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ABSTRACT

The goal of this project is to see if we can improve the treatment plan for proton therapy by using reduced
order models and adjoint theory for proton therapy. We shall use a singular value decomposition on a dose
distribution matrix to obtain the modes from which we can reconstruct every dose distribution. Using ad-
joint methodologies for proton therapy, we will define a response from which we can find the sensitivities, or
gradient, in order to fit a Hermite interpolation polynomial on multidimensional simplices.

The results show that the Hermite interpolation polynomial is a useful tool to find responses for low di-
mensional problems. For errors in one or two dimensions, the Hermite polynomial was able to reconstruct all
dose distributions with R2 = 1. However, for an error in three dimensions the Hermite polynomial sometimes
fails to reconstruct the dose distribution to within acceptable margins.

We conclude that the combination of a ROM and adjoint method to find Hermite interpolation polyno-
mial is a promising tool in order to further improve the proton therapy treatment plan. Further research
should be done in order to determine whether Hermite interpolation can be used in every scenario, or if it
fails if the grid becomes irregular. Finally, the extrapolating qualities of the Hermite polynomial should be
tested.
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1
INTRODUCTION

1.1. PROTON THERAPY
A promising method of radio therapy for the treatment of cancer patients is proton therapy. Proton therapy
is an alternative for the more widely used photon therapy (Van Galen [1], Kasbergen [2], Paganetti [3]). The
fundamental difference between the two methods is that photon therapy uses high energy light particles
to radiate a tumor, whilst proton therapy uses charged particles, protons, for radiation of the tumor. Since
photon therapy uses light particles, their energy deposition can be modeled by an exponential. From this we
can deduce that the dose in the patient before the tumor is higher that the dose in the actual tumor itself,
meaning the tissue in front of the tumor is damaged more than the actual tumor. However, the proton energy
distribution does not show a peak before the tumor. The peak can be positioned in the tumor itself. Figure
1.1a shows a comparison between the dose deposition between the two techniques.

(a) Comparison of proton, electron and photon energy de-
position. Source: (Dang [4]).

(b) Figure shows how a Spread Out Bragg Peak can be con-
structed as a superposition of individual pristine peaks.
The weights have to chosen carefully such that the iconic
SOBP plateau arrises. Source: (Davino [5]).

Figure 1.1: Comparison of photon therapy to proton therapy.

The curve that represent the energy deposition by ionizing radiation is called the Bragg peak (Charlie Ma
and Lomax [6]), named after William Bragg. Figure 1.1a shows the Bragg curve for different kinds of ionizing
radiation. The Bragg curve for monochromatic proton beam is called a pristine peak. Different proton en-
ergies give shifted pristine peaks. The peaks show where the dose is deposited in the patient. Adding these
different pristine peak energy depositions, call them φi ’s, with carefully chosen weights, say wi ’s, we can re-
construct the Spread Out Bragg Peak (SOPB) from Figure 1.1b, SOBP (x) = ∑

i wiφi (x), as a superposition of
these pristine peaks.
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2 1. INTRODUCTION

From figure 1.1a we see that proton therapy is more ’precise’ than photon therapy. Not only does it de-
liver most of its dose in the desired region, there is also no exit dose. The latter meaning at a certain depth
within the patient the free proton density is nearly zero. However, this brings additional challenges: since a
higher dose can be administered at once, a slight overshoot can badly damage any nearby organs. It is thus
critical that we know how changes in the patient’s body or discrepancies in patient positioning affect the dose
distribution within the patient, in order to ensure no unnecessary organ damage.

1.2. PROJECT GOAL
The optimal treatment plan set up for a patient is called the nominal scenario. When a patient receives treat-
ment, it is very unlikely he or she will be in the exact same position, or state, as the nominal scenario. We will
refer to any such scenario that is not the nominal case as an error scenario. Since we will find the dose dis-
tribution numerically, the entire dose distribution for a single error scenario will be contained in a vector di .
The dose distribution vectors for all scenarios will be stored in the dose distribution matrix: D = [d1d2...dn].

Using a reduced order model on the dose distribution matrix, as described by Van Galen (Van Galen [1,
p. 5-6]), we are able to reduce the order of the problem, meaning the problem is easier to handle physically
and mathematically, as well as to find the modes from which the signal is build up.

Since these modes do make up all the column vectors of the matrix, we are able to reconstruct every dose
distribution for any error scenario to within any desired precision. We now state that for all error scenarios,
also the ones that are not generated, the dose distribution consists of exactly these modes. The question that
remains, is how to add up these modes in order to restore the dose distribution, which is the topic of this
project: What are the coefficients for the modes as a function of the error scenario?

A great part of this question has been covered by J.W. Van Galen in his thesis (Van Galen [1]). Van Galen
used regression to find a function that fits the data points. The conclusion yields that regression of poly-
nomials on the first few modes works well, but fails for the higher order modes. To perform a better fit,
more information is needed. This information comes from the adjoint flux, by calculating the sensitivities
as Kasbergen describes in his thesis (Kasbergen [2]). Basically, by finding the adjoint flux we mean solving
an equation that is closely related to the original equation, but now provides more information. Kasbergen
derived the sensitivities needed in this project. These sensitivities will then be used to fit a polynomial with
corresponding derivatives and function values. The polynomial will be fitted using Hermite interpolation.

A one-dimensional model will be used in this project to model a patient. The model solves the one-
dimensional Fokker-Planck approximation to the Boltzmann transport (Uilkema [7]) equation. The code
that implements this model is written in Fortran. The code uses a CT-scan as input and outputs the dose
distribution by solving the Fokker-Planck approximation of the Boltzmann transport equation. The sensitiv-
ities, or gradient, come from the code by calculating the inner products described by Kasbergen (Kasbergen
[2, p. 20-22]).

The structure of the report is as follows: the relevant theory will be presented in chapter 2. The methods
used will be discussed in chapter 3 followed by the results and discussion in chapter 4. The report will be
concluded by the the conclusion in chapter 5. The project is part of the Bachelor Applied Physics and Applied
Mathematics at Delft University of Technology.



2
THEORY

2.1. PROTON THERAPY TREATMENT PLANNING
As mentioned in Section 1.1, proton therapy is a promising alternative to photon therapy. Due to its high
precision, a much higher dose can be administered to a tumor at once. However, a slight discrepancy in
the patient can cause a high dose deposition in a healthy tissue. To monitor how the dose deposition in the
patient will look like, we need a function that predicts the dose distribution from a CT-scan, such that the
treatment plan can be updated such that a patient always gets an optimal treatment. Using the CT-scan as
input, the Fortran code that represents the model will find the stopping power, which according to Uilkema
[7, p. 26] represent the "energy transfer of the incident proton to the atomic electrons" for the protons, which
is necessary to find the total dose distribution. Other important input parameters are the cosine scatter angle
µ (Figure 2.1), which represents the direction of the protons, and the total macroscopic scatter cross section
σt in cm−1. The total macroscopic scatter cross section is a measure for how many protons are absorbed by
the medium, which in practice is very low.

Figure 2.1: Relation between x̂,Ω̂ and θ with µ= cos(θ). Uilkema [7].

2.1.1. BOLTZMAN TRANSPORT EQUATION
In his master thesis, Uilkema derives the one-dimensional Fokker-Planck approximation of the linear one-
dimensional Boltzmann equation (Uilkema [7, p. 21-30]):

µ
∂φ(x,E ,Ω̂)

∂x
+σtφ(x,E ,Ω̂) = ∂(S(E)φ(x,E ,Ω̂))

∂E
(2.1)

φ(x,E ,Ω̂) is the proton flux at position x with energy E and direction Ω̂, µ is the cosine scatter angle, σt is
the total macroscopic scatter cross section and S(E) the stopping power at energy E . This equation is solved
for the proton flux φ numerically by the Fortran code (Lathouwers [8]). The code uses a Galerkin based finite
element method in order to conserve energy (Kuzmin [9]). The solution of the partial differential equation,
the proton flux, is used to determine the total administered dose:

3



4 2. THEORY

Dose =
Ñ [

S(E)φ(x,E ,Ω̂)
]

ρ
d xdE dΩ̂ (2.2)

with ρ the mass density.

2.1.2. PARAMETER ERRORS
Parameters that can be perturbed in equation 2.1 are the stopping power S(E) and the total macroscopic
scatter cross section σt . Perturbations in the stopping power can arise from organ movement, weight gained
or lost by the patient, a different composition of the surrounding tissue, to name just a few.

Since these parameters are directly involved in the partial differential equation that determines the proton
flux, they directly influence the dose distribution. In order to find a function that relates the error in the
patient to the dose distribution, the effects of the errors on the dose distribution have to be modeled for
several error scenarios.

2.2. REDUCED ORDER MODELLING
The Fortran code that solves the Boltzmann equation outputs the coefficients for the Galerkin finite element
method. A Finite Element Method, such as Galerkin’s, solves a partial differential equation. A FEM multi-
plies the partial differential equation with a weighted sum basis functions, where the weights, or coefficients,
need to be calculated in order to approximate the solution ([9]). These coefficients are simply the values of
the dose deposition in the boundary of each element, which is not the same as the proton flux (see Equation
2.2). Since every element has two boundaries, we have twice as many coefficients as elements (that is, two on
every boundary with exception of the first and last). Since these coefficients form a finite set of numbers, we
arrange them in a vector: d.

As mentioned in Section 2.1.2, several error scenarios are to be modeled. Each scenario yields such a
vector d. If we have k elements in our finite element method, and model N error scenarios, we can arrange
the dose distributions in a M × N matrix, with M = 2k, which we shall call the dose distribution matrix:
D = [d1d2...dn]. As Van Galen described in his thesis (Van Galen [1]), an effective method for reducing the
dimensionality of the given problem is doing a thin singular value decomposition (SVD) on the dose distri-
bution matrix. Thin in this case means the columns of U and V are normilised, by dividing the singular val
Since the dose distriue by the corresponding normilisabution matrtion conix is not necessarily square, an
eigenvalue decomposition is not an option.

(a) Figure shows a graphical representation of the SVD. U and V contain orthogonal vectors and S is the
diagonal matrix containing the singular values. Source: Van Galen [1, p. 6].

(b) Figure shows a graphical representation of a truncated SVD. Subscript o denotes the first ’o’ orders are
used to construct the doses distribution matrix. Source: Van Galen [1, p. 6]

Figure 2.2: Illustration of how the singular value decomposition reduces the order of the problem.
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The singular value decomposition theorem states that any matrix of any size can be decomposed into
three matrices accordingly: D =U SV ∗. The matrices U and V contain orthonormal vectors and are called the
left- and right-singular-vectors. The matrix S is a diagonal matrix containing the singular values (in decreas-
ing order). The non-zero entries of the S matrix are the square roots of the non-zero eigenvalues eigenvalues
of the D∗D and DD∗ matrices. A visual representation of the SVD decomposition is given by the following
figure:

By excluding some (small) singular values, the original matrix can be reconstructed to any precision re-
quired in a voxel by voxel comparison. The exclusion of some singular values means the sizes of U ,S and V
change from M × N , N × N and N × N respectively to M ×K , K ×K and N ×K respectively. This does not
change the size of the constructed matrix, which is still M ×N . The truncated SVD is represented graphically
in figure 2.2b.

2.2.1. LEFT SINGULAR VECTORS

The left singular vectors, contained in the U matrix, in combination with the corresponding singular values
of matrix S are the so called modes of the original dose distribution. If we define Dm =U S, then the column
vectors of Dm are the modes from which every dose distribution can be reconstructed. Thus we can write
every dose distribution as a linear combination of the modes as follows:

d j =
N∑

i=1
wi j Di

m (2.3)

where wi j is the weight (not the same as in section 1.1) and a function of the error scenario, and D i
m is the

i’th column vector (or mode) from the matrix Dm .

2.2.2. RIGHT SINGULAR VECTORS

The right singular vectors contain the weights wi j , or coefficients, mentioned in Section 2.2.1 for the super-
position of the modes to reconstruct a certain dose distribution. In this project we want to find a function that
relates the error scenario to the corresponding weights in the right singular vectors. The low order right sin-
gular vectors are rather simple, such that they can be approximated by polynomials, yet the higher order right
singular vectors become oscillatory and thus harder to fit low order polynomials. The oscillatory behaviour
can be explained by the fact that the right (and left) singular vectors constitute a set of orthonormal vectors.
In order to sustain the orthonormality of the singular vectors, higher order vectors become oscillatory while
the low order vectors are relatively simply shaped.

2.3. ADJOINT THEORY
In proton therapy, we are often dealing with calculating inner products of the proton flux with an operator
over space, energy and direction (d x,dE ,dΩ). We denote this inner product with the following notation:

< Aφ,ψ>=
Ñ

(Aφ)ψd xdE dΩ̂ (2.4)

with A an operator and φ the proton flux. An adjoint state of the operator A, the adjoint operator, is
defined as follows: < Aφ,ψ>=<φ, A†ψ> where A† is the adjoint of A. The adjoint of a matrix is its transpose,
the adjoint of the gradient ∇ is −∇ and the adjoint of a constant is the constant itself.

2.3.1. RESPONSE CALCULATION

A response is what we define to be an inner product of the following kind: R =< f ,φ> with f a function and
φ the proton flux. The dose is a response with the stopping power S(E) over density ρ(x) as a function opera-
tor: Dose =< S(E)/ρ(x),φ) >. An error scenario will affect the stopping power, density and the parameters in
the Boltzmann equation thus changing the value of the dose response. Recalculating the dose with the new
stopping power and proton flux is computationally expensive.

Adjoint theory can provide us with a method to efficiently calculate the change in response. As shown by
Kasbergen in his thesis (Kasbergen [2]) and by Abdel-Khalik et al. [10], we can calculate the change in response
by the following important equation:
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∆R =−<φ†
0,∆Aφ0 >

(
=

Ñ
φ†

0(∆Aφ0)d xdE dΩ̂
)

(2.5)

With ∆R the change in response, A an operator, φ0 the (forward) proton flux and φ†
0 the adjoint proton

flux. The adjoint proton flux is obtained by solving the adjoint Boltzmann transport equation:

−µ∂φ
†(x,E ,Ω̂)

∂x
+σtφ

†(x,E ,Ω̂) =−S(E)
∂(φ†(x,E ,Ω̂))

∂E
(2.6)

The adjoint Boltzmann transport equation from Equation 2.6 is derived by Kasbergen in his thesis (Kas-
bergen [2, p. 17]). Since we obtain the change in response, we need a reference scenario R0 such that R =
R0 +∆R. The reference scenario R0 is the nominal scenario mentioned in Section 1.2, which we denote by A0

and φ0. Since we use the nominal scenario in the calculation of the response, we only need to calculate the
forward and adjoint flux once. With the change in the operator ∆A we can then find the change in response
with Equation 2.5.

2.3.2. SENSITIVITY CALCULATION
Adjoint theory can also supply sensitivities with the respect to an arbitrary parameter p j with the help of
equation 2.5. As explained by Abdel-Khalik et al. [10] we can simply divide Equation 2.5 by the change in the
parameter ∆p j , and then take the limit as ∆p j → 0. The main results is described by Equation 2.7:

∂R

∂p j
=−<φ†

0,
( ∂A

∂p j

)
φ0 > (2.7)

In other words: we can find the value of any response, as long as it can be written as an inner product over
space, energy and direction. We can find the full gradient of every response with respect to any parameter by
using the nominal forward and adjoint flux, and the derivative of the operator with respect to the parameters.
In terms of the project goal, we can find the value of any response (in Rn , see Section 2.4) and the full gradient
in the response point.

2.4. HERMITE INTERPOLATION
In order to use the extra information obtained with the full gradient from the adjoint analysis, we will use the
Hermite interpolation method (Vuik et al. [11]). This method uses the given gradient, G(x), to fit a polynomial
P (x) such that ∇P (x) = G(x) in the snapshot points on which we will fit our function. The snapshot points will
be the points on which we will fit our Hermite polynomial. The full gradient and responses will be obtained
from the adjoint analysis. We will thus fit a function P (x) :Rn →R with n the number of errors.

2.4.1. ONE-DIMENSIONAL HERMITE INTERPOLATION
When two data points are known, say (x0, f (x0)) and (x1, f (x1)) and their respective derivatives are (x0, f ′(x0))
and (x1, f ′(x1)), a third order polynomial can be fitted through the data points in the following way:

1. Write P3(x) = ax3 +bx2 + cx +d , and P ′
3(x) = 3ax2 +2bx + c.

2. Equate P3(xi ) = f (xi ) and P ′
3(xi ) = f ′(xi ), for i = 0,1 yielding a system of four equations with four

unknowns.

3. Solve the system, obtaining a,b,c,d and thus solving for the polynomial.

Since we obtain a system of four equations with four unknowns we can write the equations in matrix form
(Vuik et al. [11, p. 19]): 

1 x0 x2
0 x3

0
1 x1 x2

1 x3
1

0 1 2x0 3x2
0

0 1 2x1 3x2
1




d
c
b
a

=


f (x0)
f (x1)
f ′(x0)
f ′(x1)

 (2.8)

Any interpolation polynomial based on function values as well as derivatives, or sensitivities, is called an
Hermite Interpolation Polynomial. An example of how Hermite interpolation can improve a fit is given in
figure 2.3.
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Figure 2.3: An example of a set of responses (circles), a linear interpolation polynomial and a Hermite interpolation polynomial. In-
terpolation points are x = [0,0.01, ...,0.05] The figures shows the linear interpolation simply connecting the interpolation points, whilst
Hermite interpolation follows the curvature of the responses. The zoom on 0.02 ≤ x ≤ 0.03 especially shows how the linear interpolation
is unaware of the curvature.

When more than two function values and derivatives are know, this method can also be used to construct
higher order polynomials on the entire domain. In general, if we have m points, we have 2m equations and
thus can fit a polynomial of order 2m −1 as we see with two data points (2 data points =⇒ 4 equations =⇒
cubic polynomial). Since Hermite interpolation forces the function values and derivatives to be equal in each
data point, the found interpolation polynomial will be continuous on the entire domain up to and including
first order derivatives.

2.4.2. N-DIMENSIONAL HERMITE INTERPOLATION

The ideas from Section 2.4.1 can easily be extended to an n-dimensional Hermite interpolation problem.
Since there are often multiple patient errors, n-dimensional Hermite interpolation is preferred over one-
dimensional Hermite interpolation. For this purpose, an n-dimensional polynomial has to be constructed.
In general, an n-dimensional polynomial of order p has

(p+n
n

)
terms, including the constant term 1. A general

n-dimensional polynomial of order p will look accordingly:

Pn(x1, x2, ..., xn) =
p∑

p1=0

p−p̂1∑
p2=0

...
p−p̂n−1∑

pn=0
cp1,p2,...,pn (xp1

1 · xp2
2 · ... · xpn

n ) (2.9)

Where p̂n = ∑n
i=1 pi and cp1,p2,...,pn are the coefficients to be determined, i.e. c0,...,0 is the constant term.

The matrix as in equation 2.8 can be constructed in a similar way. The coefficients are then found by solving
the obtained system.

2.4.3. N-DIMENSIONAL SIMPLICES

Every parameter that is subject to an error, contributes to the ’error grid’. If we have m error scenarios, then
we will have m coordinates per error parameter. If we have n error parameters, then we have m coordinates
in a n dimensional grid. In order to properly fit a polynomial, the obtained grid needs to be divided into sub-
grids. This will be done by a (Delaunay) triangulation ([12]). A triangulation in higher dimensions is made up
of simplices. Figure 2.4 shows what this looks like for m = 10 and n = 2:
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(a) Delaunay triangulation of a two dimensional, arbitrary
parameter dependant grid with 10 datapoints.

(b) Highlighted datapoint, circle in the middle of triangle,
and highlighted triangle in which the datapoint is located.
The triangle in which the datapoints is located is easily
found using barycentric coordinates, by first finding the
closest grid point, highlighted circle-vertex.

Figure 2.4: Representation of a two parameter dependant grid, 2.4a triangulated and 2.4b a highlighted datapoint.

An advantage of a triangulation is that barycentric coordinates ([13]) can be used to determine in which
simplex a data point is located. Basically, barycentric coordinates use the vertices of a simplex as basis vec-
tors and write the datapoint (which is located in (R)n as a linear combination of those basis vectors. If and
only if for all weights of the basis vectors λi we have 0 ≤ λi ≤ 1, the coordinate is located inside the simplex
corresponding to the vertices.

In order to not check for every simplex if a datapoint is inside that simplex, one can first find the closest
grid point and only check the simplices adjacent to that grid point. In Figure 2.4b the highlight vertex (Param-
eter 1 = 0.7, Parameter 2 = 0) only has three adjacent simplices, such that only three simplices need checking
instead of thirteen.

In n dimensions, we always need n +1 vertices in order to create a simplex to fit a polynomial on: in one
dimension (Section 2.4.1) we need 2 vertices, in 2 dimensions we need 3 vertices, etc.. Since in n dimensions
we have 1 response value plus n values for the gradient, we obtain (n+1)·(n+1) = (n+1)2 equations (number
of vertices times number of sensitivities per point plus the coordinate itself) to fit a polynomial on.



3
METHODS

3.1. DOSE COMPUTATION
The dose is computed using Fortran code written by Lathouwers (Lathouwers [8]). The code solves a discrete
version of the Boltzmann transport equation 2.1 using a Galerkin finite element method (Kuzmin [9]). The
output of the code is a vector that contains the FEM coefficients, which coincide with the dose at the bound-
aries of the cell. Since were using a 1D model in this project, a 1D geometry has to be used. The 1D geometry
used in this project is given in Figure 3.1:

Figure 3.1: Schematic representation of the used geometry. The distribution is as follows: 0 cm to 2 cm: TISSUE, 2 cm to 4.2 cm: BONE,
4.2 to 5.3 cm: TUMOR, 5.3 cm to 8 cm: BONE, 8 to 10 cm: TISSUE.

The reason as to why this geometry is chosen will be explained in section 3.3.2. The vertical axis of figure
3.1 show the CT value in Hounsfield Units [14].

3.1.1. ERROR SCENARIOS
As mentioned in Section 1.2, error scenarios will be simulated. The simulated error scenarios will be in σt

(same as in Section 2.1.1) ranging from σt = 0 to σt = 0.05. Another error will be in the TUMOR section in
Figure 3.1. The CT value will increase from 909 to 999.9 (10% error). This error will simulate tumor shrinkage
as the CT value wil come closer to the actual CT value of BONE, implying that the tumor is shrinking. The
final error will be in the BONE region between 2 and 4 cm. The CT will decrease from 1000 to 900 (10% error).

3.1.2. FUNCTION FITTING
6 errors will be simulated in σt (0 to 0.05 in steps of 0.01), C TTumor (from 0% error to 10% error in steps of
2%) and C TBone (from 0% error to 10% error in steps of 2%) so we will have 61 = 6 error scenarios in the 1
dimensional problem, 62 = 36 error scenarios in the 2 dimensional problem and 63 = 216 error scenarios in
the 3 dimensional problem. Every error will serve as an additional dimension for the input of our Hermite
polynomial P (x) : Rn → R. We will fit a function that can relate the error scenario to the dose distribution on
those 216 error scenarios. The goodness of the fit will be tested on a set of error scenarios. These errors will
then be simulated as follows: σt = 0 to σt = 0.05 in steps of 0.005, C TTumor will range from 0% error to 10%
error in steps of 1% and C TBone will range from 0% error to 10% error in steps of 1%. We then have 113 = 1331
error scenarios to test the function on.

9
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3.1.3. CREATING A SPREAD OUT BRAGG PEAK
Proton therapy requires a Spread Out Bragg Peak (SOBP). The SOBP can be obtained from the Fortran code
that solves the Boltzmann equation. In order to do so, the weights to add the individual pristine peaks have
the be determined first. The code is set such that the proton energy width is 2.5 MeV , meaning the 1D-
Boltzmann equation is solved for protons with an energy in a range that has a width of 2.5 MeV . From the
code, the pristine peaks were obtained for protons with an energy starting at 120 MeV to 80 MeV . Since the
width of the energy range is 2.5 MeV , 20 pristine peaks were obtained. Because the pristine peaks are all
shifted due to their energy difference, we can add them up using carefully chosen weights and obtain a SOBP
(See Paganetti [3]). A MATLAB script (Appendix A) was used in order to find the weights such that the pristine
peaks add up to a SOBP.

3.2. REDUCED ORDER MODELLING FOR DOSE DISTRIBUTIONS
The output of the code that solves the discretized Boltzmann equation, the dose distribution vectors, forms
the basis for the function fitting. As described in Section 2.2, these dose distributions will be organized in a
matrix D . This matrix is then used for the Reduced Order Model (ROM). The actual computation of the ROM
is done by MATLAB ([15]).

3.2.1. FINDING THE ACTIVE SUBSPACE
In order to reduce the order of the model, we will find how many singular values, and their corresponding left-
and right singular vectors, are actually needed to accomplish a certain precision. Since the singular values
decrease in magnitude, we will start with only the largest singular value and add more until the precision
conditions are met. The following pseudo-code shows how this process is done (See Appendix B Figure B.1
lines 20 to 30):

Input: Matrices U ,S,V with U SV T = D , and dose distribution matrix D .
Output: Number of singular values needed to reconstruct dose matrix.
Let i be the number of singular values tested, start with i =1
repeat

Let D ′ = [u1...ui ]∗ [s1...si ]∗ ([v1...vi ]T ),
with the small bold letters indicating the column vectors of the corresponding matrix.

Let εi j = |(Di j −D ′
i j )/max(D)|

with Di j and D ′
i j denoting the (i , j )’th element of D and D ′ respectively.

Let #ε= {Number of elements of ε such that: εi j > 10−5}
until

∑
#ε= 0;

Algorithm 1: Pseudo code that shows how to determine the number of singular values needed for a recon-
struction of the dose distribution matrix.

3.3. ADJOINT FLUX CALCULATIONS
Since we want to find the coefficients of the right singular vectors, we shall define the right singular vectors
to be our response. Multiplying D by U T and S−1 from the left and then taking the transpose shows D =
U SV T =⇒ V T = S−1U T D =⇒ V = DT U (S−1)T = DT U (S−1) since S is a diagonal matrix. This means that the
(i , j )’th element of V, Vi , j , can be written as an inner product between the i ’th column of D and the product
of the j ’th mode and the j ’th singular value. Using the notation di for the i ’th column of D , u j for the j ’th
column of U and s j for the j ’th singular value, we obtain:

Vi , j =
(di )T (u j )

s j
= < di ,u j >

s j
(3.1)

3.3.1. RESPONSE CALCULATIONS

In order to obtain a response and a sensitivity from Vi , j = (di )T (u j )/s j we need to write the inner product as
an integral over space, energy and direction. Since the vector di is the discretized dose, according to the FEM
we get for the n’th spatial cell:
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di =
N∑

n=1

[∫ xn

xn−1

Di (x)M−1
n hn(x)d x

]
1(2n−1,2n) (3.2)

Where:

• 1(2n−1,2n) denotes the (2n −1)’th and 2n’th element of the vector di .

• M is the mass matrix for the functions hn,2 = x−xn−1
xn−xn−1

, hn,1(x) = 1−hn,2(x).

• Di (x) is the continuous dose distribution: Di (x) =Î [
S(E)φ(x,E ,Ω̂)

]
/dE dΩ̂

• xn and xn−1 are the boundaries of spatial cell n.

We let hn = [hn,1(x),hn,2(x)]T . Substituting Equation 3.2 into Equation 3.1 yields:

< di ,u j >
s j

= 1

s j

∫ L

0
Di (x)

N∑
n=1

[< u j , M−1
n hn(x) >n

]
d x (3.3)

Where < u j , M−1
n hn(x) >n denotes the inner product in spatial cell n. Since hn(x) = 0 outside spatial cell

n, we find that
∑N

n=1

[ < u j , M−1
n hn(x) >n

]
is a piece wise continuous function and the integral in Equation

3.3 is well defined. If we now plug in the formula for the dose distribution into Equation 3.2 we obtain:

< di ,u j >
s j

=
∫ L

0

∫ Emax

Emi n

∫
4π

[S(E)

s j

N∑
n=1

[< u j , M−1
n hn(x) >n

]]
φ(x,E ,Ω̂)dΩdE d x (3.4)

From which we deduce that our adjoint source is given by:

Σd = S(E)

s j

N∑
n=1

[< u j , M−1
n hn(x) >n

]
(3.5)

In order to find our FEM coefficients for the adjoint source, we multiply with our basis functions again
and integrate over a single spatial cell. First we work out the inner product < u j , M−1

n hn(x) >n . The inverse
mass matrix is given by:

M−1
n = 1

(xn −xn−1)

[
4 −2
−2 4

]
(3.6)

From which we can find:

< u j , M−1
n hn(x) >n= 1

xn −xn−1
[U j ,2n−1](4hn

1 (x)−2hn
2 (x))

+ 1

xn −xn−1
[U j ,2n](−2h1(x)+4hn

2 (x))

= 1

xn −xn−1
(4[U j ,2n−1]−2[U j ,2n])hn

1 (x)

+ 1

xn −xn−1
(−2[U j ,2n−1]+4[U j ,2n])hn

2 (x)

(3.7)

Where U j ,k denotes the k’th element of the j ’th column vector of U. We now multiply Equation 3.7 by
hn(x) and integrate over [xn−1, xn], such that for every cell we get as our FEM coefficients:

∫ xn

xn−1

S(E)

s j

N∑
n=1

[< u j , M−1
n hn(x) >n

]
hn(x)d x = 1

s j

[
u j ,2n−1

u j ,2n

]
(3.8)
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3.3.2. SENSITIVITY CALCULATIONS

As described in Section 2.3.2 the sensitivities can be found by equation 2.7. In this project three sensitivities
are calculated, two of which are essentially identical. One with respect to σt and two with respect to the
perturbation in the CT scan. As described in Section 2.3.2 we need to find the derivative of the operator with
respect to σt and the perturbation in the CT values. In this project the operator is given by the Boltzmann
operator:

B =−µ ∂

∂x
+σt +S(E)

∂

∂E
(3.9)

Such that we need to solve the following equation (Kasbergen [2]):

Bφ= S (3.10)

With S the adjoint source as in Equation 3.5. Equation 3.10 explains the name adjoint source for S as S is
seen as a source for protons.

SENSITIVITY WITH RESPECT TO σt

As in Equation 2.7 we need to find the partial derivative of the operator with respect to a parameter. It turns
out that for the sensitivity with respect toσt , this partial derivative is equal to 1 (partial derivative of Equation
3.9 with respect to σt ) such that:

∂Vi j

∂σt
=−<φ†

0,φ0 > (3.11)

The perturbation in σt will run from σt = 0 (nominal scenario) to σt = 0.05.

SENSITIVITY WITH RESPECT TO STOPPING POWER

The sensitivity with respect to the perturbation in the CT scan is a little more work to compute. The stopping
power is the product of the density with the (chemical) composition Sn(E) = ρn ·C with ρn the density per
spatial cell. According to Schneider (Schneider et al. [16]), the density can be found from CT-values and the
chemical composition per spatial cell is made up of the weights given by source [16, p. 475, table 6] that in
turn also depent on the CT-value. The range in Hounsfield Units for which the chemical composition vector
is constant is in the order of 102 Hounsfield units. The range in which the density is constant is considerably
smaller, only about one Hounsfield Unit, we shall assume the following:

A perturbation in the CT-values shall only perturb the density.

Since Sn(E) = ρn ·C we find∆S(E) =∆ρ·C . Since dose is defined as Dose =Ð [
S(E)φ(x,E ,Ω̂)

]
/ρd xdE dΩ̂.

We see that the perturbation in ρ cancels and the total dose remains unchanged! The dose distribution is only
shifted left or right, that is, the plateau in the SOBP is positioned deeper or shallower in the patient’s body.

Since we have found that our operator is given by Equation 3.9, we need to find the partial derivative
of B with respect to CT-value perturbation which will only be in S(E). This will be done by a simple finite

difference scheme: ∂S(E)
∂C T = Sp (E)−S0(E)

C T where C T is the percentual perturbation in the CT values and Sp (E)
the stopping power corresponding to the error scenario, such that:

∂Vi j

∂C T
=−<φ†

0,
[Sp (E)−S0(E)

C T

]
φ0 > (3.12)

Two regions of CT-values will be perturbed. One region will be the entire tumor region (C TTumor ), sim-
ulating tumor shrinkage, whilst the other region will be the entire region in front of the tumor between 2cm
and 4.2 cm C TT i ssue . A schematic representation of the geometry used is given in Figure 3.1.

The CT-value of 909 for the Tumor region is chosen such that a 10% error in that value stays just under a
CT-value of 1000, which is needed to ensure a perturbation in CT-value only perturbs the density.
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3.4. HERMITE INTERPOLATION
In this project we used a full tensorised grid. The obtained grid is triangulated by MATLAB. On every simplex
(Section 2.4) (note that a line segment in 1D is also a simplex) a Hermite polynomial is fitted using the method
described in Section 2.4. If the found system turns out the be singular, or the matrix computation turns out
to be close to singular, then the entire system can be solved by an SVD decomposition on the interpolation
matrix. The interpolation matrix can for instance be singular when the columns or rows are dependant. Af-
ter some thorough inspection, by M. van Gijzen, of the interpolation matrix on a two dimensional simplex

using the polynomial P2(x1, x2) = ∑2
i=0

∑2
j=0 ci j xi

1x j
2 , it was concluded that the two dimensional interpola-

tion matrix is dependant with the given polynomial. To circumvent this, we chose our polynomial to be
P̂2(x1, x2) = P2(x1, x2)− c22x2

1 x2
2 + c22x3

1 x3
2 . In other words, we replace the term c22x2

1 x2
2 with c22x3

1 x3
2 The full

code used for the computation of the polynomial coefficients can be found in Appendix B.
In order to validate the found Hermite polynomial, 11 error scenarios in each dimensional will be sim-

ulated (111 = 11 in one dimension, 112 = 121 in two dimensions and 113 = 1331 in three dimensions). The
new reconstructed dose distribution matrix will be compared with the simulated dose distribution matrix.
From the simulated dose distribution matrix, the coefficient matrix V can also be obtained by the formula:
V = DT U (S−1) such that calculated and simulated V matrices can also be compared. Essentially, V is what
we want to determine since the dose distribution matrix follows form this.

However, there is a subtle issue that needs addressing. In one dimension, a simplex has two vertices and
so we have four data points (2 function values and 2 derivatives), on which we can unambiguously fit a third
order (Hermite) polynomial. In two dimensions, a simplex has 3 vertices and so we have nine data points (3
function values, 3 derivatives in both dimensions), such that we can fit a polynomial that is the product of
two second order polynomials, i.e. P2(x1, x2) = (a0 +a1x1 +a2x2

1)(b0 +b1x2 +b2x2
2) (NOTE: P2(x1, x2) as given

here is not a general 2-dimensional polynomial of order 4 since there are no terms x3
1 x2, x1x3

2 , x4
1 and x4

2).
In general we have, in dimension d , (1+d)2 equations to fit a polynomial on. We can only fit a polynomial

as a product of one dimensional, polynomials as done before, if d
√

(1+d)2 ∈ N . That is, if d
√

(1+d)2 is an

integer. We see for d > 2, that d
√

(1+d)2 is not an integer and so we cannot use this method unambiguously.
Since in this project we do not go higher than third order, we solve this issue by ignoring all third order terms
(x3, y3, z3 and x y z). However, for higher orders the difference between number of equations and number of
terms in the polynomial will grow, resulting in an unreliable solution.





4
RESULTS AND DISCUSSION

In this section we will present the results of the computation of a Hermite polynomial, the reconstruction of
the dose distribution matrix and the reconstruction of the coefficients matrix V . The elements of the matrix
V are also called the responses (from Section 2.3.1).

4.1. DOSE RECONSTRUCTION WITH ONE ERROR
In one dimension, 3 singular values were needed to reconstruct the entire dose distribution matrix D to within
1% precision. (See Figure 4.1). This means 3 columns of V had to be reconstructed. Note that the length of
the columns of V now indicates how many error scenarios we reconstruct, such that the length will be 11.

(a) Percentage of accepted voxels versus the singular value
index. 3 singular values, and thus modes, are needed to re-
construct the dose distribution matrix to within 1% accu-
racy.

(b) Magnitude of the singular values versus the singular
value index.

Figure 4.1: Results for the ROM on doses with error in one dimension. Only 3 modes are needed to reconstruct full dose distribution
matrix to within 1% accuracy.

4.1.1. CONSTRUCTION OF COEFFICIENT MATRIX V
Figure 4.2 shows the reconstruction of the first order coefficients of V . We see that the construction of the
first column of the V matrix, with R2 = 1, went pretty well. The error is about 8 orders of magnitude smaller
than the actual values. We notice that the error seems random. There is no clear pattern emerging in the
error. Note that the difference between the maximum value and the minimum value of the coefficients is
only about 0.08, from which we conclude (especially in contrast with Figures 4.3 and 4.4) that the first order
coefficients are, more or less, constant with respect to the other modes.

15
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Figure 4.2: Reconstruction of the first order coefficients. Solid line shows the simulated results (left axis), ’+’ marks shows the calculated
results (left axis) ans the ’o’ marks show the errors (right axis). R2 = 1.

The following figure shows the reconstruction of the second order coefficients:

Figure 4.3: Reconstruction of the second order coefficients. R2 = 1.

Again we see an R-square value of R2 = 1. Comparing the order of magnitude of the error with the coef-
ficient values we notice a difference of about 7 orders of magnitude. We can again conclude that the error is
random and there is no clear pattern emerging in the error.

Figure 4.4 shows the results for the third order coefficients. For the third time, we have R2 = 1. A rather
amazing result. All three sets of coefficient can be approximated with an R2 of 1. The order of magnitude of
the error is again about 7 orders smaller than the coefficient values. We do notice that the coefficients of mode
3 have a lot more curvature to them then the coefficients of other modes. However, the sensitivities from the
adjoint analysis in combination with the Hermite polynomial can approximate the coefficients really well.
Notice that the errors in the third mode also do not show a pattern, the average seems to be around 0 (notice
a shifted right axis ranging from -10 to 6 in Figure 4.3).
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Figure 4.4: Reconstruction of the third order coefficients. R2 = 1.

4.1.2. CONSTRUCTION OF THE DOSE DISTRIBUTION MATRIX
We will now focus on the reconstruction of the dose distribution matrix D . Recall from Section 2.2, that
D =U SV T . Since U and S contain the modes in 1 dimension, it is the coefficient matrix V that determines
the results. We shall start by discussing the nominal scenario shown in Figure 4.5:

Figure 4.5: Reconstruction of the nominal scenario in 1 dimension. Figure contains 3 plots; a plot of the simulated dose distribution, a
plot of the reconstructed dose distribution (actually right on top of the first graph) and the error between them. R2 = 1.

First we need to comment on the shape of the graph. Around 2 cm we see a little drop in the calculated
and simulated dose distributions. This is due to the CT values dropping of there. The second drop in the
graph is just before 6 cm where the dose distributions become negative! This is a results of the FEM and it
should be clear that it is unphysical to have a negative dose. We see that the error in the nominal scenario
(σt = 0) is 5 orders of magnitude smaller than the actual dose distribution. This results, yet again, in R2 = 1.
It should be noted that the nominal scenario goes to 0 after 8cm, a result of proton therapy, which greatly
improves the R2 value. Figures 4.6 show the dose reconstructions for the remaining 10 scenarios.
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(a) Dose reconstruction for σt = 0.005. R2 = 1. (b) Dose reconstruction for σt = 0.01. R2 = 1.

Figure 4.6: Results of the construction of the second and third scenario in 1 dimension.

(c) Dose reconstruction for σt = 0.015. R2 = 1. (d) Dose reconstruction for σt = 0.02. R2 = 1.

Figure 4.6: Results of the construction of the fourth and fifth error scenario in 1 dimension.

(e) Dose reconstruction for σt = 0.025. R2 = 1. (f ) Dose reconstruction for σt = 0.03. R2 = 1.

Figure 4.6: Results of the construction of the sixth and seventh error scenario in 1 dimension.
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(g) Dose reconstruction for σt = 0.035. R2 = 1. (h) Dose reconstruction for σt = 0.04. R2 = 1.

Figure 4.6: Results of the construction of the eighth an ninth error scenario in 1 dimension.

(i) Dose reconstruction for σt = 0.045. R2 = 1. (j) Dose reconstruction for σt = 0.05. R2 = 1.

Figure 4.6: Results of the construction of the tenth and eleventh error scenario in 1 dimension.

We notice, once again, that for all dose reconstructions we have R2 = 1. We do notice that the errors look
quite similar. This is because the error is a linear combination of the modes that are not used in the reduced
order model (in this case modes 4 and higher), so the errors consist of linear combination of the same shape
and thus look alike.



20 4. RESULTS AND DISCUSSION

4.2. DOSE RECONSTRUCTION WITH TWO ERRORS

In two dimensions, 7 modes are needed to reconstruct the dose distribution matrix as shown in Figure 4.7.

(a) Percentage of accepted voxels versus the singular value
index. 7 singular values are needed to reconstruct the dose
distribution matrix to within 1% accuracy.

(b) Magnitude of the singular values versus the singular
value index.

Figure 4.7: Results for the ROM on dose distribution matrix with errors in two dimensions. 7 modes are needed to reconstruct the dose
distribution matrix to a precision of 1%.

4.2.1. CONSTRUCTION OF COEFFICIENT MATRIX V

We shall start by looking at the reconstruction of the first mode coefficients:

(a) Reconstruction of the first order coefficients. The plane
marks the constructed coefficients, while the ’o’ marks
show the simulated coefficients. R2 = 1.

(b) Histogram of the errors in the reconstruction of the first
order modes. Note that the error is in the order of magni-
tude 10−4, about 3 orders lower that the coefficients.

Figure 4.8: Results of the construction of the first order mode coefficients in 2 dimensions. Note that the triangulation is clearly visible.

We note that we have R2 = 1, and that the difference between the maximum and minimum value for the
coefficients is about 0.04. We again see, compared to the other modes, that the first mode is more or less
constant. We note too, that the error is in the order of magnitude 10−5, whilst the coefficients are in the order
of magnitude 10−1. We shall now present the results for the higher order modes.
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(c) Reconstruction of the second order coefficients. The
plane marks the constructed coefficients, while the ’o’
marks show the simulated coefficients. R2 = 1.

(d) Histogram of the errors in the reconstruction of the sec-
ond order modes. Note that the error is at most in the order
of magnitude 10−3, only 2 orders lower that the coefficients.

(e) Reconstruction of the third order coefficients. The plane
marks the constructed coefficients, while the ’o’ marks
show the simulated coefficients. R2 = 1.

(f ) Histogram of the errors in the reconstruction of the third
order modes. The error is order of magnitude 10−3, 2 orders
lower than the coefficients.

(g) Reconstruction of the fourth order coefficients. The
plane marks the constructed coefficients, while the ’o’
marks show the simulated coefficients. R2 = 0.999.

(h) Histogram of the errors in the reconstruction of the
fourth order modes. The error seems concentrated around
0. It can however reach values of -0.01 or 0.015 which is a
relative error of about 100%.

Figure 4.8: Results of the construction of the second, third and fourth order mode coefficients in 2 dimensions.
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(i) Reconstruction of the fifth order coefficients. The plane
marks the constructed coefficients, while the ’o’ marks
show the simulated coefficients. R2 = 0.999.

(j) Histogram of the errors in the reconstruction of the
fourth order modes. The error seems concentrated around
0 except for 1 case where it is 0.08.

(k) Reconstruction of the sixth order coefficients. The plane
marks the constructed coefficients, while the ’o’ marks
show the simulated coefficients. R2 = 0.996

(l) Histogram of the errors in the reconstruction of the sixth
order modes. The errors in this mode are by far the largest,
only one order of magnitude smaller than the coefficients.

(m) Reconstruction of the seventh order coefficients. The
plane marks the constructed coefficients, while the ’o’
marks show the simulated coefficients. R2 = 1

(n) Histogram of the errors in the reconstruction of the sev-
enth order modes. The error is in the order of magnitude
10−3, again 2 orders less than the coefficients.

Figure 4.8: Results of the construction of the fifth, sixth and seventh order mode coefficients in 2 dimensions.
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Overall we note that R2 is about 1 for all modes, except for the sixth where it is ’only’ 0.996. This relatively
low value for R2 for the sixth mode can be explained by the oscillatory nature of the coefficients. Since we are
fitting polynomials, which are not particularly oscillatory, we can explain this value. What is sort of surprising,
is that for the seventh mode we have R2 = 1 again. We would expect higher modes to have more complicated
shapes in order to conserve the orthonormality discussed in Section 2.2.2. The same holds for modes 4 and 5,
the shapes of the coefficients has an oscillatory nature which makes it hard to fit polynomials on. In the end,
the results look promising in the reconstruction of the dose distribution matrix, which we shall discuss next.

4.2.2. CONSTRUCTION OF THE DOSE DISTRIBUTION MATRIX
Since we have 11 error scenarios in each dimension, we have 121 error scenarios in total. For brevity, we shall
not show them all here but stick to some special cases. The special cases being the nominal scenario, the
two worst approximated scenarios and the scenario with the highest simulated error, that is σt = 0.05 and
C TTumor = 10%. We shall start with the nominal scenario:

Figure 4.9: Dose reconstruction of the nominal scenario. The error shows a drop when the dose drops to zero, indicating a slight differ-
ence in the simulate dose and the constructed dose for the drop off area. R2 = 1.

Again, we see that the reconstruction of the nominal scenario went pretty well. The error has a peak value
with an order of magnitude that is three orders lower than the actual dose distribution. The drop in the error
is a phenomena that occurs often in the dose reconstruction for an error in two dimensions. For brevity, we
have not shown all results here. We shall now analyze the two worst approximated scenarios:

(a) Error scenario σt = 0.005, C TTumor = 3%. R2 = 1 (b) Error scenario σt = 0.025, C TTumor = 7%. R2 = 1

Figure 4.10: Worst approximated dose distributions. Scenarios σt = 0.005, C TTumor = 3% and σt = 0.025, C TTumor = 7%. Both still
have R2 = 1.
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To start with, we notice that both R2 values are 1. Since these are the worst case scenarios, that means
all the other scenarios are better. But better than 1 can not be, so all scenarios have R2 = 1. The actual R2

values are 0.9999995 (for σt = 0.005, C TTumor = 3%) and 0.999991 (for σt = 0.025, C TTumor = 7%). For the
first time, we notice a systematic error in Figure 4.10a. We notice that the error has the shape of a SOBP, and
that it is mostly located above the simulated dose distribution. The latter implies that we the approximation
is predicting a lower dose than we are actually measuring. We shall now discuss the scenario with the highest
error in Figure 4.11:

Figure 4.11: Error scenario σt = 0.05, C TTumor = 10%. We again see a peak when the dose drops. R2 = 1.

The error in the constructed dose distribution has a peak when the dose drops off. However, we still
see R2 = 1 even for the scenario with maximum error. We thus see we are able to approximate every dose
distribution to within acceptable margin with an error in two dimensions.

4.3. DOSE RECONSTRUCTION WITH THREE ERRORS
For errors in three dimensions we need 14 modes to reconstruct the dose distribution matrix as seen in Figure
4.12.

(a) Percentage of accepted voxels versus the singular value
index. 14 singular values are needed to reconstruct the dose
distribution matrix to within 1% accuracy. Note the loga-
rithmic singular value index axis.

(b) Magnitude of the singular values versus the singular
value index. The magnitude seems to decrease exponen-
tially. This decay stops when machine precision is reached.
This is what explains the constant section of the graph.

Figure 4.12: Results for the ROM on dose distribution matrix with errors in two dimensions. 14 modes are needed to reconstruct the dose
distribution matrix to a precision of 1%. The x-axis in figure 4.12a has been plotted on a logarithmic scale to visualize the acceptance
rate.
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4.3.1. CONSTRUCTION OF COEFFICIENT MATRIX V
We shall start by examining the construction of the coefficient matrix. Since we are considering 4-dimensional
data (Errors in three dimensions ans the responses) there is no other way, other than a 3 dimensional scatter
plot with color coded values, than to show a histogram of the error, the R2 values and draw conclusions from
there. We shall start by examining the first mode coefficients:

Figure 4.13: Histogram of the error in the construction of the first mode coefficients. We have R2 = 0.939.

We see that R2 = 0.939, which makes sense considering the histogram centers around 0 and has a maxi-
mum error of 0.01. Comparing this value with earlier values for R2 found we note it is a little low. This can be
explained by the problem described in Section 2.4. We are losing information due to the SVD in the Hermite
interpolation vector product equation from the Hermite polynomial fitting. We shall now present the other
13 modes and comment on them:

(a) Histogram of the error in the construction of the second
mode coefficients. We have R2 = 0.948.

(b) Histogram of the error in the construction of the third
mode coefficients. We have R2 = 0.945.

Figure 4.13: Histograms of the error in the construction of the second and third mode.
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(c) Histogram of the error in the construction of the
fourth mode coefficients. We have R2 = 0.852.

(d) Histogram of the error in the construction of the fifth
mode coefficients. We have R2 = 0.900.

Figure 4.13: Histograms of the error in the construction of the fourth and fifth mode.

(e) Histogram of the error in the construction of the sixth
mode coefficients. We have R2 = 0.740.

(f ) Histogram of the error in the construction of the sev-
enth mode coefficients. We have R2 = 0.901.

Figure 4.13: Histograms of the error in the construction of the sixth and seventh mode.

(g) Histogram of the error in the construction of the
eighth mode coefficients. We have R2 = 0.569.

(h) Histogram of the error in the construction of the
ninth mode coefficients. We have R2 = 0.781.

Figure 4.13: Histograms of the error in the construction of the eighth and ninth mode.
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(i) Histogram of the error in the construction of the tenth
mode coefficients. We have R2 = 0.694.

(j) Histogram of the error in the construction of the
eleventh mode coefficients. We have R2 = 0.368.

Figure 4.13: Histograms of the error in the construction of the tenth and eleventh mode.

(k) Histogram of the error in the construction of the
twelfth mode coefficients. We have R2 = 0.831.

(l) Histogram of the error in the construction of the thir-
teenth mode coefficients. We have R2 = 0.677.

Figure 4.13: Histograms of the error in the construction of the twelfth and thirteenth mode.

(a) Histogram of the error in the construction of the fourteenth mode coefficients. We have R2 = 0.668.
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First of all, we notice that all histograms are centered around zero, and nearly all drop to zero before the
error reaches -0.1 or 0.1. Consequently we have that the error is only one order of magnitude smaller than
the coefficients values. This is a result that we see in the R2 values as well, the best R2 value obtained is
R2 = 0.948 for mode two, while the worst that we obtained is R2 = 0.368 for the eleventh mode. When the
R2 is that low, there is no point talking about a fit since practically, there is none. Probably, this low value
for R2 can be explained by a combination of the oscillatory behaviour of the coefficients and the fact that we
lose information due to the SVD on the interpolation matrix. We shall now see what the effects on the dose
distributions is.

4.3.2. CONSTRUCTION OF THE DOSE DISTRIBUTION MATRIX
We shall again confine ourselves to only some special cases, being the nominal scenario, the two worst re-
constructions and the case with maximum error scenario. We shall start with the nominal scenario

Figure 4.15: Nominal scenario with error σt = 0, C TTumor = 0% and C TT i ssue = 0%. Dashed line shows the error on the right axis. Error
is defined as simulated dose minus constructed dose. R2 = 0.999

We note that for the first time the nominal scenario is not approximated with R2 = 1. Even though it is
really close, we can argue that this value is determined for 40% by zeros (6 cm to 10 cm) and thus possibly
draws a wrong image. We see that we our dose reconstruction is larger than the simulated dose distribution.
In practise this would mean that a patient receives a higher dose than calculated. We also notice, since the
error does not integrate to 0, that energy is not conserved in the nominal scenario! However, we see that the
drop off by the dose is still present in the same region.

Figure 4.16: Scenario with error σt = 0.015, C TTumor = 3% and C TT i ssue = 3%. Dashed line shows the error on the right axis. Error is
defined as simulated dose minus constructed dose. R2 = 0.948.
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From this distribution we see that the reconstruction of the dose distribution matrix did not go too well.
However, we still get R2 = 0.948. This very high value for this graph can be explained by two factors. At first,
we have the zeros from 6 to 10 cm. Secondly, the shape of the graph is correct. It would probably be better, for
all results, to look at the R2 value until 6cm. For the first time, we do notice a very clear systematic difference
between the two dose distributions. The order of the error in the dose distribution is in the same order as the
simulated dose distribution! The Hermite polynomial was unsuccessful in reconstructing the V matrix for
this specific error scenario. We will now look at a scenario in which the fit is spot on:

Figure 4.17: Scenario with error σt = 0.03, C TTumor = 4% and C TT i ssue = 6%. Dashed line shows the error on the right axis. Error is
defined as simulated dose minus constructed dose. R2 = 0.973.

The dose distribution in figure 4.17 corresponds to the distribution with the highest error value, not the
same as the least R2 value. We see that our calculated dose distribution falls off too early, which in practise
would result in a lower tumor dose, but no extra harm for the tissue behind the tumor. It should be noted that
the error scenario σt = 0.03, C TTumor = 4% and C TT i ssue = 6% was a data point to fit the Hermite polynomial
on. Thus, we would expect the fit to be very good on this scenario. However, the maximum error scenario
is also a data point for the fit of the Hermite polynomial and we see that the fit there is not as good as was
expected:

Figure 4.18: Scenario with maximum error σt = 0.05, C TTumor = 10% and C TT i ssue = 10%. Dashed line shows the error on the right
axis. Error is defined as simulated dose minus constructed dose. R2 = 1
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We notice that the error is in the order of magnitude of about 10−8 except for the dose drop off region
where it is in the order 10−7. Overall, the two graphs are rather similar and also result in an R2 = 1. The only
discrepancy seems to be in the tumor region, in which the simulated dose is higher than the constructed
dose.

Overall, the dose distributions have R2 close to 1, but we have seen in figure 4.16 that this does not always
represent a good image. If we apply the condition as in Algorithm 1, that is all the voxels should be approxi-
mated to within 1% precision, we obtain that 70% of the voxels in the dose distribution matrix is accepted.



5
CONCLUSION

We can conclude that fitting a Hermite polynomial to multidimensional simplices in order to find a function
that relates an error scenario to a dose distribution, provides a very promising method in proton therapy. For
three dimensional errors we have encountered that a Singular Value Decomposition on the Hermite interpo-
lation matrix might have caused the results to look better than they really are. We have seen fits with R2 = 1,
or at least very close to one, that graphically do not look particularly good.

We can conclude too that the methods described by Kasbergen about the adjoint theory for proton ther-
apy also work with the boundary conditions given in this project. The adjoint flux is calculated correctly and,
with the adjoint flux, the response used in this project can be properly calculated. As a matter of fact, the
sensitivities can even be calculated correctly for the responses used in this project. The definition of the right
singular vectors as a response in the desired form is very well suited for adjoint and response calculations.

Furthermore, we can also draw the conclusion that the Reduced Order Model method described by Van
Galen (Van Galen [1]) works for more dose distributions than he initially tested, although it should be men-
tioned that he analyzed a full 3D patient. The left singular vectors contain the modes that are needed to
reconstruct every dose distribution, and yet we do not need them all in order to achieve an accuracy speci-
fied by ourselves.

Since our goal was to improve the results already obtained in the function fitting, we shall compare our
results with Van Galen’s ([1, p. 27]). We note that the surfaces in 2 dimensions in the results by Van Galen oc-
casionally occur outside the acceptable range of [−1,1] (The results must be in this range in order to preserve
orthonormality). We see that the results in this project do occur in this range only for 1 and 2 dimensional
errors. As a matter of fact, the lowest R2 value obtained in this project for errors in 2 dimensions is R2 = 0.996.
We conclude that Hermite interpolation provides a better solution to dose reconstruction that regression on
the right singular vectors for errors in 1 and 2 dimensions. For the errors in 3 dimensions, we see that Van
Galen needs 17 orders of the ROM to achieve a voxel acceptance percentage of 99%, where in this project 70%
of the voxels are accepted with only 14 modes of the ROM. We conclude that Hermite interpolation in three
dimensions is not as good as it is in two or one dimensions.

A recommendation for further research is that the Hermite interpolation in higher dimensions is calcu-
lated with more care. That is, a recipe should be found in order to equal the number of equations to the
number of terms in the polynomial. A possible solution might be to fit a polynomial to the entire data set,
rather than to simplices as a subset of the data set.

Another recommendation is to test the interpolation method on an irregular grid rather than the regular
grid used in this project.
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APPENDIX A

In this appendix we state the code that is used to determine the weights for creating a Spread Out Bragg Peak
from e few pristine peaks. The output is a vector w containing the weights.

breaklines
1 %% i n i t
2

3 table = readtable ( ’ r e s u l t s . t x t ’ ) ;
4 num_res = height ( table )/1000;
5

6 for i = 1 : num_res
7 doses ( : , i ) = table { ( ( i −1)*1000+1):(1000* i ) , 2 } ;
8 end
9

10 mesh = table { 1 : 1 0 0 0 , 1 } ;
11

12 xmin = 4 . 2 ;
13 xmax = 5 . 3 ;
14

15 opt_dose = 1 ;
16

17 coef = zeros ( s i z e ( doses ( 1 , : ) ) ) ;
18

19 %% Calc
20

21 for beam = 1 :numel( doses ( 1 , : ) )
22

23 peak = max( doses ( : , beam ) ) ;
24 mesh_value = mesh( doses ( : , beam) == peak ) ;
25 i f ( ( mesh_value − max_dist < xmax) & ( mesh_value + max_dist > xmin ) )
26 SOBP = opt_dose − sum( ( coef . * doses ) ’ ) ’ ;
27 else
28 SOBP = zeros ( s i z e ( doses ( : , 1 ) ) ) ;
29 end
30

31 t r y
32 coef (beam) = max(SOBP(mesh == mesh_value ) ) / peak ;
33 end
34

35 coef ( isnan ( coef ) ) = 0 ;
36 end
37

38 fun1 = @(w) opt_dose − sum( ( ( coef ~= 0 ) . *w. * ( doses (mesh >= xmin & mesh <= xmax , : ) ) ) ’ ) ;
39 fun2 = @(w)sum( abs ( fun1 (w) ) ) ;
40

41 options = optimset ( ’ MaxFunEvals ’ ,10000 , ’ MaxIter ’ ,10000) ;
42 w = fminsearch ( fun2 , coef , options ) ;
43 w = abs (w) ;
44

45 w = (w. * ( coef ~=0))/max(w) ;

Figure A.1: MATLAB code used for finding the weights to create a SOBP from pristine peaks
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APPENDIX B

All the code in this appendix is for an error in three dimensions, the cases for two and one dimension begin
similar.

REDUCED ORDER MODEL
The following piece of MATLAB code shows how the SVD is done on the dose distribution matrix. The results
are the left singular vectors U , the singular values S, the right singular values V and the modes that are needed
as an input for Fortran.

breaklines
1 %% i n i t
2

3 table = readtable ( ’ r e s u l t s 3 . t x t ’ ) ;
4

5 num_res = height ( table )/1000;
6 error_dim = [ 6 , 6 , 6 ] ;
7

8 accep = 0 ;
9

10 mesh = table { 1 : 1 0 0 0 , 1 } ;
11

12 doses = reshape ( table { : , 2 } , 1 0 0 0 , [ ] ) ;
13

14 %% calc
15

16 [U, S , V] = svd ( doses , ’ econ ’ ) ;
17

18 size_d = s i z e ( doses ) ;
19

20 j =0;
21 i = size_d ( 2 ) ;
22 while j <size_d ( 2 )
23 j = j +1;
24 perc = abs (U( : , 1 : j ) * S ( 1 : j , 1 : j ) * ( V ( : , 1 : j ) ’)−doses )/max( doses ( : , 1 ) ) ;
25 t o l = sum(sum( perc < 1e−5)) ;
26 i f ( ( t o l >= numel( doses ) ) && ( j <= i ) )
27 i = j ;
28 end
29 accep ( j ) = t o l ;
30 end
31

32 cons_doses = U( : , 1 : i ) * S ( 1 : i , 1 : i ) * ( V ( : , 1 : i ) ’ ) ;
33

34 % create modes for fortran
35

36 s=diag ( S ) ;
37

38 for L = 1 : i
39 mode ( : , : , L ) = [U( 1 : 2 : end , L ) / s ( L ) U( 2 : 2 : end , L ) / s ( L ) ] ;
40 end

Figure B.1: MATLAB code used for finding the weights to create a SOBP from pristine peaks
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COMPUTING THE INTERPOLATION POLYNOMIAL

breaklines
1 table=readtable ( ’ s e n s i t i v i t i e s 3 . t x t ’ ) ;
2 table=table { : , : } ;
3

4 responses = reshape ( table ( : , 1 ) , 6 , 6 , 6 , [ ] ) ;
5 sens_sigma = reshape ( table ( : , 2 ) , 6 , 6 , 6 , [ ] ) ;
6 sens_CT = reshape ( table ( : , 3 ) , 6 , 6 , 6 , [ ] ) ;
7 sens_CT2 = reshape ( table ( : , 4 ) , 6 , 6 , 6 , [ ] ) ;
8

9 terms = [ 1 : 3 5:9 11:14 1 6 : 1 9 ] ; % ’ terms ’ contains the terms that are used in the polynomial
10

11 for r = 1 : i % ’ i ’ i s the number of modes needed for reconstruction
12 C ( : , : , r ) = CompInter3 (X , Y , Z , responses ( : , : , : , r ) , sens_sigma ( : , : , : , r ) , . . .
13 sens_CT ( : , : , : , r ) , sens_CT2 ( : , : , : , r ) , terms ) ;
14 V_temp = plotPoints3 (X , Y , Z , X2 , Y2 , Z2 ,C ( : , : , r ) , terms ) ;
15 V_cons ( : , r ) = reshape (V_temp , [ ] , 1 ) ;
16 end
17

18 doses_cons = U( : , 1 : i ) * S ( 1 : i , 1 : i ) * V_cons ’ ; % Matrix containing the constructed dose d i s t r i b u t i o n matrix

Figure B.2: MATLAB code used for the computation of the Hermite interpolation polynomial for all modes

NON STANDARD FUNCTIONS USED IN MATLAB CODE B.2

breaklines
1 function [C] = CompInter3 (X , Y , Z , F , Fx , Fy , Fz , terms )
2 TRI = delaunayn ( [ reshape (X , [ ] , 1 ) , reshape (Y , [ ] , 1 ) , reshape (Z , [ ] , 1 ) ] ) ;
3 TRIsize = s i z e ( TRI ) ;
4

5 for m = 1 : TRIsize ( 1 )
6 t r i = TRI (m, : ) ;
7 [ c ] = Hermite3 (X( t r i ) , Y( t r i ) , Z( t r i ) , F( t r i ) , Fx ( t r i ) , Fy ( t r i ) , Fz ( t r i ) , terms ) ;
8 C(m, 1 : numel( c ) ) = c ;
9 end

10 end

Figure B.3: MATLAB code used for the computation of the Hermite interpolation polynomial for all simplices per mode

breaklines
1 function [P] = Hermite3 (X , Y , Z , f , fx , fy , fz , terms )
2 index2 = 1 ;
3 for n = 1:4
4 index2 = 1 ;
5 for px = 0:3
6 for py = 0:(3−px )
7 for pz = 0:3−px−py
8 H(n , index2 ) = X(n)^px * Y(n)^py * Z(n)^pz ;
9 H(n+4 , index2 ) = px*X(n) ^( px−1) * Y(n)^py * Z(n)^pz ;

10 H(n+8 , index2 ) = X(n) ^ ( px ) * py * Y(n) ^ ( py−1) * Z(n)^pz ;
11 H(n+12 , index2 ) = X(n)^px * Y(n)^py * pz * Z(n) ^( pz−1);
12 index2 = index2 + 1 ;
13 end
14 end
15 end
16 end
17

18 f t o t = [ reshape ( f , 1 , [ ] ) , reshape ( fx , 1 , [ ] ) , reshape ( fy , 1 , [ ] ) , reshape ( fz , 1 , [ ] ) ] ’ ;
19

20 H( isnan (H) ) = 0 ; % This l i n e i s necessary since we can have 0^{−1} in the matrix
21

22 [u , d , v ] = svd (H( : , terms ) , ’ econ ’ ) ;
23 s = diag (d ) ;
24 s = s ( s > max( s )*10^−12);
25 u = u ( : , 1 : numel( s ) ) ;
26 di = eye (numel( s ) ) . / s ;
27 v = v ( : , 1 : numel( s ) ) ;
28 P = v * di * ( u ’ ) * f t o t ;
29 end

Figure B.4: MATLAB code used for the computation of the Hermite interpolation polynomial for a single simplex per mode
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breaklines
1 function [ value ] = plotPoints3 (X , Y , Z ,U, V ,W, C, terms )
2 for i = 1 :numel(U)
3 value ( i ) = valueInterPoint3 (U( i ) ,V( i ) ,W( i ) ,C( f i n d t r i 3 (X , Y , Z ,U( i ) ,V( i ) ,W( i ) ) , : ) , terms ) ;
4 end
5 end

Figure B.5: MATLAB code used for plotting (returning) the interpolated coefficient value.

breaklines
1 function R = f i n d t r i 3 (X , Y , Z , x , y , z )
2 TRI = delaunayn ( [ reshape (X , [ ] , 1 ) , reshape (Y , [ ] , 1 ) , reshape (Z , [ ] , 1 ) ] ) ;
3 [ a , b] = findmin3 (X , Y , Z , x , y , z ) ;
4 [R,C] = find ( TRI == b ) ;
5 d=Inf ;
6 R_temp = R ( 1 ) ;
7

8 % Check in which t r i a n g l e point i s located
9

10 for r = 1 :numel(R)
11 L = [X( TRI (R( r ) , : ) ) ; Y( TRI (R( r ) , : ) ) ; Z( TRI (R( r ) , : ) ) ; ones ( 1 , 4 ) ] \ [ x ; y ; z ; 1 ] ;
12 i f sum( ( L < 0) | ( L > 1 ) ) == 0
13 R_temp = R( r ) ;
14 break
15 end
16 end
17 R = R_temp ;
18 end

Figure B.6: MATLAB code used for finding the simplex in which data point (U (i ),V (i ),W (i )) is located.

breaklines
1 function [ location , TRI_value , dmin] = findmin3 (X , Y , Z , x , y , z )
2 d = sqrt ( ( X−x ) . ^ 2 + (Y−y ) . ^ 2 + (Z−z ) . ^ 2 ) ;
3 dmin = min(d , [ ] , ’ a l l ’ ) ;
4 location = (d == dmin ) ;
5 temp1 = find ( location ) ;
6 location = zeros ( s i z e ( location ) ) ;
7 ran = randi (numel(temp1 ) , 1 ) ;
8 ran = 1 ;
9 location (temp1( ran ) ) = 1 ;

10 location = ( location == 1 ) ;
11 loc_x = find (X == X( location ) ) ;
12 loc_y = find (Y == Y( location ) ) ;
13 loc_z = find (Z == Z( location ) ) ;
14 TRI_value = i n t e r s e c t ( i n t e r s e c t ( loc_x , loc_y ) , loc_z ) ;
15 end

Figure B.7: MATLAB code used for finding the closest snapshot point with respect to the data point (U (i ),V (i ),W (i )).

breaklines
1 function [ f ] = valueInterPoint3 ( x , y , z , C, terms )
2 f =0;
3 index = 1 ;
4 for px = 0:3
5 for py = 0:(3−px )
6 for pz = 0:3−px−py ;
7 X( index ) = ( x . ^ ( px ) ) * ( y . ^ ( py ) ) * ( z . ^ ( pz ) ) ;
8 index = index + 1 ;
9 end

10 end
11 end
12 f = sum(C. * X( terms ) ) ;
13 end

Figure B.8: MATLAB code used for finding the value of the interpolated point (U (i ),V (i ),W (i )).
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CREATING THE SIMULATED MATRICES IN MATLAB AND THE ERROR MATRICES

breaklines
1 table = readtable ( ’ results_BIG3 . t x t ’ ) ;
2

3 doses_big = reshape ( table { : , 2 } , 1 0 0 0 , [ ] ) ;
4

5 V_big = doses_big ’ *U( : , 1 : i ) * inv ( S ( 1 : i , 1 : i ) ) ;
6 V_big = reshape ( V_big , 1 1 , 1 1 , 1 1 , 1 4 ) ;
7

8 V_cons = reshape ( V_cons , 1 1 , 1 1 , 1 1 , 1 4 ) ;
9

10 V_error = reshape ( V_big − V_cons , [ ] , 1 4 ) ;

Figure B.9: MATLAB code used for finding the simulated V matrix.
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