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a b s t r a c t

We consider for the first time a stochastic generalized Nash equilibrium problem, i.e., with expected-
value cost functions and joint feasibility constraints, under partial-decision information, meaning that
the agents communicate only with some trusted neighbors. We propose several distributed algorithms
for network games and aggregative games that we show being special instances of a preconditioned
forward–backward splitting method. We prove that the algorithms converge to a generalized Nash
equilibrium when the forward operator is restricted cocoercive by using the stochastic approximation
scheme with variance reduction to estimate the expected value of the pseudogradient.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In a stochastic Nash equilibrium problem (SNEP), some agents
nteract with the aim of minimizing their expected value cost
unction which is affected by the decision variables of the other
gents. The characteristic feature is the presence of uncertainty,
epresented by a random variable with unknown distribution.
ue to this complication, the equilibrium problem is typically
ard to solve (Koshal, Nedic, & Shanbhag, 2013; Ravat & Shanbhag,
011). However, many practical problems must be modeled with
ncertainty, for instance, electricity markets with unknown de-
and (Henrion & Römisch, 2007) and transportation systems
ith erratic travel time (Watling, 2006).
Another recurrent engineering aspect is that agents may be

ubject to shared feasibility constraints. For instance, consider
he gas market where the companies participate in a bounded
apacity market (Abada, Gabriel, Briat, & Massol, 2013) or more
enerally any network Cournot game with market capacity con-
traints and uncertainty in the demand (Yi & Pavel, 2019; Yu, Van
er Schaar, & Sayed, 2017). In this case, we have a stochastic
eneralized NEP (SGNEP), i.e., the problem of finding a Nash
quilibrium where not only the cost function but also the feasible

✩ The material in this paper was not presented at any conference.
This work was partially supported by NWO under research projects OMEGA
(613.001.702) and P2P-TALES (647.003.003), and by the ERC under research
project COSMOS (802348) This paper was recommended for publication in
revised form by Associate Editor Alessandro Abate under the direction of Editor
Ian R. Petersen.
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S. Grammatico).
ttps://doi.org/10.1016/j.automatica.2021.110101
005-1098/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
set depend on the decisions of the other agents (Chen, Ming,
Hong, & Yi, 2021; Franci & Grammatico, 2020a; Yi & Pavel, 2019).

This class of problems is of high interest for the decision and
control community, in both deterministic (Chen et al., 2021; Gad-
jov & Pavel, 2020; Pavel, 2019; Yi & Pavel, 2019) and stochastic
cases (Koshal et al., 2013; Yousefian, Nedić, & Shanbhag, 2012).
Notably, the presence of shared constraints makes the computa-
tion of an equilibrium very challenging, especially when search-
ing for distributed algorithms, where each agent only knows its
local cost function and its local constraints. Perhaps the most
elegant way to design a solution algorithm for a SGNEP is to recast
the problem as an inclusion, leveraging on monotone operator
theory. In particular, operator splitting methods, paired with a
primal–dual analysis on the pseudogradient mapping, can be
used to obtain fixed-point iterations that converge to an equi-
librium, i.e., a collective strategy that simultaneously solve the
interdependent optimization problems of the agents while reach-
ing consensus on the dual variables associated to the coupling
constraints (Facchinei & Kanzow, 2010; Kulkarni & Shanbhag,
2012). Unfortunately, these methods do not necessarily lead to
distributed iterations, thus, for this purpose, a suitable ‘‘pre-
conditioning’’ is required in some problem classes (Belgioioso
& Grammatico, 2018; Yi & Pavel, 2019). Although computation-
ally convenient, distributed algorithms have one main flaw: the
information that each agent must know about the others. Never-
theless, in most cases, it is assumed that the agents have direct
access to the decision variables of the other agents that affect
their cost function (Franci & Grammatico, 2020a; Koshal et al.,
2013; Ravat & Shanbhag, 2011). This is the so-called full-decision
information setup, where the agents must share information with
all the competing agents. From a more realistic point of view
however, it is more natural to assume that the agents share infor-
mation with some trusted neighbors only. In this case, we have
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he so-called partial-decision information setup (Galeotti, Goyal,
ackson, Vega-Redondo, & Yariv, 2010; Pavel, 2019). In the litera-
ure of deterministic GNEPs, there are several algorithms for both
he full information (Facchinei & Kanzow, 2010; Grammatico,
017; Yi & Pavel, 2019) and the partial-decision information
etup (Belgioioso & Grammatico, 2018; Bianchi, Belgioioso, &
rammatico, 2020; Pavel, 2019). However, to the best of our
nowledge, the only few algorithms for SGNEPs are in full infor-
ation (Franci & Grammatico, 2020b; Ravat & Shanbhag, 2011;
u et al., 2017). Among others, one of the fastest and less com-
utationally demanding algorithms that may be exploited is the
orward–backward (FB) splitting method (Bauschke, Combettes,
t al., 2011), for which a suitable preconditioning is needed to
btain distributed iterations (Franci & Grammatico, 2020a; Yi
Pavel, 2019). In the stochastic case, the FB algorithm con-

erges when the operator used for the forward step is strongly
onotone (Franci & Grammatico, 2020a; Rosasco, Villa, & Vũ,
016) or cocoercive as we preliminarily show in the full decision
nformation setup (Franci & Grammatico, 2020b).

There is another important issue in SGNEPs due to the shared
onstraints: the monotonicity properties of the involved map-
ings are not necessarily preserved in the extended primal–dual
perators obtained to decouple the shared constraints. Hence,
nsuring convergence can be difficult because of the lack of a
trongly monotone forward operator, not even when the original
seudogradient mapping is strongly monotone. Instead, cocoer-
ivity can be obtained from a strongly monotone or cocoercive
seudogradient (Franci & Grammatico, 2020a, 2020b; Yi & Pavel,
019). Nonetheless, in partial-decision information, the extended
perator can only be at most restricted cocoercive with respect
o the solution set and only when the pseudogradient mapping is
trongly monotone (Gadjov & Pavel, 2020; Pavel, 2019).
Besides the monotonicity properties, another challenging as-

ect is the uncertainty. The presence of a random variable with
nknown distribution implies that the agents cannot compute
he exact cost function but only an approximation (Franci &
rammatico, 2020a, 2020b; Iusem, Jofré, Oliveira, & Thompson,
017; Koshal et al., 2013). This results in a stochastic error which
omplicates the analysis and prevents from applying the proofing
echniques used in the deterministic case (Gadjov & Pavel, 2020;
avel, 2019; Yi & Pavel, 2019, 2020).
In this paper we propose the first distributed algorithms

pecifically tailored for SGNEPs in partial-decision information
nd show their convergence to an equilibrium under restricted
ocoercivity of the stochastic forward operator. Our contributions
re summarized next:

• We model and study for the first time SGNEPs under partial-
decision information.

• We propose two distributed algorithms for network games
and two for aggregative games. The algorithms are charac-
terized by the specific way we impose consensus on the
dual variables, i.e., node-based or edge-based. While both
the approaches are present in the literature of deterministic
GNEPs (Bianchi et al., 2020; Pavel, 2019; Yi & Pavel, 2020)
they have been partially used in the stochastic case and only
in full information (Franci & Grammatico, 2020a, 2020b).

• We show that our algorithms are instances of a precondi-
tioned FB splitting and we prove their convergence when
the forward operator is restricted cocoercive with respect to
the solution set. The restricted cocoercivity assumption is
much weaker than the monotonicity assumptions usually
adopted in the stochastic literature (Franci & Grammatico,
2020b; Rosasco et al., 2016).

As a special case, we also consider aggregative games, where the
cost function of each agent does not depend explicitly on the
2

individual decision of the other agents but it is related instead to
some aggregate value of all the decisions (Gadjov & Pavel, 2020;
Grammatico, 2017; Koshal, Nedić, & Shanbhag, 2016). Illustrative
examples are traffic networks where the time delay depends on
the overall congestion (Paccagnan, Gentile, Parise, Kamgarpour, &
Lygeros, 2019) and energy markets where the price of electricity
depends on the aggregate demand (Chen, Li, Louie, & Vucetic,
2014). In this case as well, the literature is not extensive (Lei
& Shanbhag, 2018a, 2018b; Meigs, Parise, & Ozdaglar, 2019).
While the authors in Lei and Shanbhag (2018a, 2018b) propose
a stochastic proximal gradient response for aggregative games,
relatively similar to ours, they do not consider shared constraints.
Moreover, they assume a strongly monotone mapping to prove
convergence. However, when dealing with SGNEPs in partial in-
formation, also in the aggregative case, the extended operator can
be at most restricted cocoercive; therefore, the results in Lei and
Shanbhag (2018a, 2018b) are not applicable to our setting.

We remark that, despite our proposed algorithms are all in-
stances of a FB scheme, hence inspired by the literature on the
topic (Franci & Grammatico, 2020a, 2020b; Gadjov & Pavel, 2020;
Pavel, 2019), this is the first time SGNEPs in partial decision
information are addressed from an algorithmic point of view.
Moreover, the edge-based approach is loosely studied even in
the deterministic case, while here we show that it can be a valid
alternative to the more classic node-based algorithm.
Paper organization. The next section recalls some preliminary
notions on operator and graph theory. SGNEPs in partial-decision
information are described in Section 3. The first two algorithms
for network games are presented in Section 4 while the aggrega-
tive case is discussed in Section 5. Sections 6–8 are devoted
to the theoretical convergence results. Specifically, in Section 6
a fundamental lemma is proven and then, it is used in
Sections 7 and 8 to show that the algorithms for network games
and aggregative games, respectively, converge to an equilibrium.
Numerical simulations (Section 9) and conclusion (Section 10)
end the paper.

2. Preliminaries and notation

We use the same notation as in Franci and Grammatico (2020b)
and, with a slight abuse of notation, given two sets A and B, we
may indicate the Cartesian product as

[
A
B

]
= A × B, to ease the

reading. The definitions are taken from Bauschke et al. (2011),
Facchinei and Pang (2007), Godsil and Royle (2013).
Monotone operator theory. A mapping F : dom F ⊆ Rn

→ Rn

is ℓ-Lipschitz continuous if, for some ℓ > 0, ∥F (x) − F (y)∥ ≤

ℓ∥x − y∥ for all x, y ∈ dom(F ); η-strongly monotone if, for some
η > 0, ⟨F (x) − F (y), x − y⟩ ≥ η∥x − y∥2 for all x, y ∈ dom(F ); β-
cocoercive if, for some β > 0, ⟨F (x)−F (y), x−y⟩ ≥ β∥F (x)−F (y)∥2,
for all x, y ∈ dom(F ); maximally monotone if there exists no
monotone operator G : C → Rn such that the graph of G properly
contains the graph of F (Bauschke et al., 2011, Def. 20.20). We
use the adjective restricted if a property holds for all (x, y) ∈

dom(F ) × fix(F ).
Graph theory. Basic definitions can be found in Godsil and Royle
(2013). A graph G = (I, E) is undirected if (i, j) ∈ E and (j, i) ∈ E .
It is connected if there is a path between every pair of vertices.
Let W be the weighted adjacency matrix, L be the associated
Laplacian matrix and V be the incidence matrix. Then, if the graph
is undirected W and L are symmetric, i.e., W = W⊤ and L = L⊤.
If the graph is also connected, it holds that L = V⊤V and that

null(V ) = null(L) = {κ1N : κ ∈ R}, (1)

namely, the null space of V and L is the consensus subspace.
The Laplacian matrix L has an eigenvalue equal zero and let the
other eigenvalues ordered as 0 < λ2(L) ≤ · · · ≤ λN (L) where
dmax ≤ λN (L) ≤ 2dmax and dmax = maxi∈I{di}. Given dmax, it
follows from the Baillon–Haddad Theorem that the Laplacian is

1 -cocoercive.
2dmax
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. Stochastic generalized Nash equilibrium problems under
artial-decision information

.1. Problem setup

We consider a stochastic generalized Nash equilibrium prob-
em (SGNEP), i.e., the problem of finding a Nash equilibrium when
he cost functions are expected value functions and the agents,
ndexed by I = {1, . . . ,N}, are subject to coupling constraints.

Each agent i ∈ I has a decision variable xi ∈ Ωi ⊆ Rni and a
ocal cost function defined as

i(xi, x−i) := Eξ [fi(xi, x−i, ξi(ω))] + gi(xi), (2)

for some measurable function fi : Rn
×Rd

→ R and n =
∑

i∈I ni.
ach agent i aims at minimizing its local cost function within its
easible strategy set Ωi. The cost function is split in smooth (fi)
nd non smooth parts (gi : Rni → R̄). The latter may also model
ocal constraints via an indicator function (gi(xi) = ιΩi (xi)).

ssumption 1 (Local Cost Functions). For each i ∈ I, the function
i in (2) is lower semicontinuous and convex and dom(gi) = Ωi

is nonempty, compact and convex.

For each agent i, the cost function in (2) depends on the local
variable xi, on the decision of the other agents x−i = col((xj)j̸=i)
and on the random variable ξi(ω) ∈ Rd.1 The probability space
is (Ξ ,F,P) where Ξ = Ξ1 × . . . × ΞN . We assume that the
expected value E[fi(x, ξ )] is well defined for all the feasible x =

col((xi)i∈I) ∈ Ω ⊆ Rn, where Ω =
∏

i∈I Ωi.
Besides the local constraints xi ∈ Ωi ⊆ Rni , the agents are

also subject to coupling constraints Ax ≤ b, therefore, the feasible
decision set of each agent i ∈ I is

Xi(x−i) := {yi ∈ Ωi | Aiyi ≤ b −
∑N

j̸=i Ajxj}, (3)

where Ai ∈ Rm×n, b ∈ Rm, and the collective feasible set reads as

X = {y ∈ Ω | Ay − b ≤ 0m} , (4)

where A = [A1, . . . , AN ] ∈ Rm×n, Ai ∈ Rm×ni and b ∈ Rm.
We suppose that the constraints are deterministic and satisfy
the following assumption (Facchinei & Kanzow, 2010; Ravat &
Shanbhag, 2011).

Assumption 2 (Constraint Qualification). For each i ∈ I, the set
Ωi is nonempty, compact and convex. The set X satisfies Slater’s
constraint qualification.

Given the decision variables of the other agents x−i, the goal
of each agent i is to choose a strategy xi that solves its local
optimization problem, i.e.,

∀i ∈ I :

{
minxi∈Ωi Ji (xi, x−i)

s.t. Aixi ≤ b −
∑N

j̸=i Ajxj.
(5)

By simultaneously solving all the coupled optimization problems,
we have a stochastic generalized Nash equilibrium (SGNE).

Definition 3. A stochastic generalized Nash equilibrium is a
collective strategy x∗

∈ X such that for all i ∈ I

Ji(x∗

i , x
∗

−i) ≤ inf{Ji(y, x∗

−i) | y ∈ Xi(x∗

−i)}.

To guarantee the existence of a SGNE (Ravat & Shanbhag, 2011,
Section 3.1), we make further assumptions on the cost function,
typical of the deterministic setup as well (Facchinei, Fischer, &
Piccialli, 2007; Facchinei & Kanzow, 2010).

1 From now on, we use ξ instead of ξ (ω) and E instead of E .
ξ

3

Assumption 4 (Cost Functions Convexity). For every i ∈ I and
−i ∈ X−i the function fi(·, x−i) is convex and continuously

differentiable. For every i ∈ I and for every ξi ∈ Ξi, the function
fi(·, x−i, ξi) is convex, continuously differentiable, and Lipschitz
continuous and for each x−i; the Lipschitz constant ℓi(x−i, ξi) is
integrable in ξi. The function fi(xi, x−i, ·) is measurable.

Among all the possible equilibria, we focus on the class named
variational equilibria (v-SGNE), i.e., those equilibria that are also
solution of a suitable stochastic variational inequality (SVI). To
describe this class, let us introduce the pseudogradient mapping

F(x) = col
(
(E[∇xi fi(xi, x−i, ξ )])i∈I

)
, (6)

where the exchange between the expected value and the gradient
is possible because of Assumption 4 (Ravat & Shanbhag, 2011).
A standard assumption on the pseudogradient in partial-decision
information is the following (Gadjov & Pavel, 2020; Pavel, 2019).

Assumption 5 (Strongly Monotone Pseudogradient). F in (6) is
η-strongly monotone and ℓF-Lipschitz continuous, for some con-
stants η, ℓF > 0 respectively.

Example 1. An affine map F (x) = Ax + b with A ∈ Rn×n

symmetric and positive definite is strongly monotone (Facchinei
& Pang, 2007, Page 155).

Remark 1. Under Assumption 5, the associated SVI has a unique
solution, therefore, there is a unique v-SGNE (Facchinei & Pang,
2007, Theorem 2.3.3), (Ravat & Shanbhag, 2011, Lemma 3.3).

As in Auslender and Teboulle (2000), Facchinei and Kanzow
(2010), Ravat and Shanbhag (2011), the SGNEP can be recasted
as the monotone inclusion

0 ∈ T (x, λ) :=

[
G(x)+F(x)+A⊤λ
NRm

≥0
(λ)−(Ax−b)

]
, (7)

i.e., as the problem of finding a zero of the set-valued mapping
T : X ×Rm

≥0 ⇒ Rn
×Rm, where G(x) = ∂g1(x1)×· · ·×∂gN (xN ). The

operator in (7) can be obtained via a primal–dual characterization
of the equilibria: the ith component of the first row of T in (7)
corresponds to 0 ∈ E[∇xi fi(x

∗

i , x
∗

−i, ξi)] + ∂gi(x∗

i ) + A⊤

i λ, for i ∈ I,
i.e., to the stationarity condition of each optimization problem
in (5) while the second row is the complementarity condition.
Indeed, a collective decision x∗ is a v-SGNE of the game in (5) if
and only if the Karush–Kuhn–Tucker (KKT) conditions associated
to (5) are satisfied with consensus of the dual variables, i.e., λi =

λ for all i ∈ I (Facchinei et al., 2007, Theorem 3.1), Auslender and
Teboulle (2000, Theorem 3.1). Moreover, we consider a partial-
decision information setup where the agents have access only to
some of the other players decision variables, exchanged locally
over an undirected communication graph G = (I, E).

Assumption 6 (Graph Connectivity). The graph G = (I, E) is
undirected and connected.

To overcome the lack of knowledge of the decision that affects
its cost, each agent keeps an estimate of the action of the other
players (Gadjov & Pavel, 2020; Pavel, 2019). Let us denote with
x̂i,j the estimate of the decision of agent j stored by agent i and let
us collect all the estimates stored by agent i in x̂i = col((x̂i,j)j∈I) ∈

Rn. We note that x̂i,i = xi and let x̂i,−i = col((x̂i,j)j̸=i). Thus,
to compute the equilibria of the game in (5), the agents should
reach consensus not only on the dual variables, but also on the
estimates, i.e., λi = λj and x̂i = x̂j for all i, j ∈ I. With this aim,
let us introduce the consensus subspace of dimension q ∈ N

Nq q
Cq = {y ∈ R : y = 1N ⊗ y, y ∈ R }
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nd its orthogonal complement C⊥
q . Then, Cn is the consensus

ubspace of the estimated decisions while Cm is the consensus
ubspace of the dual variables.
To compute the v-SGNE of the game in (5), the agents should

se the estimates, namely, the extended pseudogradient mapping

p(x̂)=col((∇xiJi(xi,x̂i,−i))i∈I)=col((E[∇xi fi(xi,x̂i,−i,ξi)])i∈I). (8)

emark 2. The extended pseudogradient Fp in (8) is ℓp-Lipschitz
ontinuous with constant 0 < ℓp ≤ ℓF, as a consequence of
ssumption 5 (Bianchi & Grammatico, 2020, Lemma 3).

.2. Approximation scheme

Since the random variables have an unknown distribution,
.e., the expected values in (6) are virtually impossible to compute,
e take an approximation of the pseudogradient mapping. We
uppose that the agents have access to an increasing number
k of samples of the random variables ξi and that they are able

o compute an approximation of F(x) of the form F SA(x, ξ) =

ol(F SA
i (x, ξ̄i)), where

SA
i (x, ξ̄i) =

1
Mk

∑Mk
t=1 ∇xi fi(x, ξ

(t)
i ), (9)

ξ̄i = col(ξ (1)
i , . . . , ξ

(Mk)
i ) for all i ∈ I and ξ = col(ξ̄1, . . . , ξ̄n) is

an i.i.d. sequence of random variables drawn from P. Approxi-
mations of the form (9), using a finite (increasing) number of
samples, are known as stochastic approximations (SA) and they
are very common in Monte-Carlo simulation, machine learning
and computational statistics (Iusem et al., 2017). From now on,
we indicate with the superscript SA the operators where the
mapping F is sampled with F SA as in (9).

Assumption 7 (Increasing Batch Size). The batch size sequence
(Mk)k≥1 is such that, for some c, k0, a > 0, Mk ≥ c(k + k0)a+1.

From the last assumption it follows that 1/Mk is summable,
which is standard when using a SA scheme, especially in combi-
nation with the forthcoming variance reduction assumption (As-
sumption 8) (Iusem et al., 2017). Since we use an approximation,
for k ≥ 0, let us introduce the stochastic error

ϵk = F SA(xk, ξk) − F(xk). (10)

Let us define the filtration F = {Fk}k∈N, that is, a family of σ -
algebras such that F0 = σ (X0), for all k ≥ 1, Fk = σ (X0, ξ1, ξ2,

. . . , ξk) and Fk ⊆ Fk+1 for all k ≥ 0. Then, standard assumptions
or the stochastic error are to have zero mean and bounded
ariance (Iusem et al., 2017; Koshal et al., 2013).

ssumption 8 (Zero Mean and Bounded Variance). For all k ≥ 0,
or all x ∈ X E[ϵk|Fk] = 0, a.s. and there exists σ > 0 such that
or all x ∈ X

[∥F SA(x, ·) − F(x)∥2
] ≤ σ 2. (11)

emark 3. Under Assumptions 7 and 8, it holds that for all k > 0

E[∥ϵk∥
2

| Fk] ≤
cσ2

Mk
, (12)

here Mk is the batch size sequence used in the approximation
9) (see Iusem et al. (2017, Lem. 3.12), Franci and Grammatico
2020b, Lem. 6) for a proof). Since (12) implies that the second
oment of the error diminishes with the number of samples
k, algorithms using the approximation in (9) are also known as
ariance-reduced methods (Iusem et al., 2017).
 t

4

4. Stochastic preconditioned forward–backward algorithms
for network games

In this section, we present two distributed algorithms for
network games. We suppose that each agent i ∈ I only knows
its own cost function Ji, its feasible set Ωi, and its own portion of
he coupling constraints Ai and bi. Moreover, through the graph
, the agents have access to some of the variables of the other
gents. In Section 7 we show that the algorithms are instances of
preconditioned forward–backward (pFB) algorithm (Bauschke
t al., 2011; Yi & Pavel, 2019) and we show how to choose suitable
perators to derive them.

.1. Node-based algorithm for network games

We start with the distributed iterations presented in
lgorithm 1. Its steps involve: a proximal step to update each de-
ision variable xi; an updating rule for the estimates that pushes

ˆ i toward consensus; the auxiliary variable zi which helps reach-
ng the dual variable consensus (Yi & Pavel, 2019); a projection
tep into the positive orthant for the dual variable λi.

lgorithm 1 (Node-based fully-distributed preconditioned forward–
ackward).

Initialization: x0i ∈ Ωi, λ
0
i ∈ Rm

≥0, and z0i ∈ Rm.

Iteration k: Agent i
(1) Receives xkj and λk

j for j ∈ Ni, then updates

xk+1
i = proxgi [x

k
i − αi(F SA(xki , x̂

k
i,−i, ξ̄

k
i ) + A⊤

i λk
i

+ c
∑

j∈Ni
wij(xki − x̂ki,j))]

x̂k+1
i,−i =x̂ki,−i − αic

∑
j∈Ni

wij(x̂
k
i,−i − x̂kj,−i)

zk+1
i =zki − νi

∑
j∈Ni

wij(λk
i − λj,k)

(2) Receives xk+1
j and zk+1

j for j ∈ Ni, then updates

λk+1
i = projRm

≥0
[λk

i + δi(Ai(2xk+1
i − xki ) − bi

−
∑

j∈Ni
wij(2(zk+1

i − zk+1
j ) − (zki − zkj )))]

The algorithm is inspired by the preconditioned FB iterations
proposed in Pavel (2019). The main difference is that Algorithm 1
is not deterministic, thus, for the update of the primal variable,
the approximation of the extended pseudogradient mapping in
(8) is used. The algorithm is fully distributed since each agent i
knows its own variables and shares them only with the neighbors
in Ni. The algorithm is characterized by the choice of the consen-
us constraint for the dual variables. In this case, exploiting (1), it
s imposed as Lλ = 0 where L is the Laplacian matrix associated
o G. Since we use the Laplacian matrix, we call the algorithm
ode-based. Similarly, it is also imposed the consensus constraint
n the estimates, Lx̂ = 0, in the update of x̂.
We now state our first convergence result.

heorem 1. Let Assumptions 1–8 hold. Then, there exist ᾱ, ν̄, δ̄ > 0
uch that, for αi ∈ (0, ᾱ), νi ∈ (0, ν̄) and δi ∈ (0, δ̄), for all i ∈ I,
he sequence (xk)k∈N generated by Algorithm 1 converges a.s. to a
-SGNE of the game in (5).

roof. See Section 7.1 where we also provide explicit bounds for
he step sizes. □
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.2. Edge-based algorithm for network games

Let us now describe another instance of the pFB algorithm
hat differs from Algorithm 1 in the way we impose consensus
n the dual variables. Specifically, following (1), we impose the
onstraint Vλ = 0. The details on how we exploit this edge-
based constraint, i.e., using the incidence matrix, are presented
in Section 7.2 while the iterations are presented in Algorithm 2.

Algorithm 2 (Edge-based fully-distributed preconditioned forward–
backward).

Initialization: x0i ∈ Ωi, λ
0
i ∈ Rm

≥0, and z0i ∈ Rm.

teration k: Agent i
1) Receives xkj and λk

j for j ∈ Ni, then updates

xk+1
i = proxgi [x

k
i − αi(F SA

i (xki , x̂
k
i,−i, ξ̄

k
i ) + A⊤

i λk
i

+c
∑

j∈Ni
wij(xki − x̂ki,j))]

x̂k+1
i,−i =x̂ki,−i − αi

∑
j∈Ni

wij(x̂
k
i,−i − x̂kj,−i)

zk+1
i =zki − ν(λk

i −
∑

j∈Ni
wijλ

k
j )

k+1
i = projRm

≥0
[λk

i + δi(2Aixk+1
i − Aixki − bi − 2zk+1

i + zki )]

A consequence of the edge-based constraint is that only one
ommunication round is required because each λi depends only
n local variables. The updating rule of xi and x̂i, instead, are the
ame as in Algorithm 1 because they are not affected by the dual
ariable constraint.
The use of the incidence matrix is not common, even in the

eterministic case. Similar iterations have been considered in Yi
nd Pavel (2020) which however proposes a deterministic asyn-
hronous Krasnoselskii–Mann iteration (see also Section 7.2).
We can state the convergence result for Algorithm 2.

heorem 2. Let Assumptions 1–8 hold. Then, there exist ᾱ, ν̄, δ̄ > 0
uch that, for αi ∈ (0, ᾱ), νi ∈ (0, ν̄) and δi ∈ (0, δ̄), for all i ∈ I,
the sequence (xk)k∈N generated by Algorithm 2 converges a.s. to a
v-SGNE of the game in (5).

Proof. See Section 7.2 where we also provide explicit bounds for
the step sizes. □

5. Stochastic aggregative games

With aggregative games we mean a class of games where the
cost function explicitly depends on the aggregate decision of all
the agents. Formally, given the actions of all the players xi ∈ Rni

where ni = n̄ for all i ∈ I, let

avg(x) =
1
N

∑
i∈I xi

be the average strategy. Then, the cost function of each agent
i ∈ I in the aggregative case can be written as

Ji(xi, x−i) = E[fi(xi, avg(x), ξi)] + gi(xi)

where fi : Rn
× Rd

→ R satisfies Assumption 4, gi is as in
Assumption 1 and ξi : Ξi → Rd is the uncertainty. Notice that
in this case, since ni = n̄ for all i ∈ I, avg(x) ∈ Rn̄ and n = n̄N .

Since this is a particular case of the classical SGNEP in (5),
existence and uniqueness of an equilibrium hold under the same
assumptions and the v-SGNE can be characterized using the KKT
conditions in (7). Accordingly, Algorithm 1 and Algorithm 2 can
be used to reach an equilibrium. However, the previous algo-
rithms require the agents to exchange the estimates of all the
5

other actions, i.e., a vector of dimension (N − 1)n̄, while the
aggregate value has dimension n̄ (independent of the number of
agents). To reduce the computational complexity, we propose two
algorithms, depending on the consensus constraint, tailored for
aggregative games. Let us introduce the pseudogradient mapping
for the aggregative case as Fa(x, y) = col(Fa

i (xi, yi)i∈I), where

Fa
i (xi, yi)=E[∇xi fi(xi, yi, ξ )+

1
N ∇yi fi(xi, yi, ξ )]. (13)

The variable y indicates the dependency on the aggregate value.
In fact, Fi(xi, avg(x)) = ∇xiE[fi(xi, avg(x), ξ )] = ∇xiJi(xi, x−i),
i.e., Fa(x, avg(x)) = F(x).

Remark 4. It follows from Assumption 5 and Remark 2 that Fa in
(13) is Lipschitz continuous in both the arguments with constants
ℓxa, ℓ

u
a > 0, respectively.

Due to the partial-decision information setup, the agents can-
not compute the exact average strategy. To overcome this prob-
lem, each agent updates an auxiliary variable si = avg(x) − xi ∈

Rn̄ (Bianchi et al., 2020). The variable s = col(si)i∈I is used to
track the true aggregate value, controlling only the information
received from the neighboring agents. Specifically, it should hold
that sk → 1N ⊗ avg(xk) − xk asymptotically. Moreover, let

ui := xi + si, (14)

and u := col((ui)i∈I). The variable uk represents the approxi-
mated average through the iterations. We remark that the explicit
tracking of uk is not necessary in our algorithms since, to esti-
mate di aggregative value, we update iteratively the variable sk.
Moreover, from the updating rule of sk, it follows that avg(sk) =

0n̄. Thus, provided that the algorithm is initialized appropriately,
i.e., s0i = 0n̄, for all i ∈ I, an invariance property holds for the
approximated average, i.e., for all k ∈ N,

avg(xk) = avg(uk). (15)

5.1. Node-based algorithm for aggregative games

We first consider the node-based consensus constraint intro-
duced in Section 4.1. Since in this case we have to take into
consideration also the aggregative value, the state variable is
ω = col(x, s, z, λ), where x is the exact decision variable, s is the
tracking variable, z is the auxiliary variable for consensus of the
dual variables and λ is the dual variable.

Algorithm 3 (Node-based fully-distributed preconditioned forward–
backward for aggregative games).

Initialization: x0i ∈ Ωi, λ
0
i ∈ Rm

≥0, and z0i ∈ Rm.
Iteration k: Agent i
(1) Receives xkj , s

k
j and λk

j for j ∈ Ni, then updates

xk+1
i = proxgi [x

k
i − αi(F SA

i (xki , x
k
i + ski , ξ̄

k
i ) + A⊤

i λk
i

+
∑

j∈Ni
wi,j(xki + ski − (xkj + skj )))]

sk+1
i =ski − γi

∑
j∈Ni

wi,j(xki + ski − (xkj + skj ))
k+1
i =zki − νi

∑
j∈Ni

wi,j(λk
i − λk

j )

2) Receives zk+1
j for j ∈ Ni, then updates

k+1
i = projRm

+

[
λk
i + δi

(
Ai(2xk+1

i − xki ) − bi
)

+

− δi
∑

j∈Ni
wi,j

(
2(zk+1

i − zk+1
j ) − (zki − zkj )

)
]

Compared to Algorithm 1, besides the presence of the variable
s, Algorithm 3 has a different updating rule for xk, that now
includes the estimated aggregative value xk + sk. The remaining
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ariables (zk and λk) are not influenced by the average strategy,
herefore the updating rules are the same as in Algorithm 1. The
perators used to obtain the iterations in Algorithm 3 are given
n Section 8.1 but here we state the convergence result.

heorem 3. Let Assumptions 1–8 hold. Then, there exist ᾱ, ν̄, δ̄ > 0
nd γi > 0 such that, for αi ∈ (0, ᾱ), νi ∈ (0, ν̄) and δi ∈ (0, δ̄), for
ll i ∈ I, the sequence (xk)k∈N generated by Algorithm 3 converges
.s. to a v-SGNE of the game in (5).

roof. See Section 8.1 where we also provide explicit bounds for
he step sizes. □

emark 5. In Gadjov and Pavel (2020), the authors propose an
lgorithm in which the agents keep track of the whole aggrega-
ive value u (instead of s). Specifically, the aggregative value is
pdated as
k+1

= uk
− γ L n̄uk

+ (xk+1
− xk) (16)

here L n̄ := L ⊗ In̄. The rule in (16) can be derived from the
pdating rule of sk in Algorithm 3 or 4 and its definition in (14)
nd it can be regarded as a dynamic tracking of the time-varying
uantity avg(x) (Gadjov & Pavel, 2020; Koshal et al., 2016). The
lgorithm in Gadjov and Pavel (2020) is still an instance of a pFB
ut the operators and preconditioning matrix are different from
urs. See Section 8 for further technical details.

.2. Edge-based algorithm for aggregative games

In this section, we consider an edge-based pFB algorithm,
imilarly to Section 4.2. The iterations in the aggregative case read
s in Algorithm 4.

lgorithm 4 (Edge-based fully-distributed preconditioned forward–
ackward for aggregative games).

Initialization: x0i ∈ Ωi, λ
0
i ∈ Rm

≥0, and z0i = 0.
teration k: Agent i
1) Receives xkj , s

k
j and λk

j for j ∈ Ni, then updates

xk+1
i = proxgi [x

k
i − αi(F SA

i (xki , x
k
i + ski , ξ̄

k
i ) + A⊤

i λk
i

+c
∑

j∈Ni
wi,j(xki + ski − (xkj + skj )))]

sk+1
i =ski − γi

∑
j∈Ni

wi,j(xki + ski − (xkj + skj ))

zk+1
i =zki − ν(λk

i −
∑

j∈Ni
wijλ

k
j )

λk+1
i = projRm

≥0
[λk

i + δi(2Aixk+1
i − Aixki − bi − 2zk+1

i + zki )]

We note that the updating rule for xi and for the auxiliary
variable si are the same as in Algorithm 3 while the difference
is in the auxiliary variable zi and the dual variable λi that now
depends only on local variables. This follows using the edge-based
consensus constraint as in Section 4.2. More details on how to
obtain the iterations and the proof of the following result can be
found in Section 8.2.

Theorem 4. Let Assumptions 1–8 hold. Then, there exist ᾱ, ν̄, δ̄ > 0
such that, for αi ∈ (0, ᾱ), νi ∈ (0, ν̄) and δi ∈ (0, δ̄), γi > 0 for all
∈ I, the sequence (xk)k∈N generated by Algorithm 4 converges a.s.
o a v-SGNE of the game in (5).

roof. See Section 8.2 where we also provide explicit bounds for
he step sizes. □
6

. Convergence analysis: A fundamental lemma

In this section we show that the classic pFB splitting converges
.s. in the stochastic case to the zeros of the operator T in (7)
hen the forward operator is restricted cocoercive. First of all,

et us rewrite the operator T into the summation of the two
perators

:
[ x

λ

]
↦→

[ F(x)
b

]
,

B :
[ x

λ

]
↦→

[ G(x)
NRm

≥0
(λ)

]
+

[
0 A⊤

−A 0

]
[ x

λ ] .
(17)

Then, finding a solution of the SGNEP translates in finding a
pair (x∗, λ∗) ∈ X × Rm

≥0 such that (x∗, λ∗) ∈ zer(A + B). The
eros of the mapping T = A + B can be obtained through a
B splitting (Bauschke et al., 2011, Section 26.5), (Belgioioso &
rammatico, 2018; Yi & Pavel, 2019), that for any matrix Φ ≻ 0,
eads to the FB iteration:
k+1

= (Id + Φ−1B)−1
◦ (Id − Φ−1A)(ωk), (18)

where ωk
= col(xk, λk), (Id + Φ−1B)−1 is the backward step and

(Id − Φ−1A) is the forward step. We note that the convergence
of (18) is independent on the specific choice of the operators A
and B as long as some monotonicity conditions are satisfied. For
this reason, we postulate the following assumption.

Assumption 9. The forward operator is restricted β-cocoercive
for β > 0 and the backward operator is maximally monotone.

Remark 6. An affine map F (x) = Ax+b with A ∈ Rn×n symmetric
and positive semidefinite is cocoercive (Facchinei & Pang, 2007,
Page 79). More generally, every η-strongly monotone, ℓ-Lipschitz
continuous function is η

ℓ2
-cocoercive, but the vice-versa is not

true in general.

Checking if Assumption 9 holds for suitable operators will be
the key to prove convergence of the algorithms presented in the
previous sections. Before stating the convergence result of the pFB
iteration, however we need to postulate some further assump-
tions and to consider the approximation scheme. In fact, since the
random variable has an unknown distribution, we replace A with
ASA, the operator obtained using the approximation in (9). Thus,
the pFB iteration reads as

ωk+1
= (Id + Φ−1B)−1

◦ (Id − Φ−1ASA)(ωk). (19)

We note that there is no uncertainty in the constraints, hence,
the corresponding error of the approximated extended operator is
εk = ASA(ωk, ξk)−A(ωk) = col(ϵk, 0). To guarantee convergence,
the preconditioning matrix Φ should be positive definite. Since
this property may depend on the specific choice of the matrix
Φ , here we postulate it as an assumption and in the following
sections we ensure that it holds for the proposed algorithms.

Assumption 10. Φ is positive definite, i.e., Φ ≻ 0.

Moreover, to guarantee convergence and independently on the
choice of Φ , the step sizes should be bounded.

Assumption 11. ∥Φ−1
∥ < 2β where β is the cocoercivity

constant of the forward operator as in Assumption 9.

We can now state and prove the convergence result for the
iteration in (19).

Lemma 1. Let Assumptions 1–11 hold. Then, the sequence (xk, λk)k∈N
generated by (19) converges a.s. to some (x∗, λ∗) ∈ zer(A,B) where
x∗ is a v-SGNE the game in (5), A and B are as in (17), and ASA is
approximated using (9).



B. Franci and S. Grammatico Automatica 137 (2022) 110101

P
t
2
i

∥

C
u

2

T

∥

F

∥

U
w
M
r

R
A
t

Φ

w

roof. For brevity, we let Â = ASA. We start by using that
he resolvent is firmly nonexpansive (Bauschke et al., 2011, Cor.
3.9) and that if ω∗ is a solution then it is a fixed point of the FB
teration in (18):

ωk+1
− ω∗

∥
2
Φ ≤ ∥ωk

− ω∗
∥
2
Φ + 2⟨ωk

− ω∗, Φ−1εk⟩Φ

− 2⟨ωk
− ω∗, Φ−1(A(ωk) − A(ω∗))⟩Φ+

− ∥ωk
− ωk+1

∥
2
Φ + 2⟨ωk

− ωk+1, Φ−1(Â(ωk) − A(ω∗))⟩Φ .

hoosing ζ > 1 and such that Assumption 10 is satisfied, we can
se Young’s inequality to obtain

⟨ωk
− ωk+1, Φ−1(Â(ωk) − A(ωk+1))⟩Φ ≤

1
ζ
∥ωk

− ω∗
∥
2
Φ+

+ ζ∥Φ−1(A(ωk) − A(ω∗))∥2
Φ + ζ∥Φ−1εk∥

2
Φ+

+ 2ζ ⟨Φ−1A(ωk) − Φ−1A(ω∗), εk⟩Φ .

(20)

hen, by using restricted cocoercivity of A and (20), we obtain:

ωk+1
− ω∗

∥
2
Φ ≤ ∥ωk

− ω∗
∥
2
Φ + ζ∥Φ−1εk

∥
2
Φ+

+

(
1
ζ

− 1
)
∥ωk

− ωk+1
∥
2
Φ + 2⟨ωk

− ω∗, Φ−1εk⟩Φ+

+

(
ζ∥Φ−1

∥

θ
− 2

)
⟨ωk

− ω∗, Φ−1A(ωk) − Φ−1A(ω∗)⟩Φ

+ 2ζ ⟨Φ−1A(ωk) − Φ−1A(ω∗), εk⟩Φ

(21)

Next, let resΦ (ωk)2 = ∥ωk
− (Id+Φ−1B)−1(ωk

− Φ−1A(ωk))∥2
Φ

and let us recall that resΦ (ω) = 0 if and only if ω is a solu-
tion (Facchinei & Pang, 2007, Proposition 1.5.8). It holds that

resΦ (ωk)2 = ∥ωk
− (Id+Φ−1B)−1(ωk

− Φ−1A(ωk))∥2
Φ

≤2∥ωk
− ωk+1

∥
2
Φ + 2 ∥ (Id+Φ−1B)−1(ωk

− Φ−1Â(ωk, ξ k))+

− (Id+Φ−1B)−1(ωk
− Φ−1A(ωk)) ∥

2
Φ

≤2∥ωk
− ωk+1

∥
2
Φ + 2∥Φ−1εk

∥
2
Φ

where the first equality follows by adding and subtracting ωk+1

and using its definition and the last inequality follows from
nonexpansivity. Then, ∥ωk

− ωk+1
∥
2
Φ ≥

1
2 resΦ (ωk)2 − ∥Φ−1εk

∥
2
Φ .

inally, Eq. (21) becomes

ωk+1
− ω∗

∥
2
Φ ≤ ∥ωk

− ω∗
∥
2
Φ +

(
ζ −

1
ζ

+ 1
)
∥Φ−1εk

∥
2
Φ+

+ 2⟨ωk
− ω∗, Φ−1εk⟩Φ +

1
2

(
1
ζ

− 1
)
resΦ (ωk)2

+

(
ζ∥Φ−1

∥

θ
− 2

)
⟨ωk

− ω∗, Φ−1A(ωk) − Φ−1A(ω∗)⟩Φ

+ 2ζ ⟨Φ−1A(ωk) − Φ−1A(ω∗), εk⟩Φ
By Assumption 10 and by monotonicity, the second last term is
smaller than or equal to zero, hence, by taking the expected value
and by using Assumption 8 and Remark 3 we have that

E[∥ωk+1
− ω∗

∥
2
Φ |Fk] ≤∥ωk

− ω∗
∥
2
Φ + 2 cσ2

∥Φ−1
∥

Mk

+
1
2

(
1
ζ

− 1
)
res(ωk)2.

sing Robbins–Siegmund Lemma (Robbins & Siegmund, 1971)
e conclude that (ωk)k∈N is bounded and has a cluster point ω̄.
oreover, it follows that

∑
k

1
2

(
1
ζ

− 1
)
resΦ (ωk)2 < ∞, hence,

es(ωk) → 0 as k → ∞ and res(ω̄) = 0. □

emark 7. We note that the operators A and B in (17) satisfy
ssumption 9 (Belgioioso & Grammatico, 2018, Lemma 1) and
hat the matrix

=

[
α−1

−A⊤

−A γ −1

]
is positive definite (Belgioioso & Grammatico, 2018, Lemma 3),
therefore, the pFB algorithm in (19) obtained with these operators
converges to a v-SGNE of the game in (5). However, expanding
7

(19), the iterations that we obtain require full information on the
decision of the other agents (Belgioioso & Grammatico, 2018).

7. Convergence analysis for network games

We now show how to obtain suitable forward and backward
operators that lead to Algorithms 1 and 2, presented in Section 4.
Later, we show that such operators satisfy the assumptions of
Lemma 1, i.e., that the algorithms converge a.s. to a v-SGNE of
the game in (5). Let us first introduce some notation. Similarly
to Pavel (2019), let us define, for all i ∈ I, the matrices

Ri := [ 0ni×n<i Ini 0ni×n>i ] , Si :=

[
In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
(22)

where n<i :=
∑

j<i,j∈I nj, n>i :=
∑

j>i,j∈I nj. The two matrices in
(22) can be interpret as follows: Ri selects the ith ni dimensional
component from an n-dimensional vector, while Si removes it.
Namely, Rix̂i = x̂i,i = xi and Six̂i = x̂i,−i. Letting R :=

diag((Ri)i∈I) and S := diag((Si)i∈I), we have that x = Rx̂,
col((x̂i,−i)i∈I) = Sx̂ and x̂ = R⊤x + S⊤Sx̂ (Pavel, 2019).

We can now analyze the two algorithms separately.

7.1. Convergence of Algorithm 1

Let L ∈ RN×N be the Laplacian of the communication graph G
and let Lm = L ⊗ Idm ∈ RNm×Nm and Ln = L ⊗ Idn ∈ RNn×Nn. Let
also A = diag{A1, . . . , AN} ∈ RNm×n and λ = col(λ1, . . . , λN ) ∈

RNm; similarly let b ∈ RNm. As already mentioned in Section 4.1,
exploiting (1), to impose consensus on the primal and dual vari-
ables, one can consider the Laplacian constraints Lx̂ = 0 and Lλ =

0 (Pavel, 2019; Yi & Pavel, 2019). To include these constraints,
similarly to Pavel (2019), let us define the operators

Ap :

[
x̂
z
λ

]
↦→

[
R⊤Fp(x̂)+cLn x̂

0
b

]
Bp :

[
x̂
z
λ

]
↦→

[
Ĝ(x̂)
0

NRNm
+

(λ)

]
+

[
R⊤A⊤λ
−Lmλ

−ARx̂+Lmz

] (23)

here Ĝ(x̂) = R⊤G(Rx̂) = {R⊤v : v ∈ G(Rx̂)} and G(Rx̂) =

G(x) = ∂g1(x1) × . . . × ∂gN (xN ). We note that we consider
the estimates x̂ as a state variable and we use the matrix R to
select the variables corresponding to each agent. Compared to the
operators in Pavel (2019), we have the expected valued extended
pseudogradient in (8) that, in the iterative process, is replaced by
a stochastic approximation of the form in (9).

The term Lnx̂ is a measure of the disagreement between the
decision variables of the agents and the estimates. Each agent
can use this term to move towards consensus of the estimates
while it uses the gradient to minimize the cost. We note that in
a full information setup, the disagreement term can be removed
(setting c = 0) (Pavel, 2019). Given the operators in (23), the pFB
algorithm in compact form reads as

ωk+1
= (Id + Φ−1

p Bp)−1
◦ (Id − Φ−1

p ASA
p )(ωk), (24)

where ASA
p is the operator Ap with the approximated pseudogra-

dient mapping F SA as in (9) and ωk
= col(x̂k, zk, λk). To obtain the

distributed iterations in Algorithm 1, a suitable preconditioning
matrix should be taken (Pavel, 2019). Specifically, let

Φp =

[
α−1 0 −R⊤A⊤

0 ν−1 Lm
−AR Lm δ−1

]
(25)

where α = diag{α1 Idn1 , . . . , αN IdnN } ∈ Rn×n, and similarly ν

and δ are block diagonal matrices collecting the step sizes. Then,
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xpanding the iterations in (24) with Ap and Bp as in (23) and Φp
s in (25), we obtain

x̂k+1
∋ x̂k−α(R⊤F SA(x̂) + R⊤A⊤λk

+ cLnx̂)+Ĝ(x̂)
zk+1

= zk−νLmλk

k+1
= λk

+δ(AR(2x̂k+1
− x̂k)−b+Lm(2zk+1

− zk)).

(26)

rom the first line of (26) we obtain the update for both the
ecision variable xk+1

i of agent i and the estimates x̂k+1
i,−i (Pavel,

019, Lemma 1). Precisely, premultiplying the first line of (26) by
we obtain xk+1

= proxG[xk−α(F SA(x̂)+A⊤λk
+cRL n̄x̂)], that is,

he update for each agent decision variable xi as in Algorithm 1.
nstead, if we premultiply by S we obtain Sx̂k+1

= Sx̂k −αcSL n̄x̂,
.e., the update of the estimates.

For the sake of the convergence analysis, we have to guarantee
hat the preconditioning matrix Φp is positive definite (Assump-
ion 10) and bounded in norm (Assumption 11), therefore, we
ake some bounds on the step sizes (Pavel, 2019).

ssumption 12. For a given τ > 0, the step sizes ᾱ, ν̄ and δ̄ are
uch that, for all i ∈ I,

< αi ≤ ᾱ ≤ (τ + max
j∈{1,...,ni}

∑m
k=1 |

[
A⊤

i

]
jk |)−1

< νi ≤ ν̄ ≤ (τ + 2di)−1

< δi ≤ δ̄ ≤ (τ + 2di + max
j∈{1,...,m}

∑ni
k=1 | [Ai]jk |)−1

here [A⊤

i ]jk indicates the entry (j, k) of the matrix A⊤

i , and such
hat Φp satisfies Assumption 11.

Then, it follows from the Gershgorin Theorem and Pavel (2019,
emma 5) that Φp ≻ 0. We can now prove the convergence result.

roof of Theorem 1. First, we show that the zeros of Ap +

p correspond to a v-SGNE of the game in (5). Expanding the
nclusion ω = col(x̂∗

, z∗, λ∗) ∈ zer(Ap + Bp) we obtain

∈ R⊤Fp(x̂
∗) + cLnx̂

∗
+ R⊤A⊤λ∗

+ Ĝ(x̂∗)
= −Lmλ∗

∈ b + NRNm
≥0

(λ∗) − ARx̂∗
+ Lmz∗.

(27)

hen, from the second line of (27) it follows that λ∗
∈ null(Lm),

.e., λ∗
= 1N ⊗ λ∗ by (1). Similarly to Pavel (2019, Theorem 1),

rom the first line of (27) it follows that x̂∗
∈ null(Ln), i.e., x̂

∗
=

N ⊗ x∗ and that the first KKT condition in (7) is satisfied. From
he third line, we obtain the second KKT condition in (7) (Pavel,
019, Theorem 1). Moreover, it also holds that zer(Ap + Bp) ̸=

. In fact, by Remark 1, there exists a unique solution x∗ and,
herefore, there exists λ∗ such that the KKT conditions in (7) are
atisfied (Facchinei & Pang, 2007, Proposition 1.2.1) and (x∗, λ∗) ∈

er(T ). The first two lines of (27) are satisfied and using (7) we
an prove that there exists z such that the third line is satisfied
s well (Pavel, 2019, Theorem 1).
We now show that the operators in (23) have the proper-

ies in Assumption 9. To this aim, we define some preliminary
uantities (Pavel, 2019, Lemma 3). Let

p =

[
η
N −

ℓp+ℓF
2
√
N

−
ℓp+ℓF
2
√
N

cλ2(L)−ℓp

]
nd let µp = λmin(Υp) be its smaller eigenvalue. Let c > cmin,

here cminλ2(L) =
(ℓp+ℓF)

2

4η + ℓp. Let us indicate with Z =

n × RNm
× RNm the set where there is consensus on the first

component, i.e., on the primal variable. First, let us recall that
from Assumption 12 it follows that Φ ≻ 0 (Pavel, 2019, Lemma
5). Then, the fact that A is β -restricted cocoercive with respect
p p

8

to Z , with constant βp ∈ (0, µp

θ2p
], where µp = λmin(Υp) and

p = ℓp + 2cdmax follows similarly to Pavel (2019, Lemma 3 and
). Then, it follows that Φ−1

p Ap is βpδp-restricted cocoercive with
p =

1
|Φ

−1
p |

in the Φp-induced norm (Pavel, 2019, Lemma 6).
Concerning Bp, it is monotone similarly to Pavel (2019, Lemma

4). Consequently, Φ−1
p Bp is maximally monotone in the Φp-

induced norm (Pavel, 2019, Lemma 6). Since by Assumption 12,
Assumptions 9–11 hold, the pFB iterations presented in Algo-
rithm 2 converge to a v-SGNE of the game in (5) by Lemma 1. □

7.2. Convergence of Algorithm 2

Let us now focus on how to obtain Algorithm 2. Let us consider
the incidence matrix V of the communication graph G. Then,
another possibility to force consensus on the dual variables, ac-
cording to (1), is to consider the constraint Vλ = 0 (instead of
Lλ = 0). Exploiting this constraint, we define the two operators

Cp :

[
x̂
v
λ

]
→

[
R⊤Fp(x̂)+cLn x̂

0Em
b

]
Dp :

[
x̂
v
λ

]
→

[
Ĝ(x̂)
0Em

N
RNm
≥0

(λ)

]
+

[
R⊤A⊤λ
−Vmλ

−ARx̂+Vmv

] (28)

where v = col((vl)l∈{1,...,E}) ∈ REm, Ln := L⊗ In and Vm := V ⊗ Idm.
We note that the variable v = col((vl)l∈{1,...,E}) ∈ REm is used to

help reaching consensus on the dual variables. Moreover, it can
be interpreted as the network flow. In fact, if we consider Aixi as
in-flow and bi as out-flow for each node i ∈ I, then Ax = b can
be read as a conservative flow balancing constraint. Therefore,
vl can be seen as flow on each edge l to ensure such constraint.
In other words, the variable v estimates the contribution of the
other agents to the coupling constraints, and ensures that the
dual variables reach consensus.

Since we consider the incidence matrix V instead of the Lapla-
cian L, the preconditioning matrix is given by

Ψp =

[
α−1 0 −R⊤A⊤

0 ν−1 Vm
−AR V⊤

m δ−1

]
(29)

where α, ν and δ are defined analogously to (25). Then, by
replacing the operator Cp with CSA

p , i.e. the operator approximated
via the SA scheme according to (9), the pFB iteration reads as

ωk+1
= (Id + Ψ −1

p Dp)−1
◦ (Id − Ψ −1

p CSA
p )(ωk). (30)

where ωk
= col(x̂k, vk, λk). Then, by expanding (30),

x̂k+1
∋ x̂k − α(R⊤F SA

p (x̂) + cLnx̂ + R⊤A⊤λ) + Ĝ(x̂)

vk+1
= vk

− νVmλk

λk+1
= projRm

≥0
[λk

+ δ(2A(xk+1
− xk) − b + V⊤

m(2v
k+1

− vk))].

(31)

First, we note that also in this case we separate the update of the
local decision variables xki and of the estimates x̂ki,−i. Moreover,
in (31), two communication rounds are required: one at the
beginning of each iteration k to update xk+1 and vk+1 and one
before updating λk+1. To avoid this second round, let us introduce,
with a little abuse of notation, the variable z = col((zi)i∈I) such
that zk = V⊤

mvk, for all k ≥ 0. Given an appropriate initialization,
e.g., v0

= 0, the following equivalences hold: z0 = 0, zk = V⊤

mvk

and zk+1
= V⊤

mvk+1
= V⊤

mvk
+ V⊤

mVmλk
= zk + Lmλk. After this

change of variables, the iterations in (31) can be rewritten as in
Algorithm 2. Moreover, since the iterations in (30) are equivalent
to Algorithm 2, for the analysis we use the operator in (28). Let
us also note that the operators are similar to Yi and Pavel (2020)
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ut, due to the change of variable and the approximation scheme,
lgorithm 2 is different from the asynchronous one proposed
n Yi and Pavel (2020) and requires less communications.

We now proceed in showing that Algorithm 2 converges to
n equilibrium. First, to obtain a positive definite preconditioning
atrix (using Gershgorin Theorem), let us bound the step sizes.

ssumption 13. Given τ > 0, the step sizes sequence is such
that ᾱ is as in Assumption 12 and ν̄ and δ̄ are such that

< νi ≤ ν̄ ≤ (τ +
∑

j∈I
√

wij)−1

0 < δi ≤ δ̄ ≤ (τ +
∑

j∈I
√

wij + maxj∈{1,...,m}

∑ni
k=1 | [Ai]jk |)−1,

for all i ∈ I, where [A⊤

i ]jk indicates the entry (j, k) of the matrix
A⊤

i and such that Ψp satisfies Assumption 11.

Finally, we prove Theorem 2.

Proof of Theorem 2. First, we relate the unique v-SGNE of the
game in (5) to the zeros of Cp + Dp in (28). Namely, given any
ω̂

∗
:= col(x̂∗

, v∗, λ∗) ∈ zer(Cp+Dp), it holds that x̂
∗

= 1N ⊗x∗ and
λ∗

= 1N ⊗λ∗, where the pair (x∗, λ∗) satisfies the KKT conditions
(7), i.e., x∗ is a v-SGNE of the game in (5). This follows analogously
to Theorem 1 noting that, expanding ω̂ ∈ zer(Cp + Dp), from the
second line we have λ ∈ null(V ) and we can premultiply by (1⊤

E ⊗

Idm) the third line to obtain the KKT conditions in (7). Similarly,
zer(Cp +Dp) ̸= ∅. Then, we show the monotonicity properties of
the operators. Note that Cp is the same as Ap therefore it is βp-
restricted cocoercive with respect to Z , where βp ∈ (0, µp

θ2p
], µ =

min(Υp) and θp = ℓp + 2cdmax by Theorem 1. Therefore, Ψ −1
p Cp

s βpδp-restricted cocoercive with respect to Z , with δp > 1
|Ψ

−1
p |

in
he Ψp-induced norm. The operator Dp is maximally monotone
nalogously to the proof of Theorem 1. It follows that Ψ −1

p Dp is
aximally monotone in the Ψp-induced norm.
Convergence follows by Lemma 1. □

. Convergence analysis for aggregative games

Analogously to Section 7, we show in this section that the al-
orithms proposed for the aggregative case in Section 5 converge
.s. to a v-SGNE of the game in (5).
We recall that we keep track of the aggregate value through

he variable s = 1N ⊗ avg(x) − x and that the approximated
verage is given by u = x + s as in (14).

.1. Convergence of Algorithm 3

Let us start by defining the operators that leads to the it-
rations in Algorithm 3. Specifically, the forward and backward
perators should be defined according to

a :

[
x
s
z
λ

]
↦→

[
Fa(x,x+s)+cLn̄(x+s)

Ln̄(x+s)
0Nm
b

]

Ba :

[
x
s
z
λ

]
↦→

⎡⎣ G(x)
0n
0Nm

N
RNm
≥0

(λ)

⎤⎦ +

[
A⊤λ
0

−Lmλ

−Ax̂+Lmz

] (32)

where L n̄ = L ⊗ Idn̄, Lm = L ⊗ Idm. We note that, compared to
the operators Ap and Bp in (23), in (32) instead of the estimates
we can take the true decision variables x as a state variable
because we track the average value through the variable s. The
reconditioning matrix reads similarly to Φp in (25) with the
ddition of a line (corresponding to the variable s):

Φa =

⎡⎣ α−1 0 0 −A⊤

0 γ −1 0 0
0 0 ν−1 Lm

⎤⎦ , (33)

−A 0 Lm δ−1

9

where α−1
= diag{α−1

1 Idn̄, . . . , α
−1
N Idn̄} ∈ Rn×n and similarly

γ −1, ν−1 and δ−1 are block diagonal matrices of suitable dimen-
sions. Given the operators in (32) and the preconditioning matrix
in (33), Algorithm 3 in compact form reads as the pFB iteration

ωk+1
= (Id + Φ−1

a Ba)−1
◦ (Id − Φ−1

a ASA
a )(ωk, ξ k),

where ωk
= col(xk, sk, zk, λk), (Id + Φ−1Ba)−1 represent the

backward step and (Id − Φ−1ASA
a ) is the forward step where the

pseudogradient mapping is approximated according to (9).

Remark 8. In line with Remark 5, let us note that in Gadjov
and Pavel (2020) a different splitting and preconditioning are
used. Since the paper tracks the aggregate value u (instead of
s), to prove convergence, it uses an auxiliary iterative scheme on
the orthogonal complement of the consensus subspace (Gadjov
& Pavel, 2020, Lemma 2). Hence, the extended operators and
preconditioning matrix depend on the projection on the consen-
sus subspace (P∥) and on its orthogonal complement (P⊥), while
ours are a generalization of the operators in (23) and (25) to the
aggregative case. We can avoid the auxiliary iteration because
we track the aggregative value with s instead of measuring the
disagreement with u⊥. We also note that, in general, s ̸= u⊥.

Now we prove that using the operators Aa and Ba in (32) we
can reach a v-SGNE of the game in (5). To this aim, we restrict
our analysis to the invariant subspace

Σ := {(x, s, z, λ) ∈ R2n+2Nm
| avg(s) = 0n̄}, (34)

i.e., the space where the agents are able to compute the exact
aggregative value. Moreover, to ensure that Aa and Ba have the
monotonicity properties of Lemma 1, the preconditioning matrix
should be positive definite. For this reason, we take some bounds
on the step sizes.

Assumption 14. The step sizes ᾱ, ν̄ and δ̄ satisfy Assump-
tion 12 and γ > 0. Moreover, they are such that Φa satisfies
Assumption 11.

We are ready to prove convergence.

Proof of Theorem 3. First, we ensure that the zeros of (Aa +

Ba) ∩ Σ are v-SGNEs. Let us consider ω∗
= col(x∗, s∗, z∗, λ∗) ∈

zer(Aa + Ba) ∩ Σ and for brevity, u∗
= x∗

+ s∗, then

0 ∈ Fa(x∗, u∗) + cL n̄u∗
+ G(x) + A⊤λ∗

0 = L n̄u∗

0 = Lmλ∗

0 ∈ b + NRNm
≥0

(λ∗) − Ax∗
+ L⊤

mz
∗

(35)

Let us recall that A⊤(1N ⊗λ∗) = A⊤λ∗ and Fa(x∗, 1N ⊗x∗) = F(x∗),
then, from the first line of (35), we obtain the first line of the
KKT conditions in (7). From the third line of (35) and from (1),
we have λ∗

= 1N ⊗ λ∗, for some λ∗
∈ Rm

≥0. From the second line
and since ω∗

∈ Σ , it holds that u∗
= x∗

+ s∗
= 1N ⊗ avg(x∗).

Since (1⊤

N ⊗ Idm)b = b, (1⊤

N ⊗ Idm)Lm = 0 (by (1) and symmetry of
L), (1N ⊗ Idm)A = A and (1⊤

N ⊗ Idm)NRNm
>0

(1N ⊗λ∗) = NNRm
≥0
(λ∗) =

NRm
≥0
(λ∗), we premultiply the fourth line by (1⊤

N ⊗ Idm) to obtain
the second line of (7). Therefore, the pair (x∗, λ∗) satisfies the KKT
conditions (7), i.e., x∗ is a v-SGNE of the game in (5).

Moreover, zer(Aa+Ba)∩Σ ̸= ∅. From Assumption 5, it follows
that there is only one v-SGNE, i.e., a pair (x∗, λ∗) that satisfy the
KKT conditions in (7). Now, we show that there exists z∗

∈ RNm

such that ω∗
= col(x∗, 1N ⊗ avg(x∗)− x∗, z∗, 1N ⊗ λ∗) ∈ zer(Aa +

Ba)∩ Σ . It holds that ω∗
∈ Σ and that ω∗ satisfies the first three

lines of (35). Exploiting the KKT conditions in (7), there exists
w∗

∈ N m (λ∗) such that Ax∗
−b−w∗

= 0 . Moreover, N Nm (1 ⊗
R
>0 n R

≥0
N
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∗) = Πi∈INRm
≥0
(λ∗) and it follows by properties of the normal

one that col(w∗

1, . . . , w
∗

N ) ∈ NRNm
≥0

(1N ⊗ λ∗), with w∗

1 = · · · =

∗

N =
1
N w∗. Therefore (1⊤

N ⊗ Idm)(−Ax∗
+ b+ col(w∗

1, . . . , w
∗

N )) =

b − Ax∗
+ w∗

= 0m, or −Ax∗
+ b + col(w∗

1, . . . , w
∗

N ) ∈ null(1⊤

N ⊗

Idm) ⊆ range(Lm). Since range(Lm) = null(1⊤

N ⊗ Im) = C⊥
m , there

exists z∗ such that also the last line of (35) is satisfied, i.e., ω∗
∈

zer(Aa + Ba) ∩ Σ . We now prove the monotonicity properties
of the operators Aa and Ba. Similarly to the proof of Theorem 1
and Gadjov and Pavel (2020, Lemma 4), let us introduce

Υa =

[
η −

ℓua
2

−
ℓua
2 λ2(L)

]
,

here η is the strong monotonicity constant as in Assumption 5
nd ℓua the Lipschitz constant as in Remark 4. Then, the two
perators Aa and Ba in (32) have the properties of Assumption 9.
o prove this let us note that each vector can be decomposed as
= u∥

+u⊥ where u∥
= P∥u ∈ Cn̄ and u⊥

= P⊥u ∈ C⊥

n̄ and P∥ and
⊥ are the projection operators defined as P∥ =

1
N 1N ⊗ 1⊤

N ⊗ Idn̄
and P⊥ = IdNn −P∥ (Gadjov & Pavel, 2020). We note that P∥uk

=

1N ⊗ avg(uk) = P∥xk by the property in (15).
First, we prove that Aa is βa-restricted cocoercive with con-

stant 0 < βa ≤
µa
θa
, where µa = λmin(Υa) and θa = max{(2ℓxa)

2,

2ℓua)
2
+ 3λ2(L)}. To this aim, we first prove that the operator

Āa : [ xs ] ↦→

[
F(x,u)+Ln̄u

Ln̄u

]
is restricted strongly monotone, then restricted cocoercivity of Aa
follows. Let w = col(x, s), then

⟨Āaw − Āaw
∗, w − w∗

⟩ = ⟨Fa(x, u) − Fa(x∗, u∗), x − x∗
⟩+

+ ⟨Lu − Lu∗, u − u∗
⟩ + ⟨Fa(x, avg(x)) − Fa(x, avg(x)), x − x∗

⟩

sing the fact that u = x + s. Moreover, ⟨L n̄u − L n̄u∗, u − u∗
⟩ ≥

2(L)∥u⊥
∥
2 as in Gadjov and Pavel (2020, Lemma 4). Notice that

− avg(x) = u∥
+ u⊥

− avg(x) = u⊥ by the invariance property
15). Therefore, similarly to Gadjov and Pavel (2020, Lemma 4),

Āaw − Āaw
∗, w − w∗

⟩ ≥

[
∥x−x∗

∥

∥u⊥
∥

]⊤

Υa

[
∥x−x∗

∥

∥u⊥
∥

]
. (36)

o prove cocoercivity, we use an argument similar to Gadjov and
avel (2020, Lemma 4) to obtain

Āaw − Āaw
∗
∥
2

≤ θa

[
x−x∗

u⊥

]2
(37)

The constant θa is defined as θa = max{(2ℓxa)
2, (2ℓua)

2
+ 3λ2(L)}.

airing (36) and (37), we have that Āa is µa
θa
-cocoercive with

a = λmin(Υa). The fact that Φ−1Aa is restricted cocoercive
follows from Aa being restricted cocoercive and the maximal
monotonicity of Ba and Φ−1Ba follows analogously to Theorem 1.
Since Assumptions 9–11 are verified, convergence follows from
Lemma 1. □

8.2. Convergence of Algorithm 4

We now consider Algorithm 4 and show how to obtain its
iterates. Later we prove Theorem 4.

Including the variable s to track the aggregative value and
considering the consensus constraint Vλ = 0, the operators of
the edge-based algorithm read as

Ca :

[
x
s
v
λ

]
→

[
Fa(x,x+s)+cLn̄(x+s)

Ln̄(x+s)
0Em
b

]

Da :

[
x
s
v
λ

]
→

⎡⎣ G(x)
0n
0Em

N Nm

⎤⎦ +

[
A⊤λ
0V

−Vmλ
⊤

]
,

(38)
R
>0 (λ) Vmv−Ax

10
while the preconditioning matrix is given by

Ψa =

⎡⎣ α−1 0 0 −A⊤

0 γ −1 0 0
0 0 ν−1

−Vm
−A 0 −Vm δ−1

⎤⎦ , (39)

where Vm = V ⊗ Idm and α, γ , ν and δ are the block diagonal
step sizes. Similarly to the previous sections, the pFB iteration is

ωk+1
= (Id + Ψ −1

a Da)−1
◦ (Id − Ψ −1

a CSA
a )(ωk), (40)

where CSA
a is approximated according to (9). The iterations in

Algorithm 4 can be obtained expanding (40) and using a change
of variables zk = V⊤

mvk, as in Section 4.2. To prove convergence
of Algorithm 4, we consider the invariant subspace

Σ := {(x, s, v, λ) ∈ R2n+Em+Nm
| avg(s) = 0n̄},

similarly to Section 5.1. We note that the dimension of this set is
different from (34). Before stating the result, analogously to the
previous sections, we must guarantee that the preconditioning
matrix is positive definite.

Assumption 15. Given τ > 0, the step sizes are such that γ > 0,
ᾱ is as in Assumption 12, ν̄ and δ̄ are such that, for all i ∈ I,

0 < νi ≤ ν̄ ≤ (τ +
∑

j∈I
√

wij)−1,

0 < δi ≤ δ̄ ≤ (τ +
∑

j∈I
√

wij + maxj∈{1,...,m}

∑ni
k=1 | [Ai]jk |)−1,

here [A⊤

i ]jk indicates the entry (j, k) of the matrix A⊤

i and such
hat Ψa satisfies Assumption 11.

Then, the convergence result holds.

roof of Theorem 4. We start by showing that, given any ω =

ol(x∗, s∗, v∗, λ∗) ∈ zer(Ca + Da) ∩ Σ , it holds that s∗
= 1N ⊗

vg(x∗) − x∗, λ∗
= 1N ⊗ λ∗ and the pair (x∗, λ∗) satisfies the KKT

onditions (7), i.e., x∗ is a v-SGNE of the game in (5).
To this aim, let us consider any ω∗

∈ zer(Ca +Da)∩ Σ and let
∗

= x∗
+ s∗

; then we have

n̄ ∈ Fa(x∗, u∗) + L n̄u∗
+ G(x∗) + A⊤λ∗

n̄ = L n̄u∗

Em = Vmλ∗

Nm ∈ b + NRNm
≥0

(λ∗) − Ax∗
− V⊤

mv∗

he fact that the KKT conditions in (7) are satisfied, i.e., that x∗ is
v-SGNE of the game in (5), follows analogously to Theorem 3.
Moreover, it holds that zer(Ca + Da) ∩ Σ ̸= ∅, similarly to

heorem 3 and using the fact that range(V⊤

q ) ⊇ range(Lq) =

ull(1⊤

N ⊗ Iq) = E⊥

q .
The fact that Ca is βa-restricted cocoercive where 0 < βa ≤

µa
θa
, µa = λmin(Υa) and θa = max{(2ℓxa)

2, (2ℓua)
2

+ 3λ2(L)} and
that the operator Da is maximally monotone and that Ψ −1

a Ca
is βaδa-cocoercive with δa =

1
|Φ

−1
a |

and that Ψ −1
a Da is maxi-

mally monotone in the Φa-induced norm follows analogously to
Theorem 3. Convergence follows by Lemma 1. □

9. Numerical simulations

Let us present some numerical results to validate the conver-
gence analysis of our proposed algorithms. For network games,
we consider a Nash–Cournot game (Koshal et al., 2016; Pavel,
2019; Yu et al., 2017) while for the aggregative case we use a
charging scheduling problem (Grammatico, 2017). In both cases
we consider two different topologies for the communication
graph, i.e., a complete graph and a cycle graph, to show how
connectivity affects the results. For the tests, we take the step
sizes to be half of those that generate instability.
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Fig. 1. Distance from a solution (network game).

Fig. 2. Computational time (network game).

.1. Nash-Cournot games

In a Nash–Cournot game (Koshal et al., 2016; Pavel, 2019;
u et al., 2017) a set I = {1, . . . ,N} of N = 20 companies

(agents) produce a commodity to be sold over m = 7 markets
as in Pavel (2019, Figure 1). The markets have a bounded ca-
pacity therefore the companies face some coupling constraints.
We suppose each company i to have a strongly convex, quadratic
cost of production ci(xi, ξi) = xTi Qi(ξi)xi + qTi xi where Qi(ξi) is a
random diagonal matrix with the entries drawn from a normal
distribution with mean 4.5 and bounded variance, while each
component of qi ∈ Rni is taken from [1, 2]. Each market j has

linear price depending on the total amount of commodities
old to it: Pj(x, ζ ) = pj(ζ ) − χj[Ax]j with pj(ζ ) a random vector
rawn from a normal distribution with mean 15 and bounded
ariance and χj ∈ [1, 3]. The cost function of each agent reads
s Ji(xi, x−i) = E[ci(xi, ξi) − P(x, ξ )⊤Aixi], and it satisfies the

assumptions of our problem since it is strongly convex (Pavel,
2019, Section V-A). We suppose that the local constraint of the
companies are given by some bounds on the production, i.e., Ωi =

xi ∈ Rni : 0 ≤ xi ≤ Xi}, i ∈ I, where each Xi is randomly
drawn in [5, 10]. Each market j has a maximal capacity of bj,
randomly drawn from [1, 2]. In Figs. 1 and 2 we show the results
for network games. Specifically, Fig. 1 we show the distance from
the solution versus the number of iterations while Fig. 2 shows

the computational cost; the transparent areas show the variance

11
Fig. 3. Distance from a solution (aggregative game).

Fig. 4. Computational time (aggregative game).

over 100 runs of the algorithm. We discard the first 100 iterations
to better visualize the asymptotic behavior. As one can see, there
is not a significant difference between the two algorithms for the
complete case while the node-based algorithm is slower for the
cycle graph.

9.2. Charging scheduling problem

For aggregative games, we consider the charging scheduling
problem, where the agents are plug-in vehicles inspired by Gram-
matico (2017), Lei and Shanbhag (2018a). We suppose to have
N = 10 users, planning the charging profile over the next 24 h,
divided into n̄ = 12 time slots. Each user has a random linear
battery degradation cost ci(xi, ξi) = ci(ξi)⊤xi for some random
vector ci(ξi) drawn from a normal distribution with mean 4 and
bounded variance. The cost of energy for each time slot depends
on the aggregate value, i.e., Pj(avg(x), ζ ) = pj(ζ )−χj[avg(x)]j. The
andom variables pj(ζ ) are drawn from a normal distribution with
ean 4.5 and bounded variance while χj ∈ [1, 2]. Therefore each
gent has a cost function of the form Ji(xi, x−i) = E[ci(xi, ξi) −

(avg(x), ζ )⊤xi]. The local constraints are given by Ωi = {xi ∈
ni : 0 ≤ xi ≤ Xi} where Xi is taken according to the following

rule: [Xi]j = 0.25 with probability 1/2 and [Xi]j = 0 otherwise.
oreover, the users are subject to the transition line constraint
≤

∑
i∈I xi ≤ θ where θj = 0.4 if j ∈ {1, 2, 3, 11, 12}, i.e., it is

less restrictive at night, and θ = 1 during the day. In Figs. 3 and 4,
j
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e show the distance from a solution; the transparent areas show
he variance over 100 runs of the algorithm. We discard the first
00 iterations to better visualize the asymptotic behavior. From
hese figures we see that also in this case the node-base algorithm
or the cycle graph is the slowest in terms of both number of
terations (Fig. 3) and computational time (Fig. 4).

0. Conclusion

The preconditioned forward–backward (pFB) algorithm can be
sed to find stochastic generalized Nash equilibria in a partial-
ecision information setup. Leveraging on the estimation of the
nknown variables, the pFB algorithm can be tailored for network
ames and for aggregative games. Thanks to the preconditioning
lmost sure convergence holds under restricted cocoercivity of
he forward operator with respect to the solution set.
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