

Delft University of Technology

Privacy-preserving multi-party access control

Sheikhalishahi, Mina; Tillem, Gamze; Erkin, Zekeriya; Zannone, Nicola

DOI
10.1145/3338498.3358643
Publication date
2019
Document Version
Final published version
Published in
WPES'19

Citation (APA)
Sheikhalishahi, M., Tillem, G., Erkin, Z., & Zannone, N. (2019). Privacy-preserving multi-party access
control. In WPES'19: Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society (pp. 1-
13). Association for Computing Machinery (ACM). https://doi.org/10.1145/3338498.3358643

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3338498.3358643
https://doi.org/10.1145/3338498.3358643

Privacy-Preserving Multi-Party Access Control
Mina Sheikhalishahi

Eindhoven University of Technology
m.sheikhalishahi@tue.nl

Gamze Tillem
TU Delft

g.tillem@tudelft.nl

Zekeriya Erkin
TU Delft

z.erkin@tudelft.nl

Nicola Zannone
Eindhoven University of Technology

n.zannone@tue.nl

ABSTRACT
Multi-party access control has been proposed to enable collabo-
rative decision making for the protection of co-owned resources.
In particular, multi-party access control aims to reconcile conflicts
arising from the evaluation of policies authored by different stake-
holders for jointly-managed resources, thus determining whether
access to those resources should be granted or not. While providing
effective solutions for the protection of co-owned resources, exist-
ing approaches do not address the protection of policies themselves,
whose disclosure can leak sensitive information about, e.g., the
relationships of co-owners with other parties. In this paper, we pro-
pose a privacy-preserving multi-party access control mechanism,
which preserves the confidentiality of user policies. In particular,
we propose secure computation protocols for the evaluation of
multi-party policies, based on two privacy-preserving techniques,
namely homomorphic encryption and secure function evaluation.
An experimental evaluation of our approach shows its practical
feasibility in terms of both computation and communication costs.

CCS CONCEPTS
• Security and privacy→Access control; • Theory of compu-
tation → Cryptographic protocols.

KEYWORDS
Collaborative systems; homomorphic encryption; secure function
evaluation.

ACM Reference Format:
Mina Sheikhalishahi, Gamze Tillem, Zekeriya Erkin, and Nicola Zannone.
2019. Privacy-Preserving Multi-Party Access Control. In 18th Workshop
on Privacy in the Electronic Society (WPES’19), November 11, 2019, London,
United Kingdom. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3338498.3358643

1 INTRODUCTION
Over the last decade, collaborative systems (e.g., social networks,
content sharing platforms) have gained momentum. These systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WPES’19, November 11, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6830-8/19/11. . . $15.00
https://doi.org/10.1145/3338498.3358643

provide platforms and tools to support the interplay among their
users and facilitate the sharing of information and resources. Users
can establish online relationships that resemble real-life interper-
sonal relationships and, based on them, cooperate to create, manage
and protect their resources.

As collaborative systems have emerged and their popularity is
significantly increased, the need of proper mechanisms for pro-
tecting sensitive resources shared in these systems has become of
paramount importance [34]. Multi-party access control has been
proposed as a new paradigm to overcome the inherent limitations of
traditional access control models in dealing with the demands of col-
laborative systems. Specifically, multi-party access control aims to
support the collaborative protection of co-owned resources by pro-
viding a means for collaborative decision-making, in which the ac-
cess requirements provided by all entities involved in the protection
of a jointly-managed resource are accounted for and (possible) con-
flicts arising from conflicting access requirements are reconciled to
determine whether access to the resource should be granted or not.

Several solutions for collaborative decision-making have been
proposed over the past years, ranging from authoritative approaches,
in which the access requirements provided by the various entities
are combined in a predefined manner [14, 29], to approaches aiming
at a mutual agreement among the entities involved in the protec-
tion of co-owned resources [19, 36]. Regardless how collaborative
decisions are made, to the best of our knowledge, no prior work
has addressed the protection of the policies themselves within col-
laborative systems.

Policies might contain sensitive personal information, e.g., about
the relationships among entities, or confidential corporate informa-
tion and, thus, their disclosure could raise concerns for users and
organizations [14, 41]. For instance, users might not define their
privacy settings freely if they are visible to (or can be inferred by)
other users due to social pressure. Indeed, several studies show that
in social networks users’ behavior is largely influenced by other
users [18, 24]; for instance, it has been shown that adolescents are
more likely to share a photo – even showing improper behavior –
if that photo had received several likes from their peers [38].

At the same time, users might also want to minimize the amount
of information to be disclosed to the collaborative platform itself.
Several cases have been reported where online platforms and ser-
vices used and/or disclosed their personal data (including their
privacy preferences) without user consent [9], or were impacted
by data breaches. These concerns are becoming particularly critical
with the advancement in data science and the increasing number
of available data analysis tools that can be used to correlate user
policies with other pieces of personal information and therefore

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

1

https://doi.org/10.1145/3338498.3358643
https://doi.org/10.1145/3338498.3358643
https://doi.org/10.1145/3338498.3358643

reveal much more insights about users. For instance, knowledge
of the interpersonal relations between users along with their pri-
vacy settings and other metadata can be used to profile users (e.g.,
identifying individuals alienated from the community), and this
information exploited for targeted advertising.

We argue that minimizing the information a user has to disclose
allows reducing the trust that she has to pose on the platform. In
this light, users should be able to specify their policies in a private
form while the collaborative platform should still remain able to
make access decisions based on those policies.

In this work, we address this challenge and propose a privacy-
preserving framework for multi-party access control, in which users
provide their policies in a private form and policy evaluation is per-
formed on private inputs, thus preserving the confidentiality of user
policies. Following the multi-party policy model in [29], we build a
‘collaborative’ policy, specifying both positive and negative autho-
rizations for a given co-owned resource, by combining user policies
using policy combining operators. Intuitively, policy combining
operators define strategies specifying how policy conflicts should
be resolved (e.g., permit overrides, deny overrides, first applicable).
For the evaluation of collaborative policies while protecting the con-
fidentiality of users’ policies, we employ secure computation proto-
cols that implement policy combining operators on private inputs.

Secure computation has been applied in a large range of domains,
spanning from medical data analysis [6] and face recognition [16],
to constructing classifiers [7] and clustering algorithms [37]. How-
ever, no prior work has addressed the protection of inputs for three-
valued logic operations, which are required for the specification
and evaluation of collaborative policies that support both positive
and negative authorizations.

To realize a practical mechanism for multi-party access control
supporting policy evaluation on private inputs, we investigate the
use of two well-known privacy-preserving techniques, namely ho-
momorphic encryption (HE) [35] and secure function evaluation
(SFE) [13], for the design of secure computation protocols tailored
to operate on three-valued logic. We also investigate different en-
codings for these operators. Based on these privacy-preserving
technologies and encodings, we design three variants for each pol-
icy combining operator: one based on homomorphic encryption,
one based on SFE using a direct encoding of three-valued logic
operators and one based on SFE using a Boolean logic encoding
of the operators. The proposed protocols can be used as building
blocks for the evaluation of arbitrary collaborative policies.

We demonstrate the security of the proposed protocols, as well
as of their composition, in the presence of a semi-honest adversary,
thus guaranteeing that policy evaluation does not leak any unin-
tended information. We have implemented the proposed protocols
and evaluated their computation and communication costs through
experiments. The results shows that the SFE-based protocols de-
fined over a Boolean logic encoding of the operators outperform the
protocols defined over the other approaches and provide a founda-
tion for the practical realization of privacy-preserving mechanisms
for multi-party access control.

The remainder of the paper is structured as follows. The next
section introduces the background knowledge used in this work.
Section 3 provides an overview of our framework for privacy-
preserving multi-party access control. Section 4 presents our secure

computation protocols for policy evaluation and Section 5 discusses
their security. An experimental evaluation of their computation and
communication costs is presented in Section 6. Finally, Section 7
discusses related work and Section 8 concludes the paper.

2 BACKGROUND
This section provides the background knowledge used in this work,
including a multi-party policy model, homomorphic encryption
and secure function evaluation.

2.1 Multi-Party Policy Model
In this work, we adopt the data governance model proposed in
[29] for the specification of multi-party access control policies, i.e.
policies regulating the access to co-owned resources. This model
provides a general framework to reason on the level of authority
that users have over shared resources and to build a multi-party
access control policy based on their authorization requirements.
Specifically, it captures the relations that users have with a shared
resource and, based on these relations, determines policy combi-
nation strategies to resolve possible policy conflicts. Compared
to other works (see [34] for a survey), the model in [29] allows a
more fine-grained governance of shared resources by representing
and ordering levels of authority, which can be instantiated using
arbitrary conflict resolution strategies.

To formalize access control policies regulating co-owned re-
sources, we use a policy combination algebra inspired by PTaCL
[10, 30], which provides an abstraction of XACML [33], the de facto
standard for attribute-based access control.

Let U be the set of users and S the set of their (individual)
policies.1 Policies for regulating access to co-owned resources are
specified using a policy language P. Formally, a multi-party policy
p ∈ P is defined by the following grammar:

p = s | op(p1, . . . ,pn)

Intuitively, a multi-party policy p is an expression built over user
policies s ∈ S using policy combining operators. op is an n-ary op-
erator, defined over decision set D3 = {P ,D,NA} where P denotes
permit, D denotes deny and NA that the policy is not-applicable to a
given query. Here, we adopt the operators defined in PTaCL, which
are presented in Table 1. These operators represent largely-used
policy conflict resolution strategies like XACML operators permit-
overrides (∇), deny-overrides (△) and first-applicable (◃) as well as
variations of these operators based on different interpretations of
the not-applicable decision (we refer to [11] for a detail discussion
on these interpretations and corresponding operators). We also
consider the negation operator (¬) and the weakening operator (∼),
which maps the not-applicable decision to deny. Note that the set
of operators {¬,∼, ⊔̃} is canonically complete [27], i.e. any three-
valued operator can be constructed using these three operators.

Given the set of policies P, the set of access queries Q and
decision set D3, we represent policy evaluation as a function J·K :
P × Q → D3 such that, given a query q and a policy p, JpK(q)
represents the decision of evaluating p against q. The evaluation
of composite policies op(p1, . . . ,pn) is obtained by combining the

1Here, we abstract from the specification of users’ individual policies and focus on the
way in which these policies are combined for the protection of co-owned resources.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

2

d1 d2 ¬d1 ∼ d1 d1⊓̃d2 d1 ⊓ d2 d1△d2 d1⊔̃d2 d1 ⊔ d2 d1∇d2 d1 ◃ d2
P P D P P P P P P P P
P D D P D D D P P P P
P NA D P NA NA P P NA P P
D P P D D D D P P P D
D D P D D D D D D D D
D NA P D D NA D NA NA D D
NA P NA D NA NA P P NA P P
NA D NA D D NA D NA NA D D
NA NA NA D NA NA NA NA NA NA NA

Table 1: Operators on decision set D3 = {P ,D,NA}

evaluation of the policies forming that policy with respect to the
semantics of the policy combining operators given in Table 1.

2.2 Homomorphic Encryption
Homomorphic Encryption (HE) is a family of cryptographic schemes
that enable computation over encrypted data. HE allows perform-
ing an operation on ciphertexts, such that the resulting ciphertext
would decrypt to the same value that would have been obtained
by performing the operation on the corresponding plaintexts. In
this work, we use an additively homomorphic cryptosystem, e.g.,
the Paillier cryptosystem [35]. We now briefly review the essential
concepts behind additively homomorphic encryption and present
the cryptographic building blocks used in this work.

2.2.1 Additively Homomorphic Encryption. Additively homomor-
phic encryption allows for addition in the ciphertext domain while
preserving the result of the operation in the plaintext domain. Let
Epk (·) and Dsk (·) represent the encryption function (with public-
key pk) and decryption function (with secret-key sk), respectively.
Letm1,m2 be two messages and e a scalar value, both represented
as integers. The homomorphism is defined as follows:

Dsk (Epk (m1) · Epk (m2)) =m1 +m2,

Dsk (Epk (m)e) = e ·m.

Hereafter, we denote the encryption of a plaintextm, encrypted
with a unique public-key pk , by [m]pk . Since additively homomor-
phic cryptosystems require ciphertexts encrypted with the same
public-key, we omit the public-key when it is clear from the context
and we simply write [m].2 Moreover, we use symbol ⊕ to denote
homomorphic addition and ⊖ to denote homomorphic subtraction.
Specifically, [m1] ⊕ [m2] = [m1 +m2] and [m1] ⊖ [m2] = [m1 −m2].

2.2.2 HE Building Blocks. Additive homomorphic encryption en-
ables us to perform addition and scalar multiplication operations
without decrypting the ciphertexts. However, performing more
complex operations in homomorphic encryption requires interac-
tive two-party protocols. In such protocols, one party holds the
secret key and helps the other party to perform intermediary com-
putations and decryptions. Below we introduce four secure compu-
tation protocols that we use as building blocks for the construction
of protocols for the secure evaluation of multi-party policies.

2Note that the encryption of two equal messages with the same public-key typically
results in two different ciphertexts. Inmany cryptosystems like the Paillier cryptosytem,
this is guaranteed by the fact that the encryption function is probabilistic.

Secure Equality Protocol: Secure equality is used to determine
the equality between two encrypted values [31]. Given two cipher-
texts [a] and [b], the secure equality test between [a] and [b] is
defined as:

[a
?
= b] =

{
[1] if a = b,

[0] otherwise.

Secure Comparison Protocol: Secure comparison is used to com-
pare two encrypted values [32]. Given two ciphertexts [a] and [b],
the secure comparison between [a] and [b] is defined as:

[a
?
≤ b] =

{
[1] if a ≤ b,

[0] otherwise.

Secure Multiplication Protocol: Secure multiplication is used
to compute the multiplication between two encrypted values [17].
Given two ciphertexts [a] and [b], the secure multiplication of [a]
and [b] is defined as:

[a] ⊗ [b] = [a · b].

Secure Matching Protocol: Secure matching is used to deter-
mine whether an encrypted value belongs to a set of encrypted
values [20]. Given a ciphertext [a] and a set of ciphertexts B =
{[b1], . . . , [bn]}, the secure matching protocol is defined as:

[P(a,B)] = ([b1] ⊖ [a]) ⊗ . . . ⊗ ([bn] ⊖ [a])

Intuitively, this protocol returns [0] if a ∈ B.

These building blocks can be combined for the definition of other
protocols. For instance, they can be used to define a protocol for
the secure computation of the XOR operation. Specifically, given
two values a,b ∈ {0, 1}, the secure XOR protocol can be defined as:

[a] XOR [b] = ([a] ⊕ [b]) ⊖ ([2] ⊗ [a] ⊗ [b]).

2.3 Secure Function Evaluation
Despite allowing computations in the ciphertext domain, homo-
morphic encryption is computationally expensive. Secure function
evaluation (SFE) is an alternative method to homomorphic encryp-
tion for privacy-preserving computations. It enables several parties
to compute a function on their private inputs without revealing any
information apart from the result of the function. Secure function
evaluation was introduced by Yao as a secure two-party compu-
tation to solve millionaires’ problem such that Alice and Bob try
to decide who is richer without revealing their wealth to each
other [44]. Later, it was generalized to a multi-party setting in [22].

In this work, we implement secure function evaluation in two-
party setting using the ABY framework [13]. ABY provides the
constructions for Arithmetic circuits [5], Boolean circuits [22], and
Yao’s garbled circuits [44]. For the definition of our protocols, we
only use Boolean circuits, since they provide efficient constructions
for nonlinear functions.

Given two parties P1, P2 and their corresponding inputs x and
y, ABY first creates secret shares for each party and a circuit that
computes a specific function f , and then evaluates f on the secret
shares using the circuit. Secret shares of each party is represented
as ⟨x⟩1 , ⟨x⟩2 and ⟨y⟩1 , ⟨y⟩2. Secret shares are created for each bit of
the input: given a bit xi , ⟨xi ⟩1 , ⟨xi ⟩2 are such that ⟨xi ⟩1�⟨xi ⟩2 ≡ xi
mod 2, where � represents bitwise XOR operation. The result of

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

3

the function is reconstructed by combining the secret shares ob-
tained by each party through a bitwise XOR operation. For more
details on the mechanism and implementation of Boolean circuits,
we refer the reader to [13].

2.3.1 SFE Building Blocks. We adopt seven Boolean gates from the
ABY framework as building blocks for the design of our SFE-based
secure protocols. Next, we present these gates.
Addition Gate: The addition gate overloads integer addition such
that the result is equal to the addition of two secret shared inputs in
modulus 2ℓ , where ℓ is the bit size of the inputs. Given two secret
shared inputs ⟨a⟩ and ⟨b⟩, the addition gate is represented as:

⟨a + b⟩ = ⟨a⟩ + ⟨b⟩ mod 2ℓ .

Subtraction Gate: The subtraction gate overloads integer subtrac-
tion such that the result is equal to the difference of two secret
shared inputs in modulus 2ℓ . Given two secret shared inputs ⟨a⟩
and ⟨b⟩, the subtraction gate is represented as:

⟨a − b⟩ = ⟨a⟩ − ⟨b⟩ mod 2ℓ .

Multiplication Gate: The multiplication gate overloads integer
multiplication such that the result is equal to the multiplication of
two secret shared inputs in modulus 2ℓ . Given two secret shared
inputs ⟨a⟩ and ⟨b⟩, the multiplication gate is represented as:

⟨a × b⟩ = ⟨a⟩ × ⟨b⟩ mod 2ℓ .

Inverse Gate: The inverse gate is used to compute the negation
of a secret shared input in modulus 2ℓ . The inverse here refers to
the additive inverse in mod 2ℓ , such that the additive inverse of a
number a is equivalent to 2ℓ − a. Given a secret shared input ⟨a⟩,
the inverse gate is defined as:

⟨¬a⟩ = −⟨a⟩ mod 2ℓ .

Equality Gate: The equality gate is used to check the equality of
two secret shared inputs in modulus 2ℓ . Given secret shared inputs
⟨a⟩ and ⟨b⟩, the equality gate is defined as:

⟨a
?
= b⟩ =

{
⟨1⟩ if a = b

⟨0⟩ otherwise

AND Gate: We perform a bitwise AND operation between two
secret shared inputs using an AND (∧) gate. Given secret shared
inputs ⟨a⟩ and ⟨b⟩, the AND gate is defined as:

⟨a ∧ b⟩ = ⟨a⟩ ∧ ⟨b⟩ mod 2ℓ .

OR Gate: We perform a bitwise OR operation between two secret
shared inputs using an OR (∨) gate. Given the secret shared inputs
⟨a⟩ and ⟨b⟩, the OR gate is defined as:

⟨a ∨ b⟩ = ⟨a⟩ ∨ ⟨b⟩ mod 2ℓ .

3 A PRIVACY-PRESERVING FRAMEWORK
FOR MULTI-PARTY ACCESS CONTROL

This section illustrates the challenges in multi-party access control
through a running example within the social network domain and
presents an overview of our framework to address these challenges.

3.1 Motivating Example
Consider an online social network that provides users with a plat-
form to host and share their contents and to build communities of
users with common interests. Users can upload contents on their
profile as well as on the profile of other users. The contents up-
loaded by a user can be about the user herself or about other users.
Following the data governance model in [29], we identify three
main stakeholders based on their relation with the contents: the
data host (H), which is the user in whose profile the contents are
posted; the data provider (P), which is the user who uploaded the
contents; and the data subjects (S), which are the users to whom
the contents refer. The contents can refer to multiple data subjects.

Users can specify privacy preferences that define who is autho-
rized to access their contents; however, their preferences can con-
flict with the preferences of other users. To enable the collaborative
management of contents, the social network should employ a multi-
party access control policy that combines the privacy preferences
of individual users while accounting for their level of authority
over the contents. The level of authority that users have over the
contents typically depends on their relation with the contents [12].
The data governance model in [29] allows one to explicitly reason
on the level of authority that users have based on their relation with
the contents and to specify a multi-party policy by capturing the
different levels of authority using the combining operators in Ta-
ble 1. Combining operators dictate how policy conflicts are resolved
and their choice is influenced, for instance, by the requirements
imposed by privacy and data protection regulations.

In our scenario, we assume that the social network adopts the
following (abstract) multi-party access control policy:

p = (sS1 △ . . . △ sSm) ◃ (sH △ sP) ◃ sSN

where sS1 , . . . , sSm , sH , sP are placeholders denoting the privacy
preference of the data subjects S1, . . . , Sm , data host H and data
provider P , respectively. sSN is a default policy used by the social
network to handle the situation in which none of the user prefer-
ences is applicable. Intuitively, the multi-party policy states that
the privacy preferences of the data subjects have priority over the
ones of the data host and data provider.3 In turn, the preferences
of the data host and data provider have priority over the social
network’s default policy. The preferences of the data subjects (and
the ones of the data host and data provider) are combined using
the deny-overrides operator (△) that returns a deny decision if at
least one of the user policies denies access (we refer to Table 1 for
the exact definition of the operator).

Suppose that a user – Alice – uploads a photo representing
some friends – Carly and David – on the profile of another user –
Bob. Each of these users defines his/her privacy preferences stating
which users can view the photo. For the sake of exemplification, we
illustrate their privacy preferences using a simple policy language
but our approach is applicable to any policy language that supports
the specification of both positive and negative authorizations.

We model the privacy preferences of a user as a pair (X ,Y),
where X represents the set of users to which access is granted
and Y represents the set of users to which access is denied. Let

3This is in line with most data protection regulations, which empower data subjects
regarding their own personal data [23].

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

4

suo = (Xu
o ,Y

u
o) be the privacy preferences of a user u regulating the

access to a data object o. Given an access query q made by a user r
for o, the evaluation of q against suo is defined as follows:

Jsuo K(q) =

P if r ∈ Xu

o \ Yuo
D if r ∈ Yuo
NA otherwise

(1)

Let us assume that the privacy preferences of Alice, Bob, Carly
and David for the photo are defined as follows:

sAlicephoto = (Public, ∅) sBobphoto = (Colleagues, {Evelyn,Hope})

s
Carly
photo = (Friends, ∅) sDavidphoto = (Friends, {Grace})

where Friends is used as a shortening to represent the set of friends
of a given user; similarly, Colleagues represents the set of colleagues.
Public denotes that access is granted to all users.

Grace, a friend of Carly and David, accesses the profile of Bob,
who is her colleague. To determine whether Grace is allowed to
view the photo, the social network instantiates the multi-party
policy with the privacy preferences of the users involved in the
management of the photo. Specifically:

pphoto = (s
Carly
photo △ sDavidphoto) ◃ (sBobphoto △ sAlicephoto) ◃ sSN

The instantiated policy is evaluated with respect to a query
q asking whether Grace is allowed to view the photo. First, the
individual privacy preferences are evaluated, obtaining:

JsAlicephotoK(q) = P JsBobphotoK(q) = P

JsCarlyphoto K(q) = P JsDavidphoto K(q) = D

Based on these evaluations (and assuming that the social network’s
default policy always grants access), we obtain:

JpphotoK(q) = (P △D) ◃ (P △ P) ◃ P = D

Thus, Grace is not allowed to view the photo. This is because David
denied her access.

In order for our scenario towork as intended, users should be able
to freely define their privacy preferences. For instance, David might
not want Grace to learn that he did not give her the permission to
view the photo. If this is not possible, he could require the removal
of the photo from the social network, thus reducing his willingness
to share new contents. Moreover, privacy preferences can reveal in-
terpersonal relationships with other users, which a user might want
to keep private. For instance, Carly might not want that other users
know he has a friendship relation with Grace. Even if their privacy
settings are not made visible to other users, users might prefer to
minimize the information to be disclosed to the social network. In
particular, they might not want to disclose their interpersonal re-
lations (contained in their privacy preferences) as this information
could be used for profiling and targeted advertising [15].

In this work, we focus on the protection of user policies and
propose a framework that allows users to disclose their privacy
preferences in a private form while the social network still remains
capable of making access decisions based on user preferences.

3.2 Framework
To enable the evaluation of multi-party policies while protecting
the confidentiality of user policies, we design an access control
mechanism that supports policy evaluation on private inputs. An
overview of our mechanism is presented in Figure 1.

Our framework comprises four main entities:
• Data holders () share their resources and data along with poli-
cies for their protection and want their policies to remain private.

• Access requester () requests access to resources and data.
• Data Server (DS) stores the data holders’ resources and is respon-
sible for their protection (the social network in our example).
The Data Server evaluates data holders’ policies to determine
whether access to their resources should be granted.

• Semi Trusted Party (STP) is a semi-honest entity that assists DS
in the secure evaluation of data holders’ policies.
The data holders provide their policies in a private form (rep-

resented by (s1), . . . , (sn) in Figure 1) to DS. Data holders are not
involved in the evaluation of either their policies or the multi-party
policy and, thus, they are not required to be online in order for a de-
cision to be made. This task is performed by DS together with STP.

The ‘private form’ in which policies are provided and the pro-
tocols used for policy evaluation are dictated by the underlying
privacy-preserving technique. In HE, STP generates public (pk) and
private (sk) keys and sends the public key pk to the data holders
and to DS. Data holders encrypt their policies using the public key
received by STP and send the encrypted policies to DS. On the
other hand, in SFE users generate two secret shares of their policies
and provide one share to DS and one to STP. Upon receiving an
access request, DS’s policy evaluation point evaluates the request
against each user policy in private form with the assistance of STP,
resulting in an access decision (in private form) for each policy
(represented by (d1), . . . , (dn) in Figure 1).

The policy combination point evaluates the multi-party policy by
combining the (protected) access decisions resulting from the evalu-
ation of user policies.We propose secure computation protocols that
enable the policy combination point to perform policy evaluation
over policies in private form (see Section 4). These protocols imple-
ment the combining operators in Table 1 and can be used as building
blocks for the secure evaluation of any multi-party policy expressed
using those operators. Once the multi-party policy has been eval-
uated (with the assistance of STP), the policy combination point
returns the access decision in private form (d) corresponding to
the evaluation of the access request against the multi-party policy.

To be able to enforce the decision, DS should derive the decision
in plaintext from the decision in private form returned by the policy
combination point. Yet, how this step is performed depends on the
underlying privacy-preserving technology. In SFE, DS can derive
the decision in plaintext by recombining the secret share obtained
by evaluating the multi-party policy with the one obtained by STP
(see Section 2.3). Deriving the decision in plaintext is trickier in HE.
DS should not have access to the decryption key; otherwise, it will
be able to learn data holders’ policies. In order for DS to decrypt
the encrypted decision without STP learning it, DS adds random
noise r to the encrypted decision [d] and sends [d + r] to STP. STP
decrypts the ciphertext and sends d + r to DS. DS can obtain the
decision to be enforced by removing the added noise r from d + r .

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

5

(s1) (s2) (sn)

Policy Evaluation Point

(d1) (dn)(d2)

Policy Combination Point

(d)

Data Server

...

...

access
request

STP

Figure 1: Architecture

3.3 Security Assumptions
We assume a semi-honest security model [21] where all participants
are assumed to be honest-but-curious. It means that all entities fol-
low the protocol specification properly but they are interested in
obtaining more information from their input, intermediary mes-
sages and output. Specifically, they keep track of the messages
exchanged and try to learn as much information as possible from
them. This assumption guarantees that computations do not leak
any unintended information.

With respect to the semi-honest security assumption, our goal is
to design protocols that provide security against honest-but-curious
non-colluding DS and STP. Accordingly, the policies provided by
data holders should be kept hidden from DS and STP. They can only
see the encryption of the policies (if HE is used) or their private
shares of the policies (if SFE is used). At the end of policy evaluation,
the decision should be revealed to DS (as it has to enforce the deci-
sion) but not to STP as this entity does not need to knowwhether ac-
cess was granted to the requester or not (minimality principle [23]).

We do not include data holders and access requester in the se-
curity assumptions since they do not actively contribute to the
computations. We assume the data holders provide the correct pro-
tected inputs (i.e., their policies) to the corresponding parties at
the beginning of the protocol execution. Also, we assume access
requester can only observe the final decision of policy evaluation.

The non-colluding two-server setting is used to reduce the work-
load on the client side. Without the use of a second server, all
computations have to be performed between the client and DS.
This is, however, not desirable because it requires the client to have
enough computational resources and also to be online during com-
putations. Finally, we assume that all parties communicate over an
authenticated channel. This assumption aims to prevent attacks
coming from outside the framework.

4 PRIVACY-PRESERVING PROTOCOLS FOR
POLICY EVALUATION

For the realization of a practical mechanism able to evaluate multi-
party access control policies while preserving the confidentiality
of user policies, we need efficient secure computation protocols

that compute the policy combining operators in Table 1 on private
inputs. To this end, we have investigated how to design such proto-
cols using two well-known privacy-preserving techniques, namely
(additively) homomorphic encryption (HE) and secure function
evaluation (SFE). We also investigate alternative encodings for the
specification of the three-valued logic operators in Table 1.

This section presents three alternative privacy-preserving real-
izations of the secure computation protocols, leveraging (i) homo-
morphic encryption, (ii) SFE based on a direct encoding of three-
valued logic operators and (iii) SFE based on a Boolean logic en-
coding of the operators. These protocols serve as building blocks
and can be used to evaluate any multi-party policy built over the
operators in Table 1. We evaluate the proposed protocols through
an experimental analysis in Section 6.

4.1 HE-based Protocols
The HE-based protocols are defined over the four cryptographic
building blocks presented in Section 2.2.2 – equality test, com-
parison, multiplication and matching – along with homomorphic
addition and subtraction. Before presenting the protocols, recall
that homomorphic encryption operates on integer numbers. Thus,
we need to represent the decisions in D3 as integer numbers. For
the design of our protocols, we map access decisions D, NA and
P to 0, 1 and 2, respectively. It is worth noting that this encoding
leads to a total order over access decisions where P > NA > D.

For the evaluation of user policies as defined in Eq. 1 (Section 3.1),
we use the secure matching protocol to determine whether the
requester belongs to the set of allowed and prohibited users. To
obtain an output suitable for policy evaluation, we have adapted
the protocol as follows. Given an encrypted value [a] and a set of
encrypted values B = {[b1], . . . , [bn]}, we define

[a
?
∈ B] = [P(a,B)

?
= 0]

Intuitively, this protocol returns [1] if a ∈ B and [0] otherwise. We
use this protocol for the evaluation of user policies. Let s = (X ,Y)
be a user policy, where X and Y are finite sets of user IDs denoting
the users allowed and denied to access a given object, respectively.
We assume that a user encrypts her policy by encrypting every ID
individually.4 We denote the encrypted policy as [s]. Note that, if a
user wishes to make an object publicly available, denoted by Public
in the example of Section 3.1, the corresponding access constraint
does not require listing the IDs of all users within the social net-
work, but it can be simply encoded with a simple condition that
always holds or omitted. Thus, its verification does not introduce
any computational burden.

Given an encrypted user policy [s] (with s = (X ,Y)) and an
access request q consisting of the ID of the requester r , we define
the protocol for the evaluation of user policies as:

evalH ([s],q) = ([1] ⊖ [r
?
∈ Y]) ⊗ ([1] ⊕ [r

?
∈ X])

It is easy to verify that evalH ([s],q)= [d] iff d=JsK(q).
We now present the protocols for the combining algorithms in

Table 1. As the set of operators {¬,∼, ⊔̃} is canonically complete,
4To limit the information that can be inferred from the policy, fix-length lists can be
used for the specification of the users for which access is granted of denied. Empty
slots can be filled with ‘dummy’ values that do not match any user ID.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

6

Operator Protocol Definition

¬a notH ([a]) ([a
?
= 1] ⊗ [a]) ⊕

(
([1] ⊖ [a

?
= 1]) ⊗ ([2] ⊖ [a])

)
∼ a weaH ([a]) [a

?
= 2] ⊗ [a]

a⊔̃b smaxH ([a], [b])
(
([1] ⊖ [a

?
≤ b]) ⊗ [a]

)
⊕ ([a

?
≤ b] ⊗ [b])

a⊓̃b sminH ([a], [b]) ([a
?
≤ b] ⊗ [a]) ⊕

(
([1] ⊖ [a

?
≤ b]) ⊗ [b]

)
a ⊔ b wmaxH ([a], [b]) ([a

?
= 1] XOR [b

?
= 1]) ⊕

((
[1] ⊖ ([a

?
= 1] XOR [b

?
= 1])

)
⊗ smaxH ([a], [b])

)
a ⊓ b wminH ([a], [b]) ([a

?
= 1] XOR [b

?
= 1]) ⊕

((
[1] ⊖ ([a

?
= 1] XOR [b

?
= 1])

)
⊗ sminH ([a], [b])

)
a∇b poH ([a], [b]) ([a

?
= 1] ⊗ [b

?
= 1]) ⊕

((
([a

?
= 2] ⊗ [b

?
= 2]) ⊕ ([a

?
= 2] XOR [b

?
= 2])

)
⊗ [2]

)
a△b doH ([a], [b]) ([a

?
= 1] ⊗ [b

?
= 1]) ⊕

((
([a

?
= 2] ⊗ [b

?
= 2]) ⊕ ([a

?
= 2] ⊗ [b

?
= 1]) ⊕ ([a

?
= 1] ⊗ [b

?
= 2])

)
⊗ [2]

)
a ◃ b f aH ([a], [b])

(
([1] ⊖ [a

?
= 1]) ⊗ [a]

)
⊕ ([a

?
= 1] ⊗ [b])

Table 2: HE-based protocols

we first propose secure computation protocols for these operators.
The definition of these protocols is given at the top of Table 2.

Negation protocol (notH): Given an encrypted decision [a], pro-
tocol notH ([a]) computes the negation of a (Table 1) under en-
cryption, denoted by [¬a]. The protocol consists of two terms:
the first term (i.e., [a ?

= 1] ⊗ [a]) is used to deal with the case
where a is the non-applicable decision and the second term (i.e.,
([1] ⊖ [a

?
= 1]) ⊗ ([2] ⊖ [a])) with the case where a is permit or deny.

Intuitively, if a is 1 (i.e., non-applicable), the second term evaluates
[0] because of ([1] ⊖ [a

?
= 1]) and the first term evaluates [1]. Then,

[0] ⊕ [1] = [1], i.e. the non-applicable decision (under encryption).
On the other hand, if a is 2 (i.e., permit), the first term evaluates [0],
and the second term can be reduced to [2] ⊖ [2], which gives [0],
i.e. deny. The homomorphic addition of these two terms gives [0].
Similar reasoning applies when a is 0.

Weakening protocol (weaH): Given an encrypted decision [a],
protocol weaH ([a]) computes the weakening of a (Table 1) under
encryption, denoted by [∼ a]. Intuitively, if a is 2, the comparison
protocol [a ?

= 2] returns [1] and, thus, the weakening protocol
returns [2]. Otherwise, if a is 0 or 1, the comparison protocol returns
[0] and so the weakening protocol returns [0].

Strong disjunction protocol (smaxH): Given two encrypted de-
cisions [a] and [b], the strong disjunction protocol smaxH ([a], [b])
computes a⊔̃b (Table 1) under encryption. It is worth noting that
this operator corresponds to the max operator with respect to total
order P > NA > D. Accordingly, the strong disjunction protocol
computes the maximum between a and b in encrypted form. If a

is strictly greater than b, the first term (i.e., ([1] ⊖ [a
?
≤ b]) ⊗ [a])

returns [a] whereas the second term (i.e., [a
?
≤ b] ⊗ [b]) returns [0],

and thus the protocol returns [a]. Otherwise, if a is lower than (or
equal to) b, the first term returns [0] and the second [b], and thus
the protocol returns [b].

Since the set of operators {¬,∼, ⊔̃} is canonically complete, the
protocols above can be used as building blocks for the definition of
secure computation protocols for the other operators in Table 1. For
instance, strong conjunction can be express as a⊓̃b = ¬(¬a⊔̃¬b)

and, thus protocol notH (smaxH (notH ([a]), notH ([b])) can be used
to securely compute strong conjunction of [a] and [b]. However,
the resulting protocols are computationally expensive and require
significant bandwidth usage. Thus, we have designed specific pro-
tocols for operators ⊓̃,⊔,⊓,△,∇,◃ (Table 2), which minimizes the
number of building blocks used. Next, we present these protocols.

Strong conjunction protocol (sminH): Given two encrypted de-
cisions [a] and [b], protocol sminH ([a], [b]) computes a⊓̃b (Table 1)
in encrypted form. This operator corresponds to the min operator
with respect to total order P > NA > D. Thus, protocol sminH is
the dual of protocol smaxH .

Weakdisjunction protocol (wmaxH):Given two encrypted deci-
sions [a] and [b], protocol wmaxH ([a], [b]) computes a⊔b (Table 1)
under encryption. Basically, this operator returns non-applicable if
at least one of a and b is non-applicable. Otherwise, the maximum
between a and b is returned. We designed protocol smaxH per cases
using the XOR protocol (we refer to Section 2.2 for its definition). If
either a or b is 1 (i.e., non-applicable), term ([a

?
= 1] XOR [b

?
= 1])

evaluates [1], and the second term (i.e., [1] ⊖ ([a
?
= 1] XOR [b

?
=

1]) ⊗ smaxH ([a], [b])) returns [0]. If both a and b are 1, or neither
a nor b is 1, then ([a

?
= 1] XOR [b

?
= 1]) evaluates [0], and conse-

quently the second term returns smaxH ([a], [b]), i.e., the maximum
between a and b in encrypted form.

Weak conjunction protocol (wminH): Given two encrypted de-
cisions [a] and [b], protocolwminH ([a], [b]) computes a⊓b (Table 1)
under encryption. This operator differs from weak disjunction for
the fact that when none of the decisions (or both) is (are) non-
applicable, then the minimum is returned in encrypted form. Based
on this observation, protocol wminH deals with the case where at
least one of a and b is 1 as in protocol wmaxH , i.e. the second terms
becomes [0]. On the other hand, the two protocols differ for the last
term, in which smaxH ([a], [b]) is replaced with sminH ([a], [b]).

Deny-override (doH): Given two encrypted decisions [a] and [b],
protocol doH ([a], [b]) computes a△b (Table 1) under encryption.
This operator returns deny whenever one of its arguments is deny
and returns permit if at least one of its arguments is permit and none
is deny; otherwise, if both arguments are not-applicable, it returns

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

7

not-applicable. Protocol doH follows this intuition. Specifically, the
first term of protocol doH (i.e., [a ?

= 1] ⊗ [b
?
= 1]) is used to check

if both decisions are not-applicable. If this is the case, it returns [1];
also, it is easy to verify that in this case the second term returns [0].
Thus, the protocol returns [1]. On the other hand, the second term
deals with the case where at least one of a andb is 2 (i.e., permit) and
both are not 0 (i.e., deny). In this case, the first term evaluates [0]
and the second term reduces to [1]⊗ [2], which gives [2]. In all other
cases, i.e., when at least one of a and b is 0, the protocol returns [0].
Permit-override (poH): Given two encrypted decisions [a] and
[b], protocol poH ([a], [b]) computes a∇b (Table 1) under encryption.
This operator is similar to deny-override but in this case permit
has precedence over deny. Accordingly, protocol poH uses a similar
structure of protocol doH . However, note that the second term of
poH checks whether at least one of the arguments is [2]. This is
done by checking if both a and b are 2 (using [a ?

= 2] ⊗ [b
?
= 2]) and

if exactly one of a and b is 2 using the XOR protocol.
First-applicable (faH):Given two encrypted decisions [a] and [b],
protocol faH ([a], [b]) computes a ◃ b (Table 1) under encryption.
This operator evaluates its arguments in the order in which they
are specified and returns the decision of the first policy that differs
from not-applicable. Accordingly, the first term of protocol faH (i.e.,
([1] ⊖ [a

?
= 1]) ⊗ [a]) checks whether a is different from 1. If this

is the case, the first term evaluates [a]; it is also trivial to see that,
in this case, the second term evaluates [0]. Since [a] ⊕ [0] = [a],
the protocol returns [a], i.e., the first argument. Otherwise, if a is
1 (i.e., not-applicable), the first term evaluates [0] and the second
term evaluates [b]. Since [0] ⊕ [b] = [b], the protocol returns [b],
i.e., the second argument.

4.2 SFE-based Protocols (Three Valued Logic)
As an alternative to homomorphic encryption, we design protocols
that implement the evaluation of multi-party access control policies
using secure function evaluation. Similar to HE-based protocols, we
use three-valued logic for the representation of the decisions and
use 0, 1, and 2 to represent D, NA and P , respectively. We use the
SFE building blocks in Section 2.3.1 for the design of the protocols.

For the evaluation of user policies, we design a protocol similar
to the one used for homomorphic encryption. Given a secret shared
input ⟨a⟩ and a set of secret shared inputs B = {⟨b1⟩, . . . , ⟨bn⟩},
the SFE secure matching protocol can be defined as:

⟨P(a,B)⟩ = ⟨b1 − a⟩ × . . . × ⟨bn − a⟩

Then, we define ⟨a
?
∈ B⟩ = ⟨P(a,B)

?
= 0⟩ to check whether a secret

shared input a belongs to the set of secret shared inputs B. The
secret share of a user policy s = (X ,Y), denoted as ⟨s⟩, is obtained
from s by secret sharing every element of X and Y . Given a secret
shared policy ⟨s⟩ and an access control request q consisting of the
user ID of the requester r , policy evaluation can be performed using
the following protocol:

evalT (⟨s⟩,q) = (⟨1⟩ − ⟨r
?
∈ Y ⟩) × (⟨1⟩ + ⟨r

?
∈ X ⟩)

Yet, it is easy to verify based on Eq. 1 that evalT (⟨s⟩,q) = [d] iff
d = JsK(q).

For the evaluation of multi-party policy, we designed SFE-based
protocols implementing the operators in Table 1, as shown in Ta-
ble 3. Compared to HE-based protocols, SFE-based protocols are
less complex. The reason is that SFE provides the implementation
of logic gates like inverse, AND, OR, etc., whereas under HE these
gates should be designed using additions and multiplications.

Negation (notT):Given the secret shares of a decision ⟨a⟩, protocol
notT (⟨a⟩) computes its negation, which is represented as ⟨¬a⟩. We
do not use an inverse gate for the computation of the negation op-
erator. The reason is that, when we compute the negation mod 22,
the inverse of 0, 1, and 2 become 3, 2, and 1 despite the correct values
should be 2, 1, and 0. Instead, wemake use of equality check and sub-
traction gates. Accordingly, first the protocol checks whether the
value of secret shared input ⟨a⟩ is ⟨1⟩. If so, it maps it to itself with a
multiplication gate. Otherwise, it performs a subtraction operation
⟨2⟩ − ⟨a⟩. The result of subtraction maps ⟨0⟩ to ⟨2⟩ and ⟨2⟩ to ⟨0⟩.

Weakening (weaT): ProtocolweaT (⟨a⟩) computes the weakening
operator ⟨∼ a⟩ on the secret shares of a decision a. This operator re-
turns deny for decisions deny and not-applicable, and leave decision
permit unchanged. Thus, using an SFE equality gate, weaT (⟨a⟩)
protocol secretly checks whether the decision is ⟨2⟩. If so, it returns
the secret shared decision itself, i.e. ⟨2⟩, otherwise it returns ⟨0⟩.

Strong Disjunction (smaxT): Given the secret shares of two deci-
sions ⟨a⟩ and ⟨b⟩, protocol smaxT (⟨a⟩, ⟨b⟩) computes secret shares
⟨a ⊔̃ b⟩. As stated previously, strong disjunction performs a max-
imum operation with respect to total order P >NA>D. Using the
ABY library, we can compute the maximum of two secret shared
decisions using an OR (∨) gate.

Strong Conjunction (sminT): Given the secret shares of two deci-
sions ⟨a⟩ and ⟨b⟩, protocol sminT (⟨a⟩, ⟨b⟩) computes secret shares
⟨a ⊓̃b⟩. As the opposite of strong disjunction, the protocol performs
a minimum operation with respect to total order P > NA > D.
Under SFE, we can compute the minimum of two secret shared
decisions using an AND (∧) gate.

Weak Disjunction (wmaxT): Given the secret shares of two deci-
sions ⟨a⟩ and ⟨b⟩, protocolwmaxT (⟨a⟩, ⟨b⟩) computes secret shares
⟨a ⊔ b⟩. If any of the decisions is not-applicable (encoded as 1), the
protocol returns ⟨1⟩, otherwise it returns the maximum of the
two secret shared decisions. Accordingly, wmaxT checks if any
of the decisions is not-applicable using the equality check func-
tions ⟨a

?
= 1⟩ and ⟨b

?
= 1⟩. If the equality check returns true at

least for one of the decisions, then the second part of the definition
(⟨1⟩−(⟨a ?

= 1⟩∨⟨a ?
= 1⟩))×smaxT (⟨a⟩, ⟨b⟩) becomes ⟨0⟩ and the pro-

tocol returns ⟨1⟩. Otherwise, it returns the result of smaxT (⟨a⟩, ⟨b⟩).

Weak Conjunction (wminT): Given secret shared decisions ⟨a⟩
and ⟨b⟩, protocol wminT (⟨a⟩, ⟨b⟩) computes secret shares ⟨a ⊓ b⟩.
The protocol works similarly to the weak disjunction protocol.
Different from wmaxT , weak conjunction returns sminT (⟨a⟩, ⟨b⟩)
when none of the secret shared decisions are not-applicable.

Permit-override (poT): Given secret shared decisions ⟨a⟩ and ⟨b⟩,
protocol poT (⟨a⟩, ⟨b⟩) computes secret shares ⟨a ∇ b⟩. The protocol
checks if any of the secret shared decisions is ⟨2⟩, in which case
returns ⟨2⟩. Otherwise, it returns the minimum between ⟨a⟩ and ⟨b⟩.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

8

Operator Protocol Definition

¬a notT (⟨a⟩) ⟨a
?
= 1⟩ × ⟨a⟩ + (⟨1⟩ − ⟨a

?
= 1⟩) × (⟨2⟩ − ⟨a⟩)

∼ a weaT (⟨a⟩) ⟨a
?
= 2⟩ × ⟨a⟩

a ⊔̃ b smaxT (⟨a⟩, ⟨b⟩) ⟨a⟩ ∨ ⟨b⟩

a ⊓̃ b sminT (⟨a⟩, ⟨b⟩) ⟨a⟩ ∧ ⟨b⟩

a ⊔ b wmaxT (⟨a⟩, ⟨b⟩) (⟨a
?
= 1⟩ ∨ ⟨a

?
= 1⟩) + (⟨1⟩ − (⟨a

?
= 1⟩ ∨ ⟨a

?
= 1⟩)) × smaxT (⟨a⟩, ⟨b⟩)

a ⊓ b wminT (⟨a⟩, ⟨b⟩) (⟨a
?
= 1⟩ ∨ ⟨a

?
= 1⟩) + (⟨1⟩ − (⟨a

?
= 1⟩ ∨ ⟨a

?
= 1⟩)) × sminT (⟨a⟩, ⟨b⟩)

a ∇ b poT (⟨a⟩, ⟨b⟩) (⟨a
?
= 2⟩ ∨ ⟨b

?
= 2⟩) × ⟨2⟩ + (⟨1⟩ − (⟨a

?
= 2⟩ ∨ ⟨b

?
= 2⟩)) × sminT (a,b)

a △ b doT (⟨a⟩, ⟨b⟩) (⟨1⟩ − (⟨a
?
= 0⟩ ∨ ⟨b

?
= 0⟩)) × smaxT (a,b)

a ◃ b faT (⟨a⟩, ⟨b⟩) ⟨a
?
= 1⟩ × ⟨b⟩ + (⟨1⟩ − ⟨a

?
= 1⟩) × ⟨a⟩

Table 3: SFE-based protocols over three-valued logic encoding

Deny-override (doT): Given secret shared decisions ⟨a⟩ and ⟨b⟩,
protocol doT (⟨a⟩, ⟨b⟩) computes secret shares ⟨a △ b⟩. It checks if
none of the secret shared decisions is ⟨0⟩, in which case returns the
maximum between ⟨a⟩ and ⟨b⟩. Otherwise, it returns ⟨0⟩.

First-applicable (faT): Given secret shared decisions ⟨a⟩ and ⟨b⟩,
protocol faT (⟨a⟩, ⟨b⟩) computes secret shares ⟨a ◃ b⟩. The protocol
checks if a is not-applicable, in which case it returns ⟨b⟩; otherwise
it returns ⟨a⟩.

4.3 SFE-based Protocols (Boolean Logic)
The protocols in Table 3 use Boolean gates for addition, subtraction,
multiplication and equality test, which usually have high compu-
tation and communication costs compared to the inverse, AND
and OR gates. Therefore, inspired by previous work [30, 42], we
provide an alternative representation of the three-valued operators
in Table 1 and represent them as Boolean formulae.

To transform policies defined over three-valued logic into an
equivalent Boolean logic representation, we adapt and extend the
transformation rules proposed in [30]. These rules can be used to
transform a policy formula built over the operators in Table 1 into a
triple of propositional formulae (πP ,πD ,πNA) that can be trivially
represented as Boolean circuits. Intuitively, propositional formula
πd (p) denotes the set of queries Qd ⊆ Q satisfying d = JpK(q)
whenever q ∈ Qd .

The base case comprises user policies. Specifically, given a user
policy s = (X ,Y) and the ID of the requester r , from Eq. 1 we obtain:

πP (s) = (r ∈ X) ∧ ¬(r ∈ Y)
πD (s) = r ∈ Y
πNA(s) = ¬(r ∈ X) ∧ ¬(r ∈ Y)

The corresponding secure computation protocols can be imple-

mented using protocol ⟨r
?
∈ B⟩ defined in Section 4.2.

The transformation rules for the policy combining operators in
Table 1 are presented in Table 4. Since operations are performed
on a single bit, arithmetic operations are not needed in the im-
plementation of the operators. We can implement all operators
using inverse gates (¬), AND gates (∧) and OR gates (∨) along the
lines of the formulae in Table 4. We use modulus 2 (ℓ = 1) for the
implementation of these protocols.

5 SECURITY ANALYSIS
This section provides a security analysis of our framework for
multi-party access control (Section 3.2) and of the underlying se-
cure computation protocols (Section 4). We design our multi-party
access control framework to be secure against semi-honest adver-
saries. In this security model, the participants execute the protocols
without deviation. However, they might try to obtain additional
information by observing inputs, outputs and intermediary mes-
sages. Accordingly, in our design, we assume both STP and DS to
be semi-honest non-colluding parties that try to obtain additional
information from the execution of the protocols without any devia-
tion. Since data holders do not actively participate in computations,
we do not include them into the security analysis. We assume that
data holders provide the protected data (i.e., encrypted data for
HE-based protocols and secret-shared data for SFE-based protocols)
to the intended parties at the beginning of the protocol execution.

We propose three privacy-preserving approaches for the eval-
uation of multi-party policies, which are based on two different
cryptographic techniques, homomorphic encryption and secure
function evaluation. We choose Paillier’s cryptosystem for the com-
putations of homomorphic encryption based operators. The security
of the Paillier cryptosystem is based on computational difficulty
of solving the decisional composite residuosity assumption [35].
We use four building blocks to compute complex operations under
homomorphic encryption, namely secure equality [31], secure com-
parison [32], secure multiplication [17] and secure matching [20]
protocols. These building blocks are proven secure in the presence
of semi-honest adversaries. We refer readers to the corresponding
papers for the details of the security analysis for each building block.

For the evaluation of multi-party policies under secure function
evaluation, we use Boolean circuits [22]. The proposal of Boolean se-
cret sharing in [22] provides information theoretic security against
semi-honest adversaries and malicious adversaries in the existence
of honest majority. For our protocols, we use the semi-honest vari-
ant of Boolean circuits whose implementation is provided in the
ABY framework [13]. The building blocks we use for SFE are also
functionalities provided by ABY. Thus, for the details of secure
implementation and security proofs, we refer readers to [13, 22].

In the design of our protocols, we use a combination of the build-
ing blocks that are proven secure. According to the universally

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

9

Operator πP πD πNA

¬a πD (a) πP (a) πNA(a)

∼ a πP (a) πD (a) ∨ πNA(a) f alse

a ⊔̃ b πP (a) ∨ πP (b) πD (a) ∧ πD (b) (πNA(a) ∧ ¬πP (b)) ∨ (πNA(b) ∧ ¬πP (a))

a ⊓̃ b πP (a) ∧ πP (b) πD (a) ∨ πD (b) (πNA(a) ∧ ¬πD (b)) ∨ (πNA(b) ∧ ¬πD (a))

a ⊔ b (πP (a) ∧ ¬πNA(b)) ∨ (πP (b) ∧ πNA(a)) πD (a) ∧ πD (b) πNA(a) ∨ πNA(b)

a ⊓ b πP (a) ∧ πP (b) (πD (a) ∧ ¬πNA(b)) ∨ (πD (b) ∧ ¬πNA(a)) πNA(a) ∨ πNA(b)

a ∇ b πP (a) ∨ πP (b) (πD (a) ∧ ¬πP (b)) ∨ (πD (b) ∧ ¬πP (a)) πNA(a) ∧ πNA(b)

a △ b (πP (a) ∧ ¬πD (b)) ∨ (πP (b) ∧ ¬πD (a)) πD (a) ∨ πD (b) πNA(a) ∧ πNA(b)

a ◃ b πP (a) ∨ (πNA(a) ∧ πP (b)) πD (a) ∨ (πNA(a) ∧ πD (b)) πNA(a) ∧ πNA(a)

Table 4: Transformation of three-valued logic to Boolean logic.

composable security theorem of Canetti [8], a protocol that is ob-
tained by arbitrary combination of secure subprotocols guarantees
security. Therefore, we can conclude that the protocols we designed
for the operator in Table 1 as well as their combination are secure
since they are composed from subprotocols proven secure.

Given that our protocols based on both HE and SFE are secure,
in the following we discuss the security of our whole framework
with respect to the interactions between participants.
• The access requester can observewhether access is granted or not.
From this, she can learn the final decision, but not the evaluation
of the data holders’ policies.

• STP learns neither the data holders’ policies and their evaluation
nor the final decision. In HE-based protocols, STP generates the
public and private keys and sends the public key to the data hold-
ers and DS. Moreover, this entity interacts with DS to evaluate
the multi-party policy. As discussed above, the building blocks
used in the design of our protocols are secure and, thus, the
semi-honest STP is not able to learn the data holders’ individual
policies. Moreover, STP receives the encrypted final decision,
which it decrypts using the private key. However, because of the
random noise added by DS to the encrypted message (see Sec-
tion 3.2), STP is not able to infer the final decision. On the other
hand, in SFE-based protocols, STP only receives secret shares of
the data holders’ policies. Also, decryption is not needed. There-
fore, neither the data holders’ policies nor the result of policy
evaluation is revealed to STP.

• DS learns the final decision but not the data holders’ policies or
their evaluation. In HE-based protocols, DS receives the policies
from the data holders in encrypted form. However, since it does
not have the private key, it is not able to learn these policies. On
the other hand, in SFE-based protocols, DS only receives secret
shares of the data holders’ policies. DS evaluates the multi-party
policy through communication with STP, which has been proven
secure. The final decision, which DS derives with the help of STP,
is not considered as a secret information for DS since this entity
is responsible for its enforcement.
It is worth noting that, by knowing the final decision and the

multi-party policy, the entities involved (requester, data holders, DS,
STP) may be able to learn some information about the user policies.
For example, given the multi-party policy p in Section 3.1, if the
final decision is not-applicable, one can infer that all user policies
forming the multi-party policy evaluate to not-applicable. However,
we argue that these leakages are intrinsic in the definition of the

combining operators in Table 1 rather than due to flaws in the
design of the secure computation protocols proposed in Section 4
or their combination. Since revealing the final decision is inevitable,
we do not consider these leakages as security leakages.

6 PERFORMANCE ANALYSIS
We implemented the protocols presented in Section 4 in C++. We
used the GMP multiprecision library for the implementation of big
integer operations. For the HE-based protocols, we used a cryp-
tographic key of length 4096 bits as recommended by the NIST
[4]. For the SFE-based protocols, we used 2-bit Boolean circuits for
three-valued logic and 1-bit Boolean circuits for Boolean logic.

To assess the practical feasibility of our mechanism for privacy-
preserving multi-party access control, we performed a number
of experiments. A first set of experiments was used to evaluate
each protocol individually; then we performed another set of ex-
periments to study the scalability of our mechanism by varying
the number of user policies forming the multi-party policy. Perfor-
manceswere evaluated in terms of computation and communication
costs. In particular, we used computation time to measure compu-
tation costs and bandwidth usage to measure communication costs.

The experiments were performed on a single machine running
Ubuntu 18.04 LTS with a 64-bit microprocessor and 16 GB of RAM,
with Intel Core i7-4770, 3.40 GHz x 8.

6.1 Single Operator Policies
The goal of this first set of experiments is to assess the computa-
tion and communication costs of the secure computation protocols
proposed in Section 4. This provides an indication of the resources
required by the policy combining operators in Table 1 when imple-
mented using different privacy-preserving techniques.

Setting. For the experiments, we have created three multi-party
policies for each operator in Table 1, one multi-party policy for each
approach: homomorphic encryption (HE), Boolean circuits using
the three-valued encoding (SFE-T) and Boolean circuits using the
Boolean encoding (SFE-B). Each multi-party policy consists of one
or two individual policies depending on the number of arguments
required by the operator. For each multi-party policy, we tested all
possible evaluations of the user policies forming the multi-party
policy (3 for the protocols with one argument and 9 for the protocols
with two arguments). We repeated the experiments 50 times.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

10

Protocol HE SFE-T SFE-B

not 262.710 3.106 0.314
wea 182.827 2.903 0.787
smax 216.687 0.782 0.803
smin 215.137 0.768 0.788
wmax 576.736 3.290 0.835
wmin 578.821 3.208 0.821
po 697.489 3.229 0.800
do 746.158 3.065 0.783
fa 236.091 3.292 0.851

Table 5: Computation time (in ms) for single operator poli-
cies. The best results for each protocol are reported in bold.

Results. Table 5 reports the average computation time of each proto-
col over 150 runs for unary protocols and over 450 runs for binary
protocols. We can observe that the SFE-based protocols (based
on both three-valued and Boolean encoding) outperform the HE-
based protocols (HE) in terms of computation time. On average,
the computation time of HE-based protocols is approximately 160
times worse than the one of SFE-based protocols based on the
three-valued encoding (SFE-T) and 500 times worse than the one
of SFE-based protocols based on the Boolean encoding (SFE-B).

The difference in computation cost is twofold. The first reason
lies in the complexity of the operations performed. HE protocols
require performing encryptions, decryptions and homomorphic op-
erations. These operations require modular exponentiations, which
are computationally expensive. On the other hand, SFE operations
are simpler, encompassing low level circuit operations such as AND,
OR, inverse and equality check. The second reason is the message
size used in those schemes. In HE, all operations are performed
on 4096 bits ciphertexts. On the other hand, in SFE, we use 1 bit
(Boolean logic) and 2 bits (three-valued logic) message sizes.

We also observe that SFE-B protocols are, in general, significantly
more efficient compared to the ones based on the three valued en-
coding. On average, the former performs four times better than the
latter. This is expected since the Boolean encoding only uses AND,
OR and inverse gates while the three-valued encoding requires
more complex gates such as equality and multiplication gates. The
only exceptions are the strong conjunction (smin) and strong dis-
junction (smax) protocols, for which the SFE-T protocol performs
slightly better than the one based on the Boolean encoding. For
these cases, SFE-T protocols are less complex compared to SFE-B
protocols. Computing smin and smax protocols requires a single
AND and a single OR gate operation in the three-valued encoding,
respectively, while the Boolean encoding requires 3 AND, 2 OR and
2 inverse gates for each protocol (cf. Table 4).

It is worth noting that all SFE-B protocols, with the exception
of the negation protocol (not), require a similar computation time,
whereas for the other approaches there is a notable difference be-
tween protocols. The similarity of computation times is caused by
the comparable number of gates used in the implementation of
each protocol. Negation protocol differs from the others since it
only requires swapping values rather than operating on logic gates.

Table 6 reports the average bandwidth usage of the proposed
protocols. We can observe that the SFE-B protocols outperform

Protocol HE SFE-T SFE-B

not 7681 67326 42
wea 6144 62866 4122
smax 7169 4230 4072
smin 7169 4242 4125
wmax 19459 66394 4078
wmin 19459 67122 4090
po 24580 71210 4130
do 26117 61369 4071
fa 7681 65428 4124

Table 6: Bandwidth usage (in bytes) for single operator poli-
cies. The best results for each protocol are reported in bold.

the protocols implemented using the other approaches also for
bandwidth usage. On average, the bandwidth usage required by
the SFE-B protocols is approximately 30 times lower than the one
required by the HE-based protocols and 190 times lower compared
to the one required by the SFE-T protocols. For most operators,
HE-based protocols perform better than SFE-T protocols. However,
strong disjunction (smax) and strong conjunction (smin) protocols
show a different trend since their implementation in three-valued
logic requires a single logic gate while under HE the implementa-
tion is more complex.

From these results, we conclude that a direct implementation
of the three-valued logic operators in homomorphic encryption
and secure function evaluation has severe limitations in terms of
computation time and bandwidth usage. In contrast, the SFE-B
protocols provide a viable solution for the realization ofmechanisms
for privacy-preserving multi-party access control.

6.2 Complex Policies
To gain more insights on the feasibility of our mechanism for pri-
vacy preserving multi-party access control, we performed experi-
ments to assess the scalability of policy evaluation on private input.
Settings. For the experiments, we generate random multi-party
policies by varying the number of user policies. Intuitively, the
number of user policies represents the number of users that jointly
manage a given object. We varied the size of the generated multi-
party policies (i.e., the number of user policies forming the multi-
party policies) from 2 to 50. This allows us to test our approach
is a situation representative for many real-world systems where
resources are controlled by a large but limited number of users. We
repeated each experiment 20 times.
Results. Figures 2 and 3 show respectively the average computation
time and bandwidth usage (in log scale) for each size of multi-party
policy protocols over 20 rounds of the experiments. The results
confirm that the SFE-based protocols based on the Boolean en-
coding (SFE-B) outperform the HE-based protocols (HE) and the
SFE-based protocols based on the three-valued encoding (SFE-T) in
terms of both computation time and bandwidth usage. In particular,
the evaluation of the multi-party policy comprising 50 user poli-
cies required 3.8 ms using SFE-B protocols, showing the practical
feasibility of this approach in realistic scenarios. In general, we
can observe that, for all approaches, both computation time and
bandwidth usage are log-linear in the size of the multi-party policy.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

11

10 20 30 40 50
100

102

104

2

Number of user policies

Co
m
pu

ta
tio

n
tim

e
(in

m
s) HE

SFE-T
SFE-B

Figure 2: Computation time (in ms) for complex policies. Y-
axis is in log scale.

10 20 30 40 50

104

105

106

2

Number of user policies

Ba
nd

w
id
th

us
ag
e
(in

by
te
s) HE

SFE-T
SFE-B

Figure 3: Bandwidth usage (in bytes) for complex policies.
Y-axis in log scale.

The results show that our approach, when using SFE-B protocols,
is scalable and provides an effective foundation for the realization
of privacy-preserving mechanisms for multi-party access control.

7 RELATEDWORK
In recent years, multi-party access control has received increasing
attention [34]. This interest has resulted in several access control
solutions for the protection of jointly-owned and jointly-managed
resources, either through co-owners’ negotiation [19] or automatic
built-in interface [26]. In particular, conflict resolution approaches
have been largely investigated through the application of: game
theory [36], computational mechanisms [39], social-friend circle
model [45], and veto voting [40]. These approaches, however, do
not consider users’ policies as sensitive information by themselves.

The confidentiality of policies is typically addressed in trust ne-
gotiation [43, 46]. The aim of trust negotiation is to establish mutual
trust between parties that do not have a pre-existing relationships
through an exchange of (extensional) policies, represented by dig-
ital credentials. Disclosure of credentials, in turn, is regulated by
policies specifying which credentials must be received before the re-
quested credentials can be disclosed. Similarly, Trivellato et al. [41]
propose a goal evaluation algorithm for trust management that
detects termination in a completely distributed way without the
need of disclosing the policies of parties, thereby preserving their
confidentiality. In this work, we pursue a different direction and
assume that parties disclose their policies in private form. Then,

these policies are evaluated in privacy-preserving way using secure
computation protocols.

A large body of research has investigated the use of crypto-
graphic techniques in the context of access control [1, 3, 28]. How-
ever, most works aims at the protection of resources and do not
address the confidentiality of policies. An exception is the work in
[2], which proposes the concept of secure policy execution using
reusable garbled circuits. However, this approach assumes that each
resource is under the control of a single entity.

An application of cryptographic techniques to multi-party access
control can be found in [25], which proposes a collaborative access
control model based on threshold-based secret sharing. Data hold-
ers upload their co-owned resources encrypted and disclose secret
shares of the decryption key to trusted friends, who are responsible
to partially enforce the collective policy. A user can only decrypt
a resource if she collects ‘enough’ shares of the key. This work,
however, mainly focuses on the protection of resources, whereas
the confidentiality of users’ policies is not addressed. Moreover,
compared to our work, which supports the definition of arbitrary
strategies to combine users’ policies, this approach only allows a
simple strategy based on the number of shares of the decryption key
that the user should have. To the best of our knowledge, our work is
the first that addresses the problem of secure evaluation of compos-
ite policies encompassing both positive and negative authorizations.

8 CONCLUSION
Multi-party access control has emerged as a paradigm to support
collaborative decision-making for co-owned resources. Several solu-
tions have been proposed with the purpose of combining the access
requirements of the users involved in the protection of co-owned
resource. However, the problem of protecting the confidentiality of
users’ policies in multi-party access control has not been addressed.

In this paper, we have presented the first mechanism for the
secure evaluation of multi-party access control policies, which pre-
serves the confidentiality of user policies. To this end, we have
proposed secure computation protocols based on three different
privacy-preserving approaches: 1) homomorphic encryption, 2)
Boolean circuits based on a three-valued encoding, and 3) Boolean
circuits based on a Boolean encoding. An experimental evaluation
of the proposed protocols shows that the latter approach outper-
forms the other two approaches in terms of both computation and
communication costs. In particular, the results obtained using SFE-
based protocols relying on the Boolean encoding demonstrate the
practical feasibility of privacy-preserving mechanisms for multi-
party access control.

In this work, we have assumed that only user policies are in
private form whereas the multi-party policy, which specifies how
user policies are combined, is in plaintext. As discussed in Section 5,
this may be exploited by an attacker to learn some information on
the undelying user policies. To minimize such a risk, we plan to
extend our approach to also support the evaluation of multi-party
policies in private form. Moreover, we plan to adapt and extend our
approach for the privacy-preserving evaluation of more complex
policies, for example specified in the XACML standard.

Acknowledgements. This work is funded by the ECSEL project
SECREDAS (783119) and the ITEA3 project APPSTACLE (15017).

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

12

REFERENCES
[1] Ruqayah R. Al-Dahhan, Qi Shi, GyuMyoung Lee, and Kashif Kifayat. 2019. Survey

on Revocation in Ciphertext-Policy Attribute-Based Encryption. Sensors 19, 7
(2019), 1695.

[2] Masoom Alam, Naina Emmanuel, Tanveer Khan, Abid Khan, Nadeem Javaid,
Kim-Kwang Raymond Choo, and Rajkumar Buyya. 2018. Secure policy execution
using reusable garbled circuit in the cloud. Future Generation Computer Systems
87 (2018), 488–501.

[3] Muhammad Asim, Tanya Ignatenko, Milan Petkovic, Daniel Trivellato, and Nicola
Zannone. 2012. Enforcing Access Control in Virtual Organizations Using Hierar-
chical Attribute-Based Encryption. In Proceedings of International Conference on
Availability, Reliability and Security. IEEE, 212–217.

[4] Elaine B. Barker, Lidong Chen, Andrew R. Regenscheid, and Miles E. Smid. 2009.
SP 800-56B. Recommendation for Pair-Wise Key Establishment Schemes Using
Integer Factorization Cryptography. Technical Report. Gaithersburg, MD, United
States.

[5] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology (LNCS), Vol. 576. Springer, 420–432.

[6] Joppe W. Bos, Kristin Lauter, and Michael Naehrig. 2014. Private predictive
analysis on encrypted medical data. Journal of Biomedical Informatics 50 (2014),
234–243.

[7] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine
Learning Classification over Encrypted Data. In Proceedings of Annual Network
and Distributed System Security Symposium. Internet Society.

[8] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In Proceedings of Symposium on Foundations of Computer
Science. IEEE, 136–.

[9] Shuchih Ernest Chang, Anne Yenching Liu, and Wei Cheng Shen. 2017. User
trust in social networking services: A comparison of Facebook and LinkedIn.
Computers in Human Behavior 69 (2017), 207–217.

[10] Jason Crampton and Charles Morisset. 2012. PTaCL: A Language for Attribute-
based Access Control in Open Systems. In Principles of Security and Trust. Springer,
390–409.

[11] Jason Crampton, Charles Morisset, and Nicola Zannone. 2015. On Missing
Attributes in Access Control: Non-deterministic and Probabilistic Attribute Re-
trieval. In Proceedings of Symposium on Access Control Models and Technologies.
ACM, 99–109.

[12] Stan Damen, Jerry den Hartog, and Nicola Zannone. 2014. CollAC: Collabora-
tive access control. In Proceedings of International Conference on Collaboration
Technologies and Systems. IEEE, 142–149.

[13] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In Proceedings
of Annual Network and Distributed System Security Symposium. Internet Society.

[14] Jerry den Hartog and Nicola Zannone. 2016. Collaborative Access Decisions: Why
Has My Decision Not Been Enforced?. In Information Systems Security (LNCS),
Vol. 10063. Springer, 109–130.

[15] Raïssa Yapan Dougnon, Philippe Fournier-Viger, Jerry Chun-Wei Lin, and Roger
Nkambou. 2016. Inferring social network user profiles using a partial social
graph. Journal of Intelligent Information Systems 47, 2 (2016), 313–344.

[16] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. 2009. Privacy-Preserving Face Recognition. In Pro-
ceedings of International Symposium on Privacy Enhancing Technologies. Springer,
235–253.

[17] Zekeriya Erkin, Thijs Veugen, Tomas Toft, and Reginald L. Lagendijk. 2012. Gen-
erating Private Recommendations Efficiently Using Homomorphic Encryption
and Data Packing. IEEE Transactions on Information Forensics and Security 7, 3
(2012), 1053–1066.

[18] Daniel C. Feldman. 1984. The Development and Enforcement of Group Norms.
The Academy of Management Review 9, 1 (1984), 47–53.

[19] Ricard L. Fogues, Pradeep K. Murukannaiah, Jose M. Such, and Munindar P. Singh.
2017. Sharing Policies in Multiuser Privacy Scenarios: Incorporating Context,
Preferences, and Arguments in Decision Making. ACM Trans. Comput.-Hum.
Interact. 24, 1, Article 5 (2017), 29 pages.

[20] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient Private
Matching and Set Intersection. In Advances in Cryptology. Springer, 1–19.

[21] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest Majority.
In Proceedings of Annual Symposium on Theory of Computing. ACM, 218–229.

[23] Paolo Guarda and Nicola Zannone. 2009. Towards the development of privacy-
aware systems. Information & Software Technology 51, 2 (2009), 337–350.

[24] Pan Hui and Sonja Buchegger. 2009. Groupthink and Peer Pressure: Social Influ-
ence in Online Social Network Groups. In Proceedings of International Conference
on Advances in Social Network Analysis and Mining. IEEE, 53–59.

[25] Panagiotis Ilia, Barbara Carminati, Elena Ferrari, Paraskevi Fragopoulou, and
Sotiris Ioannidis. 2017. SAMPAC: Socially-Aware collaborative Multi-Party Ac-
cess Control. In Proceedings of Conference on Data and Application Security and
Privacy. ACM, 71–82.

[26] Panagiotis Ilia, Iasonas Polakis, Elias Athanasopoulos, Federico Maggi, and Sotiris
Ioannidis. 2015. Face/Off: Preventing Privacy Leakage From Photos in Social
Networks. In Proceedings of Conference on Computer and Communications Security.
ACM, 781–792.

[27] William H. Jobe. 1962. Functional Completeness and Canonical Forms in Many-
Valued Logics. The Journal of Symbolic Logic 27, 4 (1962), 409–422.

[28] Cheng-Chi Lee, Pei-Shan Chung, and Min-Shiang Hwang. 2013. A Survey on
Attribute-based Encryption Schemes of Access Control in Cloud Environments.
International Journal of Network Security 15, 4 (2013), 231–240.

[29] Rauf Mahmudlu, Jerry den Hartog, and Nicola Zannone. 2016. Data Governance
and Transparency for Collaborative Systems. In Data and Applications Security
and Privacy (LNCS 9766). Springer, 199–216.

[30] Charles Morisset, Tim A. C. Willemse, and Nicola Zannone. 2018. Efficient
Extended ABAC Evaluation. In Proceedings of Symposium on Access Control
Models and Technologies. ACM, 149–160.

[31] Majid Nateghizad, Zekeriya Erkin, and Reginald L. Lagendijk. 2016. Efficient
and secure equality tests. In Proceedings of International Workshop on Information
Forensics and Security. IEEE, 1–6.

[32] Majid Nateghizad, Zekeriya Erkin, and Reginald L. Lagendijk. 2016. An efficient
privacy-preserving comparison protocol in smart metering systems. EURASIP
Journal on Information Security 2016, 1 (2016), 11.

[33] OASIS. 2013. eXtensible Access Control Markup Language (XACML) Version 3.0.
OASIS Standard.

[34] Federica Paci, Anna Cinzia Squicciarini, and Nicola Zannone. 2018. Survey on
Access Control for Community-Centered Collaborative Systems. ACM Comput.
Surv. 51, 1 (2018), 6:1–6:38.

[35] Pascal Paillier. 1999. Public-key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of International Conference on Theory and
Application of Cryptographic Techniques. Springer, 223–238.

[36] Sarah Rajtmajer, Anna Squicciarini, Christopher Griffin, Sushama Karumanchi,
and Alpana Tyagi. 2016. Constrained Social-Energy Minimization for Multi-Party
Sharing in Online Social Networks. In Proceedings of International Conference
on Autonomous Agents & Multiagent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 680–688.

[37] Mina Sheikhalishahi and Fabio Martinelli. 2017. Privacy preserving clustering
over horizontal and vertical partitioned data. In Proceedings of Symposium on
Computers and Communications. IEEE, 1237–1244.

[38] Lauren E. Sherman, Ashley A. Payton, Leanna M. Hernandez, Patricia M. Green-
field, and Mirella Dapretto. 2016. The Power of the Like in Adolescence: Effects of
Peer Influence on Neural and Behavioral Responses to Social Media. Psychological
Science 27, 7 (2016), 1027–1035.

[39] Jose M. Such and Natalia Criado. 2016. Resolving Multi-Party Privacy Conflicts in
Social Media. IEEE Transactions on Knowledge and Data Engineering 28, 7 (2016),
1851–1863.

[40] Kurt Thomas, Chris Grier, and David M. Nicol. 2010. unFriendly: Multi-party
Privacy Risks in Social Networks. In Privacy Enhancing Technologies (LNCS 6205).
Springer, 236–252.

[41] Daniel Trivellato, Nicola Zannone, and Sandro Etalle. 2014. GEM: A distributed
goal evaluation algorithm for trust management. TPLP 14, 3 (2014), 293–337.

[42] Fatih Turkmen, Jerry den Hartog, Silvio Ranise, and Nicola Zannone. 2017. Formal
analysis of XACML policies using SMT. Computers & Security 66 (2017), 185–203.

[43] William H. Winsborough and Ninghui Li. 2002. Towards Practical Automated
Trust Negotiation. In Proceedings of International Workshop on Policies for Dis-
tributed Systems and Networks. IEEE, 92–103.

[44] Andrew Chi Yao. 1982. Protocols for Secure Computations. In Proceedings of
Annual Symposium on Foundations of Computer Science. IEEE, 160–164.

[45] Lingjing Yu, Sri Mounica Motipalli, Dongwon Lee, Peng Liu, Heng Xu, Qingyun
Liu, Jianlong Tan, and Bo Luo. 2018. My Friend Leaks My Privacy: Modeling and
Analyzing Privacy in Social Networks. In Proceedings of Symposium on Access
Control Models and Technologies. ACM, 93–104.

[46] Ting Yu, Marianne Winslett, and Kent E. Seamons. 2003. Supporting Struc-
tured Credentials and Sensitive Policies Through Interoperable Strategies for
Automated Trust Negotiation. ACM Trans. Inf. Syst. Secur. 6, 1 (2003), 1–42.

Session 1: Secure Computation WPES ’19, November 11, 2019, London, United Kingdom

13

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Party Policy Model
	2.2 Homomorphic Encryption
	2.3 Secure Function Evaluation

	3 A Privacy-preserving Framework for Multi-party Access Control
	3.1 Motivating Example
	3.2 Framework
	3.3 Security Assumptions

	4 Privacy-preserving Protocols for Policy Evaluation
	4.1 HE-based Protocols
	4.2 SFE-based Protocols (Three Valued Logic)
	4.3 SFE-based Protocols (Boolean Logic)

	5 Security Analysis
	6 Performance Analysis
	6.1 Single Operator Policies
	6.2 Complex Policies

	7 Related Work
	8 Conclusion
	References

