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Abstract
This thesis explores the optimisation of Automated Storage and Retrieval Systems (AS/RS) in modern
warehousing, focusing on the minimisation of performance losses during partial downtime in various
scenarios. The research is conducted in collaboration with Jumbo Supermarkets, utilising their highly
automated distribution centre containing an Order Consolidation Buffer with 4 dual-crane AS/RS in par-
allel as a case study. In this case study, the effects of partial downtime are investigated and operational
policies that can effectively mitigate these impacts are identified.

With the increasing reliance on automation within logistics to enhance efficiency, reduce errors,
and lower operational costs, AS/RS have become a crucial component of warehouse operations. How-
ever, despite their significant advantages, these systems face challenges, notably in dealing with partial
downtimes which can arise from unexpected breakdowns or scheduled maintenance. This research
aims to fill the gap in existing literature by providing an exploratory analysis of partial downtime in
AS/RS, which has been notably absent from prior studies.

Through the development of a reusable Discrete Event Simulation model in Python, this thesis de-
velops a framework that not only addresses the immediate concerns of Jumbo Supermarkets, but also
contributes to the broader field of AS/RS optimisation. The study identifies several operational policies
that could potentially minimise the negative effects of partial downtime by minimising delays, upstream
system interference and added manual work, and by enhancing robustness and resilience. These
policies are developed for two scenarios. In the first scenario, one of the two cranes within an AS/RS
is down. The developed policies adjust the workload distribution, determining the portion of workload
that remains for this AS/RS and the portion that needs to be redistributed across the other AS/RS. In
the second scenario, both cranes within an AS/RS are down. The developed policies offer alternative
approaches regarding the handling of pallets that were already in production and initially designated for
this AS/RS, but can no longer go there. Some policies involve directly unloading these pallets, while
others redistribute them across the other AS/RS. Eventually, results for both scenarios are compared,
aiding in the decision of whether one should continue operation with one crane, or stop both cranes to
speed up repairs.

Key findings suggest that strategic adjustments to workload distribution among AS/RS during partial
downtimes, along with the implementation of specific operational policies, can significantly mitigate
performance degradation in certain scenarios. In the experiment where one of the cranes within an
AS/RS is down, it is found that during average weeks, the system at Jumbo has sufficient overcapacity
to handle the original workload, however, it would be more robust and resilient to reduce the capacity
of this AS/RS and diverge some of the workload to the other AS/RS. In general, the higher the overall
workload on a day, the more important it becomes to shift the workload away from the AS/RS with
just one functioning crane to the other AS/RS. In the experiment where both cranes within an AS/RS
are down, it is found that the system at Jumbo has sufficient overcapacity to process the pallets in
the other AS/RS instead of having to directly unload them to lower the workload. This reduces the
amount of added manual work. When comparing both experiments, it is more beneficial to continue
the operation of a single crane instead of stopping both cranes, except for very short downtime. Even
though moving the broken crane to its repair position causes a longer overall downtime, delays are
significantly reduced since a large part of goods stuck in that AS/RS can then still be retrieved.

All in all, this research provides valuable insights into the dynamics of parallel AS/RS under partial
downtime conditions and offers practical guidelines for effective operations during partial downtime.
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1
Introduction

1.1. Background
In the continuously evolving landscape of logistics, warehouses have gotten increasingly automated
to reduce costs, reduce errors and improve efficiency. One of the innovations contributing to this is
the Automated Storage and Retrieval System (AS/RS). AS/RS have been around since the mid-20th
century and have developed a lot since then. At their introduction around the 1950s and 1960s, they
were focused on simple storage and retrieval tasks using automated cranes and conveyors. Later,
around the 1970s and 1980s, AS/RS became popular in manufacturing and distribution centres. Their
performance improved due to technological advancements which led to more sophisticated designs
and the usage of robotics and advanced software.

Nowadays, AS/RS are a vital component of modern warehousing and logistics making use of inno-
vations such as real-time data analytics, machine learning, and integration with other smart technolo-
gies. As the name suggests, AS/RS automate the storage and retrieval of goods, or stock-keeping
units (SKU). Various types of AS/RS exist, but in general, they consist of one or multiple racks in which
SKUs can be stored, input- and output points and a crane or shuttle which moves the SKUs between
the inputs, outputs and rack.

Some of the advantages of using AS/RS include increased efficiency, reduced labour costs, fewer
errors and the possibility of 24/7 operation compared to manual systems. Also, they have a low space
utilisation due to the high-density storage in the racks. Disadvantages include the high initial costs,
complex maintenance of the system and limited suitability for goods with an irregular shape or size or
with special handling requirements.

1.2. Jumbo Supermarkets
This research is conducted in collaboration with Jumbo Supermarkets, who provided a case study in
which to examine the influence of partial downtime on AS/RS systems and how to minimise these ef-
fects. Jumbo Supermarkets is the second-largest supermarket in the Netherlands. Their supply chain
consists of National/Central Distribution Centres (NDC/CDC) and Regional Distribution Centres (RDC)
to supply fresh, frozen and dry groceries to and return packaging from stores. Next to that, E-Fulfillment
Centres (EFC) and Hubs are used for home-delivery of groceries as can be seen in Figure 1.1.

Previously, Jumbo had an NDC for both fresh and dry groceries in Veghel, however, a few years
ago, Jumbo opened the CDC KW for dry goods in Nieuwegein replacing the NDC for dry goods in
Veghel. This new CDC is highly automated and delivers filled rollcages either directly to stores or to
EFCs or RDCs which then deliver it to the stores of Jumbo. In 2024, Jumbo opened another CDC next
to CDC KW for fresh products, replacing the last NDC in Veghel. This has a similar function to CDC
KW, apart from the fact that the mechanisation works slightly differently. This difference is partly in the
picking systems, and partly in an added Order Consolidation Buffer (OCB) which consists of four AS/RS
for container storage instead of storing containers on the floor as in CDC KW. It is in their interest to
investigate some of the challenges and resolutions in operating multiple parallel AS/RS.

1



2 1. Introduction

Figure 1.1: Supply Chain locations of Jumbo Supermarkets (Jumbo Supermarkets, 2022)

1.3. Problem Definition
Since AS/RS have been around for so long, they also have been researched a lot. However, the major-
ity of AS/RS research concerns theoretical topics, which results in a limited impact on practice. AS/RS
are mainly studied in isolation and the influence of upstream and downstream processes, and thus
the influence of the total warehouse process, are not considered (Roodbergen & Vis, 2009)(Gagliardi
et al., 2012a)(Azadeh et al., 2019). For example, the design and control of a single AS/RS in isolation
has been well-researched, but the best way to deploy one or multiple AS/RS in the total warehouse
system, and some of the practical challenges they bring, have not. One topic that has not been re-
searched at all is partial downtime. This can occur in a redundant system with multiple parallel AS/RS
or with multiple cranes. A system is partially down if part of the multiple AS/RS does not function or
part of the multiple cranes does not function anymore. This could be due to unforeseen breakdowns
of components, or due to scheduled maintenance. It is of relevance to research what the impact of
this is and whether there are operational policies that can minimise this impact. Additionally, there is a
lack of modelling frameworks designed to examine multiple AS/RS simultaneously. Another challenge
in AS/RS research is the duplication of effort, with many researchers independently constructing their
own models from the ground up.

The AS/RS in the OCB of Jumbo are in parallel. Their inputs are connected by a central conveyor,
but their outputs are disconnected. While operating the warehouse, decisions have to be made about
the workload distribution among the AS/RS, and whether to stop both cranes to aid the repair of a bro-
ken crane, or to continue operation of the other crane, slowing down repairs of the broken crane. Under
normal circumstances, the workload is spread out over the four buffers. But with partial downtime, for
example when one of the two cranes in a buffer or a full buffer is down, Jumbo could choose to alter this
division of SKUs and thus workload over the buffer. However, they do not have previous experience
with this and are curious about what the best policies are in the case of partial downtime of the buffers.
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The goals of this research are as follows:

• Fill the research gap regarding the effects of partial downtime on AS/RS and OCB

• Develop a modelling framework for multiple parallel AS/RS which can be reused by other re-
searchers or Jumbo to research other scenarios

• Advise Jumbo regarding how to deal with partial downtime in their OCB

1.4. Research Questions
The problem definition and research goals are represented by the main research question:

What is the best operational policy to minimise performance losses while operating parallel
AS/RS under partial downtime of the system?

To answer this main research question and achieve the research goals, the following sub-questions
are defined:

1. What is the current state of AS/RS research?

2. Which policies can be investigated to minimise the impact of partial downtime?

3. How to model parallel AS/RS?

4. How can the developed model be used elsewhere in AS/RS research?

5. How do the operational policies impact the performance of the system at Jumbo?

1.5. Methodology
The DEGREE problem-solving methodology by Rossetti will be used (Rossetti, 2015). The steps to
follow in this methodology are as follows:

1. Define the problem

2. Establish measures of performance for evaluation

3. Generate alternative solutions

4. Rank alternative solutions

5. Evaluate and Iterate during process

6. Execute and evaluate the solution

Executing the first step makes sure that the right problem is solved. Performing the second step
ensures that the right metrics are used to examine the performance of the system under study. With
steps 3 and 4, it is ensured that the right solution to the problem is developed. In step 5, it is evaluated
how the process is going and the process can be reiterated until the desired level of modeling accuracy
has been achieved. Lastly, step 6 is used to execute the solution and follow up to ensure that the
solution works as expected, if possible.

This methodology was slightly altered by Rossetti for applications where simulation is involved,
which is the case in this research for reasons explained in chapter 5. These phases are as follows and
are visually represented in figure 1.2:
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1. Problem Formulation

(a) Define the problem
(b) Define the system
(c) Establish performance metrics
(d) Build conceptual model
(e) Document model assumptions

2. Simulation Model Building

(a) Model translation
(b) Input data modelling
(c) Verification
(d) Validation

3. Experimental Design and Analysis

(a) Preliminary runs
(b) Final experiments
(c) Analysis of results

4. Evaluate and Iterate

(a) Documentation
(b) Model manual
(c) User manual

5. Implementation

The first phase, problem formulation, covers the basics of the first two steps in the DEGREE pro-
cess. The problem is formulated in collaboration with Jumbo and TU Delft to make sure it is useful for
the company, but also academically contributing. The system is defined and it is made sure that the
study focuses on the area of interest appropriately. The Key Performance Indicators (KPI), and thus
the desired outputs of the model, will be identified and the conceptual model of the system will be built.
Also, the model assumptions and simplifications will be documented which is important to be able to
examine their effect on the model.

In the second phase, model building, one focuses on the main part of step 3 in the DEGREE pro-
cess. The approach taken here is to start with a simple model and continuously expand until the desired
complexity is reached. The complexity of the model must stay proportional to the degree of validity nec-
essary for the study objectives and to the quality of the data. Input data is prepared in such a way that it
is suitable for the model and specifications of the system are acquired. The model will then be verified
to make sure that the model works as intended. This will be done by unit tests to test all the individual
components of the code and with a sensitivity analysis where the system is observed while varying
factors in the system and checking if the behaviour is as anticipated. Because the system at Jumbo
is not operational yet and no real-world data exists, validation will be done by among other things, dis-
cussing the model with experts on the real system to confirm that the model represents the real system
accurately enough.

After that, in the third phase, experimental design and analysis, some aspects from steps 3 and 4
of the DEGREE process are included. The preliminary runs are used to set the statistical parameters
and to acquire a benchmark of the outputs of the model in the base scenario. After that, the different
policies can be applied to the model and the corresponding outputs can be extracted.
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The fourth phase, evaluate and iterate, is about going through things again. This should be done if
one is not satisfied with the results of the simulation. Then it should be determined what else is needed
to achieve the modelling objectives. This could be additional data, models, experimentation or analysis.

Finally, the last two phases, documentation and implementation, finish up the simulation process.
When the simulation objectives have been achieved, the best-performing policies and simulation re-
sults should be documented from which conclusions can be drawn. Additionally, the model should be
developed in such a way that the project can be easily modified or reused for other research purposes.
Also, a user manual should be written so that non-analysts also know how to use the model.

Figure 1.2: DEGREE methodology for simulation projects (Rossetti, 2015)
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1.6. Report Structure
The report is structured as follows. In chapter 2, existing literature on AS/RS research related to the
topic of this research will be discussed. This chapter therefore also answers sub-question 1.

Chapter 3 defines the problem that will be studied in this research. In chapter 4, different strategies
for minimising the effects of partial downtime will be designed and formed into operational policies.
Here, sub-question 2 will be answered.

In chapter 5, first, the development of the generic simulation model will be discussed. After that, it
will be explained how the conceptual model was translated into code and how the model can be used
to study other systems. These chapters therefore answer sub-questions 3 and 4.

Chapter 6 defines the system at Jumbo, explains its implementation into the simulation model and
discusses the performance metrics of the system. Chapter 7 will explain how the model and the im-
plementation of the system under study were verified and validated. In chapter 8, the experiments
will be explained and in chapter 9 the results of the simulations will be presented, thereby answering
sub-question 5.

The accuracy of the results will be discussed in chapter 10 and conclusions will be drawn in chapter
11, which also answers the main research question.

Overall, chapters 1 to 4 represent phase 1 of the methodology. Chapters 5 to 7 represent phase 2.
Finally, chapters 8 and 9 represent phase 3, chapter 10 represents phase 4 and chapter 11 represents
phase 5. Phase 6, implementation, is not possible for this research because the system is not fully
operational yet, and because this is outside of the scope of this research.



2
Literature

AS/RS research has been going on for a long time with initial developments dating back to the 1950s.
Since then, a lot of papers concerning the design and operation of these systems have been published.
However, there are still plenty of research topics concerning AS/RS that are yet to be explored. This
section will discuss the existing AS/RS literature and identify research gaps, thereby answering sub-
question 1.

2.1. History and evolution of AS/RS
The evolution of AS/RS throughout history has been coupled with technological innovations and evolv-
ing industrial needs. In the 1950s and 1960s, the main focus was on automated material handling in
general in warehouses and distribution centres.

One of the first systems of this kind was installed at an IBM warehouse (Witt, 1974). Their main
motivation for installing an AS/RS was the reduced needed land area and savings on manpower op-
erating costs compared to manual systems. A computer simulation was used to aid the design of the
system where the goal was to minimise the overall costs while taking into account the required storage
volume and throughput requirements as can be seen in figure 2.1. The results of this simulation yielded
an optimal height, length and number of aisles.

Figure 2.1: Graph of AS/RS model results (Witt, 1974)

Later, during the 1970s and 1980s, several different types of AS/RS were developed. Examples
of this are mini-load AS/RS and AGV-based AS/RS. During these decades, the focus shifted towards
improving the efficiency and accuracy of these systems.

7
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As an example, Hausman et al. investigated optimal storage assignment in a mini-load AS/RS by
comparing random storage assignment, full turnover-based assignment and class-based assignment
(Hausman et al., 1976). In a mini-load AS/RS, bins or trays containing smaller items are stored in the
racks. Smaller amounts of items are picked from the bin or tray after which they are returned to the
rack. Therefore, the location assignment of these bins or trays can greatly impact the efficiency of the
system. Their conclusion was that turnover-based storage assignment results in a significant reduction
in crane travel times and therefore increases the throughput of the system.

After this, during the 1990s, newly developed technologies began to get incorporated into AS/RS.
Innovation in the domains of among others robotics, computer control systems and RFID further en-
hanced their capabilities.

For example, Lee et al. take advantage of these innovations by investigating sequencing methods
for AS/RS (Lee & Schaefer, 1997). In their paper, they try to find an optimal method to determine the
order in which retrieval requests are performed. By applying a dynamic heuristic, they managed to
improve the throughput of the system.

Eventually, from the 2000s to the present, further technological developments shaped AS/RS into
what they are now. Robotics and sophisticated control systems enable greater flexibility and adapt-
ability. The current focus is on energy efficiency, integrating Industry 4.0 and possibly incorporating
artificial intelligence, machine learning and predictive maintenance.

2.2. Research topics
Bertolini et al. performed a bibliometric analysis tomap the evolution of research themeswithin a field by
studying over a thousand papers (Bertolini et al., 2023). By doing this, keywords can be categorised
into the categories shown in figure 2.2. This section will highlight research concerning some of the
current research topics.

Figure 2.2: Keywords classification matrix (Bertolini et al., 2023)

According to their study, trendy topics include shuttle-based storage and retrieval systems (SBS/RS)
and multi-deep AS/RS. Newborn topics include multiple input/output (I/O) points and energy consump-
tion. Solid topics include storage allocation, job scheduling and the physical design of the system.

2.2.1. SBS/RS
(Borovinšek et al., 2017) propose a multi-objective optimisation approach for designing Shuttle-Based
Storage and Retrieval Systems (SBS/RS) with a focus on minimising average cycle time, energy con-
sumption, and total investment cost. Seven design variables, such as the number of aisles and veloc-
ities, are considered. The Non-Dominated Sorting Genetic Algorithm II (NSGA II) is used due to the
non-linear nature of the objective function. Pareto optimal solutions are sought for efficient and flexible
decision-making in warehouse design at the early planning stage.
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(Lerher et al., 2015) present an analytical travel time model for SBS/RS. The model considers the
elevator lifting table and shuttle carrier operating characteristics, incorporating factors like accelera-
tion, deceleration, and maximum velocity. Mean travel time is calculated using probability theory and
assuming uniformly distributed storage rack locations. The proposed analytical model is compared
with approximation and simulation models, demonstrating consistent correlation with simulation results
across various SBS/RS types.

(Lerher, 2017) employs Design of Experiment (DOE) to identify factors influencing the performance
of SBS/RS. After determining these factors, DOE analysis is used to optimise SBS/RS throughput
performance. The study shows that the number of columns, shuttle carrier velocity and acceleration,
and the elevator’s lifting table velocity and acceleration interactively affect various performance mea-
sures, including cycle times and throughput performances. The factors studied include average single
and dual command cycle times, as well as throughput performances for both the shuttle carrier and
elevator’s lifting table, along with warehouse volume.

2.2.2. Multi-deep AS/RS
(Yang et al., 2015) focus on optimising storage rack design in a multi-deep compact AS/RS, account-
ing for S/R machine acceleration and deceleration. The study presents general models to determine
the optimal ratio of dimensions, minimising travel time for various speed profiles. The impact of S/R
machine speed profiles and fixed dimensions are examined through numerical experiments.

(Yu & De Koster, 2009) investigates the optimisation of layout for compact, multi-deep AS/RS. The
research aims to minimise the expected cycle time under various storage policies. The expected single-
command cycle time for a full-turnover-based storage policy is derived and amodel to determine optimal
rack dimensions is proposed. By simplifying the model, optimal dimensions are analytically determined
based on rack capacity and ABC curve skewness, resulting in significant cycle time reduction compared
to random storage policies.

2.2.3. Multiple I/O
(Song & Mu, 2022) perform an operational optimisation in a multiple-input/output (multi-I/O) points
AS/RS. The system involves twin stackers operating simultaneously in the same aisle without crossing
each other with the I/O point being unknown. Key findings include the significant efficiency improve-
ment of storage and retrieval with double unit transport, particularly during peak times. The proposed
method outperforms phased optimisation, showcasing a nearly 30% reduction in makespan for large-
sized examples.

(Tanaka & Araki, 2009) study the routing problem in unit-load AS/RS with separate input and output
points, focusing on the shared storage policy. Their goal is to optimise the travel route of an S/Rmachine
for given storage and retrieval requests, minimising total travel time. They formulate the problem using
0–1 integer linear programming and two types of dwell point settings are considered: it is either the
input or output point. An exact solution algorithm using a general Mixed Integer Linear Programming
(MILP) solver is proposed and demonstrated through numerical experiments.

2.2.4. Energy consumption
(Lerher et al., 2014) introduce an energy efficiency model for mini-load AS/RS. Their proposed model
emphasises the importance of considering energy and environmental factors in the design process. By
reducing energy consumption and therefore CO2 emissions, their model aims to contribute positively
to both economic and environmental aspects. The main findings were that extreme velocity profiles
also generate extreme power demands.

(Meneghetti et al., 2015) introduce new factors in their study such as unit load weight and differen-
tiation of shifts along the horizontal and vertical axes for accurate energy calculation. An optimisation
model combining Constraint Programming with Large Neighborhood Search includes both time and
energy-based objectives, considering multiple weight unit loads and energy recovery. Their results
state that regardless of the demand curve and optimisation objective, intermediate height rack shapes
achieve the best energy efficiency while lower ones have better travel time performance.
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(Meneghetti & Monti, 2013) also compare a time-based full turnover strategy with an energy-based
strategy in an AS/RS, coupling each rack location with crane energy consumption. Several crane
models are considered, analysing assignments based on dedicated zone shapes, time and energy
performances. Various rack shapes and product ABC curves are examined, and dwell-point policies
are evaluated from a sustainable perspective, combining energy-saving goals with the traditional aim
of picking time reduction.

2.2.5. Storage allocation
(Gagliardi et al., 2012b) emphasize the importance of assessing the applicability of assumptions to
real industrial settings, unlike many theoretical works relying on tight assumptions. A discrete-event
simulator is introduced, replicating an industrial AS/RS in the food industry. Using real data scenarios,
various storage assignment policies are compared. The experimental results highlight the deviation of
system behaviour from theoretical expectations when realistic conditions are considered.

(Hsieh & Tsai, 2001) investigate the impact of a storage assignment policy aligned with manufac-
turing needs on the performance of an AS/RS and the overall production system. The study proposes
a bill of material-oriented (BOM) class-based storage assignment method. A case study demonstrated
the effectiveness of the proposed method, comparing it with a random storage assignment approach.
Results showed the efficiency of the BOM-oriented class-based AS/RS assignment method.

(Kulturel et al., 1999) use computer simulations to compare two shared storage assignment policies.
The main performance measure is the average travel time of the AS/RS for storing and retrieving
products. The study investigates system sensitivity to product variety, inventory replenishment lead
time, demand rate, inventory policy, and product classification technique. Their conclusion is that the
turnover-based policy tends to outperform the duration of stay-based policy, but the difference becomes
insignificant under specific conditions.

2.2.6. Job scheduling
(Wang & Yih, 1997) use artificial neural networks trained on simulation results from various experimen-
tal designs to design a control system. The neural network takes system configuration and required
performance levels as inputs and provides control strategies for storage location assignment, retrieval
location selection, queue selection, and job sequencing as outputs. The study explores different neu-
ral network topologies and training parameters, demonstrating the feasibility of the proposed approach
with an 84% accuracy in identifying novel data.

(Ekren & Arslan, 2024) aim to improve the performance of an SBS/RS through a machine learning
(ML) approach. An SBS/RS is designed which enables shuttles to travel between tiers. To address
the operational complexity of shuttles in this design, an ML-based algorithm for job selection is imple-
mented. Their ML-based solution is compared with traditional scheduling approaches, such as first-in-
first-out and shortest process time scheduling rules. The findings demonstrate that in most cases the
Q-learning approach outperforms the two static scheduling approaches.

(Elsayed & Unal, 1989) introduce heuristics and analytical models for addressing the order batching
problem, focusing onminimising total travel time. Four heuristics are developed combining orders into a
single tour. Additionally, an analytical model is presented to estimate the travel time of the S/Rmachine,
considering the number of locations to be visited and the physical specifications of the structure. The
paper also provides expressions for upper and lower bounds for travel time.

2.2.7. Physical system design
(Z. Chen et al., 2015) introduce the concept of a bi-directional flow-rack (BFR), deviating from traditional
flow-racks by designing bins in adjacent columns to slope in opposite directions. In a BFR, unit loads
are stored on one side and retrieved from the other, allowing for dual-command (DC) operations on
both sides. The paper presents a travel time model for BFR systems, establishing throughput baselines
for different configurations. A DC operation generation method is proposed and evaluated through sim-
ulation experiments, comparing the throughput performance of BFR and traditional single-directional
flow-rack (SFR) systems.
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(Malmborg, 2001) propose a modification to a well-known rule of thumb for evaluating storage rack
configurations in AS/RS. Their modification eliminates the need for assumptions regarding the pro-
portion of single and dual command order picking cycles and the total storage capacity requirements
when comparing randomised versus dedicated storage. The modified rules of thumb are designed to
ensure computational efficiency for analysing a broad range of rack design alternatives in large-scale
applications.

2.3. Modelling AS/RS
To study AS/RS, generally, two types of models can be used, either an analytical model or a simulation
model. The main types of analytical and simulation models used in AS/RS research will be briefly
discussed in this section.

2.3.1. Analytical models
Analytical models are typically used for quick analysis of a system because they take a relatively short
time to develop and do not require much computational power. This can be useful for preliminary
estimations or for studying a large number of different system configurations. They are, however,
limited in their ability to model complex systems.

Queuing networks
Queuing Networks are a stochastic way of modelling in which different variations exist such as Open,
Semi-Open and Closed Queuing Networks. A queuing network is a collection of servers, representing
the resources of the system, and customers competing for those resources where they possibly have
to wait in a queue for those resources. The goal of analysing queuing networks is to determine per-
formance measures such as the number of customers in the system or queue, average time spent in
the system or queue and system utilisation factor. The main reason for using queuing networks is the
relatively high accuracy and efficient model evaluation (Bernardo & Hillston, 2007).

For example, (Ekren et al., 2014) use a Semi-Open Queuing Network (SOQN) to estimate key per-
formance measures for an Autonomous Vehicle Storage and Retrieval System (AVS/RS). In the context
of an AVS/RS, the jobs correspond to S/R transaction requests, and the autonomous vehicles (AVs)
represent the servers. Modelling the AVS/RS as an SOQN accounts for potential wait times between
AVs and S/R transactions. The queuing network is constructed by establishing general travel times for
pre-defined servers. The AVS/RS system is conceptualised as a single-class, multiple-server SOQN.
Employing the Modified Gordon-Newell Method (MGM), the network is solved, and key performance
measures are derived. The MGM technique is applied to a warehouse in France utilising AVS/RS in
their operations.

Mathematical programming
Mathematical programming is known as the part of operations research that researches the optimal
allocation of resources between competing activities (Jensen & Bard, 2002). This way of modelling is
deterministic and generally exists of an objective function and a set of constraints with which an optimal
solution is desired to be found.

For example, (Man et al., 2021) study a bi-objective optimisation problem for an AS/RS in a container
terminal with a task release time and due date using bi-objective mixed integer linear programming.
Their goal is to minimise the crane travel time and total tardiness simultaneously. Several algorithms
to solve this problem are developed and their efficiencies are compared.

2.3.2. Simulation models
Simulation models cost more time to develop, but they are suitable to study complex AS/RS configu-
rations yielding realistic results because constraints do not have to be used. Very specific operational
policies or system designs can be modelled with this. Also, it allows for easier understanding of system
behaviour.
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Discrete Event Simulation
Discrete Event Simulation (DES) is one of the most popular modelling techniques which has been
greatly developed over time (Robinson, 2005). The techniquemodels systems as a sequence of events
occurring at discrete moments in time. These events can change the state of the system, or add more
events to the events list. Between the events, no changes happen, such that the system jumps in time
from event to event until the stop conditions of the simulation have been met.

For example, (Marolt et al., 2022) study relocation and storage assignment strategies in amulti-deep
AVS/RS using DES. Relocation is necessary for multi-deep AS/RS if an SKU is blocking another SKU
behind it that needs to be retrieved. This occurs when different items are stored in the same lane and
the FIFO principle is followed. A widely used kinematic model was adopted to calculate travel times.
The three different strategies investigated are a random strategy which chooses random locations,
a nearest neighbour (NN) strategy relocating in the nearest available location, and a depth-first (DF)
strategy which chooses the most in-depth possible location and if there are multiple, it chooses the
closest one. It was concluded that for lower fill grades, the NN relocation and NN storage performed
best, and for higher fill grades the NN relocation and DF storage performed best.

Agent-Based Modelling
Agent-Based Modelling (ABM) simulates the interaction and actions of autonomous agents in an en-
vironment. It is a way of modelling that has been developed more recently compared to for example
DES and it can be used to study more complex systems by focusing on the individual actions of agents.
These models are built bottom-up by identifying agents, defining their behaviour, establishing connec-
tions between them and setting environmental variables (Macal & North, 2005).

(Eroglu & Yetkin Ekren, 2022) study collision and deadlock prevention in an SBS/RS with an agent-
based modelling approach. Three types of agents are defined, a demand agent, a shuttle agent and
a deadlock control agent which can each make decisions independently. The demand agent keeps
track of storage and retrieval requests and calculates the distance to perform those actions for the
different shuttles. The shuttle agent decides which shuttle gets which task, determines the dwell point
and triggers policies in case of possible collisions or deadlock. The deadlock control agent is triggered
in case of a possible deadlock and prevents the situation. The proposed system is tested against a first-
come-first-served policy and shortest processing time policy for transaction selection and the proposed
system performed best in terms of average flow time per transaction and total number of transactions
processed for 1, 2 or 3 shuttles per tier.

Hybrid models
Hybrid simulation can be described as a modelling method that combines at least two different meth-
ods. These methods are mostly system dynamics (SD), DES or ABM, however, a hybrid model can
also exist as a combination of an analytical and simulative method. Using a hybrid model is still new
but has become quite popular in the past 2 decades (Brailsford et al., 2019).

(Barbato et al., 2019) evaluate policies for AS/RS by using a model combining discrete events and
agent-based paradigms. A four-step methodology is introduced. The first step is to make a descriptive
model of the AS/RS and characterise it using entities, events and activities. Entities are then modelled
as agents while the order composition of single operators can be modelled using a discrete event
approach. The next step was to validate the model using a data set from an industrial partner and
to analyse bottlenecks. The third step was to optimise the bottleneck by implementing a policy. To
accommodate this policy, it is assumed all orders for the day are known in advance. The last step was
to evaluate the new policy using the simulation tool. The advantage of their framework turned out to
be that it could be more effectively encoded by optimisation models.
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2.4. Literature gaps
The research topics and papers mentioned in this chapter represent a fraction of all literature that exists
on AS/RS. However, there are still areas that have not been explored at all or not well enough. The
majority of AS/RS research seems to study the design and operation of AS/RS in isolation. In prac-
tice, AS/RS are often coupled to other systems upstream and downstream of the AS/RS itself, which
can in turn also be other AS/RS systems. These upstream and downstream processes influence the
performance of the AS/RS because they dictate the flow of products into and out of the AS/RS. There-
fore, to accurately study the operation and design of AS/RS, these factors should be taken into account.

A topic which is also absent in AS/RS literature is downtime. This is not surprising when they are
mainly studied in isolation because when an isolated AS/RS is down, there is not much to study. How-
ever, in production systems or warehouses where multiple AS/RS are working together, such as in
Order Consolidation Buffers, if one of them is down for a period of time, different strategies can be
employed. These strategies aim to minimise the overall impact on the system’s performance. This is
especially interesting in systems with multi-crane AS/RS where just one of the cranes can be down and
it needs to be determined how much workload the remaining crane or cranes can handle.

Next to that, there is a large duplication of effort with most researchers building their own models
from the ground up. Few modelling frameworks for AS/RS exist, and the ones that do are often limited
in their flexibility to adapt to specific system configurations or circumstances. Currently, no framework
exists where the influence of upstream and downstream processes can be taken into account, and
where multiple AS/RS which are working together can be studied.

Table 2.1 summarizes some of the most relevant studies concerning the aforementioned topics. It
can be concluded that downtime is a topic within AS/RS research that has been neglected. This is
confirmed by (Bertolini et al., 2023) who studied over a thousand papers, and these topics do not come
back as used keywords in AS/RS research in their bibliometric analysis.

In conclusion, the answer to sub-question 1 is that AS/RS research has been around for a long time
and a large variety of topics have been researched. However, there are still topics that have not gotten
any attention such as downtime in AS/RS. Also, the impact of research on industry has been limited
since the majority of researchers focus on AS/RS in isolation and do not take practical aspects into
account such as the upstream and downstream system influence.
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Table 2.1: Papers studying topics related to this research



3
Problem definition

This chapter will describe the generic problem that will be studied in this research.

In the literature review, it was observed that topics such as partial downtime in AS/RS and the oper-
ation of parallel AS/RS have not gotten any previous attention. To provide the industry with guidance on
how to deal with this, this topic will be studied in this research. Partial downtime can occur in redundant
systems with multiple AS/RS in parallel, possibly with multiple cranes. There are several decisions to
make while operating such systems under partial downtime.

The more complex the system, the more possible solutions exist to mitigate performance losses
during partial downtime. To examine a larger range of possible solutions, the following system charac-
teristics should apply:

1. The inputs of the parallel AS/RS should be connected allowing incoming goods for the upstream
systems to be distributed to any AS/RS. This could for example be represented by a centralised
conveyor that is connected to the inputs of all AS/RS.

2. The system should consist of at least three parallel AS/RS. This allows for a decision about
whether to move the workload of an AS/RS that broke down to the neighbouring AS/RS, which
might be desirable in case goods need to stay close to their original destination, or to spread it
out across all other AS/RS.

3. The AS/RS should have multiple cranes. This allows for the possibility of just one crane breaking
down and continuing operation with the remaining crane, possibly with a reduced service area
depending on the breakdown location of the crane. If the cranes operate on the same rail, deci-
sionsmight need to bemade about whether to stop the remaining crane to speed up repairs or not.

4. The outputs of the parallel AS/RS should be connected allowing outgoing goods to the down-
stream systems to be distributed from any AS/RS.

5. There should be an option to directly unload goods from the AS/RS and remove them from the
system. This could be necessary in case the extra workload cannot be handled by the other
AS/RS. In this scenario, these directly unloaded goods need to be manually handled, stored
somewhere and manually retrieved later.

It turns out that systems with these characteristics often exist in the industry in the form of Order
Consolidation Buffers. In such systems, manufactured goods for orders are temporarily stored be-
fore being shipped once the order is complete. An illustration of such a system with the mentioned
characteristics can be seen in figure 3.1.
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Figure 3.1: Illustration of parallel AS/RS with specified characteristics

Overall, to mitigate performance losses during partial downtime in such a system, guidance on the
following decisions is desired:

• One crane within an AS/RS breaks down:

– Should the operation of this AS/RS be continued with the remaining crane, possibly slowing
down repairs?

– Should part of the workload for this AS/RS be redistributed to the other AS/RS?

• Full AS/RS breaks down:

– How should the workload originally meant for this AS/RS be redistributed?



4
Policies

This chapter will explain the developed and investigated policies to minimise the impact of partial down-
time and thereby answer sub-question 2.

To be able to study partial downtime in AS/RS, the system under study must have specific char-
acteristics. It should consist of at least two parallel AS/RS, preferably more. Optionally, each AS/RS
could have multiple cranes so that the effects of downtime of just one of the cranes can be studied.
Also, the inputs of the AS/RS should be connected, for example via a central conveyor, and the outputs
should be disconnected, which makes the distinction between parallel AS/RS and multi-aisle AS/RS.

In this research, a system consisting of four parallel AS/RS with two cranes each will be studied
and it is assumed each AS/RS has an output point that can at all times be used to unload goods. This
increases the range of different possible policies that can be evaluated. There are two scenarios that
will be studied; one of the two cranes in an AS/RS is down, and one full AS/RS is down. In the end,
the best-performing policies for both scenarios can be compared to draw a conclusion about whether a
broken crane should be moved so that the other crane can continue operating, or if both cranes should
be stopped, speeding up repairs.

4.1. One of two cranes within an AS/RS is down
In this scenario, the other crane is still functioning and could possibly take over the tasks of the other
crane, depending on the workload. Choices must be made about what to do with goods destined for
this AS/RS. The capacity of this AS/RS could be changed, this means that during the division of work-
load across the AS/RS, this AS/RS gets a smaller share of the overall workload.

Once a crane breaks down, it needs to be moved to the side so that the other crane, which operates
on the same rail, can continue operation. The moving of the crane takes time, during which the other
crane also needs to be stopped because of safety procedures. This time is added to the total downtime
for this experiment. Pallets that arrive at the AS/RS inputs during this time need to be unloaded via the
failure lane of the partner buffer to avoid congestion on the central conveyor. It should be noted that
the crane with downtime later still blocks part of the rack which reduces the available working area of
the other crane. Therefore, pallets that were already in production for outputs that are now blocked are
also unloaded via the failure lane. An overview of selected policies can be seen in table 4.1.

Policy AS/RS capacity
0 Keep at 100%
1 Lower to 75%
2 Lower to 67%
3 Lower to 50%
4 Lower to 0%

Table 4.1: Policies when one of the two cranes within an AS/RS is down

17



18 4. Policies

4.1.1. Policy 0 - 100% capacity
This is the benchmark scenario where the AS/RS capacity stays at 100%. With lower workloads, the
remaining crane could possibly still handle the workload, with higher workloads, this could cause prob-
lems.

Advantages:
• Operators do not have to take any action

• Downstream systems keep the same workload

• Workload for other AS/RS not increased
Disadvantages:
• Workload for remaining crane could become too high causing delays or congestion

4.1.2. Policy 1 - 75% capacity
This policy slightly reduces the capacity of the AS/RS and therefore the workload it receives.

Advantages:
• Slightly reduced workload might make it so that the remaining crane can handle it
Disadvantages:
• Workload for downstream systems becomes slightly skewed

4.1.3. Policy 2 - 67% capacity
This policy reduces the workload the AS/RS receives slightly more.

Advantages:
• Reduced workload might make it so that the remaining crane can handle it
Disadvantages:
• Workload for downstream systems becomes skewed

4.1.4. Policy 3 - 50% capacity
In this policy, the workload is halved.

Advantages:
• More reduced workload might make it so that the remaining crane can handle it
Disadvantages:
• Workload for downstream systems becomes more skewed

• Workload for other AS/RS increased more

4.1.5. Policy 4 - 0% capacity
In this policy, the capacity is fully reduced to 0%. The remaining crane is only used to handle pallets
that were already in production for this buffer.

Advantages:
• Fully reduced workload might make it so that the remaining crane can handle it

• Fewer pallets stuck in buffer compared to also stopping this crane
Disadvantages:
• Workload for downstream systems becomes even more skewed

• Workload for other AS/RS increased even more
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4.2. One full AS/RS is down
In this scenario, one full AS/RS is down. This could happen when both cranes are broken, or when
one crane is broken but the decision is made to stop both cranes in order to speed up repairs. Newly
generated orders will avoid this now broken buffer, but a decision has to be made about what to do with
goods that were already in production for the AS/RS which is now out of operation. Pallets could either
be directly unloaded at another rack or can get a destination there. An overview of selected policies
can be seen in table 4.2. Each policy will be explained in the following subsections.

Policy New destination Operation
0 No change Wait on conveyor
1 Neighbouring AS/RS Directly unload at new AS/RS
2 Neighbouring AS/RS Change destination and store in new AS/RS
3 Spread over all other AS/RS Directly unload at new AS/RS
4 Spread over all other AS/RS Change destination and store in new AS/RS

Table 4.2: Policies when both cranes down

4.2.1. Policy 0 - No action
This is the benchmark scenario where nothing is changed to which the performance of other policies
can be compared. This policy could work in situations where the expected downtime is very short or
there is a lot of buffer capacity at the inputs of the AS/RS.

Advantages:
• Does not require any additional work from the operators
Disadvantages:
• Will cause the central conveyor to overflow with goods for longer downtime durations

4.2.2. Policy 1 - Unload at partner
In this policy, all goods that were destined for this AS/RS are rerouted to the neighbouring AS/RS. The
goods rerouted to the other AS/RS are unloaded directly there. Operators need to manually move and
sort them before storing them on the floor.

Advantages:
• Storage capacity of other AS/RS not compromised

• Smaller distance to move relocated goods to original destination if necessary
Disadvantages:
• Causes added manual work

• Increased workload for cranes in other AS/RS

4.2.3. Policy 2 - Store in partner
In this policy, all goods that were destined for this AS/RS are rerouted to the neighbouring AS/RS. In
this case, the destination of the goods that are rerouted to the other AS/RS is changed which means
they can be stored there instead of having to unload them directly.

Advantages:
• No added manual work

• Smaller distance to move relocated goods to original destination if necessary
Disadvantages:
• Storage capacity of other AS/RS compromised

• Higher increased workload for cranes in other AS/RS
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4.2.4. Policy 3 - Unload spread out
In this policy, all goods that were destined for this AS/RS are spread out over all other AS/RS. The
goods rerouted to the other AS/RS are unloaded directly there. Operators need to manually move and
sort them before storing them on the floor.

Advantages:

• Storage capacity of other AS/RS not compromised

• Slightly less increased workload for other AS/RS cranes

• Added manual work spread out more evenly over operators

Disadvantages:

• Causes added manual work

• Goods are stored further from their original destination

4.2.5. Policy 4 - Store spread out
In this policy, all goods that were destined for this AS/RS are spread out over all other AS/RS. The
destination of the goods that are rerouted to the other AS/RS is changed which means they can be
stored there instead of having to unload them directly.

Advantages:

• No added manual work

• Slightly less increased workload for other AS/RS cranes

Disadvantages:

• Storage capacity of other AS/RS compromised

• More work to replan rerouted goods when not done automatically by system

4.3. Performance evaluation
The overall performance of the system will be evaluated with a weighted sum of the KPIs seen in table
4.3 which also gives an explanation as to why each KPI is relevant. These weights were determined
based on expert consultation.

KPI Weight Relevant data
Output delay 10 Aggregate trip delay [min]

Number of trips with delay [trips]
Upstream system interference 8 Maximum amount of pallets on conveyor [pallets]

Average amount of pallets on conveyor [pallets]
Added manual work 6 Total number of direct unloads [pallets]

Maximum number of direct unloads for one rack [pallets]
Robustness 4 Maximum crane utilisation [%/h]

Longest continuous utilisation [min]
Maximum fill grade [%]
Minimum margin between departure times per dock [min]

Resilience 2 Maximum average rack fill grade since downtime stop [%]
Maximum average crane utilisation since downtime stop [%]

Table 4.3: Policy performance evaluation criteria
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4.3.1. Output delay
This factor is most important because this affects the downstream processes of the system, which is
the loading process in the case study. When goods arrive at the outputs too late, trips will be delayed
which affects the clients. It was considered to include the maximum delay for 1 trip as a KPI, but it
turned out that this was always influenced by the trips being stuck in a temporarily unreachable part of
the rack which caused this value to be the same for all policies.

4.3.2. Upstream system interference
This is important because congestion at the inputs could cause upstream systems to have to come
to a standstill. The parallel AS/RS are connected via a central conveyor leading to them. When this
conveyor is congested with goods, the production systems have nowhere to leave the produced goods
and have to come to a standstill.

4.3.3. Added manual work
When goods are directly unloaded, they have to bemanually stored elsewhere and later retrieved again.
This costs extra labour and therefore also introduces extra costs and should be minimised. Next to that,
this extra storage space on the floor needs to be available in the first place and this manual handling
increases the likelihood of errors.

4.3.4. Robustness
In this application, robustness is defined as the ability to maintain performance during further variations
and disturbances, since downtime itself is already a disturbance. It is determined whether the system
is pushing its limits under this policy and cannot handle further disturbances and variations, or if the
system could handle those.

4.3.5. Resilience
In this application, resilience is defined as the ability to recover from downtime. To judge this, plots from
several KPIs are assessed on the time it takes to return back to normal and the crane utilisation and fill
grades after downtime are monitored. Together with robustness, as long as there are no delays, there
is no upstream interference and there is no added manual work, making it less important if the policies
score worse on this.

Scores for each KPI will be determined arithmetically on a scale from one to ten based on reference
values. These scores are multiplied by the weight and summed to determine the overall score for each
policy. A detailed explanation of the scoring will be given in chapter 9.

In conclusion, this chapter proposed a set of policies for two experiments to answer sub-question
2. In case one of two cranes in an AS/RS is down, the policies reduce the workload this AS/RS will
receive with a varying reduction between 0% and 100%. In case both cranes in an AS/RS are down,
the policies either store or directly unload the already generated production in the neighbouring AS/RS
or spread out over the other AS/RS.





5
Simulation Model

This chapter will explain the model requirements, the motivation for the type of model chosen, how the
model is built up and which assumptions are made. This answers sub-question 3. Additionally, it will
explain how the model can be reused which answers sub-question 4.

5.1. Model requirements
The model should be to represent redundant systems with parallel AS/RS. This means that it should
consist of components of which multiple instances can be created in the simulation environment. Es-
sential components include data elements such as pallets and racks, as well as functional elements
such as an order generator, upstream (production) system, crane, and downstream system.

Themodel should be capable of examining system performance across various scenarios, including
different downtime start times, durations, and workloads. Furthermore, it should support the implemen-
tation of various operational policies altering system behaviour. Some processes will be stochastically
modelled, causing the need to be able to run simulations with many replications with different random
seeds for experiments. Additionally, the model should facilitate the extraction of the KPIs outlined in
table 4.3. Finally, to help with understanding the system’s behaviour and with debugging, there should
be a possibility to output an event log and plots of KPIs throughout time.

To ensure that the model can be used for a large variety of system configurations, it should be
possible to implement at least the following system characteristics:

• Upstream system

• Adjustable workload division across AS/RS

• Multi-deep storage racks

– Storage strategy

• Multiple cranes

– Collision avoidance strategy
– Job scheduling and job division across cranes

• Multiple inputs and outputs

• Crane dwell points

• Output to directly unload goods

• Possibility to return empty pallets

• Orders with a specified output sequence

• Downstream system
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5.2. Modelling method
As explained in chapter 2, AS/RS can be modelled in various ways. Because of the complexity of the
system under study, using an analytical model is not an option. For example, keeping track of goods
already in production once the downtime starts, or modelling the influence of specific downtime sce-
narios in combination with the behaviour of upstream and downstream systems would not be possible.
Therefore, the choice was made to develop a simulation model.

The type of simulation model to develop and the platform in which to develop it depends on the
characteristics of the system and external factors, like software accessibility and previous experience
of the modeller. Because of the nature of the system under study, it was decided to make the model
a DES model. The processes in the system can be described as a sequence of discrete events very
well, and apart from the cranes, there are not that many separate agents in the system which rules out
the need for an ABM.

To achieve the research goal of developing a modelling framework that can be reused by other
researchers, the software to be used needs to be accessible to everyone. This resulted in the choice of
using the open-source Salabim DES library in Python. The advantage of using Salabim over the more
frequently used DES library SimPy in Python is the ability to use the Simula activate/passivate/hold
paradigm (van der Ham, 2018). In addition to that, it includes extra features such as queues, tracing
and monitors for data collection and presentation. Using this library ensures that any modeller can use
the model, and with some coding experience, the model can be easily adjusted.

5.3. Input data
The input data determines the behaviour of the upstream and downstream systems and therefore also
determines the behaviour of the AS/RS. The input data should specify the release of orders to the
production systems, the contents of orders, their output sequence and the retrieval time of orders. For
each order, the data as explained in table 5.1 is stored.

Entry Explanation
Order ID Unique ID of this order

Release time Earliest time from when production of this order can start
Departure time Time at which this order is scheduled to depart

Loading sequence Defines number of pallets in this order and loading order

Table 5.1: Input data for each order

The format chosen is a list of orders which are sorted by their scheduled departure time. One order
can contain multiple clients for which the goods are grouped. To account for the warm-up period of the
simulation, data from previous orders before the day that is desired to be studied should be included
to ensure the rack does not start empty.

5.4. Model structure
The simulation model consists of several components. These can be either data components or com-
ponents with processes. The unique property of this model compared to other models, of which few
exist, is that it takes the upstream and downstream processes into account, multiple AS/RS working in
parallel can be studied, and downtime can be considered. The components and their interaction will
be explained in the following subsections. An overview of the interaction of components can be found
in figure 5.1.

5.4.1. Pallet
This component is a data component. A pallet has the attributes shown in table 5.2. Some of these
attributes are determined at the creation of a pallet and some are changed throughout the simulation.
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Figure 5.1: Model components and interaction

Attribute Explanation
ID Unique pallet ID

Order Order number to which the pallet belongs
Sequence Number of its loading sequence within order

Rack number Number of the rack to which it belongs
x1 X coordinate where in the rack the pallet is now
y1 Y coordinate where in the rack the pallet is now
z1 Z coordinate where in the rack the pallet is now
x2 X coordinate where in the rack the pallet needs to go next
y2 Y coordinate where in the rack the pallet needs to go next
z2 Z coordinate where in the rack the pallet needs to go next

Departure time Departure time of the order to which the pallet belongs
Output points Set of possible output points where the pallet could go to
Input point Input point in the rack of the pallet
Release time Time at which the pallet is released to be moved

Status Current status of pallet, shows where in the system it is currently

Table 5.2: Pallet attributes in model

5.4.2. Rack
This component is also a data component. The most important attributes of the rack are shown in table
5.3, more attributes exist but are mainly used for data collection. Some of these attributes are charac-
teristics of the rack which are set at its creation, while others are changed throughout the simulation.
The x-coordinates run along the width of the rack, the y-coordinates run along the height of the rack
and the z-coordinates run along the depth of the rack.

Attribute Explanation
Number Number of this rack in the system
Type Type of rack, supports multiple rack configurations

Free locations Locations in the rack which are free
Occupied locations Locations in the rack which currently store a pallet
Blocked locations Locations in the rack which are permanently blocked
Number of cranes Number of cranes servicing the rack, can be 1 or 2

Input points Locations where the input points are located, can be multiple
Output points Locations where the output points are located, can be multiple

Pallet stack input point Location where stacks of empty pallets can be picked up by crane
Pallet stack output point Location where stacks of empty pallets can be dropped off by crane

Failure lane Location where pallets can be unloaded in case of failures in the system
Contents List of pallets currently in the rack

Table 5.3: Rack attributes in model
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5.4.3. Order generator
The order generator component translates the input dataset into orders and pallets in the simulation en-
vironment. The pseudo-code for this component can be found in appendix B.2. The key responsibilities
of this component are as follows:

• Releasing orders at the time specified in the input data

• Ensuring production is started at the specified production start time and stopped the evening
before to guarantee lead times and minimise production stops

• Determining the properties of each pallet, generating them and sending them to the production
system

• Limiting the maximum amount of orders in production concurrently to the specified limit

• Dividing the orders over all AS/RS

• Determining the outputs for each order

• Shuffling the order of pallets within the production queue to ensure a randomised production order

To ensure that production stops the evening before, orders are released up to a specified departure
time after which order release is stopped and started again at the specified starting time the next day.

When dividing the orders over the racks, the rack capacity is taken into account. For example, when
the rack capacity is set to 50%, the order generator makes sure that the rack only receives 1/7 of the
orders if there are 3 other racks with capacity 100% which all receive 2/7 of the orders.

When selecting the outputs for the orders, the model takes the output combination where the last
order appointed to it leaves the earliest. By doing this, it is ensured the margin between the departure
times is the largest possible.

5.4.4. Production system
The production system component takes the pallets that were placed in the production queue by the
order generator and produces them and thus represents the upstream process of the AS/RS. When a
pallet is produced, it is sent to the central conveyor and input points of the racks. The pseudo-code
for this component can be found in appendix B.3. The key responsibilities of this component are as
follows:

• Producing pallets which are placed in the production queue by the order generator

• Determine which order to produce a pallet from next based on a stochastic distribution

• Check if cranes are down and exercise policies by changing pallet rack and lane destination

• Determine the time it takes to produce a pallet based on a normal distribution

• Send the pallet to the conveyor and input points

• (Re)activating order generator and cranes

• Replanning orders to another rack in case of full downtime

A limit on the number of orders in production concurrently can be specified. In industry, this is done
to maximise the efficiency of the picking systems. Pallets from orders are not produced exactly in the
order of departure time, they are somewhat randomised. There is a preference for producing a pallet
for an order with an earlier departure time, but it can occur that sometimes a pallet of an order that has
to depart later is produced. The odds of a pallet from an order being produced can be seen in figure
5.2. This distribution is based on the equation: 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥)2 on the interval 0 ≤x ≤1 after which it is
normalised.
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This distribution is scaled with the size of the production pool, so with fewer orders currently in
production than the limit, because there are no more orders released for example, the shape of the dis-
tribution remains the same. Next to the order from which a pallet is produced, the sequence of pallets
being produced within an order is also random. This was already made sure by the order generator. In
case the orders of the system under study are produced in the exact sequence of departure time, the
production pool size can be set to 1.

Figure 5.2: Probability density for selection of an order to produce from the production pool
The time it takes to produce a pallet is sampled from a normal distribution with a mean and standard

deviation that can be specified in the input parameters.
When a pallet needs to be produced for a rack from which both cranes are down, none of the

pallets for this order are already at the outputs and not too many pallets are already in the rack, it can
be rerouted to another AS/RS. Because there are already more orders scheduled for that other AS/RS,
it has to be decided as to which output to schedule the order for. This is done by comparing all orders
scheduled for those outputs and determining where to schedule this one. This could be between other
scheduled orders, or after them, depending on the departure times while ensuring the largest minimum
margin between departure times at the outputs. If there are already too many pallets of this order in the
broken AS/RS, it does not make sense to reroute it since then half of the order would be in one AS/RS,
and the other half in another one. When just a few pallets are already in the broken AS/RS they can be
unloaded from that AS/RS via the failure lane afterwards and manually moved to the rest of the pallets
at their new AS/RS.

5.4.5. Crane
The crane component is the most complicated component. The pseudo-code for this component can
be found in appendix B.4. The key responsibilities of this component are as follows:

• Keeping track of downtime

• Determining the task sequencing

• Determining if tasks are possible

• Determining the rack location of pallets

• Avoiding collisions with the other crane

• Moving pallets between inputs, the rack and outputs

• Activating the downstream system and pallet returners
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The sequencing of tasks is determined with an objective function. For all tasks in the crane queue, it
is determined whether they are possible to perform and a score is given. This score is based on depar-
ture time, loading order within an order, input point population, empty pallet stack priority and possible
waiting time to avoid collisions. The base formula chosen is: 𝑠𝑐𝑜𝑟𝑒 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 −𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
which ensures that the pallets with earlier departure times and which come earlier in the loading se-
quence are treated first. If this pallet is at the input point and there are 2 pallets at the input, the score
is equalled to -1800, which ensures that only pallets that are already late for the output go first. When
there are more than 2 pallets at the input, and thus blocking the central conveyor, the score is equalled
to 7200, which ensures that only pallets that are 2 hours too late will go first. If the task concerns a
stack of empty pallets, the score is equalled to 7200 as well, since there is no buffer capacity for empty
pallets to wait. In case performing the task will cause waiting time to avoid a collision, a value of 200000
is subtracted from the score which ensures that it is unlikely that the task gets selected unless there
are no other possible tasks.

The rack location is determined based on the loading sequence of the order and the output where
the pallet is supposed to go. Pallets from the same client within an order can be stored behind each
other or in front of clients that need to be retrieved later. In general, pallets will be placed in the column
above their output when possible, otherwise, the overall travel distance from input to rack location to
output is minimised.

To avoid collisions between both cranes operating on the same rail, for each crane, the planned
trajectory while performing a task is stored. Then, while choosing a new task to perform, the planned
trajectory is compared with the current trajectory throughout time and it is determined if the cranes
would collide or not.

For the calculation of crane moving time, several formulae are used. In case the maximum crane
speed is not reached, as depicted in figure 5.3, equation 5.1 is used. In case the maximum crane speed
is reached, as depicted in figure 5.3, equation 5.2 is used. To determine whether the maximum speed
is reached over a certain distance, equation 5.3 is used.

Figure 5.3: Crane speed over time when maximum speed is or is not reached

𝑡 = 2 ∗ ( 𝑠𝑎 )
0.5 + 𝑡𝑑,𝑏𝑎𝑠𝑒 + (|𝑧1| + |𝑧2|) ∗ 𝑡𝑑,𝑎𝑑𝑑𝑒𝑑 (5.1)

𝑡 = 2 ∗ 𝑣𝑚𝑎𝑥𝑎 +
𝑠 − 𝑣2𝑚𝑎𝑥

𝑎
𝑣𝑚𝑎𝑥

+ 𝑡𝑑,𝑏𝑎𝑠𝑒 + (|𝑧1| + |𝑧2|) ∗ 𝑡𝑑,𝑎𝑑𝑑𝑒𝑑 (5.2)

𝑠 ≤ 𝑣2𝑚𝑎𝑥
𝑎 (5.3)
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Where:

𝑡 = travel time [𝑠]

𝑠 = distance to travel [𝑚]

𝑎 = crane acceleration [𝑚/𝑠2]

𝑡𝑑,𝑏𝑎𝑠𝑒 = base time to pick up pallet [𝑠]

𝑧1, 𝑧2 = depth for pallet pickup and placement [𝑟𝑎𝑐𝑘𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠]

𝑡𝑑,𝑎𝑑𝑑𝑒𝑑 = added time to pick up pallet per depth location [𝑠/𝑟𝑎𝑐𝑘𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛]

𝑣𝑚𝑎𝑥 = maximum crane speed [𝑚/𝑠]

5.4.6. Downstream system
The downstream system component can take the goods from the pallets and further processes them.
In case the goods continue to the downstream system on pallets, the pallet returner component can be
deactivated. Pseudo code for this component can be found in appendix B.5. The key responsibilities
of this component are as follows:

• Determining which of the outputs to process goods from next

• Determining when to start processing goods of an order

• Determining how long it takes to process the goods

• Removing pallets from the outputs and moving them to the empty pallet queue

• Activating cranes and pallet returner

Because in reality, the downstream process might not always start processing goods exactly at the
specified departure time, the time of an order when it starts to be processed is sampled from the gamma
distribution shown in figure 5.4. As can be seen, sometimes the order starts being processed early but
it happens more often that an order starts being processed too late with possible outliers which are
more than an hour late. The mean start time is half an hour before the departure time of an order. This
mechanism will always make sure some orders are too late, regardless of the used policy.

Figure 5.4: Time in seconds difference orders start to be processed compared to the scheduled start time

The time it takes to process one pallet is also a stochastic process. The mean and standard devia-
tion of the normal distribution used to model this can be specified in the input parameters.
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5.4.7. Pallet returner
The pallet returner component collects empty pallets which come from the outputs and sends stacks
of empty pallets to the crane. Pseudo code for this component can be found in appendix B.6. The key
responsibilities of this component are as follows:

• Collecting empty pallets

• Waiting until there are enough pallets to form an empty pallet stack

• Sending empty pallet stacks to their input point and crane

In the case of multiple cranes, when an empty stack is complete and both cranes are passive, it is
sent to the closest crane. When just one crane is passive, it is sent to the passive crane. If both cranes
are active, it is sent to both crane queues and when one of the cranes picks up the tasks to move the
stack the task is also removed from the other crane queue.

5.5. Assumptions and simplifications
The main assumptions of the model are as follows:

• Orders are spread out equally over the AS/RS and outputs

• New pallets for orders from which too many pallets are in a broken AS/RS, or from which at least
one of the pallets is at an output, are directly unloaded via the failure lane of the nearest AS/RS

• Production is started at the specified starting time and ends after enough is produced for the next
day to ensure acceptable lead times and minimise production stops

• Within those times, production starts as early as possible after order release

• The next pallet from an order to be produced is completely random and does not depend on the
loading sequence of the order

• The next order from the production pool to produce a pallet for is random with a slight preference
for earlier departure times

• Rack and output to go to for an order are determined at the moment an order is released and
starts production

• Every crane only processes pallets from its own input point

• The failure lane is always available and never full of pallets

• If one of two cranes is down, the remaining crane will service its full service area instead of just
half of the rack

• If one crane breaks down and the decision is made to continue operation with the other crane, it
needs to be moved to the side

• Pallets that arrive at an AS/RS while a crane is being moved to or from the repair position are
sent to the failure lane of the nearest AS/RS

5.6. Options
Both experiments studied in this research can be simulated with this model; one crane or both cranes
from an AS/RS being down. To alternate between these experiments, just one parameter needs to be
changed.
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Also, the model contains an option to determine when production for an order can start. This can
either be as early as possible after the release of an order, or it can be an offset from the departure
time of the order. Similarly, the moment when pallets of an order can start moving to their outputs is
determined with an option. This can either be as early as possible, while still taking the correct loading
sequence into account, or this can also be an offset from the departure time of the order.

Lastly, the simulation can be run in two modes. The first mode is meant for a single simulation run.
In this mode, more data is collected as described in the next section. The second mode is meant for
multiple simulation runs with varying random seeds. In this mode, just the desired core KPIs are col-
lected and stored, making the simulation faster. To reduce the run-time of the model, several options
were explored. First of all, profiling was used to identify the most computationally intensive parts of
the code. With this tool, these parts of code were reworked into code that is more efficient with the
computational resources.

Because in a Discrete Event Simulation, the same functions are called repeatedly, it was investi-
gated if using Just-In-Time (JIT) compilation would speed up the simulation. With JIT compilation, the
first time a function is called, it takes longer to compile, but after that, the functions can be executed
quicker because they have been translated to machine code. To achieve this, the PyPy interpreter was
used instead of the standard CPython interpreter. This, unfortunately, did not lead to efficiency gains.
After a discussion with the creator of the Salabim library, it was concluded this is because the newer
versions of Python are already quite efficient.

When inspecting the processor usage of the model, it was noticed that the model does not use
the full capacity of the processor. To make use of the full capacity, a script was written that initiates
multiple instances of the model in parallel making it possible to run them simultaneously. After testing,
it was found that running 8 simulations in parallel resulted in the shortest overall simulation time on the
computer used. The script ensures each simulation is run with a different random seed, collects the
extracted KPIs and processes them.

All efforts combined led to a reduction in simulation time from ±100 seconds to ±10 seconds per
simulation run for the heaviest dataset.

Next to these built-in options, there are also single settings that can be adjusted to the desired
configuration. An overview of the possible and used simulation settings can be found in appendix C.
Additionally, if necessary, any modeller can easily adjust the Python code of the model to in- or exclude
specific system characteristics.

5.7. Output
The goal of running the simulation is to be able to see what happens in the system in varying scenarios
under different policies. When run in the first mode, the model produces an Excel file containing the
following data:

• Log with performed actions of every component to be able to trace events

• KPIs specified in chapter 4

• Plots of KPIs of each crane throughout time

– Task queue length
– Utilisation
– Cycle times

• Plots of KPIs of each rack throughout time

– Overall outputs fill grade
– Individual output fill grades
– Rack fill grades
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– Order delays
– Input queues length

• Plots of the overall simulation

– Overall order delays
– Overall outputs fill grade
– Overall racks fill grade
– Number of pallets on central conveyor
– Number of pallets produced, placed in rack, at outputs and departed over time
– Pallets produced and processed per hour

In conclusion, the answer to sub-question 3 is that parallel AS/RS should be modelled with a Dis-
crete Event Simulation model to be able to take enough details into account to study partial downtime.
The model should consist of components modelled as classes of which multiple instances can be used
in a simulation. The necessary data components are pallets and racks. Next to that, there should be
a component representing an order generator, an upstream production system, a crane and a down-
stream system. Additionally, the model should contain several options which increases the flexibility of
the model to be used to study a large variety of scenarios.

5.8. Model reusability
To answer sub-question 4, the developed model can be reused by other AS/RS users to study a large
variety of system configurations. Because this model was developed in Python, with all open-source
libraries, anyone can use and adjust this model to study AS/RS. The model was parameterised as
much as possible within the timespan of this research leading to easy adjustment of most parameters
such as the input data, the upstream production system settings, the number of AS/RS, the number of
cranes, the rack characteristics, the crane characteristics and the downstream loading process settings.

As a result of this, AS/RS can be researched in isolation, in parallel and with some adjustments to
the model even in series. With the integration of the upstream and downstream systems, their influence
on the AS/RS performance can be investigated and vice versa. Other examples of topics that could be
researched with this model after some adjustments are as follows:

• Energy consumption of AS/RS under varying control strategies

• Dwell point optimisation

• Optimising efficiency of dual-crane AS/RS by smart job scheduling

• Optimising SKU storage location policies in multi-deep AS/RS to prevent efficiency losses due to
relocations

• Optimising production and loading schedules

For a large variety of systems and scenarios, this model can be used with few adjustments, and
generally, it can be used as a base for any AS/RS model. This can help other researchers since there
do not appear to be many publicly available AS/RS Discrete Event Simulation models which are free
to use and written in Python, which is a programming language that is easier to understand and learn
for non-native programmers. A manual on how to use this model can be found in appendix E and the
model itself with all corresponding files can be found at https://github.com/lucvdbrink/Parallel-ASRS-
DES-Model.
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Case Study

This chapter will describe the system at Jumbo that will be used as a case study and its implementation
in the simulation model, thereby contributing to the answer to sub-question 5.

The system under study is the OCB of the newly built, highly automated CDC for the fresh assort-
ment in Nieuwegein for Jumbo Supermarkets. The warehouse has been designed and built by the
German company Witron, which is specialised in automating logistics. This OCB consists of four paral-
lel dual-crane AS/RS resulting in the possible occurrence of partial downtime, which makes it a suitable
case study for this thesis. Jumbo Supermarkets is curious about the effects of partial downtime on their
system and possible policies to mitigate the consequences of this.

6.1. Delivery Schedule
The DC services the supermarkets of Jumbo. These supermarkets place orders for products every
day. The orders of supermarkets, also called the clients of the DC, are combined into trips. There is a
fixed delivery schedule based on expectations for orders and this schedule can be adjusted to larger
or smaller orders from clients. Trips are spread throughout the day to spread the workload for the DC.
Trips can be for just one client or for multiple clients. If a trip consists of multiple clients, it is important
that the rollcages (RC), which are filled with their ordered products, are loaded into the trailer in the
correct order so that when the truck arrives at the client, all RC for that client are directly accessible
in the trailer. The definitive orders of clients arrive at fixed moments spread out over the day. The
relevant data for each trip includes the earliest production start time, depending on order processing,
departure time, quantities of containers per client, and a specified loading sequence for the containers
into the truck.

This weekly trip schedule from Jumbo was converted into a format that can be loaded into the simu-
lation model. The dataset obtained from Jumbo was in a different format and contained somemistakes,
therefore it had to be treated. The following steps were taken to go from the dataset of Jumbo to the
datasets used for this research:

First of all, the dataset from Jumbo contained all trips for a whole week, and for this study, it is
desired to simulate one full production day. The workload for each day of the week for supermarkets
is not equally divided. For example, towards the weekend the workload is considerably higher, while
on Sundays it is considerably lower. To test the policies under different workloads of the system, three
different input datasets were created of which the first two could be directly extracted from the obtained
dataset. The first dataset represents a quiet to average day in an average week. This dataset is based
on the Monday from the schedule of Jumbo. The second dataset represents a peak day in an average
week. This dataset is based on the Friday from the schedule of Jumbo. The division of pallets and trips
for each day in the week can be seen in figure 6.1

33
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Figure 6.1: Overview of pallets and trips processed for each day in the week

To represent a realistic full day, the operations concerning the day before and after the targeted day
which affect the operations on the day itself should also be considered. Therefore, while selecting the
data, it was determined what the earliest release time for a trip on the target day was. For example,
for Monday, the release time of the first trip for production was at 09:45 on the day before, Sunday. All
trips departing on Sunday after this time are occupying output points and rack locations and therefore
influencing the placement of pallets produced for Monday in the rack locations and output points. For
this reason, all trips with a departure time on Sunday after the earliest production release for Monday
were taken into account for the input data.

Similarly, trips departing the day after the targeted day also influence the system on the targeted
day itself, because they could already start production on that day. Therefore, all trips with a produc-
tion release time on the targeted day were taken into account for the input data. So overall, the data
selected to study the operations on one full production day starts with trips with a departure time after
the earliest release of a Monday trip and extends to the last trip released for production on the targeted
day. The same selection was made for the Friday.

The obtained dataset was a large list of entries of all stores which includes their order moment,
which results in the release time for production for their order, the departure moment of the trip headed
to that store, the number of scheduled rollcages for that store and the trip ID this store belongs to. First,
the list was sorted by the departure moment of the trips. Then, a Python script was written to convert
the data to the desired format. This script combines the stores from the same trip into one data entry
for each trip. The order amount for each store was stated in the number of rollcages, but the simulation
model works with pallets. Two rollcages are placed onto one pallet and mixed stores can be on the
same pallet in case of uneven order quantities. To deal with this, the script converted the amounts of
rollcages to amounts of pallets and directly specified the loading order of those pallets. Pseudo code
for this script can be found in appendix B.1.

Because the obtained dataset was preliminary, the number of rollcages per trip sometimes ex-
ceeded the maximum a trailer could carry. This maximum is 54 rollcages, which translates to a maxi-
mum of 27 pallets per trip. This number can be slightly higher since it sometimes occurs that rollcages
can be consolidated, but it can not be much more. Part of the volume of trips with over 28 pallets
assigned to them was moved to other trips to keep it realistic. These pallets were subtracted from
those trips and added to trips with a similar departure time. If no trips with a similar departure moment
and space for these pallets existed, multiple surpluses were combined into a new trip with a similar
departure time.
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Also, for some trips, their release time was earlier than other trips with an earlier departure time and
a later release time. In the real system at Jumbo, this is not desired because this might cause hold-ups
in the system. Under normal circumstances, the workload of the system is high enough so that these
later trips which are released earlier do not start their production too early, and if they do, the problem
is solved operationally. To reflect this in the model, these earlier release times were delayed in such
a way that all release times of trips were in chronological order, similar to the departure times. The
spread of departure time throughout the day for each dataset can be seen in figure 6.2, an overview
of the release times of trips and their departure times can be seen in figure 6.3 and representations of
order lead times are shown in figure 6.4 which are relatively similar for each day.

Figure 6.2: Spread of departure times throughout the day for each dataset

Figure 6.3: Spread of release times of trips throughout the day for each dataset

Figure 6.4: Representation of order lead times
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On the target day in the first dataset, 2476 pallets are shipped in total. On the target day in the
second dataset, 3449 pallets are shipped in total. On the target day in the third dataset, 4476 pallets
are shipped in total. This last input dataset which could not be directly based on the obtained data
represents a peak day in a peak week and was created based on the second dataset.

The number of containers and thus the amount of pallets processed in a day scales with the volume
handled that day. According to Jumbo data, on a peak day in an average week, a volume of 3889031
L is shipped. On a peak day in a peak week, this is 5047072 L. To determine the number of pallets
processed on a peak day in a peak week, the number of pallets processed on a peak day in an average
week is multiplied by this ratio: 3449 ∗ (5047072/3889031) = 4476 pallets. When converting this to
colli/container it results in ±76 colli/container which is deemed realistic by Jumbo. To reach this volume,
extra trips were added to the dataset for a peak day in an average week in a way that extra trips would
also be added in reality. In figure 6.2 it can be seen that the spread of departure times throughout the
day is similar to the other days but with wider peaks.

6.2. Warehouse Flow
6.2.1. Production system
A general representation of the warehouse can be seen in figure 6.5. Incoming pallets with products
are stored in an AS/RS. When the products are needed, the pallet is retrieved and the products are
depalletised and placed onto trays after which they are stored in another AR/RS to make sure that the
products can be sorted in the desired order. This is based on the order release and predetermined
production schedule that follows a push policy. Therefore, once an order is released, it is difficult to
cancel production for that order. These products are then fed into the picking system, which consists
of multiple subsystems. RC are not filled exactly in the order in which the trips have to depart. This is
because the system optimises the efficiency of the picking systems, and therefore sometimes chooses
to fill RC of later trips or RC later in the loading sequence first. Normally, about 30 trips are in produc-
tion at the same time. It is desired that production for a day happens in one continuous block instead
of spread out over the day. Production starts at 06:00 and the day before, orders are produced in
advance in such a way that lead times between production being ready and departure times of the trips
are acceptable while ensuring that production is consolidated in one continuous block of production as
much as possible. After the RC have been filled, they are placed onto pallets in pairs of two.

Figure 6.5: Total warehouse system (Azadeh et al., 2019)
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The time it takes to produce a pallet is sampled from a normal distribution with a mean of 18.09s and
a standard deviation of 2 as can be seen in figure 6.6. The maximum production speed was determined
based on the capacities of the subsystems of production. In the OPM, 11940 colli can be processed
per hour. Containers coming from this subsystem contain 57.5 colli/container on average leading to
208 containers/h. In AIO-picking, 12250 colli can be processed per hour. Containers coming from this
subsystem contain 123.2 colli/container on average leading to 100 containers/h. In AIO-FT, 6144 colli
can be processed per hour. Containers coming from this subsystem also contain 123.2 colli/container
on average leading to 50 containers/h. In the CPS subsystem, 1839 colli can be processed per hour.
Containers from this subsystem contain 46.8 colli/container on average leading to 40 containers/h.
When converting containers to pallets: 398/2 = 199 pallets/h.

Figure 6.6: Production time distribution

6.2.2. OCB
After production, the pallets are placed onto a central conveyor which moves them to the input points
of the right buffer. Three pallets can wait at these input points before blocking the central conveyor.
The output points of the buffer are multiple gravity lanes which lead to loading docks. A gravity lane
is a slightly tilted lane with rollers so that pallets can be placed on it on one side and will automatically
roll to the other side from which they can be loaded into the trucks. A visualisation of this can be seen
in figure 6.7. When the pallet at the input point is the next one in line to move to the output, and there
is space in the gravity lane, it is moved there directly. Otherwise, the pallet is stored in the rack. The
cranes continuously check if pallets in the system are ready to be moved to the gravity lane.

Figure 6.7: Buffer side view
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The buffer consists of four separate racks. The central conveyor connects the inputs, but the outputs
are disconnected. Once a pallet is moved into one rack, it cannot be moved to another rack anymore.
The racks are 8 locations high on one side, and 7 locations high on the other side, this is because the
bottom row on that side consists of the output points. The racks are 16 locations wide and triple-deep
which causes the need for smart pallet placement together with the specified loading order so that
each pallet needed is accessible and not stored behind another pallet. Certain locations in the rack are
permanently blocked due to input or output points being located there. Each rack has two cranes, and
two input points. These cranes operate on the same rail, which makes it possible for them to collide,
which means that both cranes have a limited service area that partly overlaps. Both cranes mainly
service their own input point. There are 14 output points per buffer as can be seen in figure 6.8. These
output points are the gravity lanes with space for 13 pallets each. There are 8 loading docks for trucks
next to the gravity lanes and mostly, 2 gravity lanes are used for storing and loading one trip.

Figure 6.8: Buffer top view

6.2.3. Loading process
When a trip is ready to be loaded, the truck driver or transport employee scans the RC at the end of
the gravity lane, takes them off the pallet and loads them into the trailer. The empty pallet is then re-
turned to the system by a trolley where they are stacked into stacks of empty pallets. These stacks are
then moved back to a crane which moves them back onto the central conveyor which takes them away.

It was determined that in total, it takes half an hour to load a trip of 26 pallets. This means it takes
1800/26 = 69.23 seconds to load one pallet on average. The time it takes to load one pallet also
depends on where in the loading sequence of the trip it is. The first pallets take longer to load since
their containers have to be placed deeper into the trailer than the last containers. To accommodate
for this, a factor depending on the loading order is introduced. The probability density distribution of
loading a pallet can be seen in figure 6.9 and the factor depending on the loading order can be seen
in figure 6.9. It was estimated the first pallet takes 10% longer than average and the last pallet takes
10% shorter than average. This means that loading the first pallet takes 76.15 seconds on average
and loading the last pallet takes 62.31 seconds on average.

Figure 6.9: Loading time per pallet and loading time factor
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6.3. Assumptions and simplifications
The following assumptions were made when implementing the system under study in the simulation
model:

• Drivers start loading for their trip ±30 minutes before departure time

• It takes 30 minutes to load a trip of 26 pallets

• Production speed is set to ±199 pallets per hour

• The buffer is switched on 30 minutes after it is back up

• Each trip can be loaded from any dock connected to any buffer

• It takes 45 minutes to move a crane behind the maintenance fence, and 30 minutes to move it
back into operation

The main simplifications of the system implementation are explained in table 6.1.

Model Reality Explanation
Trip outputs selected from
7 fixed pairs of 2 outputs

Secret algorithm Created most likely algorithm based on
hints of manufacturer

Pallets can go directly
from production to inputs

Pallets move via a con-
veyor network to inputs

Model does keep track of amount of pallets
on conveyor

Production speed of pal-
lets is fixed

Production speed de-
pends on several factors
and can decrease

Slightly lower fixed production speed is
chosen to compensate

Empty pallets can be
directly stacked and re-
turned

Pallets have to wait for a
transfer car to move them
to stacker

Transfer car waiting time will not influence
AS/RS performance

Trips are released in
chronological order of
departure time

Some trips with a later de-
parture time are released
earlier

In real system workload is high enough
so that these earlier released trips are not
produced too early

Own crane task schedul-
ing algorithm

Secret algorithm Created most likely algorithm based on
hints of manufacturer

Own rack location selec-
tion algorithm

Secret algorithm Created most likely algorithm based on
hints of manufacturer

Relocations not consid-
ered

Relocations could occur Will not happen because of overcapacity

Table 6.1: Main simplifications of model

6.4. System Logic
6.4.1. Crane Task Selection
The cranes perform various tasks, from which multiple can be pending at the same time. For example,
moving a pallet from the input to the rack or an output, moving a pallet from the rack to the output, or
moving stacks with empty pallets. For the overall efficiency of the system, the crane must select the
best task to perform next. This can depend on multiple factors. For example, the departure time of
the pallet to be moved, the number of pallets at the input, which matters because the central conveyor
should not be blocked, or the number of empty pallets at the stacking system, which matters because
otherwise empty pallets cannot be returned anymore and the gravity lanes will get jammed. Also,
because both cranes operate on the same rail, tasks should be selected in such a way that makes sure
crane interference and waiting time is minimal. The system takes all of this into account and determines
which task to perform next.
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6.4.2. Rack Location Selection
Pallets arriving at the buffer which cannot be placed directly in the gravity lane have to be placed in
the rack. The rack is triple-deep which makes it important to intelligently place the pallets so that the
right ones are always accessible, while not wasting storage space or travel distance of the cranes. The
system optimises this in such a way that the overall travel distance of the cranes is minimised, the right
pallets are accessible and storage space is used optimally. An overview of the rack layouts can be
seen in figure 6.10

6.4.3. Dock and Gravity Lane Selection
The system has 4 buffers with 8 loading docks each. It is desired to spread the load on the buffers and
docks to improve efficiency, because the higher the fill grade of the system, the longer the cycle times
of the cranes will be. This is because, with higher fill grades, pallets are stored higher up in the buffer
causing more travel distance. Not having them load too quickly after each other on the same dock is
also important to avoid waiting time caused by trucks being too early or too late.

6.4.4. Failure lane
Each buffer has one gravity lane which is a designated failure lane. This lane can be used to unload
pallets from the buffer at all times. This could be done when pallets need to be checked or in case
of rerouting of pallets. For example, when another buffer is down, the pallets destined for that buffer
can be rerouted to other buffers. If action is taken in time and the dock destination of the pallets is
changed, they can be kept in the other buffer, but when no action is taken, they are directly unloaded at
the failure lane of this other buffer. When unloaded at the failure lane, the containers have to be stored
somewhere before being loaded.

Figure 6.10: Rack Configuration

A visual representation of the layout of the buffers and locations where containers can be stored
can be seen in figure 6.11. One option is to load them into cooled trailers which can be connected to
the docks. In total, there is space to temporarily store 24 containers in location 1. A maximum of 324
containers can be stored in cooled trailers as depicted in location 2 which can be moved to any dock,
however, this is when 6 trailers are used and when they are completely filled making it more difficult
to retrieve the containers later. Ideally, the number of containers in the trailers should not exceed 152
containers. 148 containers can be stored in location 3 and 139 containers in location 4 leading to a total
of 635 containers which can be stored temporarily around the buffers. It has to be noted that these
capacities are in containers and the model works with pallets, two containers fit on one pallet. This
means that a total of 318 pallets can be stored in these locations, with containers needing to be stored
sub-optimally in the trailers above 232 pallets.
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Figure 6.11: Visual representation of locations where containers can be temporarily stored

6.5. Performance
For Jumbo, the client is the number one priority. Therefore, it is important that the deliveries are on time
and complete. According to them, the buffer performs well if the containers are in the gravity lanes on
time. Also, the amount of containers to be unloaded via the failure lane and thus to be moved manually
is desired to be minimised. The more containers have to be unloaded by hand and temporarily stored,
the further away from the loading docks they have to be stored. This results in only more work leading
to more costs. Next to that, the conveyor leading to the buffers cannot be too full because there is a
risk the production would have to be stopped then.

6.6. Current policies
Currently, when one crane breaks down, the workload this buffer receives depends on the number of
available outputs. With one crane behind the maintenance fence, 8 out of 13 outputs are available
leading to a workload of 62% compared to the original workload, this is comparable to policy 2.

When a whole buffer breaks down, the inputs of this buffer are blocked. This causes the pallets that
were already in production for this buffer to be unloaded through the failure lane of the nearest buffer.
This corresponds to policy 1.

In conclusion, this chapter explained the system at Jumbo and its implementation into the simulation
model, thereby contributing towards the answer to sub-question 5.





7
Verification & Validation

7.1. Verification
To ensure that the model is implemented correctly according to the intended specifications and design,
the model and input data need to be verified. During the development of the model, verification was
continuously taken into account by implementing one class at a time and using a top-down approach.
A multitude of tests was performed both during the development of the model and afterwards of which
several will be highlighted in this section.

The number of pallets processed in a day according to the generated dataset is 2476 for the first
dataset, 3449 for the second dataset and 4476 for the third dataset. The number of roll cages pro-
cessed on the first day is 4932 in total according to the original data which corresponds to 2476 pallets
taking into account that some pallets have an empty roll cage. The number of roll cages processed
on the second day is 6928 which corresponds to 3449 pallets. The number of roll cages processed
in the third dataset cannot be verified with original data since it is artificial. The minor differences in
the numbers of roll cages and pallets are because the number of roll cages is not always an integer
number in the original data. It occurs often that this number is 4.1 for example which is rounded to 4 in
the script that converts it to pallets. The differences in volumes are acceptable, however.

Balance checks were performed by using counters to compare the number of pallets produced,
moved to the rack and loaded to the dataset. This process is partially automated, incorporating built-
in checks that stop the simulation upon error detection. For instance, when not all produced pallets
are loaded or when cranes get too close. Additionally, output counters and graphs of the model were
monitored. As can be seen in figure 7.1, for that scenario, the number of pallets loaded is equal to
the number of pallets produced at the end, there are never more pallets moved past the rack than
produced, never more pallets past the outputs than past the rack and that were produced and there
are never more pallets loaded than past the outputs, rack and that were produced.

Figure 7.1: Number of pallets at different stages of the system throughout the simulation
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The seed independence was checked by performing a set of simulations with varying random seeds.
Although, naturally, the values of the KPIs varied with varying random seeds, no extraordinary varia-
tions in results were detected.

Consistency checks were performed while building the model and afterwards. These are examples
of hypotheses that were tested:

• When the maximum crane speed is reduced, the average crane cycle time, average utilisation
and longest continuous utilisation increase

– Average cycle time: 33.39 s for 𝑣𝑚𝑎𝑥 of 1.5 m/s, 36.69s for 𝑣𝑚𝑎𝑥 of 1 m/s
– Average utilisation: 41.63% for 𝑣𝑚𝑎𝑥 of 1.5 m/s, 45.57% for 𝑣𝑚𝑎𝑥 of 1 m/s
– Longest continuous utilisation: 80.11 min for 𝑣𝑚𝑎𝑥 of 1.5 m/s, 253 min for 𝑣𝑚𝑎𝑥 of 1 m/s

• The number of tasks performed by cranes in a rack decreases for the rack with downtime and
increases for the rack that takes the extra pallets depending on the policy

– No downtime: 2195 tasks performed in rack 0, 2209 tasks performed in rack 1
– Downtime in rack 1: 2609 tasks performed in rack 0, 1379 tasks performed in rack 1

• Average rack fill grade increases when output point capacity is decreased

– 16.17% for gravity lane capacity of 13 pallets, 25.14% for gravity lane capacity of 8 pallets

• With a longer downtime duration, the aggregate trip loading delay increases

– Total of 1153 min delay for downtime duration of 3 hours and 2886 min for 8 hours

• When the workload capacity of one rack is decreased during downtime, the average fill grades
of the other racks become higher

– Average rack fill grade of 16.35% for 3 other racks with always equal capacity and 17.49%
for 3 other racks with a halved capacity of broken rack for 8 hours.

• When production is started sooner, the average rack fill grade increases

– 7.78% when releasing production 4 hours before departure, 13.31% when releasing produc-
tion 8 hours before departure

• When pallets cannot go directly to outputs, but are released for going to outputs with an offset
from the departure, the average rack fill grade increases.

– 18.57% with direct output release, 28.68% with output release 2 hours before departure

• When the production pool size decreases to 1, trips are produced in order of departure time

– True

All hypotheses are confirmed when testing it with the model.

Hand calculations were also used for verification. The volumes returned by the script that converts
the input data are aligned with the volume calculated from the original data. Additionally, the crane
travel time between the actions of the crane in the event log is the same as calculated. Next to that,
deterministic runs were performed with standard deviations of 0 for the stochastic processes enabling
the replication of simulation steps by hand and verifying them.

The distributions used were also verified by extracting the resulting times from the event log. The
trip selection, production time, loading start time offset and loading time distributions together with the
data extracted from the simulation are shown in figure 7.2.
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(a) Trip selection (b) Production time

(c) Loading start offset (d) Loading time

Figure 7.2: Realised samples from distributions used

Next to that, the following plots in figures 7.3, 7.4 and 7.5 were used for verification. In figure 7.3,
it can be seen for example that the values for the number of possible crane tasks, the crane utilisation
and the crane cycle time are in line with their expected values and no strange behaviour is observed.
Next to that, the cranes are not utilised during downtime. Note that the outliers in the crane cycle times
are because of occasional waiting time for another crane to finish its task to avoid collisions.

In figure 7.4 it can be seen that the gravity lanes and rack fill grades are always between 0 - 100
%, there are never more than 3 pallets at an input point and also here, the values are in line with their
expected values and no strange behaviour is observed. Note that the gravity lanes fill grade drops
during downtime since loading can still take place. Empty pallets can be taken off by hand instead of
returning them by crane.

In figure 7.5, the combined fill grades and production and loading speed are as one would expect.
Note that there are a lot of delays after the downtime of rack 1 ends since the trips that were stuck in an
inaccessible part of the rack can be moved out of the rack by then. Also, there are fewer trips departed
than produced at the end of the day since the simulation is stopped at the end of the target day, but by
then there are already containers produced and in the rack of the next day.

For every component, unit tests were performed. When performing a unit test, a component or
part of a component was separated and checked for a variety of scenarios and random seeds. All
characteristics described in chapter 5 were checked and confirmed using the self-created event log
both during the development of the model and afterwards. Additionally, the script that runs different
simulation runs in parallel with varying random seeds and collects all results has been verified this way.



46 7. Verification & Validation

Figure 7.3: Cranes behavior

Figure 7.4: Rack behavior
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Figure 7.5: General behaviour

Lastly, sensitivity analyses were performed for the input parameters that were not exactly known but
estimated. With this method, these parameters were altered to observe whether those changes caused
variations in the results of the simulations. From this, it can be concluded whether those parameters
need to be re-evaluated. The tested parameters were as follows:

• Rack switch-on delay

– Value: 30 minutes after downtime stop
– Alternate values tested: 0 or 60 minutes after downtime stop
– Observation: No large variations in results
– Conclusion: Accepted

• Loading start time before departure

– Value: 30 minutes before departure with deviations from that based on a Gamma distribution
with k=3 and theta=1.5, scaled with factor 250

– Alternate values tested: Scale factor 100, means less extreme spread in downtime starts
– Observation: Slightly elevated crane utilisation and fill grades due to trips being loaded closer
to their original start time and therefore less trips falling outside of the target day. With a wider
spread, more trips are loaded too early before or late after the target day

– Conclusion: Variations are deemed acceptable because they are minimal

• Loading time per pallet

– Value: Normal distribution with a mean of 69.23s and standard deviation of 5
– Alternate values tested: Mean of 60s and 80s
– Observation: No large variations in results
– Conclusion: Accepted
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• Production time per pallet

– Value: Normal distribution with a mean of 18.09s and standard deviation of 2 (199 pallets/h)
– Alternate values tested: Mean of 16s and 23s (225 and 156 pallets/h)
– Observation 16s: Slightly elevated crane utilisation, increased average rack fill grade by
15%pt, max system fill grade elevated by 18%pt, slightly more pallets on conveyor

– Observation 23s: Decrease in crane utilisation and fill grades, large increase in the number
of delays due to production not being ready in time on peak day

– Conclusion: Some larger variations were observed which do impact results. The calculation
was double-checked, some adjustments were made and it was agreed with Jumbo that this
is the best estimation

• Production pool size

– Value: 30 trips
– Alternate values tested: 20 and 40 trips
– Observation: No large variations in results
– Conclusion: Accepted

• Pallet pickup time crane

– Value: 4.8s + 2.85s * depth
– Alternate values tested: 4s + 2s * depth, 6s + 4s * depth
– Observation 4s + 2s: Drop in average crane utilisation of 9 %pt, slightly less delays and
pallets on conveyor

– Observation 6s + 4s: Increase in average crane utilisation of 12 %pt, slightly more delays
and pallets on conveyor

– Conclusion: Cycle time is influenced by this which influences other KPIs, it does impact
results to a certain extent, but double checked the calculation again and agreed with Jumbo
this is still the best estimation

• Pallets allowed to move to output

– Value: As soon as possible
– Alternate values tested: 2 or 5 hours before departure
– Observation 2 hours: Average gravity lane fill grade halved from 90 % to 45%, rack fill grade
increased by 12 %pt.

– Observation 5 hours: Slight decrease in average gravity lane fill grade and an increase in
rack fill grade

– Conclusion: Confirmed with Jumbo that the setting they will use is moving pallets to the
outputs as soon as possible

• Production start

– Value: As soon as possible
– Alternate values tested: 5 or 10 hours before departure
– Observation 5 hours: Decrease in crane utilisation of 8 %pt, average gravity lane fill grade
halved from 90% to 45%, average rack fill grade dropped from 25% to 8%, major increase
in delays since production is not ready in time

– Observation 10 hours: No large variations in results increased since it is closer to original
lead times in combination with workload

– Conclusion: In reality, Jumbo would always like to start as early as possible so the value is
not changed
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• Number of pallets that can be in a broken buffer for a trip to still be rerouted

– Value: 10 pallets
– Alternate values tested: 5 or 15 pallets
– Observation 5 pallets: Number of pallets that can be rerouted drops significantly from ±130 to
±50 leading to more failure lane unloads, apart from that, no large variations in performance

– Observation 15 pallets: Similar performance to original value, there are few trips with over
10 pallets in the broken buffer that are eligible to be rerouted for the scenarios tested

– Conclusion: Although lowering this value does influence the amount of added manual work,
overall buffer performance is not affected much and a value of 10 pallets is still desired

7.2. Validation
Since the system is not operational yet, no real-world data exists which can be used to validate the
simulation model. Additionally, no comparable system could be found from which data was available.
Therefore, the model was validated with experts on the system, an analytical model and design data.

The model with its assumptions and simplifications has been discussed with experts on the sys-
tem and it was agreed upon that the simulation model sufficiently represents the system based on the
available knowledge of how the system was designed by Witron and how the system will be operated
by Jumbo.

Within Jumbo, an analytical model was developed to track the predicted production throughout
the day based on desired shipping volumes. This model also predicts the fill grades of the outbound
system. These fill grades throughout the day can be compared to the fill grades resulting from the
simulation model. Because the peak day in the peak week is an artificial dataset, only the first and
second datasets which represent Monday and Friday can be compared. Some of the assumptions of
the simulation model were altered to match the assumptions of the analytical model. The predicted fill
grades of the outbound system of this analytical model can be seen in figure 7.6a and figure 7.6c. The
fill grades resulting from the simulation model can be seen in figure 7.6b and figure 7.6d.

(a) Analytical model Monday (b) Simulation model Monday

(c) Analytical model Friday (d) Simulation model Friday

Figure 7.6: Fill grades of analytical model compared to simulation model
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There is a slight mismatch since the analytical model does not take the crane operations and loading
time into account. This can be seen in the maximum of the gravity lanes fill grades for example. In the
analytical model, it is assumed the roll cages move to the gravity lanes directly, while in the simulation
model, it takes time for a new pallet to be moved to the gravity lane after one was taken out, which is
more representative of the real system. Also, in the analytical model, all roll cages of a trip leave the
system at departure time while in the simulation model, the pallets leave the system gradually starting
30 minutes before departure time. The mismatch in the volumes is because of the different assump-
tions of the analytical and simulation models, such as rounding the number of roll cages and production
speed is assumed constant in the simulation model, while it depends on the remaining workload in the
analytical model. Also note that there are two roll cages on one pallet, and sometimes there is an
empty roll cage on a pallet. However, it can be seen that the overall shapes of the graphs correspond,
suggesting that the evolution of fill grades throughout the day is logical.

Most physical system parameters such as rack dimensions and crane speeds are exactly known,
but the pickup time of a pallet was not exactly known and estimated. Based on data from another crane
in the warehouse which takes 7.65s to pick up a pallet 1-deep and 10.5s to pick up a pallet 2-deep, the
formula 𝑡 = 4.8 + 2.85 ∗ 𝑑𝑒𝑝𝑡ℎ was determined. To validate the overall crane cycle time which takes
into account the travel time and pickup time, a design figure of Witron was used. This figure shown
in figure 7.7 represents the average crane cycle which is a dual-command cycle. The crane is said to
perform 50 dual-command cycles per hour. This means that this cycle where at P1 a pallet is picked
up and dropped at P2 and another pallet is picked up at P3 and dropped at P4 should take 72 seconds.
The distances have been extracted from the figure and the overall cycle time was calculated by hand
with the formulae used in the model. This calculation resulted in a cycle time of 72.35s which is very
close to the design value and thus considered valid.

Figure 7.7: Average dual-command crane cycle

In conclusion, this chapter verified and validated the simulation model and thereby contributed to-
wards the answer to sub-question 5.
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Experiments

With a verified and validated model, the experiments can be evaluated with the developed simulation
model. This chapter discusses the experiment setup, scenarios that will be evaluated and alternative
configurations that will be tested.

8.1. Setup
As part of the experimental plan, the initialisation, run length and number of replications of the simulation
need to be determined.

8.1.1. Initialisation
To create a realistic scenario, the AS/RS should not start empty, but should already be partially filled
when production for the target day starts since that influences the rack locations where the new pallets
get appointed. To consider this, the dataset includes all trips that leave after the first trip of the target
day is released. Similarly, all trips that are released until the last trip of the target day departs are
included to make sure that also pallets for the next day enter the rack which impacts fill grades and
crane usage. In figure 8.1, the warm-up period for the simulation can be seen for a Friday.

Figure 8.1: Warm-up period of simulation on Friday
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8.1.2. Run length
It was decided to evaluate the KPIs during one full production day. Most days follow similar patterns
regarding release times of orders and departure schedules, resulting in a similar development of fill
grades and utilisation throughout the day. Because of this repetitive pattern, simulating more than one
production day does not bring any additional insights.

From, among other things, the crane utilisation, it can be deduced that the conveyor, cranes and
rack recover from downtime within a few hours as can be seen in figures 8.2 and 8.3. Note that this
scenario is the busiest day with the experiment where both cranes are down and policy 0, taking no
action, is applied resulting in the worst-case scenario. Therefore, it is not required to simulate for a
longer time after the downtime stops. The latest downtime start is at 13:00 and the longest downtime
duration is 8 hours, resulting in the last downtime stop being at 21:00. This leaves 3 more hours of
simulated time which is sufficient to evaluate the effects of downtime after the downtime has stopped.

Figure 8.2: Number of pallets on conveyor during and after downtime in the worst-case scenario

8.1.3. Number of replications
Because some of the components contain stochastic elements, simulation runs with varying random
seeds can produce varying results. To make sure the results are not influenced by the random seed,
the simulation should be run a multitude of times to get accurate average results. The number of repli-
cations needed was determined by setting an allowed error and desired confidence interval for each
KPI. The formula used to calculate the required number of replications is 𝑛 = (𝑍∗𝜎𝐸 )

2 where n is the
number of replications, Z is the Z-score corresponding to the desired level of confidence, 𝜎 is the stan-
dard deviation and E is the allowed margin of error.

The desired confidence interval is set at 95% which corresponds with a Z-score of 1.96. The stan-
dard deviation results from the different simulation runs. The allowed margin of error is determined for
each KPI extracted from the simulation and is shown in table 8.1. The allowed margin is based on the
mean value of the KPIs returned from test runs and deciding which deviation from that mean would
result in a different score. Because no exact numbers need to be extracted but the KPIs are purely
used for comparison against each other, these margins of error are less strict reducing the overall com-
putation time needed. The model keeps adding replications until the set criteria are met for each KPI,
or if the number of replications exceeds 200 to limit computational time. The number of replications
needed is mostly within 50-100 replications.
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Figure 8.3: KPIs of cranes and rack after downtime on peak day
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KPI Allowed error
Aggregate trip loading delay [min] 20 min
Number of trips with delay [trips] 1 trip
Average number of pallets on conveyor [pallets] 0.1 pallets
Maximum number of pallets on conveyor [pallets] 1 pallet
Total number of failure lane unloads [pallets] 1 pallet
Maximum number of failure lane unloads for one rack [pallets] 1 pallet
Maximum crane utilisation [%/hour] 2%pt
Longest continuous utilisation [min] 5 min
Maximum system fill grade [%] 1%pt
Minimum margin between departure times on docks [min] 1 min
Maximum average fill grade since downtime stop [%] 1%pt
Average crane utilisation since downtime stop [%] 1%pt

Table 8.1: Allowed errors for each KPI

8.2. Scenarios
In general, two experiments are conducted, which are the experiment where one of the two cranes
within a rack is down and the experiment where both cranes within a rack are down. For each exper-
iment, the policies will be tested for different scenarios to be able to see if the best-performing policy
changes for different scenarios.

There are three different input datasets which represent three different days, an average day in an
average week, a peak day in an average week and a peak day in a peak week. During each day, it is
determined that a downtime start time at 05:00, 07:00 and 13:00 will be tested for both experiments.
These start times were chosen in order to cover the main production and loading peaks of the day.
Also, both scenarios where production was already started at the downtime start time and where there
was no production are included. This is necessary in order to take into account that sometimes a de-
cision needs to bemade about what to do with pallets that were already in production for a broken buffer.

Downtime durations of 3 and 8 hours will be tested. The downtime start moments represent some
of the busier moments of the day, but with a longer downtime duration, also a quieter moment in the day
is covered. A downtime duration longer than 8 hours will not be considered since the system comes
to equilibrium after a longer duration of downtime. This is because no more trips would be appointed
to the broken rack and the other racks have stabilised after receiving more workload. Note that in the
experiment where one crane is down and the decision is made to keep operating it, this downtime dura-
tion is elongated with the times it takes to move the broken crane to and from the maintenance position.

For each day, it was determined when production should be stopped to ensure acceptable lead
times between production being ready and the departure time while minimising the time that produc-
tion is stopped during the day.

For the first dataset, it was determined that during the previous day, trips for the target day until a
departure time of 09:30 will be produced resulting in pre-production until ±22:30 the day before, with
production stops between ±10:00 and 12:45. This was necessary to guarantee acceptable lead times
with a minimum lead time of ±1:30h.

For the second dataset, it was determined that during the previous day, trips for the target day until
a departure time of 10:30 will be produced resulting in pre-production until ±00:45 with production stops
between ±10:30 and 12:45. This was necessary to guarantee acceptable lead times with a minimum
lead time of ±1:40h.

For the third dataset, it was determined that during the previous day, trips for the target day until
a departure time of 12:00 will be produced resulting in pre-production until ±04:00 with no produc-
tion stops. The limiting factor here was not the lead time but producing ahead so that there were no
production stops which resulted in a minimum lead time of ±2:40h.
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The number of different scenarios has been limited to reduce the needed computational time. This
results in 18 scenarios per policy per experiment. Both experiments have 5 policies to test, which re-
sults in 144 scenarios in total. To deal with this, a script has been written that runs all scenarios at once
per experiment per day so that the simulation only needs to be started a few times and can run in the
background.

The rack in which the cranes break down was selected to simulate a worst-case scenario. Under
normal circumstances, crane 1 of rack 3 seems to be the busiest one so that is the one that breaks
down in experiment 1. Overall, rack 2 seems to be the busiest one so that is the one where both cranes
break down in experiment 2. Even though the trips are divided evenly across all racks, the input data
determines which rack and specifically which part of the rack is slightly busier because of the number
of pallets per trip and the loading sequence within the trips that differ.

8.3. Alternative configurations
When executing the first simulations it was observed that the system at Jumbo has significant over-
capacity under normal circumstances according to the model. Therefore, it is interesting to see if the
best-performing policy changes under different circumstances. For example, when the crane availabil-
ity or storage space is limited or when order lead times are shorter which could occur when Jumbo
pushes the limits of the system more and starts to produce more. This can be reenacted by lowering
the crane speed, decreasing the rack size and using the model option to release production with an
offset from the departure time of the trip. The rack size cannot be limited too far since relocations are
not taken into account and the model will stop when relocations need to happen. Jumbo already wants
to avoid this situation by not filling the racks over 80%, but it can be investigated from which reduction
in rack size relocations are needed, which lowers efficiency. These alternative configurations will not
be tested as extensively as the original experiments, but some general simulation runs will provide
additional insights.

In conclusion, this chapter described the experiment setup and thereby contributed to the answer
to sub-question 5.





9
Results

After running the experiments specified in the previous chapter, the results can be compared. The
results will be split for each day for each experiment. An overview of the quantitative results can be
found in appendix D. For each day, the most interesting results will be highlighted and explained in this
chapter, thereby answering sub-question 5.

9.1. Scoring
The resulting KPIs for each policy in each scenario will be compared with reference values. Within the
minimum and maximum reference value, the policy is scored from 1 - 10 for each KPI.

When a higher numerical value for a KPI represents better performance, the formula used to calcu-
late the score is: 𝑠𝑐𝑜𝑟𝑒 = 10 − 𝑥−𝑥𝑟𝑒𝑓,𝑚𝑖𝑛

𝑥𝑟𝑒𝑓,𝑚𝑎𝑥−𝑥𝑟𝑒𝑓,𝑚𝑖𝑛
∗ 9

When a lower numerical value for a KPI represents a better performance, the formula used to cal-
culate the score is: 𝑠𝑐𝑜𝑟𝑒 = 𝑥−𝑥𝑟𝑒𝑓,𝑚𝑖𝑛

𝑥𝑟𝑒𝑓,𝑚𝑎𝑥−𝑥𝑟𝑒𝑓,𝑚𝑖𝑛
∗ 9 + 1

Where 𝑥 is the numerical value of the KPI, 𝑥𝑟𝑒𝑓,𝑚𝑖𝑛 is the minimum reference value and 𝑥𝑟𝑒𝑓,𝑚𝑎𝑥 is
the maximum reference value. The reference values are based on a combination of the KPI values for
the scenario with no downtime and the difference between the KPI values resulting from the policies
across both experiments. When the scores for each policy are very close for example, the reference
value is determined in such a way that the scores are representative of the performance of the policies.
The KPIs for all days when no downtime occurs can be seen in appendix D.1.

9.2. Experiment 1: One of two cranes within an AS/RS down
In this experiment, a decision has to be made about what to do with the workload sent to that AS/RS in
case the decision is made to keep operating the remaining crane. The policies vary the workload from
the original 100% to a workload of 0% compared to the original workload which would be beneficial in
case the remaining crane cannot handle the full workload.

9.2.1. Average day in an average week
During this day, the performances of all policies are very similar as can be seen in appendix D.2.1. This
is due to the lower volume handled on this day with the cranes being used just a quarter of the time and
an average system fill grade under 30%. The maximum number of pallets on the conveyor is similar
for all policies, and at around 5 pallets, this does not cause issues. Crane usage is ordinary, and the
margin between departure times on docks is solid. The maximum system fill grade seems to elevate
slightly with a lowered workload capacity of the rack with the broken crane but is still very moderate at
±50%. The other buffers can handle the extra workload under policy 4, 0% capacity, but it is slightly
less robust and resilient in comparison to the other buffers.
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The generated scores averaged over the four scenarios regarding downtime start moment and
duration can be seen in table 9.1. A noteworthy occurrence is the minimum margin between departure
times being reduced from 2.5 hours to 2 hours with policy 0, 100% capacity, in some scenarios. With
all other policies, this margin was maintained. This happens because with just one crane remaining,
5/14 gravity lanes are out of reach and new trips can only be planned in the remaining lanes raising
the trip frequency per lane. This makes policy 0, 100% capacity, slightly less robust, however, 2 hours
between departure times still seems robust enough.

Table 9.1: Averaged scores experiment 1 day 1

When looking at the individual results per AS/RS, it turns out that although the fill grades after the
downtime started are raised, the other AS/RS do not suffer from the added workload in policy 4, 0%
capacity. This is because their workload increases by just 30-60 pallets on this day. Additionally, shifting
workload to the fully functioning buffers seems to help the recovery of the broken crane after downtime.
More interestingly, retaining a higher workload leads to more failure lane unloads. This is because more
pallets are in production for this buffer, and when they arrive at the buffer while the broken crane was
just repaired and is being moved back into action, they need to be unloaded via a failure lane.

9.2.2. Peak day in an average week
During this day, performances of all policies are also very similar as can be seen in appendix D.2.2.
Although the volume handled on this day is higher, the remaining crane seems to be able to manage
the full workload since there are not noticeably more delays. There are slightly more pallets that have
to wait on the conveyor for the policies retaining more of the original workload, but the difference is
marginal. Compared to the average day in an average week, as expected, the crane utilisation and fill
grades are higher, but this does not cause any issues.

The generated scores averaged over the four scenarios regarding downtime start moment and
duration can be seen in table 9.2. It should be noted that for some scenarios, the maximum number of
replications was reached which could lead to small variations in the averaged KPIs.

Table 9.2: Averaged scores experiment 1 day 2

The minimum margin between departure times on a dock is the same in the scenarios with a down-
time start time at 07:00 and 13:00. This occurs because at the production start at 06:00, a large amount
of trips is generated and added to the production pool. The trips which are generated during that time
are the trips in the second departure peak between 13:00 and 16:00. The departure times of trips that
are generated and divided over the buffers during the downtime, which starts at 07:00 or later, are more
spread out, leading to a larger minimum margin between departure times per dock. With a downtime
start at 05:00, there is a significant reduction in this margin between departure times per dock which is
less robust. Retaining too much of the workload leads to a smaller margin, but shifting away too much
of the workload also leads to a smaller margin in the other buffers.
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When looking at the individual results per crane and rack, in figure 9.1 it can be seen that the crane
usage of the remaining crane during downtime is considerably higher under policy 0, 100% capacity,
compared to policy 3, 50% capacity, which is also reflected in the KPIs and scores. This results in the
system being more robust under policies that shift more workload away from the partially broken buffer.

(a) Policy 0 - 100% capacity (b) Policy 3 - 50% capacity

Figure 9.1: Remaining crane utilisation experiment 1, day 2, downtime 13:00 - 22:15

9.2.3. Peak day in a peak week
During this day, the performance of the policies does differ significantly as can be seen in appendix
D.2.3. After a downtime start at 05:00, the performances of the policies differ the most. Under policy
0, 100% capacity, the aggregate delay is considerably larger, there are more pallets waiting on the
conveyor, and the longest continuous crane utilisation is over 4 hours as shown in figure 9.2. This
occurs at the remaining crane after the downtime since all of the pallets coming for that buffer during
the downtime have been placed in the area of the rack and gravity lanes that belong to that crane.

Figure 9.2: Remaining crane utilisation experiment 1 day 3
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Next to that, the minimummargin between departure times is just 32 minutes in one of the scenarios
which means that the next truck driver would start directly after the first one when the first driver would
start loading on time and does not have any issues while loading. Under policy 3, 50% capacity, for
example, the system performs way better in that scenario. In the other scenarios, the difference in
performance is smaller which raises the scores for policy 0, 100% capacity, slightly but the difference
is still noticeable.

The generated scores averaged over the four scenarios regarding downtime start moment and du-
ration can be seen in table 9.3. Also here, for some scenarios, the maximum number of replications
was reached which could lead to small variations in the averaged KPIs.

Table 9.3: Averaged scores experiment 1 day 3

As reflected in the scores, policy 0, 100% capacity, performs worst since it causes more delays,
causes more interference to the upstream systems, and is less robust and resilient. The margin be-
tween departure times on a dock is the smallest with downtime starting at 05:00 since around that time,
most of the trips being produced still depart on this day. During later downtimes, most of the trips being
produced are outside of the departure peaks leaving more room between departure times.

The maximum system fill grade is the same in all scenarios under all policies. This occurs because
this maximum is reached before any of the downtimes start around 04:00 as can be seen in figure 9.3.
During the other days, this is not the case since less volume has to be pre-produced and production
stops earlier the night before.

Figure 9.3: System fill grade experiment 1 day 3
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All scores combined can be seen in table 9.4. It can be seen that the policy which retains the original
capacity performs worst, although inmost scenarios it still performs acceptably. As expected, the higher
the overall workload during the day, the worse policy 0, 100% capacity, performs, but interestingly
enough, during an average week, following this policy does not cause many problems in the specified
scenarios. Policy 3, 50% capacity, seems to perform best since it is in the middle between shifting
too much workload away to other buffers which makes them less robust and resilient, and keeping
too much workload in the buffer with one functioning crane. The combined scores for policies 1-4 are
very close and it seems like the higher the workload on a day, the more important it becomes to shift
more workload away to other buffers. In systems with less overcapacity, this might not be the case and
shifting much workload to another buffer might not be an option.

Table 9.4: Averaged scores experiment 1 across all days and scenarios

9.3. Experiment 2: Both cranes within an AS/RS down
In the experiment where both cranes within an AS/RS are down, a decision has to be made about
what to do with the pallets already in production for this now-broken buffer. They could be rerouted to
another buffer and given a destination there, or be directly unloaded there which creates an additional
decision to make about which buffer(s) to send the pallets to. Additionally, it is interesting to see the
effects of the extra workload on the other buffers during the downtime. Since during the average day
in an average week, there is no production at 05:00, this scenario is also included. If no pallets were
already in production for the buffer that breaks down, no decision has to be made about what to do with
those pallets.

9.3.1. Average day in an average week
The performance of the policies during this day can be seen in appendix D.3.1. For policy 0, where no
action is taken, it can be seen that in all scenarios where production was started, over 100 pallets are
waiting on the conveyor at the same time which causes significant problems and causes the upstream
systems to have to shut down since there is nowhere to send the produced pallets to. The maximum
number of pallets on the conveyor does not depend on the downtime duration since after the down-
time starts, the capacity of that buffer is set to 0 and all new workload is divided over the other 3 buffers.

Between policies 1 and 3, which both unload all pallets destined for the broken buffer through failure
lanes, no major differences are observed apart from the maximum number of failure lane unloads for
a single rack and the maximum crane utilisation. Unloading more pallets at a single rack instead of
spreading them out means that the pallets will arrive at the failure lane at a high rate, which means the
containers need to be taken off of the pallets on the failure lane at a high rate. These containers need
to be moved to the locations specified in section 6.4.4. When all containers exit the system at one loca-
tion, eventually, one has to move these containers further away since the storage locations close by are
full at some point, causing more manual work. When these containers are unloaded spread out, this
is not the case. The maximum crane utilisation is higher under policy 1, unload at partner, compared
to policy 3, unload spread out, since all of the pallets are unloaded through one buffer meaning that
they all need to bemoved from the input points to the failure lane while still performing the normal duties.

Between policies 2 and 4, which both reroute pallets to another buffer and give them a destina-
tion there, the main differences can be seen in the maximum crane utilisation, the minimum margin
between departure times on a dock and the fill grades and crane utilisation after downtime stopped.
Since the production that was already in progress for the broken buffer is rerouted to a single buffer,
all extra workload is concentrated there causing elevated maximum crane utilisations and fill grades.
Additionally, the minimum margin between departure times on a dock is lower there because of this.
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When comparing the policies unloading the already scheduled workload via the failure lane and the
ones rerouting them, it can be seen that failure lane unloads occur under all policies. This is because
some of the pallets that were in the broken buffer will be unloaded via the failure lane once the buffer
is back up if the rest of that trip was rerouted to another buffer for policies 2 and 4. Similarly, pallets
of trips from which too many pallets were already in the broken buffer are also unloaded via the failure
lane in another buffer. Next to that, the main difference is policies 1 and 3 causing more manual work
than policies 2 and 4, but once this workload is unloaded, the recovery is better. The scores can be
seen in table 9.5.

Table 9.5: Averaged scores experiment 2 day 1

9.3.2. Peak day in an average week
The performance of the policies during this day can be seen in appendix D.3.2. Compared to the av-
erage day, under policies 2 and 4, there are fewer pallets unloaded via the failure lane even though
the overall throughput of the day is higher. This occurs since the trip frequency per dock is higher,
which means that less often a pallet of a trip in the broken buffer will already be in the gravity lanes
because the previous trip would still be there. This allows that trip to still be replanned to another buffer.

Next to similar observations as described in the previous section, it can be seen that the minimum
margin between departure times on a dock under policy 2, store in partner, is just 33 minutes when
the downtime starts at 07:00. Additionally, under this policy, the maximum crane utilisations, system fill
grades and the aggregate delay are elevated. With downtime from 13:00 - 21:00, the maximum system
fill grade for 1 buffer is 74% which is high and approaching levels where relocations are required.

With a downtime of 3 hours, because of the production pool, not all pallets that were generated have
been produced yet. This is why with a downtime of 8 hours, there are more pallets on the conveyor
under policy 0, no action. In figure 9.4, it can be seen that the number of pallets on the conveyor still
increases after 3 hours causing a downtime of 8 hours to result in more added manual work.

Figure 9.4: Pallets on conveyor over time Experiment 2, Day 3, Downtime 13:00 - 21:00, Policy 0, no action
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The upstream system interference is similar under all policies. This means that the other buffers
can process the pallets originally meant for the broken buffer fast enough while also keeping up with
the newly generated added workload which is divided over 3 instead of 4 buffers. Policies 1 and 3 are
more robust concerning the rack, but not concerning the crane since the pallets headed to the failure
lane still need to be moved by the crane which influences the maximum crane utilisation. However, the
average crane utilisation is lower since these pallets just need to be moved from the input to the failure
lane once instead of first having to be moved from the input to the rack and then from the rack to the
output. The scores can be seen in table 9.6.

Table 9.6: Averaged scores experiment 2 day 2

9.3.3. Peak day in a peak week
The performance of the policies during this day can be seen in appendix D.3.3. When looking at
the delays, policy 2, store in partner, seems to have slightly more delays in most scenarios, but not
much. The delays do not differ much between policies since regardless of what happens with the
pallets arriving after the downtime starts, the pallets stuck in the broken buffer dictate the delays. If
the workload for the cranes in a buffer becomes too high, this should be observable when looking at
the number of pallets waiting on the conveyor over time, but as can be seen in figure 9.5, even for the
policy which concentrates the most workload on one buffer, policy 2, store in partner, there is no peak
in number of pallets waiting on the conveyor since the downtime started.

Figure 9.5: Number of pallets on conveyor, experiment 1, day 3, downtime 07:00 - 15:00, policy 2, store in partner

During this day, there are fewer direct unloads under policies 1 and 3 compared to the peak day in
an average week. This happens as a result of the starting time of the downtime. During the average
week, there is a slight dip in the production just before 13:00 which means that during that time, the
production pool of 30 trips is not fully filled. Then, at 12:45, a new wave of orders is released. From
these newly added orders, most pallets have not been produced yet resulting in a production pool with
more pallets pending to be produced. On this day, the production pool was still filled at 12:45, but
then with trips from which on average half of the pallets have already been produced, resulting in a
production pool with fewer pallets pending to be produced.
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Next to that, the maximum average crane utilisation for one crane since the downtime stopped
exceeds 90% under policy 2, store in partner, with downtime from 13:00 - 21:00 as can be seen in
figure 9.6, compared to under 70% for the similar crane in its mirrored buffer. This means the crane in
the partner buffer is working almost continuously for the last 3 hours of the day which is not robust. It
can be seen that spreading the workload over the other 3 buffers instead of just 1 is more robust. The
only downside to spreading out the workload could be when the containers need to be replanned in or
close to the original buffer later, but since Jumbo has not fully defined their replan process yet, this is
not taken into account in this research.

(a) Busiest crane of partner buffer (b) Busiest crane of reference buffer

Figure 9.6: Crane utilisation experiment 2, day 3, downtime 13:00 - 21:00, policy 2, store in partner

The scores for the policies during this day can be seen in table 9.7 in which it can be seen that
spreading the workload over the other 3 buffers instead of just the partner buffer performs better. Giving
the pallets a destination in the other buffer is preferable since it saves extra manual work and the other
buffers have sufficient overcapacity to handle this extra workload.

Table 9.7: Averaged scores experiment 2 day 3

All scores combined can be seen in table 9.8. The performance of the policies does not differ much
across days with respect to each other. The policies spreading out the workload always perform better
and the policies storing the pallets in the AS/RS always perform better than directly unloading them
since manual work is saved and there is sufficient overcapacity for the other buffers to handle the extra
workload.

Table 9.8: Averaged scores experiment 2 across all days and scenarios
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9.4. Experiment comparison
When one of the two cranes breaks down, a decision needs to be made about whether to keep oper-
ating the remaining crane, or to stop both cranes. When it is desired to operate with a single crane,
the broken crane needs to be moved to the side behind a maintenance fence in order to allow repairs
while the other crane is in operation, and in order to make sure the other crane can operate in a larger
range. Moving the broken crane to and from its maintenance position costs 75 minutes in total. During
this time, the other crane cannot be operated, meaning that all pallets arriving at the inputs during that
time cannot be handled, causing the need to unload them through the failure lane of the partner buffer
to avoid congestion of the central conveyor.

To aid in this decision, both experiments can be compared since the same scenarios and reference
values were used for performance evaluation. The best-performing policy while one crane was down is
policy 3, which halves the rack capacity, while the best-performing policy while both cranes were out of
operation was policy 4, which spreads the workload over the other 3 buffers. The performance metrics
and scores comparing both scenarios and policies can be seen in tables 9.9 and 9.10 respectively.

Table 9.9: Performance metric comparison of best-performing policies for both experiments

Table 9.10: Score comparison of best-performing policies for both experiments

From the above tables, it can be seen that across all studied scenarios, it is most beneficial to move
a broken crane to its maintenance position and to keep operating the remaining crane, even though this
slows down repairs. The most important reason for this is the difference in delays. When operation with
one crane is continued, over half of the rack can still be serviced. With both cranes out of operation, all
pallets in that buffer are stuck for the whole duration of the downtime and arrive at the outputs too late.
Notably, stopping both cranes does reduce the amount of added manual work. This is a result of all
pallets being unloaded through the failure lane of the partner buffer at moments when a crane is being
moved to or from its maintenance position.
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When looking at individual scenarios, there are scenarios where stopping both cranes performs
better. For example with downtime from 05:00 - 08:00. In this scenario, there is no production at the
downtime start. This results in no added manual work for the scenarios where both cranes are down
since all newly generated pallets avoid this buffer. Also, fewer delays are observed during the average
day. During the busier days, stopping both cranes does cause a larger aggregate delay for downtime
from 05:00 - 08:00. Additionally, with shorter downtimes, the 75 minutes of added downtime when
moving a broken crane might become too large with respect to the original downtime. To test this,
experiments were simulated with 1 hour of repair time. In experiment 1, this results in a downtime of 2
hours and 15 minutes, while in experiment 2, the downtime remains 1 hour. The performance metrics
for the experiments in these scenarios can be seen in table 9.11. From these metrics, it can be seen
that there is a limit in downtime from when moving the broken crane becomes unattractive. Logically,
more than doubling the downtime for the broken crane and stopping the remaining crane for 75 minutes
does not weigh up to stopping both cranes for the original downtime duration of 1 hour.

Table 9.11: Performance metric comparison of best-performing policies for both experiments with 1h of repair time

Generally, factors that make sure that stopping both cranes becomes favourable include:

• Low rack fill grades: less pallet stuck in rack when both cranes stopped

• Short downtimes: adding 75 minutes of downtime to move the crane is not worth it

• No generated production at downtime start: newly generated pallets will avoid broken buffer and
less failure lane unloads necessary

9.5. Sensitivity analysis KPI weights
To determine the sensitivity of the ranking of the policies to the KPI weights, a sensitivity analysis was
performed. An allowed deviation from the chosen weights by 1, 2 or 4 were tested and the ranking of the
policies was determined for all of the possible weight combinations within the specified margins. The
ranking of the policies for an allowed weight deviation of one can be seen in table 9.12. The rankings
for margins of 2 and 4 can be seen in appendix D.5. As it turns out, the best-performing policy per
experiment stays the same for >95% of weight combinations with a margin of 1. When comparing both
experiments, operating with a single crane performs better than stopping both cranes with all weight
combinations. Even for an allowed margin of 4, which means the weights can be either 4 less or 4 more
than their original value, the best-performing policy stays the same with >85% of weight combinations.
Similar conclusions can be drawn from the averaged scores across all weight combinations.
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Table 9.12: Ranking of policies with all possible weight combinations with an allowed weight deviation of 1

9.6. Additional observations
The results from the experiments have been analysed and some alternative settings were used to gain
additional insights into the system:

• Because of the way the loading start time was modelled, there will always be delays regardless
of the system performance since in reality, it will also occur that drivers are too late which impacts
the system, for example when the margin between departure times on a dock becomes too small.

• More delays occur with downtime from 05:00 - 13:00 since most incoming pallets and pallets
already in the rack belong to a departure peak. With later downtimes, there is a larger fraction of
incoming pallets and pallets already in the rack from which the departure times are already more
spread out.

• The maximum delay for one trip is dictated by the pallet that is stuck in an unreachable area of
the rack with the earliest departure time and does not change with varying policies.

• One of the two cranes is always busier than the other one because of the asymmetry of the racks.

• On average, when both cranes within a buffer break down, there are between 110-170 pallets in
production for this buffer about which has to be decided where to move them depending on the
day and downtime start time.

• Because of the overcapacity, there seem to be little to no downsides in shifting workload from a
(partially) broken buffer to the other buffers. There should be no need to unload pallets originally
meant for a broken buffer to a failure lane when they can be replanned for another buffer which
saves manual work.

• When downtime for a whole buffer starts at a moment when there is no production, the perfor-
mance for all policies is the same since this buffer will be avoided when production starts.

• On a quieter day, the trip frequency per dock is lower, which means that more often pallets of
a trip in production will already be in the gravity lane making it impossible to reroute the trip to
another buffer during full downtime.

• During longer downtime, while not changing the capacity of the rack with 1 broken crane, that
crane utilisation remains elevated even after the downtime stopped, since all of the incoming
pallets during the downtime are stored in the area that is serviced by that crane.

• Even during the peak day in the peak week, there is enough capacity on the floor to store the
containers that will be unloaded via the failure lanes as a result of the downtime of cranes.

• Having the failure lane in the middle has the advantage that both cranes can reach it, but the
disadvantage is that this can cause interference with the other crane when a lot of pallets are
unloaded via the failure lane.

• The tested delivery schedule does not cause problems for the buffers under normal operation.
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• In the worst-case scenario, with both cranes down under the policy that unloads all pallets at the
partner buffer, a maximum of ±50-60 pallets arrive at the failure lane per hour, meaning 2 con-
tainers have to be taken off the failure lane every minute at peak moments. This is regardless of
the overall workload on the day but depends on the production pool size at the moment downtime
starts. This value could be higher in case the production pool behaves differently and produces
pallets faster.

• Reducing the maximum crane speed to 1 m/s, which represents a scenario with less crane over-
capacity, leads to increased delays in extreme situations. For instance, when one crane is down
and the buffer maintains its original capacity on the busiest day, or when all pallets are rerouted
to the partner buffer with both cranes down on the busiest day. However, during more typical
scenarios, the impact is minimal due to the initial overcapacity and lead times.

• Without downtime and issues, according to the model with its assumptions, when reducing the
rack height and thus overall size, relocations start to occur with a halved rack height of 4 for all
days while the original rack height is 8 rack locations. It is expected that relocations will occur
earlier with a higher production speed, longer lead time or if pallets cannot go to the gravity lane
as soon as possible since this increases the rack fill grade. A reduced rack size, and thus less
overcapacity in that regard, would improve the performance of the policies diverging workload
in experiment 1, and the ones unloading the pallets via the failure lane in experiment 2. The
performance deteriorates for the policy keeping the capacity original in experiment 1, and the
policy rerouting all pallets to the partner buffer in experiment 2.

• Under normal circumstances, more delays start to occur when pallets are allowed to go to the
gravity lanes less than 1 hour before departure time instead of as soon as possible on an average
day. On the peak day in an average week and on the peak day in a peak week, this is 1.5 hours.

• Decreasing the lead time from production release to departure time does not cause issues for
the buffers. As long as the pallets arrive at the buffer in time, the buffer can sort and export
them relatively quickly. Moreover, reducing the lead time will lower the average rack fill grade
considerably making the operations within the buffer more efficient.

• It takes the buffer in which one crane was down approximately 1 hour for the cranes to handle all
their pending tasks and recover in an average week and up to 2 hours on a peak day in a peak
week in case the full capacity is kept. In case capacity is set to 0, this time reduces to ±15-30
minutes. In case both cranes were down and no pallets are waiting on the conveyor, it will take
those cranes up to 30 minutes to handle their pending tasks and recover in an average week and
up to 1 hour on a peak day in a peak week.

• The minimum margin between departure times on a dock is influenced most when downtime
occurs at moment when trips from departure peaks are produced.

• When pallets are not sent to the failure lane of the partner buffer while a crane is being moved
behind the maintenance fence, but wait on the conveyor, there is a peak of ±40 pallets waiting on
the conveyor for the worst-case scenario during all days.

In conclusion, sub-question 5 can be answered for both experiments. In case one of the two cranes
is down, a reduction in workload can reduce performance losses, but a too-large reduction in workload
for this AS/RS increases the workload for the other AS/RS thereby making the system less robust. In
case both cranes within an AS/RS are down, taking no action will cause the upstream system to have
to come to a standstill. Storing the pallets that were already in production for the now broken AS/RS in
the neighbouring AS/RS works on quieter days, but causes problems on peak days. Spreading them
out over the other AS/RS performs better. Directly unloading them could prove beneficial in case the
other AS/RS cannot handle the extra workload, but it turns out this is not necessary because of the
overcapacity of the system. Nevertheless, unloading them spread out over the other buffer proves
more efficient than unloading all pallets at the neighbouring buffer.
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Discussion

In this chapter, the limitations of this study and the generalisation of the results will be discussed.
Since there is no literature on downtime within AS/RS, work distribution across parallel AS/RS or Order
Consolidation Buffers, no comparison with existing literature can be made.

10.1. Limitations
The model was developed to represent the system at Jumbo in detail, however, as in any simulation
model, assumptions and simplifications had to be made which could influence the results generated
by the model. Through the sensitivity analysis, it was determined that variations in most approximated
values have little influence on the results. However, for example, the production speed does have a
significant influence. If in reality, the production speed deviates significantly from the approximated
value, results could be different. With higher production speeds, the average fill grade of the system
rises and the crane utilisation is less spread out over the day. This will make policies which perform
well because of the overcapacity of the system perform worse, such as policies retaining more of the
original workload in experiment 1, and policies concentrating the workload on the partner buffer in ex-
periment 2. With lower production speeds, the average fill grades drop and crane utilisation will be
more spread out over the day, introducing more overcapacity to a certain degree, until production is so
slow that the lead time is compromised. This is similar in case the crane speed and acceleration are
set lower than their maximum, crane utilisation will increase and the overcapacity will be reduced.

Since the exact crane job scheduling, rack location selection and gravity lane selection algorithms
are classified, an approximation had to be made on how they work. In reality, these algorithms could
work differently yielding different outcomes, although it is expected that this would not cause major dif-
ferences. This could be confirmed by validating the model with operational data from the real system,
which is unavailable as of now since the system is not operational yet. This aspect poses a notable
consideration in the research, which may slightly decrease the certainty of the results’ validity and
therefore it is advised to further validate the model with operational data in the future. Additionally, the
conveyor was not modelled in detail. The model only keeps track of the number of pallets waiting on
the conveyor for a specific buffer, but it does not take into account that these pallets are also blocking
pallets destined for other buffers. Taking this into account might lead to more delays and more pallets
waiting on the conveyor.

For each KPI resulting from the simulations, an acceptable margin of error was determined. This
should be and was taken into consideration when evaluating the results. In about a quarter of the
scenarios, the limit of replications was reached which means that not all KPIs are within the allowed
margin of error with a 95% confidence interval. Every time this occurred, the KPI causing this was
the aggregate trip loading delay. The variability in this KPI’s standard deviation is primarily due to the
randomness of the last pallet’s placement at the outputs. Depending on the random seed, it may either
be placed just in time before downtime begins or delayed by 3 or 8 hours before being placed on the
lane. As a result, minor differences in the aggregate trip loading delay were not heavily weighed when
evaluating the policies.

69
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The choices made as researcher and modeller also influence the results. A critical research attitude
was taken when studying the results of the simulations, no strange behaviour was accepted leading to
the discovery of more mistakes which were fixed and which improved the accuracy of results. However,
some of the choices made could also negatively impact the accuracy of the results. The choice for the
downtime start times and downtime durations might well have influenced the outcome of the results.
The downtime durations chosen represent a short downtime and a longer one, with the expectation
that at some point, the system will stabilise with a longer downtime and results will not differ with an
even longer downtime. But possibly, other policies could perform better with even shorter downtime
than 3 hours. However, in reality, it is rarely known in advance exactly how long the downtime will take.
Thus, it might be difficult to adjust the policy to execute if it was based on the downtime duration, ex-
cept for cases of planned maintenance where the total duration is more accurately known in advance.
The downtime start times have a larger influence on the results, especially in experiment 2 where both
cranes are down, since it dictates the number of already generated pallets for the broken buffer. It
was observed that scenario selection influenced the results, leading to differences in performance for
varying scenarios. When selecting the downtime start times, worst-case scenarios were chosen so
that they cover the peak moments of the day. Similarly, the cranes that break down were chosen to
represent a worst-case scenario by choosing the busiest cranes. While this is the safest approach, it
might not always be beneficial to pick the best-performing policy based purely on worst-case scenarios
which will not always occur. In more relaxed scenarios, it is expected that policies making use of the
overcapacity will perform better compared to worst-case scenarios. This would be keeping the capac-
ity at 100% in the experiment with 1 crane down, and rerouting all pallets to the partner buffer in the
experiment with both cranes down.

To evaluate the performance of the policies, a scoring system was developed which gives each KPI
a score from 1-10 based on a reference minimum and maximum value. Then, the scores are averaged
per category and multiplied with weights to come to an overall score per policy. The sensitivity of the
results to these weights was proved to be negligible, however, the selection of KPIs for evaluation
involves a degree of subjectivity. Additionally, the minimum and maximum reference values are based
on the data itself for both experiments combined, but in some cases, a minimum or maximum reference
value was chosen manually based on data from scenarios with no downtime and own insight. For
example when the values for a certain KPI are very similar for all policies, one does not want to rank
them with a score between 1-10 based on minor differences in the values, but rather, give all of them
a similar score. To accomplish this, larger reference values were selected, which may contain a minor
degree of subjectivity.

10.2. Generalisation
Generalising the results obtained in this research proves difficult since they are highly dependent on
the system configuration. The results will most likely be similar for other Order Consolidation Buffers,
however, for systems with other configurations and properties, the best-performing policy might be
very different. One characteristic that heavily influences the results is the amount of overcapacity in
the system at Jumbo. Because of this, in experiment 1, the remaining crane can handle the original
workload in most scenarios, and the other buffers do not suffer too much when diverging workload to
them. But in a system with less overcapacity, this might cause problems. To remedy this, another policy
might have to be developed which unloads the pallets via the failure lane instead of keeping them in
the system. However, this entails another characteristic of the system at Jumbo that other systems
might not have, which is being able to unload goods through a failure lane and storing them on the
floor temporarily. Not having this option also makes policies 1 and 3 impossible in experiment 2. Other
examples of characteristics of this system that influence the outcomes and might not be the same in
other systems are the order lead times, throughput, production system, ability to load every trip from
every dock, and the delivery schedule being known in advance. Similarly, other performance measures
might apply in other systems such as the waiting time for a request or the energy consumption.

All things considered, it is evident that the outcomes of this study are particularly relevant to Order
Consolidation Buffers, specifically the one implemented at Jumbo Supermarkets. However, through
the development of this reusable simulation model, other system configurations can be easily studied.
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Conclusion

This chapter will conclude the research by answering the sub-questions and main research question,
discussing the contribution of this work and giving recommendations for future work. The answers to
the sub-questions will be summarised per question:

Sub-question 1: AS/RS research has been going on for a long time, but there are still research gaps
such as (partial) downtime and the operation of AS/RS in parallel as seen in OCB.

Sub-question 2: the developed policies vary the workload for a dual-crane AS/RS where one crane
broke down from 100% to 0%. If both cranes are down, the policies either store or directly unload the
pallets that were already in production in the neighbouring AS/RS, or spread out over the other AS/RS.

Sub-question 3: A model to study downtime in parallel AS/RS should be a DES model to be able
to take enough details into account. The model should consist of components modelled as classes
of which multiple instances can be created in the simulation such as a pallet, rack, order generator,
upstream (production) system, crane and downstream system.

Sub-question 4: Since the model was developed to be a generic model from the start, it contains a
lot of options and a large variety of system configurations and scenarios can be studied with the model.

Sub-question 5: If one crane is down, reducing the workload for this AS/RS can minimise perfor-
mance losses. However, excessively reducing this workload can overload the other AS/RS, compro-
mising system robustness. If both cranes are down, action should be taken to avoid conveyor conges-
tion. The system has enough overcapacity to handle the extra workload originally meant for this AS/RS
spread out over the other AS/RS reducing the amount of added manual work.

The main research question: What is the best operational policy to minimise performance losses
while operating parallel AS/RS under partial downtime of the system? will be answered for the system
at Jumbo Supermarkets in two scenarios. In the end, the best-performing policies for both experiments
will be compared.

11.1. One of two cranes within an AS/RS down
In this scenario, a decision needs to be made concerning what to do with the incoming workload for
this now partially functioning buffer. The 4 developed policies all change the capacity of this buffer with
respect to its original capacity. This capacity is varied from the original 100% to 0% where all newly
generated throughput avoids this buffer during downtime.

Judging from the results generated by the simulation model, it can be concluded that during an
average week, the buffers have enough overcapacity to handle the original workload with just one of
the two cranes in operation. However, especially during the busier days of this week, this is less robust
and resilient since all of the pallets need to be handled within the reach of the remaining crane, which
is ±35% smaller than the full buffer. This means that there are fewer available free locations in the rack
and fewer gravity lanes and thus docks can be used. This translates to higher trip frequency per dock
and shorter intervals between departure times on a dock, particularly during peak periods of the day.
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During a peak day in a peak week, especially with longer downtimes, the remaining crane is not
able to handle the full original workload. Operating under the policy retaining the original workload for
the partially functioning buffer results in more delays and more congestion on the conveyor network
compared to the policies partially shifting the workload away to the other buffers.

A possible downside to shifting workload away to the other buffers is that these buffers might not
be able to handle this extra workload causing delays and congestion in those buffers. However, the
simulation results indicate that the other buffers have sufficient overcapacity to handle this extra work-
load, leaving little downsides to shifting workload away to other buffers. The only remaining downside
is that shifting too much workload away is less robust and resilient in most cases because of the ele-
vated workload in the other buffers while the buffer with one functioning crane could already handle the
workload just fine.

Across all scenarios, the policy reducing the capacity of the buffer with one functioning crane to 50%
performs best. Reducing the capacity is not a necessity during quieter days and shorter downtimes, but
since there are virtually no downsides to it, it is advised to reduce the capacity of a buffer during partial
downtime. Generally, the higher the workload on a day, the more important it becomes to reduce the
capacity of a buffer with one functioning crane to minimise delays and upstream system interference
and increase robustness and resilience. Considering the current KPIs, there is an optimum for the
buffer capacity between 0-100% which would result in the highest score. With 1/2 cranes, 1/2 input
points, 8/14 output points and 11/16 rack columns available, it can be argued that this optimum should
lie around 50%, which is confirmed by the results. However, the scores for this policy and the policy
currently implemented are very close and system adjustments are not essential.

11.2. Both cranes within an AS/RS down
In this scenario, a decision needs to be made about what to do with the pallets destined for this buffer
that were already generated and are in production. The 5 developed policies either do nothing as a
comparison, unload these pallets via failure lanes or reroute these pallets and give them a destination
in another buffer. This is either done at the partner buffer, which is the buffer next to it, or spread out
over the other 3 buffers.

Judging from the results generated by the simulation model, it can be concluded that leaving the
already generated pallets on the conveyor will cause significant congestion, most likely causing the
upstream systems to have to stop production since no more pallets can enter the conveyor network.
Additionally, it was observed that the ranking of the policies is similar for each day, and thus, the work-
load on which they were tested.

Spreading out the workload for both unloading via the failure lane and giving the pallets a destina-
tion in another buffer outperforms concentrating this workload on the partner buffer. The advantage of
concentrating this workload on the partner buffer would be that pallets stay close to their original desti-
nation, but since, as of now, each trip can be loaded from any dock connected to any buffer, this does
not bring added value for Jumbo. If in the future it is desired to keep pallets close to their original desti-
nation, giving these pallets a destination in the partner buffer is preferred over directly unloading them
via the failure lane to prevent added manual work. Delays could occur since the workload becomes too
high at peak moments, but on quieter days and with shorter downtimes, the partner buffer can manage.

The total number of pallets that were already generated for a buffer but not produced yet when it
breaks down depends on the production pool at that moment. Per trip, this value varies throughout the
day and seems to be higher just after production is started, then somewhat steady throughout produc-
tion, and lower when production is nearing its end. Therefore, the duration of the downtime does not
influence the amount of added manual work under policies 1 and 3, but rather the downtime start time.
This is apart from some cases where not all already generated pallets are produced within the down-
time. In this model, it seems like all pallets that were already generated are produced within 2-4 hours.
The downtime duration does influence the performance of the other buffer since during the downtime,
newly released trips are spread out over 3 instead of 4 buffers.
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Across all scenarios, the policy storing the already generated pallets spread out in the other buffers
performs best. This is because the buffers have sufficient overcapacity to handle these extra pallets and
unloading them via the failure lanes adds manual work. The policy which unloads the pallets spread out
over the other buffers via the failure lanes comes second, outperforming the policy storing all already
generated pallets in the partner buffer since it introduces more delays. The policy which unloads all
pallets via the failure lane of the partner buffer, which is the policy currently implemented, performs the
worst. This is because up to 170 pallets need to exit just one gravity lane in a few hours. This results
in a significant amount of added manual work to move the containers fast enough to prevent the failure
lane from overflowing and to move these containers to the floor locations which are further away as
more containers need to be stored on the floor. A system change is recommended here.

11.3. Experiment comparison
Performances of policies can be compared across both experiments since the same scenarios and
reference values were used. This can help in the decision about whether to continue operation with a
single crane when one of the cranes breaks down, which slows down repairs, or whether both cranes
should be stopped. It can be concluded that across all studied scenarios, it is more beneficial to continue
operation with a single crane since all pallets within reach of this crane can still be handled, significantly
reducing the amount of delays. However, it should be noted that there are scenarios where stopping
both cranes is beneficial, such as with short downtimes or low rack fill grades.

11.4. Contribution
First, the development of this detailed DES model is valuable for other AS/RS researchers. As dis-
cussed, there seems to be a lot of duplication of effort with most researchers building their own simu-
lation models for AS/RS. This model will be made publicly available for researchers to reuse and can
be applied to a large variety of system configurations while taking the influence of upstream and down-
stream systems into account.

Similarly, this model is valuable for Jumbo Supermarkets by enabling them to evaluate the per-
formance of their outbound buffer under various circumstances. It was confirmed that their outbound
buffer has sufficient capacity to handle their current projected throughput, even under partial downtime
of the system. Additional insights were gained while building and using the model which led to a better
understanding of the system. In the future, even more insights can be gained by expanding the model
and testing the buffer’s performance in different scenarios.

Last but not least, a first contribution was made to research on downtime in AS/RS and how to
mitigate its effects, on workload distribution across parallel AS/RS, and on Order Consolidation Buffers,
which are areas within AS/RS research which have been neglected in the past. For the system at
Jumbo it was determined what works best to mitigate the effects of partial downtime, however, for
other systems, other policies might perform better. Therefore, this model can be used to study all sorts
of system configurations by adjusting a few parameters in most cases.

11.5. Future work
11.5.1. Research
This work explored the effects of downtime in AS/RS systems and the mitigation of these effects, a
topic that has been neglected in AS/RS research. However, there are still ample research opportuni-
ties concerning this topic. For example, topics regarding the relation between planned maintenance
and resulting downtime, the effects of upstream or downstream system downtime on AS/RS perfor-
mance or the factors that cause downtime within AS/RS. Additionally, workload distribution across
parallel AS/RS, such as Order Consolidation Buffers, can be studied for other system configurations.

A general recommendation that can be made to AS/RS researchers is to focus more on practical
research with an impact on industry. Most research is focused on the design or operation of AS/RS in
isolation, which is already well-explored. More time should be spent on researching AS/RS in combi-
nation with their upstream and downstream systems to further increase their efficiency in practice.
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Also, AS/RS researchers could work together more by reducing the duplication of effort with most
researchers developing their own models from the ground up. Robust modelling frameworks like the
one developed in this work should be shared and further developed for all to use.

11.5.2. Model
Due to the specifics of the system at Jumbo allowing simplifications, time constraints and some algo-
rithms being classified, the model was not developed to its full potential. For future use of the model,
improvements can be made to increase the accuracy of the results and broaden the use cases of the
model by making the model even more generic. Additionally, a graphical user interface could be de-
veloped in order to make it more user-friendly, this was not done now due to time constraints.

Because of the overcapacity of the system at Jumbo, relocations were not taken into account. For
other multi-deep systems, there might not be such overcapacity, causing the need for a relocation al-
gorithm. This can be added to the model. Next to this, other assumptions and simplifications could be
removed from the model such as the failure lane always being available and the conveyor not being
exactly modelled. If the specifics of the algorithms within the system would be shared, the rack location
selection, crane job scheduling and gravity lane selection algorithms could also be updated to be closer
to reality.

Additionally, the production speed was now modelled as being constant at 199 pallets/h, but in real-
ity, it is more variable. Production speed decreases as the amount of released work to produce drops.
Together with the production start and end times, this could be studied more closely and adapted in
future versions of the model.

Lastly, more options could be built into the model for future users whose coding skills are limited.
The implementation in Python with free libraries allows for easy adjustment to the model to suit each
specific system, however, for users with no coding experience, this could be too difficult.

11.5.3. Jumbo
Most importantly, once the system has been operational for a while, Jumbo could collect its operational
data and use it for validation of the model. This could further validate the model’s representation of the
system and could potentially lead to further improvements to the model.

In the future, this model could be applied to other scenarios to study the effects on the performance
of their buffers. Examples of topics that can be researched with this model are:

• Effects of relocation of pallets from one buffer to another via the output for empty pallet stacks

• Effects of adjustments to the production schedule and production speeds

• Effects of adjustments to the delivery schedule

• Effects of letting go of the loading order of trips to other distribution centres

• Effects of large amounts of truncations of pallets (’afkappingen’)

• Effects of adjusting (physical) system parameters

• Effects of recirculating pallets on conveyor loop to win time instead of unloading through failure
lanes

• Finding the downtime duration limit from when stopping both cranes becomes more attractive

For some of these scenarios, the model is already suitable, for others, the model might need adjust-
ments.
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Abstract

This paper investigates the optimisation of Automated Storage and Retrieval
Systems (AS/RS) in warehousing by minimising performance losses during
partial downtime. Given the increasing automation in logistics, AS/RS sys-
tems play a pivotal role, yet the operation of those systems during partial
downtime remains a topic ignored in literature. This research fills this gap
by exploring the effects of partial downtime in AS/RS through a reusable
Discrete Event Simulation model which was developed in Python. This
model incorporates the influence of both upstream and downstream sys-
tems, a characteristic notably absent from the limited number of publicly-
available AS/RS models. Collaborating with Jumbo Supermarkets, the study
utilises their highly automated distribution centre with an Order Consolida-
tion Buffer housing 4 dual-crane AS/RS units as a case study. The study
identifies operational policies to mitigate partial downtime effects, developed
for scenarios with one or both cranes down within an AS/RS. Results suggest
strategic workload distribution adjustments among AS/RS can significantly
reduce performance degradation, particularly during high workload periods.
After comparing both scenarios, it was concluded that for most scenarios,
it is beneficial to keep operating the remaining crane when a crane breaks
down, even though this slows down repairs. Overall, this research offers in-
sights into parallel AS/RS dynamics under partial downtime and provides
practical guidelines for effective operations.
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1. Introduction

In the continuously evolving landscape of logistics, warehouses have in-
creasingly embraced automation to cut costs, minimise errors and enhance
efficiency. An innovation driving this shift is the Automated Storage and
Retrieval System (AS/RS) [1]. AS/RS have been around for a long time but
have continuously developed due to technological advances such as robotics,
real-time data analytics and machine learning.

In general, AS/RS research is mainly focused on theoretical topics con-
cerning AS/RS in isolation, which has been well-explored but represents a
less realistic situation. The influence of upstream and downstream processes,
and thus the influence of the total warehouse process, are not considered [2]
[3] [4]. This results in a limited impact of AS/RS research on industry. A
practical topic within AS/RS research, influenced significantly by upstream
and downstream processes, has received minimal attention in the past: their
operation under partial downtime. This scenario is applicable in systems fea-
turing multiple AS/RS in parallel and in multi-crane AS/RS configurations.

The goal of this research is to study the influence of partial downtime
on the performance of parallel AS/RS, which often exist in Order Consolida-
tion Buffers (OCB), and develop operational policies to mitigate performance
losses. This leads to the research question: What is the best operational policy
to minimise performance losses while operating parallel AS/RS under partial
downtime of the system? This question is answered with the development of
a reusable Discrete Event Simulation (DES) Model in Python. This model
was used to study the Order Consolidation Buffer at the new highly auto-
mated distribution centre for fresh products at Jumbo Supermarkets, which
will be used as a case study.

The paper is organised as follows: Section 2 gives a brief overview of
literature concerning AS/RS. Section 4.4 describes the system at Jumbo
Supermarkets which will be used as a case study. Section 4 will describe the
methodology used to answer the research question. In section 5, the results
will be explained. Finally, sections 6, 7 and 8 discuss the methodology and
results, give the conclusion and make recommendations for future research
respectively.
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2. Literature

AS/RS research has been going on for a long time with initial develop-
ments dating back to the 1950s. Since then, a lot of papers concerning the
design and operation of these systems have been published. However, there
are still plenty of research topics related to AS/RS that are yet to be ex-
plored. One topic that has been absent from literature is the operation of
AS/RS during partial downtime, which can occur in redundant systems with
multiple AS/RS in parallel and in multi-crane AS/RS. This happens to exist
in Order Consolidation Buffers, which is another topic that has not been
studied in literature, even though they are common in warehouses nowadays
[5]. The absence of literature on the aforementioned topics is confirmed by
Bertolini et al. [6], who conducted a bibliometric analysis to map the evolu-
tion of research themes related to AS/RS by studying over a thousand papers.
Both downtime and OCB are keywords that are not present in literature.

Research on the design and operation of AS/RS is often conducted on
AS/RS in isolation. Therefore, the influence of upstream and downstream
systems on the performance of AS/RS is another topic that has received
little attention. Tappia et al. [7] developed an analytical model for an in-
tegrated storage-order picking system. This order picking system represents
the downstream system of the AS/RS and its influence is thus accurately
taken into account. However, the upstream system of the AS/RS is not
taken into account.

Gagliardi et al. [8] propose a theoretical model for simulation which can
be implemented in a programming language. In this model, there is room
to implement a separate supply model upstream of the AS/RS, however, a
model to represent downstream processes in the warehouse is not mentioned.
Additionally, the model is purely a framework and is not implemented and
publicly available.

Next to this, to the best of the author’s knowledge, Singbal and Adil [9]
are the only ones who developed an open-source DES simulator which can be
used to study a large variety of AS/RS configurations. This simulator was
developed for multi-aisle AS/RS, which are similar, but still different than
parallel AS/RS. It was found that their simulator was limited in the flexi-
bility to be adjusted to accommodate the system under study, for example
in the choice of input and output points, the integration of upstream and
downstream systems, and more importantly, the integration of downtime.
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AS/RS can be modelled in various ways. The most suitable modelling
method depends on the research objective:

Queuing Networks (QN) are a stochastic way of modelling in which
different variations exist such as Open, Semi-Open and Closed Queuing Net-
works. A queuing network is a collection of servers, representing the resources
of the system, and customers competing for those resources where they pos-
sibly have to wait in a queue for those resources. The goal of analysing
queuing networks is to determine performance measures such as the number
of customers in the system or queue, average time spent in the system or
queue and system utilisation factor. The main reason for using QN is the
relatively high accuracy and efficient model evaluation [10]. The downsides
of QN include the limited degree of detail that can be taken into account.

Mathematical programming (MP) is known as the part of operations
research that researches the optimal allocation of resources between compet-
ing activities [11]. This way of modelling is deterministic and generally exists
of an objective function and a set of constraints with which an optimal so-
lution is desired to be found. The objective function can consist of multiple
parts which represent multiple goals, making this type of modelling suitable
for multi-objective optimization. Disadvantages of using this method include
the scalability problems. When the problem size increases, it can become too
computationally demanding. Also, results may be unrealistic when the model
assumptions represented in the constraints are too strict.

Discrete Event Simulation (DES) is one of the most popular modelling
techniques which has been greatly developed over time [12]. The technique
models systems as a sequence of events occurring at discrete moments in
time. These events can change the state of the system, or add more events
to the events list. Between the events, no changes happen, such that the
system jumps in time from event to event until the stop conditions of the
simulation have been met.

Agent-Based Modelling (ABM) simulates the interaction and actions
of autonomous agents in an environment. It is a way of modelling that has
been developed more recently compared to for example DES. This method
can be used to study more complex systems with a large number of individual
agents by focusing on the individual actions of agents. These models are
built bottom-up by identifying agents, defining their behaviour, establishing
connections between them and setting environmental variables [13].
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3. Problem definition

From the literature review, it can be concluded that topics such as partial
downtime in AS/RS and the operation of parallel AS/RS have not gotten
any previous attention. This paper will study this topic to provide the in-
dustry with guidance on how to deal with this. Partial downtime occurs in
redundant systems with multiple AS/RS, possibly with multiple cranes.

To examine a large range of possible solutions to mitigate performance
losses in this scenario, the following system characteristics should apply:

1. The inputs of the parallel AS/RS should be connected allowing incom-
ing goods for the upstream systems to be distributed to any AS/RS

2. The system should consist of at least three parallel AS/RS which allows
a workload redistribution to either the neighbouring AS/RS or spread
out across all other AS/RS

3. The AS/RS should have multiple cranes which allows for the possibility
of just one crane breaking down and continuing operation with the
remaining crane, possibly with a reduced service area

4. The outputs of the parallel AS/RS should be connected allowing out-
going goods to be distributed from any AS/RS

5. There should be an option to directly unload goods from the AS/RS
and remove them from the system which could be necessary in case the
extra workload cannot be handled by the other AS/RS

It turns out that systems with these characteristics often exist in the
industry in the form of Order Consolidation Buffers. To mitigate performance
losses during partial downtime in such a system, guidance on the following
decisions is desired:

• Should operation of an AS/RS with one broken crane be continued
with the remaining crane, possibly slowing down repairs?

• Should part of the workload for an AS/RSn with one broken crane be
redistributed to the other AS/RS?

• How should the workload originally meant for a fully broken AS/RS be
redistributed?
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4. Methodology

4.1. Policies

The effects of partial downtime were studied in scenarios where one or
both cranes within an AS/RS are down. For both scenarios, operational
policies which could mitigate performance losses were developed. In the end,
a comparison can be made to determine if a single crane should be operated,
slowing down repairs, or if it is beneficial to stop both cranes.

In the scenario where one of the cranes is down, the policies vary the
throughput capacity of that AS/RS from the original 100% to 0% as seen in
table 1. This throughput capacity determines the workload that the AS/RS
will receive compared to the other AS/RS.

Policy AS/RS capacity
0 Keep at 100%
1 Lower to 75%
2 Lower to 67%
3 Lower to 50%
4 Lower to 0%

Table 1: Policies when one of the two cranes within an AS/RS is down

In the scenario where both cranes are down, it has to be decided where to
send the goods that already started production for that AS/RS. The policies
either directly unload these pallets through the neighbouring AS/RS, give
them a new destination in the neighbouring AS/RS, directly unload them
spread out over the other 3 AS/RS or give them a new destination spread
out over the other 3 AS/RS, see table 2.

Policy New destination Operation
0 No change Wait on conveyor
1 Partner AS/RS Directly unload at new AS/RS
2 Partner AS/RS Change destination and keep in new AS/RS
3 Spread over all other AS/RS Directly unload at new AS/RS
4 Spread over all other AS/RS Change destination and keep in new AS/RS

Table 2: Policies when both cranes within an AS/RS are down

4.2. Performance evaluation

To evaluate the performance of the different policies, the following perfor-
mance measures and corresponding KPIs explained in table 3 were selected.
Each performance measure was given a weight towards the overall score.
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KPI Weight Relevant data

Output delay 10 Aggregate trip delay [min]

Number of trips with delay [trips]

Upstream system interference 8 Maximum amount of pallets on conveyor [pallets]
Average amount of pallets on conveyor [pallets]

Added manual work 6 Total number of direct unloads [pallets]
Maximum number of direct unloads for one rack [pallets]

Robustness 4 Maximum crane utilisation [%/h]

Longest continuous utilisation [min]
Maximum fill grade [%]

Minimum margin between departure times per dock [min]

Resilience 2 Maximum average rack fill grade since downtime stop [%pt]
Maximum average crane utilisation since downtime stop [%]

Table 3: Policy performance evaluation criteria

The output delay is considered the most important and is measured by
the number of separate trips that arrived at the outputs too late and the
total delay of all trips combined.

The upstream system interference is considered the second most im-
portant performance measure. When too many pallets have to wait at the
inputs of the AS/RS, congestion is caused on the connecting conveyor. With
too much congestion, the upstream production system might have to come
to a standstill since the new pallets cannot be placed onto the conveyor.

Added manual work is created when goods from pallets that are di-
rectly unloaded need to be moved to a floor location where they have to be
temporarily stored, costing extra money.

Next, robustness plays a role towards the overall performance of a policy.
This represents the ability of the system to deal with further disturbances and
is measured with maximum fill grades, crane utilisation and margin between
trip departure times per dock.

Lastly, resilience is taken into account, which represents the system’s
ability to recover from downtime as a result of the different policies. This is
measured by the maximum fill grades and crane utilisation since the down-
time stopped.

The performances for each KPI resulting from the different policies are
scored on a scale from 1-10 compared to a reference minimum and maximum
value. These values are based on the best and worst performances across
both scenarios, and the performance in a scenario with no downtime.
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4.3. Simulation model

The performances of the policies in various scenarios were evaluated
through simulation using a DES model. This modelling approach was se-
lected due to the complexity, dynamic nature, and stochastic characteristics
of AS/RS, making them challenging to accurately simulate using analytical
methods. DES was deemed most suitable for modelling the system as AS/RS
allow themselves to be represented as a sequence of discrete events and the
amount of separate agents in the system is low. An overview of the model’s
components and their interaction can be seen in figure 1.

Figure 1: Overview of model structure

The model should be generic with multiple options, allowing it to be used
for a large variety of scenarios and system configurations. Additionally, the
upstream and downstream systems should be taken into account, it should
be possible to introduce downtime and it should be possible to implement
several operational policies.

The main assumptions of the model are:

• Trips are spread out equally over the buffers and outputs

• The next pallet from a trip to be produced is completely random

• The next trip from the production pool to produce a pallet for is random
with a slight preference for earlier departure times

• Pallets can go directly from production to inputs

• Each trip can be loaded from any dock connected to any buffer

• If one of two cranes is down, the remaining crane will service its full service
area

• If it is desired to operate with the remaining crane if a crane is down, added
downtime arises from having to move the broken crane to the side

• Relocations do not occur
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4.4. Case study

The OCB at a new, highly automated distribution centre of Jumbo Su-
permarkets in The Netherlands was used as a case study. This OCB consists
of 4 dual-crane AS/RS in parallel, making it a suitable candidate for study-
ing the effects of partial downtime. The AS/RS can be operated with 1
crane, but it requires placing the other crane behind a maintenance fence,
which incurs additional time. A representation of the overall process in their
warehouse can be seen in figure 2.

Figure 2: Overview of warehouse system [4]

The upstream system of the AS/RS under study is the production sys-
tem which processes incoming pallets from suppliers, stores them in AS/RS
until needed and destacks the required amount. Then, the individual items
are stored in a sequence buffer to make sure that they can be fed into the
picking systems in the right order. The picking systems consist of multiple
subsystems which place the products onto rollcages manually, partly auto-
mated and fully automated. The filled rollcages are placed on pallets in pairs
of two and enter the central conveyor. This central conveyor is connected to
all AS/RS in the OCB in a loop. The pallets are divided over the AS/RS
per trip and once ready to be loaded, move to gravity lanes which are output
points that can hold 13 pallets. The pallets must arrive at these outputs
in the correct sequence for the rollcages to be loaded into trucks correctly.
Additionally, the system is fitted with a failure lane, through which pallets
can be unloaded at any time. The empty pallets are returned to the system
and placed on the central conveyor. Currently, policy 2 is implemented in
the scenario where one crane breaks down and policy 1 is implemented in
the scenario where a whole AS/RS breaks down.
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4.5. Model verification and validation

The model underwent rigorous verification to ensure it behaves as in-
tended. This included balance checks to confirm consistency between pro-
duced and loaded pallets, seed independence tests with varying random seeds,
and consistency checks on hypotheses. Hand calculations, deterministic runs,
and unit tests further verified the model’s behaviour.

Stochastic distributions were verified by comparing simulated times with
actual event log data. Plots were used to verify crane tasks, rack fill grades,
and overall system behaviour, ensuring alignment with expected values.

Sensitivity analyses were conducted on estimated input parameters to as-
sess their impact on simulation results, most parameters had little influence,
and the ones with a larger influence were re-evaluated. Overall, the verifica-
tion process confirmed that the model behaves as intended.

Since the system at Jumbo is not operational yet, the model could not be
validated with real-world data. Experts on the system were consulted who
confirmed that the model represents the system’s design and operation.

Additionally, an analytical model within Jumbo was used to predict pro-
duction and fill grades, allowing comparison with simulation results. Al-
though slight discrepancies exist due to differences in assumptions, overall
trends aligned, validating the simulation’s logic.

Parameter estimations, such as crane travel times and pallet pickup times,
were validated using data from similar systems and design figures. Calcu-
lations based on Witron’s design figures matched expected values, further
validating the model.

4.6. Experimental plan

The performance of the system under the policies was evaluated during
varying conditions. Three input datasets were used that represent an average
day in an average week, a peak day in an average week and a peak day in
a peak week. These datasets determine the moment production is released,
the number of roll cages per client and thus the loading sequence, and the
departure time for each trip. Furthermore, for each dataset, simulations
were run with a start time of the downtime at 05:00, 07:00 and 13:00 and
a downtime duration of either 3 or 8 hours. These parameters were chosen
to cover the peak moments of the day and to cover moments when both
production was already started, or there was no production at the downtime
start time.
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As part of the experimental plan, the simulation parameters including
initialisation, run length, and the number of replications were determined.

To create a realistic scenario, the system is partially filled at the start
of the simulation based on the production day before. Trips released until
the end of the target day are included to ensure continuous system operation
and accurate representation of fill grades. In figure 3, the warm-up period of
the simulation for Friday as the target day and thus including Thursday can
be seen.

Figure 3: Warm-up period of simulation on Friday

The simulation examines KPIs over a full production day, as daily oper-
ations follow similar patterns. Due to relatively fast system recovery times,
additional simulation long after downtime stopped is unnecessary.

Multiple simulation runs with varying random seeds ensure robust results.
The required number of replications is calculated based on desired confidence
levels and allowed margins of error for each KPI. Typically, 50-100 replica-
tions were sufficient, in some cases the maximum number of replications of
200 was reached.

To expedite simulations, profiling identified resource-intensive code sec-
tions, while parallel processing maximized CPU usage and thus minimised
computation time. However, attempts with Just-In-Time compilation did not
yield efficiency gains due to Python’s inherent efficiency in newer versions.
Running 8 simulations in parallel proved optimal for the used computer, with
each instance executing with a unique random seed for comprehensive result
collection.
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5. Results

The simulation experiments delved into strategies for downtime effect
mitigation of AS/RS cranes in scenarios where one or both cranes within an
AS/RS experience downtime. This is an overview of the results:

5.1. One of two cranes within an AS/RS down

Average day in an average week
Throughout the day, all policies performed similarly due to the low through-
put. No issues regarding the amount of pallets on the conveyor were ob-
served. Although the maximum system fill grade rose slightly due to the
broken crane, it remained moderate at ±50%. When reducing the capac-
ity of the partially broken AS/RS to 0% under policy 4, the other AS/RS
managed the extra workload but with slightly reduced robustness. Notably,
policy 0, 100% capacity, reduced the minimum margin between departure
times per dock in some scenarios, indicating slightly reduced robustness.

Examining individual results, shifting the workload to the other func-
tional buffers aided broken crane recovery. Policies retaining a higher work-
load caused more added manual work since more pallets arrive at the buffer
while moving the repaired crane back into action.

Peak day in an average week
Despite handling higher volumes, the remaining crane coped well with the
full workload, with no significant delays or conveyor queues observed. As
expected, crane utilisation and fill grades were higher compared to an average
day but did not pose any issues.

Notably, in the scenario with downtime from 05:00 to 14:15, the mini-
mum margin between departure times on a dock decreased to just 1 hour
in the broken buffer under policies 0 and 1, which could be problematic for
truck loading schedules. Under policy 4, 0% capacity, this minimum margin
decreased to 90 minutes in the other buffers due to their increased workload.

Under policy 0, 100% capacity, the remaining crane’s utilisation dur-
ing downtime was significantly higher compared to policy 3, 50% capacity.
Shifting the workload away from the partially broken AS/RS improved its
robustness, but excessive workload shifts, as seen in policy 4, 0% capacity,
reduced the robustness of the other AS/RS.

Overall, the system’s performance on this day was consistent across poli-
cies, with minor variations in crane utilisation and departure time margins,
highlighting the importance of workload distribution for system resilience.
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Peak day in a peak week
During this day, the policies exhibit significant performance variations, par-
ticularly during downtime from 05:00 to 14:15. Policy 0, 100% capacity,
shows considerable delays, slightly more congestion on the conveyor, and a
continuous crane utilisation exceeding 4 hours. This strain on the remain-
ing crane after downtime affects the margin between departure times, with
the minimum margin being just 30 minutes, causing potential loading issues
for successive truck drivers. An overview of the pallets in different stages
throughout the simulation can be seen in figure 4.

Figure 4: System overview with downtime from 05:00 - 14:15

In contrast, policy 3, 50% capacity, performs notably better in this sce-
nario, showcasing improved system efficiency and departure scheduling. The
overall performance differences across scenarios are evident in the generated
scores, with policy 0, 100% capacity, consistently ranking lower due to in-
creased delays and interference with upstream systems.

Policy 0, 100% capacity, causes more delays, upstream system interfer-
ence, and lower resilience. The tightest departure time margin occurs during
downtime from 05:00 to 14:15, reflecting the peak production period.

The maximum system fill grade is similar across scenarios since it is
reached before downtime starts, except for policy 4, 0% capacity, where the
maximum fill grade is reached later due to the severely altered workload
distribution.
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Overall scores
The combined scores across all scenarios can be found in table 4. This un-
derscores that the policy maintaining the workload for the partially broken
buffer performs the worst, though still within acceptable bounds across most
scenarios. Policy 3, 50% capacity, emerges as the most effective, striking a
balance between redistributing workload to other buffers and retaining an
appropriate workload in the buffer with one operational crane. However,
policy 2, which is currently implemented, has a similar score and performs
almost as well.

Table 4: Combined scores experiment 1

5.2. Both cranes within an AS/RS down

Average day in an average week
Policy 0, no action, consistently leads to congestion, with over 100 pallets
accumulating on the conveyor, prompting upstream system shutdowns. In-
terestingly, the maximum pallet count on the conveyor remains unaffected
by downtime duration, as the buffer’s capacity drops to zero when downtime
starts, diverting new workload to other buffers.

Comparing policies 1 and 3, both unloading pallets via failure lanes, differ-
ences primarily emerge in maximum failure lane unloads for a single buffer
and crane utilisation. Additionally, policy 1, unload at partner, exhibits
higher crane utilisation due to concentrated unloading in one buffer, needing
rapid movement of pallets to the failure lane.

Conversely, policies 2 and 4, which reroute pallets to alternative buffers,
exhibit variations in maximum crane utilisation, departure time margins, and
post-downtime fill grades. All policies involve failure lane unloads since the
pallets from rerouted trips which are stuck in the broken buffer are unloaded
at the failure lane afterwards, though policies 1 and 3 require more manual
work. However, once this manual workload is cleared under the policies
unloading all pallets, buffer recovery is smoother.
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Peak day in an average week
Policies 2 and 4 exhibit reduced failure lane unloads compared to the average
day, despite higher overall throughput. This is attributed to the increased
trip frequency per dock. Because of this, trips move to the gravity lanes later
since they are available later, allowing more trips from the broken buffer
to still be rerouted. However, under policy 2, store in partner, a notable
concern arises with a minimum margin of just 33 minutes between departure
times when downtime commences at 07:00. Additionally, this policy leads to
elevated crane utilisations, system fill grades, and aggregate delays.

During a 3-hour downtime, not all pallets intended for the broken buffer
are produced yet, resulting in slightly fewer pallets on the conveyor compared
to an 8-hour downtime under policy 0, no action. Despite similar upstream
system interference across policies, policies 1 and 3 demonstrate greater ro-
bustness in rack usage but less so in crane utilisation. This discrepancy arises
from the need for crane movement in transferring pallets to the failure lane,
impacting maximum crane utilisation.

Peak day in a peak week
Delays are marginally higher under policy 2, store in partner, but differences
across policies are negligible. The workload distribution does not significantly
impact the aggregate delay, as pallets stuck in the broken buffer dictate
overall delays. Despite concerns about crane workload, even policy 2, which
concentrates workload on one buffer, shows no significant peak in pallets
waiting on the conveyor since the downtime began.

In an average week, a production dip before 13:00 in combination with
new trips being released at 12:45 makes sure that at 13:00, the production
pool consists mostly of new trips of which few pallets were already produced.
On this day, there is no production dip, which results in fewer pallets al-
ready being generated but not produced yet. This leads to fewer pallets to
reschedule compared to the peak day in an average week.

Under policy 2, store in partner, crane utilisation exceeds 90% since down-
time stopped, posing a robustness issue. Spreading workload across buffers
proves more resilient, although potential downsides exist for later replan-
ning of the rerouted rollcages. Overall, distributing workload over multiple
buffers performs better, especially if pallets are given a destination in the
other buffer, reducing manual work.
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Overall scores
The combined scores across all scenarios can be found in table 5. The per-
formance of the policies with respect to each other does not differ much per
day. The policies spreading out the workload always perform better than
the policies concentrating the workload on the partner buffer. Moreover, the
policies giving the pallets a new destination always perform better than the
policies directly unloading them since manual work is saved and there is suf-
ficient overcapacity for the other buffers to handle the extra workload. It is
advised to change the currently implemented policy to policy 4.

Table 5: Combined scores experiment 2

5.3. Experiment comparison

A comparison of performance metrics across both experiments can be
seen in table 6. From the combination of the metrics, and the scores for the
best-performing policies specified in earlier tables, it can be seen that it is
beneficial to continue operation of a single crane for the scenarios studied,
even though repairs are slowed down.

Table 6: Performance metric comparison of best-performing policies for both experiments
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6. Discussion

The simulation model developed for Jumbo’s system provides a compre-
hensive analysis, yet it relies on assumptions and simplifications, potentially
impacting the results. Sensitivity analyses revealed minor variations in re-
sults when altering most approximated values, but significant deviations in
production speed can substantially alter outcomes. Similarly, if the crane
speed and acceleration are set lower than their maximum, the cranes will
have less overcapacity.

The accuracy of the model depends on approximations of algorithms for
crane job scheduling, rack location selection and output selection, which may
differ in practice. The accuracy of the model could be confirmed by validation
with operational data, which is unavailable. This diminishes the certainty
of the result and underscores the importance of future validation endeavours.

The acceptable margin of error was determined for each KPI. However,
reaching the replication limit in some scenarios could affect the determined
values for specific KPIs, such as the aggregate trip loading delay. The re-
searcher’s decisions, such as downtime start times and durations, also wield
influence over outcomes.

It was noticed performances differ during varying scenarios. Often, worst-
case scenarios, such as the busiest cranes and buffers breaking down, were
chosen which may potentially create a misleading impression. Relaxed sce-
narios might favour policies relying more on the system’s overcapacity.

Additionally, scoring the policies involves subjectivity in selecting KPIs,
underscoring the need for careful consideration. Furthermore, the general-
isability of results is limited to systems with similar configurations, such as
Order Consolidation buffers. This is because outcomes are significantly in-
fluenced by factors such as the AS/RS characteristics like overcapacity, order
lead times, ability to unload through a failure lane, and characteristics of the
upstream and downstream systems.

While the study’s conclusions offer valuable insights into Jumbo’s Or-
der Consolidation Buffer, the development of the reusable simulation model
enables the examination of different system configurations in future research.
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7. Conclusion

The main research question: What is the best operational policy to mini-
mize performance losses while operating parallel AS/RS under partial down-
time of the system? can be answered for both studied scenarios.

For the case study at Jumbo Supermarkets, the two scenarios considered
are scenarios where one or both of the cranes within an AS/RS are down.
To answer this question, operational policies were developed for both scenar-
ios. KPIs were defined, and a scoring system was created to evaluate buffer
performance. Using a detailed reusable DES model developed in Python,
the system’s performance under various policies, downtime start times, and
durations were examined across three days with varying workloads.

In the scenario with one crane down, reducing the capacity of the partially
functioning buffer proved to be the most effective approach. Even though
the partially functioning buffer could manage the original workload in most
scenarios, reducing the capacity helped minimise delays and congestion, en-
hancing system robustness and resilience. Across all scenarios, reducing the
buffer’s capacity to 50% performed best, optimising between workload re-
duction for the remaining crane and workload increase for the other buffers.

In the scenario with both cranes down, policies that spread out work-
load, either through unloading via failure lanes or rerouting pallets to other
buffers, outperformed policies concentrating workload on a single buffer. Giv-
ing pallets a destination spread out over other buffers yielded the best results,
leveraging system overcapacity and minimising added manual work.

Comparing policy performances across experiments, using identical sce-
narios and reference values, aids in deciding whether to maintain single-crane
operation during breakdowns, slowing repairs, or stop both cranes. Overall,
operating with a single crane proves advantageous across most scenarios,
as it can handle all reachable pallets, notably minimising delays. However,
with very short downtimes, stopping both cranes yields the best performance.

Although these results might be most relevant to Order Consolidation
Buffers and specifically the one at Jumbo Supermarkets, the developed DES
model can be used to study the results for other systems.
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8. Recommendation

This study delved into the impact of downtime in AS/RS systems and
strategies for mitigation, a topic often overlooked in AS/RS research. While
valuable insights were gained, numerous research topics remain unexplored.
For instance, future research could investigate the relation between planned
maintenance and downtime, the repercussions of upstream or downstream
system downtime on AS/RS performance, or the root causes of downtime
within AS/RS. Additionally, workload distribution across parallel AS/RS
can be further studied in other scenarios.

A broader recommendation for AS/RS researchers is to focus more on
practical research with tangible industry impact. Rather than solely concen-
trating on AS/RS design in isolation, future efforts should explore the oper-
ation of AS/RS in conjunction with their upstream and downstream systems
to enhance real-world efficiency. Moreover, collaboration among AS/RS re-
searchers to share robust modelling frameworks could streamline efforts and
foster innovation.

Due to time constraints and the classification of algorithms, the model in
this study was not fully optimised. To enhance its accuracy and versatility,
several improvements could be implemented. For instance, incorporating a
graphical user interface would enhance usability. Additionally, refining the
model to account for factors such as relocations, variable production speeds,
and an exact conveyor representation would yield more precise results.

Once the Jumbo system has been operational for a while, validating the
model with operational data could enhance its accuracy and applicability.
Additionally, the model could be utilised to explore various scenarios affect-
ing buffer performance, including pallet relocation among buffers, production
schedule adjustments, and delivery schedule modifications. These applica-
tions could provide additional valuable insights into system optimisation and
inform decision-making processes.

In summary, future work should focus on refining the model, validating it
with operational data, and exploring its applications in various scenarios to
further advance the understanding and practical implementation of AS/RS
systems.
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B
Pseudo code

B.1. Input data processing
for each row in the dataset

if this is the first row of a new trip
>append the collected data for this trip to the new dataset

if mix is true
>set containers to the value in the row - 1

else
>set containers to the value in the row

if the amount of containers in this row is uneven
>set pallets to the upwards rounded value of containers / 2
>set mix to true

else
>set pallets to containers / 2
>set mix to false

B.2. Pallet Generator
B.2.1. Functions
function next_trip_to_produce

while the production pool is not full
>filter dataset to only include trips which are released now
if there are no new trips released
hold until the next trip is released

if next trip has departure time after production stop this day and now is before production restart
break

>add the trip with the earliest departure time to the pool of trips to be generated
>remove this trip from the list of trips to be produced

function determine_next_rack
while true
>set the next rack from the order
>set the capacity of the next rack
if the rack capacity is 1
return this rack

else if the rack capacity is 0
continue

else
if this rack needs to be skipped because of its capacity
continue
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else
return this rack

function determine_lanes
if one crane is down
>determine the available gravity lanes based on service area of remaining crane

else
>set all gravity lanes as available

>find the available gravity lanes which will be empty first
return these gravity lanes

B.2.2. Process
while true

if there are still trips to be produced
call next_trip_to_produce

else
passivate

while there are trips in the pool to be generated
>select the first trip from the pool
if there is a wait time for this trip to start production
hold for this time

call determine_next_rack
call determine_lanes
>determine the input point in the rack based on the determined gravity lanes
>create the new pallet with all determined properties
>reduce the number of pallets to be produced for this trip and sequence by 1
>increase the sequence if all pallets of a sequence were generated
>add this pallet to the production queue
if the pallet maker is passive
activate pallet maker

if all pallets of this trip were generated
>remove this trip from the pool of trips to be generated
>shuffle the order of the pallets of this trip in the production queue
call next_trip_to_produce

passivate

B.3. Pallet Maker
B.3.1. Functions
function send_to_failure_lane(pallet)

>set the status of the pallet to ’Failure’
>set the current coordinates of the pallet to those of the input point
>set the destination of the pallet to those of the failure lane

B.3.2. Process
while true

if there are no trips in the production pool
passivate

>determine the odds of being produced for every trip in the production pool
>randomly choose a trip from which a pallet will be produced based on the odds
if experiment is 1
if both cranes are currently out of operation
>send this pallet to the failure lane of the partner buffer

else if the crane supposed to handle this pallet is down
>change the input point to the one of the other crane
if any of the pallets belonging to this trip is blocked by the broken crane
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call send_to_failure_lane(pallet)
else
>set the current coordinates of the pallet to those of the new input point

else if experiment is 2 and policy is not 0 and the cranes are down
if policy is 1 or 3 or any of the pallets of this trip are already in the broken rack
if policy is not 3
>switch pallets of this trip to partner rack

else
>switch this pallets of this trip to another rack, spread out

>change the input point of this pallet
call send_to_failure_lane(pallet)

if policy is 2 or 4
if policy is 2
>switch pallets of this trip to partner rack

else if policy is 4
>switch pallets of this trip to another rack, spread out

for each gravity lane combination of the new rack
if the last trip going to these lanes does not depart later than this one
>determine the difference in departure times with the last trip

else
>determine the smallest difference in departure times with the last and second to last trip

>set the lanes of this trip to the ones with the largest minimum difference in departure times
>determine the input point of this pallet
>set the current coordinates of this pallet to those of the input point

hold for the production time sampled from a normal distribution
if there is space in the targeted input point queue of the rack
>place this pallet into that input queue

else
>place this pallet onto the conveyor

if the targeted crane is passive
activate that crane

if this pallet is currently the only one in the input point queue
>add this pallet to the crane task queue

>remove this pallet from the production queue
if this was the last pallet of the trip to be produced
remove this trip from the production pool
if the pallet generator is passive
activate pallet generator

B.4. Crane
B.4.1. Functions
function find_three_deep_location(pallet)

if experiment is 1
>determine if a crane is down and which one
if crane 0 is down
>set the locations to choose from to the free 3-deep locations in reach of crane 1

else if crane 1 is down
>set the locations to choose from to the free 3-deep locations in reach of crane 0

else
>set the locations to choose from to all free 3-deep locations

else
>set the locations to choose from to all free 3-deep locations

if there are no free 3-deep locations
>stop the simulation

if there are free locations above the gravity lanes of the pallet
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return the lowest location above these gravity lanes
else
return the location that results in the smallest travel distance from input to rack location to output

function find_two_or_one_deep_location(pallet, previous pallet)
if previous pallet is currently in operation
return the location of the previous pallet

else if previous pallet is not in the rack yet
>set the previous location to the destination of the previous pallet

else
>set the previous location to the current location of the previous pallet

return the location in front of the previous location

function ready_for_lane(pallet)
>find the previous trip scheduled for the same outputs as this pallet
if any of the pallets of the previous trip is not at the output yet
return false

if pallet belongs to first client of the trip or all pallets of previous clients are already at the output
if there are less pallets at the first output than the second and this output is not full
return true and output 0

else if there are less pallets at the second output than the first and this output is not full
return true and output 1

else
return false

else if there is just 1 pallet of the previous sequence not at the output yet
if both outputs now equally full and not more than half of the pallets for this client at output
if output 1 is not full
return true and output 1

else
return false

else if the outputs are not equally full and not more than half of the pallets for this client at output
if fullest output is not full yet
return true and the fullest output

else
return false

else
return false

else
return false

function space_in_glanes(pallet)
>determine the number of pallets on their way to the gravity lanes of this pallet
>determine the number of pallets in each gravity lane of this pallet
if the total number of pallets in and planned for the gravity lanes is less than the capacity
return true

else
return false

function space_in_front(pallet)
if the location in front of this pallet is free
return true

else
return false

function no_pal_of_sequence_coming(pallet)
>determine the number of pallets for this client on the conveyor
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>determine the number of pallets for this client at the inputs
>determine the number of pallets for this client in the production queue
if the total of these numbers is 0
return true

else
return false

function determine_location(pallet, check)
if there are no free locations
>stop the simulation

if space_in_lanes and ready_for_lane
>set the determined location to the gravity lane returned by ready_for_lane

else
if there is a pallet of this trip in the rack with the same sequence and space_in_front
>set the determined location to the location returned by find_two_or_one_deep_location

else if pallet of this trip exists in rack with later sequence and space_in_front and no_pal_of_sequence_coming
>set the determined location to the location returned by find_two_or_one_deep_location

else
>set the determined location to the location returned by find_three_deep_location

if check is true
return the determined location

>set the location of the pallet to the determined location
if the determined location is in the rack
>make the determined location occupied

function find_earliest_release_time
for each pallet in the crane queue
if the release time of this pallet is earlier than the last stored earliest release time
>set the earliest release time to the release time of this pallet

return the earliest release time

function calc_moving_time(x1, y1, z1, x2, y2, z2)
>calculate the horizontal distance in meters based on the coordinates
>calculate the vertical distance in meters based on the coordinates
if the crane cannot reach the maximum speed on the horizontal distance
>calculate the horizontal travel time with formula specified in section 5.4.5

else
>calculate the horizontal travel time with formula specified in section 5.4.5

if the crane cannot reach the maximum speed on the vertical distance
>calculate the vertical travel time with formula specified in section 5.4.5

else
>calculate the vertical travel time with formula specified in section 5.4.5

return the maximum of either the horizontal or vertical travel time

function task_possible
if the pallet needs to go to the failure lane
return true

if it is not past the release time of the pallet
return false

if pallet is headed to gravity lane
if these gravity lanes are full
return false

if not ready_for_lane
return false

if the other crane is currently operating around the same location of this task
return false
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return true

function trajectory_collision(pallet)
>set the moving time to the time returned by calc_moving_time
if pallet does not go to failure lane and is not an empty stack
>set determined location to location returned by determine_location

>calculate the time it would take to move this pallet with calc_moving_time
>set the trajectory this crane would have when performing this task
>compare trajectories of both cranes and determine if at any moment they will be too close
if the cranes would be too close
return true

else
return false

function crane_obj_function(pallet)
if not task_possible
>set score to -1000000

else
>set score to current timestep in seconds - departure time in total seconds - pallet sequence
if pallet is at input point
if there are 2 pallets at the input point
>set score to -1800

else if there are more than 2 pallets at the input point
>set score to 7200

else if the pallet is an empty stack at its input point
>set score to 7200

if trajectory_collision
>reduce the score by 200000

return the score

function check_collision_range
>determine the exact current location of the other crane
if the cranes are too close
if one of the cranes is passive
>signal that the cranes are too close while one is idle

else
>signal that the cranes are too close

else if the crane is outside of its operating range
>signal that the crane is outside of its operating range

function check_idle_crane_collision
if the other crane is passive and it is in the way of the task of this crane
>move the passive crane out of the way
return true

else
return false

function move_to_idle_position
>move this crane to its dwell point

B.4.2. Process
while true

while true
if the downtime of this crane started
hold until end of downtime

if there are no pallets in the crane queue
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call move_to_idle_position
passivate
break

>determine the scores of all tasks in the crane queue with crane_obj_function
>sort the crane queue with scores from high to low
>set the task with the highest score
if the tasks with the highest score is possible
if there are more tasks with this highest score
>choose the task which starts closest to the location of the crane

else
>choose the single task with the highest score

if the pallet from this task is in the rack
>make this location available

else if the pallet needs to go to the failure lane
>set the destination of the pallet to the failure lane

else if this is not an empty pallet stack
call determine_location

else if this is an empty pallet stack
>remove this stack from the other crane queue
>set the gravity lane to the one determined by ready_for_lane

if performing the task would cause a collision with the other crane
>move this crane out of the way
hold until the end of the task of the other crane

else
if the crane needs to wait for a pallet to be released
call move_to_idle_position
activate at earliest release time

else
call move_to_idle_position
passivate

break
call check_idle_crane_collision
>calculate the time it takes to move to the pallet
hold for the moving time
>update the crane location
call check_collision_range
>calculate the time it takes to move the pallet to its destination
hold for the operation time
>remove the task from the crane queue
if pallet was at an input
>remove pallet from input queue
if there are more pallets at the input
>move the first pallet at the input into the crane queue
if there are pallets waiting on the conveyor
>move this pallet to the input

if it is an empty pallet stack
>remove stack from empty stack input
if there are more empty stacks waiting
>move this stack into the crane queue

if pallet needs to go to gravity lane
if pallet comes from the rack
>remove it from the rack
if there is a pallet in the rack behind this one
>move this pallet to the crane queue

>add the pallet to the gravity lane
if the loader of that gravity lane is passive
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activate that loader
if the pallet needs to go to the failure lane
>change pallet status to loaded

else if pallet needs to go to the rack
>move pallet into the rack

>change the location of the pallet and crane to the destination
call check_collision_range
if the pallet is now placed in the rack
>change the destination of the pallet to its gravity lanes
if pallet was placed in front of another one
>remove that one from the crane queue

>move this pallet back into the crane queue

B.5. Loader
B.5.1. Process
while true

while there are pallets in the lanes of this loader
if both lanes have pallets in them
if the first pallet in the first lane has the earliest departure time
>set the lane to load from next as the first lane

else if the first pallet in the second lane has the earliest departure time
>set the lane to load from next as the second lane

else
if the first pallet in the first lane has a lower sequence
>set the lane to load from next as the first lane

else if the first pallet in the second lane has a lower sequence
>set the lane to load from next as the second lane

else
>set the lane with the most pallet from this sequence remaining as lane to load from next

else if just one lane has pallets in them
>set this lane as the lane to load from next

if the first pallet of the lane to load from is not ready to be loaded yet
hold until the release time of this pallet
continue

hold for the sampled loading time of this pallet
>remove this pallet from the gravity lane
>move this pallet to the empty pallet queue
if the pallet returner is passive
activate the pallet returner

if the crane servicing this lane is passive
activate that crane

B.6. Pallet returner
B.6.1. Functions
function empties_to_crane_queue

if both cranes are passive
>send the pallet to the closest crane queue

else if the first crane is passive
>send the pallet to the first crane queue

else if the second crane is passive
>send the pallet to the second crane queue

else if both cranes are active
>send the pallet to both crane queues
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B.6.2. Process
while true

if there are more pallets in the empty pallet queue than needed to form a stack
>remove these pallets from the empty pallet queue
>create the empty pallet stack
>send this stack to the empty pallet stack input
call empties_to_crane_queue

passivate

B.7. Results generator
B.7.1. Functions
function run_script(first_seed, last_seed)

for each seed from first_seed to last_seed
>set the random seed
>run the model with the specified parameters
>append the output of the model in the stored results

return the results from all replications

function determine_number_of_replications(results, error_margin, confidence_interval)
return the calculated number of replications needed based on all current aggregated results

B.7.2. Process
while there are fewer replications executed than specified by determine_number_of_replications

call run_script for the next 8 random seeds
>extend the current results with the new results
>increase the number of replications performed by 8
>recalculate the number of replications needed with the current results

>average out the results across all replications
>store the results in a structured Excel file for each individual crane and rack
>store the results averaged out across cranes and racks in the same Excel file





C
Simulation settings

Setting Value Explanation
Simulation end time 00:00 2-1-2001 Time until when the simulation runs. Target day is

1-1-2001.
Rack switch-off delay 0 seconds Time it takes after downtime started to switch off a

rack. This means no more new trips are appointed
to it.

Rack switch-on delay 1800 seconds Time it takes after downtime started to turn on a rack
again.

Production start mode 1 Mode which determines when production for a trip is
started. Explained in section 5.6.

Production start time 06:00 Time at which production starts during target day.
Last produced depar-
ture time

09:30, 10:30, 12:00 Departure time of trip on target day until which is pro-
duced ahead the day before.

Production offset from
departure

36000 seconds Time offset from departure time when production for
a trip can begin.

Retrieval start mode 1 Mode which determines when pallets can move to
their outputs. Explained in section 5.6.

Output start 7200 seconds Time offset before departure time when pallets can
move to their outputs.

Loading time factor 0.1 Determines how much longer and shorter it takes to
load the first and last pallets respectively.

Loading start 1800 seconds Time in seconds before departure time when a trip
normally starts loading.

Too late threshold 1800 seconds Time in seconds before departure time after which a
pallet is regarded as placed too late at output.

Max pallets in broken
buffer

10 Maximum number of pallets of a trip that can be in
the broken buffer for a trip to still be rerouted to an-
other one.

Production pool size 30 Number of trips which can be in production concur-
rently.

Crane storage time 2700 seconds Time it takes to store a broken crane so that the other
crane can continue operation.

Crane retrieval time 1800 seconds Time it takes to retrieve a repaired crane after it was
stored.

Downtime start 5,7,13 Time at which the downtime of the experiment starts.
Downtime duration 3 or 8 hours Duration of crane downtime in hours.
Policy 0, 1, 2, 3, 4 Policy to test during experiment.

Table C.1: Simulation settings
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Setting Value Explanation
Horizontal crane acceleration 1.8 𝑚/𝑠2 -
Vertical crane acceleration 1.8 𝑚/𝑠2 -
Maximum horizontal crane speed 1.5 𝑚/𝑠 -
Maximum vertical crane speed 1.5 𝑚/𝑠 -
Base depth pickup time 4.8 s Base time it always takes to pick up a pallet regard-

less of the depth in which it is placed.
Added depth pickup time 2.85 s Added time it takes per depth rack location to pick

up a pallet.

Table C.2: Crane settings

Setting Value Explanation
Input point A1 (2,2,1) Rack configuration A input point 1 coordinates.
Input point A2 (10,2,1) Rack configuration A input point 2 coordinates.
Pallet stack input point
A

(9,0,-1) Rack configuration A empty pallet stack input point
coordinates.

Pallet stack output
point A

(7,2,1) Rack configuration A empty pallet stack output point
coordinates.

Loader division A 0:(0,1), 1:(2,3),
2:(4,5), 3:(6,7),
4:(10,11),
5:(12,13), 6:(14,15)

Rack configuration A outputs to service per loader.

Blocked locations A (1,2), (1,3), (2,2),
(2,3), (6,2), (6,3),
(7,2), (7,3), (10,2),
(10,3), (11,2),
(11,3)

Rack configuration A (x,y) coordinates of locations
that are blocked and where pallets cannot be stored.

Failure lane A (7,0,-1) Rack configuration A failure lane coordinates.
Input point B1 (3,2,1) Rack configuration B input point 1 coordinates.
Input point B2 (13,2,1) Rack configuration B input point 2 coordinates.
Pallet stack input point
B

(6,0,-1) Rack configuration B empty pallet stack input point
coordinates.

Pallet stack output
point B

(8,2,1) Rack configuration B empty pallet stack output point
coordinates.

Loader division B 0:(0,1), 1:(2,3),
2:(4,5), 3:(8,9),
4:(10,11),
5:(12,13), 6:(14,15)

Rack configuration B outputs to service per loader.

Blocked locations B (3,2), (3,3), (4,2),
(4,3), (8,2), (8,3),
(9,2), (9,3), (12,2),
(12,3), (13,2),
(13,3)

Rack configuration B (x,y) coordinates of locations
that are blocked and where pallets cannot be stored.

Failure lane B (8,0,-1) Rack configuration B failure lane coordinates.

Table C.3: Rack configuration settings
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Setting Value Explanation
Number of gravity
lanes

14 Number of gravity lanes per rack.

Gravity lane capacity 13 pallets Maximum amount of pallets that can be stored in a grav-
ity lane.

Number of loaders 7 Number of loaders per rack.
Horizontal location dis-
tance

1.87 m Horizontal distance between two rack locations in me-
ters.

Vertical location dis-
tance

2.65 m Vertical distance between two rack locations in meters.

Pallet stack height 10 pallets Number of empty pallets needed to form one empty pal-
let stack.

Rack width 16 Number of pallet locations next to each other in the rack.
Rack height 8 Number of pallet locations above each other in the rack.
Rack depth 3 Number of pallet locations behind each other in the rack.
Number of racks 4 Number of racks in parallel that form the system.
Number of cranes 2 Number of cranes per rack.
Input point capacity 3 pallets Number of pallets that can wait at an input point before

blocking the central conveyor.
Crane dwell points 0:(3,2,0),

1:(12,2,0)
Coordinates where the cranes will wait when passive.

Minimum crane dis-
tance

2 Minimum number of rack locations in x coordinates that
have to be between the cranes to not collide. A distance
of 2 means they could operate on x-location 1 and 4 for
example.

Crane service area 0:(0-10), 1:(5-
15)

Service area of each crane in x coordinates.

Table C.4: General rack settings
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Quantitative results

D.1. No downtime

Table D.1: Results without downtime
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D.2. Experiment 1: One crane down
D.2.1. Average day in an average week

Table D.2: Results Experiment 1 Day 1 Downtime 05:00 - 09:15

Table D.3: Results Experiment 1 Day 1 Downtime 05:00 - 14:15

Table D.4: Results Experiment 1 Day 1 Downtime 07:00 - 11:15
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Table D.5: Results Experiment 1 Day 1 Downtime 07:00 - 16:15

Table D.6: Results Experiment 1 Day 1 Downtime 13:00 - 17:15

Table D.7: Results Experiment 1 Day 1 Downtime 13:00 - 22:15
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Table D.8: Averaged results Experiment 1 Day 1

Table D.9: Individual scores Experiment 1 Day 1
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D.2.2. Peak day in an average week

Table D.10: Results Experiment 1 Day 2 Downtime 05:00 - 09:15

Table D.11: Results Experiment 1 Day 2 Downtime 05:00 - 14:15

Table D.12: Results Experiment 1 Day 2 Downtime 07:00 - 11:15
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Table D.13: Results Experiment 1 Day 2 Downtime 07:00 - 16:15

Table D.14: Results Experiment 1 Day 2 Downtime 13:00 - 17:15

Table D.15: Results Experiment 1 Day 2 Downtime 13:00 - 22:15
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Table D.16: Averaged results Experiment 1 Day 2

Table D.17: Individual scores Experiment 1 Day 2
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D.2.3. Peak day in a peak week

Table D.18: Results Experiment 1 Day 3 Downtime 05:00 - 09:15

Table D.19: Results Experiment 1 Day 3 Downtime 05:00 - 14:15

Table D.20: Results Experiment 1 Day 3 Downtime 07:00 - 11:15
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Table D.21: Results Experiment 1 Day 3 Downtime 07:00 - 16:15

Table D.22: Results Experiment 1 Day 3 Downtime 13:00 - 17:15

Table D.23: Results Experiment 1 Day 3 Downtime 13:00 - 22:15
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Table D.24: Averaged results Experiment 1 Day 3

Table D.25: Individual scores Experiment 1 Day 3
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D.3. Experiment 2: Both cranes down
D.3.1. Average day in an average week

Table D.26: Results Experiment 2 Day 1 Downtime 05:00 - 08:00

Table D.27: Results Experiment 2 Day 1 Downtime 05:00 - 13:00

Table D.28: Results Experiment 2 Day 1 Downtime 07:00 - 10:00
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Table D.29: Results Experiment 2 Day 1 Downtime 07:00 - 15:00

Table D.30: Results Experiment 2 Day 1 Downtime 13:00 - 16:00

Table D.31: Results Experiment 2 Day 1 Downtime 13:00 - 21:00
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Table D.32: Averaged results Experiment 2 Day 1

Table D.33: Individual scores Experiment 2 Day 1
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D.3.2. Peak day in an average week

Table D.34: Results Experiment 2 Day 2 Downtime 05:00 - 08:00

Table D.35: Results Experiment 2 Day 2 Downtime 05:00 - 13:00

Table D.36: Results Experiment 2 Day 2 Downtime 07:00 - 10:00
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Table D.37: Results Experiment 2 Day 2 Downtime 07:00 - 15:00

Table D.38: Results Experiment 2 Day 2 Downtime 13:00 - 16:00

Table D.39: Results Experiment 2 Day 2 Downtime 13:00 - 21:00
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Table D.40: Averaged results Experiment 2 Day 2

Table D.41: Individual scores Experiment 2 Day 2
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D.3.3. Peak day in a peak week

Table D.42: Results Experiment 2 Day 3 Downtime 05:00 - 08:00

Table D.43: Results Experiment 2 Day 3 Downtime 05:00 - 13:00

Table D.44: Results Experiment 2 Day 3 Downtime 07:00 - 10:00
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Table D.45: Results Experiment 2 Day 3 Downtime 07:00 - 15:00

Table D.46: Results Experiment 2 Day 3 Downtime 13:00 - 16:00

Table D.47: Results Experiment 2 Day 3 Downtime 13:00 - 21:00
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Table D.48: Averaged results Experiment 2 Day 3

Table D.49: Individual scores Experiment 2 Day 3
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D.4. 1-hour downtime

Table D.50: Results with 1 hour of repair time Experiment 1

Table D.51: Results with 1 hour of repair time Experiment 2
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D.5. Sensitivity analysis KPI weights

Table D.52: Ranking of policies for all weight combinations with an allowed weight deviation of 1

Table D.53: Ranking of policies for all weight combinations with an allowed weight deviation of 2

Table D.54: Ranking of policies for all weight combinations with an allowed weight deviation of 4





E
Model Manual

This manual will explain how one can use the developed parallel AS/RS Discrete Event Simulation
model which takes the upstream and downstream processes into account.

E.1. Input data
The input data should be an Excel file formatted as depicted in figure E.1. The first column should
contain the trip/order numbers in ascending order. The second column should contain the release
times of orders with a date and time. The third column should contain the departure time of the trip /
the time the order needs to leave the output in ascending order. The last column should contain the
amounts of goods per sequence in which the trip/order should arrive at the output. For example for trip
0 in figure E.1, 3 pallets belong to the first client, 2 to the second one, 2 to the third one and so on. If
the loading order is not relevant, the total amount of goods can be specified as ’[26]’ for example.

Figure E.1: Input data format

The name of the input data file should be specified at the lines where ’dataset’ is defined. If the
system under study requires a different kind of input, for example, if clients should be tracked, the
model can be easily adjusted to that.
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E.2. Parameters
An overview of the parameters which can be defined, their possible values and an explanation of their
influence on the model can be seen in the following tables:

Setting Possible values Explanation
Simulation end time Datetime value Time until when the simulation runs.
Rack switch-off delay 0-inf seconds Time it takes after downtime started to switch off a rack.

This means no more new trips are appointed to it.
Rack switch-on delay 0-inf seconds Time it takes after downtime started to turn on a rack.
Production start mode 1,2 Determines production start time for a trip. Mode 1

starts production as soon as possible, mode 2 starts
production at a specified offset from departure time.

Production start time 00:00 - 23:59 Time at which production starts during target day.
Last produced depar-
ture time

00:00 - 23:59 Departure time of trip on target day until which is pro-
duced ahead the day before.

Production offset from
departure

0-inf seconds Offset from departure when production for a trip starts.

Retrieval start mode 1,2 Mode which determines when pallets can move to their
outputs. Mode 1 is as soon as possible, mode 2 is from
a specified offset from departure.

Output start 0-inf seconds Time offset before departure when pallets can move to
their outputs.

Loading time factor 0-1 Determines how much longer and shorter it takes to
load the first and last pallets respectively.

Loading start 0-inf seconds Time in seconds before departure time when a trip nor-
mally starts loading.

Too late threshold 0-inf seconds Time in seconds before departure time after which a pal-
let is regarded as placed too late at output.

Max pallets in broken
buffer

0-inf Maximum number of pallets of a trip that can be in the
broken buffer for a trip to still be rerouted to another one.

Production pool size 1-inf Number of trips which can be in production concurrently.
Crane storage time 0-inf seconds Time it takes to store a broken crane so that the other

crane can continue operation.
Crane retrieval time 0-inf seconds Time it takes to retrieve a repaired crane after storing it.
Downtime start 0-23 Time at which the downtime of the experiment starts.
Downtime duration 0-inf Duration of crane downtime in hours.
Policy 0-4 Policy to test during experiment.
Experiment 1,2 Experiment 1 is 1 cranes down, 2 is both cranes down.
Run mode 1,2 Determines output generated. 1 = more output, longer

computation, 2 = faster, less output.

Table E.1: Possible simulation settings

Setting Possible
values

Explanation

Horizontal crane acceleration >0 𝑚/𝑠2 -
Vertical crane acceleration >0 𝑚/𝑠2 -
Maximum horizontal crane speed >0 𝑚/𝑠 -
Maximum vertical crane speed >0 𝑚/𝑠 -
Base depth pickup time 0-inf seconds Base time it always takes to pick up a pallet re-

gardless of the depth in which it is placed.
Added depth pickup time 0-inf seconds Added time it takes per depth rack location to pick

up a pallet.

Table E.2: Possible crane settings
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Setting Possible values Explanation
Input point 1 (x,y,z) Input point 1 coordinates. Should be within range

of rack.
Input point 2 (x,y,z) Input point 2 coordinates.
Pallet stack input point (x,y,z) Empty pallet stack input point coordinates.
Pallet stack output point (x,y,z) Empty pallet stack output point coordinates.
Loader division (a,b) per loader Outputs to service per loader.
Blocked locations (x1,y1), (x2,y2), ... (x,y) coordinates of locations that are blocked

and where pallets cannot be stored.
Failure lane (x,y,z) Failure lane coordinates.

Table E.3: Possible rack configuration settings

Note that the possible rack configuration settings can be defined for multiple rack configurations.

Setting Possible val-
ues

Explanation

Number of gravity lanes 0-inf Number of gravity lanes per rack. Should not exceed
rack width.

Gravity lane capacity 0-inf pallets Maximum amount of pallets that can be stored in a
gravity lane.

Number of loaders 0-inf Number of loaders per rack.
Horizontal location dis-
tance

>0 m Horizontal distance between two rack locations in
meters.

Vertical location distance >0 m Vertical distance between two rack locations in me-
ters.

Pallet stack height 1-inf pallets Number of empty pallets needed to form one empty
pallet stack.

Rack width 1-inf Number of pallet locations next to each other in the
rack.

Rack height 1-inf Number of pallet locations above each other in the
rack.

Rack depth 1-3 Number of pallet locations behind each other in the
rack.

Number of racks 1-inf Number of racks in parallel that form the system.
Number of cranes 1,2 Number of cranes per rack.
Input point capacity 1-inf pallets Number of pallets that can wait at an input point be-

fore blocking the central conveyor.
Crane dwell points (x,y,x) per crane Coordinates where the cranes will wait when pas-

sive.
Minimum crane distance 0-inf Minimum number of rack locations in x coordinates

that have to be between the cranes to not collide.
Crane service area (x-x) per crane Service area of each crane in x coordinates.

Table E.4: Possible general rack settings

The model uses an (x,y,z) coordinate system to define locations with respect to the rack. The x-
coordinate represents the width and starts at 0 and goes up to the rack width minus 1. The y-coordinate
represents the height and starts at 0 and goes up to the rack height minus 1. The z-coordinate repre-
sents the depth and goes from -1 or 1 to the positive or negative rack depth. A negative z-coordinate
represents a location on the other side of the two-sided rack. It is assumed that the outputs are placed
at the bottom of the rack at locations (x,0,-1). If desired, this could be adjusted in the code.
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E.3. Output
The output generated depends on the run mode. If the model is run in run mode 1, an Excel file
is generated with extensive outputs featuring an event log, a summary of KPIs, plots for all individual
cranes and racks for selected KPIs throughout time and general plots for the whole system. If the model
is run in run mode 2, a selection of core KPIs is printed to the output, which decreases computation
time. Extra desired KPIs for both run modes can be added by adding Salabim monitors or by collecting
data manually in arrays.

E.4. Adjusting the model
The model can be adjusted to other system configurations or operational policies freely by altering the
Python code. The code has been accommodated with plenty of comments to help the understanding
of the code and making adjustments easier.

E.5. Additional files
Additional files belonging to the model are the input data, which can serve as an example input and
be adjusted to one’s own system. Next to that, the file ’ExperimentRunner.py’ and ’ResultGenera-
tor_auto.py’ can be used for automated execution of simulation runs with varying random seeds until
the required number of replications to satisfy a confidence interval with a margin of error is reached.
This produces Excel files containing the core KPIs split for each crane and rack, and together. To reduce
the overall computation time, it is advised to finetune the number of concurrent processes according to
the specifications of one’s computer.
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