
Testing Distributed Database Isolation
through Anti-Pattern Detection

Jingxuan Qiu

Testing Distributed Database Isolation
through Anti-Pattern Detection

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jingxuan Qiu
born in Heilongjiang, China

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Jingxuan Qiu.

Testing Distributed Database Isolation
through Anti-Pattern Detection

Author: Jingxuan Qiu
Student id: 4785770
Email: J.Qiu-2@student.tudelft.nl

Abstract

Distributed databases often struggle to fulfill their transactional isolation guaran-
tees due to sharding and replication. As a result, the problem of checking isolation
levels is consistently receiving attention from academia and industries. Transactional
dependency graphs form a useful abstraction to analyze the transactions’ dependencies
and check for isolation anomalies using graph-based anti-patterns. Meanwhile, graph
databases, known for their efficiency and convenience in graph representations and an-
alytics, become promising for implementing isolation level checkers. In this work, we
present a novel isolation level checker in the distributed graph database, ArangoDB.
We collect execution histories from ArangoDB, operating in both single-machine and
cluster modes. Also, we transform the execution histories to a dependency graph in
another ArangoDB server. We then utilize customized AQL queries to detect anti-
patterns on the graph. Our evaluation demonstrates the effectiveness and scalability of
our checker, as well as its efficiency compared to existing isolation checkers. Also, we
have found three underlying factors that are significantly correlated with the runtime of
the checker: history length (the number of committed transactions), density (the den-
sity of the dependency graph), and contributing traversals (the number of traversals
spent on cycles). The thesis artifact is online at https://github.com/jasonqiu98/GRAIL-
artifact/tree/thesis.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Burcu Külahçıoğlu Özkan, Faculty EEMCS, TU Delft
External supervisor: Dr. Stefania Dumbrava, ENSIIE
Committee Member: Dr. Asterios Katsifodimos, Faculty EEMCS, TU Delft

J.Qiu-2@student.tudelft.nl
https://github.com/jasonqiu98/GRAIL-artifact/tree/thesis
https://github.com/jasonqiu98/GRAIL-artifact/tree/thesis

Preface

During my three years of master’s study, many events unfolded: public health crises, wars,
systemic economic downturns, and inflation, among others. At the same time, I had the for-
tune of meeting my supervisors and research team, delving into knowledge, and completing
the design and experiments for this thesis in the serene and picturesque city of Delft.

First and foremost, I would like to express my heartfelt gratitude to my two daily su-
pervisors, Burcu Ozkan and Stefania Dumbrava, for their tireless guidance. They provided
continuous assistance and feedback in shaping the conceptualization of my thesis, supple-
menting my knowledge, discussing and refining the details, and guiding me through the
process of submission. Throughout this comprehensive training period, I have made sig-
nificant progress in my academic pursuits, gaining the ability to comprehend and refine
research plans. Additionally, I would like to thank a fellow master’s student, Zhao Jin in
ENSIIE, who provided assistance in conducting experiments and creating figures and plots.

Furthermore, I am grateful to my parents for their financial and emotional support. Due
to the circumstances of the pandemic, we have been unable to meet face-to-face for three
years. I am thankful for their patience, support, and understanding throughout this journey.

I would also like to express my gratitude to every friend who has been backing me up
during this thesis period. Whether it was providing relief amidst the pressures, engaging
in discussions and envisioning plans for the future, or offering feedback and assistance in
specific issues, I sincerely appreciate their help.

As I approach the conclusion of this thesis, I would like to once again appreciate ev-
eryone who has provided me with assistance. I am grateful to the university for providing
me with the opportunity to study at TU Delft. Here I made the past three years meaningful,
and deepened my understanding of computer science, artificial intelligence, and software
engineering. This also equipped me with advanced skills to embark on my future life as a
software engineer.

Thank you all.

Jingxuan Qiu
Delft, the Netherlands

June 15, 2023

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1
1.1 Terminologies . 1
1.2 Motivation . 4
1.3 Research Questions . 5
1.4 Research Methodology . 6
1.5 Contributions . 7
1.6 Thesis Outline . 7

2 Preliminaries 9
2.1 Isolation Levels: Formal Definitions . 9
2.2 Examples of Execution Histories and Anti-Patterns 14
2.3 ArangoDB: Distributed Graph Database 18
2.4 Cycle Detection Algorithms . 19
2.5 Isolation Level Checkers . 21
2.6 Anti-Pattern Detection by Graph Database Queries 24

3 Graph-Based Checker: Part I - History Collection and Graph Construction 25
3.1 The Workflow . 25
3.2 History Collection . 26
3.3 Graph Construction . 31

4 Graph-Based Checker: Part II - Cycle Detection in ArangoDB 33
4.1 Checking SI: Definition-Based Checker 33
4.2 Checking SI: SP Checker . 36
4.3 Checking SI: Pregel Checker . 37

v

CONTENTS

4.4 Output and Visualization . 37
4.5 Isolation Level of ArangoDB Cluster . 39

5 Evaluation 41
5.1 Research Questions . 41
5.2 Research Methodology . 42
5.3 Exploratory Data Analysis . 45
5.4 Effectiveness . 46
5.5 Scalability . 47
5.6 Comparison with Other Checkers . 55
5.7 Summary of Results . 59
5.8 Discussion . 60

6 Related Work 63
6.1 Isolation Levels: A Brief History . 63
6.2 The Trend of Graph Databases . 65
6.3 Isolation Level Checking . 66

7 Conclusions and Future Work 69
7.1 Conclusions . 69
7.2 Contributions . 69
7.3 Future work . 70

Bibliography 73

A An Overview of ArangoDB v3.9 81
A.1 Data Model . 81
A.2 Cluster Architecture . 82
A.3 Storage Engine and Transactions . 85
A.4 Database Operations . 85
A.5 Limitations . 88

B Pseudocode of Cycle Detection Algorithms 89
B.1 Starting Vertex Detection . 89
B.2 Back Edge Detection . 89
B.3 Shortest Path Detection . 90
B.4 Tarjan’s Algorithm . 91
B.5 Kosaraju-Sharir’s Algorithm . 91
B.6 Path-based Strong Component Algorithm 95

C Validity of the Relaxation from Cycle Detection to SCC Detection 97

D Graph Construction Stage (Complete Version) 99
D.1 Vertices and Edges . 99
D.2 Construction of Dependency Edges on Events 100

vi

Contents

D.3 Projection from Events to Transactions . 112

E AQL Queries of the Graph-Based Checker 113
E.1 Starting Vertex Detection (Cycle checker) 113
E.2 Shortest Path Detection (SP) . 116
E.3 ArangoDB Pregel SCC Algorithm (Pregel) 118
E.4 Neo4j-APOC Cycle Detection . 118
E.5 Neo4j-GDS SCC Algorithm . 119

F Dataset Characteristics of List and Register Histories 121

G Runtime of Cycle Checker with Different Max Depths 131

vii

List of Figures

1.1 Partial schema from LDBC SNB dataset . 3
1.2 Example executions: serializability and write skew 4

2.1 Anomalies: long fork and non-repeatable read 16
2.2 Anomaly: lost update . 16
2.3 Anomalies: circular information flow and intermediate read 16
2.4 Anomaly: write cycle . 16

3.1 The workflow of the graph-based checker . 25
3.2 The Jepsen workflow . 26
3.3 The dependency graph model in ArangoDB 32
3.4 A write-skew anomaly detected in the graph model 32

4.1 Cycle visualization by ArangoDB Web Interface 38
4.2 Cycle visualization by Neo4j Browser User Interface 39
4.3 Cycle visualization: anti-pattern of SER . 40
4.4 Cycle visualization: anti-pattern of SI & PSI 40

5.1 Runtime for checking anti-patterns in the list-collection-time histories . 48
5.2 Runtime for checking anti-patterns in the reg-collection-time histories . . 49
5.3 Runtime for checking anti-patterns in list-rate histories 50
5.4 Runtime for checking anti-patterns in the reg-rate histories 51
5.5 Runtime for checking anti-patterns in the reg-session histories 53
5.6 Runtime for checking anti-patterns in the reg-max-write histories 54
5.7 Runtime for checking anti-patterns by Cycle checker with different max depths 56
5.8 Runtime for checking anti-patterns in the list-collection-time-nemesis

histories . 57

A.1 Topology of an ArangoDB cluster 111 . 83
A.2 Sharding and replication 212 . 84
A.3 Example: known graph . 86

ix

LIST OF FIGURES

C.1 Directed graph, cycles and SCCs . 97

D.1 Graph construction: empty dependency graph 100
D.2 Graph construction: WR edge under Assumption 1 101
D.3 Graph construction: the longest list . 101
D.4 Graph construction: the remaining list . 101
D.5 Graph construction: the missing WW and WR edges 102
D.6 Graph construction: complete dependency graph 102

x

Chapter 1

Introduction

In this chapter, we provide the necessary terminologies that are commonly referred to
throughout the thesis, and we present our motivation with an illustrative example with a
schema from the LDBC SNB Benchmark Dataset. We also propose a way to check isola-
tion levels with graph database queries. After that, we propose our research questions and
give an overview of our research methodology to analyze the effectiveness, scalability, and
efficiency of our novel checker. Finally, we list our contributions and present the outline of
the remaining chapters in the thesis.

1.1 Terminologies

Isolation levels of (distributed) databases. Database transactions often group and en-
capsulate a series of events that retrieve or modify the variables stored in the database, and
allow for preserving data integrity even in cases of system failure. Isolation, being part of the
ACID properties of a transaction, describes the degree to which it executes independently of
and is not interfered with by other transactions on the data or schema shared by concurrent
transactions [8]. The strongest isolation level, serializability, expects every transaction to
execute as if it is the only transaction running in the whole system. In this case, one order
of transactions can be found so that the return values in the transactions remain the same
even when the transactions execute serially (i.e., one after one). This also implies that the
concurrency amongst the transactions does not seemingly exist. However, serializability
requires more computational overhead in concurrency control [35]. Therefore, weaker iso-
lation levels have been explored and applied to plenty of commercial database systems over
the past decades.

A strong isolation level is more demanding in present-day distributed database systems
with sharding and replication, as it requires synchronization and distributed consistency,
which further entails longer latency and reduces efficiency [11]. Also, a weak isolation
level is expected to satisfy the needs of the system in some cases. For instance, [58] in-
troduces parallel snapshot isolation (PSI), which relaxes the requirements of a total order
of the transactions from snapshot isolation (SI), and makes the level more applicable in a
distributed setting.

1

1. INTRODUCTION

Isolation level hierarchy – The preventative approach. The database system commu-
nity has been proposing definitions of isolation level hierarchy since it was first introduced
in [35]. Then, the ANSI/ISO SQL-92 specifications [8] incorporated this concept as a stan-
dard and categorized database isolation into four levels. For each level, it proposed an
anomaly pattern, which is a sequence of events that should not be observed in (disallowed
by) an execution. However, the standard was challenged by the community [19] for it highly
relied on the locking mechanism of the database and failed to cover the counterpart where
optimistic concurrency control (OCC) or multi-version concurrency control (MVCC) was
present (e.g., in Gemstone [47]). In other words, the preventative approach adopted by the
ANSI standard failed to achieve implementation-independence across all database systems.

Isolation level hierarchy – Graph-based specifications. To address the weaknesses of
the locking mechanism, Adya et al. extended the ANSI standard by formulating isolation
levels based on dependency graphs [13]. A dependency graph maintains the dependency
edges between transaction vertices and also reshapes the preventative anomalies from se-
quential orderings to graph patterns, usually containing a certain type of cycle. As both
construction and interpretation of dependency graphs are not relevant to the locking mecha-
nism, Adya’s formalism addressed the drawback of the preventative approach and presented
isolation level hierarchy on a different path of graph-based specifications. Later, in a more
formal way, Cerone et al. proposed an axiomatic framework to define isolation levels and
anomalies on an abstract level [24] and proved its equivalence to Adya’s definitions [25].
Overall, Cerone et al.’s formalism abstracted Adya’s graph visualization to algebraic defi-
nitions, which are rigorous, uniform, and declarative.

Isolation level checking. Based on the presence of the isolation level hierarchy, many
databases claim they achieve a certain isolation level by default or provide a range of iso-
lation levels for users’ choices. For example, MySQL 8.0 [10] claims its default isolation
level as repeatable read while allowing other isolation levels. However, many violations
have demonstrated that databases often fail to achieve the isolation levels as they claim
[44]. Therefore, isolation level checking is important, which is the process of determining
whether a database has achieved the claimed isolation level.

Graph databases. Highly interconnected data has emerged and now covered a variety
of areas, ranging from network infrastructures, social networks, logistics, and life science
repositories. The pervasive usage of graph data has led to an increasing need for efficient and
convenient storage and processing. Graph databases, as a special type of NoSQL system,
leverage native graph models to tackle this challenge. Among the types of native graph
models, property graph model [14] is the most prominent and expressive one. It is a multi-
labeled multi-graph, whose nodes and edges can be additionally enriched by sets of key-
value properties. Currently, the ecosystem of commercial graph databases features dozens
of systems, such as Neo4j [5], ArangoDB [2], TigerGraph [29], OrientDB [51], etc.

2

1.1. Terminologies

Graph queries. As a standard graph query language is still under development, many
graph databases support query languages to extract patterns from graph database storage.
Each graph database system has a different type of graph query language [22, 21], which
may have a different level of expressiveness and coverage of first-order logic from other
graph databases. A leading example is Neo4j’s Cypher language, which has a broad cover-
age of use cases with built-in support and open-source contributions. Also, it is supported
and extended in numerous other databases (e.g., Amazon Neptune [18] and Memgraph [4]).

Schema from LDBC SNB Benchmark Dataset. Furthermore, we introduce a database
schema below, to illustrate the execution histories with their real-life scenarios throughout
the thesis. Figure 1.1 shows part of the graph schema from the dataset of LDBC Social
Network Benchmark (LDBC SNB, the full schema in Figure 2 of [59]). A many-to-many
relation is represented by a thick edge. The details of vertex and edge collections are as
follows.

Figure 1.1: Partial schema from LDBC SNB dataset

• vertices

1. Person: (id→ int, firstName→ string, lastName→ string)
2. Forum: (id→ int, title→ string)

• edges

1. knows: (id→ int, fromPersonId→ int, toPersonId→ int)
2. hasMember: (id→ int, fromForumId→ int, toPersonId→ int)
3. hasModerator: (id→ int, fromForumId→ int, toPersonId→ int)

In this partial schema, a group of persons communicate through forums. Each forum
may have my persons as members, but only one person as the moderator. The moderator
administers the forum and has permission to modify the title of the forum and add new
members to the list. Persons may know each other. Furthermore, we list the operations
on the following variables supported by this schema below. We use the partial schema to
illustrate with examples in the rest of the thesis.

• title of a forum: view (read); update (write)
• members of a forum: view all members (read); add a new member (append)
• persons known by a person: view all persons (read); know a new person (append)

Anti-Patterns and Anomalies. Graph-based specifications translate each anomaly disal-
lowed by an isolation level to subgraphs with specific cyclic structures. Therefore, isolation
level detection is an example of anti-pattern detection. As such, the burden of isolation

3

1. INTRODUCTION

level checking is transferred to analyzing the underlying graph structure, which is manage-
able with a rich ecosystem of graph algorithms and infrastructures. This approach also saves
the labor of handcrafting in the rule-based preventative approach.

From this section onward, the term anti-pattern will be used in place of interchangeable
terms (e.g., violation or phenomenon) to highlight the task of anti-pattern detection in this
thesis. We select five isolation levels with clear graph characteristics [24, 23, 13] and inves-
tigate the anti-patterns against them in the rest of the thesis. In addition, we also introduce a
series of anomalies, where the term is used to denote the special cases when an anti-pattern
happens against a certain isolation level.

1.2 Motivation

Graph-based specifications have presented an implementation-independent definition of iso-
lation levels. We illustrate the usage of graph-based specifications and dependency graphs
with the two transactional executions in Figure 1.2.

T1:
read(forum1.title, "A1")
write(forum2.title, "B2")

T2:
read(forum2.title, "B2")
write(forum1.title, "A2")

(a) A serializable execution

T1:
read(forum1.title, "A1")
write(forum2.title, "B2")

T2:
read(forum2.title, "B1")
write(forum1.title, "A2")

(b) Write skew

Figure 1.2: Example executions: serializability and write skew

Figure 1.2a shows a serializable execution that involves two transactions T1 and T2 on
two forum instances forum1 and forum2. We assume the initial titles are "A1" and "B1"
for forum1 and forum2, respectively. The interpretation of the execution is as follows: the
moderator of forum2 browses the title of forum1 and finds "A1"; after that, the moderator
updates the title of forum2 to "B2". Concurrently, the moderator of forum1 views the
updated title of forum2 as "B2" and then decides to update the title of forum1 as well. By
observing the title of forum1, we draw an RW edge from T1 to T2 since T2 writes a new title
which replaces the old value in T1. By observing the title of forum2, we draw a WR edge
from T1 to T2 since T2 reads the new title updated by T1. In this case, no cycle is formed
and no anti-pattern is found. In fact, the execution shows as if T2 is committed after T1 has
taken effect on the database, which makes it serializable.

On the other hand, the example execution in Figure 1.2b is not serializable. The inter-
pretation of the execution is similar to that in Figure 1.2a, except in T2, where the moderator
of forum1 reads the title of forum2 as the initial value "B1". In this case, the RW edge
formed based on forum1 remained unchanged; however, an RW edge is formed based on
forum2, since now T2 has read an earlier version of forum2’s title which is further updated
by forum1. This dependency graph contains a cycle, which is an anti-pattern that violates
serializability. In fact, both transactions write to shared variables without observing each
other’s updates, which forms a write-skew anomaly.

4

1.3. Research Questions

In addition to the graph-based explanations, the traditional way of serializability check-
ing is also effective in getting the correct results but suffers combinatorial explosions in its
complexities. For example, in Figure 1.2b, by assuming T1 takes effect before T2, we can
spot that T2 reads the title of forum2 as its initial value "B1", which is, however, supposed
to be "B2" following the update by T1. Conversely, if we assume T2 takes effect before T1,
then T1 reads the title of forum1 as its initial value "A1" instead of the value updated by
T2. In both cases, a serial order cannot be constructed between T1 and T2, which makes an
anti-pattern against serializability. This approach still finds the anti-pattern but involves an
enumeration of all possible orders in which transactions take effect. The enumeration fur-
ther leads to a combinatorial explosion, mainly when the execution history contains a large
number of transactions.

The two dependency graphs shown in Figure 1.2, instead, make the isolation level
checking tractable. Assume we know that the numeric suffixes of the forum titles are always
increasing. Then we can construct the dependency graph within polynomial time. Further-
more, anti-pattern detection is usually a cycle detection procedure that can also be finished
within polynomial time. This example demonstrates that graph-based specifications have
replaced the traditional combinatorial enumeration with a deterministic dependency graph,
and reduced the complexity of isolation level checking.

Following the above example, graph-based specifications have converted isolation check-
ing to an anti-pattern detection problem to check cycles within dependency graphs. This has
enriched the isolation checking with a variety of independent implementations. For exam-
ple, Elle [42] applies graph-based pattern matching to dependency graphs created from exe-
cution histories to check isolation levels. In addition, several serializability [57, 60, 20, 26]
and snapshot isolation [20, 38, 69] checkers also exploit the functionality of polygraphs,
which are sets of possible dependency graphs speculated based on the information contained
in the execution histories. Both types of checkers utilize the graph properties to reduce the
time complexity to polynomial [20] or linear [42, 38] level under certain conditions.

However, to the best of our knowledge, none of the previous work has applied graph
databases to isolation level checking. Popular graph databases inherently support and op-
timize the toolkit for graph analytics. Also, databases can utilize both main and secondary
memory, which allows for handling large-scale dependency graphs. Both of these factors
make graph databases a feasible solution to checking isolation levels through graph-based
anti-pattern detection.

For this reason, we select ArangoDB as a candidate graph database along with its query
language (AQL) to perform the isolation checking through anti-pattern detection. In addi-
tion, we can collect histories from ArangoDB as a distributed database. In this way, our
checker combines the usage and provides an in-database implementation with history col-
lection and isolation detection, both in the same database ArangoDB.

1.3 Research Questions

To verify the feasibility and observe the performance of the novel isolation level checker
developed on the graph database ArangoDB (graph-based checker hereafter), we address

5

1. INTRODUCTION

the following three research questions.

RQ1

Is the graph-based checker effective in detecting the isolation level of a distributed
database?

RQ2

Does the graph-based checker scale in the increasing workload?

RQ3

How does the graph-based checker perform compared to the state-of-the-art isolation
checkers?

1.4 Research Methodology

We select ArangoDB as both the distributed database under test and the graph database to
construct the novel, graph-based checker. We run Jepsen to collect nine sets of histories
from ArangoDB, five with sharding and replication, and the remaining four without.

To address RQ1, we compare our sound implementation to a state-of-the-art checker,
Elle. We count the number of anomalous histories detected by both checkers and determine
whether the results show a mismatch. In this way, we confirm the effectiveness of our
graph-based checker.

To address RQ2, we explore a variety of factors that may affect the scalability of the
graph-based checker, and use performance plots and statistical methods to establish the cor-
relations. Through performance plots, we analyze the effect of two main factors, collection
time and transaction generation rate, of our Jepsen history collector. Also, we find three
underlying factors, history length (the number of committed transactions), density (the den-
sity of the dependency graph), and contributing traversals (the number of traversals spent
on cycles). We also investigate these factors and their correlation with the execution time
of our checker by linear regression. Finally, we consider two additional factors, the num-
ber of sessions and the maximum number of write operations per object, and observe their
effect on the scalability through performance plots. We also present additional evaluation
related to checker-specific settings and scenarios of fault injection. Our evaluation is also
strengthened by exploratory analysis and statistical approaches.

To address RQ3, we investigate our checker’s performance compared with two state-
of-the-art checkers, Elle and PolySI. We use performance plots to illustrate the relative
performance of these checkers. In addition to the state-of-the-art checkers, we also discuss
the possibility to use an alternative graph database to construct the checker. We confirm its
feasibility and potential for improvement through analysis with performance plots.

6

1.5. Contributions

1.5 Contributions

The thesis has the following contributions.

• Designing and implementing a novel isolation level checker with a graph database;
• Demonstrating the effectiveness of using graph database queries to detect isolation

levels of distributed databases;
• Providing an in-database implementation where the history collection and isolation

detection happen on the same graph database;
• Performing extensive evaluation on the efficiency and scalability of our graph-based

checker as well as comparison to state-of-the-art checkers;
• Proposing a smart visualization method to demonstrate the isolation level checking

results in graph databases.

1.6 Thesis Outline

The outline of the rest of the thesis is given as follows.

• Chapter 2 provides necessary background of ArangoDB and isolation levels. It also
discusses the feasibility of using graph databases to detect isolation levels.

• Chapter 3 presents the history collection and dependency graph construction in our
graph-based checker. It contains history collection by Jepsen and dependency graph
construction from events to transactions.

• Chapter 4 demonstrates the core part of the thesis. It explains how to use graph queries
to check cycles for anti-pattern detection. In addition, we shed light on the way of
visualizing the output. We also mention the isolation detection result on ArangoDB
histories.

• Chapter 5 includes extensive evaluation of the effectiveness and scalability of our
checker. We also give a comparison with the state-of-the-art checkers and alternative
implementations with a different graph database, Neo4j.

• Chapter 6 discusses related work about isolation level histories, graph database trends,
and state-of-the-art isolation level checkers.

• Chapter 7 concludes the thesis by providing the conclusions of results, the contribu-
tions, and directions to future work.

7

Chapter 2

Preliminaries

In this chapter, we start by introducing isolation levels with their formal definitions, based
on the graph-based specifications proposed in Adya’s and Cerone et al.’s work. Following
that, we present varied examples to illustrate the usage of isolation levels, anti-patterns, and
anomalies. We show that isolation checking is usually a cycle detection process. Next to
the examples, we introduce our major tool of the novel checker, ArangoDB. ArangoDB is
utilized as both a distributed database and graph database, which plays its part in history
collection and cycle detection, and makes an in-database implementation. Then, we present
a general overview of cycle detection algorithms. After that, we present the problem state-
ment of isolation level checking and make relevant assumptions. Finally, we explore the
feasibility of using graph databases and queries for the anti-pattern detection of the novel
isolation checker, and summarize that ArangoDB is an ideal candidate for our research.

2.1 Isolation Levels: Formal Definitions

In this section, we explore the formal definitions of isolation levels and their anti-patterns
in the context of dependency graphs. We first start this section with an introduction of the
concept of relations based on [39] to simplify the notations that follow. Later, we explore
the graph-based specifications of transactional executions and dependency graphs based on
both Adya’s formalism [13] and Cerone et al.’s formalism [24].

2.1.1 Relations

In this subsection, a short introduction to relations and their properties based on [39] will be
given as a prerequisite for further concepts. A binary relation can be viewed as a collection
of ordered pairs that associate elements of one set with elements of another set. The formal
definitions regarding binary relations are listed as follows.

• An ordered pair (u,v) associates two elements u and v and satisfies the property
(u,v) = (x,y) ⇔ u = x ∧ v = y.

• The Cartesian product of sets U,V is U×V = {(u,v) | u ∈U, v ∈V}.

9

2. PRELIMINARIES

• A binary relation R from U to V is a subset of U×V , i.e., R⊆U×V . For an ordered
pair (u,v), where u ∈ U and v ∈ V , the notation (u,v) ∈ R is interchangeable with
u R−→ v.

It is a special case when the two sets associated by a binary relation R are the same set.
Such a type of relation is called homogeneous binary relations. From now on, all relations
are homogeneous unless specified otherwise.

Definition 1 A relation R is a homogeneous binary relation on a set S, i.e., R⊆ S×S.

In addition to the definition, a set of operations on relations are given below.

• The composition of two relations R1 and R2 on S is R1 ; R2 = {(u,v) | ∃x ∈ S. u R1−→
x R2−→ v.}.

• The converse of a relation R is R−1 = {(v,u) | (u,v) ∈ R}, i.e., u R−→ v ⇔ v R−1

−−→ u.
• The identity relation on S is IS ≜ {(u,u) | u ∈ S}.
• The image set of a relation R for an element u ∈ S is R(u) = {v | v ∈ S ∧ u R−→ v}.

Similarly, for an element v ∈ S, R−1(v) = {u | u ∈ S ∧u R−→ v}.

Furthermore, define R0 = IS and Rn = R ;Rn−1 for n≥ 1. Then, the following relations are
defined.

• The transitive closure of R is R+ =
∞⋃

n=1
Rn.

• The reflexive closure of R is R? = IS∪R =
1⋃

n=0
Rn.

• The reflexive-transitive closure of R is R∗ = IS∪R+ =
∞⋃

n=0
Rn.

Several properties are further introduced for a relation on S.

• R is reflexive: ∀u ∈ S. u R−→ u. Alternatively, IS ⊆ R.
• R is irreflexive: ∀u ∈ S. ¬(u R−→ u). Alternatively, IS∩R = /0.

• R is transitive: ∀u,v,w ∈ S. u R−→ v∧ v R−→ w⇒ u R−→ w. Alternatively, R ; R⊆ R.
• R is acyclic: ∀u ∈ S. ¬(u R−→ . . .

R−→ u). Alternatively, IS∩R+ = /0.

Additional definitions related to sets are also listed below.

• The power set of a set S is the set of all subsets of S, including the empty set and S
itself. It is denoted by 2S = {X | X ⊆ S}.

2.1.2 Transactional Executions

In this subsection, terminologies relating to transactional executions are discussed and their
formal definitions are listed accordingly. To start off, the concept of order is introduced.

• A relation R is a strict partial order on S iff R is irreflexive and transitive on S.
• A relation R is a total order on S iff the following conditions are satisfied.

10

2.1. Isolation Levels: Formal Definitions

1. R is a strict partial on S.
2. R associates any pair of distinct elements in S one way or another: ∀a,b∈ S. a ̸=

b⇒ a R−→ b∨b R−→ a.

Furthermore, objects, events, transactions, and histories are defined as follows.

• An object is a key-value pair stored in a database.

– The key of an object is an immutable string assigned by the system when the
object is created. The set of object keys is Key.

– The value of an object has a fixed data type (e.g., integer, string, array, set, etc.)
and is mutable. The set of possible object values is Val.

• An event is the invocation of a read or write event on an object. The set of possible
events is Event= {read(k,v), write(k,v) | k ∈ Key, v ∈ Val}. An event f(k,v) has
three parts: f is the function, k is the key, and v is the value. Any of the three parts
can be marked by an underscore if irrelevant or unknown.

• A transaction T is a pair (E,po), where E ⊆ Event is a finite, non-empty set of events
and the program order po⊆ E×E is a total order on E.

– T ⊢ write(k,v) if T writes to k and the last value written is v, i.e., max
po
{e | e =

write(k,)}= write(k,v).

– T ⊢ read(k,v) if T reads from k before writing to it and v is the value returned
by the first such read, i.e., min

po
{e | e = (k,)}= read(k,v).

– Writesk ≜ {T | T ⊢ write(k,)} is the set of transactions that write to k.

– Readsk ≜ {T | T ⊢ read(k,)} is the set of transactions that read from k.

• A history H ≜ T = {T1,T2, . . . ,Tn} is a finite set of transactions with disjoint sets of
events.

To simplify the notations of formal definitions for dependency graphs and isolation levels,
the concept of execution is further introduced.

• An execution is a tuple X = (H ,VIS,CO), where H is a history and the visibility and
commit orders VIS,CO⊆ T ×T are such that VIS⊆ CO and CO is total.

– visibility: T VIS−−→ S means that the writes done by the transaction T have taken
effect on the transaction S.

– commit order: T CO−−→ S means that T commits earlier than S.

In addition, two axioms related to executions are highlighted here.

• The internal consistency axiom INT ensures that within a transaction, a read event
e on an object with the key x returns the same value as the last write to or a read
from this object preceding the event e if such a last event exists. Formally, ∀(E,po)∈
T. ∀e ∈ E. ∀k ∈ Key. ∀v ∈ Val. e = read(k,v) ∧ {p | p = (k,) ∧ p

po−→ e} ̸= /0 ⇒
max
po
{p | p = (k,) ∧ p

po−→ e}= (k,v).

11

2. PRELIMINARIES

• If a read event e on an object with the key x is not preceded by another read or
write event on this object within the same transaction T , then the internal consistency
axiom does not apply. In this case, the external consistency axiom EXT ensures
that a read event e on an object with the key x, in a transaction T , returns the same
value as written by another transaction that includes the last committed write event on
this object among the transactions visible by T . Formally, ∀T ∈ T . ∀k ∈ Key. ∀v ∈
Val. T ⊢ read(k,v) ⇒ max

CO
(VIS−1(T)∩Writesx) ⊢ write(k,v).

2.1.3 Graph-Based Anti-Patterns

A dependency graph is a graph with transactions as vertices, and dependencies between
transactions as edges. The transaction vertices are connected by three types of dependency
edges: read dependency (WR), write dependency (WW) and anti-dependency (RW). A
finite sequence of dependency edges of the same or different types forms a dependency
path. Both formal and informal definitions of these three relations are listed below.

• read dependency: T
WR(k)−−−−→ S ⇔ S ⊢ read(k,) ∧ T = max

CO
(VIS−1(S)∩Writesk).

Informally, S reads T ’s write to the object with the key k.

• write dependency: T
WW(k)−−−−→ S ⇔ T CO−−→ S ∧ T,S∈Writesk. Informally, S overwrites

T ’s write to the object with the key k.

• anti-dependency: T
RW(k)−−−−→ S ⇔ T ̸= S ∧ ∃T ′ ∈ T . T ′

WR(k)−−−−→ T ∩ T ′
WW(k)−−−−→ S.

Informally, S overwrites the object with the key k read by T .

Based on all the previous notations and definitions, the formal definition of the dependency
graph is given below.

Definition 2 A dependency graph is a tuple G = (H ,WR,WW,RW), where H = T is a
history and

1. WR: Key 7→ 2T ×T is such that:

• ∀T,S ∈ T . ∀k ∈ Key. T
WR(k)−−−−→ S ⇒ ∃v ∈ Val. T ̸= S ∧ T ⊢ write(k,v) ∧ S ⊢

read(k,v).

• ∀S ∈ T . ∀k ∈ Key. S ⊢ read(k,) ⇒ ∃T ∈ T . T
WR(k)−−−−→ S.

• ∀T,T ′,S ∈ T .∀k ∈ Key.(T
WR(k)−−−−→ S ∧ T ′

WR(k)−−−−→ S) ⇒ T = T ′.

2. WW: Key 7→ 2T ×T is such that for every k ∈ Key, WW(k) is a total order on the set
Writesk.

3. RW: Key 7→ 2T ×T is such that ∀T,S ∈ T . ∀k ∈ Key. T
RW(k)−−−−→ S ⇔ T ̸= S ∧ ∃T ′ ∈

T . T ′
WR(k)−−−−→ T ∩T ′

WW(k)−−−−→ S.

Each isolation level is specified by a set of executions and, equivalently, by a specific pattern
in a set of dependency graphs. This way of defining an isolation level is called (dependency)

12

2.1. Isolation Levels: Formal Definitions

graph-based specifications. Following Cerone’s work (Theorem 11 of [25]) [23], three iso-
lation levels (serializability, snapshot isolation, and parallel snapshot isolation) are selected
and presented in Theorem 1.

Theorem 1 Assuming that the internal and external consistency axioms (INT and EXT)
hold for an execution X =(H ,VIS,CO) with a dependency graph G =(H ,WR,WW,RW),
where H = T is a history, the dependency graph-based specifications of three isolation
levels are given as follows.

1. An execution X is serializable (SER) iff its dependency graph G does not contain any
cycle, that is, the relation WR∪WW∪RW is acyclic on T .

2. An execution X is allowed by snapshot isolation (SI) iff its dependency graph G
admits only cycles with at least two consecutive anti-dependency edges, that is, the
relation (WR∪WW) ; RW? is acyclic on T .

3. An execution X is allowed by parallel snapshot isolation (PSI) iff its dependency
graph G contains only cycles with at least two anti-dependency edges, that is, the
relation (WR∪WW)+ ; RW? is irreflexive on T .

Following Theorem 1, a corresponding set of anti-patterns can be easily reached by nega-
tion, which converts acyclic constraints to cyclic anti-patterns.

Proposition 1 A dependency graph-based anti-pattern is a dependency path such that the
transaction vertices of the path form a relation that does not satisfy the dependency graph-
based specifications of an isolation level. Specifically, the anti-patterns of isolation levels
specified in 1 are given below.

1. SER: G contains a cycle.
2. SI: G contains a cycle that has zero or one consecutive anti-dependency edge.
3. PSI: G contains a cycle that has zero or one anti-dependency edge.

In comparison with Cerone et al.’s formalism, the earlier definitions by Adya also present
a series of isolation levels. The major three of them are PL-3, PL-2, and PL-1, which are
highlighted below in Theorem 2.

Theorem 2 Assuming that the internal and external consistency axioms (INT and EXT)
hold for an execution X =(H ,VIS,CO) with a dependency graph G =(H ,WR,WW,RW),
where H = T is a history, the dependency graph-based specifications of additional three
isolation levels are given as follows.

1. An execution X is allowed by PL-3 level iff its dependency graph G does not contain
any cycle with or without anti-dependency edges, that is, the relation WR∪WW∪
RW is acyclic on T .

2. An execution X is allowed by PL-2 level iff its dependency graph G does not contain
any cycle without anti-dependency edges, that is, the relation WR∪WW is acyclic
on T .

13

2. PRELIMINARIES

3. An execution X is allowed by PL-1 level iff its dependency graph G does not contain
any cycle with only write dependency edges, that is, the relation WW is acyclic on
T . The definition remains valid when the external consistency axiom EXT does not
hold.

Adya’s PL-3 level is in fact identical to SER because both of them are defined on the same
acyclic condition. Therefore, only two additional levels PL-2 and PL-1 are included in
Proposition 2 below.

Proposition 2 The anti-patterns of isolation levels specified in 2 are given below.

1. PL-2: G contains a circular information flow, which is a cycle that has no anti-
dependency edge.

2. PL-1: G contains a write cycle that has only write-dependency edges.

2.2 Examples of Execution Histories and Anti-Patterns

Propositions 1 and 2 delineate five isolation levels by their graph-based anti-pattern cor-
respondingly. We illustrate with eight example histories to further specify what may hap-
pen when these anti-patterns occur in practice. We attach a dependency graph to each
history with the graph-based anti-pattern marked red. For all examples, we assume that
∀ i ∈ N+∧ i < N. Ti

CO−−→ Ti+1, where N is the total number of transactions within a history.
In other words, we present all the transactions in their commit order, while the visibility
order is unknown.

H1) Figure 1.2a shows two transactions that can be serialized into T1
VIS−−→ T2 and no cyclic

anti-pattern is detected. Therefore, this history satisfies SER. In some cases, a seri-
alizable execution has some other serials that may induce an anti-pattern. However,
serializability describes the existence of a series of transactions, and therefore only
requires one of such sequences that do not contain any cycle.

H2) Figure 1.2b is a write skew anomaly. T1 and T2 concurrently read titles of both forum1
and forum2 and also write to part of the two objects concurrently. A write skew has
two consecutive RW edges that form a cyclic anti-pattern which violates SER. This
anomaly, however, is widely accepted in a system that supports SI by default. The
snapshot of each object is well maintained and the two transactions do not commit
updates on the same object.

H3) Figure 2.1a is a long fork anomaly. T1 updates the title of forum1 from "A1" to
"A2"; similarly, T2 updates the title of forum2 from "B1" to "B2". However, T3
only observes T1’s update and ignores T2’s; on the other hand, T4 only observes T2’s
update and ignores T1’s. This anomaly causes a cyclic anti-pattern with two RW
edges which are not consecutive. Therefore, a long fork anomaly violates both SI
and SER but is accepted by PSI. In the long fork anti-pattern, we cannot find a total
order of transactions to maintain the snapshots of all the objects. For example, to
maintain the snapshot of forum1.title, we form a set of total orders including
T4

VIS−−→ T1
VIS−−→ T3, with T2 taking place at any part of the order. However, this total

14

2.2. Examples of Execution Histories and Anti-Patterns

order does not maintain the snapshot of forum2.title in any way as it requires an
order that includes T3

VIS−−→ T2
VIS−−→ T4, which imposes T3 to be visible by T4. However,

it is acceptable by PSI, since SI restricts a total order while PSI does not.
H4) Figure 2.1b shows a transaction T2 which repeats reading the same object forum1 but

retrieves different values, without any intermediate writes in between. This forms a
non-repeatable read anomaly and causes an anti-pattern disallowed by SER, SI, and
PSI.

H5) Figure 2.2 shows a history that can be interpreted by two cases. In the first case,
T1

VIS−−→ T3 and T2
VIS−−→ T3, with T1 and T2 concurrent with each other (as shown in

Figure 2.2a). T3 only reads T2’s update on forum members but does not manage to
observe T1’s. In the second case, T2

VIS−−→ T3 with T1 concurrent with T3 (as shown in
Figure 2.2b). T3 is able to observe T2’s update, but T1 fails. Both cases end up with
a lost update anomaly: one read event cannot return the most recent value written by
a successfully committed transaction that has also taken effect, but the one before,
which means that the most recent update is lost. This anomaly causes a cycle with a
single RW edge, which contributes to an anti-pattern against SER, SI, and PSI.

H6) Figure 2.3a shows an anomaly of a cyclic information flow. T1 updates the title of
forum1, and T2 updates the title of forum2 concurrently. However, both updates can
be observed by the other transaction although the transaction has not been submitted.
This causes an anti-pattern against PL-2 by a cycle without RW edges. In fact, the
history shows that the two transactions are not independent of each other, which is a
lower level of isolation compared with SER, SI, or PSI.

H7) Figure 2.3b shows an intermediate read anomaly. T2 retrieves the intermediate value
"A2" written by T1. Although a dependency graph is provided, this anomaly actually
violates the EXT axiom, since T2 does not observe the last write of T1. Therefore,
we consider intermediate reads as a form of dirty reads, and do not construct any of
such edges on the dependency graphs. Another form of dirty reads is aborted reads,
which reads the values written by aborted transactions. We consider dirty reads by
including the three types of anomalies: aborted reads, intermediate reads, and circular
information flows [13].

H8) Figure 2.4 shows a write cycle anomaly. In a social gathering, the couple Alice and
Bob met another couple Cindy and David together. Both Alice and Bob first noticed
and knew Cindy (T1), then followed by David (T2). However, the next day, when
they recalled the order and how they got to know the two persons, Alice said they
knew Cindy first, then David, but Bob said they knew David first, then Cindy (T3).
This cannot be explained unless one of them remembered the order wrong. In fact,
Bob noticed David approaching and remembered him first, before David formally
introduced himself. In Alice’s view, T1

WW−−→ T2; while in Bob’s view, T2
WW−−→ T2.This

induces a write cycle between T1 and T2, and this history exhibits an anti-pattern with
only WW edges, which is disallowed by PL-1. This example is naive and explains
the case where the transactionality is not well established in the database. The order
of the write events may not be ensured.

15

2. PRELIMINARIES

T1:
write(forum1.title, "A2")

T2:
write(forum2.title, "B2")

T3:
read(forum1.title, "A2")
read(forum2.title, "B1")

T4:
read(forum1.title, "A1")
read(forum2.title, "B2")

(a) Long fork

T1:
read(forum1.title, "A1")
write(forum1.title, "A2")

T2:
read(forum1.title, "A1")
read(forum1.title, "A2")

(b) Non-repeatable read

Figure 2.1: Anomalies: long fork and non-repeatable read

T1:
read(forum1.members, list)
append(forum1.members, Alice)

T2:
read(forum1.members, list)
append(forum1.members, Bob)

T3:
read(forum1.members, list + Bob)

(a) (b)
Figure 2.2: Anomaly: lost update

T1:
write(forum1.title, "A2")
read(forum2.title, "B2")

T2:
write(forum2.title, "B2")
read(forum1.title, "A2")

(a) Circular information flow

T1:
read(forum1.title, "A1")
write(forum1.title, "A2")
write(forum1.title, "A3")

T2:
read(forum1.title, "A2")

(b) Intermediate read

Figure 2.3: Anomalies: circular information flow and intermediate read

T1:
append(Alice.known, Cindy)
append(Bob.known, Cindy)

T2:
append(Alice.known, David)
append(Bob.known, David)

T3:
read(Alice.known, [Cindy, David])
read(Bob.known, [David, Cindy])

Figure 2.4: Anomaly: write cycle

16

2.2. Examples of Execution Histories and Anti-Patterns

2.2.1 Summary

Isolation
Levels

Graph-Based
Anti-Pattern

Write
Skew

Long
Fork

Non-
Repeatable
Read

Lost
Update

Dirty
Read

SER any cycle ✗ ✗ ✗ ✗ ✗

SI
a cycle with zero or one
consecutive RW edge

✓ ✗ ✗ ✗ ✗

PSI
a cycle with zero
or one RW edge

✓ ✓ ✗ ✗ ✗

PL-2
a cycle without
RW edges

✓ ✓ ✓ ✓ ✗

PL-1

a cycle with only
WW edges (EXT being
violated does NOT
induce an anti-pattern)

✓ ✓ ✓ ✓ ✓

Table 2.1: Graph-Based Anti-Patterns with Anomalies

We illustrated a series of execution histories with anomalies (if present). To describe
the anomalies shown in the histories, we borrowed the terminologies from the preventative
approach. Furthermore, Table 2.1 summarizes the five isolation levels, their anti-patterns,
and corresponding anomalies shown in the example histories.

Graph-based specifications are related to the preventative approach but they do not map
to each other one-to-one. Furthermore, the definition from graph-based specifications is
implementation-independent, and does not rely on the preventative approach. In fact, each
anomaly case, as we borrowed from the preventative approach, is likely to be only a subset
of graph-based anti-patterns, not all. For example, H4) and H5) are both disallowed by
PSI, as both of them have a cycle with only one RW edge that matches the anti-pattern of
PSI. Furthermore, graph-based anti-patterns are generalized to all database systems, while
the traditional anomaly terms are often defined with the locking mechanism. Therefore, we
should interpret the anomalies in Table 2.1 as only an explanation of our five isolation levels
rather than any form of alternative definition.

In addition, the visibility of histories is essential, as it determines the version changes
(called version order) of each object and further affects the dependencies between transac-
tions. For example, the visibility between T1 and T2 is unclear in H5) and this leads to two
interpretations of the version order of object x. This history is only disallowed by PSI if
both cases are disallowed, or additional information can be obtained to ensure only one of
the two cases can happen. Therefore, how to retrieve the visibility and the version order is
one of the core problems that need to be handled by an isolation level checker.

It can also be observed in H7) that a write cycle is an anti-pattern that violates a much
lower isolation level. The write cycle is interpreted at the event level rather than the transac-
tion level, which makes it less expected in a well-established transactional database system
and likely to be neglected by an isolation level checker.

17

2. PRELIMINARIES

2.3 ArangoDB: Distributed Graph Database

This section introduces the ArangoDB as a distributed graph database, including its isolation
level guarantee. We have also provided the customized documentation of ArangoDB in
Appendix A for reference.

2.3.1 Distributed Database

As a distributed database, ArangoDB supports four deployment modes, where the two de-
ployment modes, the single-instance mode and the cluster deployment mode, will be ex-
plored and discussed in this thesis. The single-instance deployment involves only one
stand-alone logical instance of ArangoDB and is the simplest way to start an ArangoDB
system. On the other hand, the cluster deployment usually requires two or more logical
instances that make a distributed system.

ArangoDB allows sharding and synchronous replication in its cluster mode. However,
these two properties are not enabled by default; users need to explicitly activate these prop-
erties when starting the database servers. ArangoDB’s distributed architecture allows it to
scale horizontally across multiple servers while maintaining strong data consistency and
fault tolerance. However, it may also trigger anti-patterns in the execution histories, which
are to be verified in this thesis.

2.3.2 Graph Database

ArangoDB [1] is one of the most popular and efficient graph databases [32] [49] while
having the capabilities to cover other data models, such as key-value pairs and JSON docu-
ments. ArangoDB has been designed as a native graph database with a focus on labeled
property graph models. In a native graph database, nodes are linked directly in mem-
ory without further help of indexes. Such index-free adjacency ensures high-performance
queries and rapid traversals. [52]

ArangoDB uses its own query language, ArangoDB Query Language (AQL), to perform
operations on its data models. Listing 2.1 presents an example AQL query to read a person
with the first name "Alice". In ArangoDB, queries are formed in strings and passed to
the relevant server by a driver. ArangoDB supports its official drivers in many advanced
programming languages, such as Java, Go, and Python.

FOR p IN person
FILTER p.firstName == "Alice"
RETURN p

Listing 2.1: AQL: Example

In addition, ArangoDB provides its native support of graph traversals. Listing 2.2
presents an example AQL query to start a graph traversal from the person alice, with a
minimum depth of 2 and a maximum depth of 4, on the graph known graph. The graph
traversal is DFS-based by default. BFS, and other relevant settings, are also supported by
the graph traversal syntax.

18

2.4. Cycle Detection Algorithms

FOR vertex, edge, path IN 2..4
OUTBOUND "person/alice"
GRAPH known graph
RETURN CONCAT SEPARATOR("−>", path.vertices[∗].name)

Listing 2.2: AQL: Graph Traversal

2.3.3 The Isolation Level Guarantee of ArangoDB

ArangoDB claims its isolation level guarantee as LOCAL SNAPSHOT ISOLATION 1. This
guarantee can be decomposed into two scenarios: in the single-instance mode, ArangoDB
achieves SNAPSHOT ISOLATION; in the cluster mode, the isolation level is unknown and
no guarantee is provided (except for OneShard, where the isolation level guarantee is the
same as in the single-instance mode).

ArangoDB uses the RocksDB storage engine [31] that provides the realization of snap-
shots. In the single-instance case (and the OneShard case), ArangoDB claims that the pre-
ventative definition of its isolation level is best described as “repeatable read” 2 but actually
uses a statement of SNAPSHOT ISOLATION: “a transaction T does not see writes from
other transactions, which have started after T was started, even if they commit before the
read of T happens”. In addition, ArangoDB states that dirty read is prevented, snapshots
are applied together with a well-defined total order, and that phantom is not prevented. In a
cluster, each DB-Server maintains its own snapshot locally but no guarantee is provided for
the isolation level of the cluster as a whole.

2.4 Cycle Detection Algorithms

Propositions 1 and 2 indicate that an anti-pattern in the dependency graph of an execution
is essentially a directed cycle that satisfies the edge conditions specified in Theorems 1 and
2, respectively. In this section, we list the feasible algorithms to provide the background of
cycle detection.

2.4.1 Algorithms By Definition of Cycles

In a directed graph, a directed cycle is a non-empty path where only the first and last ver-
tices are equal. From the perspective of edges instead, a non-empty path in a directed graph
contains a directed cycle if and only if the path contains a back edge pointing from a vertex
to one of the vertices that have already occurred in the path (including the vertex itself).
(Lemma 20.11 of [27]) It is a natural idea to detect a directed cycle (Starting Vertex Detec-
tion), or a back edge by definition (Back Edge Detection) in combination with depth-first
traversals (DFS).

1Limitations — Transactions (ArangoDB 3.9): https://www.arangodb.com/docs/3.9/transactions-
limitations.html#isolation

2Transactional Isolation (ArangoDB 3.9): https://www.arangodb.com/docs/3.9/data-modeling-operational-
factors.html#transactional-isolation

19

https://www.arangodb.com/docs/3.9/transactions-limitations.html#isolation
https://www.arangodb.com/docs/3.9/transactions-limitations.html#isolation
https://www.arangodb.com/docs/3.9/data-modeling-operational-factors.html#transactional-isolation
https://www.arangodb.com/docs/3.9/data-modeling-operational-factors.html#transactional-isolation

2. PRELIMINARIES

An alternative solution is through breadth-first traversals (BFS) based on the following
proposition: a directed cycle is a non-empty path that consists of one edge and one di-
rected path connecting the ending and starting vertices of that edge (called back path). This
proposition converts a cycle detection problem to a single-source shortest path problem in
an unweighted graph where BFS becomes an effective solution (Shortest Path Detection).

Table 2.2 lists the three algorithms and their complexities, where n is the total number
of vertices and m is the total number of edges in the graph. The pseudo code is included in
Appendix B.

Time Complexity Space Complexity In Appendix B

Starting Vertex Detection O(n(n+m)) O(n2) Algorithm 2
Back Edge Detection O(n2) O(n2) Algorithm 3

Shortest Path Detection O(m(n+m)) O(mn) Algorithm 4

Table 2.2: Algorithms By Definition of Cycles

2.4.2 Strongly Connected Component Algorithms

A strongly connected component (SCC) of a directed graph G is a subgraph C in which
the strongly connected property is satisfied that there is a directed path from each vertex
to another vertex, and no additional edges or vertices from G can be included in C without
breaking the strongly connected property.

Grounded on the extended definition of a directed cycle with a back edge, the problem
of detecting the existence of a directed cycle can also be relaxed to detecting a strongly
connected component in a directed graph (see Appendix C for proof). Several SCC detec-
tion algorithms are efficient through single-source DFS traversals, including Tarjan’s SCC
algorithm [61], Kosaraju-Sharir’s algorithm [56], and path-based strong component algo-
rithm [33] [34], etc. Compared with algorithms based on definitions, the SCC detection
algorithms utilize additional data structures to maintain those vertices already visited in the
graph, such that repeating visits on the same vertex can be avoided. Tarjan’s algorithm
stores two types of indices in two arrays to maintain the set of vertices that are already
visited. Kosaraju-Sharir’s algorithm initiates two DFS traversals on the transpose of the in-
put graph and the graph itself. The path-based algorithm maintains two stacks to achieve a
similar goal. Overall, the SCC detection algorithms manage to achieve linear complexities
in both time and space. Table 2.3 lists the algorithms and the pseudocode is included in
Appendix B.

Time Complexity Space Complexity In Appendix B

Tarjan’s O(n+m) O(n) Algorithm 5
Kosaraju-Sharir’s O(n+m) O(n+m) Algorithm 6

Path-Based O(n+m) O(n) Algorithm 8

Table 2.3: SCC Detection Algorithms

20

2.5. Isolation Level Checkers

2.4.3 Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [63] is a parallel computing paradigm that
simplifies the design of parallel algorithms. The BSP model regulates a program in a series
of supersteps. Every superstep is divided into three phases: computation, communication,
and synchronization. Corresponding to the three phases, a computer that supports the BSP
model requires the three elements: a number of processors (called components in [63]), a
router to facilitate the message passing among the processors, and facilities for synchro-
nization. During the computation phase, each processor performs its computation locally
and independently. In the communication phase, processors exchange data with each other.
In the synchronization phase, each processor reaches the barrier and waits until all other
processes have reached the same barrier. After finishing the three phases, the current super-
step is concluded, and the next superstep will be started until the whole program reaches
the termination. The cost can be estimated by summing up the complexities induced by the
algorithm itself in the computation phase and additional overhead in the other two phases.

With the emergence of large-scale graph processing systems, the BSP model is receiv-
ing the attention of practitioners in the field of graph databases. In 2010, Google extended
the BSP model to a distributed iterative graph computing framework called Pregel and
presented the work in the paper [48]. Pregel enables users to develop graph algorithms
in a high-level programming language, which can then be executed on multiple nodes in
a distributed computing environment. Many graph processing systems and frameworks
have adopted Pregel’s principles to enhance their performance, such as Giraph [17], Spark
GraphX [66], and Flink Gelly [9]. Various graph databases, such as Neo4j 3 and ArangoDB
4, also offer support for custom Pregel algorithms.

The BSP model and the Pregel framework allow cycle and SCC detection algorithms
to be implemented in a non-recursive way in graph databases by relying on the distributed
iterative workflow. For example, ArangoDB has developed a collection of Pregel-based
algorithms to strengthen its capabilities in graph analytics, including an SCC detection
algorithm [67]. Meanwhile, TigerGraph [29] utilizes the Rocha-Thatte algorithm [53], a
BSP-based cycle detection algorithm. 5

2.5 Isolation Level Checkers

2.5.1 Problem Statement: The Black-Box Isolation Level Checking

Isolation level checking is part of the system testing process to ensure the correctness of
the database system. It proposes an isolation level (e.g., SI) and determines whether the
database system under test achieves the level or not. In this process, black-box testing has
been used by a rich set of checkers, such as Cobra [60], DBCop [20], and Elle [42]. These

3Pregel API (Neo4j Graph Data Science Library v2.3): https://neo4j.com/docs/graph-data-
science/2.3/algorithms/pregel-api/

4Programmable Pregel Algorithms (ArangoDB v3.9): https://www.arangodb.com/docs/3.9/graph-
analytics-custom-pregel.html

5Cycle Detection in TigerGraph: https://www.tigergraph.com/blog/cycle-detection-in-tigergraph/

21

https://neo4j.com/docs/graph-data-science/2.3/algorithms/pregel-api/
https://neo4j.com/docs/graph-data-science/2.3/algorithms/pregel-api/
https://www.arangodb.com/docs/3.9/graph-analytics-custom-pregel.html
https://www.arangodb.com/docs/3.9/graph-analytics-custom-pregel.html
https://www.tigergraph.com/blog/cycle-detection-in-tigergraph/

2. PRELIMINARIES

black-box checkers have minimized the interaction with the databases by first collecting
histories from the database and then running the checking progress on the histories. In
this way, the checking is stand-alone with only history collection depending on the system,
making the whole process black-box testing.

Therefore, in the context of black-box testing, the isolation level checking problem is
reduced to the following.

Definition 3 The black-box isolation level checking is the problem to determine whether
an execution history H collected from a database satisfies or is allowed by a certain isola-
tion level I, i.e., H |= I.

Also, we make an assumption that for each object, every write event creates a unique
value for the given key. We also state the assumption in the following, as it universally holds
throughout the context of (black-box) isolation level checking. [28]

Assumption 1 Assumption of Unique Writes: In any execution history collected for (black-
box) isolation level checking, every write event installs a unique version on an object.

Based on this definition of black-box level checking, the development of the checker
itself does not necessarily involve white-box database execution information. For example,
a syntactic generator independent of any database can simulate an execution history and
pass it to the checker [20]. This helps ensure that the checker is well-functional and ready
to be applied in practice.

However, in order to verify the isolation level of a certain database, a black-box history
collector should submit concurrent transactions to the database system under test, wait for
these transactions to take effect on the system, and finally collect the histories in order. Such
a collector largely utilizes the system I/O and does not inject into the database to achieve
system-related or functional details, which makes it a black-box implementation.

2.5.2 Visibility and Version Order

Following the discussion in Section 2.2, the visibility and the version order are essential to
constructing the dependency graph from a given history. However, histories do not usually
include such information: a history consists of only a sequence of transactions, with each
transaction further composed of read and write events. For example, in Figure 2.2, the
history H5) does not reveal the version order of object x. A straightforward approach is
to enumerate all possible visibility orders and then infer the version order, as illustrated in
this example. However, this method leads to a combinatorial explosion in complexity as the
number of transactions grows.

One method of reducing complexity to a tractable level is to construct BC-polygraphs
(Begin and Commit polygraphs) and use SAT/SMT solvers [60] [69] [38]. Based on As-
sumption 1, each read value is installed by a single operation (or, a single transaction).
This implies that all read dependencies are available at the beginning of graph construc-
tion. BC-polygraphs begin from the read dependencies, while retaining other possible write
dependencies and anti-dependencies in a dense graph. Next, a set of logic constraints is

22

2.5. Isolation Level Checkers

formed to reduce edges by merging redundant ones and pruning anomalous ones. Finally,
SAT/SMT solvers are utilized to identify any directed acyclic graph (DAG) that validates
the search. If successful, this indicates that a dependency graph without any anti-pattern has
been found, and the corresponding isolation level has been satisfied. This approach satisfies
the black-box checking goal as it only requires the history itself. However, building mul-
tiple graphs and their accompanying pruning heuristics is expensive, and it may not scale.
Additionally, the checker and its associated pruning heuristics are restricted to a predefined
isolation level, limiting its adaptability to other isolation levels.

Another approach is to utilize specific data structures that can be fed into the database
system, which would automatically reveal the version order. One example is the append-
able list structure proposed by Elle [42], which has two key properties: recoverability and
traceability.

• Recoverability: Read dependencies should be able to be recovered.

• Traceability: The order of all versions written before should be available.

Since we ensured that Assumption 1 holds in any case, recoverability has already been
achieved and this does not depend on the list data structure. However, lists are beneficial for
traceability because we can track how different values are added to the list that is currently
being read. Now, a single dependency graph can be constructed by using the version order
directly from the history, which reduces complexities compared with BC-polygraphs. After
the dependency graph is constructed, Elle follows Adya’s and Cerone et al.’s formalism to
detect cyclic paths by Tarjan’s algorithm. By the reduction to a single graph, Elle provides
easy access to graph-related concepts, tools, and algorithms, which opens up more possibil-
ities for combination with other graph ecosystems. Despite requiring an extra data structure,
Elle follows the black-box principle by relying on only the system I/O without additional
information. Moreover, Elle’s usability is comparable to other black-box checkers, which
implies that Elle is a de facto black-box checker.

Aside from using a specific data structure, the version order can also be obtained by
utilizing change data capture (CDC) techniques or MVCC records to stream out the modi-
fications made to each object [26]. It is preferable for these tools to be integrated into the
database being tested for easier access to the version order. However, this approach changes
the nature of testing from black-box to gray-box, as more internal database information is
needed for verification.

Occasionally, non-graph checking methods are employed in graph-based checkers be-
cause certain isolation levels and related anomalies need to be examined before constructing
the dependency graph. For instance, if a failed (aborted) read is detected in the dependency
graph, the edge becomes ill-defined since the aborted transactions are excluded from the de-
pendency graph, and that part of the history is non-recoverable. Nonetheless, checking such
an anomaly is crucial to ensure that the checker is effective and general. Such a rule-based
approach is commonly used in the Jepsen [44] project, which has successfully detected
many real-world software bugs in different distributed database systems.

23

2. PRELIMINARIES

2.6 Anti-Pattern Detection by Graph Database Queries

To summarize this chapter, this section discusses the feasibility of checking isolation lev-
els with the help of a graph database, for example, ArangoDB. Graph databases can uti-
lize both main and secondary memory, which allows for handling large-scale dependency
graphs. Also, the analytical tools, including query languages and cycle detection toolkits,
are usually optimized by the development team of graph databases in various practical use
cases. Both of these factors make graph databases a feasible solution to checking isolation
levels by detecting graph-based anti-patterns.

It is also noteworthy that graph query languages are able to handle different types of
cycles with a similar syntax, which reduces the learning and development costs associated
with building a checker based on graph databases. Therefore, writing graph database queries
will be an essential part of this thesis to demonstrate the power of queries to verify different
isolation levels.

Therefore, we use ArangoDB as both a system under test and a graph database checker.
We utilize ArangoDB as a graph database to form a graph-based checker. Also, we exploit
the functionality of ArangoDB as a distributed database to generate histories that can be
further processed by the graph-based checker. The nature of a distributed graph database
has made ArangoDB an ideal candidate for our research.

24

Chapter 3

Graph-Based Checker: Part I -
History Collection and Graph

Construction

In the previous chapter, we have highlighted the strengths of ArangoDB as both a distributed
database under test and a graph database that can perform isolation checking. We present the
design and implementation of our graph-based checker in this chapter, which involves the
three stages of History Collection, Graph Construction, and Cycle Detection. We introduce
the first two stages in this chapter, which is the pre-processing part of the checker. We
provide the last stage, Cycle Detection, in the next chapter.

3.1 The Workflow

Figure 3.1: The workflow of the graph-based checker

Figure 3.1 demonstrates the general workflow of the graph-based checker. This imple-

25

3. GRAPH-BASED CHECKER: PART I - HISTORY COLLECTION AND GRAPH

CONSTRUCTION

mentation involves using graph queries to identify cycles in a dependency graph constructed
from an execution history of a distributed database cluster. The checker can be decomposed
into three stages: History Collection, Graph Construction, and Cycle Detection. As the
major task is to verify the isolation level guarantee of ArangoDB, the History Collection
stage initiates multiple transactions on a sequence of concurrent sessions. This is ensured
by using the Jepsen injection framework [44] on an ArangoDB cluster. Next, the history
collector retrieves these histories and passes the histories to the dependency graph construc-
tor. In some cases, write-ahead logs (WAL) are also used to infer the version order, and
they are also passed to the graph constructor. The Graph Construction stage reads the his-
tories, performs the necessary conversions, and generates a new dependency graph for each
history. Later, the heart of the checker is the Cycle Detection stage, which incorporates an
anti-pattern detection process to identify at least one cycle from the dependency graph. In
particular, AQL queries serve as a connection between the Graph Construction and Cycle
Detection stages. These queries are used to send requests to an ArangoDB instance and
retrieve the results from the graph database. The checker sends only one AQL query to the
dependency graph for each isolation level checked.

3.2 History Collection

3.2.1 Jepsen: A Fault Injection Framework

We make use of Jepsen [44] to help us automatically generate random histories. Jepsen is
a testing framework designed to verify the safety and consistency of distributed systems.
It runs a test by executing a sequence of (transactional) operations on a distributed system
and analyzing the resulting execution history to identify any inconsistencies or bugs. Mean-
while, it can additionally simulate a variety of faulty scenarios (called nemeses) and test the
resilience of a system. The general workflow can be seen in Figure 3.2.

Figure 3.2: The Jepsen workflow

Jepsen uses a control node to coordinate the test and communicate with the distributed
system under test. At the beginning of a test, the control node starts a cluster of five database
nodes on virtual machines. Then Jepsen uses its control node to coordinate the transactions
on the cluster and record the results in a history. When the test is finished, the history files
are automatically generated in the output folder and this process is fully handled by Jepsen’s
injection mechanism.

26

3.2. History Collection

As the central component of Jepsen, the control node orchestrates a set of client nodes
that send out operations concurrently. The number of clients can be adjusted depending
on the level of concurrency required. Additionally, each test includes a generator and a
checker. The generator predetermines the flow of read and write operations, which are
periodically passed on to the client nodes at random values. The checker analyzes the
execution histories to determine consistency and visualizes the process and system-related
metrics such as latency and rate. To simulate real-world conditions and potential failure
scenarios, the generator can include Nemesis, which can inject faults such as node failure,
network partition, and clock skew throughout the system under test. To prevent interference
with the test results, Jepsen’s control node is typically run on a separate machine from the
cluster under test. This setup ensures that the results are accurate and reliable.

3.2.2 History Collection in the Graph-Based Checker

During the History Collection stage, the graph-based checker aims to execute a series of
transactions and collect the corresponding histories. We have identified the Jepsen frame-
work as a suitable tool for this task. The initial step involves setting up five ArangoDB
nodes on five Vagrant virtual machines, with the SSH protocol used for communication
between the control node and the virtual machines during the database nodes’ installation.

Once the databases are installed successfully, the five ArangoDB instances on the virtual
machines are connected as a cluster, and the workflow begins. The generator produces
transactions. Each transaction consists of read and write operations, which are passed on
to clients. Nemeses are also triggered in this step. After the transactions are generated,
the clients execute these transactions concurrently. Each client contains a sequence of AQL
queries sent via HTTP connections to the ArangoDB cluster. If any error is encountered,
the client aborts; otherwise, the client will commit that transaction. The histories record
whether a transaction is successfully committed or aborted. Successful histories include the
information of read and write operations. In the final step, the internal checker designated
by the Jepsen framework is used to run the verification process. The framework supports
multiple Clojure-based checkers, such as Knossos, Elle, and a set of other checkers provided
by the developer 1. However, we have decided to ignore this step, as the new graph-based
checker will replace the checker embedded in Jepsen by its algorithms in the checking stage.

3.2.3 Jepsen Histories and ArangoDB Write-Ahead Logs (WAL)

We collected two types of transactional histories using Jepsen, which have some similarities.
Both types consist of only read and write operations within each transaction. In the Jepsen
framework, we utilized AQL operations 2 and ArangoDB Stream Transactions 3 to control
the execution of transactions. These histories adhere to the Assumption of Unique Writes
(Assumption 1) and ensure recoverability.

1Available Checkers in Jepsen: https://github.com/jepsen-io/jepsen/tree/main/jepsen/src/jepsen/tests
2jasonqiu98/jepsen.arangodb: AQL operations
3HTTP Interface for Stream Transactions (ArangoDB v3.9): https://www.arangodb.com/docs/3.9/http/

transaction-stream-transaction.html

27

https://github.com/jepsen-io/jepsen/tree/main/jepsen/src/jepsen/tests
https://github.com/jasonqiu98/jepsen.arangodb/blob/7e78c60c7d59dabfd9d4fac1adf15bd88e983c9b/src/jepsen/arangodb/utils/driver.clj#L86
https://www.arangodb.com/docs/3.9/http/transaction-stream-transaction.html
https://www.arangodb.com/docs/3.9/http/transaction-stream-transaction.html

3. GRAPH-BASED CHECKER: PART I - HISTORY COLLECTION AND GRAPH

CONSTRUCTION

However, there are differences between the two types of histories. The first type writes
values as appendable lists, while the second type writes values as simple read-write registers
for each object. We refer to them as list histories and register histories, respectively. List
histories allow traceability, while register histories do not. Additionally, the write operations
in list histories are commonly known as append operations, which accurately reflect their
nature.

When collecting these histories, we can control their size and concurrency by providing
relevant arguments to Jepsen.

• Collection time (in seconds): the collection time of the history in seconds; a metric
linear to history length, referred to as time-limit by Jepsen

• Transaction generation rate (number of transactions per second): transaction gener-
ation rate, i.e., the number of transactions generated per second; a metric of system
concurrency, referred to as rate by Jepsen

• Number of sessions: the number of concurrent sessions threads at the same time; a
metric of parallelism but referred to as concurrency by Jepsen

• Maximum transaction length: the maximum number of events within any transaction;
a metric that helps adjust the concurrency, referred to as max-txn-length by Jepsen

• Maximum writes per object: the maximum number of events for any object; a metric
that helps adjust the concurrency, referred to as max-writes-per-key by Jepsen

Meanwhile, we fix the values of the following two arguments.

• key-count: the number of distinct objects at any time; a metric that affects system
concurrency, fixed to 5

• min-txn-length: minimum transaction length, i.e., the minimum number of events
within any transaction; a metric that helps adjust the concurrency, fixed to 2

In addition, the command line to run a Jepsen test has an optional argument for nemesis.
Nemesis is a general term to describe various system faults covered by Jepsen. We used the
nemesis argument to turn on/off the network partition in our history collection. We intro-
duce a nemesis in a periodic pattern for some of our histories, which remains inactive for
five seconds and then randomly partitions the network into two parts for five seconds, and
so forth.

Two examples are listed below for a list history and a register history, respectively.
{:type :invoke, :f :txn, :value [[:r 4 nil] [:r 2 nil] [:append 3 1] [:append 4 1]

[:r 3 nil] [:append 4 2]], :time 18417348107, :process 14, :index 0}
{:type :invoke, :f :txn, :value [[:append 4 3] [:append 5 1] [:append 5 2] [:r 3

nil] [:r 5 nil] [:r 5 nil]], :time 18442734012, :process 19, :index 1}
{:type :fail, :f :txn, :value [[:r 4 nil] [:r 2 nil] [:append 3 1] [:append 4 1]

[:r 3 nil] [:append 4 2]], :time 18460547580, :process 14, :error :
ww−conflict, :index 2}

{:type :ok, :f :txn, :value [[:append 4 3] [:append 5 1] [:append 5 2] [:r 3 []]
[:r 5 [1 2]] [:r 5 [1 2]]], :time 18468583939, :process 19, :index 3}

{:type :invoke, :f :txn, :value [[:append 5 3] [:r 1 nil] [:r 3 nil] [:r 2 nil] [:
append 6 1] [:append 6 2] [:append 6 3]], :time 18486925084, :process 19, :
index 4}

{:type :invoke, :f :txn, :value [[:append 0 1] [:r 7 nil] [:append 3 2] [:append
2 1] [:r 3 nil]], :time 18495341516, :process 10, :index 5}

28

3.2. History Collection

{:type :ok, :f :txn, :value [[:append 5 3] [:r 1 []] [:r 3 []] [:r 2 []] [:append
6 1] [:append 6 2] [:append 6 3]], :time 18512103772, :process 19, :index 6}

{:type :ok, :f :txn, :value [[:append 0 1] [:r 7 []] [:append 3 2] [:append 2 1]
[:r 3 [2]]], :time 18516867536, :process 10, :index 7}

{:type :invoke, :f :txn, :value [[:append 7 1] [:append 7 2] [:r 7 nil] [:append
7 3] [:append 3 3]], :time 18519639722, :process 8, :index 8}

{:type :invoke, :f :txn, :value [[:r 7 nil] [:r 3 nil] [:r 2 nil] [:append 9 1]], :
time 18547050309, :process 19, :index 9}

{:type :ok, :f :txn, :value [[:r 7 []] [:r 3 [2]] [:r 2 [1]] [:append 9 1]], :time
18558278528, :process 19, :index 10}

{:type :ok, :f :txn, :value [[:append 7 1] [:append 7 2] [:r 7 [1 2]] [:append 7
3] [:append 3 3]], :time 18563033073, :process 8, :index 11}

Listing 3.1: Jepsen list history

{:index 0, :time 16171464416, :type :invoke, :process 0, :f :txn, :value [[:r 2 nil
] [:w 2 1]]}

{:index 1, :time 16182764118, :type :invoke, :process 1, :f :txn, :value [[:w 2 2]
[:w 2 3]]}

{:index 2, :time 16187072883, :type :ok, :process 0, :f :txn, :value [[:r 2 nil] [:
w 2 1]]}

{:index 3, :time 16190092106, :type :fail, :process 1, :f :txn, :value [[:w 2 2] [:
w 2 3]], :error :ww−conflict}

{:index 4, :time 16315834531, :type :invoke, :process 2, :f :txn, :value [[:r 0 nil
] [:w 2 4] [:r 0 nil] [:r 2 nil]]}

{:index 5, :time 16323925741, :type :ok, :process 2, :f :txn, :value [[:r 0 nil] [:
w 2 4] [:r 0 nil] [:r 2 4]]}

{:index 6, :time 16334559998, :type :invoke, :process 3, :f :txn, :value [[:w 2 5]
[:r 1 nil] [:r 2 nil] [:w 2 6]]}

{:index 7, :time 16343053422, :type :ok, :process 3, :f :txn, :value [[:w 2 5] [:r
1 nil] [:r 2 5] [:w 2 6]]}

Listing 3.2: Jepsen register history

In general, a Jepsen history records each transaction twice: once for the invocation and
once for the result. The invocation record is of type :invoke and lists the operations to
be executed in the transaction. All read operations have the value nil as they have not
yet been executed, while all write/append operations have the corresponding values ready
in the invocation record. The object keys are generated as non-negative integers starting
from 0, while the object values start from 1. The values of keys and values also depend
on the arguments such as key-count and max-writes-per-key. For example, when the
maximum number of writes is reached, the key will not be generated any further.

As for the result record, it usually has two types: :ok and :fail, indicating the success
and failure of the transaction, respectively. Sometimes, there is another type called :info,
which is present when Jepsen cannot determine the status of that transaction. For :ok
transactions, each read operation records the value of a full list or an updated register, while
each write operation only keeps the argument that has been written. In contrast, a :fail
transaction retains the same items for both read and write operations and raises an error or
error code provided by the database.

Unlike list histories which are traceable, register histories cannot directly determine the
version orders of the objects. Therefore, additional strategies need to be used to reconstruct

29

3. GRAPH-BASED CHECKER: PART I - HISTORY COLLECTION AND GRAPH

CONSTRUCTION

the possible records of values written to the objects, ensuring that the dependency graph can
be successfully constructed. ArangoDB provides an HTTP API to tail the recent server op-
erations from the Write-Ahead Logs (WAL) 4. At the end of the history collection process,
an HTTP request is sent from the control node to copy the currently available WAL from
the database system to the local file system. Here is part of the WAL corresponding to the
register history shown in Listing 3.2:
{"tick":"105","type":2200,"tid":"140","db":"rwRegister"}
{"tick":"105","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid

":"140","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTaqa---","rwAttr
":1}}

{"tick":"106","type":2201,"tid":"140","db":"rwRegister"}
{"tick":"107","type":2200,"tid":"145","db":"rwRegister"}
{"tick":"108","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid

":"145","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTay6---","rwAttr
":4}}

{"tick":"109","type":2201,"tid":"145","db":"rwRegister"}
{"tick":"110","type":2200,"tid":"150","db":"rwRegister"}
{"tick":"111","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid

":"150","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTa0----","rwAttr
":5}}

{"tick":"114","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid
":"150","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTa0K---","rwAttr
":6}}

{"tick":"115","type":2201,"tid":"150","db":"rwRegister"}

Listing 3.3: ArangoDB Write-Ahead Logs (WAL) of Jepsen register history

Each line of the WAL includes a recorded timestamp in the tick field. In addition,
ArangoDB provides multiple operation types 5. For instance, the code 2300 signifies all
insertion or replacement operations of database documents. These operations enable the
availability of the version order for constructing the dependency graph. On the other hand,
this approach utilizes additional information from the database and is, therefore, considered
gray-box. However, the retrieval of the Write-Ahead Log (WAL) is done through HTTP
requests rather than analyzing the internals of the software execution, which still satisfies
the black-box goal and does not make the entire process white-box.

Currently, the retrieval of the WAL is only supported in single-machine mode. However,
through discussions with the developers of ArangoDB, we have learned that support for
cluster mode is already planned and in progress. Therefore, different from list histories
collected from a five-node cluster, the current demonstration is conducted under single-
machine mode with concurrency to simulate the distributed setting for the register histories.
Nonetheless, once the cluster mode becomes available, this approach remains reliable and
promising.

The HTTP request to retrieve the WAL has a set of query parameters. A noteworthy
one is the chunkSize. It states the maximum number of bytes allowed by the WAL. The

4Write-Ahead Log (ArangoDB v3.9): https://www.arangodb.com/docs/stable/3.9/replications-
walaccess.html#tail-recent-server-operations

5HTTP interface for WAL access (ArangoDB v3.9): https://www.arangodb.com/docs/3.9/http/replications-
walaccess.html

30

https://www.arangodb.com/docs/3.9/http/replications-walaccess.html#tail-recent-server-operations
https://www.arangodb.com/docs/3.9/http/replications-walaccess.html#tail-recent-server-operations
https://www.arangodb.com/docs/3.9/http/replications-walaccess.html
https://www.arangodb.com/docs/3.9/http/replications-walaccess.html

3.3. Graph Construction

chunkSize is an optional parameter6 with a default value of 220 . This means that a WAL
can hold 1MB of logs if the chunkSize is not specified. It is often necessary to set a higher
value than the default to allow a larger space for the WAL. However, the maximum value
allowed by chunkSize is 128×220, i.e., the maximum possible size of the WAL retrieved
via the HTTP request is 128MB.

3.3 Graph Construction

After both list and register histories have been ready, we design two strategies to map both
types of histories to dependency graphs with WR, WW, and RW edges. In this section,
we introduce Algorithm 1 to construct a dependency graph based on an execution his-
tory. The algorithm starts by creating a vertex for each committed transaction in the history
(createVertices). After that, we construct the dependency edges on events, since the de-
pendencies are described within the scope of each object that is independent of each other,
and events are the minimal units that contain an object in an execution history. For this
reason, the algorithm consists of two major steps: construction of dependency edges on
events (getEvtDepEdges) and projection from events to transactions (getTxnDepEdges).
The complete version of the graph construction algorithm can be seen in Appendix D.

Algorithm 1 Dependency graph construction

Input: execution history H = T , write-ahead logs L (for register histories only)
Output: dependency graph G

1: T ′←{T ∈ T | T is committed} ▷ filter committed transactions
2: G .vertices← createVertices(T ′)
3: Er←{e ∈ T | T ∈ T ′∧ isRead(e)}
4: R← queryReadEvts(Er) ▷ read events
5: if H is a list history then ▷ append/write events
6: Ea←{e ∈ T | T ∈ T ′∧ isAppend(e)}
7: A← queryAppendEvts(Ea)
8: Eevent ← getEvtDepEdges(R, A)
9: else

10: Ew←{e ∈ T | T ∈ T ′∧ isWrite(e)}
11: W ← queryWriteEvts(Ew)
12: Eevent ← getEvtDepEdges(R, W , L)
13: G .edges← getTxnDepEdges(Eevent) ▷ projection
14: return G

The function getEvtDepEdges has different implementations for list and register his-
tories. List histories support traceability, which allows us to infer the version order based
on the list values that are returned by read operations. These values, read by the database,
reveal information about the write operations already taking effect on the system. Also, the

6REST WAL Access Handler (ArangoDB v3.9)

31

https://github.com/arangodb/arangodb/blob/f69c26d3887fba975167cd59746de77c7f6557d3/arangod/RestHandler/RestWalAccessHandler.cpp#L329

3. GRAPH-BASED CHECKER: PART I - HISTORY COLLECTION AND GRAPH

CONSTRUCTION

Figure 3.3: The dependency graph model in ArangoDB

Figure 3.4: A write-skew anomaly detected in the graph model

values contained in a list maintain the order of write operations that update with these val-
ues. Therefore, we can iterate from the longest list to the shortest list per object to determine
version order and reconstruct dependency edges.

We rely on WAL to restore the dependency edges for register histories. WAL records
the timestamp and order for write operations to take effect. Therefore, we can retrieve the
version order from WAL. We iterate over the version order per object, to determine the ver-
sion changes and construct WW edges. We also recover WR and RW edges by comparing
the values returned by read operations and the versions. Our approach for register histories
requires a complete and sound WAL. Therefore, we should adjust the max size of WAL to
ensure it is large enough to hold all logs of the system.

We also illustrate the dependency graph with Figures 3.3 and 3.4. Figure 3.3 presents the
dependency graph on event and transaction levels. It has two event collections (WriteEvent
and ReadEvent) and one transaction collection (Transaction). Also, it includes depen-
dency edges constructed between events, and between transactions, respectively. After
graph construction, we only consider the vertices in Transaction and the edges connect-
ing two transactions, especially for the cycle detection stage discussed in the next chapter.
Figure 3.4 illustrates an example of anti-pattern detection in our graph model.

32

Chapter 4

Graph-Based Checker: Part II -
Cycle Detection in ArangoDB

In the previous chapter, we introduced how Jepsen and ArangoDB can help us construct
the transactional dependency graph based on execution histories. This chapter discusses the
core stage of our graph-based checker, Cycle Detection. We explore three cycle detection
algorithms for identifying anti-patterns in dependency graphs in ArangoDB. To illustrate the
query examples, we focus on the Snapshot Isolation (SI) level and utilize three versions
of checkers: Cycle, SP, and Pregel. Some variants of the three major versions are also
introduced. After discussing the algorithms for cycle detection, we also mention the ways
of visualizing the output from the graph-based checker. Finally, we show our results that
we did not find any anti-patterns by running our graph-based checker, and that ArangoDB
does not violate its isolation level guarantee.

4.1 Checking SI: Definition-Based Checker

The Starting Vertex Detection algorithm detects directed cycles in O(n(n+m)) time com-
plexity (See Section 2.4 and Appendix B.1), matching directed path where only the first
and the last vertices are equal. As the ArangoDB graph traversal mechanism uses DFS in a
default manner, we adapt the syntax to a cycle detection query as follows.

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER edge. to == start. id AND NOT REGEX TEST(CONCAT SEPARATOR(" ", path.

edges[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN path.edges

Listing 4.1: Checking SI: Cycle checker

We perform a graph traversal on each transaction vertex by a for loop FOR start IN
txn. Here, the start is the starting vertex and a new graph traversal starting from this
vertex is initiated whenever a new vertex is visited. A cycle is detected when the traversal

33

4. GRAPH-BASED CHECKER: PART II - CYCLE DETECTION IN ARANGODB

reaches the starting vertex again. The traversal has a minimum depth of 2, because a cycle
should contain at least two edges. However, it is important to select the maximum depth
carefully to avoid exponential increases in time complexity, as discussed in Appendix B.1.

Since the Cycle checker requires an explicit input for the max depth, it may not be
complete in detecting all cycles. This is because the maximum depth limits the number of
vertices that can be involved in a detected cycle. For example, setting the maximum depth
to 4 means the checker can only detect cycles with up to four transactions. However, in the
context of isolation checking, we may assume that cycles with more than four transactions
do not exist in our histories. The minimal max depth should be at least 4 to achieve full
functionality, which corresponds to the long fork anomaly. In other histories collected from
ArangoDB, it is rare to see a cycle involving more than four transactions. Also, we may
increase the history size, or simply collect histories multiple times, to ensure that we can
get a minimum depth of cycles of the same type. In practice, the user can still adjust the
max depth according to specific requirements.

An anti-pattern for snapshot isolation is defined as a cycle with fewer than two con-
secutive RW edges. The query employs a negated condition, searching for at least two
consecutive RW edges using a regular expression pattern (ˆrw.*rw$|rw rw) on the edge
sequence. This regular expression matches the pattern where either one RW edge is at the
start and another is at the end, or two consecutive RW edges appear in the sequence.

The Cycle checker filters all anti-patterns related to snapshot isolation. However, by
using the LIMIT 1 clause, only the first detected anti-pattern is outputted as the result. The
LIMIT clause has minimal impact on performance, and the difference in I/O is negligible.

In addition to the standard version of the Cycle checker, we also propose three variants
in the following.

Variant I: CycleFilter. Inspired by the idea of early stopping along a traversal, we have
found two ways of implementing this in ArangoDB: using the PRUNE keyword and using the
filter-on-path property. The PRUNE keyword specifies a pruning condition, which triggers
early stopping when the condition is satisfied. However, it does not have the functionality
of filtering. It implies that when the condition is not satisfied, the traversal will be complete,
and no pruning seems to exist just by telling the results. Therefore, to achieve the correct
set of results, we need a second round of filtering for each vertex, which increases the
computational cost.

Another way is to use filtering on path 1. Different from filtering on vertices or edges, if
the path variables are explicitly used in the filtering condition for graph traversals, it will turn
on the early stopping mechanism ensured by ArangoDB. This variant is promising when a
cycle can be successfully found. However, when the cycle does not exist in a dependency
graph, the path variable often causes more computational cost because of the processing
from the path to edges or vertices that are easier for comparison. We present this variant in
the query shown in Listing 4.2.

1Filtering on path vs. filtering on vertices or edges (ArangoDB v3.9):
https://www.arangodb.com/docs/3.9/aql/graphs-traversals.html#filtering-on-the-path-vs-filtering-on-vertices-
or-edges

34

https://www.arangodb.com/docs/3.9/aql/graphs-traversals.html#filtering-on-the-path-vs-filtering-on-vertices-or-edges
https://www.arangodb.com/docs/3.9/aql/graphs-traversals.html#filtering-on-the-path-vs-filtering-on-vertices-or-edges

4.1. Checking SI: Definition-Based Checker

Variant II: CycleRandom. Another variant is to randomize the iteration order to change
the possibilities of detecting the cycle earlier. Randomization is often supported in more
advanced programming languages and can be useful when combined with graph queries.
Before the query is started, the sequence of starting vertices is randomly shuffled in the
outside advanced programming language on which the driver is based. Then a set of queries
will be executed in a loop, where each time a randomized starting vertex is passed to a
query for cycle detection. Once an anti-pattern is found during the iteration, the program
immediately breaks the loop so that the early stopping is triggered.

Based on randomization, it is possible to find a cycle earlier. However, there is also a
possibility that the valid starting vertex that causes the cycle will appear toward the end of
the iteration sequence. Therefore, randomization is considered only as a backup approach
in this context.

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER LAST(path.edges[∗]. to) == start. id AND NOT REGEX TEST(

CONCAT SEPARATOR(" ", path.edges[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN path.edges

Listing 4.2: Checking SI: CycleFilter variant

Variant III: CycleEdge (Disregarded). Back edge detection is another form of a definition-
based algorithm. However, it is not suitable for this situation as it requires a hash set as an
additional data structure. Unfortunately, the AQL query language does not currently support
such a data structure that can change dynamically in value or size. As a result, back edge
detection can only be supported in a much slower way. For instance, in the following query,
each newly visited vertex is compared with the path that contains all the previous vertices
to determine whether the new vertex has already been visited. The POP keyword is used
to remove the last vertex from the path because it is exactly the new vertex. However, we
have decided to disregard this variant due to its poor performance caused by comparisons
between an element and an array, which is linear and adds one polynomial scale to the time
complexity.

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER POP(path.vertices[∗]. id) ANY == vertex. id AND NOT REGEX TEST(

CONCAT SEPARATOR(" ", path.edges[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN CONCAT SEPARATOR("−>", path.vertices[∗].name)

Listing 4.3: Checking SI: CycleEdge variant

35

4. GRAPH-BASED CHECKER: PART II - CYCLE DETECTION IN ARANGODB

4.2 Checking SI: SP Checker

The SP checker uses the Shortest Path Detection algorithm (See Section 2.4 and Appendix
B.3) to detect cycles. It iterates over dependency edges and uses the K SHORTEST PATH
query to find back paths that form cycles. Isolation checking identifies cycles that match
a specific anti-pattern. We also notice that retrieving only the shortest cycles starting from
each edge is insufficient. To address this, we employ the K SHORTEST PATH query to search
for all cycles in the dependency graph. We then filter cycles that match the anti-pattern using
regular expression matching. Neo4j, another graph database, also utilizes similar concepts
and built-in shortest path algorithms for cycle detection.

LET cycles = (
FOR edge IN dep

FOR p IN OUTBOUND K SHORTEST PATHS
edge. to TO edge. from
GRAPH txn g
RETURN {edges: UNSHIFT(p.edges, edge),

vertices: UNSHIFT(p.vertices,
p.vertices[LENGTH(p.vertices) − 1])}

)

FOR cycle IN cycles
FILTER NOT REGEX TEST(CONCAT SEPARATOR(" ", cycle.edges[∗].type),

"(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN cycle

Listing 4.4: Checking SI: SP checker

Additionally, the filtering step can be performed outside of the query without the final
filtering step, using an advanced programming language. For instance, the provided code
in Listing 4.5 demonstrates how the SI anti-pattern can be defined in the Go programming
language. By adopting this approach, the query request primarily focuses on the intensive
cycle search, while each cycle is individually evaluated outside of the query to determine if
it matches the SI anti-pattern. Moving the filtering step out of the query does not affect the
performance of SP Checker.

func isAntiPatternSI(cycle []TxnDepEdge) bool {
for i, edge := range cycle {

if edge.Type == "rw" && cycle[(i+1)%len(cycle)].Type == "rw" {
return false

}
}
return true

}

Listing 4.5: Checking SI: anti-pattern definition of SI (in Go)

36

4.3. Checking SI: Pregel Checker

4.3 Checking SI: Pregel Checker

Combining Listings 4.6 and 4.7, we use the ArangoDB Pregel SCC algorithm to search
all strongly connected components (SCC) within a dependency graph, and then filter valid
SCCs with at least two vertices that represent cycles formed by SCCs (or subsets of SCCs).
Listing 4.6 shows demonstrates how a Pregel job can be started on the dependency graph
in ArangoDB. The resulting strongly connected component (SCC) IDs for each transaction
vertex are stored in the scc field.

This checker, however, only applies to serializability checking. This is because the
Pregel algorithm is based on Bulk Synchronous Processing (BSP) framework, which re-
quires traversals along the whole graph in a distributive iterative manner. After the traversal
is complete, the SCCs need to be retrieved, and the cycles need to be found within SCCs
again. This process requires additional operations on subgraphs formed by SCCs. However,
the subgraph-related functionalities are not well supported by ArangoDB, which causes
problems with the post-filtering steps. Therefore, we only provide the way to apply the
Pregel SCC algorithm to serializability checking with ArangoDB. In other graph databases
(e.g., Neo4j), similar SCC algorithms can be combined with edge filtering, which makes it
feasible to check isolation levels on other levels.

Note that in Community Edition, the correctness of results is ensured only in the single-
machine mode, where the graph is stored within the same server node for cycle detection.

jobId, err := db.StartJob(context.Background(), driver.PregelJobOptions{
Algorithm: driver.PregelAlgorithmStronglyConnectedComponents,
GraphName: "txn_g",
Params: map[string]interface{}{

"resultField": "scc",
"shardKeyAttribute": "_from",
"store": true,

},
})

if err != nil {
log.Fatalf("Failed to start Pregel SCC algorithm: %v\n", err)

}

Listing 4.6: Checking SER: ArangoDB Pregel SCC Algorithm (Pregel)

FOR t IN txn
COLLECT cycle = t.scc INTO cycles
FILTER LENGTH(cycles) > 1
RETURN cycle

Listing 4.7: Checking SER: retrieve cycles from SCCs

4.4 Output and Visualization

To present the results and indicate the existence of anti-patterns clearly, we provide both
text and graph outputs that highlight any cycles detected in the dependency graph.

37

4. GRAPH-BASED CHECKER: PART II - CYCLE DETECTION IN ARANGODB

Text output. The text output represents the cycles using transaction IDs and retains the
labels of the dependency edges, connecting them into a string. For example, an output like
T154 (rw) T155 (rw) T154 signifies a cycle with two read-write (RW) edges. However,
the text output lacks detailed transaction information and event details. This limitation arises
from the way dependency graphs are stored in ArangoDB. To enhance the output with more
useful information and provide users with a visual representation of the cycle, we perform
an additional read operation from the history and utilize the display format from Elle [42]
along with the Graphviz visualization tool [3]. The updated graph output, as shown in
Figure 4.3, provides a clearer illustration of a write skew anomaly. It indicates a cycle with
one (RW edge from the event [:r 66 []] to [:append 66 2], and another (RW edge
from [:r 62 []] to [:append 62 1]. This cycle, consisting of two consecutive (RW
edges, represents an anti-pattern of serializability (SER) but not of SI, PSI, or lower levels.
Therefore, the example output suggests that the ArangoDB execution history achieves the
SI level in a local mode.

ArangoDB visualization. In addition, ArangoDB offers a built-in visualization tool to
visualize the graph model stored in the database. Figure 4.1 demonstrates an example of
graph visualization using ArangoDB’s Web Interface. It directly displays a cycle formed
by four edges from the query’s end result. However, the visualization based on the result
only shows vertex information and lacks edge details, indicating room for improvement
in visualizing labeled property graphs. This is because the edge information reveals the
dependencies between transactions and is important in determining the type of cycles.

Figure 4.1: Cycle visualization by ArangoDB Web Interface

Neo4j visualization. Alternatively, other graph databases provide more robust visualiza-
tion tools that cover both vertex and edge information. Figure 4.2 showcases a visualization
result using Neo4j with the same graph schema. It includes well-maintained IDs and fields
of both vertices and edges. In particular, Neo4j visualization well records the edge informa-
tion, which contains the information of both end vertices and their IDs. This information,

38

4.5. Isolation Level of ArangoDB Cluster

however, is missing in the ArangoDB visualization. This alternative way of smart visual-
ization shows the feasibility of maintaining more useful information and providing insights.
With the edge information, users can tell that all the cycles shown in the visualization are
anti-patterns of SER, since all of them consist of two consecutive RW edges. Overall, Neo4j
strengthens the result of smart visualization and also indicates that ArangoDB has the po-
tential to improve its visualization capabilities for holding edge-related information.

Figure 4.2: Cycle visualization by Neo4j Browser User Interface

Visualization through business intelligence. Furthermore, an extensive ecosystem of
business intelligence (BI) products customized in visualizing graph databases exists. Exam-
ples such as [6] and [7] provide solutions for visualizing ArangoDB graphs with advanced
functionalities in data analytics and business intelligence. These examples illustrate the
potential for connecting the graph-based checker to the broader graph database ecosystem,
enabling further extension of the checker’s capabilities.

4.5 Isolation Level of ArangoDB Cluster

ArangoDB achieves SNAPSHOT ISOLATION (SI) in its default, local mode, which is
applicable when replication and sharding are not actively enabled. In this mode, each col-
lection is stored entirely within a single server, ensuring that graph traversals only occur
within the local server where all edges are stored. However, it is important to note that
this local mode does not actively use distributed properties. We investigated this claim and
our graph-based checker detected the anti-pattern of serializability (SER) with the specific
anomaly known as Write Skew 2 (Figure 4.3).

When sharding and replication are enabled in an ArangoDB cluster, the locality of data
storage no longer holds, allowing for the detection of other anti-patterns. By configuring a
replication factor of 3 and a sharding factor of 2, we were able to find an anti-pattern of both
SI (and PSI) (Figure 4.4) 3, in addition to the anti-pattern of SER. This particular anomaly,

2Anomaly: Write Skew
3Anomaly: Lost Update

39

https://github.com/jasonqiu98/anti-pattern-graph-checker-single/blob/thesis/go-graph-checker/histories/anti-patterns/write-skew/history.edn
https://github.com/jasonqiu98/anti-pattern-graph-checker-single/blob/thesis/go-graph-checker/histories/anti-patterns/lost-update/history.edn

4. GRAPH-BASED CHECKER: PART II - CYCLE DETECTION IN ARANGODB

[:r 66 [1]] [:r 66 [1]] [:r 62 []][:append 62 1][:r 62 [1]]

[:append 66 2][:r 66 [1 2]] [:r 62 []] [:r 66 [1 2]][:r 66 [1 2]][:r 66 [1 2]][:r 65 [1 2]][:r 66 [1 2]]

T154 (rw) T155 T155 (rw) T154

Figure 4.3: Cycle visualization: anti-pattern of SER

known as Lost Update, occurs when a committed update result for one object is perceived,
while the update result for another object is lost. For example, T13379 updated two objects
2364 and 2365, and committed the transaction. However, the committed updated result of
2364 was perceived while that of 2365 was lost in T13381. This violation involves a cycle
with only one read-write (RW) edge, violating both SI and PSI. It should be noted that
ArangoDB does not claim any isolation guarantee in a distributed setting. Based on our
tests, the default isolation level in a distributed ArangoDB cluster can be classified as PL-2.

[:append 2364 6][:r 2365 [2]][:r 2361 [1 3 4]][:r 2365 [2]][:append 2365 3]

[:r 2365 [2]] [:r 2365 [2]][:r 2364 [2 3 6]][:r 2364 [2 3 6]]

T13379 (wr) T13381 T13381 (rw) T13379

Figure 4.4: Cycle visualization: anti-pattern of SI & PSI

To conclude this chapter, we have developed a graph-based checker to assess the iso-
lation level of a distributed database. The checker has proven to be informative and ef-
fective, and we have applied it to histories collected under different parametric settings in
ArangoDB. Overall, we conclude that ArangoDB does not violate its isolation level guar-
antee of LOCAL SNAPSHOT ISOLATION (see Section 2.3.3).

40

Chapter 5

Evaluation

This chapter presents the evaluation of our graph-based checker in its effectiveness, scalabil-
ity, and its efficiency compared to other checkers. We start by revisiting the three research
questions proposed in Section 1.3 and decomposing each research question into detailed
sub-questions. After that, we present the datasets and system configurations where we con-
duct the experiments. Following this, we perform exploratory data analysis, plot checker
performance, and conduct statistical analysis to address the sub-questions of the research
questions. At the end of this chapter, we give a summary of our results. We also extend
the summary with a detailed discussion about our results, findings, and possibilities of im-
provements on the experiments.

5.1 Research Questions

5.1.1 RQ1: Effectiveness

RQ1 explores the effectiveness of the graph-based checker. To address RQ1, we apply
the checker to five sets of list histories. Each set contains 20 histories, accumulating to
100 histories in total. We use these 100 histories to evaluate the research question in the
following.

RQ1 Is the graph-based checker effective in detecting the anti-patterns of the 100 ArangoDB
histories?

5.1.2 RQ2: Scalability

RQ2 asks for the scalability of the checker. We address RQ2 with a series of histories gen-
erated from ArangoDB, in both cluster and single-instance modes. In each set of histories
selected to evaluate the scalability, we vary one certain factor without changing others. Fur-
thermore, we explore some underlying factors that are not directly adjusted in the histories.
We aim to explore the factors in the following.

• Two main factors used by Jepsen: collection time and transaction generation rate;

41

5. EVALUATION

• Three underlying factors not directly used by Jepsen: history length (the number
of committed transactions), density (the density of the dependency graph), and con-
tributing traversals (the number of traversals spent on cycles);

• Two additional factors used by Jepsen: number of sessions and maximum number of
write events per object.

Furthermore, we investigate the differences in scalability for the Cycle checker, when
the maximum depth changes in the Cycle checker, or when the nemesis exists in the histo-
ries. Overall, we formulate the following sub-questions of RQ2.

RQ2.1 How does the graph-based checker scale with increasing collection times but a fixed
transaction generation rate?

RQ2.2 How does the graph-based checker scale with increasing transaction generation rates
but fixed collection time?

RQ2.3 How does the graph-based checker scale with the changes of the three underlying
factors (history length, density, and the number of contributing traversals)?

RQ2.4 How does the graph-based checker scale when the number of sessions varies?
RQ2.5 How does the graph-based checker scale when the maximum number of write events

per object varies?
RQ2.6 How does the Cycle checker scale with different maximum depths?
RQ2.7 How does the graph-based checker scale with increasing collection times but a fixed

transaction generation rate, when a nemesis is active in the system?

5.1.3 RQ3: Comparison with State-of-the-art Checkers

RQ3 requires a response with the comparison between our graph-based checker and other
state-of-the-art isolation checkers. We include two representative checkers, Elle and PolySI,
into our experiments. Also, we attempt to change the graph database in use to illustrate the
checker’s performance with a different graph database, e.g., Neo4j.

RQ3.1 How does the graph-based checker perform compared to Elle?
RQ3.2 How does the graph-based checker perform compared to snapshot isolation checkers

(e.g., PolySI)?
RQ3.3 How does the graph-based checker on ArangoDB perform compared to the graph-

based checker in Neo4j?

5.2 Research Methodology

5.2.1 Datasets

To address the research questions and sub-questions, we conduct experiments on five sets of
list histories and four sets of register histories. Each transaction has a range of 4-8 events.

List Histories. Table 5.1 includes the details of five list history sets List1-List5. The
following two factors are fixed and not included in the table.

1. number of concurrent sessions to generate histories (#sessions): 10

42

5.2. Research Methodology

Collection time (s) Rate (#txns/s) Replication Sharding Nemesis
List1 10..200..10 80 3 2 ✗

List2 10..200..10 80 3 2 ✓

List3 100 10..200..10 3 2 ✗

List4 100 10..200..10 3 2 ✓

List5 30 80 5 3 ✓

Table 5.1: Details of List Histories List1-List5

2. maximum number of writes per object: 8

We collect these histories through Jepsen, in a cluster setting with five nodes. We use
shorthand notations start..end..step, to represent an increasing array of values from
start to end with a step of step. For example, 10s..200s..10s means an increasing array
10s, 20s, 30s, ..., until and including 200s.

We adjust the two main factors, collection time and rate, on our list histories. List1
and List2 are with increasing collection times, but a fixed rate. On the other hand, List3 and
List4 are with a fixed collection time, but increasing rates. In List5, both collection time and
rate are fixed. We use List1-List3 for the evaluation of both effectiveness and scalability,
with List4-List5 simply to verify the effectiveness of our checker.

We also introduce sharding and replication in this cluster. For example, List1-List4
histories have a replication factor of 3 and a sharding factor of 2. It means that each dataset
is split into two shards. When new data comes into the database, consistent hashing is used
to determine which shard to write to. Also, each shard is replicated three times to increase
availability. In List5, we increase the replication and sharding factors to make data more
scattered across the database servers.

We also introduce a nemesis in the generation of our histories. The nemesis is a network
partition with a period of 10 seconds in the following manner. For every 10 seconds, there is
no nemesis in the first five seconds, followed by a random partition that divides the network
into two halves and lasts for five seconds. In our histories, List2 and List1 have the same
configuration, except that List2 has a nemesis while List1 does not. It is also true of List3
and List4, with List4 having a nemesis.

Register Histories. Table 5.2 includes the details of four register history sets Reg1-Reg4.

Since register histories require the usage of WAL, which is supported only in the single-
machine mode, we collect the register histories through Jepsen in a cluster with only one
node. This setting disallows replication, sharding, or nemesis. In addition to collection time
and rate, we also adjust the number of concurrent sessions (#sessions) and the maximum
number of writes per object in our register histories (which are fixed in list histories). We
use Reg1-Reg4 to explore the scalability of the checker with these factors.

43

5. EVALUATION

Collection time (s) Rate (#txns/s) #sessions Max writes per object
Reg1 10..200..10 20 10 8
Reg2 30 10..200..10 10 8
Reg3 30 20 10..200..10 8
Reg4 30 20 10 1..20..1

Table 5.2: Details of Register Histories Reg1-Reg4

5.2.2 Dataset Characteristics

Appendix F lists the characteristics of all the datasets introduced above. For each dataset,
the characteristics include the following.

• #RW: the number of RW edges in the dependency graph

• #WW: the number of WW edges in the dependency graph

• #WR: the number of WR edges in the dependency graph

• #vertices: the number of vertices in the dependency graph

• #edges: the number of edges in the dependency graph

• #traversals: the number of all the contributing traversals on paths that form cycles
for each history

• density: the edge-vertex ratio to describe the graph density, which is the ratio of the
number of edges to the number of vertices in the dependency graph

• #committed: the number of committed transactions in the history; the same as #ver-
tices

• #aborted: the number of aborted transactions in the history

In the rest of this chapter, the descriptive results of these characteristics are reported in
place of the raw data points.

5.2.3 System Configuration

We collect the list histories1 and register histories2 with Clojure 1.11.1 and Jepsen 0.2.7.
To submit transactions from the Jepsen control node, we use ArangoDB Java Driver 6.16.0.
ArangoDB 3.9.10 is used for history collection.

We conduct the experiments3 on a Linux Mint 21 machine having AMD Ryzen 7 5800H
processor with Radeon Graphics × 8 and 15.5 GiB of memory. The checker is developed
with Go 1.19.4 and ArangoDB Go Driver 1.5.0. ArangoDB 3.9.10 is in use for the checker.

1jasonqiu98/jepsen.arangodb
2jasonqiu98/jepsen.arangodb.single
3jasonqiu98/GRAIL-artifact (thesis branch)

44

https://github.com/jasonqiu98/jepsen.arangodb
https://github.com/jasonqiu98/jepsen.arangodb.single
https://github.com/jasonqiu98/GRAIL-artifact/tree/thesis

5.3. Exploratory Data Analysis

5.3 Exploratory Data Analysis

5.3.1 Correlation Coefficients of Key Factors

In this section, we conduct exploratory data analysis on the dataset characteristics. First, we
report the correlation coefficients between each relevant factor and an array of 1..20, which
is a common growth for all the datasets. Table 5.3 shows the results. For each dataset, we
analyze the correlation coefficients below.

• List1. All the factors of #vertices, #traversals, #aborted, and #edges, are linearly
correlated with regard to increasing collection time. The correlation of density is very
low, meaning that the density is nearly unchanged across different collection times.
It means that

• List2. The reported trends are nearly the same as List1, except the factor #traver-
sals. The existence of a nemesis, with other factors keeping the same, will disturb
the process of finding a cycle. It makes the trend of #traversals from strong linear
correlation to nearly no correlation.

• List3. The signature trend for the histories with increasing rates is the strong negative
correlation of #density. Compared with List1, the linear correlation of #vertices and
#edges becomes weaker, which means the performance plot is not fully linear with
these two factors.

• List4. We observe a similar trend to List2. The other factors are similar, except the
#traversals which is largely disturbed.

• List5. This is a simple repetition of 20 times on the same configuration. Therefore,
the data points, which show weak correlation, are consistent with our assumption.

• Reg1. For register histories with increasing collection times, we observe a similar
trend to List1.

• Reg2. For register histories with increasing rates, we observe a similar trend to List3.
• Reg3. For register histories with an increasing number of sessions, all of the factors

show a weak correlation. It implies that changes in the number of sessions do not
take a strong effect on these key factors.

• Reg4. The main factor of max writes per object increases #edges and density and
also decreases #vertices and #traversals. Also, #aborted increases.

5.3.2 Other Findings

We also briefly mention other findings in the exploratory data analysis. The first finding
is that in list histories, the ratio of RW edges to the total number of edges has a strong
correlation with the increasing rates; however, for register histories, the correlation is weak.
Also, with a high rate, a list history has more RW edges than the other two types. Each
history has nearly the same number of WW and WR edges. However, a register history
does not have such a trend.

Another finding is that the number of aborted transactions is often strongly correlated
with the main factor, but the slope may vary. For histories with a high rate, the growth of

45

5. EVALUATION

#vertices #edges #traversals density #aborted

List1 0.9927 0.9918 0.9807 -0.1158 0.9953
List2 0.9995 0.9992 0.0192 -0.136 0.9988
List3 0.885 0.663 0.9454 -0.9971 0.9743
List4 0.9475 0.6602 -0.1473 -0.9909 0.9946
List5 -0.2413 -0.2483 -0.1846 -0.1841 0.0011
Reg1 0.9998 0.9997 0.7278 0.0936 0.9656
Reg2 0.9967 0.9951 0.9725 -0.9029 0.9753
Reg3 -0.0672 0.0994 0.0994 0.1936 -0.0797
Reg4 -0.3501 0.767 -0.6714 0.767 0.5712

Table 5.3: Correlation coefficients of key factors

SER SI PSI PL-2 PL-1

Cycle (d=2) 100 73 73 0 0
Cycle (d=3) 100 75 75 0 0
Cycle (d=4) 100 75 75 0 0
SP 100 75 75 0 0
Pregel 100 / / / /
Elle 100 75 / 0 0

Table 5.4: The number of histories that have anti-patterns in List1-List5

aborted transactions looks synchronous with that of committed transactions. With a low
rate, the aborted transactions also grow with a low slope.

5.4 Effectiveness

We explore the effectiveness of our checker by comparing it with a reference checker. We
select Elle as the reference checker for its stability and effectiveness. The comparison result
addresses RQ1.

Table 5.4 presents the number of list histories where anti-patterns exist, across the
datasets List1-List5. For the Cycle version, we also adjust the maximum depth to high-
light its importance. This table suggests that our checker is capable of achieving the same
level of effectiveness as Elle. The Pregel version can only be applied in the SER check-
ing, but it can still fulfill the task. Cycles with a lower maximum depth may affect the
effectiveness, e.g., a max depth of 2. This implies that part of our histories have minimal
anti-patterns with a depth of 3, which invalidates the Cycle checker with a max depth of
only 2. Therefore, we suggest the users set a max depth of at least 4 to ensure effectiveness.

Currently, there is no isolation checker with register histories that is complete on the
checking of the five isolation levels selected by us. Elle highlights its use cases with list
histories, but it lacks support to ensure the effectiveness of register histories. In Reg1 his-

46

5.5. Scalability

tories, our checker detects 18 histories with anti-patterns of SER, while Elle only reports
3 of them. Therefore, Elle is not a reliable reference checker. This is because our checker
utilizes WAL and retrieves more information than Elle, which only deduces based on intra-
transaction information.

A limitation of our register histories is that since we rely on WAL, we cannot break
through the restrictions of ArangoDB that WAL can only be collected in the single-machine
mode. Therefore, we are not able to generate histories with replication and sharding, which
are more likely to trigger anti-patterns in the execution histories. This causes our register
histories only have anti-patterns of SER, and comparison with checkers (e.g., PolySI) of
other levels becomes less meaningful.

5.5 Scalability

RQ2.1: collection time Figure 5.1 presents the runtime of the graph-based checker for
List1 histories with increasing collection time. We include the three versions based on
ArangoDB to illustrate the growth trends, i.e., Cycle, SP, and Pregel. For the Cycle version,
we set the maximum depth of cycles to 4, which ignores the paths over four depths. This
maximum depth is sufficient in detecting a minimal long-form anomaly and also sufficient
in detecting all anti-patterns in our datasets. Pregel is only present in Figure 5.1a, since it is
only applicable in SER checking. As Figure 5.1f illustrates, the histories List1 also reflect
the trends in increasing history lengths, which will be further discussed later in this section.

Both the Cycle checker and the Pregel checker are theoretically polynomial but achieve
linear complexities in practice. The Cycle checker shows a linear trend across all five levels,
with an R2 value of 0.90 on average. The Pregel checker is also linear in the plot with an
R2 of 0.93. The Cycle checker executes complete traversals with the given depths when no
early stopping mechanism is applied. The Pregel checker also traverses completely on the
graph based on the BSP framework. Therefore, both checkers show a linear growth in their
runtime.

However, the SP checker shows a constant level in 5.1a for SER checking, and a weaker
correlation with other levels with many fluctuations. The R2 values for SER and other
levels on average are 0.01 and 0.66, respectively. The SP checker imposes an early stopping
within the concept of the shortest path. Also, the LIMIT 1 clause ensures that the checker
can return as soon as one cycle is successfully found in the graph. Both reasons justify
the constant level shown in SER checking. However, in our history, anti-patterns against
other levels are fewer than those against SER. This makes the early stopping on other levels
more difficult and explains why the runtime of the SP checker grows faster and its linear
correlation with the horizontal axis is weak.

In general, the SP checker is superior in SER checking where anti-patterns are inten-
sively present; however, the Cycle checker is better when only a few, or even no anti-patterns
are present in the dependency graph. Pregel is stably linear and its performance lies between
Cycle and SP. In Figure 5.1a, SP can return early, while Cycle and Pregel need complete
traversals. In Figures 5.1b-5.1e, Cycle outperforms SP for the difficulty to find an anti-
pattern and stop early. Also, SP traverses on edges while Cycle traverses on vertices. The

47

5. EVALUATION

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.1: Runtime for checking anti-patterns in the list-collection-time histories

dataset characteristics show that the number of edges is more than the number of vertices
(see Appendix F.1, which further explains the worse performance of the SP checker when
it also needs to traverse completely.

Another finding is that the plots of SI and PSI checking are similar. SI and PSI check-
ing both combine vertex searching and condition filtering. This similar mechanism causes
similar performance for these two levels.

Figure 5.2 strengthens our arguments on the checker’s performance with regard to in-
creasing collection time for Reg1 histories, except that the SP checker shows more fluctu-
ations instead of a constant trend in 5.2a. The major difference between Reg1 and List1
histories is that Reg1 is generated with a low rate, which lowers the concurrency of the
dataset. This lower concurrency is also reflected in 5.2f, which shows that the dataset has
only a small number of aborted transactions. With a low concurrency, there are fewer cycles

48

5.5. Scalability

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.2: Runtime for checking anti-patterns in the reg-collection-time histories

in the generated histories, which increases the difficulty to find a cycle and triggers more
fluctuations in Figure 5.2a for the SP checker. On the other hand, the SP checker remains
successful in achieving a low runtime for SER checking at some collection times (e.g., 70s,
80s, 130s, and 150s), which confirms the functionality of its early stopping mechanism.

RQ2.2: transaction generation rate Figure 5.3 presents the development trends of the
checkers’ performance for List3 histories, with an increasing array of rates. The rate is a
representative metric of the concurrency in the system: a high rate causes more conflicts
within the system, which further causes a higher ratio of aborted transactions. This trend
can be seen in 5.3f.

The increasing concurrency also changes the linear trends of the checkers’ performance:
the linear growth is largely broken for all checkers. Across all isolation levels, the runtime of

49

5. EVALUATION

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Rate

Figure 5.3: Runtime for checking anti-patterns in list-rate histories

the Cycle checker shows a decrease-after-increase trend. The Pregel checker in SER check-
ing also has a similar result. However, the SP checker still returns fast in SER checking (see
Figure 5.3a) with effective early stopping.

The relative trends of the three versions are similar to the results for List1 histories. SP
is superior in SER checking but returns more slowly for other levels. However, we also
observe that the SP checker becomes faster for other levels when the rate becomes higher
than 80. This is related to the decreasing trend of graph density (see Appendix F.3), which
will be discussed later in this section.

Figure 5.4 shows the development trend on Reg2, which increases rates on register
variables. However, the trends show clearer linear trends and are less similar to those shown
in Figure 5.3. Based on this result, we hypothesize that the development trends are less
related to collection time or rate. The graph characteristics, instead, are more closely related

50

5.5. Scalability

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.4: Runtime for checking anti-patterns in the reg-rate histories

to the runtime of the checkers. This will be detailed in the following paragraph.

RQ2.3: history length, density, and number of contributing traversals Based on the
analysis on the history sets of List1, List3, Reg1, and Reg2, we select three underlying
factors that affect the performance of the Cycle checker as follows.

• history length L: the number of committed transactions of the history
• density D: the edge-vertex ratio of the dependency graph
• number of contributing traversals N: the number of traversals spent on the paths that

form cycles

We denote the runtime of the Cycle checker by T . With the three independent variables
and one dependent variable, we establish a linear model.

51

5. EVALUATION

T = β0 +β1L+β2D+β3N

We use linear regression to explore the significance levels of the three underlying fac-
tors, with the runtime of SER and SI checkers on the four sets of histories List1, List3, Reg1,
and Reg2. The runtime of SER is denoted by Tser and that of SI by Tsi. The cut-off for the
p-value is 0.05. The results of linear regression are shown in Table 5.5. For both SER and
SI checking, the coefficients of L and N are strongly significant with small p-values. The
coefficient of D is also strongly significant with a cut-off p-value of 0.05 in SER checking.
However, it is only marginally significant in SI checking. Both models have a good measure
of fit based on their R2 values. Based on these results, we confirm the effects of these three
underlying factors. The only exception is that the density is less significant for isolation
checking in levels other than SER.

To address this exception, we fit the model for List3 histories two more times and pro-
pose our hypothesis that density is an important underlying factor that affects the checker’s
performance. We start the linear regression procedures for two parts of the histories with
rates less than 80, and at least 80, respectively. The results can be referred to in Table 5.6.
The R2 values of 0.95 and 0.88 ensure the validity of the model. Moreover, the coefficient
density is strongly significant for histories with a rate of at least 80, which justifies our hy-
pothesis. Therefore, we confirm that density is an important factor in List3 histories, and
the modeling results are consistent with our observations.

Tser (R2=0.92) β p-value Tsi (R2=0.87) β p-value

Intercept -588.42 0.078 Intercept -603.59 0.178
L 0.27 3.50 ×10−41 L 0.29 5.71 ×10−34

D 186.41 0.049 D 189.62 0.135
N -0.64 2.62 ×10−16 N -0.67 7.38 ×10−12

Table 5.5: Regression results for the runtime of SER and SI of Cycle checkers for List1,
List3, Reg1, and Reg2 histories

Tsi (R2=0.95) β p-value Tsi (R2=0.88) β p-value

Intercept -14406.06 0.070 Intercept -1293.40 0.051
L 0.64 0.026 L -0.05 0.636
D 3716.95 0.069 D 701.97 0.011
N 0.31 0.736 N 0.02 0.903

Table 5.6: Regression results for runtime of Cycle checker in SI checking for List3 histories
with rate less than 80, and at least 80

RQ2.4: number of sessions Figure 5.5 shows that the checkers have the same level of
performance for histories with varying numbers of sessions. The number of sessions is

52

5.5. Scalability

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.5: Runtime for checking anti-patterns in the reg-session histories

a metric to represent the parallelism of the system. With more sessions, the same load
of data is more scattered across operating nodes, and therefore the concurrency is reduced.
However, the underlying factors discussed in RQ2.3 do not change, which keeps the runtime
at the same level.

RQ2.5: maximum number of writes per object Figure 5.6 presents the effect of another
additional factor, the maximum number of write events per object. We hypothesize a log-
arithm growth of the checking time with regard to max writes per object. The log-runtime
has an R2 of 0.84 on average of all levels for the Cycle checker. For the SP checker, the
result of SER checking has a large extent of fluctuation and the R2 is only 0.20. For the
remaining four levels, the average R2 of SP’s log-runtime achieves 0.69, which is not good
enough to determine a logarithm fit. Therefore, we conclude that the Cycle checker has

53

5. EVALUATION

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.6: Runtime for checking anti-patterns in the reg-max-write histories

a logarithm increase in its checking time when the amount of the max writes per object
increases. However, the SP checker deviates from a logarithm trend caused by fluctuation.

RQ2.6: max depth of the Cycle checker We also give an analysis of the effect of the
max depth on the performance of the Cycle checker. Figure 5.7 presents the checking time
for five histories selected from List1. The five histories correspond to those with collection
times of 80s-120s. For all levels except PL-1, we observe an exponential growth with
increasing depths for each level. The exponential trends in PL-1 are not clear enough. To
verify our hypothesis, we construct the following statistical model with collection time t
and max depth d as independent variables, and the runtime T as dependent variables.

T = β0 +β1t +β2d +β3ed +β4ted

54

5.6. Comparison with Other Checkers

We also add the interaction term to observe its effect on the performance. With the fit re-
gression models, for simplicity, we list the p-values for the coefficients of each term to show
their significance. A p-value below the cut-off of 0.05 is marked in boldface. It is shown
that all the models corresponding to five isolation levels have high values of R2, which in-
dicates a good fitting level. In this case, the interaction term ted is strongly significant for
the checking of all levels. Also, the exponential term ed is significant for the checking of all
levels except PSI. Therefore, we conclude that our hypothesis is verified. The exponential
terms are significant, and the depth has an exponential effect on the checking time. This is
consistent with our analysis in Appendix 2.

t d ed ted

SER (R2=0.98) 0.488 0.094 3.67 ×10−4 7.42 ×10−37

SI (R2=0.97) 0.520 0.229 8.08 ×10−3 3.65 ×10−29

PSI (R2=0.97) 0.920 0.386 0.343 7.00 ×10−31

PL-2 (R2=0.93) 5.86 ×10−4 0.001 0.019 1.74 ×10−19

PL-1 (R2=0.89) 7.11 ×10−17 9.33 ×10−8 4.33 ×10−5 7.62 ×10−7

Table 5.7: A list of p-values for Cycle checkers with different max depths

RQ2.7: effect of nemesis We provide an additional experiment to explore the effect of
nemesis on the development trends that we have observed in RQ2.1. In Figure 5.8, we
present the trends of checking time for List2 histories, which illustrate the growth of the
checking time with regard to increasing collection times. List2 has the same configurations
as List1 except that List2 has a nemesis while List1 does not. From this figure, we have
observed that the nemesis does not affect the general trends of the plots, and the plot in
Figure 5.8 shows the same trends as Figure 5.1. In fact, the nemesis introduced by us, i.e.,
the periodic random partition, does not change the checkers’ behaviors but affects only the
size of the dependency graphs. It reduces the history generation time by half. Therefore,
the development trends are consistent with the case without a nemesis.

5.6 Comparison with Other Checkers

Following the discussion in the previous section, the three underlying factors are significant
in affecting the checkers’ runtime. In this section, we select two representative sets of histo-
ries, List1 (see Figure 5.1) and List3 (see Figure 5.3), to illustrate the comparison between
our graph-based checker with other state-of-the-art checkers in SER and SI checking. We
select two checkers for comparison: Elle and PolySI. Also, we explore the possibilities to
create a new checker by replacing ArangoDB with Neo4j, and the new checker’s perfor-
mance.

RQ3.1: Elle Elle is known for its linear-time checking on its benchmarks with list vari-
ables. Figure 5.1a demonstrates that Elle has a similar performance to Cycle but is outper-

55

5. EVALUATION

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1

Figure 5.7: Runtime for checking anti-patterns by Cycle checker with different max depths

formed by our Pregel and SP checkers in SER checking for List1 histories. In SI checking
(see Figure 5.1b), Elle’s plot is still close to Cycle’s, while SP checker performs worse
because of its difficulty in finding a cycle.

We have also found that Elle has the same performance when checking different levels
because of its mechanism: it first finds all SCCs by Tarjan’s algorithm and then determines
whether a certain level is achieved by rule. This way causes the same performance for all
levels. Although we do not include Elle’s plots in Figure 5.1d and 5.1e. Elle performs
constantly worse than our PL-2 and PL-1 checkers, including Cycle and SP versions. Elle’s
PSI checker is ignored since its functionality is not ensured.

For List3 histories with regard to increasing rates, Elle shows a different trend from
Cycle. Elle’s mechanism requires a complete search on the whole graph, which causes its
worse performance when the rate becomes higher (see Figures 5.3a-5.3b). When the rate is

56

5.6. Comparison with Other Checkers

(a) Checking SER (b) Checking SI

(c) Checking PSI (d) Checking PL-2

(e) Checking PL-1 (f) History Length vs. Collection time

Figure 5.8: Runtime for checking anti-patterns in the list-collection-time-nemesis
histories

57

5. EVALUATION

low, Elle is generally better than Cycle because of the smaller size of dependency graphs.
However, in Figure 5.3a, our SP checker still outperforms Elle in SER checking for low-rate
cases, due to its early stopping mechanism.

RQ3.2: SI checker (PolySI) PolySI is a recent checker that detects violations against
the SI level. As a representative solver-based checker, PolySI adopts the concept of BC-
polygraphs for isolation checking. At the beginning of graph construction, PolySI recovers
all the WR edges based on the assumption of unique writes (Assumption 1). Later, it enu-
merates version orders of objects, infers multiple dependency graphs by adding WW and
RW edges that are possible to occur, and then designs pruning conditions to remove im-
possible cases. Following this, the MonoSAT solver is applied to retrieve any possible total
order that is acyclic and does not violate the SI level.

PolySI suffers from the high complexities for creating BC-polygraphs, which inherently
causes worse performance than our checker that constructs only a single dependency graph,
as discussed in Section 2.5.2. This trend is seen in both Figures 5.8b and 5.3b. In Fig-
ure 5.8b, the runtime of PolySI quickly grows in a linear trend with a large slope, which
is outperformed by our SP and Cycle checkers. In Figure 5.3b, PolySI fluctuates while
maintaining a general linear trend, but our checkers still outperform PolySI, especially in
high-rate cases. PolySI’s mechanism does not essentially allow early stopping. It needs to
construct all graphs to ensure a large search space for the solver to take as input. Also, the
concept of an SMT solver has already included the idea of early stopping. Both two points
explain the worse performance in Figure 5.3b and the difficulty in further improving the
performance. In particular, PolySI claims it outperforms other state-of-the-art solver-based
checkers in SI checking, which, in contrast, foregrounds the high cost to ensure a large
search space by adhering to the black-box principle.

RQ3.3: alternative implementations with Neo4j As our proof-of-concept implemen-
tations can be further extended, Neo4j, as one of the most popular graph databases, can
replace ArangoDB as the foundation of our graph-based checker. We identify two algo-
rithms with ready implementations for cycle checking: the cycle checking algorithm in the
APOC library (Neo4j-APOC) and the path-based SCC checking algorithm (see Appendix
8) in the GDS library (Neo4j-GDS-SCC). Figures 5.1 and 5.3 report the performance of
these two Neo4j-based checkers.

In both figures, Neo4j-GDS-SCC performs consistently better than all the other check-
ers. This is because the Neo4j-GDS-SCC checker has a lower complexity for its path-based
SCC algorithm is an improvement from Tarjan’s algorithm. This ensures its checking time
is linear with a very low slope, which makes it close to a constant level.

The other checker, Neo4j-APOC, is generally close to but occasionally outperforms
ArangoDB-SP in checking time. Both checkers use shortest path algorithms based on BFS
and share the easiness and difficulty to find cycles in Figures 5.1a-5.1c and 5.3a-5.3c. How-
ever, in Figures 5.1d-5.1e and 5.3d-5.3e, Neo4j-APOC outperforms ArangoDB-SP in PL-2
and PL-1 checking. This is because PL-2 and PL-1 only require a subset of the dependency
edges. In this case, the APOC shortest path algorithm can be applied on subgraphs with

58

5.7. Summary of Results

part of edges reduced, while the ArangoDB SP algorithm has to complete its traversal on
the whole graph.

Compared with ArangoDB SP, Neo4j APOC mainly reduces graph density, and further
reduces the checking time. This example also gives an insight that multiple graph databases
may have different implementations for the same algorithm. It implies that we may use
another graph database to overcome difficulties found in the graph database currently being
used.

5.7 Summary of Results

In this chapter, we have addressed the three research questions proposed in Chapter 1 re-
garding the effectiveness, scalability, and comparison of our graph-based checker.

Effectiveness. In general, our checker is effective in both list and register histories. It is
effective in checking multiple types of anomalies and determining the correct isolation level
for the execution histories.

Scalability. Also, the runtime of cycle detection is scalable with two main factors and
three underlying factors in our checker. Behind the correlation with the two main factors
used in the Jepsen history (collection time and rate), the checkers are linear with three un-
derlying factors: history length, density, and contributing traversals. Both the Cycle and the
Pregel checkers show significant linear trends while the SP checker has more fluctuations.

The three versions of checkers have some drawbacks. The selection of the max depth
is important to the performance of the Cycle checker. The checker’s runtime increases
exponentially with increasing depths. The Pregel checker needs to do a complete traversal
on the whole graph and requires some setup to execute the algorithm itself, caused by the
BSP framework. The SP checker can quickly identify a cycle when the number of cycles is
large; however, when only a few cycles exist in the history, the SP checker tends to spend a
longer time traversing the graph and identifying one cycle.

As for additional factors, the nemesis and the number of sessions do not directly affect
the growth trends, while the maximum number of write events per object causes a logarith-
mic increase in the checker’s runtime.

Comparison. In comparison with other state-of-the-art checkers, our graph-based checker,
built on ArangoDB, has better performance than Elle and PolySI. The Cycle checker has a
similar performance to Elle in many cases, but in general, performs better than Elle when
the search space is reduced or the rate becomes high. The SP checker also performs bet-
ter than Elle in SER checking, where cycles are easier to find than at other levels. The
PolySI checker compromises its performance while adhering to the black-box principle and
inferring with a large search space.

Moreover, Neo4j can also be used to build a graph-based checker, which has a powerful
Neo4j-GDS-SCC checker that performs better than all other versions. The Neo4j-APOC
checker is close to the SP checker of ArangoDB in performance.

59

5. EVALUATION

5.8 Discussion

Underlying factors. In fact, the three underlying factors describe the difficulty to find
cycles and affect the checker’s performance in different ways. Table 5.5 shows the trends
related to the history length, density, and the number of contributing traversals. Overall,
both history length and density are positively correlated with the checker’s runtime, while
the number of vertices is negatively correlated with runtime. When history length and den-
sity increase, the size of the dependency graph increases by having more vertices or edges.
Therefore, in such cases, the runtime becomes longer. However, an increasing number of
contributing traversals actually executed during cycle detection is a signifying factor for
the occurrences of cycles. With a higher number of contributing traversals, it is easier to
detect a cycle, and the traversals do not continue beyond the step where a cycle is found.
Therefore, a higher number of contributing traversals actually reduces the difficulty to find
cycles and improves the performance by reducing the search space. However, Table 5.6
displays slightly different trends in List3 histories. For example, when the rate is at least 80,
the coefficient of the history length (L) becomes negative, marking a negative correlation
between the runtime and the increasing rates. In fact, the coefficient of L is not dominant
in this trend, with a high p-value that does not indicate significance. This implies that the
general trends of the three underlying factors may vary in a special data load.

Max depths. We have also found that the max depth of the Cycle checker has an ex-
ponential effect on the performance. Also, the interaction term ted is strongly significant.
Based on this finding, the value of max depth can make changes on the slope of trendlines
for collection time. It implies that with a larger depth, the runtime grows more quickly with
collection time.

Nemesis. Another finding is that the nemesis does not affect the original trends between
the checker’s runtime and the collection time. However, the existence of nemesis introduces
system faults and disturbs the difficulty to find cycles. We have found that cycles of longer
depths often exist in the histories with a nemesis. For histories without any nemesis, shorter
cycles are found more easily. In this thesis, we have made an assumption that the maxi-
mum depth of cycles is at most 4. However, in practice, when system faults often happen,
users may adjust the max depth of the Cycle checker to ensure its functionality in different
situations.

Variants of Cycle checker: CycleFilter and CycleRandom. We also consider the two
variants proposed in Section 4.1, CycleFilter, and CycleRandom. CycleFilter and Cy-
cleRandom perform much better than Cycle in SER checking, where cycles are easy to
find. For other levels, however, these two checkers have much worse performance than Cy-
cle. This is because the additional mechanism for early stopping also introduces new costs.
The filter-on-path checker requires comparison on the path, which involves operations on
the array and increases time complexity. Also, although randomization may increase the
chance of better performance, the CycleRandom does not make a breakthrough for the

60

5.8. Discussion

checker’s runtime when cycles are difficult to find. Therefore, we stick to the original ver-
sion of the Cycle checker and ignore the variants. We only included the performance of the
original version in the performance plots of this chapter.

Limitations. The experiment setting has its own limitations, mostly caused by the sys-
tems in use. The Jepsen history collector requires a self-defined generator to generate trans-
actions and submit them to the database under test. However, this generator needs to be
implemented in Clojure, which is the language used by Jepsen. As an example of the func-
tional programming paradigm, and also a part of the Jepsen framework, the generator needs
to be handcrafted and the debugging is often difficult for its users. This happens especially
when users need to implement new rules rather than directly use the examples provided by
Jepsen. In this thesis, we borrow the generators already implemented by Jepsen to gener-
ate our list and register histories. However, a new generator will be required if a different
format of histories is expected by users.

Also, our checker relies on WAL in collecting and checking register histories. However,
in the current development progress, WAL is only supported in the single-machine mode.
Developers claim that they will launch a new feature to implement the WAL collection in
cluster mode in 2024. It causes the limitation of our checker that it cannot collect the WAL
within a cluster at present. Therefore, we are not able to verify that our checker can success-
fully construct dependency graphs based on such histories. However, we have shown that
the difference of histories in the single-machine mode and the cluster mode lies in the type
of anomalies. This only affects the effectiveness rather than the performance of the checker.
For example, List1 has anomalies of lost updates, which are collected in the cluster mode
with sharding and replication. On the other hand, Reg1 does not have such anomalies. Then,
when receiving these two sets of histories as input, the checker needs sufficient specificity
to identify the correct isolation level. However, the procedures for checking anti-patterns
remain the same. Different types of histories do not change the effects of the three under-
lying factors: the history length, density, and the number of contributing traversals actually
executed to find cycles.

Furthermore, we did not manage to include more representative solver-based checkers.
Most checkers have designed ways of generating new benchmarks tailored to their systems.
However, it does not necessarily support our history format. For example, we have encoun-
tered difficulties in converting our Jepsen histories to the format that can be received by
Cobra [60] or DBCop [20]. Viper [69] claims it handles Jepsen histories. However, Viper
does not show sufficient effectiveness in checking our List1 histories. The reason behind
the issue is not clear, either because of the format conversion or because of the internal
mechanism of the checker. PolySI is the one with good support to handle Jepsen histories.
However, it may still break the list histories due to its flawed history converter. There-
fore, we designed our own history converter to transform the Jepsen format to PolySI’s text
format, in order to shape the correct trend for PolySI’s execution performance.

Complexities. Another finding is that although the theoretical growth trend is polynomial
for the Cycle checker with respect to the number of vertices, most plots in this chapter show

61

5. EVALUATION

linear trends. We do not reject the claim that our checker is possible to achieve a polyno-
mial trend when the collection time or rate increases to even higher. However, since we
have varied the parameters and the collected histories are already enough to detect isolation
anomalies, which proves effectiveness, we still claim that the performance of our graph-
based checkers is linear on our histories, especially with regard to the three underlying
factors.

Summary. Overall, our experiments are successful in presenting the effectiveness and
scalability of our graph-based checker. Our experiments can be further strengthened when
more generators are designed, WAL is supported on clusters, or more format-friendly solver-
based checkers are present.

62

Chapter 6

Related Work

In this chapter, we present related work about the development history of isolation level
definitions, the current trend of graph databases, and a summary of state-of-the-art isolation
level checkers.

6.1 Isolation Levels: A Brief History

The idea of isolation level hierarchy was first introduced under the name Degrees of Con-
sistency with an accompanying locking protocol [35]. This work informally defined four
degrees (Degrees 0-3). Each degree specified several conceptual phenomena that should not
be seen by the transactions; also, it clearly stated how developers should set the database
locks to achieve each degree. This hierarchy is preventative [13]: it defines each degree of
consistency by disallowing a set of phenomena, especially when the degree goes weaker.
This preventative approach is the foundation of the later progress, for example, the ANSI
standard.

The ANSI/ISO SQL-92 specifications extended the previous degrees to the four iso-
lation levels of SQL transactions: READ UNCOMMITTED, READ COMMITTED, RE-
PEATABLE READ, and SERIALIZABLE. This new standard aimed to be implementation-
independent and more inclusive than just locking-based implementations. However, the
standard proposed conceptual phenomena similar to the previous work, and a subsequent
paper titled A Critique of ANSI SQL Isolation Levels [19] pointed out that the definitions of
the four levels from the ANSI standard were essentially identical to the previous locking-
based definitions. [19] further explored and found that it would be difficult for databases
without locking mechanisms to implement such definitions, and therefore the ANSI stan-
dard failed to achieve its goal of implementation-independence. Meanwhile, the paper in-
troduced some formalism, restating the previous conceptual phenomena into lower-level
orderings of operations. It also proposed several adjustments against potential problems of
the ANSI standard. For example, the paper highlighted the drawbacks of the REPEATABLE
READ level for its broad range and ambiguous naming. Two additional levels, Cursor Sta-
bility and Snapshot Isolation were mentioned as examples to fill the gap between the two
levels: READ COMMITTED and REPEATABLE READ. [19] proposed a rich set of phe-

63

6. RELATED WORK

nomena and the major four of them can be expressed in the following order of events.

P0: w1[x] ... w2[x] ... (c1 or a1) (Dirty Write)
P1: w1[x] ... r2[x] ... (c1 or a1) (Dirty Read)
P2: r1[x] ... w2[x] ... (c1 or a1) (Fuzzy Read / Non-Repeatable Read)
P3: r1[P] ... w2[y in P] (c1 or a1) (Phantom)

[19] also proposed other phenomena, examples of which included the following.

P4: r1[x] ... w2[x] ... w1[x] ... c1 (Lost Update)
P4C: rc1[x] ... w2[x] ... w1[x] ... c1 (Lost Update - Cursor Version)
A5A: r1[x] ... w2[x] ... w2[y] ... c2 ... r1[y] ... (c1 or a1) (Read Skew)
A5B: r1[x] ... r2[y] ... w1[y] ... w2[x] ... (c1 and c2 occur) (Write Skew)

These shorthand notations of events shape the concurrency between two transactions T1
and T2. For example, w1[x] means an event of the transaction T1 writes to object x; r2[x]
means an event of T2 reads from object x. Especially, c1 or a1 means T1 is committed or
aborted, respectively. Some notations are used only within a certain phenomenon, such as
P (predicate) in Phantom and rc (cursor version of read) in Lost Update - Cursor Version.
More details can be found in [19].

Consistency Level = Locking Isolation Level Prevented Phenomena
Degree 0 none
Degree 1 = Locking READ UNCOMMITTED P0
Degree 2 = Locking READ COMITTED P0, P1
Cursor Stability P0, P1, P4C
Locking REPEATABLE READ P0, P1, P2, P4, P4C, A5A, A5B
Snapshot Isolation P0, P1, P2, P4, P4C, A5A
Degree 3 = Locking SERIALIZABILITY P0, P1, P2, P3, P4, P4C, A5A, A5B

Table 6.1: Isolation Levels and Prevented Anti-Patterns [19]

These phenomena served as an extension of the ANSI standard that covers only P1, P2,
and P3. The preventative approach was gradually completed and more weaker isolation
levels could be described by preventing a certain subset of phenomena (shown in 6.1). In
addition, researchers began their exploration of optimistic and multi-version systems be-
sides the pessimistic locking mechanism. [19] pointed out Snapshot Isolation as a form of
multi-version concurrency control (MVCC): it is an optimistic way of control that allows
multiple versions to be observed at the same time. For example, in H1, multiple objects (x
and y) have different versions, which is not the case only a single value and a single object
are observed.

H1: r1[x0 = 5] w1[x1 = 1] r2[x0 = 5] r2[y0 = 5] c2 r1[y0 = 5] w1[y1 = 9] c1

64

6.2. The Trend of Graph Databases

However, even with this extension of the ANSI standard, the research community did
not substantially upgrade the definition framework, since the pessimistic locking mech-
anism remained to be an essential part of the preventative definitions, and therefore the
framework was not implementation-independent. Furthermore, the preventative approach
tends to be “overly restrictive”, because any phenomenon that fell into the target category
would be prevented in a pessimistic way, and it was ignored that certain phenomena disal-
lowed by the system may still be valid in some use cases [13].

To address the weaknesses brought by the locking mechanism, Adya et al. extended
the ANSI standard by formulating isolation levels based on the idea of dependency graphs
[13]. A dependency graph maintains the relations between transactions with vertices and
edges, and also reshapes the phenomena from sequential orderings to subgraphs, usually
containing a certain type of cycles. Accordingly, new isolation levels were defined in [13]
based on subgraphs and cycles. As the construction and interpretation of dependency graphs
is not relevant of the locking mechanism, the Adya’s formalism achieves implementation-
independence, and the definitions can be generalized to both pessimistic and optimistic (and
MVCC) cases.

In a more formal way, Cerone et al. proposed an axiomatic framework to define isolation
levels and phenomena on an abstract level [24] and later proved its equivalence to Adya’s
definitions [25]. Cerone et al.’s formalism abstracts Adya’s graph visualization to algebraic
definitions which are rigorous, uniform, and declarative.

6.2 The Trend of Graph Databases

Graph databases have gained popularity and are increasingly used in a variety of applica-
tions. The article [54] presented by the academic communities of computer systems and
data management points out the nature of graphs as “unifying abstractions that can leverage
interconnectedness”. This means that relationships between data records are just as impor-
tant as the records themselves, with edges between vertices being highly valued in graph
databases as “the first-class citizens”. Additionally, compared with relation models, the
difference is that graph databases have native graph models. They also allow for more flex-
ibility in defining schemas, by supporting all or some of the schema-last, schema-flexible,
or schema-less features [15]. It provides more flexibility to incorporate new features, es-
pecially as agile practices become more prevalent in industries [52]. By utilizing graphs
for analysis, businesses can gain novel insights and statistics about edges, paths, and cy-
cles, thereby improving their operations. Because of these advantages, graph databases are
increasingly being used in industries that place a high value on the connections between
data points, such as healthcare knowledge graphs [55], fraud analytics in finance [43] [36],
and supply chain management in logistics [37], among others. Furthermore, Gartner, Inc.
[12] predicts that by 2025, 80% of graph technologies will be utilized in the field of data
analytics in enterprises and industries.

As academia and industries maintain their interest, graph databases are exploring new
possibilities to expand their range of use cases, particularly in this era where the usage of
machine learning and artificial intelligence (ML/AI) has proven to be effective in solving

65

6. RELATED WORK

problems [46] [68]. The article [54] defines the future development possibilities in three
dimensions: abstractions (data models, query formalisms, and graph algebra), ecosystems
(standardization, scalability, and streaming), and performance (benchmarks, specialization
vs. portability, and archiving).

Being part of the trends, the emergence and continuous growth of distributed graph
databases have become an underlying assumption for big graphs with high data volume
and velocity. Also, the community is expecting a standardized approach for big graph
processing systems, which involves a distributed reference architecture. A distributed graph
database extends the capabilities of a graph database by allowing data to be partitioned and
distributed across multiple nodes, enabling horizontal scalability while maintaining strong
internal consistency (or high availability) and fault tolerance. Data can be partitioned based
on node properties or relationships, and distributed queries can be executed in parallel across
the nodes to improve performance. Additionally, a distributed graph database can provide
replication and failover capabilities to ensure data availability and reliability.

6.3 Isolation Level Checking

In Section 2.5, we have stated the black-box isolation checking problem. In this section,
we divide isolation level checkers into two main categories: Elle-style checkers and solver-
based checkers. Elle-style checkers use a single dependency graph to identify any anomaly
that leads to the violation of a certain isolation level, while solver-based checkers combine
BC-polygraphs (or occasionally other graph structures) and SAT/SMT solvers to filter a
total order that does not cause anomalies. Also, we give an overview of various isolation
checkers that are representative of these two categories.

6.3.1 Solver-Based Checkers: Linearizability, Serializability, and SI
checking

The solver-based approach often involves combinatorial enumeration. Due to the intractabil-
ity caused by NP-completeness, the traditional way of checking linearizability (e.g., Knos-
sos [40] and Porcupine [16]) [65, 45] or serializability (e.g., Gretchen [41]) [50] followed
the solver-based approach and caused a combinatorial explosion of the state space. Lin-
earizability is equivalent to strict serializability if each event is viewed as an independent
transaction. In this setting, linearizability requires a total order on the events shown in
the history. Knossos [40] is a black-box isolation checker for linearizability, which adopts
the checking method by [65] and the optimization by [45]. Knossos uses enumeration to
search for one valid sequence of events from all possible sequences, using simple linear
data structures or tree-based structures. However, both approaches require enumeration and
are limited by NP-completeness. Another linearizability checker, Porcupine ([16]), also
suffers the NP-complete nature of the linearizability checking problem. As a serializabil-
ity checker, Gretchen [41] follows Cerone’s specifications [24] and encodes the execution
histories as constraints. After that, Gretchen uses Gecode [62] to explore a valid total order
with the encoded constraints.

66

6.3. Isolation Level Checking

In addition to Gretchen [41], many other solver-based checkers are also applicable to
serializability checking [57, 60, 20]. The checker [57] uses SMT-based and dynamic partial
order reduction-based (DPOR-based) approaches to predict whether the history contains
violations against serializability. Cobra [60] and DBCop [20] design different graph struc-
tures and combine the usage of the MonoSAT solver to check anomalies of serializability.
Cobra uses the polygraph structure. It enumerates all possible dependency graphs, stacks
the graphs together, and searches possibilities without anomalies, in order to generate a
valid total order from the polygraph that satisfies serializability. DBCop, on the other hand,
use undirected graphs and history transforming, to check serializability within polynomial
time, with the assumption that the number of sessions is fixed.

In addition to serializability checking, with solver-based checkers, snapshot isolation
(SI) is representative as it has a clear cyclic characteristic, and it is more complex than seri-
alizability checking. DBCop [20] proposes a way to create an auxiliary history to reduce the
SI checking to serializability checking, which is still polynomial time with a fixed number
of sessions. By extending Cobra, Viper [69] continues using polygraphs and SMT solvers
with new constraints designed for SI checking. To the best of our knowledge, PolySI [38]
has the best performance among solver-based SI checkers. It inherits Cobra’s data struc-
tures and proposes refined pruning conditions to ensure a linear complexity for SI checking.
Overall, the NP-completeness and its reduction are challenging for serializability and SI
checking with solver-based checkers.

6.3.2 Elle-Style Checkers

Elle-style checkers (e.g., [42], [26]), on the other hand, directly infer version orders from
known information and construct dependency edges within a single dependency graph. In
this way, the combinatorial enumeration is reduced, and the checking is reduced from NP-
completeness to polynomial complexity. This complexity applies to the checking of all
levels because of the mechanism of Elle-style checkers. For example, for any level, Elle
executes Tarjan’s SCC algorithm to retrieve all the SCCs present in the dependency graph.
Then, Elle determines the isolation level not violated by the execution histories based on
the SCC results. This mechanism ensures that the execution procedures are the same for all
isolation levels. It implies that the Elle-style checkers are stable across different levels, but
on the other hand, do not allow level-specific optimizations.

6.3.3 Checkers of PSI and Other Levels

The checking of other isolation levels is less explored in the literature. Elle does not com-
pletely fulfill the goal of checking PSI and other levels specified by [24]. Some solver-based
checkers claim that they cannot be directly transferred to isolation levels (e.g., PSI) [69]. In
this thesis, we have filled in the gap for the checking of PSI, PL-2, and PL-1 levels.

67

Chapter 7

Conclusions and Future Work

In this chapter, we conclude our thesis with the conclusions. We successfully designed a
novel isolation checker in ArangoDB. Also, we did not find any anti-patterns that violate
ArangoDB’s isolation level guarantee, LOCAL SNAPSHOT ISOLATION, by applying our
checker to both single-instance and cluster modes of ArangoDB. Moreover, we state other
contributions related to graph queries, in-database implementation, experimental evaluation,
and smart visualization. Finally, we describe the potential future work of the thesis.

7.1 Conclusions

Through this thesis, we designed and evaluated a novel isolation level checker with an
implementation on top of the ArangoDB graph database. We confirmed the effectiveness
of the checker by comparing the checking results with Elle on list histories. Furthermore,
we utilized a series of graph queries for efficient isolation checking, and our checker is
comparable with other state-of-the-art checkers in terms of performance. Also, we proposed
a way to collect benchmarking datasets along with WAL, which provides more version
information than traditional black-box isolation checkers. We also proposed a novel way to
visualize the detected graph-based anti-patterns directly within graph databases.

In general, ArangoDB achieves its isolation level guarantee of LOCAL SNAPSHOT
ISOLATION. In the single-instance mode, ArangoDB achieves snapshot isolation (SI). In
the cluster mode, it still achieves SI when sharding and replication are disabled; otherwise,
ArangoDB achieves PL-2 level when sharding and replication are enabled.

7.2 Contributions

We extended the use cases of graph database queries to isolation level checking and con-
firmed its feasibility. In Chapter 4, the graph traversal and K shortest path queries are
suitable for the implementation of anti-pattern detection across all levels. ArangoDB also
provides a Pregel SCC algorithm, which is only applicable to serializability checking.

We provided an in-database implementation, with a history collection stage in ArangoDB
as a distributed database, and a cycle detection stage in ArangoDB as a graph database.

69

7. CONCLUSIONS AND FUTURE WORK

The graph construction stage in between is also highly interactive with ArangoDB as a graph
database. The whole workflow has the potential to be integrated as a fully in-database im-
plementation.

We conducted experiments to extensively evaluate the efficiency and scalability of our
graph-based checker. In Section 5.5, we found that the two main factors used in the Jepsen
history collector, collection time and rate, were correlated with the execution time but the
relationship was not consistent in all cases. We further analyzed three underlying factors
(history length, graph density, and the number of contributing traversals) to establish a linear
development trend between the execution time of the checker and the three factors. We also
investigated two additional factors, the number of sessions and the maximum number of
write operations per object. The number of sessions did not directly affect the runtime,
while the maximum number of write operations had a logarithmic effect on the runtime
based on our analysis. Furthermore, the nemesis did not change the development trend with
increasing collection times. However, the maximum depth of the Cycle checker had an
exponential effect on the runtime, which also affected the slope of the linearity between the
checker runtime and history collection time.

We also proposed a novel way to smartly visualize the detected graph anti-patterns in
graph databases. In Section 4.4, ArangoDB was able to present the vertices but missed
edge information in its Web Interface. Neo4j Browser User Interface, on the other hand,
provided sufficient information for us to analyze the anti-pattern caused by the history.
Furthermore, graph databases bridge the data and information with a rich ecosystem of
business intelligence and analytics software products. This further empowered the smart
visualization process.

7.3 Future work

In this thesis, we have focused on two types of histories: list histories and register histories.
Our graph-based checker can be further extended to other types of histories. For exam-
ple, [64] proposes various workloads and read/write operation combinations in the context
of graphs, which can be applied to our checker. However, these workloads usually have
different formats in their execution histories. Some align with the format of our list or reg-
ister histories in the thesis, for example, as shown in Listing 1.18 in [64]. However, if the
execution histories have a different format, then we need to create new strategies of graph
construction (especially getEvtDepEdges) to successfully convert the histories to the graph
structure. We also require a self-defined, adaptable generator to create such workloads.

Furthermore, we have migrated our checker from ArangoDB to Neo4j. This process
can be further extended to another candidate graph database. However, since each graph
database supports a different set of operations when using a new graph database, the old
queries in the previous database may not have their counterparts in the new database. There-
fore, we should find and customize available queries to build the new checker.

As we have presented an in-database implementation, the graph-based checker can be
fully migrated within distributed graph databases. The graph database community may de-
sign a new mode in ArangoDB for the purpose of internal verification. This new mode

70

7.3. Future work

randomly generates concurrent transactions, maintains a dependency graph, and performs
cycle detection all within ArangoDB. The database can also retrieve the WAL internally to
reduce I/O costs. This mode can also start the verification process in multiple epochs and
iterations. Different from the implementation presented in the thesis, the process of depen-
dency graph construction can also be embedded in the database system, in the language that
is used to build the system (e.g. C++ for ArangoDB). In this way, the verification becomes
fully automated, and no external software is required.

As an isolation checker with a practical implementation, we can also extend the usage
to other databases, and other isolation levels. The flexibility of graph queries allows us
to cover more cyclic anti-patterns without effort. It also allows refinement of the isolation
hierarchy, in order to better differentiate the levels with a relatively large gap (e.g., between
PL-2 and PSI). Furthermore, we can explore non-graph anomalies as well as the way to use
AQL queries or simple database operations to detect such anomalies.

71

Bibliography

[1] ArangoDB Documentation v3.9. . URL https://www.arangodb.com/docs/3.9/.

[2] ArangoDB. . URL https://www.arangodb.com/.

[3] Graphviz. URL https://graphviz.org/.

[4] Memgraph. URL https://memgraph.com/.

[5] Neo4j. URL https://neo4j.com/.

[6] Using Cytoscape with ArangoDB. . URL https://www.arangodb.com/learn/gra
phs/using-arangodb-with-cytoscape/.

[7] Visualizing ArangoDB with KeyLines. . URL https://cambridge-intelligence.
com/keylines/arangodb/.

[8] ANSI X3.135-1992, American National Standard for Information Systems - Database
Language - SQL. Nov 1992.

[9] Introducing Gelly: Graph Processing with Apache Flink. Aug 2015. URL
https://flink.apache.org/2015/08/24/introducing-gelly-graph-proce
ssing-with-apache-flink/.

[10] Transaction Isolation Levels. Jun 2023. URL https://dev.mysql.com/doc/refm
an/8.0/en/innodb-transaction-isolation-levels.html.

[11] Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database System Design:
CAP is Only Part of the Story, volume 45, pages 37–42. 2012. doi: 10.1109/MC.2012.
33.

[12] Merv Adrian and Afraz Jaffri. Market guide for graph database management systems.
Aug 2022. URL https://www.gartner.com/en/documents/4018220.

73

https://www.arangodb.com/docs/3.9/
https://www.arangodb.com/
https://graphviz.org/
https://memgraph.com/
https://neo4j.com/
https://www.arangodb.com/learn/graphs/using-arangodb-with-cytoscape/
https://www.arangodb.com/learn/graphs/using-arangodb-with-cytoscape/
https://cambridge-intelligence.com/keylines/arangodb/
https://cambridge-intelligence.com/keylines/arangodb/
https://flink.apache.org/2015/08/24/introducing-gelly-graph-processing-with-apache-flink/
https://flink.apache.org/2015/08/24/introducing-gelly-graph-processing-with-apache-flink/
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://www.gartner.com/en/documents/4018220

BIBLIOGRAPHY

[13] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level def-
initions. In David B. Lomet and Gerhard Weikum, editors, Proceedings of the 16th
International Conference on Data Engineering, San Diego, California, USA, Febru-
ary 28 - March 3, 2000, pages 67–78. IEEE Computer Society, 2000. doi: 10.1109/IC
DE.2000.839388. URL https://doi.org/10.1109/ICDE.2000.839388.

[14] Renzo Angles. The property graph database model. In AMW, volume 2100 of CEUR
Workshop Proceedings. CEUR-WS.org, 2018.

[15] Renzo Angles, Angela Bonifati, and et al. PG-Schema: Schemas for Property Graphs,
volume abs/2211.10962. 2022.

[16] Anish Athalye. Porcupine. 2017-2018. https://github.com/anishathalye/porc
upine.

[17] Ching Avery. Giraph: Large-scale graph processing infrastructure on hadoop, vol-
ume 11, pages 5–9. 2011.

[18] Bradley R. Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal,
Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Michael Personick, K. Jeric Rajan,
Simone Rondelli, Alexander Ryazanov, Michael Schmidt, Kunal Sengupta, Bryan B.
Thompson, Divij Vaidya, and Shawn Xiong Wang. Amazon neptune: Graph data
management in the cloud. In International Workshop on the Semantic Web, 2018.

[19] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’95, page
1–10, New York, NY, USA, 1995. Association for Computing Machinery. ISBN
0897917316. doi: 10.1145/223784.223785.

[20] Ranadeep Biswas and Constantin Enea. On the complexity of checking transactional
consistency. Proc. ACM Program. Lang., 3(OOPSLA):165:1–165:28, 2019. doi: 10.
1145/3360591. URL https://doi.org/10.1145/3360591.

[21] Angela Bonifati and Stefania Dumbrava. Graph Queries: From Theory to Practice,
volume 47. 12 2018. doi: 10.1145/3335409.3335411.

[22] Angela Bonifati, G.H.L. Fletcher, Hannes Voigt, and N. Yakovets. Querying graphs.
Morgan Claypool Publishers, 2018. doi: 10.2200/S00873ED1V01Y201808DTM051.

[23] Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, page
55–64, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450339643. doi: 10.1145/2933057.2933096.

[24] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transac-
tional consistency models with atomic visibility. In Luca Aceto and David de Frutos-
Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR

74

https://doi.org/10.1109/ICDE.2000.839388
https://github.com/anishathalye/porcupine
https://github.com/anishathalye/porcupine
https://doi.org/10.1145/3360591

Bibliography

2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 58–71. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.CONCUR.
2015.58. URL https://doi.org/10.4230/LIPIcs.CONCUR.2015.58.

[25] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic Laws for Weak
Consistency. 2017.

[26] Jack Clark. Verifying Serializability Protocols With Version Order Recovery. ETH
Zurich, Zurich, 2021. doi: 10.3929/ethz-b-000507577.

[27] Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms, page 573–574. The MIT Press, 4th edition, 2022.

[28] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is believing:
A client-centric specification of database isolation. In Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, PODC ’17, page 73–82, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349925. doi:
10.1145/3087801.3087802. URL https://doi.org/10.1145/3087801.3087802.

[29] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. TigerGraph: A Native MPP Graph
Database. 2019.

[30] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall series in automatic
computation. Prentice-Hall, 1976. ISBN 0-13-215871-X.

[31] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. RocksDB: Evolu-
tion of Development Priorities in a Key-Value Store Serving Large-Scale Applications,
volume 17. Association for Computing Machinery, New York, NY, USA, Oct 2021.
doi: 10.1145/3483840.

[32] Diogo Fernandes and Jorge Bernardino. Graph databases comparison: Allegrograph,
arangodb, infinitegraph, neo4j, and orientdb. In Proceedings of the 7th Interna-
tional Conference on Data Science, Technology and Applications, DATA 2018, page
373–380, Setubal, PRT, 2018. SCITEPRESS - Science and Technology Publications,
Lda. ISBN 9789897583186. doi: 10.5220/0006910203730380.

[33] Hal Gabow. History of Path-based DFS for Strong Components. URL https://home
.cs.colorado.edu/˜hal/Papers/DFS/pbDFShistory.html.

[34] Harold N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents, volume 74, pages 107–114. 2000. doi: https://doi.org/10.1016/S0020-0190(00)
00051-X.

[35] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of Locks and
Degrees of Consistency in a Shared Data Base. Elsevier North-Holland, Amsterdam,
1976.

75

https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/3087801.3087802
https://home.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html
https://home.cs.colorado.edu/~hal/Papers/DFS/pbDFShistory.html

BIBLIOGRAPHY

[36] Amy Hodler. Financial Fraud Detection with Graph Data Science - Neo4j. Apr
2020. URL https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-Financi
al-Fraud-Detection-GDS-white-paper-EN-US.pdf.

[37] Young-Chae Hong and Jing Chen. Graph database to enhance supply chain resilience
for industry 4.0, volume 15, page 1–19. 2021. doi: 10.4018/ijisscm.2022010104.

[38] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David A. Basin, Haixiang Li, and
Anqun Pan. Efficient black-box checking of snapshot isolation in databases. Proc.
VLDB Endow., 16(6):1264–1276, 2023. URL https://www.vldb.org/pvldb/vol
16/p1264-wei.pdf.

[39] Peter Jipsen, Chris Brink, and Gunther Schmidt. Background Material, pages 1–
21. Springer Vienna, Vienna, 1997. ISBN 978-3-7091-6510-2. doi: 10.1007/
978-3-7091-6510-2 1.

[40] Kyle Kingsbury. Knossos. 2013-2023. https://github.com/jepsen-io/knosso
s/.

[41] Kyle Kingsbury. Gretchen. 2016. https://github.com/aphyr/gretchen.

[42] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isolation anomalies from experimen-
tal observations. volume 14, page 268–280. VLDB Endowment, Nov 2020. doi: 10.
14778/3430915.3430918. URL https://doi.org/10.14778/3430915.3430918.

[43] E. Kurshan, H. Shen, and H. Yu. Financial Crime Fraud Detection Using Graph
Computing: Application Considerations Outlook. 2021.

[44] Kit Patella Kyle Kingsbury. Jepsen. 2013-2023. http://jepsen.io/.

[45] Gavin Lowe. Testing for linearizability. Concurrency and Computation: Practice and
Experience, 29, 2017.

[46] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong,
and Leman Akoglu. A Comprehensive Survey on Graph Anomaly Detection with Deep
Learning, pages 1–1. Institute of Electrical and Electronics Engineers (IEEE), 2021.
doi: 10.1109/tkde.2021.3118815.

[47] David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an object-
oriented dbms. In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA ’86, page 472–482, New York, NY, USA,
1986. Association for Computing Machinery. ISBN 0897912047. doi: 10.1145/28697.
28746. URL https://doi.org/10.1145/28697.28746.

[48] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’10, page 135–146, New York, NY,

76

https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-Financial-Fraud-Detection-GDS-white-paper-EN-US.pdf
https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-Financial-Fraud-Detection-GDS-white-paper-EN-US.pdf
https://www.vldb.org/pvldb/vol16/p1264-wei.pdf
https://www.vldb.org/pvldb/vol16/p1264-wei.pdf
https://github.com/jepsen-io/knossos/
https://github.com/jepsen-io/knossos/
https://github.com/aphyr/gretchen
https://doi.org/10.14778/3430915.3430918
http://jepsen.io/
https://doi.org/10.1145/28697.28746

Bibliography

USA, 2010. Association for Computing Machinery. ISBN 9781450300322. doi:
10.1145/1807167.1807184.

[49] Konstanitnos Mavrogiorgos, Athanasios Kiourtis, Argyro Mavrogiorgou, and Dimos-
thenis Kyriazis. A comparative study of mongodb, arangodb and couchdb for big data
storage. In Proceedings of the 2021 5th International Conference on Cloud and Big
Data Computing, ICCBDC ’21, page 8–14, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450390408. doi: 10.1145/3481646.3481648.

[50] Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, oct 1979. ISSN 0004-5411. doi: 10.1145/322154.322158. URL
https://doi.org/10.1145/322154.322158.

[51] Daniel Ritter, Luigi Dell’Aquila, Andrii Lomakin, and Emanuele Tagliaferri. Ori-
entdb: A nosql, open source MMDMS. In Proceedings of the The British International
Conference on Databases 2021, London, United Kingdom, March 28, 2022, volume
3163 of CEUR Workshop Proceedings, pages 10–19. CEUR-WS.org, 2021.

[52] Ian Robinson, Emil Eifrem, and James Webber. Graph databases: New opportunities
for connected data. O’Reilly Media, 2015.

[53] Rodrigo Rocha and Bhalchandra Thatte. Distributed cycle detection in large-scale
sparse graphs. Aug 2015. doi: 10.13140/RG.2.1.1233.8640.

[54] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, and the computer sys-
tems and data management communities. The Future is Big Graphs: A Community
View on Graph Processing Systems, volume 64, page 62–71. Association for Comput-
ing Machinery, New York, NY, USA, Aug 2021. doi: 10.1145/3434642.

[55] Jero Schäfer, Ming Tang, Danny Luu, Anke Bergmann, and Lena Wiese. Graph4Med:
a web application and a graph database for visualizing and analyzing medical
databases, volume 23. Dec 2022. doi: 10.1186/s12859-022-05092-0.

[56] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis,
volume 7, pages 67–72. 1981. doi: https://doi.org/10.1016/0898-1221(81)90008-0.

[57] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. Predicting serializability
violations: Smt-based search vs. dpor-based search. In Kerstin Eder, João Lourenço,
and Onn Shehory, editors, Hardware and Software: Verification and Testing - 7th
International Haifa Verification Conference, HVC 2011, Haifa, Israel, December 6-8,
2011, Revised Selected Papers, volume 7261 of Lecture Notes in Computer Science,
pages 95–114. Springer, 2011. doi: 10.1007/978-3-642-34188-5\ 11. URL https:
//doi.org/10.1007/978-3-642-34188-5_11.

[58] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional stor-
age for geo-replicated systems. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, page 385–400, New York, NY,

77

https://doi.org/10.1145/322154.322158
https://doi.org/10.1007/978-3-642-34188-5_11
https://doi.org/10.1007/978-3-642-34188-5_11

BIBLIOGRAPHY

USA, 2011. Association for Computing Machinery. ISBN 9781450309776. doi:
10.1145/2043556.2043592.

[59] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. The ldbc social network benchmark:
Business intelligence workload. Proc. VLDB Endow., 16(4):877–890, dec 2022. ISSN
2150-8097. doi: 10.14778/3574245.3574270. URL https://doi.org/10.14778/
3574245.3574270.

[60] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. Cobra: Making trans-
actional key-value stores verifiably serializable. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 63–80. USENIX Association, 2020. URL https://www.usenix.org/c
onference/osdi20/presentation/tan.

[61] Robert Tarjan. Depth-First Search and Linear Graph Algorithms, volume 1, pages
146–160. 1972. doi: 10.1137/0201010.

[62] Gecode Team. Gecode: Generic Constraint Development Environment. 2005. http:
//www.gecode.org.

[63] Leslie G. Valiant. A Bridging Model for Parallel Computation, volume 33, page
103–111. Association for Computing Machinery, New York, NY, USA, Aug 1990.
doi: 10.1145/79173.79181.

[64] Jack Waudby, Benjamin A. Steer, Karim Karimov, József Marton, Peter A. Boncz,
and Gábor Szárnyas. Towards testing ACID compliance in the LDBC social network
benchmark. In Raghunath Nambiar and Meikel Poess, editors, Performance Evalu-
ation and Benchmarking - 12th TPC Technology Conference, TPCTC 2020, Tokyo,
Japan, August 31, 2020, Revised Selected Papers, volume 12752 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2020. doi: 10.1007/978-3-030-84924-5\ 1.
URL https://doi.org/10.1007/978-3-030-84924-5_1.

[65] J.M. Wing and C. Gong. Testing and verifying concurrent objects. Journal of Parallel
and Distributed Computing, 17(1):164–182, 1993. ISSN 0743-7315. doi: https://do
i.org/10.1006/jpdc.1993.1015. URL https://www.sciencedirect.com/science/
article/pii/S0743731583710154.

[66] Reynold S. Xin, Daniel Crankshaw, Ankur Dave, Joseph E. Gonzalez, Michael J.
Franklin, and Ion Stoica. GraphX: Unifying Data-Parallel and Graph-Parallel Ana-
lytics. 2014.

[67] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel algo-
rithms for graph connectivity problems with performance guarantees. volume 7, page
1821–1832. VLDB Endowment, Oct 2014. doi: 10.14778/2733085.2733089.

78

https://doi.org/10.14778/3574245.3574270
https://doi.org/10.14778/3574245.3574270
https://www.usenix.org/conference/osdi20/presentation/tan
https://www.usenix.org/conference/osdi20/presentation/tan
http://www.gecode.org
http://www.gecode.org
https://doi.org/10.1007/978-3-030-84924-5_1
https://www.sciencedirect.com/science/article/pii/S0743731583710154
https://www.sciencedirect.com/science/article/pii/S0743731583710154

Bibliography

[68] Hang Yin, Zitao Zhang, Zhurong Wang, Yilmazcan Ozyurt, Weiming Liang, Wenyu
Dong, Yang Zhao, and Yinan Shan. Behavioral graph fraud detection in E-commerce.
2022.

[69] Jian Zhang, Ye Ji, Shuai Mu, and Cheng Tan. Viper: A fast snapshot isolation
checker. In Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fedorova, and
Dushyanth Narayanan, editors, Proceedings of the Eighteenth European Conference
on Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023, pages 654–671.
ACM, 2023. doi: 10.1145/3552326.3567492. URL https://doi.org/10.1145/
3552326.3567492.

79

https://doi.org/10.1145/3552326.3567492
https://doi.org/10.1145/3552326.3567492

Appendix A

An Overview of ArangoDB v3.9

In this thesis, we have selected ArangoDB, which is both a distributed database and graph
database, to be both the database under test and the graph database used for cycle detec-
tion. ArangoDB is a prime example of an open-source, multi-model database that supports
multiple data models, including key-value pairs, JSON documents, and graphs. It is a flexi-
ble, adaptable, and scalable database system that can handle complex and diverse use cases,
especially those related to graphs. In this appendix, we present an overview of ArangoDB
version 3.9 (Community Edition), including its concepts, architecture, and background.

A.1 Data Model

If ArangoDB is perceived as a general key-value storage, data is organized in a hierarchy
consisting of databases, collections, and documents. A database in ArangoDB is the top-
level container that stores zero or more collections. Each database has its own security
settings, users, and permissions. There may exist one or more databases, with one default
database system that cannot be dropped.

The other two concepts lower in the hierarchy, collections and documents, are similar
to tables and rows in the relational database terminologies, respectively. A collection is
a group of zero or more documents and is uniquely identified by its name. Besides the
document collection, edges can also be stored in a collection and such a collection is called
an edge collection. Within a collection in ArangoDB, a document is a single record that
is typically structured as a JSON-like object, which can include nested objects and arrays.
Just like the rows in relational databases, a document has its attribute keys and values.
However, ArangoDB differs from relational databases in that it is schema-less, meaning
that it does not require the schema of a collection to be pre-defined and strictly adhered
to; in contrast, ArangoDB permits documents with different attributes to be present in the
same collection. A document has at least three attributes (id, key and rev) that serve as
identifiers, and zero or more other attributes that store the data. The value (field) of the key
attribute is called the document key, which is a string value specified by the user when the
document is newly inserted into the collection. Every document is required to have a key.
In some cases where the user decides not to assign a key for a document, an automatically

81

A. AN OVERVIEW OF ARANGODB V3.9

generated key will be attached to that document. The id field is the document handle in the
form of “collection name/document key” that serves as a unique identifier of the document
across the database. The rev field is the document revision that specifies the versioning of
a document and is maintained by ArangoDB automatically.

Based on the general data model hierarchy, the graph structure in ArangoDB is defined
with a combination of document collections and edge collections, where the two types of
collections contain the vertices and edges of the graph, respectively. In the edge collection,
each edge is directed and identified by two vertices marking the start and the end of that
edge. The document handles of the two vertices are stored in the from and to attributes of
the edge, and the direction of the edge is from→ to. In some rare cases, two edges of one
graph can be used as vertices to form a new edge of another “edge” graph.

A.2 Cluster Architecture

A.2.1 Default Setup

An ArangoDB Cluster can be created by ArangoDB Starter (arangodb) or set up manually
with ArangoDB Server (arangod). Compared with the other way, ArangoDB Starter is a
simplified setup tool that sticks to the default setting of a Cluster. The default setting will
be detailed in the following paragraph.

An ArangoDB Cluster is a set of ArangoDB instances that are connected to each other
and form a network. It is common, yet not the actual image of ArangoDB, that people relate
a Cluster to a set of connected machines. In ArangoDB, however, a Cluster is structured
by instance with one of the three roles: Agents, Coordinators and DB-Servers, and these
instances are grouped in any form across the available machines. One can set up more Co-
ordinators than DB-Servers, or the other way around, but a hidden rule is widely applied that
“exactly one Coordinator and one DB-Server are run on each machine to achieve the clas-
sical master/master setup”. In the default setting, a stricter requirement is that exactly one
Agent runs on each machine, which is true in the practice of ArangoDB Starter (arangodb)
though not compulsory according to their documentations.

Therefore, by default, one machine consists of exactly one Agent, one Coordinator and
one DB-Server. Consider a Cluster of N machines. The N Agents of the machines form
the Agency of the Cluster. The Agency controls the essential configuration and regulates
the behaviors of the whole Cluster (for example, leader election and synchronization), so
fault tolerance is a requirement of the Agency. To ensure that, Raft Consensus Algorithm
is used among the Agents to keep the Agency alive throughout the life of the Cluster. The
Coordinators are stateless and receive the requests (for example, queries) from the clients
and transfer the requests to the DB-Servers. The DB-Servers store the data and handle the
requests transferred by Coordinators. 1

1Cluster Architecture (ArangoDB 3.9): https://www.arangodb.com/docs/3.9/architecture-deployment-
modes-cluster-architecture.html

82

https://www.arangodb.com/docs/3.9/architecture-deployment-modes-cluster-architecture.html
https://www.arangodb.com/docs/3.9/architecture-deployment-modes-cluster-architecture.html

A.2. Cluster Architecture

Figure A.1: Topology of an ArangoDB cluster 1

A.2.2 Sharding

Sharding and replication are two important features of ArangoDB. 2 Sharding is a technique
used for horizontal scaling in which the data is partitioned and distributed across multiple
servers or nodes. Sharding is based on collections in ArangoDB; a data collection can be
distributed among the nodes based on a predefined shard key with consistent hashing, which
can be a specific attribute in the documents contained in that collection.

Sharding is not enabled by default. The user needs to configure two optional properties,
numberOfShards and shardKeys. By default, the number of shards is 1; the shard keys only
contain the attribute key, which is the identifying key for each document contained in the
collection. The default mode implies that there will be no sharding if the two properties
are not specified, and the whole collection will be stored on the single server found by the
hashed result of key. The example below creates a collection named col, using 4 shards
among the DB-Servers and the attribute country as one Shard Key. This would speed up
queries reading data of the same country, as these documents are supposed to be placed
within the same shard.
db. create("col", {"numberOfShards": 4, "shardKeys": ["country"]});

The sharding mechanism allows for higher data availability, increased storage capacity,
higher data throughput. When some (but not all) shards fail to work in ArangoDB, the
whole collection can still be accessible and functional overall if the user wants to read from
those unaffected shards. In addition, sharding reduceds the size of the collection piece that
each server needs to store, which allows a larger collection to be stored in the database and
increases storage capacity. Meanwhile, the data flow is not stuck from Coordinator to one
single server but spread to multiple DB-Servers, which increases data throughput. Shards
can also be moved or balanced among DB-Servers.

However, sharding may reduce the performance of database queries as it requires more
communication overhead, especially when the data required within the query is scattered
around and located on different shards (and on different servers). This pattern of data stor-
age will affect the scalability. If such a situation is not expected, the user can restrict collec-

2Cluster Administration (ArangoDB 3.9): https://www.arangodb.com/docs/3.9/administration-cluster.html

83

https://www.arangodb.com/docs/3.9/administration-cluster.html

A. AN OVERVIEW OF ARANGODB V3.9

tions to one single shard by using an Enterprise feature OneShard. The SmartGraph is also
an Enterprise feature for optimized sharding of graphs.

A.2.3 Replication

Replication is another important feature to achieve higher data availability, which increases
the number of total copies of the data collections. Replication is often used together with
sharding. In Figure A.2, the incoming collection is split into five shards and hashed into
five different servers, where each “original” shards are called a Leading Shard, or leader. In
addition to the Leading Shard, several replicas of Leading Shards from other DB-Servers
also exist on each DB-Server, and these replicas are also called followers. In this way,
replication increases data availability and becomes a key element to disaster recovery and
failover.

Figure A.2: Sharding and replication 1

Replication is usually categorized into synchronous and asynchronous modes. Both
modes are provided by ArangoDB. However, only the synchronous replication is used
among the DB-Servers in the common cluster deployment, while the asynchronous repli-
cation is used in other deployment modes (Active Failover and Datacenter-to-Datacenter).
Synchronous replication implies that when any write operation happens, all the replicas in-
cluding the leader and followers will wait for the values to be written (or updated) before
further operations can be processed. In ArangoDB v3.9, Merkle trees are used to ensure
synchronous replication. It allows the system to quickly determine the difference between
the leader and followers by using a tree of hash values.

In general, synchronous replication ensures strong data consistencies among different
replicas. The replication is only enabled when the parameter replicationFactor is set to
a value r (r > 1), and then a leader and r− 1 followers will be created for each shard
accordingly; otherwise r is set to 1 and no replication exists. Also, the replication factor
should normally not exceed the total number of DB-Servers. In Figure A.2, the number of
shards is set to 5 and the replication factor is set to 3, meaning that every Leading Shard (of
the five shards) has two followers, which add up to 15 shards in total.

84

A.3. Storage Engine and Transactions

A.3 Storage Engine and Transactions

Since v3.7 and above, ArangoDB has been using RocksDB [31] as its only storage engine.
RocksDB is an open-source, embedded key-value store developed by Facebook that is op-
timized for fast, efficient storage and retrieval of data. It is built on top of LevelDB and
provides additional features such as support for multiple column families, compaction fil-
ters and persistent cache. RocksDB uses a log-structured merge tree (LSM) data structure
to store data. On the other hand, concurrent write conflicts and transaction size limit are
two of the caveats that ArangoDB tries to deal with.

ArangoDB supports transactions that conform to the ACID principles. ACID stands for
Atomicity, Consistency, Isolation, Durability, and it refers to a set of properties that guaran-
tee that database transactions are processed reliably. ArangoDB supports multi-document
transactions that ensure all changes made to the database within a transaction are either
committed or rolled back as a unit. This ensures that the database remains in a consistent
state throughout the transaction. Also, modifications made by other transactions will be
hidden until the current transaction commits such that transactions are isolated from each
other to prevent interference. Additionally, ArangoDB provides durability through the use
of write-ahead logs (WALs, supported by RocksDB) that allow for recovery of data in the
event of a crash or other system failure.

However, fully ACID cannot be achieved in certain cases. ArangoDB claims that fully
ACID only applies for the following cases.

• single-document queries, in all deployment modes
• multi-document / multi-collection queries, only in the single-distance mode
• batch operations for multiple documents in the same collection, only in the single-

instance mode

ArangoDB uses a three-level permission system (read, write, and exclusive) for collec-
tions within a transaction. These permissions work on top of RockDB’s locking mechanism.
Collections with the read permission can be concurrently read without restriction. However,
the RocksDB engine will acquire a (shared) read lock for those collections with the write
permission, which allows concurrent reads but prevents concurrent writes. This prevention
is an optimistic way that if other concurrent writes are attempted, ArangoDB will abort them
and raise an error (with code 1200). Collections with the exclusive permission take a more
pessimistic approach, with RocksDB acquiring a write-lock to directly prevent concurrent
writes while still allowing concurrent reads to execute successfully.

A.4 Database Operations

A.4.1 ArangoDB Query Language (AQL)

ArangoDB Query Language (AQL) is a declarative query language used for the retrieval and
modification of data stored in ArangoDB. AQL’s syntax and clarity are similar to SQL, and
both languages support data manipulation operations such as inserting, reading, updating,
deleting a document. Meanwhile, AQL supports additional operations such as upserting

85

A. AN OVERVIEW OF ARANGODB V3.9

and replacing a document that are not supported in standard SQL. In addition, both AQL
and SQL support subqueries and join operations to deal with complex use cases. However,
unlike SQL, AQL does not contain the syntax of a data definition language (DDL) or a data
control language (DCL). This means that clients cannot create or delete databases or col-
lections using AQL queries and cannot grant specific permissions to a user purely through
AQL queries. However, these operations do exist in the programming language-specific
ArangoDB drivers that have been released by the official team of ArangoDB. Overall, it is
necessary to utilize the capabilities of both the ArangoDB driver and AQL, especially when
a client needs to create a database and execute queries on it to achieve a fully functional
data workflow.

In general, the execution of a query involves the following two steps.

• A client application submits an AQL query to the ArangoDB server via an ArangoDB
driver in a modern programming language (such as Java, Go, Python, etc.).

• ArangoDB will parse, execute and return the results of that query. If the execution
is successful, then the client can retrieve the return results via an iterator available
through the ArangoDB driver. If any error is raised by ArangoDB, the further process
can be done by the exception handling mechanism supported by the programming
language of the driver in use.

Figure A.3: Example: known graph

For example, Figure A.3 presents an example graph, called known graph, to describe
the knowing relations among four persons. Below is an example to execute an AQL query
through ArangoDB Java Driver (Java 15 or higher) in this example graph. 3.
String query = """FOR p IN person

FILTER p.firstName == "Alice"
RETURN DOCUMENT(person, p._key)

""";
logger.info("Executing AQL Query: read documents with name \"Alice\"...");
try {

ArangoCursor<BaseDocument> cursor = db.query(query, BaseDocument.class);
cursor.forEach(doc −> logger.info("Key: " + doc.getKey()));
logger.info("Query Success.");

} catch (Exception e) {
logger.error("Query Failure: " + e.getMessage());

3Adapted from https://github.com/jasonqiu98/arangodb-docker

86

https://github.com/jasonqiu98/arangodb-docker

A.4. Database Operations

}

Listing A.1: AQL example: read documents with name “Alice”

This query tries to read all the documents in the collection person, filter those documents
with first name Alice and return the results in an ArangoDB array. Line 1 stores the query
in a plain Java String. Line 7 in the code submits the query to a db connection opened in
advance. Then it handles the return results in an ArangoCursor data structure which is an
iterator in essence by implementing the Java iterator interface. In addition, the Java try-
catch flow control ensures the smooth running of the system in case of any error caused by
the query itself.

A.4.2 Graph Traversals

The graph traversal syntax 4 is one of the key strengths of ArangoDB as a native graph
database. Graph traversals can be executed on a named graph defined in advance, or simply
a group of document and edge collections that can form an anonymous graph. In either way,
the graph traversal query will start from a vertex provided in the query (startVertex), visit
other vertices along the edges in a certain depth range (from min to max), and finally reach
the end once the vertices are depleted or a certain pruning condition is satisfied.

Several optional arguments can be passed to the query to modify the execution of the
graph traversal. By default, the graph traversal follows a depth-first search (DFS) on unique
edges. This ensures that graph traversal can be later extended to cycle detection where
non-unique vertices and unique edges are needed.

Below is an example query of graph traversals on the known graph in Figure A.3, start-
ing from a vertex Alice in the document collection person. The depth range of the tra-
versed paths is from 2 to 4 (inclusive). Along the traversal, three variables vertex, edge
and path are useful to access the information related to the currently visited vertex in that
iteration. The vertex is the one currently being visited. The edge is the one pointing to the
vertex. The path stores the intermediate results of all the previously visited vertices, edges
and paths until and including the vertex. This query will output all the possible 2-step to
4-step paths in string format, connecting the vertices on each path with the arrow sign→.
FOR vertex, edge, path IN 2..4

OUTBOUND "person/alice"
GRAPH known graph
RETURN CONCAT SEPARATOR("−>", path.vertices[∗].name)

Listing A.2: AQL: Graph Traversal

A.4.3 Scalability

The scalability issue of database operations varies depending on the data model used. Key/-
value pairs are the easiest to scale since single key lookups and key/value pair insertions
and updates can scale linearly. In contrast, document store and complex queries/joins can

4Graph Traversals in AQL (ArangoDB v3.9): https://www.arangodb.com/docs/3.9/aql/graphs-
traversals.html

87

https://www.arangodb.com/docs/3.9/aql/graphs-traversals.html
https://www.arangodb.com/docs/3.9/aql/graphs-traversals.html

A. AN OVERVIEW OF ARANGODB V3.9

be challenging due to sharding configurations and communication requirements between
nodes. AQL query language allows complex queries, but for complicated joins, there are
limits as to what can be achieved.

Graph databases are particularly good at queries on graphs, but performance suffers if
the vertices and edges are distributed across the cluster. Therefore, it is important to get the
distribution of the graph data across the shards right. ArangoDB allows users to specify how
their data is sharded to optimize performance. Most of the time, the application developers
and users of ArangoDB know best how their graphs are structured. A useful first step is
usually to make sure that the edges originating at a vertex reside on the same cluster node
as the vertex.

A.5 Limitations

ArangoDB has limitations in its transactions and AQL query language. Long or large-
size transactions are not optimized in its implementation, so it is recommended to break
them down into smaller ones. The metadata of a transaction operation needs to fit into
main memory, while the actual operation can exceed. Additionally, nested transactions are
disallowed, and certain operations for creating and deleting system collections are reserved.

The setup of an ArangoDB cluster is limited by hardware resources such as CPU, main
memory, secondary memory, and network quality. The Enterprise Edition imposes limits on
the number of databases, collections, and shards. A few thousand databases are supported
by an Enterprise Edition cluster, with each database supporting up to a thousand collections,
and the total number of shards in the cluster being controlled under 50,000. On the other
hand, the Community Edition lacks such guarantees and disallows certain operations that
rely on Enterprise version-only features. For example, the OneShard feature is required
for ensuring the correctness of Pregel Algorithms in an ArangoDB cluster, which is not
available in the Community Edition.

AQL queries also have known limitations. A query can use no more than 1000 registers
to store results, and it cannot use more than 2048 collections or shards. There are also
system-related limitations, such as no more than 4000 “execution nodes” and 500 “nesting
levels”, which must be considered while creating a query.

Some limitations in ArangoDB are in place for good design practices and ensuring
database isolation. For example, concurrent writes are directly prohibited, and one write
operation on an object cannot be followed by another read on the same object within a
single AQL query.

88

Appendix B

Pseudocode of Cycle Detection
Algorithms

This chapter lists the pseudo code of traversal-based cycle detection algorithms and dis-
cusses their time and space complexities. Unless specified otherwise, in all the following
programs, G = (V,E) is the input graph, n is the total number of vertices, and m is the total
number of edges. The output of the cycle drops the ending vertex (as it is the same as the
starting vertex).

B.1 Starting Vertex Detection

Algorithm 2 starts a DFS traversal from each vertex in G, and along each traversal finds
whether the current path contains any vertex that is equal to the vertex where the traversal
starts. This algorithm takes two additional input arguments: the minimum depth of DFS
traversal minDepth and the maximum maxDepth. All the traversals will walk maxDepth
steps at the maximum and explore the potential cycle only in the step range from minDepth
to maxDepth. Once a starting vertex is detected, the algorithm will output the cycle.

The time complexity of this algorithm is O(n(n+m′)), where m′ = min{dmaxDepth,m}
is the maximum possible edges within each traversal, and d is the maximum degree of all
vertices. When d and m are sufficiently small so that m′ is constant compared with n, the
time complexity is O(n2). If the effect of maxDepth is ignored, the time complexity has a
loose upper bound of O(n(n+m)).

The space complexity of this algorithm is O(n2) as each traversal requires an auxiliary
visited array taking O(n) space and a path stack taking an additional O(n) space. In prac-
tice, visited and path can be reused across traversals, and the space complexity may be
reduced to O(n).

B.2 Back Edge Detection

Algorithm 3 starts a DFS traversal from each vertex in G, and along each traversal finds
whether the path contains a back edge to a previous vertex in this path. Each traversal

89

B. PSEUDOCODE OF CYCLE DETECTION ALGORITHMS

Algorithm 2 Starting vertex detection

Input: graph G = (V,E), total number of vertices n, minimum and maximum depths of
traversal minDepth, maxDepth

Output: a boolean value: whether a cycle with at least two vertices exists or not
1: for v in V do
2: visited← [False] * n ▷ init a visited array for each starting vertex
3: if DFS(v, v, [v], minDepth, maxDepth, visited) then
4: return true
5: return false

6: function DFS(v, start, path, minDepth, maxDepth, visited)
7: visited[v]← true
8: if length(path) - 1 ≥ maxDepth then
9: return false

10: for (v,w) in E do ▷ all edges out from v
11: if minDepth≤ length(path) - 1 ≤ maxDepth and w == start then
12: print path ▷ print the cycle
13: return true
14: if not visited[w] then
15: path.push(w)
16: if DFS(v, start, path, minDepth, maxDepth, visited) then
17: return true
18: path.pop()
19: return false

maintains a hash set so that the process of checking whether an edge is a back edge can be
reduced to O(1) time. This allows each traversal to be finished within O(n) time because at
most n+1 edges will contribute a back edge. Therefore, the time complexity is O(n2). Sim-
ilar to the analysis of Algorithm 2, the space complexity is O(n2) and has the possibilities
to be reduced to O(n).

B.3 Shortest Path Detection

Algorithm 4 iterates over all edges of G. Once each edge is visited, say v→ w, a BFS
traversal will be started to find whether a shortest path from w to v can be found so that there
exists a cycle with the edge v→ w as a back edge. The time complexity is O(m(n+m)).
The space complexity is O(mn) as each traversal requires a visited array taking O(n) space,
a level-order queue taking O(n) space, and a hash map to store the visited edges that takes
O(n) space. An additional array is used to store the result of cycle and takes an additional
O(n) space, but is not considered in the complexity analysis.

90

B.4. Tarjan’s Algorithm

Algorithm 3 Back edge detection

Input: graph G = (V,E), total number of vertices n
Output: a boolean value: whether a cycle with at least two vertices exists or not

1: for v in V do
2: visited← [False] * n ▷ init a visited array for each starting vertex
3: if DFS(v, [v], set{v}, visited) then
4: return true
5: return false

6: function DFS(v, path, vset, visited)
7: visited[v]← true
8: for (v,w) in E do ▷ all edges out from v
9: if w in vset then

10: while path[0] != w do
11: path.popleft()
12: print path
13: return true
14: if not visited[w] then
15: path.push(w)
16: vset.add(w)
17: if DFS(w, path, vset, visited) then
18: return true
19: vset.remove(w)
20: path.pop()
21: return false

B.4 Tarjan’s Algorithm

Algorithm 5 [61] finds a strongly connected component (SCC) through a DFS traversal on
graph G, where each vertex and edge is visited once. It additionally maintains two arrays
indices and lowlinks. The element indices[v] maps to the index of the vertex v, which is the
timestamp when v first shows up in the traversal; the element lowlink[v] stores the smallest
index of all vertices that v can reach, which is the earliest timestamp when a vertex of the
same SCC shows up in the traversal. In this way, all the indices stored in lowlink within the
same SCC are reduced to the earliest timestamp and then SCCs are successfully determined.
The time complexity of Tarjan’s algorithm is O(n+m) and the space complexity is O(n).

B.5 Kosaraju-Sharir’s Algorithm

Algorithm 6 [56] finds an SCC through two DFS traversals, one on the transpose of the
graph G and the other on the graph G itself. It can be decomposed to four steps.

1. Get the transpose GT of graph G by reversing the direction of each edge in G.

91

B. PSEUDOCODE OF CYCLE DETECTION ALGORITHMS

Algorithm 4 Shortest path detection

Input: graph G = (V,E), total number of vertices n
Output: a boolean value: whether a cycle with at least two vertices exists or not

1: for v in V do
2: for (v,w) in E do ▷ all edges of G
3: if BFS(w, v) then ▷ find a back path
4: return true
5: return false

6: function BFS(src, dest)
7: visited← [False] * n ▷ init a visited array
8: visited[src]← true
9: revEdgeMap← empty map

10: q← queue([src])
11: while q do
12: size← length(q)
13: for 1..size do
14: v = q.poll()
15: for (v,w) in E do ▷ all edges of G out from v
16: if w == dest then ▷ find the start
17: s← [v] ▷ append the end of the cycle
18: ptr← v
19: while ptr != src do
20: ptr← revEdgeMap[ptr]
21: s.append(ptr) ▷ append along the reversed direction
22: s.append(w) ▷ add back the start of the cycle
23: print reverse(s) ▷ print the cycle in order
24: return true
25: if not visited[w] then
26: visited[w]← true
27: q.offer(w)
28: revEdgeMap[w]← v ▷ v→ w but store map[w] = v
29: return false

2. Get one topological order topo of GT .
3. Start a DFS traversal on graph G while replacing the iterative order of vertices with

topo.
4. Every time a DFS recursion tree returns to the root node, an SCC is traversed and the

algorithm outputs that SCC.

This algorithm is conceptually simpler than Tarjan’s algorithm. However, it takes addi-
tional steps and more space to store the transpose of the input graph. The correctness of the
algorithm is based on two properties of SCCs in a graph G and its transpose GT . Firstly, G

92

B.5. Kosaraju-Sharir’s Algorithm

Algorithm 5 Tarjan’s algorithm

Input: graph G = (V,E), total number of vertices n
Output: a boolean value: whether a cycle with at least two vertices exists or not

1: S← empty stack, index← 0
2: indices, lowlinks←[-1] * n, onStack← [false] * n
3: for v in V do
4: if indices[v] == -1 and STRONGCONNECT(v) then
5: return true ▷ early stop: when a cycle has been found
6: return false ▷ no cycle has been found

7: function STRONGCONNECT(v)
8: indices[v]← index
9: lowlinks[v]← index

10: index← index+1
11: S.push(v)
12: onStack[v]← true

13: for (v,w) in E do ▷ all edges out from v
14: if indices[w] == -1 then
15: if STRONGCONNECT(w) then ▷ w not visited; start recursion
16: return true
17: lowlinks[v]← min(lowlinks[v], lowlinks[w]) ▷ update to the start vertex
18: else if onStack[w] then
19: lowlinks[v]← min(lowlinks[v], indices[w]) ▷ found the start vertex
20: if lowlinks[v] == indices[v] then ▷ the start vertex of the SCC
21: scc← [] ▷ start a new SCC
22: repeat
23: w← S.pop()
24: onStack[w]← false
25: scc.append(w)
26: until w == v ▷ pop all the vertices of the SCC
27: if length(scc) > 1 then
28: print reverse(scc) ▷ print the vertices in order
29: return true
30: return false

and GT has the same set of SCCs. Secondly, two distinct SCCs of graph G are not mutually
reachable, meaning that the vertices of one of the two SCCs can reach all the vertices of
the other SCC, but not vice versa. This can be proved by contradiction, because mutual
reachability will reduce the two distinct SCCs to one single SCC. These two properties en-
sure that a topological order of GT , as the iterative order of vertices, will restrict the each
recursion tree of the DFS recursion forest within a single SCC instead of reaching nodes of

93

B. PSEUDOCODE OF CYCLE DETECTION ALGORITHMS

other SCCs.

This algorithm has a time complexity of O(n+m) and a space complexity of also O(n+
m), if the graph G is stored in an adjacency list. Transposing an adjacency list requires
O(n+m) time and space complexities. After that, a topological order of GT can be achieved
by exploring the reverse of its post-order traversal result through DFS (e.g. Algorithm 7),
which requires O(n+m) time complexity and O(n) space complexity. The second DFS
traversal on G requires an additional O(n+m) time complexity and O(n) space complexity.
When the graph is stored in an adjacency matrix, the transposition costs O(n2) time and
space complexities and will increase the complexities of total algorithm to O(n2 +m).

Algorithm 6 Kosaraju-Sharir’s algorithm

Input: graph G = (V,E) in adjacency list, total number of vertices n
Output: a boolean value: whether a cycle with at least two vertices exists or not

1: GT = (V,ET) ▷ reverse the direction of every edge
2: V ′← TOPOSORT(GT)
3: return STRONGCONNECT(G,V ′)

4: function STRONGCONNECT(graph, vertices)
5: visited← [False] * n
6: for v in vertices do
7: if not visited[v] then
8: if DFS(v, graph, [v], visited) then
9: return true

10: return false

11: function DFS(v, graph, path, visited)
12: visited[v]← true
13: counter← 0 ▷ counter equal to 0 marks an ending vertex
14: for (v,w) in E do
15: if not visited[w] then
16: counter← counter + 1
17: path.push(w)
18: if DFS(w, graph, path, visited) then
19: return true
20: path.pop()
21: if length(path) ≥ 2 and counter == 0 then
22: print path ▷ an SCC with at least two vertices
23: return true
24: return false

94

B.6. Path-based Strong Component Algorithm

Algorithm 7 Topological sort

Input: graph = (vertices,edges), total number of vertices n
Output: a topological order by reversing the post-order traversal

1: function TOPOSORT(graph)
2: visited← [False] * n
3: topo← []
4: for v in vertices do
5: if not visited[v] then
6: TOPODFS(v, graph, topo, visited)
7: return reverse(topo)

8: function TOPODFS(v, graph, topo, visited)
9: visited[v]← true

10: for (v,w) in E do
11: if not visited[w] then
12: TOPODFS(w, graph, topo, visited)
13: topo.append(v) ▷ post-order traversal

B.6 Path-based Strong Component Algorithm

Algorithm 8 [33] [34] is similar to Tarjan’s algorithm but uses stack structures to main-
tain the visited vertices and their indices. The time complexity is O(n+m) and the space
complexity is O(n).

95

B. PSEUDOCODE OF CYCLE DETECTION ALGORITHMS

Algorithm 8 Path-based strong component algorithm (Gabow’s version)

Input: graph G = (V,E), total number of vertices n
Output: a boolean value: whether a cycle with at least two vertices exists or not

1: S, B← empty stack, c← n, I←[-1] * n
2: for v in V do
3: if I[v] == -1 then
4: if STRONGCONNECT(v) then
5: return true
6: return false

7: function STRONGCONNECT(v)
8: S.push(v)
9: I[v]← length(S) - 1

10: B.push(I[v])
11: for (v,w) in E do
12: if I[w] == -1 then
13: if STRONGCONNECT(w) then
14: return true
15: else ▷ contract if necessary
16: while I[w] < B[length(B) - 1] do
17: B.pop()

18: path← []
19: if I[v] == B[length(B) - 1] then
20: B.pop()
21: c← c + 1
22: counter← 0
23: while S and I[v] ≤ length(S) - 1 do ▷ the SCC
24: counter← counter + 1
25: vtop← S.pop()
26: path.append(vtop)
27: I[vtop]← c
28: if counter > 1 then
29: print reverse(path)
30: return true
31: return false

96

Appendix C

Validity of the Relaxation from Cycle
Detection to SCC Detection

a b c

e f

d

g h

Figure C.1: Directed graph, cycles and SCCs

The relaxation is valid because the the relation between cycles and SCCs (of at least
two vertices) is a surjection, i.e., a cycle must be within an SCC, and there always exists
at least one cycle in an SCC. For example, the graph in Figure C.1 has three SCCs formed
by vertex sets {a,b,e}, {c,d,h} and { f ,g}, and four cycles a→ b→ e→ a, f → g→ f ,
c→ d → c and d → h→ d. Every cycle can find one and only one accompanying SCC,
while one SCC may contain one or more cycles. For instance, the SCC {c,d,h} maps to
two cycles c→ d→ c and d→ h→ d. Therefore, successful detection of an SCC of at least
two vertices ensures that the graph contains at least one cycle.

We show the proof with the following two steps.

1. Based on the definition, a cycle along with the vertices that form the cycle always sat-
isfies the strongly connected property and therefore is a subset of an SCC. (Theorem
1 of Chapter 25 in [30])

2. In addition, an SCC of at least two vertices always contains a non-empty path that
further contains a directed cycle. This is because for any directed edge e0 point-
ing from vertex v to vertex w, in any SCC C in a graph G, a non-empty back path
{e1,e2, . . . ,e j} can always be found in which the start and end vertices are w and v,
respectively, based on the strongly connected property. The edge e j is a back edge
and then the existence of a cycle is proved.

Overall, a surjection from the set of cycles to the set of SCCs is established, which
validates the reduction from cycle detection problem to SCC detection problem.

97

Appendix D

Graph Construction Stage (Complete
Version)

This chapter uses the list history in Listing D.1 for illustration, which is adapted from the
history in Listing 3.1 by removing invocation records, aborted transactions, and those keys
irrelevant to construct dependency edges.
{:type :ok, :f :txn, :value [[:append 5 1] [:append 5 2] [:r 3 []] [:r 5 [1 2]]],

:time 18468583939, :process 19, :index 3}
{:type :ok, :f :txn, :value [[:append 5 3] [:r 3 []] [:r 2 []]], :time

18512103772, :process 19, :index 6}
{:type :ok, :f :txn, :value [[:r 7 []] [:append 3 2] [:append 2 1] [:r 3 [2]]], :

time 18516867536, :process 10, :index 7}
{:type :ok, :f :txn, :value [[:r 7 []] [:r 3 [2]] [:r 2 [1]]], :time 18558278528, :

process 19, :index 10}
{:type :ok, :f :txn, :value [[:append 7 1] [:append 7 2] [:r 7 [1 2]] [:append 7

3] [:append 3 3]], :time 18563033073, :process 8, :index 11}

Listing D.1: Jepsen list history (filtered and adapted)

D.1 Vertices and Edges

To construct a dependency graph on transactions, we create a vertex collection txn to repre-
sent transactions as well as an edge collection dep to store dependency edges. Each vertex
in the txn collection has only one field key, which records the transaction id in the for-
mat txn/i. The i is the original :index in the execution history. Each edge in the dep
collection has three main fields, from, to, and type. The first two fields mark the id’s of
the two end vertices of the edge, while the last field indicates the type of the dependency
edge out of WR, WW, and RW. In addition, each dependency edge maintains the id’s of
two connected events in the fields from evt and to evt. The two collections txn and dep
form the dependency graph txn g.

In addition to the main graph, we also introduce an auxiliary dependency graph on
events. This graph evt g consists of three collections, a evt for append events for list
histories (or w evt for read events for register histories), r evt for read events, and evt dep
for event dependency edges. Each event vertex in a evt has four fields: key, obj, arg,

99

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

Figure D.1: Graph construction: empty dependency graph

and index. The field key stores the event id in the format evt/i,j, where i is the :index
of the transaction that contains this event in the history, and j is the zero-based index of the
event within this transaction. The obj and arg are aliases of key and value of the object.
In particular, the field obj is a string converted from a positive integer starting from 1; the
field arg is a positive integer starting from 1. The last field, index, is reserved to check
intermediate writes. It records the relative index of the append events on the same object
within the transaction, but the index of the last such event is recorded as -1. For example,
in Listing D.1, the append event [:append 5 2] is stored as (evt/3,1, "5", 2, 1),
[:append 3 2] as (evt/7,1, "3", 2, -1).

Each read event in r evt has three fields, key, obj, and v, for the event id, object key,
and value array, respectively. For register histories, the field obj is a single value instead of
a value array. Furthermore, each event dependency edge in evt dep has four fields, from,
to, obj, and type, for the starting event id, the ending event id, the object key, and the

dependency type, respectively.
The format of event id evt/i,j ensures that the transaction txn/i can be tracked

without storing an additional field in event vertices. This is useful when we project the
dependency graph from events to transactions.

D.2 Construction of Dependency Edges on Events

Under the Assumption of Unique Writes, each value can be written only once for each
object. Also, a value cannot be read unless it has already been written by another previous
event. This implies that values in read events can automatically locate the contributing write
events on each object. For example, in Listing D.1, T10 (the transaction with :index of 10;
the same hereafter) reads the value of the object with key 2 (object 2; the same hereafter) as
[1], while T7 appends 1 to object 2. Based on this information, we draw a WR edge from T7
to T10 because T7 appends the last value read by T10 on object 2 (see Figure D.2). Overall,
an execution history automatically reveals all the read dependencies (i.e., WR edges) on

100

D.2. Construction of Dependency Edges on Events

Figure D.2: Graph construction: WR edge under Assumption 1

Figure D.3: Graph construction: the longest list

Figure D.4: Graph construction: the remaining list

101

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

Figure D.5: Graph construction: the missing WW and WR edges

Figure D.6: Graph construction: complete dependency graph

each object.
The remaining two types, WW and RW edges, highly depend on the version orders

recorded in the history. The process of recovering such version orders from the two types
of histories also differs. The differences are discussed as follows.

D.2.1 List Histories

To restore the version orders from list histories, we use two functions to pre-process the
events in the history H into the two data structures R and A, respectively. The two functions,
queryReadEvts and queryAppendEvts, retrieve the relevant information of read and append
events through AQL queries, listed in Listing D.2 and Listing D.3, respectively.
FOR e1 IN r evt

COLLECT obj = e1.obj INTO objs
RETURN { obj, records: (

FOR e2 in objs[∗].e1
COLLECT val = e2.v INTO vals
SORT LENGTH(val) DESC
RETURN { val, ids: vals[∗].e2. id }) }

Listing D.2: Query read events from list histories

The query in Listing D.2 uses an aggregation function to group the information of all
read events Er by object. Each object maintains an array of records. Each record contains a
list value and an array of record ids. The events with these ids read the value of this object.
Furthermore, we refer to the last element of the list value as the item of the value. In Listing

102

D.2. Construction of Dependency Edges on Events

D.1, both T7 and T10 read [] while T11 reads [1 2] from object 7. We say object 7 has two
records: one is with value [1 2] and ids [11]; the other is with value [] and ids [7, 10].

Since the records of an object reflects its version order, we sort the records based on the
length of the list value contained in each record. In the records of object 7, the value [1 2]
shows earlier than [].

After having the query, we directly query on Er and store the result set into R.

Algorithm 9 The function queryReadEvts for list histories
Input: read events Er

Output: array of records per object R
1: function QUERYREADEVTS(Er)
2: R← runQuery(Er, query) ▷ query in Listing D.2
3: return R

FOR e1 IN a evt
COLLECT obj = e1.obj into objs
RETURN { obj, evts: (
FOR e2 in objs[∗].e1

COLLECT element = e2.arg INTO elements
RETURN { element, ids: elements[∗].e2. id, append idx: elements[∗].e2.index

}) }

Listing D.3: Query append events from list histories

The query in Listing D.3 aggregates records of all append events in a similar way
to read events. Differently, the values of append events are not arrays but single values.
Also, append idx is attached to the results as an auxiliary attribute to identify intermediate
writes, which is a necessary part of identifying dirty writes. After the query is finished, we
post-process the result into a hashmap based on the object keys. This converts the result
into A, which is a lookup table of append events.

Algorithm 10 The function queryAppendEvts for list histories
Input: append events Ea

Output: lookup table of append events A
1: function QUERYAPPENDEVTS(Ea)
2: I← runQuery(Ea, query) ▷ query in Listing D.3
3: A← empty hashmap
4: for info ∈ I do
5: A[info.obj]← empty hashmap
6: for e ∈ info.evts do
7: A[info.obj][e.arg]← e.ids[0] ▷ add to the lookup table
8: return A

103

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

D.2.2 Event-Record Relations: Installment, Visiting, and Event Version
Order

To simplify the notations, we first introduce the following two relations in Definition 4
between an event and a record.

Definition 4 The installment and visiting relations.

1. The installment relation is defined between an append (or write) event and a record
of the same object in an execution history. An append (or write) event e installs a
record r if and only if e appends the item of (or writes) r’s value and there exists a
unique event within a committed transaction that appends (or writes) so to the object,
i.e., e.arg == LAST(r.val). This is denoted by e ⊢ r.

2. The visiting relation is defined between a read event and a record of the same object.
A read event er visits a record r if and only if er reads r’s value, i.e., er.val == r.val,
or alternatively, er.id ∈ r.ids. This is denoted by er→ r.

Furthermore, we denoted the event version order by≪ in the following way.

Definition 5 The event version order is defined between two records of the same object in
an execution history. For two records r1 and r2, r1 is prior to r2 in event version order if
and only if r1.val is a strictly shorter prefix of r2.val. This is denoted by r1≪ r2.

In addition, we combine the event version order and installment, and propose the following.

Proposition 3 The extension of event version order between an append (or write) event and
a record.

1. For two records r1 and r2, r1.val≪ r2.val is equivalent to r1≪ r2.
2. For an append (or write) event e and a record r, e≪ r is equivalent to e.arg≪ r.val.

D.2.3 The Algorithm to Construct Event Dependency Edges

After both the array of records per object R and the lookup table of append events A are
ready, and the concepts of installment (⊢), visiting (→), and event version order (≪) are
established, Algorithm 11 is designed to retrieve the set of dependency edges on events.
Also, to simplify the notations, we use Eevents to denote the set of event dependency edges,
which consists of edges of the form (e f rom, eto, type).

The algorithm emphasizes the traceability property in list histories with a function
getEvtDepEdges. It iterates over the objects read in the history. Under each object, the
loop body starts by checking the longest record, then the second longest record, until the
shortest record. Furthermore, for each record, we form the dependency edges in the order
of RW, WW, and WR edges.

For the longest record, we first check all possible later versions that are not present,
and form RW edges between each read event that visits the longest record and each append
event that installs a later version. After that, WW edges are formed between the unique
append event that installs the longest record and each append event that installs a later

104

D.2. Construction of Dependency Edges on Events

Algorithm 11 Construction of dependency edges on events for list histories
Input: an array of records per object grouped by each object R, a lookup table of append

events A
Output: a set of event dependency edges Eevents

1: function GETEVTDEPEDGES(R, A)
2: Eevents← /0

3: for all r ∈ R do
4: k← r.obj
5: Re← r.records ▷ records of object k
6: if k /∈ A then
7: if {re.val | re ∈ Re} == {[]} then continue ▷ only initial reads
8: else
9: Anomaly: aborted reads for each r ▷ object not appended but read

10: if re[0].val == [] then ▷ the longest record is empty
11: if k ∈ A then ▷ later versions exist
12: Eevents← Eevents ∪ {(er,ea,RW) | er→ Re[0] ∧ Re[0]≪ ea}
13: continue
14: if ∀ea ∈ A[k]. ¬(ea ⊢ Re[0]) then ▷ the longest record was not appended
15: Anomaly: aborted reads for Re[0]

16: for all {ea | Re[0].val≪ ea.arg} do
17: Eevents← Eevents ∪ {(er,ea,RW) | er→ Re[0] ∧ Re[0]≪ ea}
18: Eevents← Eevents ∪ {(ea,e′a,WW) | ea ⊢ Re[0] ∧ Re[0]≪ e′a}
19: if {ea | ea ⊢ Re[0]} ̸= /0 then
20: Eevents← Eevents ∪ {(ea,er,WR) | ea ⊢ Re[0] ∧ er→ Re[0]}
21: relonger← re[0]
22: for all recur ∈ Re\Re[0] do
23: if recur≪ relonger then
24: renext ← relonger[0:length(recur)+1] ▷ a helper record
25: Eevents← Eevents ∪ {(er,ea,RW) | er→ recur ∧ ea ⊢ renext}
26: if recur.val ̸= [] then
27: Eevents ← Eevents ∪ {(ea,e′a,WW) | ea ⊢ relonger[0:l] ∧ e′a ⊢

relonger[0:l+1] ∧ length(recur) ≤ l ≤ length(relonger)−1 }
28: if {(ea,e′a) | ea ⊢ recur ∧ e′a ⊢ renext} ̸= /0 then
29: Eevents← Eevents ∪ {(ea,er,WR) | ea ⊢ recur ∧ er→ recur}
30: relonger← recur ▷ update
31: else
32: Fatal: inconsistent records
33: if relonger ̸= [] then
34: recur← relonger[0:1] ▷ keep the first element only
35: Eevents←Eevents ∪ {(ea,e′a,WW) | ea ⊢ relonger[0:l] ∧ e′a ⊢ relonger[0:l+1] ∧

length(recur) ≤ l ≤ length(relonger)−1 }
36: return Eevents

105

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

version. Then, WR edges are formed between the unique append event that installs the
longest record and each read event that visits the longest record.

For example, we can further filter the history in Listing D.1 for object 3 as follows (in
Listing D.4).
{:value [[:r 3 []]], :index 3}
{:value [[:r 3 []]], :index 6}
{:value [[:append 3 2] [:r 3 [2]]], :index 7}
{:value [[:r 3 [2]]], :index 10}
{:value [[:append 3 3]], :index 11}

Listing D.4: Jepsen list history (filtered by object with key 3)

1. RW: the longest record shows in T7 and T10, which contains only an integer 2. How-
ever, T11 appends a later version with value 3. Therefore, two RW edges are first
constructed between T7 and T11, and between T10 and T11, respectively.

2. WW: After that, the append event that installs the longest record is located in T7.
With this append event, we draw one WW edge from T7 to T11.

3. WR: Finally, for the WR edges of the longest record, we construct one from T7 to T10,
while drop the other one (as it is within transaction T7 only).

While we iterate over the remaining records under an object, we always get a current,
shorter record that is prior to the previous, longer record in event version order. Otherwise,
the algorithm exits with a fatal error of inconsistent records, since the assumption of re-
coverability is violated. During the iterations, we keep the longer record for comparison.
Also, we extract a helper record from the longer record such that the helper record is exactly
one element longer than the current record, which we call the next record. After the three
records are retrieved, the dependency edges are still constructed in the order of RW, WW,
and WR. The RW edge is from the read event that visits the current record to the append
event that installs the next record. Then, the WW edges are formed in an iterative way. This
is because a value gap may exist between the shorter current record and the longer record.
At first, the append event that installs the current record and the one that installs the next
record are connected. After that, the pair moves forward along the longer record for one
step: the pointer of the next record is passed to the current record, and the next record walks
one step toward the longer direction. This traversal along the longer record ends until the
next record is identical to the longer record (inclusive). Finally, a set of WR edges is con-
structed from the append event that installs the current record to each read event that visits
the current record.

We still take the history in Listing D.1 but filter by object 7 as an example to illustrate
the process (in Listing D.5 and Figure D.4).
{:value [[:r 7 []], :index 7}
{:value [[:r 7 []], :index 10}
{:value [[:append 7 1] [:append 7 2] [:r 7 [1 2]] [:append 7 3]], :index 11}

Listing D.5: Jepsen list history (filtered by object with key 7)

1. RW: the longest record is [1 2] while a shorter one is []. When the current record []
is observed, the longer record is [1 2], and the next record should be [1]. After the

106

D.2. Construction of Dependency Edges on Events

three records are found, an RW edge is constructed from the event that reads [] to
each event that appends 1: we can find two, T7 to T11, and T10 to T11.

2. WW: Later, the pair of the current record and the next record walks along the longer
record [1 2] in an iterative fashion. The pair starts at ([], [1]), but [] is the initial
value and no append event exists. As the next step, the pair moves to ([1], [1 2])
by incorporating one more element from the longer record. The append events that
install the two versions both lie in T11, so this dependency edge is ignored. Since the
next record is now identical to the longer record [1 2], the iterations end.

3. WR: Finally, the append events that install [] and the read events that visit [] form a
set of WR edges. Since there is no such append event, we do not construct any new
dependency edge.

As the final step to construct event dependency edges, after the shortest record is tra-
versed, there may still exist missing WW dependencies revealed by it. We filter the object 5
from Listing D.1 (in Listing D.6 and Figure D.5). After the shortest record [1 2] is traversed,
only the dependency edges in relation with the last value 2 are considered, while those with
the earlier values are ignored. We reset the current record to a new array with only the
starting value of the longer record, and then start the iterations to construct WW edges. In
this case, the current record is reset to [1], and the longer record is [1 2]. The moving pair
starts from ([1], [1 2]) and ends at the same place. However, since T3 appends both 1 and 2
to object 5, this missing WW is evaluated and ignored again. By now, the construction of
dependency graph on events has been completed (see Figure D.6).
{:value [[:append 5 1] [:append 5 2] [:r 5 [1 2]]], :index 3}
{:value [[:append 5 3]], :index 6}

Listing D.6: Jepsen list history (filtered by object with key 5)

In addition to edge construction, we evaluate two anti-patterns related to the external
consistency axiom EXT in Theorem 1. These two anti-patterns are aborted reads and inter-
mediate reads. Aborted reads are caught when a record is read while the append event that
installs this record cannot be found. Intermediate reads are detected when a record is read
while the append event that installs this record is not the final append on the same object
within the transaction of the event. Both anti-patterns are checked during the construction
of WR edges. However, the existence of aborted or intermediate reads does not stop the
algorithm immediately. Instead, an additional result is returned to indicate whether either
of the two are detected. This is because the checking of the lowest level in our checker (i.e.,
PL-1) does not require the EXT axiom, and these two anti-patterns are allowed to exist.

D.2.4 Register Histories

Compared to list histories, recovering version orders from register histories is more chal-
lenging. This is because read-write registers, which act as simple key-value stores, lack the
traceability property. Inferring previous values from the current value becomes impossible.
{:index 2, :value [[:r 2 nil] [:w 2 1]]}
{:index 5, :value [[:w 2 4] [:r 2 4]]}

107

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

{:index 7, :value [[:w 2 5] [:r 2 5] [:w 2 6]]}

Listing D.7: Jepsen register history (filtered by object with key 2)

Consider the example history shown in Listing D.7, where we filter events related to
object 2 (see Listing 3.2). In this history, the order of transactions reflects their commit
order, not the version orders. Deducing the version orders requires comparing values. For
instance, T2 reads the initial value [] and then writes the value 1 to object 2, indicating that T2
installs the first non-null value. However, without further read events, we cannot determine
the version orders between T5 and T7. Here, the WAL log serves as a valuable resource for
establishing version orders within the database.

By analyzing the WAL log, specifically the log entry with "type" 2300, we can identify
the changes in versions for object 2. With this information, we conclude that T5 is prior to
T7 in the version order, allowing us to create a WW edge.
{"tick":"105","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid

":"140","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTaqa---","rwAttr
":1}}

{"tick":"108","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid
":"145","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTay6---","rwAttr
":4}}

{"tick":"111","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid
":"150","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTa0----","rwAttr
":5}}

{"tick":"114","type":2300,"db":"rwRegister","cuid":"h2E06B5FF24F1/136","tid
":"150","data":{"_key":"2","_id":"rwCol/2","_rev":"_f7LTa0K---","rwAttr
":6}}

Listing D.8: ArangoDB Write-Ahead Logs (WAL) of Jepsen register history (filtered by
object with key 2)

Utilizing the WAL simplifies the construction of dependency graphs on edges, making
it similar to list histories. Algorithm 12 and Algorithm 13 retrieve read and write events,
respectively. They construct two lookup tables: one for records per object (R) and another
for write events (W). In register histories, we continue using the same term record: a record
represents a single value read from a register, rather than an array as in list histories. Since
the records are values, they do not require sorting. Instead, they are grouped into a lookup
table similar to write events.
FOR e1 IN r evt

COLLECT obj = e1.obj INTO objs
RETURN { obj, records: (

FOR e2 in objs[∗].e1
COLLECT val = e2.v INTO vals
RETURN { val, ids: vals[∗].e2. id }) }

Listing D.9: Query read events from register histories

FOR e1 IN w evt
COLLECT obj = e1.obj into objs
RETURN { obj, evts: (

FOR e2 in objs[∗].e1
COLLECT element = e2.arg INTO elements

108

D.2. Construction of Dependency Edges on Events

RETURN { element, ids: elements[∗].e2. id, write idx: elements[∗].e2.
index }) }

Listing D.10: Query write events from register histories

Algorithm 12 The function queryReadEvts for register histories
Input: read events Er

Output: lookup table of records per object R
1: function QUERYREADEVTS(Er)
2: I← runQuery(Er, query) ▷ query in Listing D.9
3: R← empty hashmap
4: for info ∈ I do
5: R[info.obj]← empty hashmap
6: for tr ∈ info.records do
7: R[info.obj][r.val]← r.ids ▷ add to the lookup table
8: return R

Algorithm 13 The function queryWriteEvts for register histories
Input: write events Ew

Output: lookup table of write events W
1: function QUERYWRITEEVTS(Ew)
2: I← runQuery(Ew, query) ▷ query in Listing D.10
3: W ← empty hashmap
4: for info ∈ I do
5: W [info.obj]← empty hashmap
6: for e ∈ info.evts do
7: W [info.obj][e.arg]← e.ids[0] ▷ add to the lookup table
8: return W

In addition to these lookup tables, the algorithm relies on the WAL as an input for
register histories. It iterates over the WAL logs of each object to establish dependency
edges between versions. To simplify this process, the logs are organized into a WAL write
map using Algorithm 14.

By utilizing lookup tables and a write-ahead log (WAL) as input variables, Algorithm 15
constructs event dependency edges with the necessary information. The algorithm follows
these steps:

1. Initially, all objects mentioned in the records per object must exist in the WAL write
map. If this condition is not met, the checker identifies a problem known as aborted
reads.

2. Next, the algorithm loops through all objects recorded in the WAL. For each object:

• The initial version is evaluated, and two types of edges are created: RW edges
and an WR edge.

109

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

Algorithm 14 The function getWALWriteMap for register histories
Input: write-ahead logs L
Output: WAL write map L′

1: function GETWALWRITEMAP(L)
2: L′← empty hashmap
3: for row ∈ L do
4: k← row.data. key
5: v← row.data.rwAttr ▷ attribute name set by user
6: if k /∈ L′ then
7: L′[k]← []
8: L′[k].append(v) ▷ append a new version
9: return L′

• The RW edges connect read events that visit the initial zero value to the write
event that installs the initial version.

• The WR edge connects the write event that installs the initial version to the read
events that visit the initial version.

3. After analyzing the initial version, the algorithm proceeds to evaluate the remaining
versions. For each current version, the previous version is also considered as a ref-
erence for constructing the edges. Three types of edges are constructed in a specific
order: RW, WW, and WR.

• RW edges connect read events that visit the previous version to the write event
that installs the current version.

• WW edges connect the write event that installs the previous version to the write
event that installs the current version.

• WR edges connect the write event that installs the current version to the read
event that visits the current version.

4. This process continues until all remaining versions are processed.

Additionally, for each object, two extra checks are performed to ensure the consistency
of the execution history with the WAL:

• Every non-zero version of the object should be included in the WAL. If a version is
missing, it indicates that the history reads a value that hasn’t been committed to the
database, leading to the detection of aborted reads.

• Each version written to the object should also be present in the versions recorded by
the WAL. If some writes exist in the history but are missing in the WAL, it implies an
inconsistency between the history and the WAL.

By conducting these additional checks and constructing the appropriate edges, the algo-
rithm ensures the coherence and integrity of the execution history in relation to the WAL.

When the size of the history increases, it is important to adjust the chunkSize param-
eter in the WAL log retrieval query (refer to Section 3.2.3). Failure to do so may result

110

D.2. Construction of Dependency Edges on Events

Algorithm 15 Construction of dependency edges on events for register histories
Input: a lookup table of records per object R, a lookup table of write events W , write-ahead

logs L
Output: a list of event dependency edges Eevents

1: Eevents← /0

2: L′← getWALWriteMap(L) ▷ WAL write map
3: if ∃ob ject ∈ R. ob ject /∈ L′ then
4: Anomaly: aborted reads ▷ require all objects are recorded in mapL

5: for all (ob ject, versions) ∈ L′.entries do
6: mapR← R[ob ject]
7: mapW ←W [ob ject]
8: if versions == [] then
9: Fatal: Broken WAL logs

10: vinit ← versions[0]
11: if vinit ∈ mapW then ▷ initial version
12: Eevents← Eevents ∪ {(er,ew,RW) | er→ 0 ∧ ew ⊢ vinit}
13: Eevents← Eevents ∪ {(ew,er,WR) | ew ⊢ vinit ∧ er→ vinit}
14: else if vinit ∈ mapR
15: Anomaly: aborted reads
16: vprev← vinit ▷ initialize previous version
17: for all vcur ∈ versions\{vinit} do
18: if vcur ∈ mapW then
19: Eevents← Eevents ∪ {(er,ew,RW) | er→ vprev ∧ ew ⊢ vcur}
20: Eevents← Eevents ∪ {(ew,e′w,WW) | ew ⊢ vprev ∧ e′w ⊢ vcur}
21: Eevents← Eevents ∪ {(ew,er,WR) | ew ⊢ vcur ∧ er→ vcur}
22: vprev← vcur ▷ update previous version
23: else if vcur ∈ mapR

24: Anomaly: aborted reads
25: if {v | v ∈ mapR}\{0, nil}⊈ versions then
26: Anomaly: aborted reads
27: if {v | v ∈ mapW}⊈ versions then
28: Fatal: system faults
29: Return Eevents

111

D. GRAPH CONSTRUCTION STAGE (COMPLETE VERSION)

in incomplete WAL entries, which means that values beyond the allocated space may be
missing. If there is not enough space, the WAL may not contain the values at the end of
the history that were successfully written and read by certain transactions. In our code, this
situation leads to anomalies in aborted reads because we expect the versions shown in the
history to be a subset of the versions recorded in the WAL. To prevent this issue, it is crucial
to avoid the anomaly of aborted reads by adjusting the chunkSize in the HTTP query. This
adjustment allows for lifting the size restrictions and ensuring the integrity of the WAL.

D.3 Projection from Events to Transactions

The query in Listing D.11 converts event dependency edges to transaction dependency
edges. It does this by associating event IDs with their corresponding transaction IDs on
the end vertices of the edges. The resulting transaction dependency edges are then provided
in the desired format. To ensure the validity of each transaction dependency edge, certain
rules are enforced. Firstly, the edge must not have the same transaction as both its start and
end points. Additionally, for each set of end vertices, only one instance of each transaction
type is kept. Once this process is complete, all the vertices and edges in the dependency
graph are finalized, marking the completion of the dependency graph construction.
LET projs = (

FOR d IN evt dep
LET from txn = SPLIT(d. from, ["/", ","])[1]
LET to txn = SPLIT(d. to, ["/", ","])[1]
FILTER from txn != to txn
RETURN { from: CONCAT("txn/", from txn), to: CONCAT("txn/", to txn),

from evt: d. from, to evt: d. to, type: d.type }
)

FOR proj IN projs
COLLECT from = proj. from, to = proj. to, type = proj.type INTO groups = {

"from evt": proj.from evt,
"to evt": proj.to evt

}
RETURN {

" from": from,
" to": to,
"type": type,
"from evt": groups[0].from evt,
"to evt": groups[0].to evt

}

Listing D.11: Projection from events to transactions

112

Appendix E

AQL Queries of the Graph-Based
Checker

This Appendix lists the queries used in the graph-based checker 1.

E.1 Starting Vertex Detection (Cycle checker)

Starting Vertex Detection (Cycle) is used in all isolation levels. Option with randomization
is also possible, where @start is an argument that accepts the id of a random starting vertex.

E.1.1 Serializability (SER)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER edge. to == start. id
LIMIT 1
RETURN path.edges

Listing E.1: Checking SER: Starting Vertex Detection (Cycle)

FOR vertex, edge, path IN 2..4
OUTBOUND @start
GRAPH txn g
FILTER edge. to == @start
LIMIT 1
RETURN path.edges

Listing E.2: Checking SER: Starting Vertex Detection - Randomization (CycleRandom)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g

1Thesis Artifact: https://github.com/jasonqiu98/GRAIL-artifact/tree/thesis

113

https://github.com/jasonqiu98/GRAIL-artifact/tree/thesis

E. AQL QUERIES OF THE GRAPH-BASED CHECKER

FILTER LAST(path.edges[∗]. to) == start. id
LIMIT 1
RETURN path.edges

Listing E.3: Checking SER: Starting Vertex Detection - Filtering on Path (CycleFilter)

E.1.2 Snapshot Isolation (SI)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER edge. to == start. id AND NOT REGEX TEST(CONCAT SEPARATOR(" ", path.

edges[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN path.edges

Listing E.4: Checking SI: Starting Vertex Detection (Cycle)

FOR vertex, edge, path IN 2..4
OUTBOUND @start
GRAPH txn g
FILTER edge. to == @start AND NOT REGEX TEST(CONCAT SEPARATOR(" ", path.edges
[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN path.edges

Listing E.5: Checking SI: Starting Vertex Detection - Randomization (CycleRandom)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER LAST(path.edges[∗]. to) == start. id AND NOT REGEX TEST(

CONCAT SEPARATOR(" ", path.edges[∗].type), "(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN path.edges

Listing E.6: Checking SI: Starting Vertex Detection - Filtering on Path (CycleFilter)

E.1.3 Parallel Snapshot Isolation (PSI)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER edge. to == start. id AND LENGTH(FOR e IN path.edges FILTER e.type

== "rw" RETURN e) < 2
LIMIT 1
RETURN path.edges

Listing E.7: Checking PSI: Starting Vertex Detection (Cycle)

114

E.1. Starting Vertex Detection (Cycle checker)

FOR vertex, edge, path IN 2..4
OUTBOUND @start
GRAPH txn g
FILTER edge. to == @start AND LENGTH(FOR e IN path.edges FILTER e.type == "rw
" RETURN e) < 2
LIMIT 1
RETURN path.edges

Listing E.8: Checking PSI: Starting Vertex Detection - Randomization (CycleRandom)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER LAST(path.edges[∗]. to) == start. id AND LENGTH(FOR e IN path.edges

FILTER e.type == "rw" RETURN e) < 2
LIMIT 1
RETURN path.edges

Listing E.9: Checking PSI: Starting Vertex Detection - Filtering on Path (CycleFilter)

E.1.4 Adya’s PL-2

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER path.edges[∗].type NONE == "rw" AND edge. to == start. id
LIMIT 1
RETURN path.edges

Listing E.10: Checking PL-2: Starting Vertex Detection (Cycle)

FOR vertex, edge, path IN 2..4
OUTBOUND @start
GRAPH txn g
FILTER path.edges[∗].type NONE == "rw" AND edge. to == @start
LIMIT 1
RETURN path.edges

Listing E.11: Checking PL-2: Starting Vertex Detection - Randomization (CycleRandom)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER path.edges[∗].type NONE == "rw" AND LAST(path.edges[∗]. to) == start

. id
LIMIT 1
RETURN path.edges

Listing E.12: Checking PL-2: Starting Vertex Detection - Filtering on Path (CycleFilter)

E.1.5 Adya’s PL-1

115

E. AQL QUERIES OF THE GRAPH-BASED CHECKER

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER path.edges[∗].type ALL == "ww" AND edge. to == start. id
LIMIT 1
RETURN path.edges

Listing E.13: Checking PL-1: Starting Vertex Detection (Cycle)

FOR vertex, edge, path IN 2..4
OUTBOUND @start
GRAPH txn g
FILTER path.edges[∗].type ALL == "ww" AND edge. to == @start
LIMIT 1
RETURN path.edges

Listing E.14: Checking PL-1: Starting Vertex Detection - Randomization (CycleRandom)

FOR start IN txn
FOR vertex, edge, path IN 2..4

OUTBOUND start. id
GRAPH txn g
FILTER path.edges[∗].type ALL == "ww" AND LAST(path.edges[∗]. to) == start

. id
LIMIT 1
RETURN path.edges

Listing E.15: Checking PL-1: Starting Vertex Detection - Filtering on Path (CycleFilter)

E.2 Shortest Path Detection (SP)

Shortest Path Detection (SP) is used in all isolation levels.

E.2.1 Serializability (SER)

FOR edge IN txn dep edges
FOR p IN OUTBOUND K SHORTEST PATHS

edge. to TO edge. from
GRAPH txn g
LIMIT 1
RETURN {edges: UNSHIFT(p.edges, edge), vertices: UNSHIFT(p.vertices, p.

vertices[LENGTH(p.vertices) − 1])}

Listing E.16: Checking SER: Shortest Path Detection (SP)

E.2.2 Snapshot Isolation (SI)

LET cycles = (
FOR edge IN txn dep edges

FOR p IN OUTBOUND K SHORTEST PATHS
edge. to TO edge. from

116

E.2. Shortest Path Detection (SP)

GRAPH txn g
RETURN {edges: UNSHIFT(p.edges, edge), vertices: UNSHIFT(p.vertices, p.

vertices[LENGTH(p.vertices) − 1])}
)

FOR cycle IN cycles
FILTER NOT REGEX TEST(CONCAT SEPARATOR(" ", cycle.edges[∗].type),

"(ˆrw.∗rw$|rw rw)")
LIMIT 1
RETURN cycle

Listing E.17: Checking SI: Shortest Path Detection (SP)

E.2.3 Parallel Snapshot Isolation (PSI)

LET cycles = (
FOR edge IN txn dep edges

FOR p IN OUTBOUND K SHORTEST PATHS
edge. to TO edge. from
GRAPH txn g
RETURN {edges: UNSHIFT(p.edges, edge), vertices: UNSHIFT(p.vertices, p.

vertices[LENGTH(p.vertices) − 1])}
)

FOR cycle IN cycles
FILTER LENGTH(FOR e IN cycle.edges FILTER e.type == "rw" RETURN e) < 2
LIMIT 1
RETURN cycle

Listing E.18: Checking PSI: Shortest Path Detection (SP)

E.2.4 Adya’s PL-2

LET cycles = (
FOR edge IN txn dep edges

FILTER edge != "rw"
FOR p IN OUTBOUND K SHORTEST PATHS

edge. to TO edge. from
GRAPH txn g
RETURN {edges: UNSHIFT(p.edges, edge), vertices: UNSHIFT(p.vertices, p.

vertices[LENGTH(p.vertices) − 1])}
)

FOR cycle IN cycles
FILTER cycle.edges[∗].type NONE == "rw"
LIMIT 1
RETURN cycle

Listing E.19: Checking PL-2: Shortest Path Detection (SP)

E.2.5 Adya’s PL-1

117

E. AQL QUERIES OF THE GRAPH-BASED CHECKER

LET cycles = (
FOR edge IN txn dep edges

FILTER edge.type == "ww"
FOR p IN OUTBOUND K SHORTEST PATHS

edge. to TO edge. from
GRAPH txn g
RETURN {edges: UNSHIFT(p.edges, edge), vertices: UNSHIFT(p.vertices, p.

vertices[LENGTH(p.vertices) − 1])}
)

FOR cycle IN cycles
FILTER cycle.edges[∗].type ALL == "ww"
LIMIT 1
RETURN cycle

Listing E.20: Checking PL-1: Shortest Path Detection (SP)

E.3 ArangoDB Pregel SCC Algorithm (Pregel)

The Pregel SCC Algorithm only applies to checking serializability.
jobId, err := db.StartJob(context.Background(), driver.PregelJobOptions{

Algorithm: driver.PregelAlgorithmStronglyConnectedComponents,
GraphName: dbConsts.TxnGraph,
Params: map[string]interface{}{

"resultField": "scc",
"shardKeyAttribute": "_from",
"store": true,

},
})

if err != nil {
log.Fatalf("Failed to start Pregel SCC algorithm: %v\n", err)

}

Listing E.21: Checking SER: ArangoDB Pregel SCC Algorithm (Arango-Pregel)

E.4 Neo4j-APOC Cycle Detection

As a supplement, an example of cycle detection in Neo4j is also attached. The following
Cypher query detects all the cycles in a dependency graph.
MATCH (n:txn) with collect(n) as nodes
CALL apoc.nodes.cycles(nodes)
YIELD path
RETURN path

Listing E.22: Neo4j APOC Cycle Detection (Neo4j-APOC)

118

E.5. Neo4j-GDS SCC Algorithm

E.5 Neo4j-GDS SCC Algorithm

An example of SCC detection in Neo4j is also attached. The following Cypher query detects
all the SCCs in a dependency graph.
CALL gds.alpha.scc.stream('g', {})
YIELD nodeId, componentId WITH componentId,
COLLECT(nodeId) AS ns,
COUNT(nodeId) AS num
WHERE num > 1
RETURN ns

Listing E.23: Neo4j APOC Cycle Detection (Neo4j-APOC)

119

Appendix F

Dataset Characteristics of List and
Register Histories

This appendix lists the characterstics of each dataset of List1-List5, Reg1-Reg4. Each col-
umn is explained below.

121

F. DATASET CHARACTERISTICS OF LIST AND REGISTER HISTORIES

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 532 405 433 434 1370 70 3.1567 434 360
20 1048 774 790 822 2612 87 3.1776 822 753
30 1580 1248 1264 1293 4092 174 3.1647 1293 1043
40 2152 1684 1722 1743 5558 274 3.1888 1743 1443
50 2761 2047 2177 2167 6985 345 3.2234 2167 1802
60 3148 2453 2497 2547 8098 381 3.1794 2547 2215
70 3822 2908 2953 3023 9683 685 3.2031 3023 2594
80 4257 3349 3483 3458 11089 540 3.2068 3458 2938
90 4562 3625 3808 3795 11995 593 3.1607 3795 3314
100 5277 4234 4234 4269 13745 665 3.2197 4269 3625
110 5699 4416 4617 4634 14732 825 3.1791 4634 4127
120 6329 4890 5066 5099 16285 787 3.1938 5099 4471
130 6675 5240 5350 5475 17265 851 3.1534 5475 4869
140 7190 5585 5753 5880 18528 919 3.151 5880 5110
150 7785 5999 6345 6309 20129 941 3.1905 6309 5518
160 8382 6408 6666 6771 21456 1029 3.1688 6771 6016
170 8553 6798 6960 7068 22311 1025 3.1566 7068 6168
180 7885 6016 6195 6342 20096 1001 3.1687 6342 5708
190 9698 7666 7945 8012 25309 1158 3.1589 8012 7023
200 10938 8631 8864 8839 28433 1253 3.2168 8839 7134

Table F.1: Dataset characteristics: list-collection-time histories (List1)

122

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 245 179 202 208 626 41 3.0096 208 207
20 410 345 355 357 1110 62 3.1092 357 348
30 674 539 524 542 1737 96 3.2048 542 454
40 872 699 710 703 2281 1871 3.2447 703 541
50 1052 799 839 812 2690 180 3.3128 812 668
60 1237 1008 1024 1013 3269 187 3.227 1013 810
70 1326 1034 1051 1094 3411 174 3.1179 1094 1077
80 1559 1239 1215 1275 4013 229 3.1475 1275 1112
90 1693 1337 1352 1413 4382 9550 3.1012 1413 1296
100 1920 1528 1515 1549 4963 324 3.204 1549 1358
110 2099 1628 1693 1687 5420 292 3.2128 1687 1543
120 2312 1778 1810 1876 5900 248 3.145 1876 1655
130 2511 1952 2090 2063 6553 369 3.1764 2063 1786
140 2605 1997 2121 2115 6723 305 3.1787 2115 1945
150 2773 2097 2204 2283 7074 403 3.0986 2283 2132
160 3023 2336 2422 2490 7781 487 3.1249 2490 2251
170 3193 2459 2545 2596 8197 563 3.1576 2596 2319
180 3415 2581 2732 2764 8728 1538 3.1577 2764 2500
190 3507 2653 2886 2901 9046 577 3.1182 2901 2591
200 3845 2865 3038 3119 9748 916 3.1254 3119 2814

Table F.2: Dataset characteristics: list-collection-time-nemesis histories (List2)

123

F. DATASET CHARACTERISTICS OF LIST AND REGISTER HISTORIES

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 1228 1259 1082 940 3569 20 3.7968 940 94
20 2248 2224 1923 1722 6395 28 3.7137 1722 239
30 3054 3026 2705 2418 8785 90 3.6332 2418 552
40 3754 3662 3311 3009 10727 148 3.565 3009 983
50 4485 4121 3900 3534 12506 282 3.5388 3534 1457
60 5001 4389 4101 3885 13491 335 3.4726 3885 2026
70 5223 4535 4496 4251 14254 418 3.3531 4251 2711
80 5616 4562 4548 4521 14726 677 3.2572 4521 3392
90 5728 4479 4627 4728 14834 858 3.1375 4728 4328
100 6078 4411 4771 4946 15260 891 3.0853 4946 4917
110 6257 4242 4633 5069 15132 1258 2.9852 5069 5771
120 6411 4102 4751 5304 15264 1401 2.8778 5304 6547
130 6825 4443 5132 5679 16400 1324 2.8878 5679 7044
140 6141 3778 4437 5168 14356 1609 2.7779 5168 7124
150 7294 4361 5208 6189 16863 1692 2.7247 6189 8588
160 7555 4207 5190 6319 16952 2268 2.6827 6319 9339
170 7268 3786 4914 6293 15968 1973 2.5374 6293 10329
180 4488 2146 2876 3976 9510 1167 2.3919 3976 7177
190 7245 3430 4546 6522 15221 2580 2.3338 6522 12051
200 7479 3315 4625 6672 15419 2725 2.311 6672 12827

Table F.3: Dataset characteristics: list-rate histories (List3)

124

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 465 460 412 373 1337 32 3.5845 373 86
20 773 766 708 631 2247 2616 3.561 631 183
30 1054 1074 962 861 3090 1249 3.5889 861 277
40 1317 1221 1178 1071 3716 74 3.4697 1071 462
50 1555 1409 1318 1238 4282 99 3.4588 1238 691
60 1563 1401 1322 1322 4286 2394 3.2421 1322 928
70 1821 1528 1495 1474 4844 4063 3.2863 1474 1118
80 1982 1588 1636 1639 5206 686 3.1763 1639 1350
90 2117 1597 1632 1704 5346 10392 3.1373 1704 1611
100 2182 1509 1684 1767 5375 405 3.0419 1767 1885
110 2212 1456 1720 1814 5388 482 2.9702 1814 2196
120 2202 1365 1659 1865 5226 455 2.8021 1865 2489
130 2354 1372 1620 1960 5346 608 2.7276 1960 2758
140 2340 1275 1511 1957 5126 540 2.6193 1957 3001
150 2368 1218 1557 2052 5143 709 2.5063 2052 3452
160 2326 1172 1522 2082 5020 631 2.4111 2082 3741
170 2291 959 1332 2037 4582 658 2.2494 2037 3954
180 2359 966 1332 2116 4657 664 2.2009 2116 4401
190 2471 1014 1484 2241 4969 1126 2.2173 2241 4568
200 2436 933 1398 2269 4767 744 2.1009 2269 4860

Table F.4: Dataset characteristics: list-rate-nemesis histories (List4)

125

F. DATASET CHARACTERISTICS OF LIST AND REGISTER HISTORIES

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 594 403 448 469 1445 112 3.081 469 493
20 621 426 472 482 1519 108 3.1515 482 491
30 569 375 448 473 1392 452 2.9429 473 516
40 590 417 443 475 1450 89 3.0526 475 494
50 585 408 432 490 1425 99 2.9082 490 525
60 577 396 438 469 1411 86 3.0085 469 515
70 568 416 417 470 1401 88 2.9809 470 466
80 616 421 466 490 1503 133 3.0673 490 488
90 630 401 487 488 1518 101 3.1107 488 508
100 591 427 431 479 1449 331 3.0251 479 478
110 613 443 443 490 1499 160 3.0592 490 454
120 588 425 497 499 1510 85 3.0261 499 481
130 568 416 432 472 1416 72 3 472 480
140 599 409 485 484 1493 361 3.0847 484 496
150 600 407 444 473 1451 99 3.0677 473 472
160 569 388 433 466 1390 114 2.9828 466 468
170 572 414 426 467 1412 66 3.0236 467 495
180 531 387 398 453 1316 104 2.9051 453 526
190 558 394 407 470 1359 89 2.8915 470 523
200 581 419 496 479 1496 98 3.1232 479 506

Table F.5: Dataset characteristics: list-histories-30s histories (List5)

126

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 211 245 218 184 674 2 3.663 184 8
20 448 526 451 392 1425 0 3.6352 392 12
30 689 779 654 587 2122 0 3.615 587 18
40 861 990 831 741 2682 10 3.6194 741 30
50 1103 1283 1138 967 3524 2 3.6443 967 41
60 1347 1517 1301 1138 4165 6 3.6599 1138 47
70 1547 1829 1555 1366 4931 26 3.6098 1366 51
80 1852 2166 1807 1573 5825 20 3.7031 1573 51
90 1944 2233 1930 1685 6107 2 3.6243 1685 61
100 2223 2546 2268 1910 7037 8 3.6843 1910 71
110 2557 2828 2496 2117 7881 10 3.7227 2117 75
120 2658 3140 2652 2314 8450 16 3.6517 2314 63
130 2937 3452 2983 2552 9372 18 3.6724 2552 98
140 3102 3631 3080 2726 9813 14 3.5998 2726 81
150 3381 3958 3283 2912 10622 25 3.6477 2912 92
160 3641 4221 3621 3111 11483 24 3.6911 3111 97
170 3797 4396 3728 3282 11921 20 3.6322 3282 93
180 4001 4713 4052 3471 12766 30 3.6779 3471 131
190 4202 4928 4211 3651 13341 20 3.6541 3651 132
200 4408 5200 4428 3889 14036 16 3.6092 3889 160

Table F.6: Dataset characteristics: reg-collection-time histories (Reg1)

127

F. DATASET CHARACTERISTICS OF LIST AND REGISTER HISTORIES

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 326 344 325 273 995 0 3.6447 273 8
20 611 784 597 556 1992 6 3.5827 556 30
30 971 1188 990 876 3149 8 3.5947 876 46
40 1294 1499 1254 1124 4047 14 3.6005 1124 76
50 1669 1878 1597 1411 5144 26 3.6456 1411 105
60 1962 2179 1903 1658 6044 34 3.6454 1658 147
70 2172 2463 2157 1879 6792 34 3.6147 1879 206
80 2504 2746 2436 2126 7686 40 3.6152 2126 214
90 2678 3147 2643 2389 8468 50 3.5446 2389 302
100 2926 3390 2874 2597 9190 60 3.5387 2597 382
110 3240 3674 3123 2835 10037 84 3.5404 2835 454
120 3408 3797 3388 2997 10593 101 3.5345 2997 552
130 3658 4026 3603 3200 11287 122 3.5272 3200 624
140 3886 4335 3814 3421 12035 120 3.518 3421 683
150 4211 4617 4226 3692 13054 160 3.5358 3692 807
160 4297 4819 4247 3835 13363 168 3.4845 3835 841
170 4527 5037 4349 3984 13913 189 3.4922 3984 968
180 4748 5177 4577 4188 14502 163 3.4628 4188 1168
190 4958 5381 4842 4341 15181 209 3.4971 4341 1238
200 5099 5592 4930 4518 15621 246 3.4575 4518 1347

Table F.7: Dataset characteristics: reg-rate histories (Reg2)

128

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

10 660 791 668 578 2119 4 3.6661 578 25
20 616 765 616 572 1997 4 3.4913 572 22
30 666 773 660 574 2099 4 3.6568 574 24
40 670 775 652 568 2097 2 3.6919 568 28
50 649 759 645 557 2053 4 3.6858 557 14
60 657 808 685 590 2150 4 3.6441 590 9
70 679 786 658 587 2123 0 3.6167 587 17
80 608 759 597 561 1964 6 3.5009 561 29
90 610 763 656 579 2029 2 3.5043 579 28
100 705 798 665 592 2168 6 3.6622 592 22
110 643 745 611 550 1999 2 3.6345 550 23
120 683 761 678 567 2122 0 3.7425 567 15
130 647 768 667 574 2082 12 3.6272 574 22
140 646 766 661 577 2073 2 3.5927 577 27
150 656 768 677 582 2101 2 3.61 582 14
160 674 780 676 570 2130 4 3.7368 570 21
170 664 778 669 570 2111 0 3.7035 570 17
180 638 761 620 559 2019 4 3.6118 559 23
190 706 773 677 577 2156 11 3.7366 577 22
200 650 766 642 576 2058 2 3.5729 576 22

Table F.8: Dataset characteristics: reg-session histories (Reg3)

129

F. DATASET CHARACTERISTICS OF LIST AND REGISTER HISTORIES

#RW #WW #WR #vertices #edges #traversals density #committed #aborted

1 487 0 456 605 943 6 1.5587 605 0
2 598 395 562 630 1555 4 2.4683 630 11
3 578 532 595 567 1705 6 3.0071 567 18
4 606 644 658 580 1908 4 3.2897 580 12
5 622 716 651 598 1989 10 3.3261 598 19
6 673 716 652 577 2041 4 3.5373 577 12
7 672 711 637 578 2020 8 3.4948 578 15
8 692 789 664 594 2145 2 3.6111 594 13
9 647 765 643 569 2055 4 3.6116 569 16
10 679 794 649 573 2122 2 3.7033 573 26
11 691 850 697 592 2238 4 3.7804 592 20
12 668 819 676 581 2163 2 3.7229 581 22
13 698 841 681 576 2220 0 3.8542 576 22
14 647 839 679 570 2165 0 3.7982 570 17
15 688 864 707 589 2259 6 3.8353 589 17
16 694 851 699 573 2244 2 3.9162 573 19
17 691 887 681 596 2259 0 3.7903 596 21
18 715 883 707 586 2305 0 3.9334 586 24
19 667 887 674 582 2228 2 3.8282 582 14
20 661 861 671 573 2193 0 3.8272 573 19

Table F.9: Dataset characteristics: reg-max-write histories (Reg4)

130

Appendix G

Runtime of Cycle Checker with
Different Max Depths

This appendix lists the runtime of the Cycle checker on List1 dataset, with the max depth
varying from 5 to 2.

131

G. RUNTIME OF CYCLE CHECKER WITH DIFFERENT MAX DEPTHS

Collection time (s) Cycle (d=5) Cycle (d=4) Cycle (d=3) Cycle (d=2)

10 287 66 22 10
20 585 134 42 16
30 904 237 71 21
40 1410 299 97 30
50 1618 360 106 43
60 1198 412 120 42
70 1524 544 170 52
80 1974 577 174 60
90 1912 609 184 47
100 2517 762 230 60
110 2209 826 216 66
120 2922 847 267 68
130 2608 863 288 71
140 4289 1045 425 77
150 3309 1058 318 91
160 3314 1080 352 87
170 3790 1506 403 116
180 3908 960 432 116
190 4052 1433 473 105
200 3489 1155 378 158

Table G.1: Runtime of Cycle checker with different max depths in SER checking on
list-collection-time dataset (List1)

132

Collection time (s) Cycle (d=5) Cycle (d=4) Cycle (d=3) Cycle (d=2)

10 286 63 21 8
20 580 138 45 14
30 913 228 72 21
40 1412 310 100 29
50 1617 363 107 43
60 1174 426 120 43
70 1512 564 167 54
80 1978 583 175 61
90 1944 652 186 50
100 2459 765 232 62
110 2192 859 217 68
120 2896 849 265 70
130 2611 880 291 74
140 4367 1455 422 80
150 3267 1107 323 91
160 3346 1065 358 87
170 3780 1519 408 114
180 3931 999 434 115
190 4054 1460 461 106
200 3551 1186 380 156

Table G.2: Runtime of Cycle checker with different max depths in SI checking on
list-collection-time dataset (List1)

133

G. RUNTIME OF CYCLE CHECKER WITH DIFFERENT MAX DEPTHS

Collection time (s) Cycle (d=5) Cycle (d=4) Cycle (d=3) Cycle (d=2)

10 296 79 37 19
20 583 143 54 23
30 941 252 87 34
40 1440 332 127 53
50 1695 412 159 70
60 1229 489 171 84
70 1772 664 256 105
80 2005 666 283 109
90 2058 722 287 114
100 2596 894 339 138
110 2364 984 345 148
120 3128 998 397 190
130 2888 1018 424 152
140 4549 1660 573 182
150 3413 1310 476 191
160 3551 1281 539 185
170 4157 1721 573 235
180 4303 1195 611 221
190 6106 2054 727 246
200 4957 1734 641 308

Table G.3: Runtime of Cycle checker with different max depths in PSI checking on
list-collection-time dataset (List1)

134

Collection time (s) Cycle (d=5) Cycle (d=4) Cycle (d=3) Cycle (d=2)

10 73 28 14 8
20 146 54 26 15
30 252 97 47 23
40 367 124 64 32
50 450 147 67 45
60 285 168 74 45
70 401 227 109 55
80 524 263 118 63
90 521 276 122 47
100 655 328 151 61
110 586 354 137 68
120 748 341 171 69
130 703 367 191 69
140 1160 636 285 75
150 837 455 202 90
160 839 438 225 85
170 1064 665 273 122
180 1051 544 283 122
190 1627 820 370 103
200 1224 876 278 168

Table G.4: Runtime of Cycle checker with different max depths in PL-2 checking on
list-collection-time dataset (List1)

135

G. RUNTIME OF CYCLE CHECKER WITH DIFFERENT MAX DEPTHS

Collection time (s) Cycle (d=5) Cycle (d=4) Cycle (d=3) Cycle (d=2)

10 11 7 5 5
20 21 13 9 9
30 35 23 17 13
40 53 30 23 18
50 60 34 23 25
60 42 42 26 25
70 52 52 39 30
80 71 61 41 35
90 72 65 44 27
100 96 80 55 35
110 83 85 48 36
120 102 81 62 39
130 99 87 67 39
140 163 148 101 43
150 121 118 73 51
160 122 110 81 48
170 151 157 98 69
180 152 127 102 68
190 219 185 125 58
200 170 203 101 94

Table G.5: Runtime of Cycle checker with different max depths in PL-1 checking on
list-collection-time dataset (List1)

136

	Preface
	Contents
	List of Figures
	Introduction
	Terminologies
	Motivation
	Research Questions
	Research Methodology
	Contributions
	Thesis Outline

	Preliminaries
	Isolation Levels: Formal Definitions
	Examples of Execution Histories and Anti-Patterns
	ArangoDB: Distributed Graph Database
	Cycle Detection Algorithms
	Isolation Level Checkers
	Anti-Pattern Detection by Graph Database Queries

	Graph-Based Checker: Part I - History Collection and Graph Construction
	The Workflow
	History Collection
	Graph Construction

	Graph-Based Checker: Part II - Cycle Detection in ArangoDB
	Checking SI: Definition-Based Checker
	Checking SI: SP Checker
	Checking SI: Pregel Checker
	Output and Visualization
	Isolation Level of ArangoDB Cluster

	Evaluation
	Research Questions
	Research Methodology
	Exploratory Data Analysis
	Effectiveness
	Scalability
	Comparison with Other Checkers
	Summary of Results
	Discussion

	Related Work
	Isolation Levels: A Brief History
	The Trend of Graph Databases
	Isolation Level Checking

	Conclusions and Future Work
	Conclusions
	Contributions
	Future work

	Bibliography
	An Overview of ArangoDB v3.9
	Data Model
	Cluster Architecture
	Storage Engine and Transactions
	Database Operations
	Limitations

	Pseudocode of Cycle Detection Algorithms
	Starting Vertex Detection
	Back Edge Detection
	Shortest Path Detection
	Tarjan's Algorithm
	Kosaraju-Sharir's Algorithm
	Path-based Strong Component Algorithm

	Validity of the Relaxation from Cycle Detection to SCC Detection
	Graph Construction Stage (Complete Version)
	Vertices and Edges
	Construction of Dependency Edges on Events
	Projection from Events to Transactions

	AQL Queries of the Graph-Based Checker
	Starting Vertex Detection (Cycle checker)
	Shortest Path Detection (SP)
	ArangoDB Pregel SCC Algorithm (Pregel)
	Neo4j-APOC Cycle Detection
	Neo4j-GDS SCC Algorithm

	Dataset Characteristics of List and Register Histories
	Runtime of Cycle Checker with Different Max Depths

