is an initial working version of the design, that can be expanded in the future to
a coarse-grained design. Alternatively, a more efficient fine-grain fabric [29] can be used
to increase the energy efficiency and performance.

2.7 Conclusions

In this chapter, relevant background information was provided on reconfigurable archi-
tectures, the MOLEN processor, and the RISC-V architecture.

Two main application domains for reconfigurable architectures were first identified:
accelerators for high-performance computing and specialized or time-critical tasks
in embedded systems. Reconfigurable architectures can be distinguished in terms of
granularity. Fine-grained systems use the smallest building blocks and can be fully con-
figured. Coarse-grained systems are less flexible and use larger building blocks, allowing
for increased clock speeds and a greater energy efficiency.

After establishing a basic understanding of reconfigurable architectures, the MOLEN
polymorphic processor could be introduced. In this paradigm, a one-time [SAl extension
introduces reconfigurable microcode (ppu-code), which is used to perform reconfigurations
and execute custom operations on the reconfigured hardware. This extension mainly
consists of a set instruction that loads a reconfigurable design, and an ezecute instruction
that performs the custom operations. The von Neumann architecture is extended with
a reconfigurable processor that performs the custom instructions, an arbiter that passes
the instructions to either the core processor or reconfigurable processor, and a number of
exchange registers that are used for storing the input and output operands of the custom
instructions.

After introducing the MOLEN paradigm, the RISC-V architecture was introduced.
This open-source [[SAl offers multiple base instruction sets and extension instruction
sets, thereby making it suitable for a wide range of applications. Support for custom
instructions is also included, enabling its use for this project.

Having introduced the RISC-V architecture and the MOLEN paradigm, existing
RISC-V processor implementations were compared, such that the most suitable one
could be selected for extension with the MOLEN paradigm. The CVAG6 core was chosen
for this purpose, because it supports the Linux [OS] is actively maintained and has a
community with extensive documentation.

Before pursuing the actual implementation of the MOLEN paradigm on the RISC-
V architecture, related work had to be examined, in order to substantiate the poten-
tial benefits of a novel implementation. Several existing reconfigurable implementations
were compared. It was observed that most existing architectures are coarse-grained and
application-specific. The proposed design improves upon this by allowing a wide range
of applications, while not imposing a coarse-grained or fine-grained design.

18

CHAPTER 2. BACKGROUND

Design

Now that the MOLEN paradigm and RISC-V architecture have been introduced in Chap-
ter [2] this chapter focuses on adapting the MOLEN design to the RISC-V architecture
such that it can be implemented in Chapter [d] Specifically, the design is discussed from
the perspective of the RISC-V [[SAl and the reconfigurable microcode (pu-code) of the
MOLEN paradigm.

In Section the different instruction formats of the RISC-V [[SAl are introduced.
The available opcode space is investigated in Section Following that, both the
reconfiguration and execution microcode of the MOLEN design are adapted to the RISC-
V architecture in Section [3.3] The initial adaptation of the microcode is then shaped into
an actual proposed [[SA] extension in Section after which this chapter is concluded
in Section [3.5

3.1 RISC-V instruction formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct? rs2 rsl funct3 rd opcode | R-type

rs3 \ funct2 rs2 rsl funct3 rd opcode | R4-type
imm|[11:0] rsl funct3 rd opcode | I-type
imm[11:5] rs2 rsl funct3 | imm[4:0] | opcode | S-type
imm[12[10:5] rs2 rsl funct3 | imml4:1|11] | opcode | B-type
imm|[31:12] rd opcode | U-type
imm|[20]10:1|11|19:12] rd opcode | J-type

Table 3.1: 32-bit RISC-V instruction formats. Adapted from the RISC-V [SA]
specification[3].

Before the MOLEN [SA] extension can be designed in the following sections, we first
need to examine the main instruction types of the RISC-V instruction set, as depicted in
Table[3.1l Suitable instruction formats for the custom instructions can then be identified
in the following sections. All instruction types apart from the R4-type are defined by the
RV32I base instruction set. The R4-type is defined by the F/D/Q standard extensions,
which specify the single-/double-/quad-precision floating point instructions, respectively.

Before the different types can be compared, the following fields are first distinguished
in the instruction formats:

e opcode: The field that (fully or partially) specifies the operation to perform.

e rd: The destination register that the result of the operation should be written to.

19

CHAPTER 3. DESIGN

o 1si, rs2, rs3: The source registers that supply the operands that the operation is
performed on.

o funct?, funct3, funct2: if present, these function values are combined with the
opcode to fully specify the operation to perform.

e imm: An immediate value that is passed into the instruction itself instead of loaded
from a register.

Now, the different instruction types can be explained:

e R-type (R4-type): This type is a register-register instruction. It takes two (R-
type) or three (R4-type) source registers to perform the operation on and the
destination register to put the result into. An example of an R-type instruction is
the RV321 ADD instruction, which adds the values in s and rs2 and puts the
result in rd.

e I-type: A register-immediate instruction that takes a 12-bit immediate value, a
single source register and the destination register. An example of an I-type in-
struction is the RV32I ADDI instruction, which adds the sign-extended immediate
value imm to the value in rs1 and puts the result in rd. The I-type is also used for
loads, such as the RV32I LW instruction that loads the value at memory address
rs1 + imm (with émm being sign-extended) and puts the result in rd.

e S-type: A store-type instruction that takes a 12-bit immediate value and two
source registers. Note that the immediate value is split up across two portions.
The reason for that is to allow all other fields to be in the same position as for the
other instructions that have those fields. This simplifies the hardware design by
allowing for as much overlap in the logic as possible.

An example of an S-type instruction is the RV32I SW instruction, which stores the
value in rs2 at memory address rsI + imm (with imm being sign-extended).

e B-type: A branch-type instruction that is a variation of the S-type instruction.
The difference with the S-type is the interpretation of the immediate value. Instead
of it being 12 bits like for the S-type, the immediate value is 13 bits, but the lowest
bit is an implicit 0. In other words, it is a 12 bit immediate that is left-shifted by
one bit. As depicted in Table the immediate bits are ordered differently than
for the S-type. This maximizes the overlap of the bits with those of the immediate
value of the S-type, allowing as much re-use of the same logic as possible. The
exception to that is that the bit at position 31 is not bit 11 of the immediate
(like for the S-type), but bit 12 instead. This is done because bit 12 is the most
significant bit of the immediate, and as such, no changes to the sign-logic are
needed compared to that of the S-type.

An example of a B-type instruction is the RV32I BEQ instruction, which adds the
sign-extended immediate value imm to the program counter (Program Counter
([PQ) if the values in rs! and 7s2 are equal. This also reveals why the lowest bit
of the immediate value is always 0: we can only jump in multiples of 2 bytes to

3.2. RISC-V OPCODE SPACE 21

end up at a potentially valid instruction address. Normal instructions are 32 bits,
or 4 bytes, but the compressed instructions that are introduced in Section [3.1] are
16 bits, or 2 bytes.

e U-type: This type is an upper immediate instruction. It takes a 20-bit (upper)
immediate value and the destination register rd. The most basic RV32I example
is the LUI instruction, which loads the immediate value into bits 31-12 of rd and
fills the lowest 12 bits of rd with zeroes. In the case of the RV64I instruction set,
it is sign-extended to 64 bits.

e J-type: A jump-type instruction that is a variation of the U-type instruction. Like
for the B-type, the difference can be found in the interpretation of the immediate
value: [PClrelative jumps can only (viably) target an offset that is a multiple of
2 bytes. Therefore, the immediate value is interpreted as 21-bit value instead of
a 20 bit value, with the least significant bit being an implicit 0. Likewise, the
bit ordering of the immediate value is chosen to match that of the U-type where
possible, while placing the sign bit at the most significant position.

The only example of the J-type instruction is the RV32I JAL instruction, which
adds the sign-extended immediate value imm to the [PCl and loads the address of
the instruction after the jump into rd.

3.2 RISC-V opcode space

s inst[4:2]

nst[6:5] g 001 010 011 100 101 110 111
00 LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32
01 STORE | STORE-FP | custom-1 AMO OoP LUI OP-32 reserved
10 MADD MSUB NMSUB NMADD OP-FP | reserved | custom-2/rvi28 | > 32b
11 BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rv128

Table 3.2: RV32/64G opcode map, inst[1:0]=11. Adapted from Table 24.1 of the
RISC-V [[SAl specification[3].

After highlighting the different instruction types in the previous section, we first
need to investigate the available opcode space for our one-time [[SAl extension, before
proceeding with the design in the following sections. Table highlights the RISC-V
instructions and instruction groups for the different opcodes. An instruction group refers
to a set of operations for which the opcode alone does not fully specify the operation
(instead being complemented by one or more funct fields).

First, it should be noted that the lowest two bits of instruction (and opcode) are both
1 in this table. Any other variation of the lowest two bits is reserved for the compressed
16-bit instructions that are specified in the “C” standard extension [14]. Since the opcode
space defined in that extension is fully exhausted, no custom [[SAlextension can be added
there. As such, only the regular opcode space is investigated.

Inspecting Table [3.2]reveals the custom-0, custom-1, custom-2 and custom-3 opcode
spaces. These spaces are reserved for custom extensions and are guaranteed to be avoided

22 CHAPTER 3. DESIGN

by future standard extensions [I4]. The exception to that are the future RV128 standard
extensions that will occupy the custom-2 and custom-8 opcode spaces. It is also possible
to identify instructions or instruction groups that are not used in the chosen CPU design,
and use those for the custom extension. However, doing so would limit the possibilities
for implementing the proposed extension in other micro-architectures. To allow for the
most future possibilities, the custom-0 or custom-1 opcode space should be chosen. Since
no further advantages in favor of either one could be identified, the custom-0 opcode
space is chosen for the proposed design. Therefore, the opcode for the one-time custom
extension will be 0001011.

3.3 Microcode design

Following the overview of the RISC-V instruction formats in Section [3.I] and the ex-
ploration of the available opcode space in Section [3.2] we can now design the MOLEN
reconfigurable microcode (pu-code), as introduced in Section . This microcode is used
for both the act of reconfiguration, as well as the execution of operations on the recon-
figured hardware. In order to adapt this microcode to the RISC-V processor, we need
to take into account the hardware limitations of the chosen [FPGAl Because of their
different nature, the reconfiguration microcode and execution microcode are considered
separately.

3.3.1 Reconfiguration microcode

As mentioned in Section the original MOLEN design [12] proposes a straightforward
method of generating the reconfiguration microcode: the bitstream of the reconfigurable
partition is split into equal blocks, to which the set opcode is then appended to create the
micro-instructions that perform the reconfiguration. Such micro-instructions are easily
generated from the bitstream.

An underlying assumption in the original work is that (partial) reconfigurable de-
signs can be placed into different areas of the reconfigurable fabric as desired. Multiple
reconfigurable designs of various sizes can then be loaded and connected to each other
using microcode. However, the way that partial reconfiguration works on the Xilinx
[FPGA] family, is that a partial bitstream is loaded into a matching reconfigurable par-
tition, which is a predefined physical area on the [FPGAL It is important to note that a
partial bitstream can only be loaded into the reconfigurable partition for which it was
generated, and not into any other reconfigurable partition. Therefore, in a design with
multiple reconfigurable partitions, a separate partial bitstream has to be generated for
each partition that the reconfigurable module is used in. Having the exact same physical
dimensions for the reconfigurable partitions does not change this fact. Work has been
done to change this and allow for sharing of bitstreams between partitions [30], but such
tools are not publicly available yet.

This limitation on the bitstreams and reconfigurable partitions has major implica-
tions on the implementation of the MOLEN design: having smaller reconfigurable build-
ing blocks (such as full adders) that can be joined into a larger design would require many
small reconfigurable partitions. For each of those partitions, the bitstream of each small

3.3. MICROCODE DESIGN 23

design would need to be separately generated. At the same time, having multiple small
partitions makes it impossible to design larger, more complex building blocks, because
they would not fit into a single (small) partition. Furthermore, it was already decided
in Chapter [I] to use a single reconfigurable partition for the current design.

An alternative method for the reconfiguration microcode is also mentioned in the
original MOLEN design [12]: instead of directly loading the bitstreams, a higher level
microcode could be achieved by comparing synthesis results or partial bitstreams and
identifying the parts responsible for the reconfiguration of specific areas of the reconfig-
urable partition. Those areas could then be individually reconfigured on a very small
scale. Though theoretically possible, this requires reverse-engineering the bitstreams,
which are specific to each separate [FPGAI family, instead of being generalizable. Be-
cause of the complexity of such an endeavor, this approach is not considered feasible for
the current work.

A final method for the reconfiguration microcode is to take a more coarse-grain ap-
proach: instead of loading a bitstream into a reconfigurable partition, a static set of PEs
could take the place of the reconfigurable fabric. Those PEs could then be dynamically
configured and chained to achieve the desired functionality. This method circumvents
the mentioned problems with the partial bitstreams and reconfigurable partitions. How-
ever, it poses a limit on the possible functionalities that can be implemented. Although
this method could be viable for implementing specific functionality types (such as ma-
trix multiplication), it is less suitable for the implementation of arbitrary functions. The
careful [PE] design that would be needed to ensure a wider range of functions is outside
the scope of this work.

Following the previous observations, it is decided to apply the original proposal of
wrapping partial bitstreams into micro-instructions for this project. Because such re-
configuration microcode is merely a shell to transport the partial bitstream, it can even
be simplified further. The set instruction would then point directly to the address of the
partial bitstream, instead of the address of the reconfiguration microcode. This will be
further expanded on in Section [3.4

3.3.2 Execution microcode

After designing the reconfiguration microcode in the previous section, we can now con-
sider the execution microcode, which is also affected by the previously mentioned limi-
tations. Having a single reconfigurable partition, means that a single bitstream should
contain all functions that can be used simultaneously. In other words, the reconfigura-
tion flow that is envisioned in [I2], where the bitstreams of the required building blocks
are reconfigured separately, is not feasible when only a single reconfigurable partition is
used.

By extension, this means that the execution microcode, which was envisioned to
connect the building blocks to each other and to their inputs and outputs, is also not
viable in the current design. Instead, having a single reconfigurable partition implies
that all of the required functions should be fully implemented and connected within the
reconfigurable design itself. This also means there is no need for the execution microcode
to connect the individual components, inputs and outputs. Instead, its only function is

24 CHAPTER 3. DESIGN

to perform the required operations when needed, like regular instructions.

When deciding how to design such microcode, the RISC-V architecture has to be
taken into account. Specifically, the dedicated opcode space that is available for custom
instructions as introduced in Section is very suitable for the design of the (modified)
microcode. Instead of having a complete microprogram that needs to be loaded from a
control store or from memory, a nested microcode can be designed using the available
opcode space.

Revisiting the RISC-V instruction formats from Section it can be observed that
the R-type instruction has a total of 10 bits available in the funct7 and funct3 fields
that specify the operation to perform. With the opcode being the custom-0 opcode
as decided in Section the combined funct7 and funct3 fields can be designated as
the reconfigurable micro-opcode (pu—opcode), allowing 1024 unique micro-instructions
to be defined for each reconfigurable design. If that is not enough, the other custom
opcode spaces can be incorporated as well to increase the available space. Contrary to
the MOLEN proposal, the custom instructions do take up instruction space in this case.
However, the nested micro-instructions are not part of the [SA] because decoding them
takes place inside the reconfigurable module, and their meaning is not static or known in
advance. Furthermore, the available custom opcode spaces mitigate the problem of not
having a well-defined or large enough opcode space available for the custom instructions.

Using the R-type instruction for the nested microcode also means that the source
and destination register fields can be reused for the custom instructions. Although a
separate exchange register file could be added in the future, the current design will use
the main register file due to time constraints.

3.4 Proposed ISA extension

set ‘ execute ‘ status
opcode custom-0 (0001011)
rd reconfiguration result | execution result | reconfiguration status
rsi bitstream address input operand 1 -
rs2 bitstream length input operand 2 -
funct10 1023 pp—opcode 1022

Table 3.3: The proposed RISC-V MOLEN extension, consisting of three R-type
instructions. The funct10 field refers to the combined funct7 and funct3 fields.

Combining the observations from Section [3.3] we can now specify the actual [SA]
extension, as depicted in Table

As mentioned in Section the set instruction directly points to the bitstream
instead of pointing to (reconfiguration) microcode. This implies that the length of the
bitstream must also be passed, in order to determine when the entire bitstream has been
loaded. Therefore, two input registers are required, making the R-type instruction the
only suitable choice. The (integer) value of 1023 is chosen for the implicit funct10 field.

Following the reasoning of Section [3.3.2] the ezecute instruction is also an R-type

3.5. CONCLUSIONS 25

instruction, taking two input operands and the pu—opcode. Its return value is the result
of the pu—operation.

In addition to the set and execute instructions, a third instruction was introduced
during the experiments described in Chapter[5} the status instruction returns the current
reconfiguration status. Having this instruction allows the set instruction to run in the
background, after which its completion can be monitored using the status instruction.
In this way, the can continue executing (other) instructions while reconfigurations
are being performed in the background. The break instruction of the complete MOLEN
extension, as described in Section [2.2.1] achieves a similar goal. However, the break in-
struction does not return a status, but instead waits for the preceding (parallel)
instructions and reconfigurable instructions to finish. Furthermore, the status instruction
is only applicable to the reconfiguration (set instructions), whereas the break instruction
is applicable to both reconfiguration and execution microcode (set and execute instruc-
tions).

Although the status instruction does not take input operands, it is also chosen to
be an R-type instruction, following the set and execute instructions. If any other type
would be used, the proposed instructions would have to be distinguished from each other
in the decoder by evaluating the funct3 field on its own. This would significantly reduce
the available ppu—opcode space. Therefore, the R-type is used for the status instruction.
The (integer) value of 1022 is chosen for the implicit funct10 field, leaving a total of 1022
possible pp—opcodes.

3.5 Conclusions

In this chapter, the design of the MOLEN paradigm was adapted to the RISC-V archi-
tecture. First, the RISC-V instruction formats were introduced. These are the R-type
and R4-type (register-register format), I-type (immediate format), S-type (store format),
B-type (branch format), U-type (upper immediate format) and J-type (jump format).
Together with the opcode, the funct fields (present in most instruction formats) specify
the operation to perform.

After introducing the instruction formats, the RISC-V opcode space was explored.
The custom-0, custom-1, custom-2 and custom-3 opcode spaces were identified for im-
plementing custom instructions. From these options, the custom-0 opcode space was
chosen for the implementation of the current [[SA] extension.

Having established the opcode to use for the[[SAl extension, the design of the MOLEN
pp-code could be adapted to the RISC-V architecture. Due to limitations of the [FPGA]
hardware, the reconfiguration microcode was chosen as a wrapper around the partial
bitstream bytes. The execution microcode was adapted into a nested microcode due to
the same limitations. The R-type instruction was chosen for the implementation of this
microcode, with the funct7 and funct3 fields forming the (nested) micro-instruction to
perform.

Following the design of the reconfiguration and execution microcode, the specific
MOLEN RISC-V [[SA] extension could then be formulated. The set instruction reconfig-
ures the hardware, using the bitstream at the specified address. The ezecute instruction
performs operations on the reconfigurable hardware by employing the implicit funct10

26 CHAPTER 3. DESIGN

field as (nested) micro-instruction. Furthermore, a status instruction was introduced to
allow the reconfiguration to be performed in the background. This instruction returns
the current reconfiguration status.

Implementation

After the MOLEN paradigm was adapted to the RISC-V architecture in Chapter 3] the
proposed design can now be implemented. In this chapter, the key hardware components
from the MOLEN paradigm are identified and adapted to the CVA6 implementation.

In Section an overview of the CVA6 implementation is presented, and the com-
ponents that need to be added or modified are identified. Following that, the memory
interface is discussed in Section after which the changes to the instruction decoder
are outlined in Section Subsequently, the implementation of the MOLEN functional
unit is discussed in Section The reconfigurable design flow is explained in Sec-
tion after which the software design relating to the reconfigurability is introduced
in Section Finally, this chapter is concluded in Section

4.1 Implementation overview
Figure[4.I] depicts the CVA6 architecture. The following six pipeline stages are identified:

1. Program Counter Generation (PCGEN): In this stage, the program counter
is updated based on its current value, the predicted branches and other signals
such as exceptions.

2. Instruction Fetch (IF): In this stage, the instruction pointed to by the program
counter is fetched from the cache. Compressed (16-bit) instructions are re-aligned.
Branch prediction is also performed by this stage.

3. Instruction Decode (ID): This stage decodes the instruction into a scoreboard
entry that is used by the consecutive stages. The scoreboard entry keeps track of
the input and output registers that are used by the instruction, as well as which
functional unit it is executed on. The immediate values are also passed using this
structure.

4. Issue: In this stage, the scoreboard entries are passed to their respective functional
units. The (decoded) instructions are issued in-order, but they can complete out-
of-order. Therefore, the scoreboard entries from the previous stage are tracked in
a scoreboard to keep track of the available registers and functional units. Hand-
shaking is performed with each functional unit using ready and wvalid signals.

5. Execute: This stage contains all of the functional units, such as the Arithmetic
Logic Unit (ALU]) and Load Store Unit (LSU). Each functional unit operates
independently using its own ready/valid handshaking signals. The ready signal is
set to indicate that the module is available and monitoring its inputs. When the
operation is completed, the result is set and the next stage is signaled using a wvalid

27

28

CHAPTER 4. IMPLEMENTATION

signal. Another output, opcode_supported, is present to signal the next stage about
unsupported or illegal instructions.

. Commit: In this stage, the results from the functional units are written back from

the scoreboard into the register file. Exceptions such as illegal instructions are also
handled here.

From this architectural overview, the following modifications and additions can be

specified:

1. Decoder: The decoder must be modified to recognize the MOLEN instructions

(set/execute) and send them to the right functional unit. The required changes to
the decoder are described in Section (.3

. MOLEN unit: A MOLEN functional unit must be introduced to execute the

MOLEN instructions. This means it must be able to perform partial reconfigura-
tion, as well as the execution of nested microcode on a reconfigurable design. The
implementation of the MOLEN unit is described in Section [£.4}

Before these modules can be modified or implemented, another area that must first

be considered is the memory interface (Section |4.2)), because it dictates how the MOLEN
unit can be implemented.

Speculative Regime

CSR
Write

mtvec -->

epc -->

epc -->

Figure 4.1:

D$ Mem ‘ D$ Controller

D$ Buffer H D$ ‘

imm -->

Instruction Scan

PC
Select

from MMU

ID Issue
,,,,,,,,,,,,, e
| In-order Issue
|
|
Instr. Queue 5
Decoded Instr. -->
Valid -->
<-- Instr. ACK [EsUe
Ack AU
- Data
o
o
5
m 5 J Issue Read
2 e
2 Compressed I =
4 Decoder o (g]
3
! gl |s |§
[mlal |2 |2
| o =35 | @ = 2 A
w9 ias [Ty (5
1 Cav V33 A Y
rE g LAl 2
I v =]
- 2| 2
[[Q
| Decoder uf o
I
! Scoreboard
I
I
I
I
I
I
I
I
I

v

- —| EPC | CAUSE

from Decoder

Issue Entry -->

To/From
Commit

Execute

MOLEN
ol *®
o ALU
[
S =
1]
b
7]
a
5%
o
Q
X
w
-
=

CSR Buffer '——
Mul / Div '——

Scoreboard

The CVAG6 architecture with the modified

Frontend

Commit
L |
In-order c !
I .
| Architectural 3 :
| Commit 5 S
= 2
B =
=] 2,
S S
o T !
[0} c
5, 8!
855
o £ o,
25 8
I
Commit Instr. —> :
Commit !
Exception --> Logic |
I
CSR Data --> |
I
Regfile :
< RF Enable| | Write)
|
<-- Commit Ack |
I
<-- Commit CSR CSR |
Write |
<-- Commit Store :
I
|
I
|
I
I
|
I
Privilege :
Check |
|
I
I
Exception :
|
I
Interrupt ' |
I
I
|
I
|
I
I
|
I
|

Backend

and added components. Image adapted from [2].

TF

MHAIAHHAO NOLLVINHNHTdNT

6¢

30 CHAPTER 4. IMPLEMENTATION

Ethernet SPI (SD card) DDR Memory
AXIT Crossbar -
i
i T
i
r————-= L 77777 1
l 1
| MOLEN |
| Functional | CVA6
i Unit |
|
| |
- |

Figure 4.2: The CVAG6 interface diagram highlighting the AXI interfaces. The
arrows point from the AXI master ports towards the AXI slave ports.

4.2 Memory interface

Figure[4.2]depicts the interface of the CVA6 core with the main memory and the memory-
mapped peripherals. The Advanced eXtensible Interface (AXI)) protocol is used as com-
munication bus throughout the design. An [AXT] crossbar forms the backbone of the
interconnect, to which all of the (AXI]) masters and slaves are connected. In the original
design, the CVAG6 core is the only master on the crossbar, with the crossbar itself acting
as master to all of the slaves (as indicated by the direction of the arrows in Figure .

In order to extend this design to allow memory access from the MOLEN unit, another
[AXT master can be added to the crossbar. Alternatively, an additional interconnect could
be placed in front of the DDR memory, to allow both the crossbar and MOLEN unit
access to the memory. The MOLEN unit would not have access to the peripherals in that
case. However, it could be advantageous to access those peripherals from a reconfigurable
design, and doing so would increase the available use cases of the reconfigurable module.
As such, the MOLEN unit is added as master on the crossbar.

The resulting [AXT interface can be shared between the partial reconfigurator and the
functional unit inside the reconfigurable module, because the memory access from both
sources is mutually exclusive. The reconfigurator only needs to access the memory when
a reconfiguration is performed, during which time the reconfigurable module cannot
access the memory. The details of how the [AX]] interface is shared are discussed in
Section [4.4.3]

In the CVA6 design, some data structures are available to simplify and clarify the
implementation of the [AXI connections. Specifically, the ariane_azi::req_t and ari-
ane_azi::resp_t are used to group the signals that are used for a read/write request,
and those that are used for a read/write response, respectively. These two data struc-

4.3. INSTRUCTION DECODER 31

tures form the only access point to the [AXIl bus from within the masters and slaves.
This simplifies the design, because the MOLEN unit only needs these two structures as
input/output to provide access to the main memory and peripherals.

4.3 Instruction decoder

The instruction decoder (decoder.sv), which is depicted in Figure is responsible for
transforming the 32-bit instructions into scoreboard entries. This transformation consists
of assigning the functional unit that the instruction should be executed on, as well as the
specific operation that should be performed. The source registers, destination registers
and immediate value are also passed in this process (if present for the instruction type).

In order to extend the decoder with the MOLEN instructions, the opcode of the
current instruction is compared to the custom-0 opcode. In case of a match, the MOLEN
functional unit is assigned to the scoreboard entry of the instruction. The funct7 and
funct8 fields are evaluated to determine the operation to perform. If all bits of this
implicit funct10 field are set (integer value 1023), the MOLS (MOLEN set) operation is
passed into the scoreboard entry. If the funct10 field has integer value 1022, the MOLST
(MOLEN status) operation is passed. In all other cases, the MOLE (MOLEN ezecute)
operation is passed. Additionally, the funct!0 value is passed into the immediate field
of the scoreboard entry.

4.4 MOLEN functional unit

The MOLEN functional unit (molen.sv), depicted in Figure takes the decoded
MOLEN instructions from the issue stage as scoreboard entries. Having two main types
of MOLEN instructions leads to a logical division of the functional unit into two modules:

e The partial reconfigurator (icap_reconfigurator.sv). This module is responsible
for performing the partial reconfiguration when a MOLEN set instruction is issued.
The implementation of the partial reconfigurator is discussed in Section

e The MOLEN reconfigurable module (molen_rm). This module can be loaded
with a custom (partial) design. That means it is empty by default and only provides
the interface between the static and reconfigurable design. It is assigned a specific
reconfigurable partition in the design flow. This module performs the MOLEN
erecute instructions. Its implementation is discussed in Section

These two modules do not account for the status instruction, which is handled by
a (local) STATUS Finite State Machine (ESM)) instead. This [FSM] is responsible for
returning the reconfiguration result from the partial reconfigurator. This result cannot
be returned by the reconfigurator itself, because the set instruction returns before the
reconfiguration is finished. Additionally, the STATUS is responsible for returning
error values if a set or execute instruction is issued while a reconfiguration is taking
place.

32 CHAPTER 4. IMPLEMENTATION
‘ AXI Crossbar ‘
MOLEN Functional Unit A
AXI
‘(ﬁ\ in/out
‘ | | | [T ke ICAP AXI
| H,IL?‘}”,WW Reconfigurator e Switch
‘ | Se.
| } A
| CVAG6 | . in/out : -
| in/out “ isolate(d)
| } e prrrrerersseesesereeeananny,
| | | :
| | (status | e MOLEN AXI
\ | | FSM | . Reconfigurable . Isolate

Figure 4.3: An overview of the implementation of the MOLEN functional unit.

Because of the clear separation into modules, the only other functionality inside the

MOLEN unit itself is to handle the control signals to and from those modules. Specifi-
cally, the handshaking that is performed with the issue stage needs to be converted into
a separate handshaking with the two submodules and the [ESMl The same ready/valid
handshaking as for the MOLEN unit is used for this purpose, resulting in the following
signals:

o reconf valid_op, rm_valid_op and status_valid_op are used to signal from the

MOLEN unit to the reconfigurator, reconfigurable module or STATUS that
the inputs to that respective module (or[FSM]) are valid. To achieve this, the opera-
tor field of the scoreboard entry is evaluated. If it is set to the MOLS (MOLEN set)
operation, the wvalid_i signal into the MOLEN unit is passed to the reconf valid_op
signal. Likewise, it is passed to rm_valid_op when the operator is set to the MOLFE
(MOLEN ezecute) operation. Finally, it is passed to status_valid_op when the op-
erator is set to the MOLST (MOLEN status) operation, or when a reconfiguration
is currently being performed.

o reconf_valid, rm_valid and status_valid are used to signal from the respective module

or [ESMl to the MOLEN unit that its outputs are valid. If one of these signals is
asserted, the molen_valid_o signal is asserted in turn.

o reconf_ready, rm_ready and status_ready are used to signal from the respective

module or [ESM]to the MOLEN unit that it is ready to accept inputs. If status_ready
is asserted, or if both reconf ready and rm_ready are asserted, the molen_ready_o
signal is asserted in turn.

4.4. MOLEN FUNCTIONAL UNIT 33

axi_r data

’_‘ 64 bits

Wr_en —p»
rd_en —p»

e FIFO
empty <¢—

’ ‘ 32 bits

en —p

W ICAP
data_out <,i

Figure 4.4: An overview of the implementation of the partial reconfigurator.

In Figure[4.3] the switching of these signals is simplified as a multiplexer that connects
to the input and output signals.

In this way, a logical separation of the MOLEN unit into submodules is achieved.
The implementation of the partial reconfigurator and MOLEN reconfigurable module
can now be discussed in the following sections.

4.4.1 Partial reconfigurator

The partial reconfigurator (icap_reconfigurator.sv), depicted in Figure is responsible
for transferring the partial bitstreams into the reconfigurable partition. In order to
achieve this, the Internal Configuration Access Port ([CAP)) is used. This port allows
partial bitstreams to be loaded from inside a running design on the [FPGA] as opposed
to an external source. The partial bitfile contains all of the required information about
the reconfigurable partition and reconfigurable design, which means it can be directly
fed into the [CAPl Therefore, the main function of the reconfigurator is to retrieve the
partial bitstream from the memory and feed it into the [CAPL

In order to access the [CAP|from the hardware design, the ICAPE2 primitive is used.
This primitive defines a 32-bit input port, a 32-bit output port, an enable input pin and
a read/write select input pin. Using the input port and enable pin, the bitstream can
be written to the [CAP] one (32-bit) word at a time. The output port is used to track
the current state of the reconfiguration and detect potential reconfiguration errors. The
read /write select pin is kept low, because the design only writes to the [CAP]

Because it would be very inefficient to retrieve each 32-bit (half-)word separately
from the memory and feed it into the [CAP| a data buffer should be used. A First-
In-First-Out (EIEQl)-queue is used for this purpose, because it buffers the data while
preserving the order. The input and output port widths can be set individually, allowing
full 64-bit words being written into the [FIFOl while writing 32-bit half-words out of it.
Feeding data into the [CAP]is then simplified to connecting the output of the [FIEQ] with

34 CHAPTER 4. IMPLEMENTATION

clk —P»| — ready
rst —P»
inputs_valid —B MOLEN — opcode supported

opcode Reconﬁgurable —» result valid
operand _a Module (RM) — result

operand b
axi_resp 10— ——>axi_req_o

Figure 4.5: The MOLEN reconfigurable module, highlighting the inputs and
outputs.

the input of the [CAP| and using the fifo_empty signal to enable or disable the [CAPL

With the[FIEQlin place, all that needs to be done is to fill it with the partial bitstream.
To achieve this, the [AXT] bus is used to fetch the data from the address range specified
in the set instruction. To reduce as much overhead as possible, burst reading is used
to request 256 (64-bit) words at once. Once the first word arrives, the next ones are
available in each consecutive clock cycle. The [FIFQI size is chosen to accommodate two
full burst reads, or 4 KiB. In the current design, this should ensure that the [CAP] is
never stalled to wait for new data.

The [CADP) of the Xilinx Virtex-7 [FPGAI family supports a maximum clock speed of
100 MHz [31]. By using separate input and output clocks for the [FIFOl the [CAP] can
be used at its maximum frequency, while the remainder of the design uses the 50 MHz
clock. Because the data width of the [CAP]is half as large as that of the input,
it should still be able to receive data at a fast enough rate for the 100 MHz clock to be
useful.

4.4.2 MOLEN reconfigurable module

The reconfigurable module (molen_rm), depicted in Figure and Figure is logically
split into two parts:

e The interface definition. This definition specifies the (physical) input and out-
put connections between the reconfigurable module and the CVA6 design. Each
design intended for the MOLEN reconfigurable module must adhere to the specified
interface. The CVAG6 design must also adhere to this interface.

e The stand-alone implementation. Each reconfigurable design provides an im-
plementation of the (previous) interface, of which the corresponding partial bit-
stream can then be generated. When the partial bitstream is loaded into the
[FPGA] the implemented module is placed in the corresponding reconfigurable par-
tition. The reconfigurable design flow that is responsible for generating the full
and partial bitstreams is discussed in Section

4.4.

MOLEN FUNCTIONAL UNIT 35

The interface definition specifies the following inputs, as depicted on the left-hand
side of Figure

clk: A (50 MHz) clock.

rst: An active-high reset.

inputs_valid: A handshaking signal to specify that the inputs are valid.
opcode: The 10-bit micro-opcode (funct10) specified in Section
operand_a: The first 64-bit input operand.

operand_b: The second 64-bit input operand

azi_resp_i: The [AXI response as introduced in Section [4.2

The interface definition specifies the following outputs, as depicted on the right-hand
side of Figure

ready: A handshaking signal to specify that the module is ready to accept inputs.

opcode_supported: A status signal that specifies whether or not the micro-opcode
is supported by the reconfigurable module.

result: The 64-bit result of the operation.
result_valid: A handshaking signal that specifies that the result is valid.

azi_req_o: The [AXIl request as introduced in Section

4.4.3 AXI interface

The MOLEN unit utilizes a single [AXIl interface that is shared between the partial
reconfigurator and reconfigurable module, as discussed in Section Figure [£.3] depicts
the implementation of this design, which consists of two parts:

The [AXT Switch module: A simple 2-to-1 multiplexer that selects either the
[AXTl signals from the reconfigurator or reconfigurable module, based on the sel
input.

The [AXTl Isolate module: Upon receiving the isolate signal, this module blocks
new [AX]l transactions from the reconfigurable module and waits for any ongoing
transaction to complete. Following that, the isolated signal is raised to indicate
that the transactions on the bus have been safely terminated. Terminating the
bus in this way before switching is vital to the correct functioning of the design.
Switching during an ongoing transaction could stall the bus and prevent the (newly
loaded) reconfigurable module from accessing the memory. It should be noted that
termination of the ongoing transactions is always needed when loading a new partial
design, even if the reconfigurable module would have its own [AXI] bus.

36 CHAPTER 4. IMPLEMENTATION

Both of these modules are already available in the CVAG6 design and were not re-
implemented. Reusing the existing code in this way simplifies the design and reduces
the required maintenance in the future.

Because the reconfiguration is performed by the partial reconfigurator, the [AXIl
Switch and Isolate modules are managed from there. When performing a reconfigu-
ration, the isolate signal is raised, after which the partial reconfigurator waits for the
isolated signal to go high. The sel signal is then used to switch the outgoing [AXT] in-
terface to that of the reconfigurator. The reconfiguration can then be performed, after
which the sel signal is used to select the [AXT] interface of the (new) reconfigurable mod-
ule. A second Isolate module for the reconfigurator is not required, because it is known
inside the reconfigurator when the [AXT] transactions originating there are completed.

4.5 Reconfigurable design flow

Having discussed the implementation of the CVA6 MOLEN design in the previous sec-
tions, the only remaining hardware consideration is the design flow that allows the full
and partial bitstreams to be generated. Although this flow is specific to the Xilinx fam-
ily of FPGAs and is not a main contribution of this work, an overview of this process
is included for completeness. A detailed discussion of this process can be found in the
Partial Reconfiguration Guide from Xilinx [32].

The design flow is based on the original TCL-scripted flow of the CVA6 design [33]
and is modified to allow partial bitstreams to be generated. Globally speaking, there are
three basic steps involved in both of these design flows:

e Synthesis: During this step, the Register-Transfer Level (RTL]) abstraction of the
(System)Verilog design files is converted into a netlist containing the basic building
blocks that are present on the [FPGAL and how they are connected.

e Implementation: During this step, the components from the netlist of the syn-
thesized design are placed and routed. The result describes the physical implemen-

tation on the [FPGAL

e Bitstream generation: In this step, the implemented design is converted into a
bitstream file that can be loaded onto the [FPGAL A full bitstream describes an
entire design (including the reconfigurable module), whereas a partial bitstream
describes only the reconfigurable part of the design.

Two separate flows, depicted in Figure [4.6] are distinguished to avoid the need to
regenerate the entire design for each reconfigurable module:

e The full design: in this flow, which is executed only once, the full bitstream is
generated. An initial reconfigurable module is required to allow the implementation
to succeed. Although the specific function of this initial reconfigurable module is
irrelevant, a simple multiplier is used for this purpose in this work. The resulting
full bitstream is loaded onto the [FPGAl whereas the resulting partial bitstream
can be discarded. A separate, static implemented design is derived from the initial
implemented design by removing the reconfigurable module. The blank area that is

4.5. RECONFIGURABLE DESIGN FLOW

37

Single full design

Synthesized
Static Design

Synthesized
Initial RM

Implemented
Full Design

Implemented
Static Design

Bitstream

|
|
|
|
|
|
| {
|
|
|
|
Configure FPGA |
|
|

Synthesized

Implemented
Full Design

Multiple partial designs

RM

Partial
Bitstream

Partially
Reconfigure
FPGA (ICAP)

Figure 4.6: A simplified overview of the two design flows for a partially

reconfigurable design.

left in place of the reconfigurable module, in which none of the inputs and outputs

are connected, is referred to as a black box [32].

e The partial design: in this flow, the implemented static design from the full
design flow is combined with the synthesized design of the current reconfigurable
module, resulting in a full implementation. The black box of the static design is
filled with the implementation of the current reconfigurable module. From this
implementation, the full and partial bitstreams are then generated. The full bit-
stream from this step is not typically used, because the initial full design should
already be loaded onto the [FPGAI during this phase. The partial design flow is

executed for each reconfigurable module that is designed.

For the current design, both of these flows are implemented using a TCL-script, where
the full design flow is modified from the original script of the CVAG6 project. The script
for the partial design flow takes the name of the reconfigurable module as command-line
argument, such that any reconfigurable module can be designed and generated, while

only requiring the full design to be implemented once.

38 CHAPTER 4. IMPLEMENTATION

4.6 Software design

Now that the hardware design considerations have been discussed in the previous sec-
tions, the software design can be considered. The basic functionality that is performed
by the software consists of two parts:

e Sharing data, such as the partial bitstream, with the MOLEN unit.

e Executing the custom set/ezecute/status instructions that are not part of the

RISC-V [SAl

Because the MOLEN unit has access to the [AX]l crossbar, sharing data becomes a
matter of copying it to a memory location that the MOLEN unit can access. To avoid
overwriting any of the (virtual) memory of the [0OS] a separate region is defined at
the end of the Random Access Memory (RAM]). Caching is disabled for this region, such
that output data that is written back from the MOLEN unit can be read correctly. The
is informed of the region by reducing the memory size in the Linux device tree
(fpga/src/bootrom/ariane.dts). In this work, a [DMA] size of 64 MiB has been chosen,
but it can easily be expanded if needed. Having defined the [DMAI region, sharing data
becomes a matter of copying it to this region. This can be achieved in the C programming
language by using the open(), mmap() and memepy() functions.

In order to prevent the need for modifications to the RISC-V toolchain when adding
custom instructions, the RISC-V assembler supports the .insn directive. Using this di-
rective, any (known or unknown) instruction can be specified by supplying the individual
fields of the instruction. Each of the instruction formats introduced in Section [B.1] can
be specified in this way. However, the set, execute and status instructions are all R-type
instructions, as decided in Section [3.4] These instructions can be formatted using the
.insn directive in the following way:

.insn r opcode, func3, func7, rd, rsl, rs2

The opcode field, which equals the custom-0 opcode for both instructions, can be specified
by name (CUSTOM_0), instead of having to specify its value directly. When using the C
programming language, the asm() function can be used to incorporate the .insn directive
and set its fields according to variables in the C program. This is achieved in the following
way for the erecute instruction:

#define molen_execute(addr, len, uop) ({ \
int retval = 0, _a = (addr), _b = (len); \
asm volatile (”.insn r CUSTOMUO, ” STR(GETFUNCT3(uop)) \
» . 7 STR(GET.FUNCT7(uop)) 7, %0, %1, %2\n” \
: ’=r”(retval) \
:r(La), P17 () \
)i\

retval; \

4.7. CONCLUSIONS 39

Here, wop is the (10-bit) pu-opcode that specifies the operation to perform.
GET_FUNCTS8 and GET_FUNCT7 are defined as simple bitwise operations to extract
the funct3 and funct7 fields from the pu-opcode, respectively:

#define GETFUNCT3(uop) ((uop) & 0x7)
#define GETFUNCT7(uop) ((uop) >> 3)

The STR function is part of a two-level macro to convert a non-string constant to a
string constant, following the GCC C Preprocessor documentation [34]:

#define STR_(X) #X
#define STR(X) STR_(X)

In this way, the execute instruction can be made available for use in C programs,
taking regular function arguments for the two inputs and making the output available
as return value. The set and status instructions can then be simplified by a call to the
ezecute function with the pu-opcode set to its corresponding value from Section |3.4

inline int molen_set(int address, int length) {
return molen_execute (address, length, UOP.MOLENSET);
}

inline int molen_status() {
return molen_execute (0, 0, UOPMOLENSTATUS);

4.7 Conclusions

In this chapter, the MOLEN design from Chapter [3] was implemented on the CVA6
processor. After giving an overview of the CVAG6 architecture, the following required
modifications were identified to implement the MOLEN paradigm: the decoder had to
be modified to handle the MOLEN instructions correctly, and a MOLEN functional unit
had to be introduced to execute the new instructions. Additionally, it was decided that
the MOLEN unit should be added as master on the AXI crossbar, after outlining the
CVAG6 memory organization.

The decoder was adapted in the following way: first, the opcode was compared to the
custom-0 opcode, after which the funct7 and funct3 fields were evaluated for matching
the set or execute operations. In case of an execute instruction, the funct7 and funct3
fields were passed to the next pipeline stage as immediate value.

The MOLEN functional unit consists of a partial reconfigurator and a MOLEN recon-
figurable module. The partial reconfigurator controls the [CAPIto reconfigure the FPGAI
with a partial bitstream that it fetches from the specified memory address. A
queue is used as buffer to streamline this process. The MOLEN reconfigurable module
consists of an interface definition that specifies the inputs and outputs, and an imple-
mentation of that interface that executes the actual custom micro-instructions. The[AXT|
interface of the MOLEN functional unit is shared between the partial reconfigurator and
MOLEN reconfigurable module, because simultaneous memory access from both sources

40 CHAPTER 4. IMPLEMENTATION

cannot occur. An [FSM] inside the MOLEN functional unit is responsible for handling
the status instructions, as well as the other two instructions when a reconfiguration is
being performed.

In order to accommodate the partial reconfiguration inside the CVA6 [EPGA] design,
two separate design flows were implemented. The full design flow is performed once
and results in a full bitstream containing the CVA6 processor and a single reconfigurable
module. The partial design flow is performed for each reconfigurable module and
results in the partial bitstream that is programmed into the [FPGAl from within the
MOLEN functional unit (when a set instruction is issued).

As a final part of the implementation, the software interface with the MOLEN ex-
tension must be considered. In order to share data, such as partial bitstreams, with
the MOLEN functional unit, a region is defined at the end of the main memory.
Executing the MOLEN instructions is simplified by the presence of the .insn RISC-
V assembler directive, which allows for the execution of custom instructions. In the
C programming language, a molen_execute wrapper function can be defined using this
directive. The set and status instructions can then be executed by specifying the corre-
sponding pu—opcode for themolen_execute function call.

Results

Having designed and implemented the proposed design in Chapter [3| and Chapter 4] the
implemented design can now be tested for functionality and evaluated in terms of its
performance and resource utilization.

After introducing the test setup that is used for the experiments of this chapter in
Section the following tests and benchmarks are performed:

e Functional tests are performed in Section to verify the correct behavior of
the implementation in a range of circumstances.

¢ [FPGAl synthesis results are discussed in Section [5.3] as an initial comparison of
the MOLEN CVAG6 implementation to the base CVA6 implementation.

e The reconfiguration performance benchmark of Section evaluates the
reconfiguration latency that is achieved by the proposed implementation.

e A matrix multiplication benchmark is performed in Section to evaluate
the ability of the MOLEN CVAG6 implementation to hide the reconfiguration delay.

Following these experiments, the results are discussed in Section [5.6] after which this
chapter is concluded in Section

5.1 Test setup

In order to test the functionality of the design and perform experiments, the following
test setup is used:

e The hardware platform that the design is tested on is the Xilinx VC707 evaluation
kit [I7]. It is built around the Virtex-7 XC7VX485T-2FFG1761C[EPGAl Although
this board is not officially supported by the CVA6 project, experimental support
is provided.

e The software suite that is used for the synthesis of the design is Vivado 2018.2 [35].
This version was chosen because it was tested by the CVA6 project [36]. It is also
used for simulation of the design.

e The CVAG6 version that the design of this work is based on is version 5.0.1, released
on March 25, 2024 [33].

e To compile the C code that is executed by the design, version 10.2.0 of the GNU
RISC-V toolchain is used [37], containing the GCC compiler and other tools.

41

42 CHAPTER 5. RESULTS

e A pre-built Linux image, provided by the CVA6 project, is used as in which the
tests and benchmarks are performed. Using an simplifies the development and
execution of these tests, because of its serial terminal interface and its support for
accessing the SD card on the board. Furthermore, the overhead that this specific
OS] causes is limited due to its minimal design.

e Measurements that are generated by the execution of software programs, are re-
peated 20 times and averaged, in order to mitigate the potential interference of the
execution of the itself.

e Time is measured in the software benchmarks by counting the clock ticks (under a
known clock frequency). Ticks are measured using the RISC-V cycle performance
counter, accessible through Control and Status Registers (CSRs) [3].

5.2 Functional tests

Test name Purpose Outcome
MOLEN unit test (simulation) Verify basic set, status v
FPGA reconfiguration test and ezecute behavior v
Invalid SYNC test Verify robustness against v
Invalid checksum test invalid bitstream files v
set — set test Verify robustness against v
set — execute test user error v

Table 5.1: Overview of the functional tests that were performed on the
implemented design.

Before the performance of the design is analyzed in the following sections, the imple-
mentation was tested in terms of functionality first. An overview of the functional tests
that were performed is presented in Table

Instead of testing the complete implementation at once, the MOLEN functional unit
(discussed in Section was first tested on its own. In order to do so, a test bench
was developed around the MOLEN unit and a ROM containing a bitstream file. The test
bench could then be simulated using tools from the Vivado suite, resulting in waveforms
that were inspected for correctness.

No simulation model of the [CAP] was available, which meant the actual partial re-
configuration could only be tested on the [FPGAl To achieve this, the MOLEN unit was
first tested on the [FPGAl without connecting the [CAP] port, using the Xilinx Integrated
Logic Analyzer ([LA]) to inspect the waveforms of the relevant signals. Once those sig-
nals demonstrated the correct behavior, the [CAP] port was connected and the partial
reconfiguration tested. Multiple simple implementations were created for the reconfig-
urable partition, such as a multiplier and a divider. Matching software was developed
to execute the new MOLEN instructions: a load-bitstream application was created to
retrieve a user-specified bitstream file from the SD card, place it into the main memory
and trigger a reconfiguration using the MOLEN set instruction. Each separate design of

5.3. FPGA SYNTHESIS RESULTS 43

the reconfigurable partition was given its own application performing the corresponding
MOLEN ezecute instruction on the user-specified inputs. This way, all basic functions
of the design could be tested.

To increase the robustness of the design, the reconfiguration was also tested using
bitstream files that were corrupted or malformed in the following ways:

e Invalid SYNC keyword: reconfiguration starts when a special synchronization
keyword is detected. By modifying the value of this keyword in the bitstream
file, the (correct) SYNC keyword is never encountered and no reconfiguration is
performed. The MOLEN status instruction should return an error value that
reflects this.

e Invalid checksum: Near the end of the partial reconfiguration, the CRC check-
sum of the written configuration data frames is calculated and compared with a
CRC value in the bitstream file. In case of a mismatch, the reconfiguration is
considered to have failed, and the reconfigurable partition is then forcibly blanked
by the FPGAl Attempting to perform pu—instructions after this event would stall
the CPU, requiring a hard reset. The MOLEN status instruction should return
an error value that reflects this, and also prevent any pu—instructions from being
passed to the reconfigurable module.

Other than invalid bitstream files, erroneous usage of the MOLEN instructions was
also tested. Specifically, the reconfiguration would be triggered, after which another
MOLEN (set or execute) instruction would immediately be executed, instead of waiting
for the reconfiguration to complete using the status instruction. In the case of a con-
secutive set instruction, the instruction should be ignored and an error value should be
returned. In the case of a consecutive execute instruction, an exception should be raised,
signaling an illegal instruction.

After testing all of these edge cases and updating the design to handle them correctly,
the implementation was considered to be fully functional.

5.3 FPGA synthesis results

Before proceeding to the performance benchmarks in the following sections, the perfor-
mance and efficiency of the implementation are first evaluated from the perspective of the
[FPGAl synthesis. Specifically, the timing results and resource utilization of the MOLEN
CVAG implementation are compared to those of the base CVA6 implementation.

5.3.1 Timing results

An overview of the timing results is given in Table [5.2] The base CVA6 design without
modifications could be run at 50 and 60 MHz without violating any timing constraints.
When increasing the clock speed to 70 MHz, the timing constraints are no longer met,
with a Worst Negative Slack (WNS) of 0.722 ns. The main critical paths responsible
for failing the timing constraints were all originating in the register file and going
to the instruction cache. Even though the Floating Point Unit (EPUl) was not in the

44 CHAPTER 5. RESULTS

. Clock Speed (MHz)
Configuration =0T 55 160 701 71
CVA6 VI VY- -
CVA6-molen Vo v - -
CVA6 w/o FPU VIV VYIIVvo-
CVA6-molen w/o FPU | v | vV | V | V | -

Table 5.2: Timing results for the base CVA6 and MOLEN CVAG6
implementations. A checkmark indicates that all timing constraints are met.

critical path, disabling it resulted in the timing constraints being met once again. This
may be explained by the reduction of the area allowing the source and destination of the
critical paths to be physically closer together.

Further pushing the clock speed to 71 MHz (without [FPU]) once again caused the
timing constraints to fail, this time due to critical paths from the register file to
the [LSUL

Attempting to run CVA6 design with the proposed MOLEN extension (with [FPU)
resulted in the timing constraints being met up to 55 MHz, as opposed to the 60 MHz
of the base CVAG6 design. This was caused by the same critical paths from the
register file to the [LSUL However, by disabling the [FPUl again and reducing the area of
the MOLEN reconfigurable partition, the timing constraints could be met for frequencies
up to 70 MHz, matching the maximum frequency of the base CVAG6 design. If the
reconfigurable partition would be implemented on a separate [FPGA]in future work, this
restriction on the reconfigurable partition can be lifted.

From these results, it can be concluded that the proposed MOLEN extension does
not impact the critical path, other than by the area that the reconfigurable partition
consumes.

5.3.2 Resource utilization

CVA6 CVA6-molen MOLEN Unit

Slice LUTs 75682 86314 2111
LUT as Logic 73055 83679 2108
LUT as Memory 2627 2635 3
Slice Registers 49485 55937 431
F7 Muxes 2922 3659 0
F8 Muxes 629 778 0

Table 5.3: Resource utilization of the base CVA6 design and the modified design.

In order to obtain [FPGA] resource consumption results, the utilization reports from
the synthesis tool are used. In the case of the design with the MOLEN extension, the area
of the implemented static design (Figure is used to exclude the resources inside the
reconfigurable partition. Other than the two complete designs, the resource utilization

5.4. RECONFIGURATION PERFORMANCE BENCHMARK 45

of only the MOLEN unit, i_molen, inside the full design is also included. The results are
listed in Table B3l

Interestingly, the MOLEN design uses significantly more Lookup Tables (LUTS)
(14%) and registers (13%) than the base CVA6 design. However, the MOLEN unit
does not account for this difference, with its 2111 LUTs and 431 registers. It is also
unlikely that the small modification to the decoder unit causes this difference. Instead,
it is expected that the area that is reserved for the reconfigurable partition causes the
placement and routing becomes more complex, requiring more resources to meet the
timing constraints.

5.4 Reconfiguration performance benchmark

After establishing the functional correctness of the design and measuring the [FPGAI
synthesis results in the previous sections, we can now perform the first benchmark. First,
it should be noted that the main performance metric of the proposed design is not the
speedup of any specific functionality that can be implemented using the reconfigurable
micro-instructions. The performance of such functionalities would be similar to those
of other [FPGA] accelerators that do not employ the MOLEN paradigm. Consequently,
the resulting measurements would demonstrate the performance of the implemented
accelerator instead of the performance of the MOLEN implementation itself.

Instead, one defining performance metric is the reconfiguration time in relation to
its theoretical limit. In the remainder of this section, the specifics of the reconfiguration
benchmark are first outlined, after which the results are discussed.

5.4.1 Benchmark description

In order to substantiate any measurements relating to the reconfiguration performance,
we must first estimate the lower limit of the reconfiguration latency on the specific [FPGAI
architecture that is used for the implementation of this thesis.

On the Virtex-7 [FPGA] family that is used for the implementation, the reconfigu-
ration time is directly proportional to the size of the partial bitstream file. Bitstream
compression can be used by the synthesis tool to reduce the size of the resulting bit-
stream file. The [FPGA] does not need any time to decompress the bitstream, because of
the compression method: the multiple frame write feature [38] is used to write identical
consecutive configuration frames to the [FPGA] fabric in parallel, allowing all but the
first identical frame to be removed from the bitstream. Additionally, any delays that are
required for the internal configuration port (ICAP) to perform its tasks, are incorporated
into the bitstream file as no-ops. As such, the reconfiguration time is given by the time
it takes for all bytes of the partial bitstream file to be sent to the [CAPL

The theoretical minimal reconfiguration time can now be calculated as a function
of the bitstream file size and the clock frequency. Because the input port of the [CAPI
is 32 bits (4 bytes) wide, the minimal reconfiguration time ¢, is given by the following
equation:

fo= 20
A fak

46 CHAPTER 5. RESULTS

5 1 12 13 14 15 16 17 18 19 20

Bitstream Size (MiB)

70

60

50

4

o

2

Reconfiguration time (ms)
g 3

1

(e}

o

W Actual Lower Limit |

Figure 5.1: Reconfiguration times compared with the theoretical lower limit,
running at 50 MHz.

In this equation, sp is the bitstream size in bytes, whereas f. is the clock frequency
of the [CAPI port. Given that the Virtex-7 [FPGAl has a maximum clock frequency for
the [CAPI port of 100 MHz, the minimal reconfiguration time becomes:

ty = 20
"4 x 108

In order to measure the actual reconfiguration time, a compressed bitstream file
of a small multiplier implementation is used. This bitstream file is then zero-padded to
achieve bitstream sizes between 3 and 20 MiB. Because the reconfiguration has completed
before reaching the zero-padding, the [CAP] will discard any data on its input port
until the SYNC keyword is encountered again. As such, zero-padding the bitstream file
is a safe way of creating arbitrary bitstream sizes while still correctly performing the
reconfiguration. The resulting measurements are illustrated in Figure for a clock
speed of 50 MHz, and in Figure for a clock speed of 55 MHz. It should be noted
that these measurements only account for the time it takes to load bitstreams from the
main memory into the [CAPL The time it takes to copy the bitstream files from storage
into memory is not measured. This choice was made due to the relatively slow SD-card
interface of the VC707 [FPGAl board, which does not reflect the speeds of modern storage
solutions and would greatly impact the resulting measurements. Furthermore, practical
(future) implementations should load often-used bitstreams into memory at boot, or use
a dedicated bitstream (control) store.

5.4. RECONFIGURATION PERFORMANCE BENCHMARK 47

11 12 13 14 15 16 17 18 19 20

Bitstream Size (MiB)

70

60

50

4

o

2

Reconfiguration Time (ms)
g8 8

1

(e}

B Actual ™ Lower Limit |

Figure 5.2: Reconfiguration times compared with the theoretical lower limit,
running at 55 MHz.

5.4.2 Discussion

In the implementation of the proposed design, the [CAP] port is clocked at its maximum
frequency of 100 MHz. The CPU is clocked at 50 MHz, but utilizes a 64-bit [AXT] bus
as opposed to the 32-bit input port of the [CAPl Burst reading on the [AXI| bus ensures
maximum throughput as discussed in Section As such, the design should be able
to approach the theoretical limit on the reconfiguration time.

Although the measured reconfiguration times are close to their theoretical limits, an
increasing difference between the two can be observed as the bitstream size increases.
This difference ranges from 1.12 ms for the 3 MiB bitstream, to 6.44 ms for the 20 MiB
bitstream.

To determine the cause of this difference, the signals inside the partial reconfigurator
(discussed in Section are captured using an [[LA] core. The resulting waveforms
are depicted in Flgure The blue line labeled “T” is the trigger that detects a rising
edge in the molen,valzd,z signal, which signifies that a valid reconfiguration instruction
is passed to the reconfigurator. The [AXTlrequest and response signals are shown, as well
as the fifo_empty signal, which is set when the [FIFOl does not contain any data.

The consecutive burst reads can be identified by the changing azi_req ofar/[addr]
and azxi_req_ofar_valid] values. It can also be seen that the fifo_empty signal rises at
the end of each burst read and remains high until new data arrives from the memory
(azi_resp_i[r_valid]). For the minimal reconfiguration delay, the [FTFOlshould not become
empty until the last byte of the bitstream has been written. Measuring the first ten peri-

48

CHAPTER 5. RESULTS

Name

Value

» B awi_req_olar][addr][53:0] 00000000

» B axi_reg_olar][len][7:0]
» B axi_req_olar][size] [2:0]

» B axi_req_olar][burst][1:0]

1 axi_resp_i[ar_ready]
1 axi_req_olar_valid]
1 axi_req_o[r_ready]
1 axi_resp_i[r_valid]
1 axi_resp_i[r][last]

» B axi_resp_i[r][data] [63:0]

1 fifo_empty
1 molen_valid_i
1 molen_ready o
» B fifo_dout[31:0]
» B |CAP_dataout[31:0]

00
3
0
0
0
0
0
0

00000000
1

0

1
00000000
ffffffab

|?,000
P o i

5,

00 |
i

|9,000
I bl

|10,000
PSRRI bl i

|ll,000
PRI st

|12,000|
v

DOE00C0000000000

0000, . . /peoe. .. ¥ Boo. ..)(éaaa. .. /ooee. . .'Xaaaa. . .Xaaaa.' ../ oop
I I I

oo

fd ¥

F

T
T

3
T

0000000000000000

THfToh

TFifTdb

Figure 5.3: Waveform data captured at the start of the reconfiguration.

ods that the is empty, reveals a delay of 56 (100 MHz) cycles for each occurrence.
Because the circumstances are identical, this delay is expected to be equal (or at least
similar) for each time that the [FTFOl becomes empty until the end of the reconfiguration.
Since this delay happens after each (fixed-length) burst read, and the total number of
burst reads grows linearly with an increase in bitstream size, this explains the increasing
gap between the reconfiguration time and its theoretical limit.

The queue was originally intended as a way to allow the reconfiguration data
to be passed to the [CAP| port in a single, uninterrupted, flow (after the first bitstream
data arrived from the memory). This is based on the assumption that the data arrives
faster from the memory than the [CAPlcan process it. The delay between requesting the
next burst and receiving the first data of that burst could then be hidden from the ICAPI
port by the Because the [CAP] has a maximum clock frequency of 100 MHz and
uses a 32-bit port, this assumption is reasonable for GHz CPU clock speeds. However,
a CPU clock speed of 50 MHz is an edge case where data arrives exactly as fast from
memory as the [CAP| can process. The will not contain more than a single 64-bit
word in that case, because the [CAP| immediately consumes the data at the same speed
as it is pushed into the In this specific case, the acts only as a clock and
data width converter, instead of an actual

By increasing the clock speed to 55 MHz (Figure , it is confirmed that the clock
frequency is responsible for the increasing gap with the theoretical limit. The difference
now ranges from 0.42 ms for the 3 MiB bitstream, to 1.49 ms for the 20 MiB bitstream.
Inspecting the captured waveforms again reveals that the FIFO is still completely emp-
tied on occasion, albeit far less often than before. This can be explained by varying
memory response times or memory accesses from the that occur in between burst
reads. As such, it can be concluded that the small increase in the difference with the
theoretical limit can still be explained by the clock speed. When operating the design at
GHz speeds, the FIFO should not become empty before the entire bitstream is loaded.
The reconfiguration time would then approach the theoretical limit even closer.

5.5. MATRIX MULTIPLICATION BENCHMARK 49

70 350

60 300

g

- 50 250 g

B 2

S 40 200

g (<]

.S P

= 30 150 @

= <

& =
=)

g 20 100 %5

Q N

54

= 10 . I I I 50

0 0

10 11 12 13 14 15 16 17 18 19 20

Bitstream Size (MiB)

| B Reconfiguration Time (ms) M Software Iterations

Figure 5.4: Reconfiguration time and number of software iterations for the 8x8
Matrix multiplication.

5.5 Matrix multiplication benchmark

Now that the reconfiguration time has been demonstrated to approach the theoretical
minimum in the previous section, the goal of hiding that delay can be evaluated. In
order to do so, it must be demonstrated that the can do useful work while a
reconfiguration is being performed. The matrix multiplication benchmark described in
this section aims to do so. The details of the benchmark are first described, after which
the results are discussed.

5.5.1 Benchmark description

This experiment attempts to demonstrate the ability to hide the reconfiguration delay
by performing 8x8 matrix multiplications in software, until a reconfigurable design per-
forming the same task in hardware has been loaded, after which the hardware design
takes over the multiplication from the software. Before further explaining the details,
it should be noted that this benchmark is not a full-fledged real-world application. In-
stead, it is specifically created for performing measurements. Therefore, the input data
is arbitrarily generated.

Specifically, the values of the input matrices are generated as a function of the row
and column of each value. The following formula is used to calculate the value at row ¢
and column j of matrix m, as a function of input variables x and y:

mlilj]=z-i+y-j7+1

50 CHAPTER 5. RESULTS

16000
14000

12000

IES & = B o o B E e e e E R R
so0 B BB BB R .
6000
4000
2000
0
3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20

Clock cycles per iteration

Bitstream Size (MiB)

| s Clock cycles/iteration === === Median == === =" Median (baseline) |

Figure 5.5: Average clock cycles per software iteration of the 8x8 matrix
multiplication benchmark.

Using this function, two 8x8 matrices A and B are initialized (using arbitrary values
for x and y), after which the matrix product AB is calculated. 8-bit values are used
for all matrices. The initialization and multiplication are separate functions that are
implemented in both hardware and software. These functions can now be executed
in a loop to perform multiple matrix multiplications. Now, the reconfiguration can be
triggered first, after which the software starts performing the multiplications. At the end
of each loop iteration, the MOLEN status is checked to determine if the reconfiguration
has completed. If it has, the following iterations use the hardware functions. Otherwise,
the software continues the work. By measuring the reconfiguration time and the number
of software iterations, the possible influence of the reconfiguration on the performance
of the software (or the other way around) can be investigated.

The resulting measurements for bitstream sizes between 3 and 20 MiB are depicted in
Figure [5.4f From these measurements, the average number of clock cycles per software
iteration can be calculated. These values are depicted in Figure along with the
median across all bitstream sizes. As a reference, a baseline median is also calculated from
a separate set of measurements where no bitstream reconfiguration is being performed
while the matrix multiplication is executed.

5.5.2 Discussion

When inspecting Figure it can be observed that the reconfiguration delays are mostly
similar to those in Section ranging from 9.16 ms for a bitstream of 3 MiB (compared

5.5. MATRIX MULTIPLICATION BENCHMARK 51

to 8.96 ms when only loading a bitstream), to 58.48 ms for a 20 MiB bitstream (compared
to 58.34 ms). An outlier is the 12 MiB bitstream, with a reconfiguration delay of 43.01
ms as compared to 35.14 ms when only loading a bitstream. Despite taking more time,
the number of software iterations did not increase. Instead, fewer iterations could be
executed than for the 11 MiB case. These observations are confirmed by Figure [5.5
which shows that the number of clock cycles per loop significantly exceeds the average
for the 12 MiB bitstream. It also shows an outlier at 3 MiB that is less obvious in
Figure [5.4]

Inspecting the actual (non-averaged) measurements reveals several outliers that are
large enough to affect the averages significantly. For example, one measurement for the
12 MiB bitstream resulted in 60 iterations in 3800273 cycles (76.0 ms), which is approx-
imately 63338 cycles (1.27 ms) per iteration. The average over all 20 measurements is
152 iterations in 2150734 cycles, or 14150 cycles (0.28 ms) per iteration. Interestingly,
the mentioned outlier has both a lower than average iteration count and a higher than
average clock cycle count. This is also the case for some other outliers, but not for all of
them.

A possible explanation for these results may be found in the [AXI memory interface
that is shared between the and the MOLEN unit. While a burst read of recon-
figuration data from the MOLEN unit is being performed, the cannot access the
memory. It is up to the [AXI] interconnect to determine which master is connected to
the memory. The software program and its stack may be fully cached, which means that
reads can occur without needing access to the main memory. However, the CVAG6
uses a write-through cache (although a write-back cache can be configured instead). This
means that data that is written is immediately written to the memory instead of only to
the cache. Because the matrices in the software are too large to keep in registers, they
are placed on the stack. When the matrix multiplication is performed, each value of
the resulting matrix gets written (to the memory). If the MOLEN unit is performing a
burst read at the same time, the software has to wait for the MOLEN unit to complete.
It would then be up to the interconnect to allow the access to the memory instead
of keeping the MOLEN unit connected. In general, the results demonstrate that this
is working correctly, because both the reconfiguration delays and the number of clock
cycles per software iteration approach those of their standalone counterparts. However,
there might be a problem in the interconnect that is triggered in specific cases and stalls
either or both of the [AXI masters (the and the MOLEN unit). Attempting to
accurately identify such a problem is outside the scope of this work, especially because
the design remains functional and no indefinite stalls occur.

In order to further examine the impact of simultaneous memory accesses from the
[CPUl while the bitstream was being reconfigured, another experiment was attempted. In
that experiment, reads and writes were performed at random memory addresses, while
reconfiguration was taking place. However, no clear results could be obtained from this
experiment, with the measurements seemingly indicating that the did not gain
much access to the memory at all until the reconfiguration had completed. However,
this behavior is purely due to the design of the interconnect and cannot be resolved with
design changes to the MOLEN unit itself.

In order to meaningfully compare the number of clock cycles per iteration, the median

52 CHAPTER 5. RESULTS

across all bitstream sizes is chosen instead of the mean, because it is less affected by
outliers. It should be noted that the median could also be used instead of the mean for
averaging the 20 independent measurements for each bitstream size. However, doing so
would hide the outliers altogether, which would also hide the most interesting information
from the results.

When comparing the median values, it can be observed that the median for the case
where reconfiguration is performed (10470 cycles) is 1658 cycles larger than the baseline
median (8812 cycles). This is a relatively small gap, which demonstrates that the
can perform useful work while the reconfiguration is taking place and effectively hide the
reconfiguration delay.

5.6 Discussion

When considering all of the results, it can be observed that the MOLEN design per-
forms well overall, but may be hampered in specific cases by its integration into the
CVAG6 processor. Specifically, the [AXT interface that is shared with the limits the
ability of the processor to access the memory while the MOLEN unit is performing a
reconfiguration. Two possible workarounds could be implemented for this in the current
design:

e The interconnect could be modified to prioritize the [CPUl (or MOLEN) access to
the memory as desired.

e The MOLEN unit could be modified to force a delay between consecutive memory
reads or to reduce the [AX]] burst size, which could allow the [CPU] to access the
memory in between burst reads.

However, the matrix multiplication benchmark of Section demonstrates that the
negative impact of the shared memory interface is limited in typical cases. Only when
the implementation is heavily memory bound will this become an issue (such as for the
random memory access test that was attempted).

Furthermore, sharing the same [AXI] interface would no longer be feasible when run-
ning the at GHz speeds in potential future implementations. In those cases, a
separate memory port or separate memory unit would have to be used. This would
automatically resolve the potential issues that might arise with the shared interface that
is used in the current design.

Other than illustrating the potential problems with a shared memory interface, some
of the results seemed to measure other parts of the design instead of the implementation
of the MOLEN unit itself. For example, when comparing the resource utilization of the
proposed design with that of the standalone CVAG6 processor in Table it seems as if
there is a considerable increase in area at first glance. However, when looking at the area
of only the MOLEN unit, that difference is not accounted for. Instead, the presence of
the MOLEN unit affects the area of the remainder of the design, due to how the [FPGAI
design is synthesized.

Another case where another part of the design was measured instead of the MOLEN
unit, was the attempted random memory access test. In that case, the interconnect and

5.7. CONCLUSIONS 53

its switching mechanisms were measured instead of the performance of the MOLEN unit.

Both of these cases underscore the importance of an optimal integration of the
MOLEN unit into the (existing) design. Instead of only focusing on the imple-
mentation of the MOLEN unit, the proper integration into the is perhaps just as
important in order to achieve the desired results.

One final remark about the experiments of the previous sections, is that it is im-
portant to note that not all of the benefits of the MOLEN implementation could be
captured with measurements. In fact, the main benefit of the MOLEN implementation
may not be its performance at all, but rather the way in which it enables developers to
incorporate reconfigurability in their designs. Instead of having to manually implement
reconfigurability first and then designing the interface to the reconfigurable part of the
design, all of those functions are already provided by the proposed design. Developers
can immediately start implementing and using their own reconfigurable designs. The in-
tegration of the reconfigurable instructions into the instruction set lowers the threshold
to get started with reconfigurability and could make it more mainstream.

5.7 Conclusions

In this chapter, the implemented design was subjected to a series of tests to confirm
that it functions as expected and to gain insight into its performance and resource
consumption. All tests were performed on a Virtex-7 [FPGA] using Vivado 2018.2 for
the synthesis.

In order to test that the design behaves as desired, a standalone test of the MOLEN
unit was first performed in simulation. Subsequently, the design was tested for basic
functionality on the [FPGA] by testing the reconfiguration capabilities. To conclude the
testing, the robustness of the design was verified using corrupted bitstream files and
erroneous usage of the MOLEN instructions.

After confirming the functional correctness of the design, the timing results and
resource utilization could be examined. Pushing the clock speed of the design from 50
MHz to 70 MHz revealed that the MOLEN implementation does not impact the critical
path, except for presence the reconfigurable partition (depending on size). In terms of
resource utilization, a significant increase in area was measured compared to the base
CVAG design. However, this could also be explained by the presence of the reconfigurable
partition affecting the synthesis.

Once the timing and area results were measured, the reconfiguration performance
could be examined. Although the reconfiguration time approached the theoretical min-
imum, an increasing gap could be observed for increasing bitstream sizes. This gap
was explained by the relatively low clock speed limiting the rate at which reconfigura-
tion data could be loaded from the main memory. By increasing the clock speed to 55
MHz, this problem was resolved, with the reconfiguration time closely approximating
the theoretical limit.

After having completed the other tests and measurements, it was determined if the
reconfiguration time could be effectively hidden. A matrix multiplication benchmark
was performed in which an 8x8 matrix multiplication was performed in software and
hardware. Once the hardware had finished its reconfiguration, it could take over the

54 CHAPTER 5. RESULTS

multiplication from the software. By counting the number of software iterations, as well
as the reconfiguration time, it could be established that the reconfiguration delay could
be successfully hidden in most cases. Some outliers in the measurements, as well as an
attempted random memory access test, indicated that the [CPUl might stall in cases that
are heavily memory-bound, due to the shared [AXT|interface and the way the interconnect
decides which [AXT] master is connected.

Although some workarounds may be implemented to try to resolve this issue, sharing
the [AXT interface in the way that is currently done would no longer be feasible when at-
tempting to pursue real-world (ASIC]) implementations of the design, due to the different
clock speeds of the and MOLEN unit.

Conclusion

6.1 Summary

In Chapter [2| relevant background information was provided on reconfigurable archi-
tectures, the MOLEN processor, and the RISC-V architecture.

Two main application domains for reconfigurable architectures were first identified:
accelerators for high-performance computing and specialized or time-critical tasks
in embedded systems. Reconfigurable architectures can be distinguished in terms of
granularity. Fine-grained systems use the smallest building blocks and can be fully con-
figured. Coarse-grained systems are less flexible and use larger building blocks, allowing
for increased clock speeds and a greater energy efficiency.

After establishing a basic understanding of reconfigurable architectures, the MOLEN
polymorphic processor could be introduced. In this paradigm, a one-time [[SA] extension
introduces reconfigurable microcode (pu-code), which is used to perform reconfigurations
and execute custom operations on the reconfigured hardware. This extension mainly
consists of a set instruction that loads a reconfigurable design, and an ezecute instruction
that performs the custom operations. The von Neumann architecture is extended with
a reconfigurable processor that performs the custom instructions, an arbiter that passes
the instructions to either the core processor or reconfigurable processor, and a number of
exchange registers that are used for storing the input and output operands of the custom
instructions.

After introducing the MOLEN paradigm, the RISC-V architecture was introduced.
This open-source [SAl offers multiple base instruction sets and extension instruction
sets, thereby making it suitable for a wide range of applications. Support for custom
instructions is also included, enabling its use for this project.

Having introduced the RISC-V architecture and the MOLEN paradigm, existing
RISC-V processor implementations were compared, such that the most suitable one
could be selected for extension with the MOLEN paradigm. The CVAG6 core was chosen
for this purpose, because it supports the Linux [OS] is actively maintained and has a
community with extensive documentation.

Before pursuing the actual implementation of the MOLEN paradigm on the RISC-
V architecture, related work had to be examined, in order to substantiate the poten-
tial benefits of a novel implementation. Several existing reconfigurable implementations
were compared. It was observed that most existing architectures are coarse-grained and
application-specific. The proposed design improves upon this by allowing a wide range
of applications, while not imposing a coarse-grained or fine-grained design.

In Chapter the design of the MOLEN paradigm was adapted to the RISC-V
architecture. First, the RISC-V instruction formats were introduced. These are the
R-type and R4-type (register-register format), I-type (immediate format), S-type (store

95

56 CHAPTER 6. CONCLUSION

format), B-type (branch format), U-type (upper immediate format) and J-type (jump
format). Together with the opcode, the funct fields (present in most instruction formats)
specify the operation to perform.

After introducing the instruction formats, the RISC-V opcode space was explored.
The custom-0, custom-1, custom-2 and custom-3 opcode spaces were identified for im-
plementing custom instructions. From these options, the custom-0 opcode space was
chosen for the implementation of the current [[SA] extension.

Having established the opcode to use for the[[SAlextension, the design of the MOLEN
pp-code could be adapted to the RISC-V architecture. Due to limitations of the [FPGA]
hardware, the reconfiguration microcode was chosen as a wrapper around the partial
bitstream bytes. The execution microcode was adapted into a nested microcode due to
the same limitations. The R-type instruction was chosen for the implementation of this
microcode, with the funct7 and funct3 fields forming the (nested) micro-instruction to
perform.

Following the design of the reconfiguration and execution microcode, the specific
MOLEN RISC-V [[SA] extension could then be formulated. The set instruction reconfig-
ures the hardware, using the bitstream at the specified address. The ezecute instruction
performs operations on the reconfigurable hardware by employing the implicit funct10
field as (nested) micro-instruction. Furthermore, a status instruction was introduced to
allow the reconfiguration to be performed in the background. This instruction returns
the current reconfiguration status.

In Chapter [4] the MOLEN design from Chapter [3]| was implemented on the CVA6
processor. After giving an overview of the CVAG6 architecture, the following required
modifications were identified to implement the MOLEN paradigm: the decoder had to
be modified to handle the MOLEN instructions correctly, and a MOLEN functional unit
had to be introduced to execute the new instructions. Additionally, it was decided that
the MOLEN unit should be added as master on the AXI crossbar, after outlining the
CVAG6 memory organization.

The decoder was adapted in the following way: first, the opcode was compared to the
custom-0 opcode, after which the funct7 and funct3 fields were evaluated for matching
the set or ezecute operations. In case of an execute instruction, the funct7 and funct3
fields were passed to the next pipeline stage as immediate value.

The MOLEN functional unit consists of a partial reconfigurator and a MOLEN recon-
figurable module. The partial reconfigurator controls the [CAPIto reconfigure the FPGAI
with a partial bitstream that it fetches from the specified memory address. A
queue is used as buffer to streamline this process. The MOLEN reconfigurable module
consists of an interface definition that specifies the inputs and outputs, and an imple-
mentation of that interface that executes the actual custom micro-instructions. The[AXT|
interface of the MOLEN functional unit is shared between the partial reconfigurator and
MOLEN reconfigurable module, because simultaneous memory access from both sources
cannot occur. An [FSM] inside the MOLEN functional unit is responsible for handling
the status instructions, as well as the other two instructions when a reconfiguration is
being performed.

In order to accommodate the partial reconfiguration inside the CVA6 [FPGA] design,
two separate design flows were implemented. The full design flow is performed once

6.1. SUMMARY o7

and results in a full bitstream containing the CVAG6 processor and a single reconfigurable
module. The partial design flow is performed for each reconfigurable module and
results in the partial bitstream that is programmed into the [FPGAIl from within the
MOLEN functional unit (when a set instruction is issued).

As a final part of the implementation, the software interface with the MOLEN ex-
tension must be considered. In order to share data, such as partial bitstreams, with
the MOLEN functional unit, a region is defined at the end of the main memory.
Executing the MOLEN instructions is simplified by the presence of the .insn RISC-
V assembler directive, which allows for the execution of custom instructions. In the
C programming language, a molen_execute wrapper function can be defined using this
directive. The set and status instructions can then be executed by specifying the corre-
sponding pu—opcode for themolen_execute function call.

In Chapter [5] the implemented design was subjected to a series of tests to confirm
that it functions as expected and to gain insight into its performance and resource
consumption. All tests were performed on a Virtex-7 [EPGA] using Vivado 2018.2 for
the synthesis.

In order to test that the design behaves as desired, a standalone test of the MOLEN
unit was first performed in simulation. Subsequently, the design was tested for basic
functionality on the [FPGA] by testing the reconfiguration capabilities. To conclude the
testing, the robustness of the design was verified using corrupted bitstream files and
erroneous usage of the MOLEN instructions.

After confirming the functional correctness of the design, the timing results and
resource utilization could be examined. Pushing the clock speed of the design from 50
MHz to 70 MHz revealed that the MOLEN implementation does not impact the critical
path, except for presence the reconfigurable partition (depending on size). In terms of
resource utilization, a significant increase in area was measured compared to the base
CVAG design. However, this could also be explained by the presence of the reconfigurable
partition affecting the synthesis.

Once the timing and area results were measured, the reconfiguration performance
could be examined. Although the reconfiguration time approached the theoretical min-
imum, an increasing gap could be observed for increasing bitstream sizes. This gap
was explained by the relatively low clock speed limiting the rate at which reconfigura-
tion data could be loaded from the main memory. By increasing the clock speed to 55
MHz, this problem was resolved, with the reconfiguration time closely approximating
the theoretical limit.

After having completed the other tests and measurements, it was determined if the
reconfiguration time could be effectively hidden. A matrix multiplication benchmark
was performed in which an 8x8 matrix multiplication was performed in software and
hardware. Once the hardware had finished its reconfiguration, it could take over the
multiplication from the software. By counting the number of software iterations, as well
as the reconfiguration time, it could be established that the reconfiguration delay could
be successfully hidden in most cases. Some outliers in the measurements, as well as an
attempted random memory access test, indicated that the [CPUl might stall in cases that
are heavily memory-bound, due to the shared [AXT|interface and the way the interconnect
decides which [AXT] master is connected.

58 CHAPTER 6. CONCLUSION

Although some workarounds may be implemented to try to resolve this issue, sharing
the [AXT interface in the way that is currently done would no longer be feasible when at-
tempting to pursue real-world (ASIC]) implementations of the design, due to the different
clock speeds of the and MOLEN unit.

6.2 Main contributions

Having arrived at the end of this thesis, an answer to the main research question from
Section [1.2] can now be formulated. The research question is first reiterated, after which
it is answered:

Will the application of the MOLEN paradigm to a modern processor allow
for hiding reconfiguration latencies?

By implementing the MOLEN instruction set extension on the CVA6 RISC-V processor
(using a Virtex-7 [FPGAl), the reconfiguration delays could be successfully hidden in a
matrix multiplication benchmark, in which the takes over the matrix multiplication
until the hardware has finished its reconfiguration, at which point the hardware takes
over the calculations from the

Some outliers in the results of the matrix multiplication benchmark, as well as the
initial results of an attempted random memory access benchmark, indicate that the
might not be able to do useful work during reconfigurations for heavily memory-bound
applications, which means the reconfiguration delay cannot be successfully hidden in such
cases. This is due to the (AXI]) memory interface that is shared between the and
MOLEN unit, and the switching characteristics of the specific interconnect that is used
to accommodate both [AXTI] masters. This problem could be resolved by modifying the
interconnect and its switching priorities, or by giving the MOLEN unit its own memory
interface (or separate memory unit). Doing so would reduce the contention of the
and MOLEN unit, which in turn would allow the [CPUl to perform useful work even for
completely memory-bound functions. Having a separate memory for the MOLEN unit
would remove this contention altogether.

Other than achieving the central goal of this project, the following main contributions
can be identified:

e A fully functional 64-bit MOLEN RISC-V has been developed as an
extension of the CVAG6 processor, a Linux-capable and well-supported open source
[CPUL The design is implemented on a Virtex-7 [FPGAl The functionality and
robustness of the reconfigurability are verified using several functional tests.

e An implementation of the MOLEN extension was made using a set instruc-
tion that triggers a reconfiguration and a execute instruction that performs func-
tions on the reconfigured hardware. Additionally, a novel status instruction was
introduced to allow the [CPUl to evaluate the progress and result of the set instruc-
tion (the reconfiguration status), such that the reconfiguration can be performed
in the background.

6.3. FUTURE WORK 99

e The novel concept of nested reconfigurable microcode was developed
as practical alternative to the more traditional microcode that was proposed in
the original work ([I2]). Instead of pointing the MOLEN unit to the address of a
microprogram, each separate micro-instruction is encapsulated in a regular RISC-
V instruction, such that it can be passed to the MOLEN unit. In this way, the
MOLEN paradigm was made feasible for implementation on the available [FPGA]
hardware.

e Near-optimal reconfiguration performance was achieved by using [AXI]
burst reading to fill a hardware that in turn writes its contents to the [CAPI
port of the [FPGAl At the default clock speed of 50 MHz (and the maximum
ICAPI speed of 100 MHz), the cannot be filled fast enough to obtain opti-
mal performance. However, at a clock speed of 55 MHz, the performance already
approaches the theoretical limit. At higher speeds, the reconfiguration speed will
be even closer to its theoretical limit.

6.3 Future work

Although a fully functional implementation was created for this thesis, it should be
considered a proof-of-concept rather than a full-fledged design. Some simplifications
and changes had to be made to the original MOLEN paradigm, in correspondence with
the objectives formulated in Section The available [FPGA] platform and its internal
organization also caused some practical limitations on how the MOLEN design could be
implemented. This means there is still room for improvements and further research into
how to adapt the MOLEN paradigm to a modern processor. Some potential topics to
consider are the following ones:

e More extensive performance evaluation.
e Developing an [ASIC] implementation, as described in Section [6.3.1

e Redesigning the microcode to be closer to the proposal of the original work, as
described in Section [6.3.2]

The more extensive performance evaluation would entail testing of the (reconfigura-
tion) performance in real-world applications, and comparing the results to those of other
solutions. The other topics are more involved, and are further explained in the following
sections. The individual ideas presented within those sections could also be considered
separately or in a different setting.

6.3.1 ASIC implementation

A potential improvement avenue is to pursue an [ASIC| implementation of the current
design. Although a fully functional [ASIC] implementation of the CVA6 core has already
been created, the proposed [SAl extension will significantly influence future [ASIC] imple-
mentations. Specifically, the need for reconfigurable fabric in the final design could lead
to two separate implementation avenues:

60 CHAPTER 6. CONCLUSION

e A separate [FPGA] that is connected to the [ASIClL This option would be the most
feasible, because of the wide range of readily available [FPGAL

e An integrated [SoC], comprising the CVA6 MOLEN core and the reconfigurable
fabric. This option is significantly more involved than the previous one and should
probably not be considered for an initial implementation.

Both options would require a higher degree of separation between the CVAG6 core
and the MOLEN unit than the current design provides, due to the physically separated
hardware and separate clock speeds for the[CPUland reconfigurable fabric. The execution
of the reconfigurable micro-instructions could no longer be part of the instruction pipeline
of the [CPUl as is the case in the current design. Although the MOLEN unit is already
separated into an [CAP|reconfigurator and MOLEN reconfigurable module (as illustrated
in Figure , both of those modules are still part of the pipeline. In order to achieve
the higher degree of separation, the following points should be considered:

e The reconfigurator must be updated due to the change towards a separate re-
configurable fabric. Currently, the reconfiguration it performs is always a partial
reconfiguration, because the is located on the same [FPGA] fabric. However, a
separate[FPGAlor reconfigurable fabric could be either partially or fully configured.

e Performing the reconfigurable micro-instructions outside of the[CPUl pipeline would
require a new way to pass them to the reconfigurable fabric, such as an instruc-
tion buffer. This in turn means it must be considered how to return status and
output variables back to the Interrupts could be used for this, or separate
polling-instructions (such as the current MOLEN status instruction). Alterna-
tively, the break instruction from the complete mISAl of the original work could be
implemented.

e The MOLEN unit could get its own memory unit, or keep its access to the main
memory unit of the Either method has its own implications. If it does get
its own unit, the must be given a way of accessing that memory. Conversely,
if it is not given its own unit, it must be able to access the main memory unit,
which is more involved than it currently is, due to the higher separation.

If an [ASIC] implementation is considered to be too involved, an alternative option
would be to implement a double [EFPGA] version first. In that case, one [FPGAl would
contain the CVAG6 core with a (fixed) MOLEN unit, whereas the other one would contain
the reconfigurable fabric that is controlled by the MOLEN unit. Such an implementation
would achieve the higher separation required for an [ASIC] implementation, without also
introducing the unique hardware design challenges of an actual [ASIC| implementation.

6.3.2 Microcode redesign

Practical considerations caused the current design to have moved away from the type
of microcode proposed by the original work to the nested reconfigurable microcode pre-
sented in this thesis. Potential future efforts could involve attempting to match the
original microcode more closely. Doing so would achieve a coarser granularity for the

6.3. FUTURE WORK 61

reconfigurability, in which individual hardware units can be designed separately. Those
units can then be placed and connected as needed in the reconfigurable fabric using
microcode. The original work assumes patterns can be discovered in the reconfigurable
bitstreams as a result of the low-level building blocks that an [FPGAI is comprised of.
To our knowledge, such reverse-engineering would not be feasible for the specific FPGAI
platform that was used for the implementation of this work.

Instead, the advent of relocatable partial bitstreams, such as those proposed in [30],
may enable the use of the original microcode idea. Being able to generate relocatable
bitstreams allows each standalone design to be placed in each available reconfigurable
partition. Because those different designs also need to be connected to each other, the
need for a shared interface arises. Such an interface could also limit the flexibility of the
possible designs. Having multiple reconfigurable partitions also requires careful consid-
eration on the partition sizes. Additionally, being able to load separate reconfigurable
designs into separate reconfigurable partitions does not automatically grant the ability
to use microcode to connect them. Attempting to use microcode for this purpose may
not be a trivial task.

Before evaluating the feasibility of the original microcode, it must also be carefully
considered what the possible advantages and disadvantages are when compared to the
current design. Currently, hardware modules can still be reused, except that reuse takes
place inside the hardware design itself, rather than between separate hardware designs.
For example, individual full adders can still be combined into an (n-bit) adder imple-
mentation, just not using microcode. If the reconfiguration capabilities are targeted at
hardware developers, intricate knowledge on hardware development could already be as-
sumed. In such a case, it may not be beneficial to let them connect individual hardware
units using microcode. On the other hand, providing a wide library of hardware mod-
ules along with the microcoded reconfiguration could allow other users than hardware
developers (such as software developers) to apply reconfiguration in their applications.

62

CHAPTER 6. CONCLUSION

Bibliography

1]

[10]

[11]

[12]

S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.
Panainte, “The molen polymorphic processor,” IEEE Transactions on Computers,
vol. 53, no. 11, pp. 1363-1375, Nov 2004.

F. Zaruba and L. Benini, “The cost of application-class processing: Energy and per-
formance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technol-
ogy,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 11, pp. 2629-2640, Nov 2019.

A. Waterman and K. Asanovi¢, “The RISC-V instruction set manual, volume I:
User-level ISA, document version 20191213,” Dec. 2019.

G. E. Moore, “Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff.” Proceedings of the IEEE,
vol. 86, no. 1, pp. 82-85, Jan 1998.

——, “Progress in digital integrated electronics [technical literaiture, copyright
1975 ieee. reprinted, with permission. technical digest. international electron de-
vices meeting, ieee, 1975, pp. 11-13.],” IEEFE Solid-State Circuits Society Newsletter,
vol. 11, no. 3, pp. 36-37, Sep. 2006.

R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”
IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, Oct 1974.

M. Bohr, “A 30 year retrospective on dennard’s mosfet scaling paper,” IEEE Solid-
State Clircuits Society Newsletter, vol. 12, no. 1, pp. 11-13, Winter 2007.

D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp.
11-13, May 2005.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA), June 2011, pp. 365-376.

W. Nawrocki, “Physical limits for scaling of integrated circuits,” Journal of
Physics: Conference Series, vol. 248, p. 012059, nov 2010. [Online|. Available:
https://doi.org/10.1088%2F 1 742-6596%2F248%2F 1 %2F 012059

C. Kachris and D. Soudris, “A survey on reconfigurable accelerators for cloud com-
puting,” in 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), Aug 2016, pp. 1-10.

J. S. S. M. Wong, “Microcoded reconfigurable embedded processors,” Ph.D. disser-
tation, Delft University of Technology, Dec. 2002.

63

https://doi.org/10.1088%2F1742-6596%2F248%2F1%2F012059

64

BIBLIOGRAPHY

[13]

[14]

[15]

[20]

[21]

22]

[23]

[24]

“RISC-V origin,” https://riscv.org/risc-v-history, accessed: 2020-03-22.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V instruction
set manual, volume I: Base user-level ISA,” University of California at Berkeley,
Tech. Rep. UCB/EECS-2011-62, May 2011.

T. Chen and D. A. Patterson, “RISC-V geneology,” University of California at
Berkeley, Tech. Rep. UCB/EECS-2016-6, Jan. 2016.

“About the RISC-V Foundation,” https://riscv.org/risc-v-foundation, accessed:
2020-03-22.

“Xilinx virtex-7 FPGA vc707 evaluation kit,” https://www.xilinx.com/products/
boards-and-kits/ek-v7-vc707-g.html, accessed: 2020-06-25.

“RISC-V cores and SoC overview,” https://riscv.org/risc-v-cores/), accessed: 2020-
08-04.

J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and dynam-
ically composable architecture of cgra,” in 2014 IEEE 22nd Annual International

Symposium on Field-Programmable Custom Computing Machines, May 2014, pp.
9-16.

N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction set cus-
tomization,” in 87th International Symposium on Microarchitecture (MICRO-
37°04), Dec 2004, pp. 30—40.

M. Wijtvliet, J. Huisken, L. Waeijen, and H. Corporaal, “Blocks: Redesigning coarse
grained reconfigurable architectures for energy efficiency,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), Sep. 2019, pp.
17-23.

V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and
C. Kim, “Dyser: Unifying functionality and parallelism specialization for energy-
efficient computing,” IFEFE Micro, vol. 32, no. 5, pp. 38-51, Sep. 2012.

A. Danilin, M. Bennebroek, and S. Sawitzki, “Astra: An advanced space-time re-
configurable architecture,” in 2006 International Conference on Field Programmable
Logic and Applications, Aug 2006, pp. 1-4.

S. Liang, S. Yin, L. Liu, Y. Guo, and S. Wei, “A coarse-grained reconfigurable
architecture for compute-intensive mapreduce acceleration,” IEEE Computer Ar-
chitecture Letters, vol. 15, no. 2, pp. 69-72, July 2016.

Cao Liang and Xinming Huang, “Smartcell: A power-efficient reconfigurable archi-
tecture for data streaming applications,” in 2008 IEEE Workshop on Signal Pro-
cessing Systems, Oct 2008, pp. 257-262.

https://riscv.org/risc-v-history
https://riscv.org/risc-v-foundation
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://riscv.org/risc-v-cores/

BIBLIOGRAPHY 65

[26]

[36]

[37]

H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A flexible multicore
accelerator with virtualized execution for mobile multimedia applications,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2009, pp. 370-380.

J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “A reconfigurable hetero-
geneous multicore with a homogeneous isa,” in 2016 Design, Automation Test in
Europe Conference Ezhibition (DATE), March 2016, pp. 1598-1603.

Xitian Fan, Huimin Li, Wei Cao, and Lingli Wang, “Dt-cgra: Dual-track coarse-
grained reconfigurable architecture for stream applications,” in 2016 26th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), Aug 2016,

pp. 1-9.

T. Lin, W. Zhang, and N. K. Jha, “A fine-grain dynamically reconfigurable archi-
tecture aimed at reducing the fpga-asic gaps,” IEEFE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2607-2620, 2014.

V.M. G. Martins, J. a. G. Reis, H. C. C. Neto, and E. A. Bezerra, “Designing partial
bitstreams for multiple xilinx fpga partitions,” in Proceedings of the 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, ser. FCCM ’15. USA: IEEE Computer Society, 2015, p. 256—-259.
[Online|. Available: https://doi-org.tudelft.idm.oclc.org/10.1109/FCCM.2015.10

Virtex-7 T and XT FPGAs Data Sheet: DC and AC Switching Characteristics,
Xilinx, 3 2021, v1.29. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
ds183_Virtex_7_Data_Sheet

Vivado Design Suite User Guide: Partial Reconfiguration, Xilinx, 6
2018, v2018.2. [Online]. Available: |https://docs.xilinx.com/v/u/2018.2-English/
ug909-vivado-partial-reconfiguration

“Cva6 5.0.1,” |https://github.com/openhwgroup/cva6 /releases/tag/v5.0.1, ac-
cessed: 2024-06-23.

The C Preprocessor, Free Software Foundation, 2020, v10.2.0. [Online|. Available:
https://gcc.gnu.org/onlinedocs/gee-10.2.0/cpp.pdf

“Vivado design suite - hlx editions: Update 2 - 2018.2,” |https://www.
xilinx.com/support/download /index.html/content /xilinx/en/downloadNav/
vivado-design-tools/archive.html, accessed: 2024-06-23.

“Corev-apu fpga emulation,” https://github.com/openhwgroup/cva6/blob/v5.0.1/
README.md#corev-apu-fpga-emulation, accessed: 2024-06-23.

“Risc-v gnu compiler toolchain,” https://github.com /riscv-collab/
riscv-gnu-toolchain), accessed: 2024-06-23.

https://doi-org.tudelft.idm.oclc.org/10.1109/FCCM.2015.10
https://docs.xilinx.com/v/u/en-US/ds183_Virtex_7_Data_Sheet
https://docs.xilinx.com/v/u/en-US/ds183_Virtex_7_Data_Sheet
https://docs.xilinx.com/v/u/2018.2-English/ug909-vivado-partial-reconfiguration
https://docs.xilinx.com/v/u/2018.2-English/ug909-vivado-partial-reconfiguration
https://github.com/openhwgroup/cva6/releases/tag/v5.0.1
https://gcc.gnu.org/onlinedocs/gcc-10.2.0/cpp.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://github.com/openhwgroup/cva6/blob/v5.0.1/README.md#corev-apu-fpga-emulation
https://github.com/openhwgroup/cva6/blob/v5.0.1/README.md#corev-apu-fpga-emulation
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

66

BIBLIOGRAPHY

[38] Vivado Design Suite User Guide:
2018, v2018.2. [Online]. Available:
ug908-vivado-programming-debugging

Programming and Debugging, Xilinx, 6
https://docs.amd.com/v/u/2018.2-English/

https://docs.amd.com/v/u/2018.2-English/ug908-vivado-programming-debugging
https://docs.amd.com/v/u/2018.2-English/ug908-vivado-programming-debugging

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Motivation
	Problem statement and goals
	Methodology
	Thesis structure

	Background
	Reconfigurable architectures
	Application domains
	Reconfigurable granularity
	Coarse-Grained Reconfigurable Arrays (CGRAs)

	The MOLEN polymorphic processor
	MOLEN ISA extension
	MOLEN organization

	The RISC-V architecture
	FPGA platform
	RISC-V implementation
	Requirements
	Core selection

	Related work
	Overview of existing architectures
	Comparison

	Conclusions

	Design
	RISC-V instruction formats
	RISC-V opcode space
	Microcode design
	Reconfiguration microcode
	Execution microcode

	Proposed ISA extension
	Conclusions

	Implementation
	Implementation overview
	Memory interface
	Instruction decoder
	MOLEN functional unit
	Partial reconfigurator
	MOLEN reconfigurable module
	AXI interface

	Reconfigurable design flow
	Software design
	Conclusions

	Results
	Test setup
	Functional tests
	FPGA synthesis results
	Timing results
	Resource utilization

	Reconfiguration performance benchmark
	Benchmark description
	Discussion

	Matrix multiplication benchmark
	Benchmark description
	Discussion

	Discussion
	Conclusions

	Conclusion
	Summary
	Main contributions
	Future work
	ASIC implementation
	Microcode redesign

	Bibliography

