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Abstract

The COVID-19 pandemic is influencing the Dutch economy heavily. More so, small and medium-sized en-
terprises, also known as SMEs, are notoriously unstable and as a result, could be even more heavily affected
by the coronavirus outbreak. The first major lockdown in The Netherlands was instated on March 23, 2020,
which introduced several new measures, such as the prohibition of gatherings, the closing of food and bev-
erage outlets, and the prohibition of all contact-based professions.

In such a time of economic instability as caused by the coronavirus outbreak, it is very useful for a com-
pany to know in what financial state they are going to be such that they can actively take precautions, such as
liquidating their assets or decreasing their expenses. The financial state of a company is often reflected us-
ing Key Performance Indicators, or KPIs for short. These KPIs include metrics like the revenue, cost, and cash
flow of a company. The forecasting of these KPIs can help a company in informing in what financial state they
are going to be and are usually done using historical data of the company. Whereas the decrease in economic
activity of business partners of a company is not reflected in the historical KPI data of the company itself, it
can be seen in a network of companies that indicates whether there exists a relationship between two com-
panies by using data on monetary transactions between companies. For this reason, we think that enriching
historical KPI data using node features extracted from a dynamic network of companies can help improve the
quality of KPI predictions during a period of economic instability such as the COVID-19 pandemic.

This thesis answers the question of whether we can use utilize a dynamic network of SMEs to improve
the quality of KPI predictions during the COVID-19 lockdown. To answer this question, we first focus on
creating a dynamic network consisting of SMEs and the transactions between them out of unstandardized
data by proposing a novel, lightweight entity resolution algorithm that is used to find a mapping between
companies. The resulting network is analyzed, and we found that the effects of the coronavirus lockdown are
visible in the network. Next, we examine several KPIs, such as the revenue or the cash flow of a company,
and we found that we can also see the effects of the COVID-19 lockdown in several KPIs. Lastly, this thesis
describes an analysis of whether node features can be used to improve the quality of the forecasting of several
of these KPIs, where we found that node features such as the degree and clustering coefficient of a node can
indeed help with improving KPI forecasting under certain conditions.
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1
Introduction

The COVID-19 pandemic is influencing the Dutch economy heavily. More so, small and medium-sized en-
terprises, also known as SMEs, are notoriously unstable and as a result, could be even more heavily affected
by the coronavirus outbreak. As an example of the major influence of the COVID-19 pandemic on the Dutch
economy, in figure 1.11, the %-mutation of the Gross Domestic Product, or GDP for short, in The Netherlands
with respect to the previous year per quarter is shown. In this figure, we can see that overall the GDP is grow-
ing fairly steadily every quarter. However, since the coronavirus outbreak at the start of 2020, the GDP has
been decreasing, with a major decrease in GDP in the second quarter of 2020.

Figure 1.1: %-mutation of the GDP in The Netherlands with respect to the previous year per quarter.

In March 2020, the Dutch government announced the first general measures to limit the spreading of the
coronavirus2. These general measures included several recommendations such as regularly washing hands,
sneezing in the elbow, no more handshaking, and keeping 1.5 meters of distance between each other. The
first major lockdown in The Netherlands was instated on March 23, 2020. This lockdown introduced a set
of new measures3, such as advising people to stay inside, the prohibition of all gatherings, the closing of all
food and beverage outlets, and the prohibition of all contact-based professions. These measures would last
until May 11, 2020, when the first steps towards the relaxation of these measures were taken. Although the
COVID-19 pandemic and the resulting restrictions have had a significant impact on the Dutch economy as a
whole, the effects of the COVID-19 lockdown on Dutch SMEs remain unknown.

1https://www.cbs.nl/nl-nl/nieuws/2020/52/economie-groeit-met-7-8-procent-in-derde-kwartaal-2020
2https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn/maart-2020-maatregelen-tegen-verspreiding-
coronavirus

3https://www.rijksoverheid.nl/onderwerpen/coronavirus-tijdlijn/nieuws/2020/03/23/aangescherpte-
maatregelen-om-het-coronavirus-onder-controle-te-krijgen

1
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2 Introduction

In such a time of economic instability as caused by the coronavirus outbreak, it is very useful for a com-
pany to know in what financial state they are going to be such that they can actively take precautions, such as
liquidating their assets or decreasing their expenses. The financial state of a company is often reflected using
Key Performance Indicators, or KPIs for short. These KPIs include metrics like the revenue, cost, and cash
flow of a company. The forecasting of these KPIs can help a company in informing in what financial state
they are going to be and are usually done using historical data of the company. For example, when predicting
the revenue of a company in the upcoming month, the revenues of the company in previous months is used
for prediction.

In a time of economic instability, some companies might do less business with each other. For example,
when the restaurants during the COVID-19 lockdown were closed, these restaurants did not need to purchase
food from their suppliers. Whereas the decrease in economic activity of business partners of a company is not
reflected in the historical KPI data of the company itself, it can be seen in a network of companies. For this
reason, we think that enriching historical KPI data using node features extracted from a dynamic network of
companies can help improve KPI predictions during a period of economic instability such as the COVID-19
pandemic.

Exact is a Dutch company that creates accounting and enterprise resource planning software for SMEs.
Over 500 000 SMEs use Exact as their accounting software4, where the majority of these companies is situ-
ated in The Netherlands. The data from Exact describes the monetary transactions among these SMEs and
provides the opportunity to explore the impact of the COVID-19 pandemic on individual Dutch SMEs. We are
interested in how we can model these transactions as a transaction network consisting of SMEs. We will use
this network to see how the positioning of an SME in this network is related to the impact of the COVID-19
lockdown on this SME, and how node features can contribute to the prediction of Key Performance Indicators
of these companies.

1.1. Problem definition and research questions
In this thesis, we aim to utilize a dynamic network of SMEs to improve KPI forecasting during times of eco-
nomic instability. A dynamic (or temporal) network is a network where the links between nodes can vary
in whether they are active or inactive per timestep. This thesis will describe the process of preparing un-
standardized data on Dutch SMEs from data available at Exact, as well as an analysis on how to improve
predictions on KPIs using node features. To work towards the aforementioned goals, we define the following
research question:

• RQ: Can we utilize a dynamic network of SMEs to improve KPI predictions during the COVID-19 lock-
down?

We can split this research question up into two subquestions:

• SQ1: How can we create a dynamic network of SMEs out of unstandardized data? To answer this ques-
tion, we will first develop a novel entity resolution algorithm that is used for network construction.
Then, we will construct the dynamic network. Afterward, we will extensively analyze the resulting dy-
namic network to assess the quality of the network.

• SQ2: How can we utilize the dynamic network to improve KPI predictions? To answer this question,
we will first check whether we can see the influence of the COVID-19 lockdown on Dutch SMEs by
looking at several KPIs and how they have been affected by the coronavirus pandemic. Afterward, we
will improve KPI predictions by enriching historical KPI data of a company with node features that we
will extract out of the dynamic network as constructed in subquestion 1.

In this thesis, we will try to find answers to these subquestions to be able to ultimately answer our research
question.

1.2. Methodologies
To create a dynamic network consisting of companies and transactions between them, an entity resolution
algorithm was developed. This entity resolution algorithm uses several data fields, such as the name, Cham-
ber of Commerce number, VAT number, ZIP code, and email address of companies to find matches between

4https://www.exact.com/
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1.3. Contributions 3

these companies. Then, data on transactions is used to construct the dynamic network of SMEs. After con-
structing the dynamic network, we will assess the quality of this network by performing an extensive analysis.

Now that we have our resulting dynamic network, to answer the second subquestion, we will take a look
at the companies and how they have been influenced by the coronavirus lockdown by looking at the changes
in several KPIs over time to assess which of these KPIs have been heavily influenced by the COVID-19 lock-
down. We hypothesize that because of the sudden change in the values of these KPIs that is not reflected in
the KPI values before as a result of the coronavirus lockdown, enriching the predictions using node features
could increase the accuracy of KPI predictions. Therefore, we will improve the forecasting of these KPIs by en-
riching the historical data with node features. Afterward, we will extensively analyze several scenarios where
enriching the historical data with node features is particularly useful for decreasing the error of predictions.

1.3. Contributions
In this work, we develop methods to improve KPI predictions during the COVID-19 lockdown. These KPI
predictions are important for SMEs, since knowing the future financial state of the company can help with
actively taking precautions, such as liquidating assets or decreasing expenses. Therefore, improving these
predictions can be a valuable endeavour. We do this by enriching the prediction data with node features
extracted out of a dynamic network of Dutch SMEs. Specifically, the contributions of this thesis can be sum-
marized as follows:

• We propose a novel, lightweight entity resolution algorithm used for network construction out of un-
standardized data.

• We analyze the resulting dynamic network to assess the quality of the network.

• We verify whether the impact of the COVID-19 lockdown in The Netherlands can be seen in the KPIs of
SMEs and in the node features of these SMEs in the dynamic network.

• We use the dynamic network to improve KPI predictions in a time of economical instability such as the
coronavirus pandemic.

1.4. Report structure
In chapter 2, we will take a look at related existing literature. Then, in chapter 3, we will discuss how we can
effectively create a dynamic network of SMEs out of unstandardized data using the Exact dataset. In chapter
4, we will assess whether we can see the effect of the coronavirus lockdown in existing KPIs and try to improve
upon existing KPI forecasting techniques using node features. Lastly, we will reiterate our findings, answer
the research question, and discuss some of the future work that could be done in chapter 5.





2
Related work

In this chapter, we will discuss existing literature on several topics that are related to this thesis. In section
2.1, we will discuss how we can represent a dynamic network and how other works that use the Exact dataset
to create a network have approached their problem. Then, in section 2.2, we will take a look at several ap-
proaches to network comparison, which is used in section 3.4.2 to assess whether closer months in the dy-
namic network are more similar than months that are further apart. Since we expect that this is the case, this
is done to assess the quality of the network. Network embeddings are discussed in section 2.3, which touches
upon our work as described in chapter 4 where we use embeddings to try to improve KPI predictions. In sec-
tion 2.4, we discuss several approaches to link prediction. These techniques are not used in this thesis, but
since we provide an algorithm for creating a dynamic network out of unstandardized data, this could be an
interesting piece of future work as discussed in section 5.2. Lastly, in section 2.5, we will discuss the influence
of the COVID-19 pandemic on SMEs.

2.1. Dynamic network construction
The main idea for preparing the data is that we create a dynamic network where the nodes are companies
that use Exact and the edges represent transactions between those companies as further discussed in chapter
3. A dynamic (or temporal) network is a network where the links between nodes can vary in whether they are
active or inactive per timestep. In this section, we will take a look at some literature that touches upon how
to represent data as a dynamic network. Also, we will shortly discuss the other works that have modeled the
Exact dataset as a network.

The authors of [32] discuss the several ways of representing a dynamic network. One of the main advan-
tages of one of these approaches, namely the one where we represent the dynamic network as a sequence
of static networks, is that we can use static network analysis methods on the dynamic network. Since this
could prove very useful to us, we, therefore, decided to prepare our data as a dynamic network that consists
of individual snapshots that are ordered temporally. The construction of the dynamic network will be further
discussed in chapter 3.

This thesis is the first work that covers modeling the Exact data in a dynamic network. However, there
exist more works that model the Exact data in a static network. The first of these works is [14], where a static
network is created to perform predictions on whether invoices will be paid late. A large theme in [14] is the
developed entity resolution algorithm. The need for such an entity resolution algorithm will be discussed
in further detail in chapter 3. The second work that builds a static network of the Exact data is [30], where
network features are calculated to perform credit scoring predictions for Exact companies.

2.2. Network comparison
Performing network comparisons on slices of the dynamic network is an aspect of this thesis since it is used
in section 3.4.2 to assess whether closer months in the dynamic network are more similar than months that
are further apart. Since we expect that this is the case, this is done to assess the quality of the network. In this
section, we will take a look at various approaches towards network comparison and how to assess network
similarity.

5
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[34] gives us a good overview of various approaches in the field of static network comparison. The au-
thors first divide the comparison methods into either Known Node-Correspondence or Unknown Node-
correspondence. Network comparison methods from the former category can exploit the knowledge that
the two networks that we want to compare have at least a common subset of nodes and tend to come from
the same application domain. Since this is the case for this thesis, we will mostly be focusing on Known
Node-Correspondence network comparison methods.

The difference between two networks can be measured by the distance between the two networks. This
distance metric will ultimately be a trade-off among several features. For this thesis, we will mainly focus on
the network comparison techniques that apply to unweighted and undirected networks. One of the simplest
approaches that is discussed in [34] is measuring the distance between two adjacency matrices. The adja-
cency matrix A of a graph G is an n by n matrix, where n is the number of nodes in G . The value of Ai , j is 1
if there is an edge between nodes i and j , and 0 otherwise. We can use several distance metrics to calculate
the distance between two adjacency matrices, such as the Euclidean distance, the Manhattan distance, the
Canberra distance, or the Jaccard distance.

One of the limitations of this approach is that simply measuring the overlap between two edge sets might
not be optimal because the importance of all edges is not necessarily the same. This issue is addressed by
DeltaCon [16], which assesses the similarity in terms of connectivity between two graphs. DeltaCon first con-
structs a matrix that keeps track of the pairwise node affinities in both graphs, which is then used to compare
differences. A simplified form of Fast Belief Propagation is used to generate the pairwise node affinity matri-
ces S as such:

S = [si , j ] = [I +ε2D −εA]−1

, where I is the identity matrix, A is the adjacency matrix, D is the matrix with the degree of node i in di i ,
and ε is a small constant that captures the influence between neighbouring nodes. In this matrix S, the entry
si j denotes the influence node i has on node j in terms of connectivity. The root Euclidean distance is then
summed over all elements in the two pairwise node affinity matrices as follows:

d =
√√√√ n∑

i=1

n∑
j=1

(
√

s1,i , j −
√

s2,i , j )2

, where d is the DeltaCon distance and s1 and s2 are the pairwise node affinity matrices of graph 1 and
graph 2 respectively. The complexity of DeltaCon is quadratic with regard to the number of nodes.

A different approach called NetSimile that focuses more on scalability is presented in [5]. Essentially,
NetSimile computes a set of features over a network that represents the topology of this network. A signature
over this set of features can then be computed and compared with the signature of another network to assess
the topological similarity between those two networks.

As discussed above, NetSimile first computes the following set of features for each node i in the network
G . This set of features consists of:

1. The degree of i .

2. The clustering coefficient of i .

3. The average number of two-hop away neighbors of i .

4. The average clustering coefficient of the neighbors of i .

5. The number of edges in the egonet of i . The egonet of i consists of the subgraph of G containing only
i , the neighbors of i , and the edges between this set of nodes.

6. The number of outgoing edges of the egonet of i .

7. The number of neighbors of the egonet of i .

The writers of [5] found that instead of comparing the feature matrices of two networks, generating signa-
ture vectors for these matrices and comparing those results in more efficient comparisons. Therefore, for all
features as mentioned above, NetSimile calculates the median, mean, standard deviation, skewness, and kur-
tosis, and inserts these in the signature vector, resulting in a signature vector of length 7 ·5 = 35. To compare
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these signature vectors, the authors use the Canberra Distance to finally calculate the distance between the
two networks. One of the main advantages of this approach is that the computational complexity of NetSimile
is linear with regard to the number of edges of the network.

Lastly, we will take a look at [11], where the focus lies on explainability and the low computational cost.
The authors propose a similarity metric called Gragnostics, which uses the following set of 10 graph-level
features that are all computable in linear time:

1. Density. This feature measures the interconnectivity of the vertices in the graph, and is calculated by:
2·|E |

|V |·(|V |−1) .

2. Bridge. A bridge in a network is defined as an edge whose removal will result in a disconnected graph.

The value for this feature is calculated by: br i d g e(G)
|V |−1 , where br i d g e(G) indicates the amount of bridges

in G .

3. Disconnection. This feature indicates how many vertices are disconnected from each other, and it is
calculated by: |C |−1

|V |−1 , where C is the set of all maximally connected components.

4. Isolation. This feature measures the fraction of isolated vertices, meaning vertices that have zero edges,
and is defined as: |{v∈V :d(v)=0}|

|V |

5. Constriction. This feature measures the number of vertices that are required for any information to be
able to reach the whole graph. These vertices are called cut vertices, and their removal will result in a
disconnected graph. The constriction feature is calculated by: cut (G)

|V |−2 , where cut (G) is the number of
cut vertices in G.

6. Line. This feature measures how similar a graph is to a path graph by measuring the degree of sequen-
tial connections. It is the fraction of vertices that have the correct degree as it would have in a path
graph, and is calculated as:

∑|V |
i=1

l (i )
|V | , where l (i ) = 1 if Di = 1 and i ≤ 2, or Di = 2 and i > 2, otherwise

l (i ) = 0. D is a vector of length |V | and every element in D is the degree of a node, where all elements
that are 1 are in the front of D .

7. Tree. This feature measures how tree-like a network G is, and it is calculated as: 1− |E |−(|V |−1)
|V |· |V |−1

2 −(|V |−1)
.

8. Star. This feature measures how much of a graph is like a star, and is calculated as follows:
∑

v∈V
d(v∗)−d(v)

(|V |−1)(|V |−2) ,
where v∗ indicates the node with the highest degree.

9. Amount of nodes. This feature calculates the number of nodes and is defined by: |V |.

10. Amount of links. This feature calculates the number of links and is defined by: |E |.
To compare two networks, these features can be gathered in a vector which we can use to calculate the

distance between graphs using various distance metrics.
Lastly, we would like to shortly touch upon graph kernels as discussed in [17]. Graph kernels are often

used to perform classification tasks on graphs, but they can also be used to compare graphs. However, one of
the main drawbacks of graph kernels is that "due to a pairwise similarity calculation, graph kernel methods
suffer significantly from computational bottlenecks" [38], and are therefore not suitable for the Exact dataset
due to its large size.

2.3. Network embeddings
Network embeddings are a set of approaches that are used to transform a network into a lower-dimensional
vector space and are a widely studied topic. These network embeddings can be used for a variety of tasks.
In this thesis, we will use embeddings to try to improve KPI predictions as discussed in chapter 4. The field
of embeddings for dynamic networks is still young and being explored. As discussed in section 2.1, one of
the main advantages of the way we model our data is that we can also use static graph analysis methods.
Therefore, in this section, we will discuss methods that touch upon static network embeddings as well as
dynamic network embeddings.

Before we start, we must outline what kind of network embedding we are interested in. In [6], a useful
categorization of network embedding methods in terms of graph embedding input and graph embedding
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output can be found. As for graph embedding input, the authors first make the distinction between hetero-
geneous graphs, where nodes can have a class label, and homogeneous graphs. The latter case is applicable
for our use case. As for homogeneous graphs, the authors of [6] also note that they can be either weighted or
unweighted, and directed or undirected; our graph is both unweighted and undirected, and therefore we will
mostly focus our research on embedding methods for homogeneous, undirected, and unweighted graphs. As
for graph embedding output, we can choose between embedding the nodes of the network, the edges of the
network, the graph as a whole, and a hybrid approach. We will be mainly considering whole-graph embed-
dings and node embeddings. We will also limit ourselves to random-walk based embedding methods since
they are well known for their scalability to large datasets and are therefore applicable to our use case.

In table 2.1, we indicate some of the papers and their application domain with regards to our use case.

Network type Embedding type
Paper Static network Dynamic network Node embedding Graph embedding

Perozzi et al. [29] 3 3

Grover et al. [13] 3 3

Tang et al. [33] 3 3

Narayanan et al. [26] 3 3

Mahdavi et al. [24] 3 3

Beladev et al. [4] 3 3

Table 2.1: Overview of random-walk based network embedding papers and their application domain.

We will first take a look at the static node embeddings. In this case, we can use these methods to embed
every static node or graph in our dynamic network that consists of a sequence of static graphs and use these
embeddings to compare and analyze nodes or graphs. For static node embedding, we will take a look at
two papers that both employ a random-walk based method. The first paper that we discuss is [29], where
the authors propose an algorithm called DeepWalk. The authors first state that one of the main advantages is
that these random-walk based methods scale very well and can be very easily parallelized, which makes them
ideal for our use case, hence they are also used on the Exact data in [14]. The DeepWalk embedding algorithm
as discussed in [29] takes a graph G as input and outputs a matrix containing a representation of every node
in G . The user also specifies the desired amount of walks that start from each node, as well as the desired
walk length. DeepWalk then simulates the random walks by choosing a starting node and randomly follows
an edge to a neighbor until the desired walk length is reached. The SkipGram algorithm as presented in [25]
is used to update representations of the nodes after every walk. After convergence, the DeepWalk algorithm
ultimately outputs a matrix containing vector representations for all nodes in G . Alternatively, [13] proposes
node2vec, which is an iteration on DeepWalk. node2vec includes two parameters p and q , allowing the user
to switch between bread-first search (BFS) and depth-first search (DFS), which allows the user to emphasize
local neighborhoods or global structure. LINE, as proposed in [33], is also an iteration on DeepWalk [29]. The
authors state that where DeepWalk is only able to capture first-order proximities, LINE can capture both first-
order and second-order proximities. It is also very scalable since it uses a stochastic edge sampling method,
also making LINE available for weighted edges.

As opposed to static node embedding, we can also embed the graph as a whole using static graph em-
bedding. The approach to static graph embedding that we will discuss is called graph2vec and is proposed in
[26]. graph2vec takes as input a set of graphs for which the embeddings will be learned, and outputs a vector
of prespecified length for each graph. First, graph2vec extracts a rooted subgraph around every node in the
graph. Then, the representations are updated after each iteration using the SkipGram algorithm as presented
in [25]. After convergence, a matrix containing the embedding for every graph in the set of graphs is available.
There are a lot of parallels between node2vec [13] and graph2vec [26]; both are based on their respective NLP
counterparts (word2vec, as described in [25], and doc2vec, as described in [18], respectively), and both use
the SkipGram model with stochastic gradient descent with negative sampling to update the representations.

In contrast to the static embedding methods, the dynamic embedding methods do not have to be run on
the individual static graphs or nodes in the dynamic graph. Instead, the dynamic embeddings can be trained
on the sequence of graphs or nodes as a whole to capture the evolutional patterns. We will start by discussing
several approaches to dynamic node embedding. The first approach that we will discuss is [24]. In this paper,
the authors try to modify node2vec as proposed in [13] to be able to generate embeddings for dynamic graphs
that capture evolving patterns. To capture this evolving pattern for a certain node, [24] uses the embedding
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vector of this node of timestep t −1 to generate the embedding for the node in timestep t . dynnode2vec only
generates random walks for evolving nodes in a certain timestamp, meaning that only nodes that have just
been added to the graph or that experience a change in their edges will receive a new embedding, which can,
depending on the graph, result in a very significant speedup.

Alternatively, we can also create an embedding for a dynamic graph as a whole. This is done in [4], where
the authors propose a random-walk based method to accomplish this task. The authors mention that their
approach can be used to compute temporal graph similarity by comparing snapshots in a sequence of static
graphs using the embeddings that are created. Similar to node2vec [13], the authors of [4] make use of param-
eters p and q to be able to emphasize local neighbourhoods or global structure of the graph. For each node,
random walks are generated. Similar to [13] and [12], [4] uses negative sampling to reduce the needed com-
putations for the embeddings. After conversion, a matrix containing the embeddings for each graph in the
dynamic graph is outputted. The authors conduct several experiments with real-world datasets and conclude
that their approach outperforms many state-of-the-art approaches in terms of graph similarity ranking.

One of the drawbacks of using network embeddings to compare nodes or edges is that explainability is
still a problem that is difficult to solve. Although research is being done towards explainable node and graph
embeddings, such as in [35], creating explainable embeddings is still an open research field.

2.4. Link Prediction
Since we will be constructing a dynamic graph that is evolving over time, link prediction techniques are re-
lated to this thesis. However, as of now, link prediction is out of the scope of this thesis but could be interesting
for some future work as further described in section 5.2. [23] makes an important distinction between link
prediction in static networks and link prediction in dynamic networks. In the former case, link prediction
aims towards finding "missing" links in a static graph, whereas in the latter case, link prediction aims to pre-
dict links in a future timestep; for this thesis, we are interested in the latter case. Furthermore, [23] provides
a useful categorization of link prediction methods as depicted in figure 2.1. We will use the structure as pro-
posed in this figure to discuss approaches to link prediction. Therefore, we will split up the link prediction
approaches into similarity-based link prediction approaches, probabilistic and maximum likelihood-based
link prediction approaches, dimensionality reduction-based link prediction approaches, and other link pre-
diction approaches.

2.4.1. Similarity-based link prediction approaches
The first type of approach that [23] defines is similarity-based approaches. Of these approaches, the authors
claim that only the local similarity-based methods have a relatively low computational complexity and are
easily parallelizable, meaning that they are the only similarity-based approach to link prediction that is po-
tentially suitable for our use case.

These local similarity-based methods calculate indices that consider the direct neighbors of a node. A
high value for these indices indicates a high likelihood of the two nodes being connected, meaning that these
indices can be used to perform link prediction. The authors of [23] list several of these local similarity-based
indices. Some of these that are potentially useful to our use case are:

1. Common Neighbors Index. This index was proposed in [27] and indicates the amount of common
neighbors of two nodes and is calculated as: S(x, y) = |Γ(x)∩Γ(y)|, where Γ(x) is the set of neighbors of
x.

2. Jaccard Coefficient. This index normalizes Common Neighbors as such: S(x, y) = |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| .

3. Adamic/Adar Index. This index as proposed in [2] also takes the set of common neighbors into account,
but assigns a higher value to neighbors having smaller degrees as such:

∑
z∈|Γ(x)∩Γ(y)| 1

l og (kz ) , where kz

is the degree of node z.

4. Resource Allocation Index. This index as proposed in [39] is very similar to the Adamic/Adar Index,
the difference being that it more heavily punishes nodes with a higher degree as such:

∑
z∈|Γ(x)∩Γ(y)| 1

kz
.

5. CAR-based indices. This set of indices is proposed in [7] is based on the assumption that if the common
neighbors of two nodes belong to the same local community, these nodes are more likely to be linked.

We can define the CAR-based Common Neighbor Index as: S(x, y) = |Γ(x)∩Γ(y)| ·∑z∈|Γ(x)∩Γ(y)|
|γ(z)|

2 ,
where γ(z) is the set of neighbors of z that are also neighbors of x and y . Similarly, we can define the
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Figure 2.1: Categorization of link prediction approaches as taken from [23].

CAR-based Adamic/Adar Index as: S(x, y) =∑
z∈|Γ(x)∩Γ(y)|

|γ(z)|
l og2(kz ) and the CAR-based Resource alloca-

tion Index as: S(x, y) =∑
z∈|Γ(x)∩Γ(y)|

|γ(z)|
kz

.

6. Hub Promoted Index. This similarity index as proposed in [31] is developed especially for networks
that consist of a small amount of hub nodes with a high degree, followed by a large amount of nodes

with a low degree. The Hub Promoted Index is defined as: S(x, y) = |Γ(x)∩Γ(y)|
mi n(kx ,ky ) . Alternatively, the Hub

Depressed Index [31] is defined as: S(x, y) = |Γ(x)∩Γ(y)|
max(kx ,ky ) .

2.4.2. Probabilistic and maximum likelihood-based link prediction approaches
As for probabilistic and maximum likelihood-based approaches, [23] states that for probabilistic models,
often additional information other than the structural information of the network is needed. Maximum
likelihood-based approaches are complex methods with high computational demands, meaning that both
probabilistic and maximum likelihood-based approaches are not suitable for our use case.

2.4.3. Dimensionality reduction-based link prediction approaches
Dimensionality reduction-based approaches to link prediction methods can be divided into either embedding-
based approaches and matrix factorization-based approaches. The former exploits node embeddings as dis-
cussed in section 2.3. These embeddings can be used as input to other machine learning models to generate
link predictions. On the other hand, matrix factorization-based approaches extract latent features for each
node, resulting in a matrix that contains a representation for each node. These representations can then be
used using matrix factorization for link prediction. Both of these approaches are suitable for large networks,
making them possibly applicable for this thesis. However, as node embeddings are already discussed in sec-
tion 2.3, we will not discuss them further in this chapter.

For link prediction in dynamic networks, often Graph Neural Networks, or GNNs for short, are used since
they can deal with highly nonlinear structures. These GNNs are essentially similar to the process of first em-
bedding a node into a latent vector and then applying some machine learning model to finally generate a link
prediction, the difference being that the entire end-to-end pipeline is provided. [9] provides a deep learn-
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ing approach that is tailored towards link prediction in dynamic networks using an encoder-LSTM-decoder
architecture. The encoder first encodes the graphs from 1 to t −1 to a matrix containing the latent represen-
tations for these graphs. The LSTM then learns the evolution patterns from this matrix. Finally, the decoder
reconstructs the graph, resulting in the predicted graph for timestep t . This paper claims that they achieve
state-of-the-art performance and future work will address reducing the computational complexity of their
approach. Alternatively, [19] tries to accomplish the same task of dynamic link prediction, but utilizes an al-
ternative model architecture. First, a Graph Convolutional Network, or GCN for short, is used to capture the
local topologies of the network. Then, similarly to [9], an LSTM is used to capture the evolving patterns of the
network. Ultimately, a Generative Adversarial Network, or GAN for short, is used to reconstruct the graph.
Lastly, we will shortly discuss the model as proposed in [22]. This model encodes the graph using a GCN,
similarly to [19]. Attention mechanisms and Gated Recurrent Units, or GRUs for short, are used to extract
structures and evolutionary patterns from the inputted graphs. Finally, similarly to [9], a decoder is used to
generate a graph which will be the prediction for timestep t .

2.4.4. Other link prediction approaches
The authors of [23] also discuss four other approaches. Learning-based approaches first calculate a set of
features over every node in the network. Then, a dataset is created with every combination of nodes where
the label is 1 if an edge is present between those nodes and −1 otherwise. Machine learning models can
then be applied to this dataset to learn patterns that indicate whether an edge should exist. This model can
then be used to perform link prediction. It has to be noted that for some tasks such as graph classification,
existing embeddings such as the ones as described in section 2.3 can be used in combination with simple
existing machine learning models as discussed in [38]. However, for the task of link prediction, often, these
simple machine learning models will not suffice and therefore, GNNs that perform the task in an end-to-end
manner will often outperform these solutions. The complexity of this approach depends on the complexity
of the features that one chooses. Information theory-based approaches to link prediction are often based on
how the topology of a network lends itself to the spreading of information. Clustering-based models try to
cluster some specific features together such that links can be predicted. Finally, perturbation-based methods
use a novel structural consistency index that indicates how much the structure of a network changes if a
certain link is deleted. This index can then be used to perform link predictions.

2.5. COVID-19 and SMEs
To assess the influence of the COVID-19 pandemic on SMEs specifically, several papers exist that touch upon
characteristics of both the COVID-19 pandemic and SMEs and how they interact with each other.

[10] discusses the number of bankruptcies of SMEs due to the coronavirus outbreak. The authors suggest
that their research indicates that the rate of SMEs going bankrupt could double as a result of the COVID-19
pandemic, which could severely impact the economy as a whole.

The authors of [37] take a look at the potential impact of the COVID-19 pandemic on SMEs and the econ-
omy as a whole. One of the main takeaways is that the authors state that the bankruptcy of certain compa-
nies could cause a chain reaction which causes other companies to go bankrupt as well. This concept has
also been explored in Exact outside the context of the coronavirus outbreak in [30]. Also, [37] states that
the COVID-19 pandemic has caused companies to liquidate more of their assets by selling or decreasing the
purchase of more risky assets, which could of course affect the long-term prospects of a company.

These long-term prospects on European SMEs are also discussed in [15]. The authors conclude that in
the long term many SMEs are forced to upgrade their digital infrastructure, make long-term investments to
upgrade production processes, internal as well as external rearrangements will often be necessary. On the
flip side, knowledge-based SMEs can apply their technologies to new opportunities that will arise after the
COVID-19 pandemic and benefit from subsidies provided by the government. In the short term, most SMEs
will have to focus on liquidizing their assets, as also mentioned in [37], as well as fixing issues on the demand
and supply side of their supply chains.
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SQ1: Creating the dynamic network

In this chapter, we will be looking at the first subquestion of how we can create a dynamic network of SMEs
out of unstandardized data. As discussed in section 2.1, in previous literature, the authors of [14] and [30] have
successfully managed to prepare the data as a static network. However, such a network would fail to capture
the temporal aspect of the data. Therefore, we have chosen to prepare our data as a dynamic network. This
network will consist of a sequence of static graphs, where each static graph is built with a month of data. In
this network, companies that use Exact will be nodes, and an edge between them will be present if there is
a transaction between those two companies in the corresponding month. For this thesis, we will consider
data from January 2018 to September 2020. In section 3.1, we will discuss the Exact data structure and why
an entity resolution algorithm is needed. This entity resolution algorithm will be discussed in section 3.2. In
section 3.3, we will discuss the building of the network using the results of the entity resolution algorithm and
the data on transactions between companies. Lastly, in section 3.4, we will analyze the network to ensure that
the properties and characteristics that we are interested in are captured in this dynamic network.

3.1. Exact data
As discussed before, we will use the data on transactions to create our dynamic network. However, to be
able to meaningfully use this transaction data, we must first discuss the account data. In this section, we will
discuss how this data is structured.

An overview of the account data structure can be found in figure 3.1. In this image, the green circles repre-
sent customers of Exact. These customers are companies that fill out their administration in Exact Online. In
Exact Online, the company can enter all kinds of information about itself, such as its name, email address, zip
code, website, Chamber of Commerce number, VAT number, and other types of information. These accounts
that the Exact customers build for themselves are referred to as Type D accounts. When an Exact customer
wants to log a transaction to another company, the customer has to make a profile for that company, where
it can input the same types of information as described in the paragraph above. The customer can then log
transactions made to this profile. These company profiles are referred to as Type A accounts and are indi-
cated by the red rectangles in figure 3.1. To build the network, we will use the transactions, which are always
between type D accounts and type A accounts. However, to be able to successfully create this network, we
have to find a matching for the type A account to an existing type D account, as indicated by the dashed arrow
line in figure 3.1. The process of finding these matchings is called entity resolution. However, one of the main
challenges is that all input fields for both type A and type D accounts are free-form, and all input fields except
the name of the company are optional, which poses some challenges. How the entity resolution algorithm
works will be discussed in section 3.2.

3.2. Entity resolution
This work is not the first work that performs entity resolution on the Exact account data. As discussed in
section 2.1, the author of [14] proposed an entity resolution algorithm. However, since then, the amount of
account data has more than doubled. Due to the increase in data, the entity resolution algorithm as proposed
in [14] is too complex to be run in a feasible timeframe. Therefore, we propose a more lightweight entity

13



14 SQ1: Creating the dynamic network

Figure 3.1: Overview of the Exact account data structure.

resolution algorithm that is more scalable than the one proposed in [14]. An overview of the entity resolution
algorithm that we will discuss in this section can be found in figure 3.2.

Figure 3.2: Overview of the proposed entity resolution algorithm.

In this algorithm, we try to match type A accounts to type D accounts. We first start with cleaning the
data. Afterward, we split the dataset into type D accounts and type A accounts. Then, we try to find a mapping
between these two groups. We then merge the results back resulting in the matched accounts. In the following
paragraphs, we will go more in-depth into the inner working of the entity resolution algorithm.

The entity resolution algorithm requires the following columns of the account data:

1. Name. This is the name of the company, and it is the only column that cannot be empty.

2. Chamber of Commerce number or CoC number for short. This is a unique number supplied by the
Dutch Chamber of Commerce.

3. VAT number. This is a unique string used by governments to track how much tax a business pays.

4. ZIP Code. This is the ZIP Code of the company.

5. Address number. This is the address number of the company.

6. Email address. This is the email address of the company.

When the data enters the algorithm, a cleaning step is performed. As discussed in section 3.1, all input
fields are free-form and therefore require cleaning. The following cleaning steps are applied to the columns
of the data:

1. Name. All names are converted to lowercase, and Dutch business structure indicators such as "bv",
"vof", and "eenmanszaak" are removed.

2. Chamber of Commerce number. Dutch Chamber of Commerce numbers consist of 8 digits. Alterna-
tively, a Chamber of Commerce number can have 4 additional numbers indicating that it is an estab-
lishment of a larger organization. To clean these numbers, we first remove all non-digit characters. If
then the data is a number of either length 8 or 12, we include it. Otherwise, we insert the None value.
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3. VAT number. A Dutch VAT number starts with the two characters "NL", followed by 9 digits, followed
by the character "B", followed by 2 digits. To clean these numbers, we first convert all characters to
uppercase. Then, if the data matches the description above, we include it. Otherwise, we insert the
None value.

4. ZIP Code. Dutch ZIP Codes consist of 4 digits followed by 2 letters. To ensure data quality, we first
remove spaces and convert the letters to uppercase. If the data then matches the description above, we
include it. Otherwise, we insert the None value. This ZIP code is enriched with the address number of
the company if it is available.

5. Email address. We first convert the email address to lowercase. We then check if it starts with at least
1 character, followed by the "@" sign, followed by at least 1 character again, followed by the "." sign,
followed by 2 or 3 characters. If this is the case, we include it. Otherwise, we insert the None value.

Statistics on the data after cleaning can be found in table 3.1. In this table, we can see that there are
roughly ~800 000 type D and ~234 million type A accounts. In general, type D accounts tend to have more in-
formation filled out than type A accounts, especially for the Chamber of Commerce number and VAT number
fields.

Type D accounts Type A accounts
Total number of accounts 780 246 234 335 784
% with name 100 100
% with CoC number 53.4 10.7
% with VAT number 45.1 7.1
% with ZIP Code 69.7 64.1
% with email address 46.9 42.2

Table 3.1: Statistics on the account data after cleaning.

After cleaning, we split the data into type D accounts and type A accounts. This is different than the
approach in [14], where all types of accounts are matched. The splitting of data allows for a very large speedup
since only a fraction of comparisons is needed.

Afterward, we will start matching the type A accounts to the type D accounts. For this matching we employ
three distinct techniques:

1. Chamber of Commerce number matching. For this approach, we compare the Chamber of Commerce
numbers of the type D and the type A accounts. If they match, we consider the type D account and
the type A account to be the same company. However, we cannot have any duplicate Chamber of
Commerce numbers in our type D dataset, since two companies with the same Chamber of Commerce
numbers cannot exist. Therefore, for the type D accounts only, we exclude all entries with a Chamber
of Commerce number that occurs more than 10 times since manual inspection indicates that these
Chamber of Commerce numbers are often bogus. For Chamber of Commerce numbers that occur
between 2 and 10 times, we drop all duplicates and keep only a single entry.

2. VAT number matching. For this approach, we compare the VAT numbers of the type D account and the
type A account. If they match, we consider the type D account and the type A account to be the same
company. Similar to the Chamber of Commerce number matching, we cannot have VAT numbers in
our type D dataset. Therefore, for the type D accounts only, we exclude all entries with a VAT number
that occurs more than 10 times. For VAT numbers that occur between 2 and 10 times, we drop all
duplicates and keep only a single entry.

3. Fuzzy matching. For this matching technique, we compare type D and type A accounts based on their
ZIP Code and email address. Although duplicate ZIP codes and email addresses are allowed for type D
accounts, we take the same approach as for Chamber of Commerce number matching and VAT number
matching, where we exclude all entries with a ZIP code or email address that occurs more than 10 times.
For entries with a ZIP code or email that occurs between 2 and 10 times, we drop the duplicates and
keep a single entry. We perform this filtering since manual inspection indicates that these ZIP codes
and email addresses are often bogus.
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If either the ZIP code, which is enriched with the address number, or the email address matches, we
calculate the Levenshtein similarity between the names, which is calculated as 1 − l , where l is the
Levenshtein distance [21] between the names of the accounts. We then filter out hits where the Leven-
shtein distance between the names is too large. To gain some insight into how the decision boundary
of the Levenshtein distance impacts the number of fuzzy matching hits, we plot the number of hits per
decision boundary in figure 3.3.

Figure 3.3: Number of fuzzy matching hits per threshold value for Levenshtein similarity.

In figure 3.3, we see that with a low decision boundary, the number of fuzzy matching hits quickly drops.
However, when the needed Levenshtein similarity for two records to be considered a hit increases, the
number of fuzzy matching hits does not drop as drastically. After inspecting this figure and manually
inspecting the matches to see whether they are of high quality, we have decided to utilize a Levenshtein
decision boundary of 0.95.

After the matching process, we can merge the results of all three matching processes. The number of hits
as a result of the different matching techniques and the total number of distinct hits can be found in table
3.2. In this table, we can see that Chamber of Commerce number matching yields the most hits between type
D and type A accounts with ~4.7 million hits. VAT number matching yields ~2.9 million hits, whereas the
fuzzy matching technique yields ~1.8 million hits. We can also see that CoC number matching, VAT number
matching, and fuzzy matching yield a total of ~9.3 million hits, but we only have a total of ~6.9 million distinct
hits, meaning that ~2.4 million hits were duplicates.

Number of hits
CoC number matching 4 717 751
VAT number matching 2 857 814
Fuzzy matching 1 767 134
Total 6 920 017

Table 3.2: Number of hits for the different matching techniques and the total number of hits.

3.3. Network building
To build the dynamic network, we are going to use data on transactions. To recap, a transaction always hap-
pens between a type D account and a type A account. To build our dynamic network, we will only consider
transactions where the type A account of the transaction is matched to a type D account using the entity
resolution algorithm as described in section 3.2. As discussed before, transactions from January 1st, 2018 to
September 30th, 2020 will be considered. We have chosen our starting point to be January 1st, 2018 because
we believe that this is an optimum between not having too much data to process but still being able to cap-
ture annually occurring temporal patterns. We have chosen September 30th, 2020 as our ending date since
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Exact users can log their transactions whenever they want, meaning that the data is often not up-to-date. As
a rule of thumb, the Exact data scientists often assume the data on transactions to be complete after three
to four months. This meant that at the time of building the network, data up to this point was considered
to be complete. Our dynamic network will consist of a series of static networks, one for each month in the
period between January 2018 and September 2020, where an edge is present between two nodes if the re-
spective companies had at least one transaction between them in the corresponding month. Additionally,
the nodes in the network are enriched with data on in which sector, indicated by the ISIC section code of the
company as elaborated on in appendix A, they operate. Also, several Key Performance Indicators, or KPIs for
short, are included in the network for the companies they are available for. These KPIs will be discussed more
extensively in chapter 4.

3.4. Network analysis
In this section, we will try to get more insight into the network and how it is structured. We will start by
looking at the distribution of degrees by iterating over all nodes over all months and retrieving the degrees.
The results can be found in figure 3.4. As we can see in this histogram, the degree distribution follows a
power-law distribution.

Figure 3.4: Degree occurrences in the dynamic network.

Additionally, we can take a look at the inter-arrival times in our dynamic network. If there are n con-
nections between two nodes, we can calculate n −1 inter-arrival times by calculating the number of months
between consecutive connections. We can summarize all these inter-arrival times in a histogram as depicted
in figure 3.5. Similar to the degree distribution, the inter-arrival time distribution also seems to follow a
power-law distribution.

Another informative statistic can be gathered by iterating over all edges and checking in how many months
they occur. This gives us an idea of how persistent our edges are through multiple months. A histogram con-
taining this data is depicted in figure 3.6. In this figure, we can see that the most occurring number of months
and edge occurs in is 1. However, we can also see that there seems to be a nice distribution where we have an
ample amount of data over various numbers of months that an edge occurs in.

Additionally, we will define a set of questions that will help us in verifying the usefulness of this network.
Since we want to assure the quality of the resulting dynamic network, we will verify whether the answers to
the questions we define adhere to our expectations. In this section, we will analyze the network to get an
answer to the following questions:

1. Is the size of the network increasing over time?

2. Are closer months in the network more similar to each other than months that are far apart?

3. Can we see the effect of COVID-19 in some metrics in the dynamic network?

4. Are there significant differences in network features between sectors?
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Figure 3.5: Inter-arrival time (in months) occurrences in the dynamic network.

Figure 3.6: Histogram depicting how many months an edge typically occurs in.

3.4.1. Is the size of the network increasing over time?

Intuitively, the size of the network should be increasing over time, since Exact is a growing company that is
attracting more and more users every month which should result in a growth in the number of active nodes
in the network. Additionally, the economy is usually growing which should result in an increasing number
of edges. To answer the first question of how the size of the network is behaving over time, we can plot the
number of active nodes and the number of edges per month. These plots can be found in figure 3.7.

In figures 3.7a and 3.7b, we can see the number of active nodes and number of edges in the dynamic
network for each month between January 2018 and September 2020. The red lines are least-squares linear
regression lines that minimize the residual sum of squares to fit the data points. In figure 3.7a we can see
that the number of active nodes, being nodes with a degree > 0, is generally increasing over time. This is
confirmed by the linear regression line that has a positive slope, indicating that there generally is an increase
in the number of active nodes over time. The same holds for the number of edges in the network as depicted
in figure 3.7b, where we can see that generally, the number of edges in the network is increasing, which is
confirmed by the positive slope of the linear regression line.
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(a) Number of active nodes per month between January 2018 and September
2020.

(b) Number of edges per month between January 2018 and September 2020.

Figure 3.7: Figures depicting the number of active nodes and edges per month between January 2018 and September 2020.

3.4.2. Are closer months in the network more similar to each other than months that are
far apart?

When reasoning about the dynamic network and how it is continuously evolving, it is intuitive that some-
how closer months in the network are should be generally similar to each other than months that are further
apart since the odds that the same companies are active in consecutive months are higher than the odds that
the same companies are active in months that are far apart. To answer this question, we have to compare
all months in the network to each other and verify whether closer months are more similar. Since we have
33 months worth of data, we will have to make

∑33
n=1 n = 561 comparisons, making it important that these

comparisons can be performed rather quickly. Because various definitions and measures of network similar-
ity exist, we will apply several graph similarity metrics that allow us to verify what types of similarity closer
months are more similar than months that are further apart.

The first network similarity metric that we will be discussing is the Jaccard similarity as discussed in sec-
tion 2.2 between the sets of active nodes. These results can be found in figure 3.8. In figure 3.8a, we can see a
heatmap containing the Jaccard similarities between the sets of active nodes for all months. On the diagonal,
the similarities are 1 since we are comparing the set of nodes against itself. Intuitively, we want squares close
to the diagonal to have a higher value than squares that are further away since months that are close to each
other will be close to the diagonal. In figure 3.8a, this seems to be the case. However, to get a more conclu-
sive answer, we plot the average Jaccard similarity between the sets of active nodes per number of months
between compared graphs in figure 3.8b. For example, if the distance between months is 1, we compare Jan-
uary 2018 to February 2018, February 2018 to March 2018, and so forth. When the distance between months
is 2, we compare January 2018 to March 2018, February 2018 to April 2018, and so forth. In this figure, we see
that in general, the larger the number of months between months we are comparing, the lower the average
Jaccard similarity between the set of active nodes is, meaning that in terms of Jaccard similarity between sets
of active nodes, closer months tend to be more similar than months that are further away.

Similarly, we can plot Jaccard similarity between the sets of edges for all months in figure 3.9b. Similar
to the Jaccard similarity for the sets of active nodes, the heatmap of the Jaccard similarity of edges as found
in figure 3.9a seems to indicate that closer months are indeed more similar in terms of Jaccard similarity of
sets of edges. This is confirmed by figure 3.9b, where we can see the Jaccard similarity between sets of edges
decrease as the number of months between compared graphs becomes larger.

Alternatively, we can also use the Jensen-Shannon divergence of degree distributions as described in [8]
as a measure of distance between graphs based on the dissimilarity of their degree distributions. We can
then measure the similarity between two graphs as 1− j , where j is the Jensen-Shannon divergence of degree
distributions of two graphs. In short, we use the degree occurrences of the two networks to derive two prob-
ability distributions. We then calculate the Jensen-Shannon divergence, which is a smoothed and symmetric
version of the Kullback–Leibler divergence, as such:

JSD(P,Q) = 1
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(a) Jaccard similarity between sets of active nodes.

(b) Average Jaccard similarity between sets of active nodes per number of
months between compared graphs.

Figure 3.8: Figures depicting Jaccard similarity between sets of active nodes.

(a) Jaccard similarity between sets of edges.

(b) Average Jaccard similarity between sets of edges per number of months
between compared graphs.

Figure 3.9: Figures depicting Jaccard similarity between sets of edges.

, where K L(P,Q) is the Kullback-Leibler divergence of two distributions and is calculated as:

K L(P,Q) = ∑
x∈X

P (x)l og (
P (x)

Q(x)
)

To be able to properly capture the topological changes in the network isolated from the growth of the set
of nodes, we only consider the set of starting nodes, being the set of nodes that had a degree > 0 in January
2018, for each network. Since nodes in this set of starting nodes are heavily overrepresented in January 2018,
we remove this month from the comparison. Plots containing this similarity measurement can be found in
figure 3.10. In the heatmap depicted in figure 3.10a, we can see that squares closer to the diagonal tend to
have a higher similarity than squares that are further away, meaning that when we compare months that are
closer together, the distribution of their degrees tends to be more similar. This is confirmed by figure 3.10b,
where we can see that when the number of months between compared graphs increases, the Jensen-Shannon
similarity of degree distributions between them decreases.

Thirdly, to try to assess the similarity between months in terms of connectivity, we will take a look at the
DeltaCon distance [16] as discussed in section 2.2 between all months. Similar to the Jensen-Shannon simi-
larity of degree distributions as described above, we only use the set of starting nodes to be able to properly
capture the connectivity changes in the networks. Due to memory and runtime constraints, graph sampling
had to be performed to be able to calculate the DeltaCon distances for the Cartesian product of the set of all
months in a feasible time. The authors of [20] discuss several approaches to graph sampling, and conclude
that "simple uniform random node selection performs surprisingly well". Therefore, we decided to sample a
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(a) Jensen-Shannon similarity of degree distributions between starting nodes
of months.

(b) Average Jensen-Shannon similarity of degree distributions per number of
months between compared graphs.

Figure 3.10: Figures depicting the Jensen-Shannon similarity of degree distributions.

uniform random set of 10 000 nodes for all graphs 5 times and use the average DeltaCon distances of these 5
samplings to decrease the variance. The results of this experiment are depicted in figure 3.11. As we can see
in the heatmap in figure 3.11a, we can see that months that are closer together tend to have a lower DeltaCon
distance between them, meaning that months that are closer together tend to have more similar node influ-
ences than those of months that are further apart. This is confirmed by the line graph in figure 3.11b, where
we can see that the DeltaCon distance steadily increases when the number of months between compared
graphs increases.

(a) DeltaCon distance between months.

(b) Average DeltaCon distance per number of months between compared
graphs.

Figure 3.11: Figures depicting the DeltaCon distance.

Lastly, we will take a look at the NetSimile distance [5] as discussed in 2.2 between graphs to assess the
topological similarity of these networks. Similar to the Jensen-Shannon similarity of degree distributions and
the DeltaCon distance calculations as described above, we only use the set of starting nodes to be able to
properly capture the topological changes in the networks. The results of this experiment can be found in
figure 3.12. In the heatmap depicted in figure 3.12a, it is difficult to see whether squares close to the diagonal
have a significantly lower distance than squares that are further away. Therefore, we take a look at the line
graph in figure 3.12b. Here, we can see that although the average NetSimile distance seems to increase when
the number of months between compared graphs increases, the relation does seem to be noisier with regard
to the distance metrics as discussed above.
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(a) NetSimile distance between months.

(b) Average NetSimile distance per number of months between compared
graphs.

Figure 3.12: Figures depicting the NetSimile distance.

3.4.3. Can we see the effect of COVID-19 in some metrics in the dynamic network?
For our dynamic network to be a useful way of preparing the data, the effects of the COVID-19 lockdown
have to be visible in some way in the dynamic network. To assess whether this is the case, we will first plot
the number of active nodes and the number of edges in the network over time, together with an indicator of
when the first COVID-19 lockdown in The Netherlands happened. These plots can be found in figure 3.13.

(a) Number of active nodes per month, with a lockdown indicator on March
2020.

(b) Number of edges per month, with a lockdown indicator on March 2020.

Figure 3.13: Figures depicting the number of active nodes and edges per month, with a lockdown indicator on March 2020.

In figures 3.13a and 3.13b, we can see that the number of active nodes and edges both decline after the
COVID-19 lockdown, whereas they were both increasing before the lockdown as discussed in section 3.4.1.
However, the question remains whether this decrease in active nodes and edges is due to either a decrease
in the number of Exact users or whether the nodes in the network are becoming less active. To gain some
more insight, the number of type D accounts, i.e. the number of Exact users, over time has been added to the
plot containing the number of active nodes in figure 3.14. In this figure, we can see that the number of type
D accounts is increasing over time, similarly to the number of active nodes in the network. However, we can
also see that the decrease in the number of active nodes after the COVID-19 lockdown is not reflected in the
number of type D accounts, leading us to believe that the decrease in the number of active nodes is mostly
happening because the nodes in the network are generally less active.

To further assess the assumption that the number of active nodes is decreasing because nodes are gen-
erally less active, we took the set of starting nodes, being the set of nodes that had a degree > 0 in January
2018, and used this set to look at this subgraph over time. In figure 3.15, the average degree and its standard
deviation of this subgraph are shown. In this figure, we see that before the lockdown, the average degree
tends to be increasing apart from the large drop from January 2018 to February 2018, which we should not
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Figure 3.14: Number of active nodes per month with the number of type D accounts per month.

reach too much into since we picked all nodes that have a degree > 0 in January 2018, making the number of
edges overrepresented in January 2018. We can also see that the average degree of the set of starting nodes is
decreasing after the COVID-19 lockdown in March 2020, further leading us to believe that the decrease in the
number of active nodes and edges to be a result of the nodes in the network being less active as a result of the
lockdown. The standard deviation of the degrees tends to follow a very similar trend as the average degree.
Because the degree follows a power-law distribution as depicted in figure 3.4, we believe that the standard
deviation follows a similar trend to the average because that when the average degree decreases, the standard
deviation also decreases since a large number of samples in our dataset are getting closer to the average. The
same goes for when the average degree increases; a large number of samples in our dataset are getting further
away from the average.

Figure 3.15: Average degree and standard deviation of degree of the subgraph of starting nodes per month.

Similarly, we can plot the average clustering coefficient for the subgraph of starting nodes over time. The
results can be found in figure 3.16. The average clustering coefficient C is calculated as:

C = 1

n

∑
v∈G

cv

, where n is the number of nodes, G is the graph, and cv is calculated by taking the direct neighbors of v
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and taking the number of edges between them divided by the total number of possible edges between these
neighbors. In figure 3.16, we can see that the average clustering coefficient fluctuates between approximately
0.050 and 0.060 before the lockdown. However, after the lockdown, the average clustering coefficient slightly
drops to 0.044, further leaving us to believe that the effects from the lockdown are visible in the behavior of
the nodes in the network.

Figure 3.16: Clustering coefficient of the subgraph of starting nodes per month.

However, there are multiple reasons why this drop in the clustering coefficient could be happening in the
network. On one hand, a decrease in the number of links will naturally lead to a decrease in the clustering
coefficient, but on the other hand, the clustering coefficient could be dropping because important links are
disappearing. To verify whether links are disappearing homogeneously, we plot the mean clustering coeffi-
cient of the set of starting nodes similar to the plot in figure 3.16 together with the link density in figure 3.17a.
The link density is defined as the fraction of edges with regard to the total number of possible edges and is
calculated as:

d = e
n(n−1)

2

, where d is the link density, e is the number of edges in the network and n is the number of nodes in the
network. In figure 3.17a, we can see that the clustering coefficient and link density tend to follow a very similar
trend, leading us to believe that after the coronavirus lockdown, edges tend to disappear homogeneously.
This claim is further backed up by figure 3.17b, where the degree assortativity of the subgraph of starting
nodes per month is plotted. This degree assortativity measures whether nodes with a similar degree tend
to be connected. The assortativity ranges between -1 and 1, where -1 indicates that nodes with a similar
degree tend to not be connected, whereas a value of 1 indicates that nodes with a similar degree tend to be
connected. As we can see in figure 3.17b, the degree assortativity does not necessarily change significantly
after the lockdown, further leading us to believe that edges are disappearing homogeneously.

3.4.4. Are there significant differences in network features between sectors?
Lastly, we are also curious as to whether significant differences exist between various sectors, and whether
they are impacted differently by the COVID-19 lockdown in March 2020. To start, we will take a look at the
distribution of sector occurrences in our dynamic network as depicted in figure 3.18. In this figure, we can
see that over 140 000 companies do not have a sector code. The meanings of these sector codes can be found
in appendix A. Additionally, we also see that a large number of sectors contain a small number of nodes.

Next, we will take a look at the number of edges between nodes of the same sector versus the number
of edges versus nodes from different sectors as depicted in figure 3.19 to see whether there is a difference in
trend between these two distinct sets of edges. In figure 3.19a, all nodes are considered, whereas in figure
3.19b, only starting nodes are considered. In both of these figures, we can see that there does not seem to
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(a) Average clustering coefficient and average link density of the subgraph of
starting nodes per month. (b) Degree assortativity of the subgraph of starting nodes per month.

Figure 3.17: Figures verifying whether links are disappearing homogeneously.

Figure 3.18: Sector occurrences in the dynamic network.

be a significant difference between the trend in the number of edges of nodes of the same sector or nodes of
different sectors.

(a) Number of edges between nodes of the same sector and between nodes of
different sectors.

(b) Number of edges between starting nodes of the same sector and between
nodes of different sectors.

Figure 3.19: Figures depicting the number of edges between nodes of the same sector and between nodes of different sectors.
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To further assess whether there exist significant differences between nodes in different sectors, we plot
the average degree of all nodes per sector in figure 3.20. To ensure that the results are sufficiently reliable
we only consider sectors with at least 20 000 nodes, being sectors G, F, M, and K. In figure 3.20a, all nodes
are considered, whereas in figure 3.20b, only starting nodes are considered. In both these plots, we see that
the average degree per sector varies significantly, leading us to believe that there are significant differences in
network features between sectors. We also see that the average degree of all sectors seems to be decreasing as
a result of the COVID-19 lockdown in The Netherlands, but there seem to be differences in how heavily this
decrease in average degree is per sector.

(a) Average degree of nodes per sector. (b) Average degree of starting nodes per sector.

Figure 3.20: Figures depicting the average degree of nodes in different sectors.
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In this chapter, we will be looking at the second subquestion of how to utilize our dynamic network to improve
existing KPI forecasting techniques. First, we discuss the influence of the COVID-19 on KPIs in section 4.1.
Then, we will discuss the experimental setup for KPI forecasting using node features in section 4.2. Afterward,
we will execute the experiments as described in section 4.2 for various KPIs, namely Revenue in section 4.3,
CashFlowMonthly in section 4.4, and D2C_14d in section 4.5.

4.1. COVID-19 lockdown influence on KPIs
In section 3.4.3, we have verified that the effects of the COVID-19 lockdown in The Netherlands are visible in
some features of our dynamic network. Additionally, we still need to verify whether the effect of the coron-
avirus lockdown is also visible in certain characteristics of the companies that the dynamic network captures.
To assess the influence of the COVID-19 lockdown on Dutch SMEs, we will take a look at several Key Perfor-
mance Indicators, or KPIs for short. These KPIs are measurements that indicate whether a company is doing
well at a certain moment in time. At Exact, these KPIs are calculated on a monthly basis. Not all of these KPIs
are computed for every company. The possible KPIs that a company in the Exact dataset can have are:

• Cost. Calculated as the sum of all costs made by the company over this month.

• Revenue. Calculated as the sum of all incomes received by the company over this month.

• CashFlowMonthly. Calculated as r evenue − cost over this month.

• CashFlowPosition. Calculated as r evenue − cost cumulative from the beginning up until this month.

• D2C_14d. Calculated as the average payment time for paid sales invoices with a due date of 14 days
calculated over this month.

• D2C_30d. Calculated as the average payment time for paid sales invoices with a due date of 30 days
calculated over this month.

• D2C_all. Calculated as the average payment time for all paid sales invoices calculated over this month.

An overview of statistics on how many companies have a certain KPI computed for them can be found in
figure 4.1. In this figure, we can see that there are over 350 000 nodes in the network. Of these nodes, about
250 000 nodes have KPIs available for Cost, Revenue, CashFlowMonthly, and CashFlowPosition. A smaller
amount of nodes have computed values for D2C_all, D2C_14d, and D2C_30d.

To assess whether the effect of the COVID-19 lockdown is visible in the companies that the network cap-
tures, we take a look at the changes in these KPIs over time. However, there are several ways to approach this.
Firstly, we could look at the average value of the KPIs per month. However, the problem with this approach is
that the variance in the scale of these KPIs is often large. Since SMEs can vary greatly in size, relatively large
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Figure 4.1: Number of nodes for which certain KPIs are calculated.

changes for smaller companies will have a very small effect on the average value of certain KPIs per month.
This is not a desired property since we are interested in the effect of the COVID-19 lockdown on all SMEs, re-
gardless of the size of those SMEs. Therefore, to solve this issue, we could look at the average relative change
for each company with regard to last month. However. the problem with this approach is that there is a lot of
seasonality in the data which makes it unreliable to draw sensible conclusions from comparing consecutive
months. To solve this problem, we will consider the average relative change in KPIs for each company with
regard to the same month in the previous year. These changes for all KPIs over time can be found in figure 4.2.
In figure 4.2a, we can see the average relative change in Cost for all companies with regard to the same month
previous year. In this figure, we see that there does seem to be a decrease around the coronavirus lockdown,
but it is difficult to attribute this decrease to the lockdown since we see multiple similar decreases outside of
this lockdown period. This is different for the Revenue as depicted in figure 4.2b, where we see a very large
unprecedented decrease in Revenue around the COVID-19 lockdown. In figure 4.2c we can see the average
relative change for CashFlowMonthly with regard to the same month previous year. In this figure, we can see
that there seems to be a significant drop in CashFlowMonthly around the coronavirus lockdown. This cannot
be said for the CashFlowPosition in figure 4.2d, where we can see that the CashFlowPosition is trending up-
wards very quickly after the lockdown. D2C_all, D2C_30d and D2C_14d as depicted in figures 4.2e, 4.2f and
4.2g respectively all seem to follow similar trends where after the coronavirus lockdown, there seems to be
a slight increase in average payment time before decreasing again. In terms of Revenue, CashFlowMonthly,
and the various D2C KPIs, we believe that the result of the coronavirus lockdown is clearly visible for the
companies of the Exact dataset.
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(a) Average relative change in Cost for all companies with regard to the same
month previous year.

(b) Average relative change in Revenue for all companies with regard to the
same month previous year.

(c) Average relative change in CashFlowMonthly for all companies with
regard to the same month previous year.

(d) Average relative change in CashFlowPosition for all companies with
regard to the same month previous year.

(e) Average relative change in D2C_all for all companies with regard to the
same month previous year.

(f) Average relative change in D2C_30d for all companies with regard to the
same month previous year.

(g) Average relative change in D2C_14d for all companies with regard to the
same month previous year.

Figure 4.2: Figures depicting the average relative change in KPIs for all companies with regard to the same month previous year.
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Since we can see the effect of the coronavirus lockdown in the network as discussed in section 3.4.3, and
we can also see the effect of the coronavirus lockdown in The Netherlands for Revenue, CashFlowMonthly,
and the various D2C KPIs, we will try to improve KPI forecasts for Revenue, CashFlowMonthly, and one of the
D2C KPIs, namely D2C_14d, using node features. These KPIs are very important for SMEs; generating revenue
is essential for SMEs for obvious reasons, just like having a steady cash flow. Also, getting your invoices paid
on time is another very important aspect for SMEs since having money to invest is crucial. Improving these
KPI predictions is valuable for Exact since it employs KPI forecasting for its customers. Improving the quality
of these forecasts delivers more value to the customers of Exact, and is therefore valuable for Exact itself. For
the scientific community, this work provides an analysis of the usefulness of node features for KPI forecasting.

4.2. Experimental setup for KPI forecasting
In this section, we will discuss the setup for the experiments that we are going to use for KPI forecasting. These
experiments will be executed for Revenue in section 4.3, CashFlowMonthly in section 4.4, and D2C_14d in
section 4.5.

For our experiments, we will try to predict the KPI of companies for April 2020 using a linear regression
model. As we can see in the figures in figure 4.2, we can see that in April 2020, for some KPIs, some unexpected
changes occurred, hence the choice to use this month as our prediction target. We hypothesize that because
of the sudden change in the values of these KPIs that is not reflected in the KPI values before as a result of
the coronavirus lockdown, enriching the predictions using node features could increase the accuracy of KPI
predictions. Linear regression models have often been used for KPI prediction. The authors of [3] found that,
in the domain of movie revenue prediction, linear regressions are the most widely used machine learning
model for revenue prediction. This, in combination with the fact that the linear regression model has the
advantage that it is very explainable, is the reason why we will use a linear regression model for KPI prediction
in this thesis. To check whether node features can be used to improve KPI forecasting, we train various KPI
forecasting models and vary the data the linear regression models have access to. We will experiment using
the following KPI forecasting models:

• Baseline. As the baseline model, we will use a linear regression model that minimizes the residual sum
of squares. This model has access to the 12 previous monthly KPI values of the company and does not
use any node features.

• Degree. For this approach, we will use a similar linear regression model. However, this model not
only has access to the 12 previous monthly KPI values, but we will also provide the model with the 12
corresponding previous degrees of the node of that company.

• Clustering coefficient. For this approach, we will again use a linear regression model. However, this
model not only has access to the 12 previous monthly KPI values, but we will also provide the model
with the 12 corresponding previous clustering coefficients of the node of that company.

• node2vec. For this approach, we will again use a linear regression model. However, this model not
only has access to the 12 previous monthly KPI values, but we will also provide the model with the 12
corresponding previous node2vec embeddings of the node of that company. This node2vec embedding
is generated by an implementation as described in [1], where the author uses rejection sampling to
reduce the computational complexity from linear time to logarithmic time. Since the author of [14]
found that the parameters do not make a large difference on a similar dataset by Exact, we will use the
parameters as mentioned in [14], being num_w alks = 20, embeddi ng _si ze = 20, w alk_leng th = 40,
p = 2, and q = 0.25.

• Degree + clustering. For this approach, we will again use a linear regression model. However, this
model not only has access to the 12 previous monthly KPI values, but we will also provide the model
with the 12 corresponding previous degrees and clustering coefficients of the node of that company.

• Degree + node2vec. For this approach, we will again use a linear regression model. However, this model
not only has access to the 12 previous monthly KPI values, but we will also provide the model with the
12 corresponding previous degrees and the 12 corresponding previous node2vec embeddings of the
node of that company.
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• Clustering + node2vec. For this approach, we will again use a linear regression model. However, this
model not only has access to the 12 previous monthly KPI values, but we will also provide the model
with the 12 corresponding previous clustering coefficients and the 12 corresponding previous node2vec
embeddings of the node of that company.

• Degree + clustering + node2vec. For this approach, we will again use a linear regression model. How-
ever, this model not only has access to the 12 previous monthly KPI values, but we will also provide
the model with the 12 corresponding previous degrees, the 12 corresponding previous clustering coef-
ficients, and the 12 corresponding previous node2vec embeddings of the node of that company.

We will score the models on the following metrics:

• Mean absolute error, or MAE for short. It is calculated by: M AE =
∑n

i=1 |Yi−Ŷi |
n , where n is the amount of

predictions, Yi is the actual value being predicted and Ŷi is the value of the prediction. Simply put, it is
the average difference between the predicted value and the actual value.

• Root mean squared error, or RMSE for short. It is calculated by: RMSE =
√

1
n

∑n
i=1(Yi − Ŷi )2, where n

is the amount of predictions, Yi is the actual value being predicted and Ŷi is the value of the prediction.
Since RMSE squares the error, it assigns more weight to larger errors compared to MAE.

An overview of the design of the baseline experiment and the degree experiment, as an example for all
the node feature experiments, is shown in figure 4.3. In figure 4.3a, the experimental design of the baseline
model is shown. As we can see, we start with a dataset of companies. For our first step, we extract the 12
features, being the KPI values between March 2019 and March 2020, and the target, being the KPI value for
April 2020, for all companies. Secondly, we randomly split up our dataset into a training set containing 80%
and a test set containing 20% of the companies. The third step consists of training the linear regression model
using the features and the target from the training set. Fourthly, we perform our predictions on the test set
using the test set features, resulting in a set of predictions that we will utilize in our fifth and final step, where
we compare our predictions against the target KPI values from the test set, ultimately calculating the RMSE
and MAE of our predictions. When we compare the baseline experiment design in figure 4.3a against the
degree experiment design in figure 4.3b, we can see that the only difference occurs in step 1. For the degree
experiment, we extract 24 features in comparison to the 12 that are extracted for the baseline model. Not only
do we extract the 12 KPI values between March 2019 and March 2020, but we also extract the node degree for
the company between March 2019 and March 2020, resulting in 24 features.

(a) Experimental design of the baseline model.

(b) Experimental design of the degree model.

Figure 4.3: Experimental design of the baseline model and the degree model.

However, before we perform the predictions, we will start by performing a pre-analysis by taking a look
at the distribution of the values of the KPI. Next, we will check whether there exists a correlation between the
node features and the KPI that we are predicting using a plot containing a kernel density estimate together
with a linear regression line. To assess the potential usability of the node2vec embeddings, we use t-SNE di-
mensionality reduction as described in [36] to verify a possible correlation between the KPI and the node2vec
embeddings. After the pre-analysis, we will present the results of the various KPI forecasting models. Af-
ter examining the results, we will perform a statistical analysis on the baseline model and the best enriched
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model. Then, we will perform a post-analysis by diving deeper into the differences between the best model
that has been enriched with node features and the baseline model by splitting up the dataset with regard to
sector, mean KPI value, and mean degree, and then train and predict using these split datasets as input to
the experiments as described in figure 4.3 to examine if there is a certain subset of data where the enriched
KPI forecasting model outperforms the baseline further. Lastly, we will try to verify the hypothesis where we
think that for April 2020, historical data is less useful, and thus enriching our predictions with node features is
more useful by performing predictions for a month before the coronavirus lockdown, the first month where
the coronavirus lockdown is visible, and a month deeper in the COVID-19 pandemic. We chose the month
before the coronavirus lockdown to be September 2019. The first month where the coronavirus lockdown is
visible is April 2020 as discussed above, and as a month deeper in the COVID-19 pandemic, we chose Septem-
ber 2020 as it is the last available month in our dataset. In these post-analysis experiments, we chose to do the
training of the model on the corresponding subset of data only instead of using the trained model on all data
before doing predictions for the corresponding subset of data because often the variance in the KPIs to pre-
dict of all companies is large, so splitting up the dataset could potentially increase performance significantly.
This is also done for existing KPI predictions techniques at Exact.

4.3. Revenue forecasting
In this section, we will take a look at Revenue forecasting and how to improve these forecasts using node
features using the experiments as described in section 4.2.

4.3.1. Pre-analysis
To see whether we can use node features to improve Revenue predictions, we will first take a look at the
Revenue distribution in figure 4.4. In this histogram, we can see that the most occurring Revenue is between
0 and 1000, and the amount of occurrences is generally decreasing as the Revenue gets higher.

Figure 4.4: Histogram depicting the Revenue distribution.

Additionally, we are also interested in whether there is a correlation between the node features and Rev-
enue. Kernel density estimations of these node features and Revenue are depicted in figure 4.5, together with
a linear regression line that minimizes the residual sum of squares indicating the correlation between the
node features and Revenue. In figure 4.5a, we see that the degree is often close to zero, which is in line with
earlier findings as reported in figure 3.4. In figure 4.5a, we also see that there seems to be a positive correlation
between degree and Revenue. The Pearson correlation coefficient between Revenue and degree, calculated

as
∑

(xi−x̄)(yi−ȳ)p∑
(xi−x̄)2 ∑

(yi−ȳ)2
, is 0.27, leading us to believe that degree could potentially be a suitable node feature to

improve Revenue predictions with. In figure 4.5b, we see that a lot of the clustering coefficients of the nodes
also tend to be close to zero. The linear regression line does not indicate a clear correlation between clus-
tering coefficient and Revenue, leading us to believe that the clustering coefficient of a node may be a less
suitable node feature to improve Revenue predictions with.
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(a) Density plot and linear regression line indicating the correlation between
degree and Revenue.

(b) Density plot and linear regression line indicating the correlation between
clustering coefficient and Revenue.

Figure 4.5: Density plots and linear regression lines indicating the correlation between various node features and Revenue.

To assess the potential usability of the node2vec embeddings, we use t-SNE dimensionality reduction as
described in [36] to further verify a possible correlation between Revenue and the node2vec embeddings.
These results can be found in figure 4.6. In this figure, we see that we used t-SNE to reduce the node2vec
embeddings to two dimensions. All data points also have a color indicating the Revenue of that node. In this
figure, we cannot clearly see clusters of node2vec embeddings with similar Revenue. This could mean that
the node2vec embeddings might not be suitable for Revenue prediction. However, since we were required
to perform dimensionality reduction on the node2vec embeddings for visualization purposes, it could be the
case that providing the actual full node2vec embeddings could either improve or decrease the performance.

Figure 4.6: t-SNE on node2vec embeddings with the Revenue of these nodes.

4.3.2. Results
Next, we will experiment with improving existing Revenue forecasting techniques using node features as dis-
cussed in section 4.2. The results of this experiment can be found in table 4.1. In this table, we can see that
the best performing model in terms of both metrics, indicated in red, is the model where we enrich the base-
line model using previous degree and clustering coefficient data. The degree model seems to improve on the
baseline mostly in terms of RMSE, whereas the clustering model seems to improve on the baseline in terms
of MAE. The degree + clustering model combines these factors, beating the baseline model in all metrics. The
node2vec approach has a very significant negative impact on the performance of the linear regression model.
This might be due to the fact that a linear regression is unable to meaningfully capture the highly nonlinear
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node2vec embeddings. We also see that in every model where node2vec embeddings are provided, the per-
formance is significantly worse than the performance of the baseline, leading us to believe that of the node
features we tried out, the degree and clustering coefficient of the node are the only suitable node features to
improve Revenue predictions using a linear regression.

RMSE MAE
Baseline 6000.91 3768.02
Degree 5984.54 3767.42
Clustering 6000.30 3762.61
node2vec 6145.57 4076.53
Degree + clustering 5983.53 3762.31
Degree + node2vec 6347.60 4379.56
Clustering + node2vec 6372.57 4397.52
Degree + clustering + node2vec 6047.50 4011.06

Table 4.1: Results for Revenue prediction.

When we compare the baseline model to the best performing model, being the degree + clustering model,
we can for both models determine whether the group of variables are statistically significant by trying to reject
the null hypothesis that the group of variables is not statistically significant. For this, we choose an alpha
value of 0.05. In our analysis, we can see that the probability of the group of variables being not statistically
significant is 0.00 for both models. Since this is lower than our alpha value of 0.05, we can reject the null
hypothesis and conclude that the group of variables used in both models are statistically significant.

Additionally, we can take a look at the goodness-of-fit by computing the R-squared value for both models.
When comparing these values, we can see that the R-squared of the baseline model is 0.809, whereas the R-
squared of the degree + clustering model is 0.811, indicating that the degree + clustering model can slightly
explain the change in Revenue better than the baseline model. However, since the degree + clustering model
utilizes three times as many variables as the degree model, we also must take the adjusted R-squared into
account since it penalizes models based on the number of variables. The adjusted R-squared for the baseline
model is still 0.809, whereas the adjusted R-squared for the degree + clustering model is 0.810, indicating that
at least some of the enriched variables in the degree + clustering model are indeed contributing to the model.

Lastly, we will be looking at whether the individual features of the best enriched model, being the degree
+ clustering model, are significant by trying to reject the null hypothesis that the individual feature is not
significant. Again, we will choose an alpha value of 0.05. From the previous Revenue values, we see that
the Revenues from 11 and 10 months ago have a p-value of 0.133 and 0.171 respectively, meaning we cannot
reject the null hypothesis for these features. However, the other previous Revenue values have a p-value
< 0.05, meaning that we can reject the null hypothesis and conclude that these features are significant for
Revenue prediction. For the degree features, we see that the degrees 12, 11, 8, 5, 4, 3, and 2 months ago have a
p-value > 0.05, meaning that for these features, we cannot reject the null hypothesis. However, for the degree
10, 9, 7, 6, and 1 months ago, the p-value is smaller than 0.05, meaning that we can reject the null hypothesis
for these features and conclude that they are significant. For the clustering coefficient features, the p-values
for all features are larger than 0.05, meaning that we cannot reject the null hypothesis for any of the clustering
coefficient features.

4.3.3. Post-analysis
Since the degree + clustering model only beats the baseline model by a slight margin, we are interested in if
there is a certain subset of companies where this model more significantly outperforms the baseline model.
Therefore, we consider the four sectors with a fairly large amount of nodes as discussed in section 3.4.4. The
meanings of the sector codes can be found in appendix A. For each of these sectors, we train the baseline
model and the degree + clustering model on the data from that sector. Then, we generate predictions for
companies in this sector. The experiment design is the same as the one described in figure 4.3, the differ-
ence being that the input data originates from a single sector. The percentual change in RMSE and MAE of
the degree + clustering model with regard to the baseline model for the four sectors and the full dataset can
be found in figure 4.7. In this figure, we can firstly see that for all companies, the degree + clustering model
slightly outperforms the baseline model in both metrics as reported in table 4.1. We can also see that for com-
panies in sector G, the degree + clustering approach manages to lower the RMSE with regard to the baseline
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approach. However, the baseline approach still outperforms the degree model in terms of MAE. For sector
F, although slightly, the degree model outperforms the baseline model in all metrics. This decrease in error
is better for companies of sector M, where the degree model significantly beats the baseline in all metrics,
especially in terms of MAE. Since sector M is described as "Consultancy, research and other specialised busi-
ness services", we think that the explanation of why node features work well for companies in this sector is
because, for consultancy companies, the amount of revenue they generate is strictly related to the number of
companies they do business with. When links for a consultancy company disappear, it is understandable that
this likely means a decrease in Revenue. For other companies, this is not necessarily the case. It is apparent
that for companies in sector K, the baseline vastly outperforms the degree + clustering model in terms of both
metrics.

Figure 4.7: Percentual change in RMSE and MAE of the degree + clustering model with regard to the baseline model for Revenue
prediction per sector.

Alternatively, we can take a look at whether the degree + clustering model outperforms the baseline model
for nodes with a certain degree. To analyze this, we split up the companies into three categories: the compa-
nies with an low degree, the companies with a medium degree, and the companies with a high degree. Each
of these categories consists of approximately one-third of the companies. This means that the low degree
category consists of companies with an average degree lower or equal to 2.25, the medium degree category
consists of companies with an average degree higher than 2.25 and lower or equal to 4.42, and the high de-
gree category consists of companies with an average degree higher than 4.42. The results for the baseline
model and the degree + clustering model for these three categories can be found in table 4.2. In this table,
we can firstly see that for both models in an absolute manner, they both score better for companies with a
low degree than for companies with a high degree. We think that this has to do with the fact that as shown in
figure 4.5a, there is a positive correlation between degree and Revenue. Since the range of mean degrees in
the high degree category is by far the largest, we think that the range in Revenues to predict is also the largest,
making accurate predictions more difficult, resulting in larger errors. For companies with a low degree, both
models perform similarly, with the baseline model slightly outperforming the degree + clustering model. This
also holds for companies with a medium degree. However, we can see that for companies with a high degree,
the degree + clustering model beats the baseline model in terms of both metrics, especially in terms of MAE,
where the degree + clustering model lowers the error by ~0.8% with regard to the baseline model. We think
that the degree + clustering model outperforms the baseline model especially for companies with a high de-
gree due to the degree distribution as shown in figure 3.4. Since the degree follows a power-law distribution,
there is more degree variance in the high degree category, which provides more useful information for pre-
dictions.

We are also interested in whether the degree + clustering model outperforms the baseline model for com-
panies with certain Revenue. Similarly to the degree categories as described above, we can also categorize
all companies into three approximately equally sized categories: companies with a low mean Revenue, com-
panies with a medium mean Revenue, and companies with a high mean Revenue. Again, each of these cat-
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Low degree Medium degree High degree
RMSE MAE RMSE MAE RMSE MAE

Baseline 4788.19 2574.96 5745.37 3632.92 7725.35 5475.25
Degree + clustering 4793.73 2577.43 5751.17 3639.13 7705.10 5432.39

Table 4.2: Results for Revenue prediction for the various degree categories.

egories consists of approximately one-third of the companies. This means that the low Revenue category
consists of companies with a mean Revenue up to 6886.80, the medium Revenue category consists of com-
panies with a mean Revenue higher than 6886.80 and up to 13976.82, and the high Revenue category consists
of companies with a mean Revenue higher than 13976.82. The results for the baseline model and the degree
+ clustering model for these three categories can be found in table 4.3. In this table, we can see that abso-
lutely, both the baseline model and the degree model perform worse for the high Revenue category than for
the other two. However, this is to be expected as we expect the high Revenue category to be a lot larger in
terms of possible values to predict than the other two categories, making predictions more difficult. Also,
we see that for companies in the low Revenue category, the degree + clustering model outperforms the base-
line model, improving on the baseline by ~0.9% in terms of RMSE and ~1.3% in terms of MAE. However, this
changes for the medium and high Revenue category, where the baseline model and the degree + clustering
model perform similarly.

Low Revenue Medium Revenue High Revenue
RMSE MAE RMSE MAE RMSE MAE

Baseline 2036.17 1762.86 1881.50 1567.53 6740.33 5045.59
Degree + clustering 2018.55 1740.10 1881.97 1567.75 6757.50 5041.20

Table 4.3: Results for Revenue prediction for the various Revenue categories.

Lastly, we will look at the performance of the baseline model versus the degree + clustering model for three
different months as discussed in section 4.2. To reiterate, we will take a look at predictions for a month before
any coronavirus effect, namely September 2019, a month where the coronavirus effects were noticeable for
the first time, namely April 2020, and a month deeper into the COVID-19 pandemic, namely September 2020.
The results of this experiment can be found in table 4.4. In this table, we can firstly see that for September
2019, both models perform the best, followed by September 2020, and lastly, April 2020. This is to be expected
since historical data is the most representative for September 2019. In September 2020, we already had some
of the coronavirus effects in our historical data, making the predictions more accurate than the predictions
for April 2020, where the coronavirus effects were newer and more unpredictable. For September 2019, the
degree + clustering model outperforms the baseline slightly. However, this difference is larger for April 2020,
where the degree + clustering model lowers the RMSE by ~0.3% and the MAE with ~0.2% compared to the
baseline. For September 2020, the baseline outperforms the degree + clustering model in terms of MAE,
but the degree + clustering model beats the baseline model very slightly in terms of RMSE. These findings
support our hypothesis that for predictions for April 2020, node features can potentially further improve KPI
predictions than for other months since historical data is less representative at the start of a large change such
as the COVID-19 lockdown.

September 2019 April 2020 September 2020
RMSE MAE RMSE MAE RMSE MAE

Baseline 4842.90 2837.39 6000.91 3768.02 5655.15 3311.80
Degree + clustering 4832.70 2835.49 5983.53 3762.31 5653.40 3316.91

Table 4.4: Results for Revenue prediction for various months.

4.4. CashFlowMonthly forecasting
In this section, we will take a look at CashFlowMonthly forecasting and how to improve these forecasts using
node features using the experiments as described in section 4.2.
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4.4.1. Pre-analysis
Similarly to the analysis for Revenue as described in section 4.3, we will start by taking a look at the distribu-
tion of the KPI we want to predict. Therefore, in figure 4.8, the CashFlowMonthly distribution is depicted. In
this figure, we can see that CashFlowMonthly follows a normal distribution that is centered around 0.

Figure 4.8: Histogram depicting the CashFlowMonthly distribution.

Next, we will take a look at the correlations between the node features we will provide and CashFlow-
Monthly in figure 4.9. In figure 4.9a, a kernel density plot with a linear regression line for degree and Cash-
FlowMonthly is depicted. In this plot, we can not distinguish a clear correlation between the degree and
CashFlowMonthly. The same goes for the clustering coefficient as depicted in figure 4.9b, where there is no
clear correlation to be seen as well.

(a) Density plot and linear regression line indicating the correlation between
degree and CashFlowMonthly.

(b) Density plot and linear regression line indicating the correlation between
clustering coefficient and CashFlowMonthly.

Figure 4.9: Density plots and linear regression lines indicating the correlation between various node features and CashFlowMonthly.

Additionally, we will also be looking at the relationship between t-SNE on the node2vec embeddings and
the CashFlowMonthly of these nodes as shown in figure 4.10. In this figure, the location of the point indicates
the values of the t-SNE dimensionality reduction on the node2vec embedding of the node, whereas the color
of the point indicates the CashFlowMonthly of the node. Unfortunately, we cannot clearly see any clusters of
nodes with a similar CashFlowMonthly.

4.4.2. Results
After analyzing the potential usefulness of the various node features, we will run the experiments for fore-
casting CashFlowMonthly. The results of these experiments can be found in table 4.5. In this table, we can
see that the best-performing model in terms of all metrics is the degree model. Enriching the baseline with
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Figure 4.10: t-SNE on node2vec embeddings with the CashFlowMonthly of these nodes.

the clustering coefficient of the corresponding node does not seem to have a very significant impact on the
performance of the model. Similar to Revenue prediction, adding the node2vec embeddings however seems
to deteriorate performance significantly.

RMSE MAE
Baseline 9793.97 5928.87
Degree 9782.93 5908.53
Clustering 9794.18 5928.55
node2vec 9821.72 6026.57
Degree + clustering 9783.83 5909.31
Degree + node2vec 9813.80 6012.72
Clustering + node2vec 9816.01 6017.23
Degree + clustering + node2vec 9808.20 5985.54

Table 4.5: Results for CashFlowMonthly prediction.

First, we will take a look at whether the variables used by the baseline model and the degree model are
statistically significant by trying to reject the null hypothesis that the variables are not statistically significant.
For this, we will use an alpha value of 0.05. In our analysis we can see that the probability of the variables being
insignificant is 1.93e-261 for the baseline model and 0.00 for the degree model, meaning that for both models,
we can reject the null hypothesis and conclude that the variables that are used are statistically significant.

Next, we will compare the goodness-of-fit from both models by comparing the R-squared values. This
is 0.018 for the baseline model and 0.025 for the degree model. However, since the R-squared value is non-
decreasing when adding more features, we will also look at the adjusted R-squared values, which punish
models based on the number of features it utilizes. The adjusted R-squared values are the same as the R-
squared values, being 0.018 for the baseline model and 0.025 for the degree model, meaning that the degree
model can explain the change in Revenue better than the degree model, and the degree features are indeed
contributing to the model.

Lastly, we will try to see which individual features are significant by trying to reject the null hypothesis
that a feature is insignificant. For this, we will use an alpha value of 0.05. For the features that include the
previous CashFlowMonthly value, we can see that for the CashFlowMonthly 8 and 4 months ago, we have a
p-value larger than 0.05, meaning that we cannot reject the null hypothesis. However, for the other features,
we can reject the null hypothesis and thus conclude that the features are significant. For the degree features,
we can see that for the degree 7 and 5 months ago, we have a p-value larger than 0.05 and thus cannot reject
the null hypothesis for these features. For the other degree features, we can conclude that they are significant.
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4.4.3. Post-analysis
Similar to the approach for Revenue prediction, we are interested in how our degree model for CashFlow-
Monthly predictions performs with regard to the baseline for companies in various sectors. The percentual
change of the degree model with regard to the baseline model for the various sectors is shown in figure 4.11.
In this figure, we see that for all companies, the degree model outperforms the baseline model in both RMSE
and MAE. For companies in sector M, the degree model outperforms the baseline model even further than for
all companies. Similarly to Revenue prediction, we think that the explanation of why node features work well
for companies in this sector is because, for consultancy companies, the amount of cash flow they generate
is strictly related to the number of companies they do business with. When links for a consultancy company
disappear, it is understandable that this likely means a decrease in CashFlowMonthly. However, we can also
see that for companies in sectors G, F, and K, the baseline model outperforms the degree model.

Figure 4.11: Percentual change in RMSE and MAE of the degree model with regard to the baseline model for CashFlowMonthly
prediction per sector.

Next, we want to verify whether the degree model outperforms the baseline model for nodes with a certain
degree. Similarly to Revenue prediction as discussed in section 4.3, we divide the nodes into three separate
categories: nodes with a low degree, nodes with a medium degree, and nodes with a high degree. All three
categories are approximately the same size in terms of the number of companies. Nodes with a low degree
are defined as nodes with a mean degree up to 2.42, nodes with a medium degree are defined as nodes with
a mean degree higher than 2.42 and up to 4.92, and nodes with a high degree are defined as nodes with a
degree higher than 4.92. These boundaries are slightly different than the ones for Revenue prediction because
a different set of companies has CashFlowMonthly computed for them as illustrated in figure 4.1, leading to
slightly different boundary values for the degree categories. The results can be found in table 4.6. In this table,
can firstly see that the predictions for high degree companies are typically worse than for companies with a
low or medium degree. Next, we can see that for companies with a low average degree, the baseline model
outperforms the degree model. For the medium degree companies, the baseline model still outperforms the
degree model, although by a relatively lower margin than for companies with a low degree. This changes for
the high degree companies, where the degree model manages to, although slightly, improve upon the baseline
model. Similarly to Revenue prediction, we think that the degree model outperforms the baseline model for
companies with a high degree due to the degree distribution as shown in figure 3.4. Since the degree follows
a power-law distribution, there is more degree variance in the high degree category, which generally provides
more useful information for predictions.

Lastly, we are interested in whether the degree model outperforms the baseline model for companies
with a certain mean CashFlowMonthly. Therefore, we split up the companies into three categories: compa-
nies with a low CashFlowMonthly, companies with a medium CashFlowMonthly, and companies with a high
CashFlowMonthly. Companies with a low CashFlowMonthly are defined as companies with a mean Cash-
FlowMonthly lower or equal to -168.89. Companies with a medium CashFlowMonthly are defined as com-
panies with a mean CashFlowMonthly higher than -168.89 and lower or equal to 520.27, whereas companies
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Low degree Medium degree High degree
RMSE MAE RMSE MAE RMSE MAE

Baseline 7844.15 4290.72 8975.29 5456.82 12398.68 8233.17
Degree 7851.20 4308.66 8978.68 5461.74 12378.54 8218.49

Table 4.6: Results for CashFlowMonthly prediction for the various degree categories.

with a high CashFlowMonthly are defined as companies with a mean CashFlowMonthly higher than 520.27.
Again, these three categories are approximately the same size in terms of the number of companies per cat-
egory. The results of this experiment can be found in table 4.7. In this table, we can firstly see that the error
for medium CashFlowMonthly predictions is significantly lower than for the low and high CashFlowMonthly
categories. We think that this has to do with the fact that the range of values in the medium CashFlowMonthly
category is probably significantly smaller than for the low and high CashFlowMonthly categories, resulting in
lower errors. Also, we can see that for low CashFlowMonthly, the degree model outperforms the baseline,
where the degree model lowers the RMSE with regard to the baseline model by ~0.6% and the MAE by ~1.0%.
However, for companies with a medium CashFlowMonthly, the baseline model and the degree model per-
form similarly, with the baseline model slightly outperforming the degree model. For companies with a high
CashFlowMonthly, the degree model outperforms the baseline model, lowering RMSE and MAE by respec-
tively ~0.6% and ~0.8%. It seems to be the case that for CashFlowMonthly close to 0, the degree data does not
provide a significant improvement over the baseline model. However, for values that are further away from 0,
adding the degree data can yield improvements over the baseline model.

Low CashFlowMonthly Medium CashFlowMonthly High CashFlowMonthly
RMSE MAE RMSE MAE RMSE MAE

Baseline 7165.64 4905.49 184.71 157.04 7099.68 5275.08
Degree 7122.83 4855.18 186.13 157.33 7059.62 5231.10

Table 4.7: Results for CashFlowMonthly prediction for the various CashFlowMonthly categories.

Lastly, we will look at the performance of the baseline model versus the degree model for three different
months. To reiterate, we will take a look at predictions for a month before any coronavirus effect, namely
September 2019, a month where the coronavirus effects were noticeable for the first time, namely April 2020,
and a month deeper into the COVID-19 pandemic, namely September 2020. These results can be found in
figure 4.8. In this table, we can see that the predictions of both the baseline model and the degree model
for September 2019 are significantly better than the predictions for April 2020 and September 2020, which
is to be expected as historical data is more informative to the value to be predicted in September 2019. For
predictions for September 2019, we can see that the baseline model slightly outperforms the degree model
for both RMSE and MAE. However, for April 2020, the degree model outperforms the baseline model for both
metrics. For September 2020, both models perform similarly, with the degree model slightly outperforming
the baseline model for both metrics. These findings support our hypothesis that for predictions for April 2020,
node features can potentially further improve KPI predictions than for other months since historical data is
less representative at the start of a large change such as the COVID-19 lockdown.

September 2019 April 2020 September 2020
RMSE MAE RMSE MAE RMSE MAE

Baseline 8705.14 5064.57 9793.97 5928.87 10031.44 6043.99
Degree 8705.40 5067.44 9782.93 5908.53 10028.38 6041.14

Table 4.8: Results for CashFlowMonthly prediction for various months.

4.5. D2C_14d forecasting
In this section, we will take a look at D2C_14d forecasting and how to improve these forecasts using node
features using the experiments as described in section 4.2.
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4.5.1. Pre-analysis
For D2C_14d forecasting, we will start by taking a look at the distribution of the D2C_14d values as depicted
in figure 4.12. In this figure, we can see that a fairly low amount of companies get their 14-day invoices paid
in a low amount of days. The amount of occurrences is increasing between 0 and 14 days, then stays roughly
equal up to 22 days, and is generally decreasing afterward. However, there does not seem to be a normal
distribution since the distribution does not seem to be symmetrical around the mean.

Figure 4.12: Histogram depicting the D2C_14d distribution.

Similarly to Revenue and CashFlowMonthly forecasting, we will take a look at the correlations between
the various node features and the KPI we want to predict, being D2C_14d. These correlations are depicted in
figure 4.13. In figure 4.13a, the correlation between the degree of a node and the value for D2C_14d can be
seen. In this figure, we can see that there does seem to be a slight positive correlation, meaning that degree
could potentially be an informative feature for D2C_14d forecasting. In figure 4.13b, the correlation between
the clustering coefficient and D2C_14d is shown. Here, we can see a slight negative correlation between the
clustering coefficient and D2C_14d.

(a) Density plot and linear regression line indicating the correlation between
degree and D2C_14d.

(b) Density plot and linear regression line indicating the correlation between
clustering coefficient and D2C_14d.

Figure 4.13: Density plots and linear regression lines indicating the correlation between various node features and D2C_14d.

Additionally, we will also be looking at the relationship between t-SNE on the node2vec embeddings and
the D2C_14d of these nodes as shown in figure 4.14. In this figure, the location of the point indicates the
values of the t-SNE dimensionality reduction on the node2vec embedding of the node, whereas the color of
the point indicates the D2C_14d of the node. In this figure, we cannot clearly see clusters of points with a
similar value for D2C_14d.
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Figure 4.14: t-SNE on node2vec embeddings with the D2C_14d of these nodes.

4.5.2. Results
Now that we have analyzed the potential usefulness of the features, we will take a look at the results of the
experiments. These results can be found in table 4.9. In this table, we see that both the degree model and
the clustering model manage to beat the baseline model in both metrics. All models that include node2vec
data once again seem to significantly deteriorate the performance with regards to the baseline model. The
best-performing model is the degree + clustering model, which beats all other models in all metrics.

RMSE MAE
Baseline 7.5465 5.5142
Degree 7.5290 5.4864
Clustering 7.5397 5.5108
node2vec 7.7245 5.7542
Degree + clustering 7.5223 5.4823
Degree + node2vec 8.2948 6.2829
Clustering + node2vec 7.7361 5.7536
Degree + clustering + node2vec 8.1336 6.1358

Table 4.9: Results for D2C_14d prediction.

Firstly, we will start by checking whether the sets of features used by the baseline model and the best
enriched model, being the degree + clustering model, are significant by trying to reject the null hypothesis
that the sets of features are insignificant. For this, we will use an alpha value of 0.05. In our analysis we can
see that the probability of the variables being insignificant is 0.00 for both models, meaning that for both of
these models, we can reject the null hypothesis and conclude that the variables that are used are statistically
significant.

Then, we will examine the goodness-of-fit of both models by comparing the R-squared values for the base-
line model and the degree + clustering model. The R-squared value of the baseline model is 0.893, whereas
the value of the R-squared value for the degree + clustering model is 0.894, indicating that the degree + clus-
tering model is slightly better at explaining the change in D2C_14d than the baseline model. However, since
the R-squared value is non-decreasing when adding more features, we also want to compare the adjusted
R-squared values of the baseline and degree + clustering model, since it penalizes models with more features
more heavily. We can see that for both models, the R-squared values are equal to the adjusted R-squared val-
ues, being 0.893 for the baseline model and 0.894 for the degree + clustering model, indicating that although
more features are added with the degree + clustering model, the goodness-of-fit of the degree + clustering
model is indeed slightly better.
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Lastly, we will examine whether the individual features that are used by the degree + clustering model
are statistically significant by trying to reject the null hypothesis that the individual feature is insignificant.
Of the features modeling the previous D2C_14d values, the D2C_14d value from 7 months ago has a p-value
larger than 0.05, meaning that this feature is the only previous D2C_14d value for which we cannot reject the
null hypothesis. For the degree values 11, 9, 6, 5, and 3 months ago, we also have a p-value larger than 0.05,
meaning that we cannot conclude that these features are significant. For the other degree value features,
we can reject the null hypothesis and thus conclude that the features are significant. Similarly to Revenue
prediction as discussed in section 4.3, we do not have a p-value smaller than 0.05 for any of the clustering
coefficient features, meaning that we cannot reject the null hypothesis for any of these features.

4.5.3. Post-analysis
Similarly to Revenue and CashFlowMonthly forecasting, we will start by examining the change in RMSE and
MAE of the best model, being the degree + clustering model, with regards to the baseline model per sector.
The results of this experiment can be found in figure 4.15. In this figure, we can see that for all companies,
the degree + clustering model slightly outperforms the baseline model. We can also see that, similarly, for
Revenue and CashFlowMonthly forecasting, this improvement is larger for companies from sector M. It also
stands out that for companies in sector K, the degree + clustering model performs significantly worse than
the baseline model, especially in terms of MAE.

Figure 4.15: Percentual change in RMSE and MAE of the degree + clustering model with regard to the baseline model for D2C_14d
prediction per sector.

Alternatively, we will take a look at if the degree + clustering model outperforms the baseline model for
companies with a certain degree. Similarly to Revenue prediction as discussed in section 4.3 and CashFlow-
Monthly description as discussed in section 4.4, we divide the nodes into three separate categories: nodes
with a low degree, nodes with a medium degree, and nodes with a high degree. All three categories are ap-
proximately the same size with regard to the number of companies in them. Nodes with a low degree are
defined as nodes with a mean degree up to 5.00, nodes with a medium degree are defined as nodes with a
mean degree higher than 5.00 and up to 12.58, and nodes with a high degree are defined as nodes with a
degree higher than 12.58. These boundaries are different than the ones for Revenue and CashFlowMonthly
prediction because a different set of companies has D2C_14d computed for them as illustrated in figure 4.1,
leading to different boundary values for the degree categories. These results can be found in table 4.10. For
companies with a low degree and companies with a medium degree, we can see that the baseline model
manages to outperform the degree + clustering model for both metrics. However, similarly to Revenue and
CashFlowMonthly forecasting, for companies with a high degree, the degree + clustering model outperforms
the baseline model, lowering the RMSE and MAE by respectively ~1.2% and ~1.0%. We think that the degree
+ clustering model outperforms the baseline model especially for companies with a high degree due to the
degree distribution as shown in figure 3.4. Since the degree follows a power-law distribution, there is more
degree variance in the high degree category, which provides more useful information for predictions.
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Low degree Medium degree High degree
RMSE MAE RMSE MAE RMSE MAE

Baseline 7.6657 5.3981 7.6351 5.5884 7.4107 5.5636
Degree + clustering 7.6885 5.4249 7.6474 5.6121 7.3211 5.5098

Table 4.10: Results for D2C_14d prediction for the various degree categories.

Additionally, we are interested in whether the degree + clustering model outperforms the baseline model
for companies with a certain mean D2C_14d. Therefore, we split up the companies into three categories:
companies with a low D2C_14d, companies with a medium D2C_14d, and companies with a high D2C_14d.
Companies with a low D2C_14d are defined as companies with a mean D2C_14d lower or equal to 16.94.
Companies with a medium D2C_14d are defined as companies with a mean D2C_14d higher than 16.94 and
lower or equal to 23.46, whereas companies with a high D2C_14d are defined as companies with a mean
D2C_14d higher than 23.46. Again, these three categories are approximately the same size in terms of the
number of companies per category. The results of this experiment can be found in table 4.11. In this table,
we can see that for low D2C_14d, the degree + clustering model outperforms the baseline model. However,
for companies with a medium and high D2C_14d to predict, the baseline model outperforms the degree +
clustering model.

Low D2C_14d Medium D2C_14d High D2C_14d
RMSE MAE RMSE MAE RMSE MAE

Baseline 3.589 2.8787 1.8526 1.6199 5.8195 4.6950
Degree + clustering 3.5801 2.8665 1.8678 1.6347 5.8471 4.7187

Table 4.11: Results for D2C_14d prediction for the various D2C_14d categories.

Lastly, we will look at the performance of the baseline model versus the degree + clustering model for three
different months. To reiterate, we will take a look at predictions for a month before any coronavirus effect,
namely September 2019, a month where the coronavirus effects were noticeable for the first time, namely
April 2020, and a month deeper into the COVID-19 pandemic, namely September 2020. These results can
be found in figure 4.12. In this table, we see that for both the baseline and the degree + clustering model,
D2C_14d predictions for April 2020 are worse than the predictions for September 2019 and September 2020,
which is in line with our expectations. For predictions for September 2019, the baseline and the degree +
clustering model perform similarly, with the baseline model outperforming the degree + clustering model in
terms of MAE, but the degree + clustering model outperforming the baseline model in terms of RMSE. How-
ever, for predictions for April 2020, the degree + clustering model outperforms the baseline model, lowering
the RMSE by ~0.3% and the MAE by ~0.6%. For predictions for September 2020, the baseline model and the
degree + clustering model again perform similarly, with the baseline model outperforming the degree + clus-
tering model in terms of MAE, and the degree + clustering model outperforming the baseline model in terms
of RMSE. These findings support our hypothesis that for predictions for April 2020, node features can poten-
tially further improve KPI predictions than for other months since historical data is less representative at the
start of a large change such as the COVID-19 lockdown.

September 2019 April 2020 September 2020
RMSE MAE RMSE MAE RMSE MAE

Baseline 7.5064 5.4099 7.5465 5.5142 6.9159 4.8977
Degree + clustering 7.5061 5.4127 7.5223 5.4823 6.9134 4.9048

Table 4.12: Results for D2C_14d prediction for various months.



5
Conclusion and future work

In this chapter, we will recap the findings that were discussed in this thesis to answer the research question
as defined in section 1.1. Additionally, we will discuss some of the future work that could be done to improve
upon the work presented in this thesis.

5.1. Conclusion
In section 1.1, we defined the research question as: Can we utilize a dynamic network of SMEs to improve KPI
predictions during the COVID-19 lockdown? To answer this question, we split up the research question into
two separate subquestions for us to look at. In this section, we will discuss both subquestions and the steps
we took to answer them, to ultimately answer our research question.

The first subquestion was defined as: How can we create a dynamic network of SMEs out of unstandardized
data? To answer this question, we developed a novel entity resolution algorithm to find a mapping between
companies. This entity resolution first performs a cleaning step to filter out accounts that do not have reli-
able information available. Then, we split the accounts based on the type and try to find a matching between
them using three different types of matchings; Chamber of Commerce number matching, where we match
accounts based on their Chamber of Commerce number, VAT number matching, where we match accounts
based on their VAT number, and fuzzy matching, where we match accounts based on their ZIP code, email
address, and the Levenshtein similarity between the company names. Using these matched accounts, we use
transactions from January 1st, 2018 to September 30th, 2020 to build our dynamic network. This dynamic
network consists of a series of static networks, one for each month in the period between January 2018 and
September 2020, where an edge is present between two nodes if the respective companies had at least one
transaction between them in the corresponding month. When analyzing this network, we can see, for ex-
ample, the impact of the coronavirus lockdown in several features, such as the number of active nodes, the
number of edges, the average degree, and the standard deviation of degree.

The second subquestion was defined as: How can we utilize the dynamic network to improve KPI pre-
dictions? Next to seeing the influence of the COVID-19 lockdown on Dutch SMEs in the dynamic network
we created, to assess the influence of the COVID-19 lockdown on Dutch SMEs, we take a look at the rela-
tive change with regard to the same month last year for several Key Performance Indicators or KPIs for short.
For some KPIs, being Revenue, CashFlowMonthly, and the various D2C KPIs, we can see a clear impact of
the COVID-19 lockdown on Dutch SMEs. In the next step, we try to improve upon the forecasting of KPIs
where we can see the impact of the coronavirus lockdown, being Revenue, CashFlowMonthly, and one of the
D2C KPIs, namely D2C_14d. We try to improve forecasting of KPI predictions for April 2020, since the coro-
navirus lockdown effects are the largest in this month. We hypothesize that for predictions for April 2020,
node features can potentially further improve KPI predictions than for other months since historical data is
less representative at the start of a large change such as the COVID-19 lockdown. For Revenue forecasting, we
found that enriching the historical data with the degree and clustering coefficient of the corresponding node
in the dynamic network can improve Revenue predictions. However, none of the clustering coefficient fea-
tures were statistically significant for Revenue forecasting. We also found that these predictions are especially
better for companies in sector M, companies with a high average degree in the network, and companies with
a relatively low average Revenue. For CashFlowMonthly forecasting, we found that enriching the historical
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data with the degree of the corresponding nodes decreases the error of the predictions. Similar to Revenue
prediction, companies in sector M and companies with a relatively high average degree benefit more from
the enrichment with node features. This also holds for companies with a relatively low or high average Cash-
FlowMonthly. For D2C_14d forecasting, we found that the best performing model was the one where we
enrich the historical data with the degree and the clustering coefficient of the corresponding node. However,
similarly to Revenue prediction, none of the clustering coefficient features were statistically significant for
D2C_14d forecasting. Similarly to Revenue and CashFlowMonthly prediction, companies from sector M and
companies with a relatively high average degree benefit more from the enrichment with node features. This
also holds for companies with a relatively low average D2C_14d. We also verified our hypothesis that for all
KPIs, predictions for April 2020 benefit more from the enrichment with node features than other months.

To finally answer the research question of whether we can utilize a dynamic network of SMEs to improve
KPI predictions during the COVID-19 lockdown, we first build a dynamic network consisting of Dutch SMEs
and the transactions between them. In this dynamic network, we can see the effects of the coronavirus lock-
down on Dutch SMEs in some properties of the network. These effects are also reflected in some of the KPIs
of the companies in the network. Using information contained in the network, we can improve upon KPI
forecasting techniques at the beginning of the COVID-19 lockdown by enriching historical data with node
features.

5.2. Future work
In this project, we have developed the basic framework of methods to address the general question of how to
improve KPI prediction using the dynamic network of SMEs. We deem the following directions as promising
future work.

5.2.1. Entity resolution
In section 3.2 we discussed the lightweight entity resolution algorithm that was used to build the dynamic
network. As previously discussed, an entity resolution algorithm was provided in [14] but was infeasible to
run on the dataset due to the computational complexity of the algorithm. A more elaborate but computa-
tional efficient algorithm is desirable. Moreover, if one would have significantly more time to run an entity
resolution algorithm, one could run the entity resolution algorithm as presented in [14] to compare the re-
sults against the entity resolution algorithm as described in this thesis. Additionally, one could expand the
algorithm presented in 3.2 with more matching fields such as the IBANs of the companies.

5.2.2. KPI forecasting
In section 4.3 we discussed improving KPI forecasting using node features. In this section, a random forest
regression instead of a linear regression was also tried out, but the random forest regressions were outper-
formed by their respective linear regressions in terms of both RMSE and MAE. In future work, one could
explore different regression models other than the linear regression model and the random forest regression
model to verify whether a performance improvement can be realized. Additionally, other node features could
be considered for the improvement of KPI forecasting, such as the PageRank, as described in [28], or a dy-
namic node embedding, as discussed in section 2.3, of a node.

Next to further improving the KPI forecasting techniques, more work could be done to examine why an
approach enriched with node features works better for some companies. For example, it is still not fully
clear why predictions using node features for companies in sector M are relatively better than predictions for
companies in sector K, and why predictions for companies that have a relatively low Revenue and D2C_14d
were often better when using node features.

5.2.3. Link prediction
The dynamic network of Dutch SMEs constructed out of unstandardized data would allow the exploration
of the link prediction problem, i.e. predicting which companies might start doing business with each other.
Several techniques for link predictions have been discussed in section 2.4.



A
ISIC section codes

ISIC sections have been defined by the United Nations and are used to classify companies into several cate-
gories1 indicating economical activities. For each section, a one-letter code is available. For every code, the
corresponding description can be found below:

• A: Agriculture, forestry and fishing

• B: Mining and quarrying

• C: Manufacturing

• D: Electricity, gas, steam and air conditioning supply

• E: Water supply; sewerage, waste management and remediation activities

• F: Construction

• G: Wholesale and retail trade; repair of motor vehicles and motorcycles

• H: Transportation and storage

• I: Accommodation and food service activities

• J: Information and communication

• K: Financial institutions

• L: Renting, buying and selling of real estate

• M: Consultancy, research and other specialised business services

• N: Renting and leasing of tangible goods and other business support services

• O: Public administration, public services and compulsory social security

• P: Education

• Q: Human health and social work activities

• R: Culture, sports and recreation

• S: Other service activities

• T: Activities of households as employers; undifferentiated goods- and service- producing activities of
households for own use

• U: Extraterritorial organisations and bodies

1https://unstats.un.org/unsd/publication/seriesm/seriesm_4rev4e.pdf, page 58
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