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Abstract

By learning to walk, robots should be able to traverse many types of terrains. An
important learning paradigm for robots is Reinforcement Learning (RL). Learning to
walk through RL with real robots remains a difficult challenge however. To meet this
challenge, a robot called LEO has been developed in the Delft BioRobotics Lab. LEO
is a 2D bipedal robot built specifically to learn to walk through RL. Unfortunately,
when learning with Sarsa(λ) the robot breaks down before it has learned a successful
gait. A possible solution for this is to minimize the number of interactions with the
environment (samples) needed to learn a satisfactory policy. A promising technique to
reduce sample complexity in RL is to re-use samples instead of discarding them after one
update. One of the contribution of this thesis is providing a theoretical comparison of
sample re-use techniques in the form of a novel unified framework. With the help of the
framework, Experience Replay (ER) is selected to be used for evaluation and analysis
of sample re-use on walking robots. Empirical comparison of ER with Sarsa(λ) is done
with three benchmark problems: simulations of the inverted pendulum, the simplest
walker, and LEO. On initial experiments we observed slow and unpredictable learning
with ER on the walking problems. We show that this is mainly caused by two issues. The
first issue involves failing back-propagation due to optimism in the face of uncertainty.
To deal with this, we develop a new algorithm called ER-σ which makes the attitude
towards uncertainty a function of the state instead initialization of the value function.
The second issue is concerning local maxima emerging in the value function due to self
effecting states. For this, we propose a residual gradient variant of ER. We find that the
new algorithms perform well on the walking problems. In particular, (residual) ER-σ
gives very encouraging results when compared with Sarsa(λ) and vanilla-ER. From the
results, we can see that the attitude towards uncertainty during replay is of particular
importance for walking problems. We conclude that while ER is a promising technique,
it gives no guarantee on good learning performance. We showed that by exploiting the
available data and knowledge of the representation, the result of ER can significantly be
increased.
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Chapter 1

Introduction

In the past, robots have successfully been deployed in industrial environments. Manu-
facturing robots are widely used and are indispensable in many production lines. Service
robots have not yet achieved this status but a large world wide growth in the number
of these robots is expected (IFR Statistical Department, 2010; WHO, 2007). Service
robots are semi- or fully autonomous robots which perform services to humans exclud-
ing manufacturing operations. Examples of service robots are rescue and security robots,
cleaning, entertainment or medical robots. The main difference between manufacturing
robots and service robots is that the former usually perform a limited variety of tasks in
a well known, controlled environment, whereas service robots are ideally able to perform
versatile manipulation in a large diversity of environments. This large variety of envi-
ronments is one of the key challenges and the main reason that service robots have not
entered our daily lives yet. When a robot is not familiar with the type of environment
it is dealing with, tasks like locomotion and navigation become much more challenging.
In addition to being unknown, the surroundings of service robots are likely to change.
So in order to let these robots function autonomously, they have to learn how to deal
with an environment. Letting the robot interact with its environment and learn by it-
self, would make the robot more versatile and autonomous than being programmed by
experts manually.

1.1 Learning walking robots

When dealing with a very diverse and changing terrain, walking becomes an attractive
alternative to wheels. As can be seen in nature, humans can traverse a much larger
variety of terrains than e.g. cars. In the past, numerous pre-programmed walking robots
have been developed (Knight et al., 2002). They are developed for very specific types
of terrain however and are generally poor at handling unknown features. By learning to
walk, robots should be able to traverse many types of terrains. An important learning
paradigm for robots is Reinforcement Learning (RL) (Sutton and Barto, 1998; Kober
and Peters, 2012).

Master of Science Thesis B.Vennemann



2 Introduction

1.1.1 Reinforcement learning

RL can solve complex problems without requiring any prior knowledge on how to solve
the problem or by making any restricting assumptions about the environment the learner
is in. This is done by giving rewards for the actions it takes. By remembering these
rewards, the RL algorithm can devise a strategy which will maximize the total reward.

Because of its lack of assumptions about the task and the environment, RL has
been successfully applied to a wide set of problems ranging from games to control and
economics (Tesauro, 1995; Kaelbling et al., 1996; Moody and Saffell, 2001). Successful
application of RL in robotic motor control has been done several times. For instance by
Vijayakumar et al. (2003) and Peters and Schaal (2006). RL has been used on walking
robots to synthesize and optimize gaits as well. Ogino et al. (2003), Morimoto et al.
(2005) and Cherubini et al. (2009) are some of the most recent examples. However, the
number of successful attempts on real robots and without the use of prior-knowledge
remains very small (Kober and Peters, 2012). Learning to walk with real robots remains
a difficult challenge because of the inherent high dimensionality of robots, time variant
dynamics, hardware wear, limited computational and memory capabilities. So as a con-
sequence, relatively little is known about the application of RL on real, high dimensional
walking robots with on-board computing.

In Chapter 2 we will give a more formal and elaborate introduction to RL.

1.1.2 LEO

To meet these challenges, a robot called LEO has been developed in the Delft BioRobotics
Lab (Schuitema et al., 2010). LEO is a 2D bipedal robot specifically built for learning
to walk. 2D means that it cannot fall sideways, only backwards and forwards. This is
realized by a boom connected to the hip of the robot, see Figure 1.1. Additionally, the
boom lets the robot walk in circles and provides the robot with power. The choice for a
bipedal walking robot is twofold. Firstly, it is a complex and challenging task. Secondly,
there exists extensive experience on bipedal walking robots from previous work in the
Delft BioRobotics Lab (Collins et al., 2005; Hobbelen et al., 2008).

LEO is equipped with seven motors (in the hips, knees, ankles and shoulder). Fur-
thermore, all the RL computing is done on-board. After a fall it can stand-up au-
tonomously using the motor in its shoulder. 3 of the 7 actuators are controlled by the
learning algorithm. Namely, the two hip actuators and one of the knee actuators.

The hardware has been designed to fulfill the requirements needed to realize rein-
forcement learning on robots in real-time and on embedded hardware. This primarily
means that the robot is robust to the trial and error nature of RL, its behavior is pre-
dictable, and all the on-board computing is quick enough to keep up with the dynamics
of the environment. The requirements of predictability and computational time have
been met to a large extent (Schuitema et al., 2010). Robustness of the hardware of LEO
remains a big obstacle to successfully learning a gait however.
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1.2 Problem statement 3

Figure 1.1: The robot LEO.

1.2 Problem statement

In recent attempts to let LEO learn to walk by Schuitema (2012), a Sarsa(λ) algorithm
(see Section 2.6.3) with tile coding function approximation (see Section 2.7.2) was used.
Schuitema succeeded to let LEO learn from scratch in a simulation but letting the
real LEO learn to walk from scratch did not succeed however. While learning to walk
typically takes several hours in simulation, the real robot starts to break down after 5
minutes. The hardware damage can be mainly attributed to applying different torques
in a high frequency and falls occurring during the learning process. The need to replace
all the broken parts makes learning from scratch on the real robot unfeasible with the
current hardware and learning algorithm.

Schuitema (2012) did succeed in letting the real LEO learn by learning through
demonstration. This was done by letting LEO observe a pre-programmed gait before
learning by itself. By showing a pre-programmed gait we are supplying information
on how to walk however. Consequently, this strategy amounts to using a lot of prior-
knowledge. Since we are interested in walking in unknown environments, generally
there is no such information available. Therefore, in order to have robots employable in
unknown environments, we need to keep prior knowledge minimized.

Summarizing, the goal is to have LEO learn to walk without prior-knowledge. When
learning from scratch however, the real LEO breaks down before it has learned a suc-
cessful gait.

Master of Science Thesis B.Vennemann



4 Introduction

1.3 Research goal

In order to let the real LEO learn to walk , it needs to learn without breaking down and
without implementing any prior-knowledge. For this, two possible solutions exist:

1. LEO does not break down before it learns to walk.

2. LEO learns to walk before it breaks down.

This thesis will focus on the second possible solution; letting LEO learn before it breaks
down.

RL algorithms learn by interacting with the environment. Data of these interactions
are collected in the form of samples. Usually, it takes numerous samples to learn a
task successfully. However, each of these samples come with a cost: each interaction
with the environment burdens the hardware of the robot. So in order to learn with a
minimum amount of hardware damage, the number of samples it takes to learn needs to
be minimized. When this is the case, the learning algorithm is said to have a low sample
complexity.

Most classical RL algorithms only use samples once (Sutton and Barto, 1998). An
important and promising way of reducing the number of samples needed is to re-use
samples instead of discarding them after they have been used. Several of these methods
have been developed showing promising results (Sutton, 1991; Lin, 1992; Ernst et al.,
2005; Lagoudakis and Parr, 2003; Riedmiller, 2005; Lange et al., 2012). It is unclear
however how these methods perform when compared with the current algorithm used
on LEO, Sarsa(λ).

The goal of this thesis is to explore the properties and differences of sample re-use
methods, identify how they scale to (high dimensional) walking robots and finally, eval-
uate whether they can reduce the sample complexity on LEO with respect to Sarsa(λ).

1.4 Approach

This thesis will start by introducing the more ‘classical’ RL-methods. In particular,
the one used by Schuitema (2012) on LEO, Sarsa(λ). In addition, the most prominent
sample re-use techniques will be discussed.

In order to investigate the properties of sample re-use techniques, this thesis presents
a novel unified sample re-use framework. This framework allows us to easily identify and
analyze the properties of the different techniques. With the analysis using the framework,
a suitable sample re-use technique will be selected to be used throughout this thesis.

Evaluating the performance of the sample re-use technique is done on simulations of
three benchmark problems: the inverted pendulum, the simplest walker and LEO. The
choice for simulations instead of real-world setups is two-fold: real world problems often
have extra confounding effects such as control delay, time invariant dynamics and noise.
And secondly, learning on the real LEO has proven to be unpractical with Sarsa(λ) so
performance can therefore not be compared on the real robot.
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1.5 Contribution 5

The problems include a non-walking problem (the inverted pendulum). Including a
non-walking problem gives insight in whether results are caused by characteristics of a
walking problem or whether they can be attributed to more general effects.

The simplest walker and LEO are both walking problems. By including two walking
problems, it is made easier to draw conclusions on using sample re-use for walking
problems. If only one walking problem would be included, it would be difficult determine
whether results can be attributed to characteristics of walking or whether they are
problem specific.

Evaluation of the algorithms is done by assessing how quickly the algorithm learns
on the benchmark problems. This is done by measuring the performance of the agent
during learning. Additionally, since falling is an important source of hardware damage,
the number of falls it takes to learn will be evaluated on the walking problems.

Additionally, analysis of the results will be done on a 2D grid world. This is a non-
continuous and low dimensional problem. This allows us to clearly visualize processes
which are otherwise hard to find.

1.5 Contribution

The main contribution of this thesis is three-fold:

1. The derivation and discussion of a unified framework for samples re-use, clarifying
the properties and differences of sample re-use techniques.

2. An analysis of issues rising for the selected sample re-use technique when applied
on walking problems.

3. The derivation and discussion of novel algorithms dealing with these issues.

1.6 Thesis outline

The remainder of this thesis is structured as follows.

Chapter 2 gives a formal introduction to RL by giving the theoretical preliminaries
for the remainder of this thesis. The focus will be on ‘classical’, model-free RL methods
including Sarsa(λ).

Chapter 3 introduces the most prominent sample re-use techniques. Furthermore, a
theoretical framework will be presented which allows greater insight to the theoretical
differences of the methods. One of these sample re-use methods will be selected to be
used for analysis.

Chapter 4 compares the performance of the sample re-use method with Sarsa(λ) on
the three problems and discuss the results.
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6 Introduction

Chapter 5 analyzes issues arising from using the sample re-use methods with help of
a grid world. Along with the analysis, solutions will be proposed for these issues.

Chapter 6 re-evaluates the performance of the new algorithms with respect to Sarsa(λ)
on the same problems as chapter 4 and discusses the results.

Chapter 7 presents a summary and conclusions based on the previous chapters. And
finally, future research directions will be proposed.

B.Vennemann Master of Science Thesis



Chapter 2

Reinforcement Learning

This Chapter introduces the theoretical preliminaries of RL that are used in this thesis.
The focus is on ‘classical’, model-free RL methods and Sarsa(λ), the technique which was
used by Schuitema (2012) on the walking robot LEO. For a more general introduction
to the field, the reader is referred to (Sutton and Barto, 1998) and (Bertsekas, 2007).

2.1 Introduction

Formally, RL consists of several elements with its own role in the learning process. The
learner or agent can interact with its environment by taking actions. Each action results
in a new state and a reward given by the reward function. RL comprises algorithms with
the goal to learn a behavior that maximizes the future reward. The way RL algorithms
learn can be compared to learning by trial-and-error: actions are tried out during a trial,
rewards or punishments are received for these actions, and the data collected during this
interaction is used to learn. During this process, the agent will learn maximize the
cumulative reward by storing the expected future reward of each state-action pair. In
RL, taking actions which will yield the highest expected reward is called exploiting. In
addition to this, the agent might try new actions, this is called exploring. By doing so,
a better strategy may be found in terms of the cumulative reward.

2.2 The Agent and the Environment

The environment is defined as the system in which the learning takes place, e.g. a robot
with its surroundings or a simulation of it.

Figure 2.1 depicts the relation of the agent to the environment. Each time step k, an
action ak is taken by the agent resulting in a new state sk+1. This action can e.g. be a
voltage on a DC motors of a walking robot to change the position of the legs. The agent
then receives a certain scalar reward rk+1, e.g. a positive reward if the new position of
the legs is good in terms of the end goal. The exact value of this reward is determined
by the reward function, see Section 2.4.
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8 Reinforcement Learning

Figure 2.1: The agent and the environment. At a certain state sk, the agent chooses
an action ak. Because the Markov property holds, the environment returns a new state
sk+1 through the transition function and a reward rk+1 through the reward function.
This information is used to improve the agent.

2.3 The Markov Property
In the deterministic case, the environment can be described by a mapping from state
sk and action ak to new state sk+1 and reward rk+1. In this form, the environment can
be modeled by two transition functions: The state transition function sk+1 = f(sk, ak),
and the reward function rk+1 = ρ(sk, ak), see Figure 2.1. Together, they form the
environment as the mapping: sk, ak → sk+1, rk+1. In the stochastic case, the mapping
from state to new state are defined by probability distributions. The combination of
the current state, current action, next state and reward is called a transition sample:
(sk, ak, sk+1, rk+1).

In RL, the only required assumption about the environment is that the Markov Prop-
erty holds: In either the deterministic or stochastic case, the transition is independent
on states visited in the past and only dependent on the current state and the action.
This means that the current state alone represents all relevant information. (Sutton and
Barto, 1998). A decision process that satisfies this property is called a Markov Decision
Process (MDP). Methods used in RL are under the assumption that the environment is
an MDP. To fulfill the Markov Property on a robot, the state must typically not only
contain the relevant positions of the bodies in space but also their velocities.

2.4 The Reward Function
The learning task is encoded in the reward function. This means that the reward function
ultimately determines what the agent is to learn. For walking, a reward can for instance
be given for every measure of distance a walking robot travels and punishments can be

B.Vennemann Master of Science Thesis



2.5 The Value Function and the Policy 9

given when the robot falls.
The ultimate goal of RL algorithms is to maximize the long-term reward. The long-

term reward, also called return, at time step k can be defined as all the future rewards
added together:

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
N∑
n=0

γnrk+n+1 (2.1)

where γ is a discount factor to prevent the total long-term reward from going to infinity
if N =∞ (Sutton and Barto, 1998).

Because the agent learns through the reward function, synthesis of the reward func-
tion is an important aspect in the performance of RL algorithms. Very little is known
however about synthesis of reward functions resulting in fast learning in the general case.
In practice, researchers often resort to tuning the reward function until a satisfying per-
formance rolls out. This process can take up a lot of time and in the case of LEO this is
not different. For this reason, the reward function of LEO has been taken directly from
(Schuitema, 2012) for this thesis.

2.5 The Value Function and the Policy
With discrete actions, the agent determines which action to take by evaluating each ac-
tion by their respective expected return. In order to evaluate and update these expected
returns, they need to be stored somehow. This is done in the value function. If a model
of the environment is known, storing only the expected return for each state in the state
space suffices, because for each action we know the next state the agent will end up in.
In this case the value function is also called the state-value function and is denoted as
V (s). When this is not the case, an expected return for each action at each state (also
called state-action pair) needs to be stored. It is then called the action-value function
and is denoted as Q(s, a). Since we are interested in keeping prior knowledge minimized,
in this thesis only the model-less case will be considered. With Equation 2.1 in mind,
the value functions are defined as:

V π(s) = Eπ
{

N∑
n=0

γnrk+n+1|sk = s

}
(2.2)

and

Qπ(s, a) = Eπ
{

N∑
n=0

γnrk+n+1|sk = s, ak = a

}
(2.3)

Where π is the policy, which can be seen as the control function determining the action
the agent takes in a certain state (π : sk → ak). Qπ(s, a) is the expected total future
reward of taking action a, being is state s while following the policy π.

Considering the state-action value function, the expected return of (sk, ak) is the
current reward rk plus the expected return of the future states and actions. By this
definition, the expected return of the future states and actions is the expected return of
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10 Reinforcement Learning

(sk+1, ak+1). Consequently, the expected return of (sk, ak) is: Qπ(sk, ak) = Eπ{rk+1 +
γQπ(sk+1, ak+1)|sk = s, ak = a}. This is called the Bellman equation for Qπ.

π can be determined in several ways, but the most common one is the ε-greedy
policy. Following a greedy policy means taking the action with the highest Q-value.
The ε-greedy policy also includes random actions with a probability of ε at every time
step, hereby facilitating exploration. An optimal policy π∗, is a policy that maximized
the expected return. Since the policy is derived from the value function it has a cor-
responding optimal action-value function satisfying the Bellman optimality equation:
Q∗(sk, ak) = Eπ{rk+1 + γmax

ak+1
Q∗(sk+1, ak+1)|sk = s, ak = a}.

2.6 Temporal Difference Learning

Temporal Difference Learning(TD) comprises algorithms that learn policies without
model of the environment. Consequently, the expected return will be stored in a state-
action value function rather than a state value function. Because of the lack of a known
transition function, learning can only be done from actual interactions with the environ-
ment.

Because samples can only be gathered from interactions, each episode in TD algo-
rithms make a trajectory of samples through the state-space. An episode is one trial in
which the agent gathers samples by following the policy. Usually, at the start of each
episode the state is initialized following from some predefined distribution of initial con-
ditions. The episode is usually terminated when the goal has been reached or when some
terminal conditions have been met. Typically for walking, this is after a set amount of
time steps or when the robot falls down.

In TD, learning takes place by using samples to make updates on the value function
Q(s, a). Learning ends when satisfactory behavior has been reached or when the value
function has converged. Two major algorithms can be distinguished, namely Sarsa and
Q-learning. They will be discussed in the next sections along with eligibility traces,
an important technique for speeding up convergence yielding Sarsa(λ). The advantage
of these techniques is that they are widely studied and come with some convergence
guarantees (Sutton and Barto, 1998; Melo et al., 2008).

2.6.1 Sarsa

Sarsa (Rummery and Niranjan, 1994) is an on-policy TD algorithm. This means that it
learns a Q-function for the policy the agent is following. This can make the policies of
Sarsa more safe in comparison with off-policy TD and makes it in particularly suitable
for non-stationary environments (Sutton and Barto, 1998; Otterlo and Wiering, 2012).
The update rule is the following:

Qk+1(sk, ak) = Qk(sk, ak) + α (rk+1 + γQk(sk+1, ak+1)−Qk(sk, ak)) (2.4)

Here, α is the learning rate, which is a parameter in (0,1], and ak+1 is determined
following the current policy. This rule can be seen as a gradient descent step of Q(sk, ak)
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towards rk+1 + γQ(sk+1, ak+1), with step size α. The Sarsa algorithm with ε-greedy
action selection in pseudo-code is shown as Algorithm 1.

Algorithm 1: Sarsa
Input : discount factor γ, learning rate α, exploration rate ε

1 initialize Q arbitrarily;
2 for each episode do
3 k ← 0;
4 initialize sk,ak;
5 for every timestep k do
6 take action ak and observe sk+1 and rk+1;

7 ak+1 ←
{

argmax
a

Qk(sk, a) w.p. 1− ε
uniform random action from A w.p. ε

8 Qk+1(sk, ak) = Qk(sk, ak) + α (rk + γQk(sk+1, ak+1)−Qk(sk, ak));
9 end

10 end
Output: Q

2.6.2 Q-learning

Q-learning (Watkins and Dayan, 1992) is one of the most popular RL methods (Otterlo
and Wiering, 2012). In contrast to Sarsa, Q-learning is off-policy TD. This means that
instead of learning a Q-function for the current policy, it aims at learning Q-values
corresponding to the optimal policy π∗. This can be seen in the update rule:

Qk+1(sk, ak) = Qk(sk, ak) + α(rk+1 + γmax
a

Q(sk+1, a)−Q(sk, ak)) (2.5)

The algorithm of Q-learning is the same as Sarsa with the exception of line 8, which is
replaced by Equation 2.5.

2.6.3 Eligibility Traces

When receiving a reward with Sarsa and Q-learning, only the single state-action pair that
immediately led to certain reward is updated, while in reality the whole past trajectory
is responsible for reaching the point of reward (Sutton and Barto, 1998). The idea of
eligibility traces is to include, to a certain degree, the past state-action pairs which were
visited in the current trajectory in the update. Because the further the visited state-
action pairs are in the past the less responsible for a given reward they are, they are
discounted exponentially with a so called trace decay factor λ.

To implement eligibility traces, an extra variable called the eligibility trace ek(s) ∈
R+ is associated with each state, which decays at each time step with a factor γλ. The
eligibility trace in the replacing traces variant (Singh and Sutton, 1996) is defined as:
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12 Reinforcement Learning

ek(s) =
{
γλek−1 for s 6= sk
1 for s = sk

(2.6)

Eligibility traces can be used with the Sarsa and Q-learning algorithms. These algo-
rithms are then called Sarsa(λ) and Q(λ) respectively. Algorithm 2 shows the Sarsa(λ)
algorithm with ε-greedy action selection in pseudo-code.

Algorithm 2: Sarsa(λ)
Input : discount factor γ, learning rate α, exploration rate ε

1 initialize Q arbitrarily;
2 for each episode do
3 k ← 0;
4 initialize sk,ak;
5 e← 0;
6 for every time step k do
7 take action ak and observe sk+1 and rk+1;

8 ak+1 ←
{

argmax
a

Qk(sk+1, a) w.p. 1− ε
uniform random action from A w.p. ε

9 e(sk, ak) = 1;
10 δ = rk+1 + γQk(sk+1, ak+1)−Qk(sk, ak);
11 Qk+1 = Qk + αδe;
12 e← λγe;
13 end
14 end

Output: Q

2.7 Function Approximation

The simplest form of storing expected values in a value function is in tabular form.
However, if the state-action space of the system is very large it becomes inconvenient
to store every state-action value in tabular. One reason is that the amount of memory
needed to store the data might become too high. But moreover, learning speed reduces
quickly for an increasing state-action space because learning with a tabular value function
would typically involve visiting every relevant state-action combination in the table more
than once. Additionally, when dealing with continuous states or actions, a tabular
representation is not even possible.

Instead of using a table, the value function can be approximated by a function with
vector θ = [θ1, θ2, . . . , θn]T as parameters: Q̂(s, a; θ). The function approximator can be
seen as a mapping F from the vector θ in Rn to the space of the action-value function
containing the state-action values: F : Rn → (S,A → R). F and θ together form the
approximated value function Q̂(s, a) = [F (θ)](s, a).
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An important feature of function approximation is that is causes generalization. This
means that adapting an element of θ results in a change of Q-values in a region of the
state-action space. This can range form a global to a local scale; a single element of θ can
effect Q-values at every point in state-action space or only a small region of the state-
action space. How generalization occurs depends on the architecture of the function
approximation itself. In addition to handling continuous spaces, function approximation
can lead to faster learning, since a learning update on Q̂(sk, ak) influences Q-values in a
region around (sk, ak). Therefore, not all relevant state-action pairs have to be visited.

2.7.1 Approximate Sarsa

When the approximated value function is a smooth differentiable function of θ, TD-
learning with function approximation typically involves taking a gradient descent step
from Q̂(s, a) towards r + γQ̂(s′, a′). To do this, the parameters are updated with the
following rule:

θk+1 = θk + α
(
Qk+1(sk, ak)− Q̂k(sk, ak)

)
∇θk

Q̂(sk, ak) (2.7)

This rule can be easily extended to Sarsa(λ). For a full derivation of the approximate
Sarsa rule, the reader is directed to Sutton and Barto’s book Reinforcement Learning:
An Introduction (1998).

2.7.2 Linear in parameters function approximation

Several constructions are commonly being used for mapping F in RL. A common ap-
proach is the use of function approximation which is linear in parameters. Usually, this
type of function approximation is simply called linear function approximation. Linear
techniques depend on two vectors of equal size, a parameter vector θ and a feature vector
φ which contains a set of basis functions. The value function is then approximated as:

Q̂(s, a) = θTφ(s, a) (2.8)

Linear techniques have several advantages, the theoretical analysis of the resulting
algorithms is simpler, which has led to several convergence guarantees (Bertsekas and
Tsitsiklis, 1996; Bertsekas, 2007; van Hasselt, 2012). Additionally they are easier and
faster to compute than non-linear methods (Adam et al., 2012). A drawback is that the
selection of good features is crucial with linear techniques (van Hasselt, 2012).

Tile Coding is the function approximator used by Schuitema (2012) in the learning
algorithm of LEO. This method is also known as CMAC (Albus, 1975). It is a linear,
parameterized method and it has similarities with simple discretization of the state-
action space. In tile coding, the state space is divided in a number of overlapping
grids called tilings. Each tiling contain tiles which take the form of multi-dimensional
hypercubes. Figure 2.2 shows how this looks in 3 dimensions. Each tile has a basis
function with a value of 1 if (s, a) is inside the hypercube and 0 if it is outside. Each
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tiling is displaced from the origin with a certain offset to create an even distribution over
the state-action space. A good choice of the displacement vector Akd for each tiling k in
each dimension d is (Miller et al., 1990):

Adk = rd(k − 1)(1 + 2(d− 1))/K (2.9)

If N is the number of tilings, each state-action pair has exactly N tiles which it is full
member off. Each element in θ corresponds to a value of one tile. When a state-action
pair is updated, the elements of θ corresponding to the activated tiles are updated.
Because neighboring state-action pairs share tiles with each other, a generalizing effect
over the state-action space is created .

Tile coding is commonly used because of several advantages. Firstly, it is relatively
easy to implement. Secondly, tile coding can often be achieved with relatively large
hypercubes, resulting in relatively low computational and memory requirements for high
dimensional systems (Schuitema, 2012). A downside is that tile coding cannot discover
patterns and irregularities that span large parts of the state-action space as well as
other, non-linear methods. This can result in that some sample information might go
un-used (Gauci and Stanley, 2008). Another downside is that because the membership
of the tilings is binary, the generalization is not done smoothly but rather cascaded.
Smooth tile membership with e.g. radial basis functions is an easy extension of tile
coding making the function approximation continuous. Schuitema (2012) has indicated
that this does not increase learning performance on LEO however, while computational
complexity rises.

2.7.3 Non-Linear and memory based function approximation

This section will briefly introduce some other well known function approximation schemes.

Local Linear regression In Local Linear Regression (LLR) (Atkeson et al., 1997) is a
non-parameterized method in which the prediction is computed by taking the average
of, or fitting a linear model through, the K nearest neighbors of the query.

These methods have shown to be an efficient function approximator but can be
quite sensitive to the definition of the distance function which determines the K nearest
samples that are included in the regression (Wettschereck et al., 1997; Kober and Peters,
2012).

Regression trees Largely introduced by Breiman (2001), tree based methods are non-
parameterized learning techniques which use decision trees to map observations in a
tree-like structure to determine the value of a query.

Tree based methods are a particularly promising supervised learning technique as
shown by Caruana and Niculescu-mizil (2006). In this study, regression trees and in
particular methods using ensembles of regression trees, performed remarkably well as
three of the best supervised learning techniques according to prediction accuracy over a
set number of trials.
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Figure 2.2: Visualization of activated tiles in 3 dimensions along with their projections
on the 3 planes. In this example there are 4 tilings. Consequently, 4 cubes determine
the value of the state-action combination.
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16 Reinforcement Learning

Additionally, regression trees have shown some promising results when being com-
bined with sample re-use (Ernst et al., 2005).

Artificial Neural Networks Artificial Neural Networks (ANNs) are quite commonly
used in RL with Lin (1992) being among the first. Inspired by the biological neural
network, ANNs are networks of mathematical models imitating the function of neurons.
The main function of these networks is the ability to learn a complex relational function
from a limited amount of labeled training data.

Perhaps the biggest advantages of using ANNs is their ability to handle high dimen-
sional inputs and their excellent generalization properties which can potentially bring
down sample complexity (Riedmiller, 2005; Coulom, 2002; Tesauro, 1995). In practice,
because ANNs come with several drawbacks which can make them tricky to implement
(Boyan and Moore, 1995), linear function approximation methods are often preferred
to ANNs. Additionally, ill conditioning of the ANN can bring the performance down
greatly. Consequently, tuning the number of layers, threshold functions and starting
weights might be needed before a satisfactory result is reached.

As with regression trees, ANNs have shown some promising results when being com-
bined with sample re-use (Riedmiller, 2005).
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Chapter 3

Sample Re-use

An important technique if one wishes to achieve low sample complexity is sample re-use.
It is therefore an important tool if we want to achieve sample efficient walking robots. In
the past, numerous techniques have been developed capable re-using samples (Sutton,
1991; Lin, 1992; Ernst et al., 2005; Lagoudakis and Parr, 2003; Riedmiller, 2005; Lange
et al., 2012), yielding promising results.

The theoretical differences of these techniques are not always clear however. Nor
is it always clear under what circumstances and for what type of problems to use a
certain method. In this chapter, the most important sample re-use techniques will be
discussed and their theoretical differences will be investigated by presenting of a novel
unified framework for sample re-use. With the properties found through the framework,
a suitable sample re-use technique will be selected to be used throughout thesis.

3.1 Introduction

In the previous chapter we have seen learning methods which have the following learning
paradigm: the agent interacts with the environment by taking an action in a certain
state. This results in a new sample and with it, the value function is updated. After
this, the sample is discarded, the agent takes a new action and the cycle starts over. In
this thesis, we are interested in using the information gathered from interacting with the
environment as efficiently as possible. To do this, samples can be stored for use later
on, instead discarding them after a single update. It turns out that classical methods
such as Sarsa, samples are often not really needed to gather more information about
the environment, but are used to spread information through the state-action space
(Lange et al., 2012). By storing samples, we can use their information as if they were
new observations. We thus do not need new samples to back-propagate information, we
only need new samples to gather information about the environment. This makes it is
possible to improve the policy from various old samples, even if these samples were not
part of a successful trajectory at the time.

Since we are interested in achieving a low sample complexity, the database of old
samples is likely to be finite. For high dimensional systems, we even prefer an incomplete
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dataset. Filling up the data set of samples might sound like a good idea, but for most
problems in robotics, this would take too many samples. Because the given set of data is
usually finite, the learner cannot be expected to always come up with an optimal policy.
The objective of sample re-use techniques has therefore been changed from learning the
optimal policy, to deriving the best possible policy for the given data (Lange et al.,
2012). Consequently, sample efficient learning with sample re-use can be seen as finding
the best possible policy for an incomplete dataset.

There exists several ways of re-using samples. In the following, the most prominent
ones will be introduced. We will start by introducing Experience Replay (ER)(Lin, 1992;
Adam et al., 2012). This method has the closest resemblance to the classical TD-methods
of Sarsa and Q-learning. Secondly, Batch RL methods (Ernst et al., 2005; Riedmiller,
2005; Lagoudakis and Parr, 2003) will be addressed. This collection of techniques use
various supervised learning techniques to fit a value function to the given data. And
lastly, model learning techniques (Sutton, 1991; Hester and Stone, 2012). These methods
use old samples to derive a model of the environment and learn from that model.

3.2 Experience Replay

ER re-uses old experience by simply applying the Sarsa or Q-learning update rule on old
samples. ER was introduced by Lin (1992) and despite some considerable advantages,
ER has been studied only sporadically ever since. Recently however, ER received some
new attention yielding promising results (Kalyanakrishnan and Stone, 2007; Adam et al.,
2012).

ER can be implemented in the following way: Every transition sample (sk, ak, rk+1, sk+1)
is stored in a database. Once every L steps the old samples are re-used to improve the
value function according to the underlying TD algorithm.

The selection of samples to be reused can be done in several ways: samples can
be chosen separately at random or entire trajectories of samples can be replayed. In
the former case, samples can be selected in either temporal or reversed temporal order.
Another possibility is to use Prioritized Sweeping (Moore and Atkeson, 1993), a method
also used in model learning techniques (see Section 3.4).

3.3 Batch RL

Formally, batch RL algorithms are off-line methods which first acquire and store a batch
of experience and then solve the learning problem through supervised learning. Where
ER can be seen as extension of Sarsa and Q-learning, batch RL does not necessarily rely
on update rules such as Equation 2.7.

There are two major batch RL algorithms. Namely, fitted Q-iteration by Ernst et al.
(2005) and LSPI by Lagoudakis and Parr (2003). In the following they will be discussed
briefly.

B.Vennemann Master of Science Thesis



3.4 Model Learning 19

3.3.1 Fitted Q-iteration

Fitted Q-iteration (FQI) calculates a target value T for every sample and uses a super-
vised learning technique to fit a value function on to these values. In fact, any supervised
learning technique can be used to derive the value function. This is done by iterating
over the following two steps:

1. For each sample (sk, ak, rk+1, sk+1) calculate a new target value T i+1
sk,ak

according
to:

T i+1
sk,ak

= rk+1 + γmax
a

Q̂i(sk+1, a) (3.1)

and store (sk, ak, T i+1) with all other (s, a, T )-combinations.

2. Use a supervised learning algorithm to train a value function on all (s, a, T i+1
s,a )

combinations found so far, with input the state-action combinations and output
the target values. This results in the new approximated function Q̂i+1(s, a).

Originally step 2 was performed with regression trees. Two another notable examples
of FQI are when step two is performed with ANNs, which has yielded Neural Fitted Q-
iteration (Riedmiller, 2005) and with kernel regressors, yielding KADP (Ormoneit and
Sen, 2002).

3.3.2 LSPI

Similar to FQI, LSPI builds a set of target values and fits a value function to it. With
LSPI, this is done in one step using least squared regression. Since least squared regres-
sion is only possible with linear functions with respect to parameters (Busoniu et al.,
2012), this method can only be used with linear function approximators such as tile
coding.

The major difference of LSPI to other approximate RL methods is that LSPI deter-
mines an approximation of the state-action value function in one step and analytically,
so no iterations are needed until a satisfactory convergence is reached. Therefore, the
method has fewer parameters to tune such as a learning rate α which can cause oscilla-
tions, overshoot and divergence (Lagoudakis and Parr, 2003).

3.4 Model Learning

Samples can also be used to learn a model of the environment in the form of an estimated
model M̂ : (s, a)→ (r̂, ŝ′). This model can be used to update the policy or value function
along with newly acquired experience with dynamic programming techniques, this is
called planning (Sutton, 1991). Dynamic programming is the collection model-based RL
algorithms (Sutton and Barto, 1998). With a model, we can predict what the effect of a
certain action would be in terms of the next state and the returned reward. Consequently,
no actual interaction with the environment is needed. Thus, with a learned model, the
value function can be improved without needing to gather more samples.

Master of Science Thesis B.Vennemann



20 Sample Re-use

Figure 3.1: Schematic representation of Dyna. The policy choses an action at a certain
state after which the environment returns a reward and the new state. This experience
is used for direct RL (i.e. update the value function with for instance Sarsa) and to learn
a model of the environment. This model can then be used improve the value function
(planning).

Learning a model of the environment can be done by supervised learning techniques
like ANNs or LLR (Hester and Stone, 2012). In order to update the policy or value-
function without troublesome model errors, the model has to be learned sufficiently well.
This can take numerous samples, well distributed over the state-action space.

The most widely and well-known model learning techniques is known as Dyna (Sut-
ton, 1991). This algorithm uses experience both for direct RL to update the value
function and for model learning. Figure 3.1 shows the Dyna architecture.

There are several known issues with model learning. Firstly, in reality the transitions
might be very stochastic due to noise or disturbances increasing the number of samples
needed to learn an accurate model. Secondly, the behavior of the system might be time
variant. Thirdly, the model might contain discontinuities or non-Markov effects which
makes representing an accurate model more difficult (Toussaint and Vijayakumar, 2005).
And lastly, the computational cost can increase severely with respect to non-model
learning techniques (Sutton, 1991).

3.5 A Unified Framework

In the previous section, the most prominent methods of re-using samples in the RL
literature were introduced. The goal of all these methods is to seek an optimal value
function with the information available. The theoretical differences between them is
not entirely clear however. For instance, both ER and batch RL use previous samples
without the use of a model. What then, is their the fundamental difference in value
function improvement and what are the consequences of this? Furthermore, can one
argue that patterns found in learned model can be found in the approximated value
function as well? Additionally, it is not clear whether or not certain aspects of the above
methods might be combined. A unified framework will give more insight on the general
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way how to re-use samples and might give rise to new ways of doing so.
In this section, a unified framework of sample re-use will be presented in the form

of a general algorithm. Within this algorithm, the methods introduced in the previous
section are a special case. First, the differentiating aspects will be discussed. Next, the
framework will be presented in the form of algorithms and a property table.

Several other frameworks exist in the literature. This framework is unique in the sense
that is focuses on sample re-use. Other frameworks focus only on a specific sub-domain
of RL such as multi-agent RL (Hu and Wellman, 1998) or are so general that they do not
give any insights in how sample are actually used such as Generalized Policy Iteration
by Sutton and Barto (1998). Geist and Pietquin (2013) group several RL methods in
three ways of updating the parameter vector θ but do not specifically consider the use
of old samples either.

3.5.1 Value function update
A first distinguishing aspect, is the way the samples are being used to improve the Q-
function. They have in common however that they are all centered around the Bellman
operator. It is their specific use of the Bellman operator which differs. This section will
introduce the Bellman operator, derive a general notation for parameter updates and
define two general ways of re-using samples to update the value function.

Thanks to the Markov property, RL algorithms can rely on the Bellman operator to
derive a value function. The Bellman operator uses information from samples to make
an estimate of the expected value corresponding to the state-action combination of that
specific sample. When more information in the form of transitions arises, these esti-
mates can get more accurate. So when more is information becomes available, estimates
following from Bellman operators applied on old samples might become useful again.
For the action-value function case, we can define the Bellman evaluation operator T π as
follows:

[T πQ](sk, ak) = E{ρ(sk+1, ak) + γQ(sk+1, ak+1)} (3.2)
Here, T πQπ means taking the Bellman operator while following the current policy. Con-
sequently, since the value function itself consists of expected values, it should satisfy:
Qπ = T πQπ. The optimal action value function Q∗ satisfies the Bellman optimality
operator T ∗:

[T ∗Q](sk, ak) = E{ρ(sk+1, ak) + γ max
ak+1∈A

Q(sk+1, ak+1)} (3.3)

In exploration driven RL, the goal is to find the optimal action-value function Q∗ from
samples observed by interacting with the environment. Therefore, instead of exact com-
putations of the Bellman operator, an estimated Bellman operator T̂ can be computed
with a transition sample:

[T̂ ∗Q](sk, ak) = rk+1 + γmax
a∈A

Q(sk+1, a) (3.4)

Every transition sample leads to its own estimate of the expected value for a certain
state-action combination. Since we are bootstrapping i.e. updating an estimate of the
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value function based on other estimates (Sutton and Barto, 1998), T̂ ∗Q(sk, ak) is merely
an estimate. However, when more samples become available, the value of Q(s′, a′) might
become more accurate. Because of this, for a certain transition sample T̂ ∗ might move
closer to T ∗ as learning progresses.

When using function approximation, there is no exact representation of the value
function Q, but an approximation of it Q̂. So Equation 3.4 becomes:

[T̂ ∗Q̂](sk, ak) = rk+1 + γmax
a∈A

Q̂(sk+1, a) (3.5)

With parametric value function representation, we can represent the value function as a
mapping F from a parameter vector θ in Rn to the state-action space Q. The approxi-
mated value function can then be expressed as:

Q̂(s, a) = [F (θ)](s, a) (3.6)

Substituting Equation 3.6 into 3.5 we get:

[T̂ ∗F (θ)](sk, ak) = r + γmax
a∈A

[F (θ)](sk+1, a) (3.7)

In order to improve the value function, we must minimize the error between the expected
values following from the current value function Q̂(s, a), and the expected values from
the transition samples T̂ ∗Q̂(s, a) (or T̂ πQ̂(s, a)). To do this, we can define a cost function
J expressing the error between the expected values from the transition samples and the
current Q̂. That is:

ĴD(θ) =
p∑
d=1

(
T̂dQ̂− Q̂(sd, ad)

)2
=

p∑
d=1

(
[T̂dF (θ)]− [F (θ)](sd, ad)

)2
(3.8)

Here, d represents the d-th transition sample (sd, ad, s′d, rd) in a set of p available transi-
tion samples D = {(sd, ad, s′d, rd)|d = 1, . . . , p}, and T̂d is the Bellman operator applied
to that specific sample. By minimizing Ĵ we can find a suitable new parameter vector
θk+1 for a given set of samples D:

θ ← argmin
θ
ĴD(θ) (3.9)

With ER and Dyna, JD is minimized in the following way. A gradient descent step
on the error of a single sample (JD = Jd) is taken with the current parameter vector θi,
yielding a new parameter vector θi+1. With this, a new gradient descent step is taken
with another sample to yield θi+2. This means that these methods minimize the error
following from only one sample at the time. What follows is that the parameters are
updated by iterating the rule:

θk+1 = θk −
1
2α∇θk

([T̂dF (θk)]− [F (θk)](sd, ad))2 (3.10)

over separate samples in D, where T can be either T π or T ∗ for respectively Sarsa and
Q-learning updates. When no samples are being re-used, the error is minimized over the
current sample only i.e. D = {(sk, ak, sk+1, rk+1)}. What follows in this case is:

θk+1 = θk −
1
2α∇θk

([T̂kF (θk)]− [F (θk)](sk, ak))2 (3.11)
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This equation results in the well known TD update rules (Sutton and Barto, 1998).
When sample re-use is being used in combination with TD methods, learning takes
place by iterating equation 3.10 with samples arbitrarily taken from the sample set D.

Since we are using a gradient descent step on JD = Jd, there is no regard for the
error following from other samples in D. As a result, for some function approximators an
update in a certain region of the state-action space might have unpredictable or unwanted
consequences in other regions of the state-action space (Gordon, 1995; Lange et al.,
2012). This is known to cause slow and unpredictable learning with certain function
approximators (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012). The extend of
this effect depends on the extend of what Gordon (1995) calls the ‘exaggeration’ of the
function approximator. Mainly global function approximators suffer from a high amount
of exaggeration (Gabel and Riedmiller, 2005). In particular, ANNs in combination
with single sample updates have shown to require a lot of samples before convergence
(Riedmiller, 2005).

By updating θ considering the cost function all samples simultaneously, different
updates will not interfere with each other. Instead of improving single Q-values of state-
action pairs, the value function can be updated so that it ‘fits’ to the target values of all
samples at once. This is the characteristic way batch RL algorithm improve the value
function. Now, instead of minimizing the error of each sample after another, batch RL
minimizes the error of all samples simultaneously. In other words, θ ← argmin

θ
ĴD(θ)

is executed with the entire set of samples in one projection. In other words, batch RL
methods project the target values of all samples onto hypothesis space of the function
approximator.

Batch RL can use any supervised learning technique to update the value function.
Consequently, the value function can be a black box and does not need to be parametric
(Ernst et al., 2005). This contrary to gradient descent methods which calculate gradients
with respect to parameters. The disadvantage of parametric function approximation is
that one has to select the approximation architecture a priori. This often requires using
prior-knowledge or going through a difficult process involving guessing and tuning of
parameters until good results are achieved.

Summarizing, two distinctive value function update methods can be distinguished:

1. Single sample updates, minimizing the cost function following from one sample,
Ĵd =

(
T̂dF (θ)− [F (θ)](sd, ad)

)2
, iteratively with gradient descent on the parame-

ters.

2. Projection updates, minimizing the cost function following from multiple samples:ĴD =
p∑
d=1

(
T̂dF (θ)− [T̂dF (θ)](sd, ad)

)2
, or in the case of a non-parametric representation:

ĴD =
p∑
d=1

(
T̂dQ̂− Q̂(sd, ad)

)2
. This is done by projecting the target values onto

the hypothesis space of function approximation.
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3.5.2 Value Iteration vs. Policy Iteration

An additional, although similar distinction can be made regarding the policy update.
Namely, whether the improvement of the value function can be regarded as value itera-
tion or policy iteration. With value iteration, updates on Q(sk, ak) also directly influence
the policy π(sk). Policy iteration methods separate updating of the value function and
deriving the policy in separate steps. This means that T̂ πk is used to calculate Qk+1,
then a new policy πk+1 is derived from Qk+1, after which it is used in T̂ πk+1 to derive
Qk+2. In other words, policy iteration fixes the policy until a new Q̂ has been derived
while with value iteration, any update on Q simultaneously changes π . ER and Dyna
are value iteration since these method do not explicitly store a policy. With these meth-
ods the policy is always directly derived from the current value function. Batch RL is
policy iteration because the Bellman operator is computed for all samples by fixing the
policy.

This distinction can have consequences for sample efficiency. With model-based RL,
it has been shown that value iteration often converges faster than policy iteration because
it is usually inefficient to sweep over all the state-action combination before improving
the policy (Sutton and Barto, 1998). Similarly, it might be inefficient to sweep over all
the samples before improving the policy.

3.5.3 Sample Database

A second major distinction between sample re-use methods concerns the set of available
transition samples. D can be formed in several ways. As we have seen, not re-using
samples means that D only contains the current sample: D = {(sk, ak, ss+1, rk+1)}.
When every previous transition sample is stored D = {(sd, ad, sd+1, rd+1)|d = 1, . . . , k}.

Many algorithm do not store all previous samples in D however. For instance, Lin
(1992) only used the 100 most recent samples with ER. Using only recent samples for
updates has some advantages. Recent samples are more likely to be on policy and ac-
cording to (Sutton and Barto, 1998), off-policy bootstrapping combined with function
approximation can lead to divergence. In non-stationary environments it may even be
necessary to only use recent experiences since old sample might not give accurate infor-
mation anymore. Kalyanakrishnan and Stone (2007) showed that in their experiments,
best performance was always achieved by using all the training samples for both ER
and FQI however.

Additionally, due to computational complexity of minimizing the squared error (see
next section) of large databases, it might be beneficial to remove excess samples from
the database. Especially in later training phases and with cyclic tasks like walking, a
majority of the gathered samples might already be contained in the same or similar form.
Improving the value function might be more effective per update if a pruned database
with evenly distributed samples is maintained. This thesis does not go into this aspect
however.

In addition to storing previous transition samples, supervised learning techniques can
be used to train an approximate model M̂ on the available data to generate samples. This
is done by first constructing a training set from the database of transition samples and us-
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ing a supervised learning algorithm to find a function M̂ : S,A → S,R. Any supervised
learning technique can be used to construct this function. With this model, an arbitrarily
setM of n approximated samples can be generated : M = {(si, ai, ŝ′i, r̂i)|f = 1, . . . , n}.
D ∪M then represents the total set of samples available for updates.

3.5.4 Computational Complexity

In this section, the computational complexity of the sample re-use techniques will be
discussed. In this discussion, the following case will be considered. The agent has
gathered a number of n samples over some pre-defined amount of time. We are interested
in the order of computational complexity of the sample re-use techniques if they were to
learn a value function from these samples.

Firstly, on-line learning algorithms such as Sarsa and Q-learning only make one
update for every experience. Therefore the number of updates made while encountering
n samples is O(n). Considering ER, there is full freedom of choosing the amount of
sample replays. If this number is called K, and when combined with direct learning, the
complexity is O(n+K).

To learn a value function with FQI, E times a value function needs to be trained using
i iterations. i is the number of iterations needed to train a certain supervised learning
technique to n samples. And E represents the number of policy iteration sweeps, i.e. the
number of times that the Bellman operator is evaluated for all samples. This yields a
computational complexity of O(nEi). Since the policy iteration step is done analytically,
LSPI doesn’t need i iterations to train a value function. However, complexity of least
squares regression is cubed to the number of basis functions f . This yields a complexity
of O(nEf3). The number of policy iteration sweeps E is the optimization horizon of
the algorithm (Ernst et al., 2005): E iterations corresponds to an E-step optimization.
In other words, a value function is derived for expected future rewards E steps into the
future.

Model learning techniques consist of three separate processes: on-line learning, model
learning and planning. As we have seen, on-line learning is in the order of O(n). If we
are using the same supervised learning technique as with FQI to learn our model, i
iterations are needed. The learning of M̂ is thus of order O(ni). In the literature,
planning is often done a set amount of K times. This yields O(K). The total sample
complexity is O(n) +O(ni) +O(K). The maximum is dominant yielding O(ni+K).

From the above, several conclusions can be drawn. Firstly, because parameter K
can be chosen arbitrarily, ER and model learning techniques allow greater control over
the computational complexity. Because FQI is policy iteration, we are bound to O(nEi)
if we wish to have an E-step optimization. With single sample updates we can achieve
this without having to sweep over all samples e.g. with smart sample selection such
as prioritized sweeping. Furthermore, for high dimensional problems, the number of
basis functions f is likely to be high. Since the complexity is cubed to f , LSPI quickly
becomes infeasible for high dimensional systems.
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3.5.5 General Algorithm
With the above distinctions, we can construct a framework in the form a general algo-
rithm of RL with sample re-use. Algorithm 3 presents this algorithm. At every time-step
k an actions ak is chosen. After making an action, the new state and reward are observed

Algorithm 3: Sample Re-use RL
Input : RL algorithm Learn, database update algorithm updateD, number of

updates K, batch size L,discount factor γ,learning rate α, exploration
rate ε

1 initialize Q̂ arbitrarily;
2 D ← ∅;
3 for every timestep k do
4 take action ak using policy derived from Q̂;
5 observe sk+1 and rk+1;
6 update sample database: D ← updateD(D, (sk, ak, sk+1, rk+1));
7 if mod(k,L)=0 then
8 update Q-function : Q̂← Learn(Q̂,D,K, γ, α, ε);
9 end

10 end
Output: Q̂

yielding the current sample (sk, ak, sk+1, rk+1). Together with the sample database D,
the sample is used to derive a new sample database with the underlying database algo-
rithm updateD. As we have seen before, for methods without sample re-use, this consists
of the simple operation : D ← {(sk, ak, ss+1, rk+1)}. For methods using all previous sam-
ples but no model learning, this consists of the operation: D ← D∪{(sk, ak, ss+1, rk+1)}.
Algorithm 4 present the database update for model learning. First, the artificial samples
following from the previous model are deleted from the database. Then a new model M̂
is trained on the database. In practice, this can also be done by on-line updating the
old M̂ towards the new sample. Then, n times an artificial sample is generated from the
model and added to D. In the literature, n is usually a number around 10.

After updating the database, every L-th time step D is used to derive a new approx-
imation of the value function. L does not necessarily have to be a pre-defined number,
updating can also be event based, for instance at the end of each episode. Furthermore,
note that for purely on-line algorithms, L = 1.

Algorithms 5 and 6 present the two distinctive learning methods as outlined in Sec-
tions 3.5.1. Algorithm 5 represents methods using single sample updates. Since single
sample updates use gradient descent on parameters, the input of this algorithm is a
parametric value function. K times, a sample is taken arbitrarily from D and is used to
calculate T̂dF (θ)[s, a]. The sample can e.g. be taken in the order of the trajectories of
the episodes or sampled from a uniform distribution over the database. Dyna only uses
the current sample along with artificial samples following from M̂ .

Algorithm 6 shows projection updates of Q̂. With projection updates the value
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Algorithm 4: updateD - model learning
Input : D, (sk, ak, sk+1, rk+1)

1 remove samples from D following from previous model;
2 train model M̂ from D;
3 choose number of artificial samples n;
4 for i = 1 to n do
5 Initialize sm and am;
6 Predict r̂,ŝ′m using M̂ ;
7 D ← D ∪ {(sm, am, ŝ′m, r̂)};
8 end
Output: D

Algorithm 5: Learn-single samples
Input : Q̂(s, a; θ), D, number of updates K, discount factor γ, learning rate α

1 for i = 1 to K do
2 arbitrarily retrieve sample (sd, ad, s′d, rd) from D;
3 determine ad+1 from θ;
4 θi+1 = θi − 1

2α∇θi
([T̂dF (θi)]− [F (θi)](sd, ad))2;

5 end
Output: Q̂(s, a; θ)

function can have any structure, not just parametric. In this type of update, K times,
T̂ ∗Q̂(s, a) is computed for all samples. Any supervised learning method can then be used
to minimize the error between their the target values values in the current approximated
value function Q̂(s, a).

Algorithm 6: Learn-projection
Input : Q̂(s, a), D, number of updates K, discount factor γ, learning rate α

1 for i = 1 to K do
2 compute T̂ ∗Q̂ of all samples in D;
3 use a supervised learning technique to minimize error between Q̂:

Q̂← argmin
Q̂

p∑
d=1

(
T̂dQ̂− Q̂(sd, ad)

)2
;

4 end
Output: Q̂

In Table 3.1 several prominent RL algorithms are shown along with their charac-
teristics inside the framework. These characteristics include the type of update, what
specific Bellman operator is used, the form of the database, the cost function minimizer,
whether it is policy iteration (pi) or value iteration (vi), the computational complexity
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and the representation of the value function.
As can be noted in the table, different ways of minimizing the cost function ĴD

with projection updates, e.g. kernel regression with KADP (Ormoneit and Sen, 2002)
and least squares regression with LSPI (Lagoudakis and Parr, 2003), have yielded dif-
ferent algorithms. In this framework, all these algorithms fit under the FQI iteration
architecture however.

Furthermore, it can be noted that all projection updates are policy iteration and
all single sample updates are value iteration. While it is true that all methods using
projection updates are indeed policy iteration, methods using single sample updates do
not necessarily have to be value iteration: while making updates, the policy can be
fixed until a satisfactory value function has been derived, after which the policy can be
updated.
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30 Sample Re-use

3.5.6 Framework Limitations

At this point, it is important to note that not all RL methods which re-use samples fit in
this framework. This framework considers only sample re-use methods using a action-
value function to store expected values. In the RL literature, there are policy search
techniques which re-use samples to compute policy gradients such as PILCO (Deisonroth
and Ramussen, 2011), a model learning technique or R3 (Hachiya et al., 2009), which
re-uses samples to determine the policy gradient. These methods use no explicit value
function and update the policy directly. Consequently, they are not centered around the
Bellman operator and therefore, the way they use their samples fundamentally different.

With model learning techniques, different ways of action selection have yielded dif-
ferent algorithms such as Dyna-2 and the E3 and R-MAX algorithms (SIlver et al., 2008;
Kearns and Singh, 1998; Brafman and Tennenholtz, 2001). Since this framework covers
general ways of re-using samples, it leaves out any distinctions made by action selection
however.

Furthermore, this framework can easily be extended to actor-critic algorithms using
sample re-use for critic updates. This has for instance been done in (Cheng et al.
2011). Experience replay is possible for actor updates as well, this involves calculating
a direction in which the actor is modified on an average in state s (Wawrzynski, 2009).
This makes learning is not purely centered around applying the Bellman operator and
this method is therefore not considered in this framework.

3.6 Discussion

In this section, the framework presented in this chapter will be discussed. Firstly, the
implications of the type of update and of the composition of sample database will be
discussed. Next, some novel sample re-use methods emerging from the unified framework
will be proposed. Then, some hints will be given regarding what algorithm to choose
for a specific problem. And finally, a sample re-use method to be used for analysis
throughout the rest of this thesis will be selected.

Using either separate sample or projection updates can have several consequences.
The biggest practical differences between single sample and projection updates are con-
cerning stability issues and computational complexity. Stability issues are mainly caused
by unwanted consequences on other parts of the state-action space when making updates
on the error following from single samples (Gordon, 1995). This can results in unpre-
dictable and slow learning depending on the function approximator. This effect can
be prevented with projection updates (Lange et al., 2012). As a rule of thumb, global
function approximators are generally most affected by these issues (Gordon, 1995) and
might therefore require projection updates to yield a satisfactory performance.

A projection update is inherently policy iteration, therefore we are bound to making
sweeps over the entire sample database. This can be very inefficient since not all samples
in the database might result in useful updates. Additionally, it takes an entire sweep
to back-propagate information one step back in temporal order. As we have seen, with
single sample updates we can select our samples arbitrarily and with each update, the
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policy changes simultaneously. Consequently, a single update on the value function
using a single sample can back-propagate information one step back in temporal order.
Furthermore, arbitrary sample selection allows us to avoid making computations with
unhelpful samples. From the literature, there are indeed indications that single sample
updates are generally more computationally efficient. Kalyanakrishnan and Stone (2007)
reported that for similar performance, FQI needed to make far more updates per episode
than ER. Adam et al. (2012) stated that ER, exploits computational efficiency of the
Sarsa or Q-learning algorithm.

We can note several things regarding the sample database as well. Due to restrictions
of computational power or a time variant environment not all previous samples might
be helpful. It is difficult to determine however, the exact sample database needed to get
satisfactory performance so making an educated selection will be difficult.

Considering the use of model, because both M̂ and Q̂ result from the same database
one could argue that patterns found in M̂ can be found in Q̂ as well. However, without
model learning, these patterns might only emerge when Q̂ has converged for the given
data. With model learning, we do not have wait for such convergence since the model
is trained to static outputs. Additionally, a major difference between model learning
and ’pure’ sample re-use, is that model learning has two levels of approximation and
thus two levels of generalization: an approximate model is used to approximate a value
function. This can result in powerful generalization properties but at the same time high
sensitivity to approximation errors.

From this framework, several novel methods emerge. Note that it is difficult to pre-
dict the value of these new methods beforehand. Future experiments should therefore
turn out their usefulness. Firstly, when using a database filled with all samples and the
model, {(sd, ad, sd+1, rd+1)|d = 1, . . . , k} ∪M, old samples might be used for replay as
well, yielding a combination of ER and model learning. One could imagine for instance
ER with interpolation between samples. Additionally, when using model learning, the
value function can be updated with projections. This might solve stability issues de-
pending on the representation of the value function. This would for instance allow us to
use ANNs for the value function in combination with model learning. Furthermore, a
policy iteration variant of ER can be used. From experiments conducted for this thesis
it turned out that this can solve jumping between policies.

One can wonder what algorithm to choose for a specific problem. There is no easy
answer to this but certain hints can be given. First off, a choice between T π and T ∗

can be made. For certain problems it might be useful to learn a safe policy. It has been
shown that using T π can yield a safer policy than learning the optimal value function
directly through T ∗ (Sutton and Barto, 1998). Table 3.1 shows that all methods using
projection updates use an update with T ∗. Gradient descend handles stochastic policies
more natural: with a small learning rate, stochasticity has an averaging effect, gradient
descent in this context is also called stochastic gradient descent (Baird et al., 1999).
Therefore, when using on policy learning, single samples methods may be more suitable.

Among batch RL methods, the performance is purely determined by the supervised
learning technique used to train the value function. It is therefore difficult to predict the
performance of batch RL algorithms in general. We have seen that when using global
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function approximation such as ANNs, projection updates can solve some stability issues
(Ernst et al., 2005; Riedmiller, 2005) but might increase computational complexity. Ad-
ditionally, if tuning parameters is problematic, non-parametric function approximation
might be considered. Therefore, when the benefits of a global or non-parametric function
approximation scheme outweigh the costs of possible extra computations, batch RL can
be a valuable option.

A choice between learning a model and using old samples is not an easy one as well.
It depends on the problem whether an accurate model can be learned without needed an
excessive amount of samples. It is more easy to determine when not to use model learning
however. It is known that the biggest downside of model learning is model errors(Sutton
et al., 2008). Real world problems often have non-Markov effect and discontinuities
which are difficult to represent. These can be a major source of approximation errors.
This can be particular destructive the performance of model learning techniques and
this effect should therefore be kept in mind when deciding on model learning.

To select a suitable sample re-use technique for the rest of this thesis, several prop-
erties are preferred. Firstly, it should be feasible in term of computational complexity to
execute experiments with the algorithm. Secondly, methods which are compatible with
the tile coding are preferred. This is because considerable work tuning the tile coding
parameters on both the simplest walker and LEO has already been done by Schuitema
(2012). And thirdly, we prefer methods which are transparent or allow easy analysis.

In the remainder of this thesis, ER with tile coding shall be used to evaluate and ana-
lyze the performance of sample re-use on walking problems. Kalyanakrishnan and Stone
(2007) showed that tile coding combined with FQI has shown to perform less well than
with ER in Keepaway soccer (Stone et al., 2005). Furthermore, ER is advantageous in
respect of computational complexity since it allows great control over the computational
requirements. Additionally, because the black box nature of batch RL makes analysis
difficult (Fonteneau et al., 2012) single samples updates seems more suitable. Tile cod-
ing is not a global function approximator. We can therefore assume that updates with
single sample can be made without risking unwanted effects in other part of the value
function. And finally, we shall not be using model learning. Work has been done on
model learning on LEO in the Delft BioRobotics Lab, which has not yet succeeded. It
will therefore not be attempted in this thesis.
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Chapter 4

Empirical Analysis of Experience
Replay

Now that a suitable sample re-use method is chosen (Experience Replay (ER)) we can
compare its performance to that of Sarsa(λ). Numerous studies have shown that ER
has a superior performance to classical methods such as Sarsa (Lin, 1992; Smart and
Kaelbling, 2000; Dung et al., 2008; Adam et al., 2012). To the best of the author’s
knowledge, no studies show the performance of ER in comparison with Sarsa(λ) however.
In this thesis, this will be done with three experiments: simulations of the inverted
pendulum, the simplest walker model (Garcia et al., 1998) and LEO.

In the first section of this chapter a specific replay method will be selected. Then,
the experimental setups will be discussed in detail. Next, the results will be presented
followed by a discussion.

4.1 Replay technique

As mentioned in Section 3.2 there exist several ways of presenting the data to the un-
derlying solving algorithm. First of all, samples can be drawn from the database inde-
pendently and randomly. Secondly, samples can be drawn from the database in form of
trajectories. In this technique, trajectories are drawn randomly from the database, and
for the chosen trajectory, the samples will be drawn in their temporal order. And lastly,
the samples can be drawn in trajectories with samples drawn in their reversed temporal
order.

Lin (1992) suggested that replaying in reversed temporal order is an effective method
because a reward can be back-propagated through the entire trajectory with a single tra-
jectory replay. If we would replay the trajectories in temporal order, multiple trajectory
replays would be needed to back-propagate a reward. To the best of my knowledge it
has never been shown that reverse trajectory replay is actually more effective per sam-
ple replayed however. To test this, the following experiment was done on the inverted
pendulum (Section 4.2.1). First, a database of samples was collected with the Sarsa(λ)
algorithm until 200 episodes have been completed. After this, ER with random samples,
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trajectories and reversed trajectories was used on the database to learn a policy. After
a set amount of replays, the performance of these policies were evaluated.

Full details and the results of this experiment can be seen in Appendix A. As can be
seen in the results, trajectories in temporal order clearly performed worse than reversed
trajectories and separate samples. Additionally, one can observe that reversed trajecto-
ries was slightly better than separate sample. Therefore, in the remainder of this thesis,
ER with reversed trajectories will be used.

Each sample replay, the next action a′ has to be determined in order to make an
update. In (Lin, 1992) and (Adam et al., 2012), either the current policy or greedy
action selection was used. The former method is called ER-Sarsa (on-policy) and latter,
ER-Q-learning (off-policy). In this thesis we will be using ER-Sarsa. This is mainly
because we are comparing with a on-policy algorithm. We are not so much interested
in the effect of using an off-policy algorithm on LEO. The resulting ER algorithm to be
used for comparison is listed as Algorithms 7 and 8 in Appendix C.

Another, more primitive way of replaying samples is with the same policy as when
they were encountered. In this case, a transition can be stored in the form of: (sk, ak, sk+1, ak+1, rk+1)
with which updates can be made. This is a naive approach however, since ak+1 might
no longer be the optimal action at state sk+1 at the time of replay. This especially holds
for samples from early stages in the learning process.

4.2 Experimental Setups
In this section, the experimental setups which will be used to evaluate the performance
of ER and Sarsa(λ) will be discussed. In this thesis, three setups were used. Simulations
of the inverted pendulum, the simplest walker and LEO.

Apart from having a higher dimensionality, the walking problems have some other
significant differences from the pendulum. Firstly, the system is initialized in an unstable
position. By taking steps it moves from one unstable position to another. Failing to
do this, will immediately lead to a failed episode. In fact, the robot either succeeds by
making a step or fails by falling down. The second major difference is: with walking,
success and failure are very close to each other, there is often little room for error. And
thirdly, on a walking problem rewards will generally be event based, i.e. rewards will be
administered as so-called box-rewards instead of through a continuous reward function.
For walking, these are typically positive rewards for making steps and punishments for
when the learner falls.

4.2.1 Inverted Pendulum

The inverted pendulum (Figure 4.1) was chosen to include a non-walking, low-dimensional
and commonly used problem. It consists of a pendulum which is initialized pointing
down. The learning task is to move the pendulum from the initial position to pointing
up. A torque can be applied on the joint but it is not strong enough to directly rotate
the pendulum to its up position. The agent has to learn to swing back and forth to
gather enough momentum in order to swing the pendulum up.
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Figure 4.1: The pendulum

Table 4.1: Inverted pendulum model parameters

Model parameter Symbol Value Units
Pendulum mass m 1.113 kg
Pendulum inertia J 3.773 · 10−3 kgm2

Gravity g 9.81 m/s2

Pendulum length l 8.5 · 10−2 m

The pendulum has been modeled in Open Dynamics Engine (ODE) in a Matlab
environment developed in the Delft BioRobotics Lab (MatODE). The model parameters
are listed in Table 4.1.

The state consists of the angle and angular rate of the joint: s = [ϑϑ̇]T . The torque
is discretized into 7 actions and the reward function is the following:

r = −5ϑ2 − 0.1ϑ̇2 − a2 (4.1)

With this reward function, states away from s = [00]T are punished exponentially. In
addition, we can see that actions are punished. This is done to promote efficiency.

In the conducted experiments, tile coding function approximation was used with 16
tilings with a tile width of 0.33 rad and 0.33 rad/s respectively. The sampling period
is 0.01 seconds, the learning rate α = 0.2, the discount factor γ = 0.98 and exploration
rate ε = 0.1. For Sarsa(λ), the trace decay factor λ = 0.92. After every episode, 10
times the number of trajectories in D are replayed. An episode lasts 15 seconds or when
the goal is reached. Every episode, the cumulative reward is recorded.
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4.2.2 Simplest Walker

The simplest walker model (Garcia et al., 1998) consists of two rigid legs with a mass
located at the hip. The feet have an infinitesimal mass and the legs are massless. The
walker consists of a stance leg, which makes contact with the floor and a swing leg which
exhibits a pendulum-like behavior from the hip (Figure 4.2). In order to walk without
knees, the walker must be allowed to touch the ground without friction at mid-stance.
When a step is made, the swing leg becomes the stance and vice versa. This way, the
symmetry of walking is exploited. The state of the system consists of 4 dimensions.
Namely, the angle and the angular rate of the stance leg with the ground and the angle
and the angular rate of the swing leg relative to the stance leg:

s =


φst
φh
φ̇st
φ̇h

 (4.2)

where subscripts ‘st’ stands for stance and ‘h’ for hip. The dynamics of the system can
be described by a hybrid system with the following equations of motion:[

φ̈st
φ̈h

]
=
[

sin(φst − µ)
sin(φh)(φ̇2

st − cos(φst − µ)) + sin(φst − µ)

]
(4.3)

where µ is the inclination of the floor, which is 0.004rad. The landing of the foot of the
swing-leg (heelstrike) can be modeled by the following map:


φ+

st
φ+

h
φ̇+

st
φ̇+

h

 =


−1 0 0 0
−2 0 0 0
0 0 cos(2φ−st) 0
0 0 cos(2φ−st)(1− cos(2φ−st)) 0



φ−st
φ−h
φ̇−st
φ̇−h

 (4.4)

which is applied once each time φst = 2φh and φst < 0. The superscript + indicates
state values after the map, superscript − are state values before the map. By inspecting
Equation 4.4, we can see that some energy is dissipated in the form of a slight decrease
of the angular velocities of the legs at each step.

The simplest walker is a passive walker. This means that under certain initial con-
ditions, and given that the slope of the surface is inclined, the walker can have a stable
walking mode without needing any actuation. These initial conditions are very strict
however (Schwab and Wisse, 2001). Fortunately, actuation on the hip joint can be used
to increase the domain of attraction and increase walking speed. Because the feet and
legs are massless, in practice the actuation is an angular acceleration added to φ̈h. The
agent can choose its actions ranging from -1.2 to 1.2 rad/s2 in 15 uniformly spaced steps.

At the beginning of each episode, the walker is initialized with random variations of
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Figure 4.2: The simplest walker model. Note that φst is an absolute angle and φh a
relative one.

Table 4.2: Tile widths used in the tile coding function approximation of Q(s,a) for the
simplest walker

φ φ̇

Stance leg 0.10 rad 0.11 rad/s
Hip joint 0.10 rad 0.21 rad/s

Master of Science Thesis B.Vennemann



38 Empirical Analysis of Experience Replay

the following state:

s =


0.1534 rad
0.3068 rad
−0.1561 rad/s
0.0073 rad/s

 (4.5)

The distribution of states is defined so that the walker always has enough energy to start
walking.

Each episode last 100 seconds or until the walker falls down; falling is defined when
the hip mass touches the ground. At every footstep, the agent receives a reward of
50 for every meter footstep length. At every fall, the agent receives a reward of -50.
Additionally, every time-step is slightly punished with -1 to encourage walking speed.

Tile coding with 16 tilings is used to approximate the value function with tile widths
as listed in Table 4.2. The sampling time is 0.2 seconds, the time discount factor γ = 0.99,
the exploration rate ε = 0.05 and the trace decay factor λ = 0.92, these value are
taken from (Schuitema, 2012). The learning α is 0.2. This value was manually tuned.
Schuitema originally used a learning rate of 0.4 for the simplest walker, a learning rate
of 0.2 yielded better performance with ER however.

After every step or fall, 100 trajectories are replayed. Increasing this amount showed
no significant performance increase while computational time rose linear. After every 100
seconds of learning time, a series of 10 evaluation runs without learning and exploration
of 100 seconds was performed. Each evaluation run, the walking distance is recorded.
After 10 runs, the average of the distance is taken. This is done because the initial
conditions influence the walking speed of the simplest walker. Taking the average over
multiple evaluation runs will therefore give a more accurate indication of the performance
of the learner. Additionally, the number of falls were recorded during the learning
process.

4.2.3 LEO

LEO is a real, high dimensional walking robot. In this thesis, a simulation of LEO shall
be used. The reason for this is that learning with Sarsa(λ) on the real robot is very
impractical due to hardware wear. This makes comparison of ER with Sarsa(λ) on the
actual robot impractical as well.

LEO is modeled in the rigid body dynamics simulator Open Dynamics Engine (ODE)
by Schuitema (2012). In the simulation the boom is modeled by an extra mass at the
hip. Figure 4.3 shows the simulated environment.

To reduce the state-action space to a more feasible dimension, the ankle actuators
are controlled so that the feet remain parallel with the ground. The resulting state space
spans 10 dimensions. Namely the angle and angular rate of the torso, the hip joints of
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Figure 4.3: Simulation of LEO in several situations occurring in the learning process. The
initial configuration (a) is varied slightly each episode. (b) shows a still of a successful
gait. In (c), the robot is doomed to fall.

both legs and knee joint of both legs:

s =



φtorso
φ̇torso
φst.hip
φ̇st.hip
φsw.hip
φ̇sw.hip
φst.knee
φ̇st.knee
φsw.knee
φ̇sw.knee



(4.6)

The learn-able actuators are situated at both hip joints and in the knee of the swing
leg. They are are discretized into 7 actions, yielding 73 = 373 different actions to choose
from.

A walking episode lasts for 25 seconds or when the robot is doomed to fall. The robot
is doomed to fall when the torso angle is too large, |φtorso| > 1.0rad (see Figure 4.3) or
when the stance leg angle becomes too large, |φtorso + φst.hip| > 1.13rad (Schuitema,
2012). At the beginning of each episode, the robot starts with small random variations
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Table 4.3: Tile widths used in the tile coding function approximation of Q(s,a) for LEO’s
learning task

φ φ̇

Torso 0.14 rad 5 rad/s
Stance hip 0.28 rad 10 rad/s
Swing hip 0.28 rad 10 rad/s
Stance knee 0.28 rad 10 rad/s
Swing knee 0.28 rad 10 rad/s

of the following state: 

φtorso
φ̇torso
φst.hip
φ̇st.hip
φsw.hip
φ̇sw.hip
φst.knee
φ̇st.knee
φsw.knee
φ̇sw.knee



=



0.10 rad
0 rad/s
0.10 rad
0 rad/s
0.82 rad
0 rad/s
0 rad

0 rad/s
−1.27 rad

0 rad/s


(4.7)

The sample time is 1/30s, the discount factor γ = 0.996 and an exploration rate
ε = 0.05 and with Sarsa(λ), the eligibility trace decay factor λ = 0.859. Tile coding with
binary basis functions are used with 16 tilings with tile widths as listed in Table 4.3.
These values are directly taken from (Schuitema, 2012) who spend considerable time
tuning these parameters.

Also taken from (Schuitema, 2012), is the reward function. The agent receives a
reward of 300 m−1 of positive displacement of the swing foot and -300 m−1 for negative
displacement. When the robot falls, a reward of -125 is given. Time and energy usage are
punished with -1 every time step and -3 J−1 of electrical work. Note that this function
was extensively tuned to work well with Sarsa(λ). This took a considerable amount of
work and due to time limitation we did not attempted to alter it.

On the experiments on LEO, it turned out that using ER while exploring with
Sarsa(λ) in between replays, yielded a better sample database in terms of percentage of
the state space visited, and thus better results than when using ER alone. Therefore,
Sarsa(λ) is used to gather samples in between replays.

After every 100 episodes, 1500 trajectories were replayed. After each 200 seconds
of simulated learning time a test run of 25 seconds was performed without exploration.
During this test run, the walked distance was stored. Additionally, the cumulative
number of falls was stored during learning.
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4.3 Results and discussion

Figure 4.4 presents the results of Sarsa(λ) and ER on the inverted pendulum, the simplest
walker and LEO. The Sarsa(λ) algorithm can be found in Section 2.6.3, the used ER
algorithm is listed as Algorithms 7 and 8 in Appendix C. The graph of the inverted
pendulum shows the total accumulated reward against the number of episodes. The
graphs of the simplest walker and LEO show the traveled distance over 100 and 25
seconds respectively, against learning time. Each graph shows the average of 20 runs
with a 95% confidence interval of the average.

We can observe from the results that learning with ER is clearly faster on the inverted
pendulum. However, for the simplest walker and LEO, the performance of ER is worse
than that of Sarsa(λ). Typical runs of Sarsa(λ) and ER on the simplest walker and
LEO are shown in Figure 4.5. While performance is initially good in most learning runs,
learning with ER is generally slower and very unpredictable compared to Sarsa(λ). Most
runs exhibit typical drops in performance on both the simplest walker and LEO shown
in Figure 4.5. Additionally, some runs with ER on LEO failed to find a successful policy
altogether within reasonable time. Seemingly, ER distorts learning in some way and this
effect is most profound on walking tasks.

In Figure 4.6, the typical behavior of the simplest walker resulting from both algo-
rithms is shown. In the figure, the angle of the stance leg and the hip joint are plotted
against time. Additionally, the height of the foot of the swing leg is plotted. For inter-
pretation of this figure, it is important to note that a successful step is very similar to
an unsuccessful one on the simplest walker. This is illustrated in Figure 4.7. In fact,
whether or not the walker makes a step can be an infinitesimal difference.

In the figure we can see that only a slight change in how high the foot is lifted from
the ground, can result in a fall. The height of the foot gives an indication of how ’safe’
a given trajectory is. By lifting the foot higher prior to each step we are further away
from the infinitesimally thin devision line between success and failure. We can see that
the behavior following from ER, hardly lifts is foot from the ground. This is an unsafe
strategy: there is little margin for error and at some point the walker will fail to lift
its foot high enough and it will fall. Indeed, many of these type of falls were observed
and the walker seemed to only slowly to learn from them. This behavior was still visible
even after a relative high number of successful episodes. In contrast, Sarsa(λ), learned
a more safe policy. As can be seen in Figure 4.6, the walker clearly lifts it foot much
higher before heel-strike when compared with the behavior following from ER.

With LEO, unsafe trajectories are more difficult to identify due to the higher com-
plexity. However, some additional issues were be observed. Sometimes during learning,
the simulated robot tended to stand still or balance without any intention of walking
forward. The agent only slowly seemed to unlearn this behavior. Again, these problems
did not occur with Sarsa(λ).

From these observations it can be concluded that on the walking problems, ER
fails to derive a successful policy even if the given data contains successful trajectories.
Failure of ER and batch RL to produce optimal policies even if the data contains (near-
)optimal trajectories been reported several times before in the literature (Fonteneau
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(a) The inverted pendulum

(b) The simplest walker

(c) LEO

Figure 4.4: Performance of Sarsa(λ) and ER on the compass walker. The solid and
dotted line represent the mean of 20 runs, the shaded area represent the 95% confidence
interval of the average.
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(a) The simplest walker (b) The simplest walker

Figure 4.5: Typical runs of Sarsa(λ) and ER on the simplest walker and LEO, illustrating
unpredictable learning with ER.

Figure 4.6: Typical learned evolution of the angle of the stance leg, the hip joint and of
the height of the foot of the simplest walker. One can observe that the policy following
from ER hardly lifts its swing foot from the ground, indicating the unsafeness of the
behavior.
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Figure 4.7: Drawing of the simplest walker with typical trajectories of the foot. The
solid green line represents a successful step, the dotted red line is a fall indicating the
similarity of success and failure. If the foot is not lifted enough from the ground, the
foot will not land on the ground resulting in a fall.

et al., 2012; Kalyanakrishnan and Stone, 2007, 2011). Fonteneau et al. (2012) reported
observing unsafe policies as well. This time, in a puddle world problem and with FQI.
Furthermore, batch RL in combination with tile coding has no guarantee to converge and
has been shown to sometimes diverge, especially with an incomplete data set (Timmer
and Riedmiller, 2007; Kalyanakrishnan and Stone, 2007). Lin (1992) examined the issue
of so-called over-training,which occurs when the same experiences are used far too many
times, saying that a value function can become too specific to that experience, which
usually harms generalization.

While these problems have been reported clearly, little knowledge on the working
principles behind them exists. In the following chapter, the issues causing the problems
outlined here will be addressed.
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Chapter 5

Issues with ER on walking problems

In the previous section, we observed unsafe behavior of the learner on the simplest walker
and reported balancing or still standing behavior of the learner on the simulation of LEO.
This chapter will analyze the issues causing this behavior and propose solutions to solve
them.

Due to the high amount of samples replayed and the high dimension of the state-
action space, analysis of the issues when learning with ER is difficult on the simplest
walker and LEO themselves. Additionally, because of the complexity of these problems,
they might possess a multitude of confounding effects making it difficult to draw con-
clusions. Therefore, we will illustrate and analyze these issues with a simple grid world
inheriting some characteristic of walking. The analysis will be done by visualizing typical
Q-functions arising when using ER on this grid world. Visualizing the Q-function can
give valuable insight in the learning process, and because the state dimension of a grid
world grid world is 2 (x− and y−coordinate), this can be done easily.

The first section in this chapter will introduce the grid world and present typical
value functions of ER and Sarsa(λ). Section 5.2 will discuss the first of two issues,
regarding replaying with uncertain Q-values. Section 5.3 will discuss the second issue,
concerning emerging local maxima. For both these issues a solution will be proposed
and typical value functions with the new algorithms will be presented. Finally, Section
5.4 will show typical value function when both solutions are combined.

5.1 Grid world

Figure 5.1 presents the grid world which will be used throughout this chapter. It is
a windy grid world with a cliff at one size and a goal state at another. The agent is
initialized at S and the goal is to navigate safely and as quickly as possible to the highest
reward possible. The wind only applies at and above the striped line and causes the
agent to be blown towards the cliff. Out of the wind, the agent can make king’s moves.
In the windy area, any action results in standing still or going one tile towards the cliff,
see Figures 5.1b and 5.1c. Consequently, once the agent is above the striped line, it is
doomed to fall from the cliff. The reward for reaching the goal gets higher for reaching
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(a) The windy gridworld.

(b) King’s moves

(c) Windy moves

Figure 5.1: (a) shows a drawing of the windy grid world which allows analysis of issues
arising when applying ER to walking problems. It has some characteristics of a walking
problem such as box-rewards and closeness of success and failure. (b) shows the moves
the agent can make out of the wind, (c) shows the possible moves in the windy area.

the goal closer to the cliff. A reward is given of 50 at the most northern state, down
linearly to 0 at the most southern state. To promote finding the quickest route, the
agent receives a punishment of -1 each time step. The features described above give the
grid world some of the characteristics of a walking problem: it contains box-rewards,
success and failure are close to each other (especially in the top right corner) and certain
regions in the state-space are doomed to lead to failure.

In the experiments on the grid world, ER is used after every episode. Each replay, 10
times the current amount of trajectories are replayed. The discount factor γ = 0.98, the
exploration rate ε = 0.05 and the learning rate α = 0.25, these are values commonly used
in RL literature. Two cases will be considered: with and without function approximation.
Tile coding will be used with 16 tilings and tile widths of two times the width of a grid.

Figure 5.2 shows typical value functions of separate learning runs with and without
using function approximation. The value functions are captured shortly after the goal
state has been discovered. Typically at this stage, the agent has already explored a large
portion of doomed to fall area.

In both cases (Figures 5.2a and 5.2b),we can observe that the punishment of falling
is not back-propagated through the doomed to fall area. In fact, only a small portion of
the windy area shows to have a negative expected return. This is remarkable since all
trajectories entering this area end up falling in the cliff. Without function approximation,
most of the doomed to fall region is still at the initialized value of 0. When using ER
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(a) no function approximation (b) tile coding function approximation

Figure 5.2: Typical projected value functions of the grid world using ER with (a) and
without function approximation after the goal has been discovered. Illustrates the lack of
back propagation, and generalization into the windy area with function approximation.

with function approximation (Figure 5.2b), the situation is even worse. Again we can
see the poor ability of ER to back-propagate punishments but this time, instead of not
only failing to back-propagate the punishment, some states in the doomed-to-fall area
have positive expected rewards. Consequently, the value function shows no clear line
marking the beginning of the windy area.

We can conclude that ER fails to back-propagate the punishment of failures. In
fact, it can be observed that ER only learns from rewards higher than the initialized
value. With function approximation, the agent does not only fail to back-propagate
punishments, it generalizes positive rewards into the doomed-to-fall area. Because of
these issues, ER typically yields a value function resulting in a failing policy leading
straight towards the cliff. This explains unsafe behavior following from ER observed on
the simplest walker.

In contrast, Figure 5.3a shows the value function of Sarsa(λ) in a similar situation.
One can observe that with Sarsa(λ), the issues outlined above do not occur. The pun-
ishment is clearly back-propagated to the initial state and there are no positive expected
rewards in the windy area.

As we will see, the issues described here are a result of ER replaying with uncertain
Q-values caused by an incomplete sample database. Initialization causes the algorithm
to be optimistic in the face of uncertain Q-values. This effect causes ER to forget
trajectories leading to falls and generalize positive rewards of the goal state into the
doomed-to-fall area. Section 5.2 will discuss this in detail and present a new algorithm
to solve these issues.

When using function approximation, a second problem can be observed: sometimes
local maxima show up in the value function. Mostly, these local maxima quickly disap-
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(a) no function approximation (b) tile coding function approximation

Figure 5.3: Typical projected value functions of the grid world using Sarsa(λ) after the
goal has been discovered, with and without function approximation. Illustrates that
Sarsa(λ) does back-propagate the punishment and does not produce positive rewards in
the windy area.

pear but in some circumstances, they might grow to extremely large values. On the grid
world, this mostly happens with high learning rates (α >0.3) or when replaying a long
time without gathering new samples. Figure 5.4 shows two value functions with local
maxima.

The local maxima, illustrated in Figure 5.4, are caused by updates on state-action
combination which affect their own Q-value. This, together with approximation errors,
can cause an avalanche effect resulting in rising Q-values. In Section 5.3, this will be
discussed in detail. Along with this, a sample re-use variant of a solution to this problem
suggested by Baird (1995) will be proposed.

5.2 Failing back-propagation

This section will discuss the inability of ER to back-propagate punishments and the
observed generalization of positive expected values into the windy area. Firstly, the
details of the process involved will be discussed. Next, a new algorithm will be proposed
to address these issues.

5.2.1 Attitude towards uncertainty

Consider a value function initialized at zero and a database of samples containing several
trajectories leading to a fall. Of a certain sample at state-action combination (s, a), the
expected value corresponding to next action a′1 at next state s′ has been updated to a
negative value due to a fall. All the other state-action combinations in {(s′, a′)|a′ ∈ A}
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(a) (b)

Figure 5.4: Typical projected value functions of the grid world using ER after the goal
has been discovered, showing local maxima in the value function. These maxima can
grow to large values. In these cases, old samples were replayed a relatively long time
without gathering new samples.

are unvisited and remain at their initialized expected value. An update on Q(s, a) will
then result in an update towards target value 0, since the Bellman operator will select an
unvisited action in max

a∈A
Q(s′, a). This will happen because the visited state-action pair

has a lower value then the initialized value of 0. However, the values of the unvisited
state-action pairs are not based on any actual experience and has thus carry no real
information about the environment. Consequently, ER will back-propagate with a value
initialized by the user while the actual future reward of that unvisited state-action pair
remains uncertain.

This is an example of when the algorithm replays with an optimistic Q-value. Con-
sequently, this will result in an agent which expects it can ‘save’ itself by choosing an
unvisited action. In other words, it is optimistic in the face of uncertainty. Because of
this, the algorithm prefers to replay with uncertain Q-values over values having a low
expected value. We can state that the initialization of the value function dictates the
attitude towards uncertainty. If the value function is initialized with high values, the
algorithm will favor uncertain state-action pairs. If it is initialized with low values, it
will favor certain or visited state-action pairs. This effect will cause the punishment
is not back-propagated to previous state-action combinations is the value function is
initialized optimistically, i.e. with values higher than the expected punishments. Note
that when every state-action combination is visited, this problem does not occur. Thus,
if there is lack of data of Q(s′, a′)-values along a doomed trajectory, and these values are
initialized with optimistic values, ER will fail to back-propagate punishments.

As we have seen in the previous chapter, the problem discussed here does not occur
with Sarsa(λ). Sarsa(λ) updates the entire followed trajectory when the agent arrives at

Master of Science Thesis B.Vennemann



50 Issues with ER on walking problems

a fall. This makes it is closer to a Monte Carlo update (Sutton and Barto, 1998). Monte
Carlo updates are updates based on the outcome of the entire trajectory. Therefore,
it punishes the entire trajectories leading to falls automatically. It does not matter if
a Q(s′, a′)-value that Sarsa(λ) uses for an update is uncertain, because the agent will
evaluate them in the environment and update them accordingly. It is therefore that
Sarsa(λ) does back-propagate punishments regardless of the initialization of the value
function.

In Figure 5.2b in the previous section, we observed generalization of positive rewards
into the doomed-to-fall area. In areas where success and failure are close to each other,
positive rewards might be generalized to state-action pairs leading to failure. If the
algorithm is optimistic towards uncertainty, these generalizations are easily ‘accepted’
into areas leading to failure. In other words, a positive expected value of a safe state-
action pair might be generalized to an unsafe state-action pair. Due to optimism in
the face of uncertainty, the ER algorithm select this value for replay even though that
particular (s′, a′) will lead to a fall eventually. Additionally, with an incomplete data
set, large approximation errors of the Q-values of unvisited (and therefore uncertain)
state-action pairs might arise. With tile coding this usually occurs when close state-
action pairs, have a large variance in their expected values. When optimistic in the
face of uncertainty, these errors are more often used for replay then when we would be
pessimistic in the face of uncertainty. This can result in a built-up of approximation
errors resulting is wrong Q-values.

In the next section, a new algorithm called ER-σ will be proposed to deal with the
issues outlined here.

5.2.2 ER-σ

Since the initialization of the value function determines the attitude towards uncertainty,
an obvious solution seems to be to initialize the value function pessimistically, e.g. with
a value lower than the to be expected rewards. However, this gives rise to some new
problems. Firstly, we lose optimistic exploration. Optimistic exploration occurs when
the value function is initialized with values higher then the to be expected rewards.
When the agent takes a certain action, its received reward will almost certainty be lower
than the initialized values. Therefore, actions not already taken before will have a higher
expected value than actions already taken. And thus, unvisited state-action combina-
tions will often be favored to visited ones. This type of exploration has shown to be
an effective way of increasing learning speed (Sutton and Barto, 1998). Otherwise, pes-
simistic initialization would work well if we would not be using function approximation.
In this section we will see that with function approximation, pessimistic initialization
results in ineffective back propagation of positive rewards. This is due to the fact that
the algorithm will now back-propagate only through state-action pairs actually visited.
In other words, because ER is now pessimistic in the face of uncertainty and will therefor
take less ‘chances’. We will show that the new algorithm proposed in the next section
will back-propagate positive rewards more effectively than pessimistic initialization.

If we desire back-propagation of punishments but at the same time efficient spreading
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of positive rewards, the algorithm should be optimistic when the agent is in the safe
areas but pessimistic when it is in the windy area. That is, the attitude of the algorithm
towards uncertainty should be dependent of the state. This way, the algorithm will back-
propagate punishments and still take chances when it is safe to do so. We hypothesize
that this will increase sample efficiency on the simplest walker and LEO with respect to
vanilla-ER.

In order to do this, we will introduce a measure for uncertainty u of a certain Q(s′, a′)-
value and a function σ to determine to what extend to be optimistic or pessimistic. In the
following, u and σ will be derived for linear function approximation. With linear function
approximation, uncertainty of Q(s′, a′) can be measured by the degree of features that
have been visited of that state-action pair (s′, a′). To what extent a state-action pair is
visited, can be stored in a function similar to the value function. This function, W , is
defined by a parameter vector w and the same feature vector as the state-action value
function φ: W (s, a) = wTφ(s, a).

By setting the value of W at every state-action combination we visit, to the value of
the total feature membership, we keep track of the total visited feature membership over
the state-space. This can then be used to determine the uncertainty of a Q(s′, a′)-value.
At state sk after taking action ak, the value of W at that state-action pair is set as:

W (sk, ak)←
∑
i

φi(sk, ak) (5.1)

The parameter update rule will then be:

wk ← wk ∨ φ(sk, ak) (5.2)

where ∨ is the maximum operator. By comparing the value of W (s, a) with the total
membership of (s, a) possible ∑i φi(s, a), we get a degree of how ’visited’ state-action
combinations are. The less ’visited’ a state-action combination is,the more uncertain
its Q-value is and therefore, the more it resembles the initialized value. For a some
state-action combination (s, a), we can define the uncertainty factor u can be as:

u(s, a) =
∑
i φi(s, a)−W (s, a)∑

i φi(s, a) (5.3)

This resembles the share of features of a certain state-action combination which is
not visited: u = 0 for state-action combinations actually visited and u = 1 if none of the
features have been visited by any degree. In the latter case, that particular Q-value will
still be at the initialized value. Since we want to get rid of the effect of initialization on
replay, we will replace values corresponding to unvisited features with something more
sensible. Specifically, a value σ(s′) as function of the current state indicating the safeness
of that particular state s′. With this function, updates can be made with the following
target value:

T = r + γmax
a′∈A

(
Q(s′, a′) + u(a′)σ(s′)

∑
i

φi(s′, a′)
)

(5.4)
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provided that θ is initialized with all zeros. This is not required, but for simplicity of
notation this assumption is made in this section. By using the target value of Equation
5.4, we will effectively replay with a Q(s′, a′)-value in which the unvisited parameters
have been replaced with the value of σ(s′). By doing so, our attitude towards uncertainty
no longer depends on the initialization of the Q-function but it is now a function of the
next state s′.

σ(s′) can be used to exploit the information available to us in state s′. To do this, the
value of σ(s′) will be determined by looking at the expected future reward of the visited
actions in state s′. That is, we can assess the safeness of a state using the expected
values of known actions in state s′. Practically, this means that σ can be computed with
the values of the parameters corresponding to the visited features of any action in s′.

To find a suitable definition of σ(s′), we will consider three basic possibilities. Firstly,
σ(s′) can be determined by assuming the worst case scenario: σ(s′) = min

a
(Q(s′, a)/W (s′, a)).

Secondly, the best case scenario can be assumed: σ(s′) = max
a

(Q(s′, a)/W (s′, a)). And
thirdly, the average of the visited parameters over all actions can be taken: σ(s′) =∑
a
Q(s′, a)/∑

a
W (s′, a). Additionally, we shall be considering interpolations between the

worst case σ and the average σ and between the best case σ and the average σ. These
possibilities are chosen because of two reasons. They consist of simple operations, keep-
ing the computational load low. And secondly, they contain no tunable parameters.

In Appendix B, the above definitions of σ have been evaluated on the simplest walker.
Looking at the results we can observe that there is an optimum between assuming the
value of worst case action and taking average of the value of the visited actions. Following
this result, in the remainder of this thesis this particular definition of σ will be used.
Algorithms 9 and 10 in Appendix 10 shows the new ER algorithm in pseudo code. This
algorithm will be called ER-σ throughout the rest of this thesis.

We expect that this algorithm results in back-propagation of punishments and at
the same time, effective back-propagation of positive rewards. To test this hypothesis,
the new algorithm is applied on the same sample database and the exact same sample
replays as was done to yield the value functions of Figure 5.2. In Table 5.1 resulting
value functions of the new ER algorithm (ER-σ) are shown. It is visible that the new
algorithm indeed back-propagates the punishments through the doomed-to-fall area.
Additionally, no positive rewards can be found in this region of the state-action space
when using function approximation. Consequently, ER-σ yields a safe policy since no
positive reward will cause the agent to navigate to the windy area. Furthermore, the
table shows that ER-σ back-propagates the positive reward though the state-action space
more effectively than vanilla-ER: with ER-σ the reward of the goal has spread through
a bigger region of the state-action space. This effect is also visible when compared to
ER with pessimistic initialization, see Figure 5.5. In Chapter 6 the results of ER-σ on
the benchmark problems will be presented.

Summarizing, this section discussed the issue of failing back-propagation due to
optimism in the face of uncertainty. Being optimistic in the face of uncertainty during
replay can result in unsafe policies. We argued that this optimism is a result of the
initialization of the value function. A new algorithm was proposed, ER-σ, which makes
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Table 5.1: Typical value functions of applying ER and the new ER algorithm (ER-σ)
to the grid world. The punishments resulting from falling are back propagated properly
with ER-σ. With function approximation positive reward are not generalized into the
doomed-to-fall area resulting in value function yielding safe policy. Additionally, because
optimism causes close state to have a high variance in target values, vanilla-ER exhibits
more approximation errors. Per row, the same data set is used and the exact same
samples are replayed.
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(a) ER with pessimistic initialization. (b) ER-σ

Figure 5.5: Typical projected value functions of the grid world using ER with pessimistic
initialization and with the new algorithm ER-σ, indicating slower and more narrow
back-propagation of goal-state rewards with pessimistic initialization. Pessimistic ini-
tialization causes the algorithm to be distrustful of generalization and will thus only
back-propagate through actual visited trajectories. The same data set is used and the
exact same samples are replayed.

the attitude towards uncertainty a function of the next state s′ through function σ(s′).
A definition of σ(s′) has been found by evaluating several options on the simplest walker
and selecting the one yielding the best performance. On the grid world, this algorithm
results in back-propagation of punishments while effective propagating positive rewards.

5.3 Local maxima in the value function
This section will discuss the local maxima emerging in the value function as can be
observed in Figure 5.4. Firstly, the details of the process involved will be discussed.
Next, a new algorithm will be proposed which combines an earlier found solution with
ER.

5.3.1 Self-affecting states

Experience replay produces more problems when two succeeding states sk and sk+1 are
close to each other. In this case, due to function approximation, an update on Q(sk, ak)
can directly influence the value of Q(sk+1, ak) due to generalization. If max

a∈A
Q(sk+1, a) =

Q(sk+1, ak), the update on Q(sk, ak) will then influence its own target value. For in-
stance, consider that Q(sk, ak) is increased in value by an update during replay. Now
assume that due to function approximation, Q(sk+1, ak) also increases in value by this
update. The next time Q(sk, ak) is updated, it will again be increased in value because
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(a) Positive reward (b) Negative reward

Figure 5.6: Q-values of a self-affecting state on the grid world. In case (a), the values
are initially 0 and the reward is positive: Q(sk, ak)init = 0, Q(sk+1, ak)init = 0, r =
10. In case (b), the values are initialized negative and the reward is negative as well:
Q(sk, ak)init = −10, Q(sk+1, ak)init = −5, r = −1. Other parameters are γ = 0.98 and
α = 0.25. These examples have been made by creating artificial samples in the grid
world.

its target value has been increased by the previous update. This becomes problematic
when there is no sample in the database to correct the value of Q(sk+1, ak). This process
can repeat itself and result in a local maximum.

Figure 5.6 illustrates what happens with Q-values when updates are made on such
self-affecting states. It can be observed that these states can grow to values many times
their initial target value. Additionally, even if the initial target value and the Q-value
of the self-affecting state are initially negative, it can rise to positive values.

Close states do not always have to result in growing Q-values immediately. Initially,
the next action ak+1 may not be selected to be the current action ak. In this case,
updates on Q(sk, ak) do not influence itself directly. However, the value of Q(sk+1, ak)
is still affected. Although Q(sk, ak) will not grow in this case, the effect may eventually
lead to a growing Q-value since ak might become the greedy action. Also note that when
a sample at (sk+1, ak) is gathered, the value of Q(sk+1, ak) may be corrected and the
Q-value may seize to grow and return to ‘normal’ values.

5.3.2 Residual gradient ER

In on-line learning, this issue has been explored by Baird (1995). In this study, a simple
problem containing self-affecting states was introduced which failed to converge using
ordinary methods. The proposed solution for this is to take into account the effect of
the update of Q(sk, ak) on the value of Q(sk+1, ak). These algorithms are called residual
algorithms.

In practice, residual RL make updates on the value of Q(sk, ak) while at the same
time, compensating for the effect on Q(sk+1, ak). A large disadvantage of doing this is
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that convergence is usually a lot slower compared to classical TD methods (Baird, 1995).
However, this has not yet been investigated with ER.

Baird (1995) derived his so-called residual gradient algorithm in the case of a value
function. The following will very briefly review this.

Instead of updating θ with only the gradient at the current state:

θk = θk + α (rk+1 + γV (sk+1)− V (sk))
δ

δθ
V (sk) (5.5)

the gradient at the next state can be taken into account as well:

θk = θk + α (rk+1 + γV (sk+1)− V (sk))
(
δ

δθ
V (sk)−

δ

δθ
γV (sk+1)

)
(5.6)

The above equation can be extended to the action-value function case. With linear
function, this yields the following update rules:

φ̃ = φ(sk, ak)− γφ(sk+1, ak) (5.7)

θk = θk + α(rk+1 + γQ(sk+1, ak+1)−Q(sk, ak))φ̃ (5.8)

Convergence of this method can be slow because we are limiting the effect of an
update on some parameters. This is especially the case for values of γ close to 1. In order
to make the algorithm faster, the constraint on the gradient can be relaxed somewhat.
For this, in addition to gradient residual algorithm, Baird also introduced the residual
algorithm. This includes a factor ζ in [0,1]. The resulting residual gradient calculation
is the following:

φ̃ = φ(sk, ak)− ζγφ(sk+1, ak) (5.9)

This factor can either be tuned or calculated. Calculating ζ involves storing two more
value functions and introducing another tunable parameter however. Because the use
of two more value function would negatively affect the computational load and because
tunable parameters are best kept minimized in RL, this method is omitted in this thesis.
For further details on this, the reader is directed to (Baird, 1995).

The residual parameter update rules defined by Equations 5.7 and 5.8 were combined
with ER, yielding residual gradient ER. This algorithm is still very similar to vanilla-ER
but updates on the value of Q(sk, ak) will effect the value Q(sk+1, a) only by a very small
amount. Algorithms 11 and 12 in Appendix C show this ER algorithm in pseudo code.

Baird showed that for on-line learning, residual gradient updates prevented diver-
gence of the Q-values on his problem. In our case, we expect that residual updates
will prevent or at least reduce the emergence of local maxima. To verify this, the new
algorithm was applied on the grid world. Table 5.2 shows typical value functions of
vanilla-ER and residual gradient ER when applied on the same sample database and us-
ing the exact same number of replays as was done to yield the value functions of Figure
5.2. It can be observed that with residual gradient ER, there are no strong maxima in
the bottom left corner. It is unclear from this however, how residual gradient updates
will effect learning speed. In the next chapter the results of residual gradient ER on
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Table 5.2: Typical value functions of applying ER and the new residual ER algorithm
to the grid world. Local maxima are less likely to occur and to grow to extremely large
values. Per row, the same data set is used and the exact same samples are replayed. Old
samples were replayed a relatively long time without gathering new samples.

′vanilla′-ER residual gradient ER
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(a) ER-σ. (b) residual ER-σ

Figure 5.7: Typical value functions of applying all ER combinations to the grid world.
Residual ER-σ shows no growing local maximum. Using residual gradient might yield
higher approximation errors however. For both cases, the same data set is used and the
exact same samples are replayed and old samples were replayed a relatively long time
without gathering new samples.

the benchmark problems will be presented. We hypothesize that self-affecting states are
the cause of the observed ‘standing still’ behavior of LEO. Therefore, we expect that
combining this method will increase the performance of the learning algorithm.

Summarizing, self-affecting states can lead to erroneous and rising Q-values. In the
grid world this was visible as local optima in the value function. In this section, we
propose to combine residual gradient with experience replay. On the grid world, this
diminishes growing maxima visibly. We expect that this will improve learning speed.
On-line residual algorithms are known to have a much slower convergence however.
Experiments need to show whether this is the case with ER as well.

5.4 Residual ER-σ
Residual gradient ER and ER-σ can be combined in one algorithm, residual ER-σ.
Algorithms 13 and 14 in Appendix C show this ER algorithm in pseudo code. Figure 5.7
shows typical value functions of all algorithms proposed in this chapter with the sample
sample database and the exact same replays. Residual ER-σ shows no sign of a growing
local maximum which is visible with ER-σ alone.
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Chapter 6

Results and discussion

We verified the performance of the new algorithms using the same benchmark problems
as in Chapter 4, the inverted pendulum, the simplest walker and LEO. In this chapter,
the results of applying the algorithms proposed in the previous chapter (ER-σ, resid-
ual gradient ER and residual ER-σ) will be presented. For comparison, the results of
Sarsa(λ) and vanilla-ER will be presented as well. After this, a discussion of the results
will follow. The ER algorithms used in this chapter can be found in Appendix C.

6.1 Simulation results

Figures 6.1 and 6.2 show the simulation results in the form of graphs. Figure 6.1 shows
the performance of the learning algorithms against learning time. Like before, on the
inverted pendulum this is represented by the total accumulated reward. The performance
on the simplest walker and LEO is represented by the traveled distance over 100 and 25
seconds respectively. Figure 6.2 show the cumulative number of falls during the learning
process on the simplest walker and LEO. Each graph shows the average of 20 runs with
a 95% confidence interval of the average.

Tables 6.1, 6.2 and 6.3 list the results numerically per benchmark problem. The
tables list the rise time, end performance and the number of falls if applicable. The rise
time shows how long it takes to get to 90% of the end performance. The end performance
is defined as the highest performance after a successful gait has been learned.

The inverted pendulum
One can observe from Figure 6.1a and Table 6.1 that the performance of the new algo-
rithms do not significantly differ from vanilla-ER on the inverted pendulum. ER-σ is
slightly faster than the other ER algorithms with a reduction of the rise time of 18%
with respect to vanilla-ER. When combined with residual ER however, performance
drops slightly for unknown reasons. It is clear that all ER-algorithms still show a much
better performance than Sarsa(λ). Additionally, it can be noted that the residual variant
of vanilla-ER does not result in a significant difference in performance.
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(a) The inverted pendulum

(b) The simplest walker

(c) LEO

Figure 6.1: Simulation results of the inverted pendulum, the simplest walker and LEO.
The lines represent the average of 20 runs, the shaded areas represent the 95% confidence
interval of the average.
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(a) The simplest walker

(b) LEO

Figure 6.2: Number of falls on the simplest walker and LEO against learning time. The
lines represent the average of 20 runs, the shaded area represent the 95% confidence
interval of the average.
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Metric Average Difference with Sarsa(λ)

Sarsa(λ) Rise time 22 -
End performance -1.673·104 -

vanilla-ER Rise time 11 -50 %
End performance -4065 +76%

ER-σ Rise time 9 -60 %
End performance -3692 +78%

residual ER Rise time 10 -55 %
End performance -3913 +77%

residual ER-σ Rise time 11 -50 %
End performance -6200 +63%

Table 6.1: Results of the inverted pendulum. Rise time is in number of episodes and
end performance is the accumulated reward.

Metric Average Difference with Sarsa(λ)

Sarsa(λ)
Rise time 1500 -
End performance 11.7 -
Falls 74 -

vanilla-ER
Rise time 3400 +126 %
End performance 11.7 0%
Falls 150 +51%

ER-σ
Rise time 500 -67 %
End performance 11.5 -2%
Falls 44 -41 %

residual ER
Rise time 3400 +126%
End performance 11.7 0%
Falls 140 +48%

residual ER-σ
Rise time 500 -67 %
End performance 12.0 +3%
Falls 45 -39 %

Table 6.2: Results of the simplest walker. Rise time is in seconds and end performance
in meters.

B.Vennemann Master of Science Thesis



6.1 Simulation results 63

Metric Average Difference with Sarsa(λ)

Sarsa(λ)
Rise time 160 -
End performance 6.5 -
Falls 3792 -

vanilla-ER
Rise time >200 >+25%
End performance NA -
Falls >6170 >+93%

ER-σ
Rise time 133 -17 %
End performance 5.2 -20%
Falls 2416 -36 %

residual ER
Rise time >200 >+25%
End performance NA -
Falls >5862 >+93%

residual ER-σ
Rise time 87 -46 %
End performance 5.5 -15%
Falls 1550 -59 %

Table 6.3: Results of LEO. Rise time is in minutes and end performance is in meters.

The simplest walker
It can be seen from Figure 6.1b and Table 6.2 that ER-σ and residual ER-σ perform
much better than Sarsa(λ) and vanilla-ER on the simplest walker. The rise time has
decreased by 67% percent for both with respect to Sarsa(λ). For both algorithms, the
number of falls that occurred during the learning process decreased significantly as well:
a decrease of approximately 40% with respect to Sarsa(λ).

Looking at the performance of the residual algorithms, we can note that residual
ER-σ shows a slightly better end performance than ER-σ. Additionally, we can see that
residual gradient ER has a similar performance as vanilla-ER. The performance gain
resulting from ER-σ clearly stands out however: when compared with vanilla-ER, it is
almost 7x faster on average.

LEO
Looking at the results, we can see that ER-σ and residual ER-σ perform significantly
better than Sarsa(λ) and vanilla-ER on LEO as well (Figure 6.1c and Table 6.3). The
rise time has decreased by 17% percent for ER-σ and 46% for residual ER-σ with respect
to Sarsa(λ). The number of falls decreased for both algorithms as well; down with 36%
and 59% respectively.

Furthermore, it can be observed that the end performance of all ER algorithms is
lower than that of Sarsa(λ). Remarkably, all ER algorithms found a different (slightly
slower) gait then Sarsa(λ), on all runs. With ER, one foot was always kept in front of
the other. Walking was done by moving the rear foot to the spot right behind the front
foot, after which the front leg makes a step whilst standing on the rear foot.

Looking at the performance of the residual algorithms, there is a remarkable im-
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Figure 6.3: Typical learned evolution of the angle of the stance leg, the hip joint and of
the height of the foot of the simplest walker . One can observe that the policy following
from ER-σ lifts its swing foot higher from the ground, indicating a safer behavior.

provement when using the residual variant of ER-σ. We can observe that residual ER-σ
learns faster and with less falls non-residual counterpart: the residual variant of ER-σ
yields a rise time decrease of 35% and a decrease in the number of falls of 36% with
respect to its non-residual counterpart. Furthermore, we can note that although the
residual variant of vanilla-ER initially shows a better performance, it does not result in
a big improvement overall.

6.2 Discussion

Looking at the results, we can see that the performance gain resulting from ER-σ clearly
stands out. From this, we can conclude that slow and unpredictable learning of ER
can indeed be largely attributed to the replay of uncertain Q-values. We can see that
performance of ER is greatly affected by the attitude of the algorithm is towards these
uncertainties.

In Figure 6.3 typical behaviors of the simplest walker following from vanilla-ER and
ER-σ are shown. As can be seen, the policy following from ER-σ lifts its swing foot
higher than vanilla-ER i.e. a safer route is taken with ER-σ. From this we can conclude
see that ER-σ indeed yields a safer policy. This can be contributed to the fact that
the agent actually learns from falling, i.e. it learns to avoid unsafe areas. For walking
problems this strategy results in a significant performance gain.

From the results, we can clearly see that the improvement of performance of ER-σ
with respect to vanilla-ER is most prominent on walking problems. This has several
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reasons:

Failing trajectories very close to successful trajectories The pendulum problem
does not contain failing trajectories which reside very close to successful ones. On
the pendulum, slight deviations of a successful policy are still likely to result in
a high performance. It is therefore less problematic if uncertain (generalized)
Q-values are back-propagated. Because of this, being optimistic in the face of
uncertainty does therefore not harm performance to a great extent. Whereas with
walking, slight deviations from an successful trajectory might immediately result
in a failed episode. Accepting uncertain Q-values resulting from generalization is
therefore more problematic.

High dimensionality Sample efficient learning on high-dimensional systems means the
agent has to learn from an incomplete database. The higher the dimensionality,
the more incomplete the database likely is. That is, with high dimensional sys-
tems, large regions of the state action-space may not be covered by samples since
gathering these samples will take too long. The more incomplete the database, the
more uncertain Q-value will be encountered during replay. So with high dimen-
sional systems, performance of the learn algorithm is more effected by the attitude
towards uncertainty.

Box rewards With box-rewards, the algorithm has to fully rely on back-propagation
to learn. If unsafe or unwanted areas are built into the reward function, less
reliance on back-propagation is needed to avoid these areas. For instance with the
simplest walker, a slight reward can be given to promote lifting the foot. Since we
are supplying information on how to execute its task, this strategy would involve
using prior knowledge however.

As stated earlier, Baird (1995) reports significantly slower learning with residual
algorithms. We have shown that with sample re-use, this is not necessarily the case
with ER. The residual algorithms all performed equal or better than their non-residual
counter parts. The main reason why on-line residual algorithms are slow, is that the
gradient decent step of an update can be very small i.e. the effect of an update on the
parameters can be very small. With on-line algorithms, a new update means gathering
a new sample. With sample re-use we do not have this restriction and can use samples
an infinite amount of times. From this we can conclude that residual algorithms are not
necessarily slow in terms of the number of samples, but rather in terms of the number
of updates.

From the results on LEO, we observed that the end performance resulting from ER
was lower than that of Sarsa(λ). This is due to the fact that ER results in a different gait
than Sarsa(λ). In other words, ER finds a different maximum than Sarsa(λ). This could
be caused by the reward function, which was specifically tailored for Sarsa(λ). The fact
that Sarsa(λ) find a good gait with this reward function gives no guarantee that other
method will do so as well. In fact, with a finite amount of samples, there is no guarantee
that sample re-use algorithms will find an optimal solution at all. Because the given set
of data is finite, the agent cannot be expected to always come up with an optimal policy
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(Lange et al., 2012).Another cause could be that the gait found by ER needs less data
in order to be derived and is therefore found before the gait found by Sarsa(λ).

As we have seen in the results, the residual ER-σ algorithm shows a remarkable
performance increase on LEO. Additionally, inspecting the behavior of the robot during
learning, we observed LEO’s behavior of standing still and balancing a lot less during
learning for both residual algorithms. This indicates that self-affecting states indeed
do negatively influence performance on some problems. Looking at the results, we can
see that this can be solved by making residual gradient updates. However, it is at this
point not fully understood why the results are more distinct on LEO than on the other
problems. We hypothesize that this effect is due to the high dimensionality of LEO, and
the fact that the robot can balance or stand still, yielding a high amount of possible self-
affecting states. The high dimensionality of LEO may result a high number of missing
samples which are needed to compensate for the increase of Q(s′, a) at an update on
Q(s, a).

The performance of residual ER-σ on the simplest walker and LEO are very promis-
ing. Indeed, the number of sample needed to learn can be brought down significantly
with respect to Sarsa(λ). However, we showed that although ER is a promising tech-
nique, it gave rise to some unforeseen issues. Additionally, ER gives no guarantee on
learning speed or end performance. In this light, we can note that Sarsa(λ) has the
following advantage over ER: because of the Monte Carlo character of this algorithm,
it can handle uncertainties better than ER. That is, Sarsa(λ) evaluates every Q(s′, a′)-
value is makes. The results of this evaluation is coupled back through the use of the
eligibility trace.

Finalizing, it is interesting to note that the issues discussed in this thesis can ul-
timately be attributed to having limited data. If an infinite amount of data would be
available, every state-action combination would be visited. Because of this, the database
would contain information on every state-action combination possible and therefore, the
algorithm will base its decisions on actual information of the environment. Additionally,
state self-affection will not be as troublesome because any unwanted effects on Q(s′, a)
at an update on Q(s, a) can be corrected. This can be done since we will have a sample
at (s′, a) at our disposal.

Furthermore, we can state that a good representation of the value function for the
given data and the given problem can some a lot of problems as well. For instance, one
can imagine a representation for the given data so that there are no self-affecting states.
Or, one can imagine a representation in which generalization of Q-values of successful
state-action combinations might be prohibited to state-action combinations which are
known to lead to failure. Realizing such representations is difficult however and often
requires prior knowledge.

Several other studies report problems with sample re-use caused by imperfect repre-
sentation. Fonteneau et al. (2012) demonstrated that sub optimal policies resulting from
FQI can be attributed to function approximation. In this study it was proposed that the
use of function approximation can be avoided altogether by using artificial trajectories .
Kalyanakrishnan and Stone (2011) stated that the success of sample re-use techniques
relies heavily on having a good representation. They argue that this causes a tension
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between sample efficiency on the one hand and resilience to imperfect representations on
the other. The approach proposed in this study was to focus on learning a representation
parallel to learning a policy.
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Chapter 7

Conclusions and future work

7.1 Summary and conclusions

Service robots are expected to become increasingly important in the near future. The
main reason these robots have not entered our daily live yet is that service robots gener-
ally perform a large variety of tasks in unknown and changing environments. This makes
manually programming of such robots difficult. Letting robots learn tasks through in-
teraction with the environment therefore becomes an attractive alternative.

An important learning paradigm for robots is Reinforcement Learning (RL). RL
can solve complex problems without requiring any prior knowledge on how to solve the
problem or by making any restricting assumptions about the environment the learner is
in. Having real robots learn remains a difficult challenge however. This mainly because
of the inherent high dimensionality of robots, time variant dynamics, hardware wear,
limited computational and memory capabilities. To meet these challenges, a robot called
LEO has been developed in the Delft BioRobotics Lab

LEO is a 2D biped robot built to learn to walk through RL. When learning from
scratch however, the robot breaks down before it has learned a successful gait. Most of
the hardware damage can be attributed to varying torques applied in a high frequency
and to falls of the robot during learning. A possible solution to this problem would be
to have LEO learn before it breaks down. This can be done by minimizing the number
of interactions with the environment needed to learn a satisfactory policy.

In RL, each interaction with the environment is called a sample. An important and
promising way of reducing the number of samples needed is to re-use samples instead of
discarding them after using them once. This thesis studied the re-use of old samples in
order to yield a low sample complexity for walking robots.

In Chapter 3 the most important sample re-use techniques were discussed and a novel
framework was presented to study their respective properties. Within this framework,
each of the discussed sample re-use method is considered as a special case of a general
algorithm. The framework illustrated that sample re-use methods differ in two major
aspects:

The value function update The value function can be updated in two distinctive
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ways: by gradient descent steps on the error following from single samples or by
minimizing the error following from all samples in one projection. Using projec-
tion updates can solve stability issues of the value function during learning. This
way of updating can also negatively affect the computational complexity however,
depending on function approximator used.

Composition of sample database The sample database can be composed in several
ways with sample re-use: it can contain either all or a selection of previous sam-
ples and in addition, artificial samples might be included following from a trained
model. It is difficult to determine a suitable sample database before hand. Some-
times using only recent samples might give better results. For some (real world)
problems one should approach carefully when using model learning because ap-
proximating samples to approximate a value function can introduce serious errors.

Experience Replay (ER) was chosen to demonstrate and investigate the performance
of sample re-use techniques on walking problems. The choice for this method has been
made for several reasons. Namely, analysis is relatively easy with this method, ER has
high control over computational complexity and has shown to combine well with the
function approximation already used on LEO. In the variant of ER used in this thesis,
the old samples are presented in the form of reversed trajectories and are used to improve
the value function by means of the Sarsa update rule.

Chapter 4 provided an empirical analysis of ER by comparing it with Sarsa(λ). In
order to evaluate the performance of ER, three benchmark problems were used: the
inverted pendulum, the simplest walker model and LEO . ER on the simplest walker
and LEO proved not very sample efficient compared to Sarsa(λ). Inspecting the behavior
of the simplest walker, one could observe that ER resulted an unsafe policy. Additionally,
with LEO it was observed that sometimes during learning, the robot tended to stand
still or balance without any intention of walking forward.

In Chapter 5, a grid world was presented to analyze these issues. Typical value
functions during learning of the grid world problem showed that punishments were not
back-propagated with ER. Additionally, in areas which were bound to result in failure,
the value function often showed a positive expected return. Furthermore, we observed
that sometimes the value function showed growing local maxima.

We argued that failing back-propagation of punishments is a result of uncertain Q-
values used in updates. With linear function approximation, initialization of the value
function determines the attitude towards uncertainty of these values: if the value function
is initialized with relatively high values, the algorithm will favor uncertain state-action
pairs over values with a low expected return. While this effect is useful for effective
exploration, during replay of old samples this results in not learning from punishments
and ultimately, unsafe policies. It was hypothesized that optimism in safe areas and
pessimism in unsafe areas would would solve these issues and increase learning speed.

A new algorithm was derived, ER-σ, which makes the attitude towards uncertainty
dependent of the state of the to-be-used Q-value. With this algorithm, samples will
effectively be replayed with a Q(s′, a′)-value in which the unvisited parameters have
been replaced with the value of the function σ(s′). σ(s′) can be used to exploit the
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information available to us in state s′. The exact value of σ(s′) can be determined by
considering the outcomes of visited actions in s′. We showed that for the simplest walker,
there is an optimum between assuming the worst case action and assuming the average
outcome of the actions.

In the grid world, ER-σ clearly resulted in proper back-propagation of punishments.
Additionally, positive rewards in safe areas were back-propagated through a larger por-
tion of the state-action space with respect to vanilla-ER. Additionally, from results on
the benchmark problems we observed that ER-σ yielded better performance than both
Sarsa(λ) and vanilla-ER on all three benchmark problems, most notably on the walk-
ing problems. On the simplest walker we observed a safer policy following from ER-σ
when compared with the policy following from vanilla-ER. From these results, we can
conclude that the observed unsafe policies were indeed a result of being optimistic in the
face of uncertainty. In the discussion, it was argued that this is particularly important
for walking problems.

Chapter 5 additionally investigated local optima emerging in the value function. We
attribute this effect to self affecting states. These are close subsequent states that, when
they are updated, effect their own target value for the next update. This can create
erroneous and rising Q-values. In on-line learning, this effect was explored by (Baird,
1995). In this study, residual algorithms were introduced. We combined the residual
gradient algorithm by Baird (1995) with ER to yield residual gradient ER. In the grid
world problem, this reduces local optima visibly.

From the results on all benchmark problems, we observed that residual gradient
ER showed no significant improvement with respect to vanilla-ER however. Combining
residual updates with ER-σ did result in a significant improved performance on LEO
and a slightly better end performance on the simplest walker. From these results, we
can conclude that residual updates at least do not negatively influence performance
with ER. This stands in contrast with the common knowledge that residual algorithms
can result in very slow convergence in on-line learning methods. Additionally, we can
conclude that self-affecting states indeed do negatively influence performance of ER in
some circumstances. The results suggest that residual updates can be used to solve this.
From the results it is difficult to draw conclusions on the exact circumstances or type of
problem which benefit from residual updates however.

The simulation results also showed that the end performance of LEO is a bit lower
when learning with ER than when learning with Sarsa(λ). This can be a result of the
reward function which was specifically tailored for Sarsa(λ). It might be that for sample
re-use techniques a more suitable reward function exists. But still, this would give no
guarantee of a good end performance.

Even though the end performance is slightly lower, the performance of residual ER-
σ on the simplest walker and LEO is very promising. This shows that the number of
samples needed to learn can be brought down significantly with respect to Sarsa(λ) on
walking robots. However, we have seen that the performance of ER is negatively effected
by some unforeseen issues issues. Consequently, one has to be aware of the consequences
of having limited data and an imperfect representation when using ER. Several studies
suggest that this holds for other sample use techniques as well (Kalyanakrishnan and
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Stone, 2011; Fonteneau et al., 2012)
In summary, this thesis provided a theoretical comparison of sample re-use techniques

in the form of a unified framework. From this, ER was selected to be used for evaluation
and analysis. From our initial experiments, we have seen that ER can result in slow and
unpredictable learning when compared with Sarsa(λ). There are indeed no guarantees
that ER will always yield a good performance. This thesis showed that by exploiting
information in the available data and using knowledge of the representation,the perfor-
mance of ER can be increased significantly. Doing this yielded very promising results
on LEO with respect to Sarsa(λ). Whether this is enough to have LEO learn without
mechanical failure remains to be seen from experiments on the real robot.

7.2 Future work
We propose the following improvements or future research directions:

• In this thesis, residual ER-σ and ER-σ yielded promising results. Whether this
is enough to have LEO learn before breaking down must turn out from future
experiments on the real robot however. Currently, LEO breaks down as fast as
5 minutes and learning with the highest performing algorithm (residual ER-σ),
still takes longer than that. However, in recent research at the Delft BioRobotics
Lab (Meijdam et al., 2013) showed that the damage on LEOs gear boxes can be
reduced significantly by letting the selection of the current action be a function of
the last taken action. Combining this method with sample re-use could let LEO
succeed in learning without mechanical failure.

• Some opportunities to further increase learning speed of ER might be through
prioritized sweeping (Moore and Atkeson, 1993) or database pruning. Additionally,
further efficiency might be achieved by using an Expected Sarsa (van Seijen et al.,
2009) variant of ER. Expected Sarsa does not require the averaging effect when
making on-policy updates following a stochastic policy. Therefore, the learning
rate can be set to 1. This might enable faster learning.

• From the literature it follows that the performance of sample re-use is strongly de-
pendent on the representation of the value function (Kalyanakrishnan and Stone,
2011; Fonteneau et al., 2012). The analysis and evaluation throughout this thesis
was done with binary tile coding function approximation. An important question
is to whether the issues discussed in this thesis occur with other types of function
approximation. If they do, a next step would be to investigate whether the solu-
tions proposed in this thesis be used with other function approximators. Moreover,
one could wonder whether there is a general way of exploiting data in order to yield
better and more consistent results with any type of representation.

• From the results in this thesis we have concluded that residual updates can improve
learning speed on some problems. Future work is needed however to clarify on what
specific problems or in which circumstances residual updates increases learning
speed. For this, more and a higher variety of experiments are needed.
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Appendix A

Efficiency of replay techniques

To test the effectiveness of each replay method, the following experiment was done: First,
a database of samples was collected with the Sarsa(λ) algorithm until 200 episodes had
been completed. This is well beyond the learning time of the algorithm to ensure there
are enough near-optimal trajectories. After this, ER with separate samples, trajectories
and reversed trajectories was used on the database, each starting with newly initial-
ized value function. After every 75,000 sample replays, the performance is evaluated.
Since the different algorithms all learn from the same database, this will indicate the
effectiveness of the algorithm per sample replayed.

The above is executed 20 times. Each time with a new database was collected by
Sarsa(λ). The results are shown in figure A.1.

From the results, we can see that replaying trajectories in temporal order has the
lowest performance gain per replayed sample. At 225,000 replays the performance of
reversed trajectories is slightly better then that of single samples.

Master of Science Thesis B.Vennemann



76 Efficiency of replay techniques

Figure A.1: Performance on the pendulum problem against the number of replays of the
three replay methods. The error bars indicate the 95% confidence interval of the total
reward of an evaluation run.
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σ(s′) for walking problems

To find a suitable function σ(s′) for walking problems, the following experiment was
done: ER with different definitions of σ(s′) was used on the simplest walker. Each 100
seconds of learning time, the walked distance was evaluated. The performance of specific
definition of σ(s′) is defined as the average of each recorded walking distance. 20 runs
were done for each case.

The definitions of σ(s′) include the following:

1. The worst case scenario: σ(s′) = min
a

(Q(s′, a)/W (s′, a)).

2. The average over the visited actions: σ(s′) = ∑
a
Q(s′, a)/∑

a
W (s′, a).

3. The best case scenario: σ(s′) = max
a

(Q(s′, a)/W (s′, a)).

4. Interpolation between the worst case and the average.

5. Interpolation between the average and the best case.

Note that for some actions W (s′, a) may be 0 and thus Q(s′, a)/W (s′, a) cannot be
calculated. In this case that particular state-action pair is not visited and will not be
included in the calculation of σ. Fortunately, since we are making trajectories through
the state-action space, there always is at least one visited state-action pair available.

The above options are not exhaustive, these methods have been selected because
they are simple operations ranging from worst cast to bad case and contain no tunable
parameters. Assuming the worst case will put the emphasis on avoiding unsafe areas,
assuming the best case will put the emphasis on following positive rewards.

Figure B.1 presents the results. As can be seen, the interpolation between the worst
case and the average performs the best. Furthermore, the performance greatly drops as
we move towards assuming the best case. Following these results, we shall be using the
4-th definition of σ in the enumeration above throughout this thesis.
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Figure B.1: Performance on the pendulum problem against the number of replays of the
three replay methods. The error bars indicate the 95% confidence interval of the total
reward of an evaluation run.
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Appendix C

Algorithms

C.1 Experience Replay

Algorithm 7: Main ER
Input : number of replays K, discount factor γ, learning rate α, exploration rate

ε
1 θ ← 0;
2 initialize w as all zero vector with same size as θ: w ← 0;
3 D ← ∅;
4 for every episode e do
5 k ← 0;
6 observe initial state s0;
7 for every time-step k do

8 ak ←
{

argmax
a

φ(sk, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

;

9 execute ak and observe sk+1 and rk+1;
10 De ← De ∪ {(sk, ak, sk+1, rk+1)};
11 end
12 De ← De ∪ k;
13 θ ← learnER(θ,D,K, γ, α, ε);
14 end

output: θ
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Algorithm 8: LearnER
Input : θ, D, number of replays K, discount factor γ,learning rate α,

exploration rate ε
1 for i = 1 to K do
2 select a random trajectory e′ uniformly distributed over {1, . . . , e};
3 draw trajectory length k from De′ ;
4 for t = k to 1 do
5 draw sample (st, at, st+1, rt+1) from De′ ;

6 at+1 ←
{

argmax
a

φ(st+1, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

;

7 θ ← θ + α
(
rt+1 + γφ(st+1, at+1)T θ − φ(st, at)T θ

)
φ(st, at);

8 t← t− 1;
9 end

10 end
Output: θ

C.2 ER-σ

Algorithm 9: Main ER-σ
Input : number of replays K, discount factor γ, learning rate α, exploration

rate ε
1 θ ← 0;
2 initialize w as all zero vector with same size as θ: w ← 0;
3 D ← ∅; l← 1;
4 for every episode e do
5 k ← 0;
6 observe initial state s0;
7 for every time-step k do

8 ak ←
{

argmax
a

φ(sk, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

;

9 execute ak and observe sk+1 and rk+1;
10 wk ← wk ∨ φ(sk, ak);
11 De ← De ∪ {(sk, ak, sk+1, rk+1)};
12 end
13 De ← De ∪ k;
14 θ ← learnERσ(θ, w,D,K, γ, α, ε);
15 end

Output: θ
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Algorithm 10: learnERσ
Input : θ,w, D, number of replays K, discount factor γ,learning rate α,

exploration rate ε
1 for i = 1 to K do
2 select a random trajectory e′ uniformly distributed over {1, . . . , e};
3 draw trajectory length k from De′ ;
4 for t = k to 1 do
5 draw sample (st, at, st+1, rt+1) from De′ ;

6 σ ←
(∑

a
φ(st+1,a)T θ∑

a
φ(st+1,a)Tw

+ min
a

(
φ(st+1, a)T θ)/φ(st+1, a)Tw)

))
/2;

7 u(a) =
∑

i
φi(st+1,a)−φ(st+1,a)Tw∑

i
φi(st+1,a) ;

8 at+1 ←
{
argmax

a

(
φ(st+1, a)T θ + u(a)σ∑i φi(st+1, a)

)
w.p. 1− ε

uniform random action from A w.p. ε

δ ← rt+1 + γ
(
φ(st+1, at+1)T θ + u(at+1)φ(st+1, at+1)T1σ

)
− φ(st, at)T θ;

9 θ ← θ + αδφ(st, at);
10 t← t− 1;
11 end
12 end

Output: θ
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C.3 Residual gradient ER

Algorithm 11: Main residual gradient ER
Input : number of replays K, discount factor γ, learning rate α, exploration rate

ε
1 θ ← 0;
2 initialize w as all zero vector with same size as θ: w ← 0;
3 D ← ∅; l← 1;
4 for every episode e do
5 k ← 0;
6 observe initial state s0;
7 for every time-step k do

8 ak ←
{

argmax
a

φ(sk, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

execute ak and

observe sk+1 and rk+1;
9 De ← De ∪ {sk, ak, sk+1, rk+1};

10 k ← k + 1;
11 end
12 De ← De ∪ k;
13 θ ← learnresidualER(θ,D,K, γ, α, ε);
14 end

output: θ

Algorithm 12: learnresidualER
Input : θ, D, number of replays K, discount factor γ,learning rate α,

exploration rate ε
1 for i = 1 to K do
2 select a random trajectory e′ uniformly distributed over {1, . . . , e};
3 draw trajectory length k from De′ ;
4 for t = k to 1 do
5 draw sample (st, at, st+1, rt+1) from De′ ;

6 at+1 ←
{

argmax
a

φ(st, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

;

7 θ ← θ+α
(
rt+1 + γφ(st+1, at+1)T θ − φ(st, at)T θ

)
(φ(sk, ak)− γφ(sk+1, ak));

8 t← t− 1;
9 end

10 end
Output: θ
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C.4 Residual ER-σ

Algorithm 13: Main residual ER-σ
Input : number of replays K, discount factor γ, learning rate α, exploration rate

ε
1 θ ← 0;
2 initialize w as all zero vector with same size as θ: w ← 0;
3 D ← ∅; l← 1;
4 for every episode e do
5 k ← 0;
6 observe initial state s0;
7 for every time-step k do

8 ak ←
{

argmax
a

φ(sk, a)T θ w.p. 1− ε
uniform random action from A w.p. ε

;

9 execute ak and observe sk+1 and rk+1;
10 wk ← wk ∨ φ(sk, ak);
11 De ← De ∪ {sk, ak, sk+1, rk+1};
12 k ← k + 1;
13 end
14 De ← De ∪ k;
15 θ ← learnresidualERσ(θ, w,D,K, γ, α, ε);
16 t← t− 1;
17 end

output: θ
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Algorithm 14: learnresidualERσ
Input : θ,w, D, number of replays K, discount factor γ,learning rate α,

exploration rate ε
1 for i = 1 to K do
2 select a random trajectory e′ uniformly distributed over {1, . . . , e};
3 draw trajectory length k from De′ ;
4 for t = k to 1 do
5 draw sample (st, at, st+1, rt+1) from De′ ;

6 σ ←
(∑

a
φ(st+1,a)T θ∑

a
φ(st+1,a)Tw

+ min
a

(
φ(st+1, a)T θ)/φ(st+1, a)Tw)

))
/2;

7 u(a) =
∑

i
φi(st+1,a)−φ(st+1,a)Tw∑

i
φi(st+1,a) ;

8 at+1 ←
{
argmax

a

(
φ(st, a)T θ + u(a)σ∑i φi(st+1, a)

)
w.p. 1− ε

uniform random action from A w.p. ε

δ ← rt+1 + γ
(
φ(st+1, at+1)T θ + u(at+1)φ(st+1, at+1)T1σ

)
− φ(st, at)T θ;

9 θ ← θ + αδ (φ(sk, ak)− γφ(sk+1, ak));
10 t← t− 1;
11 end
12 end

Output: θ
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