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Currently, the detection of GNSS mixed-integer model 
misspecifications is either based on the ambiguity-float (AF) 
detector or the ambiguity-known (AK) detector (Teunissen 
2024). The AF detector is applied when the ambiguity is 
not resolved (fixed) to an integer vector. The ambiguity is 
considered to be an unknown real vector, and knowledge 
of its integer property is then not used to benefit detection. 
The AK detector, on the other hand, can be applied when 
the ambiguity is completely known. In practice, ambigu-
ity resolution is carried out when the success rate is very 
close to one (e.g., > 0.999), and the resolved ambiguity is 
commonly assumed to be known and consequently treated 
as a deterministic quantity (Feng et al. 2009; Wang et al. 
2022; Zhang et al. 2023), although it is a random estima-
tor. Teunissen (2024) proposes the ambiguity-resolved (AR) 
detection theory, in which the ambiguity is treated as an 
unknown integer vector. By considering the distributional 
property of the resolved ambiguity, the AR-detector enables 
ambiguity resolution to contribute to model validation even 
if the success rate is not close to one. The distribution of 
the AR test statistic cannot be written in a closed form due 
to the discrete nature of the resolved ambiguity. Numeri-
cal simulations and analysis are necessary to understand the 

Introduction

The Global Navigation Satellite System (GNSS) obser-
vation models connect the observables and the unknown 
model parameters. Unmodeled effects may misspecify the 
assumed model, which can seriously deteriorate the estima-
tion results when they remain unnoticed (Misra and Enge 
2011; Hofmann-Wellenhof et al. 2012; Teunissen and Mon-
tenbruck 2017). Therefore, the validation of the observation 
model is essential in GNSS data processing. The detection, 
identification, and adaptation (DIA) procedure has been 
widely used in model validation (Baarda 1968; Kok 1984; 
Teunissen 2000). Detection is the first step in this procedure, 
where an overall model test is performed to diagnose if a 
model misspecification occurs.
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Teunissen (J Geod 98(83):1–16, 2024) proposed the ambiguity-resolved (AR) detection theory for GNSS mixed-integer 
model validation. In this contribution, we study the performance of the AR detector through analysis and simulation 
experiments and compare it with the ambiguity-float (AF) and ambiguity-known (AK) detectors. We describe how the 
detectors can be implemented and how to evaluate their performance by computing the power as functions of the model 
misspecifications’ size. We present two simulation experiments with single- and dual-frequency GPS models and demon-
strate that the AR detector can provide a larger detection power than the AF detector, even if the success rate is not close 
to one. Then, we obtain power functions over 25 user locations with five observation models and 72 satellite geometries 
per location per model. We find that the AR detector increases the detection probability of ionosphere and troposphere 
delays by 47% and 60% on average when the success rate is larger than 97.5% and the level of significance is 0.01. We 
also find the AR detection power to be larger than that of the AF detector in case of multi-dimensional misspecifications.
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performance of the AR detector for detecting GNSS model 
misspecifications.

We evaluate and compare the performance of the AF, AK, 
and AR detectors for the single-differenced (SD) common-
oscillator model and the short baseline double-differenced 
(DD) model. The SD model with a common oscillator is 
used in attitude determination, which can be affected by 
constant biases (Keong 1999; Chen 2016). The short base-
line DD model is one of the commonly used relative posi-
tioning models, in which the pseudorange and carrier phase 
observables from more than one receiver are combined to 
eliminate or reduce the common errors between the receiv-
ers (Leick et al. 2015; Odijk 2017). The relative positioning 
models can be formulated with undifferenced (UD), SD, or 
DD observables collected from a single baseline or a net-
work (Tiberius 1998; Odijk 2017). We use the short base-
line DD model as an example to conduct experiments and 
compare the performance of the detectors. Similar perfor-
mance can be expected for the models formulated with UD 
and SD observables, as well as the atmosphere-corrected 
network-RTK and PPP-RTK user models, which are intrin-
sically equivalent to the short-baseline DD model given 
that the user observation setup is the same and the variance-
covariance (vc) matrix of the corrections are appropriately 
considered (Teunissen and Khodabandeh 2015; Odijk et 
al. 2016; Kouba et al. 2017). We focus on the validation of 
relative positioning models, which are vulnerable to blun-
ders in pseudorange observables, carrier phase outliers due 
to multipath or faulty corrections and cycle slips (Braasch 
2017; Duan et al. 2024), and ionosphere and troposphere 
delays that are not fully canceled or corrected (Ahn et al. 
2006; Lawrence et al. 2006; Huang and van Graas 2007; 
Wanninger 2004; Hernández-Pajares et al. 2011; Dao et al. 
2024). These misspecifications are modeled by means of the 
alternative hypotheses Ha, for which the detection power 
will be analyzed.

This contribution starts with the theoretical background: 
the observation models under the null and alternative 
hypotheses are described, and the ambiguity resolution and 
misspecification detection theory for the GNSS mixed-inte-
ger models is reviewed. After that, we describe how to carry 
out the mixed-integer model detection and how to obtain 
the statistical power of the detectors. The critical value and 
power of the AR detector can only be obtained by the Monte 
Carlo method; thus, we introduce how to evaluate the uncer-
tainty of the Monte Carlo simulations. It is followed by the 
experiment section that compares the power of detectors 
for one- and multi-dimensional model misspecifications, 
where the superiority of the AR detector to the AF detector 
is shown, and the irregular shapes of the AR power func-
tions are explained. Finally, the summary and conclusions 
are presented.

Review of theory

Differential observation model

Assume s + 1 satellites from the same constellation are 
tracked by the rover and reference receivers on f  frequen-
cies for k epochs. The linearized double-differenced (DD) 
GNSS observation model can be written as

H0 : E
{

y
}

= Aa + Bb, D
{

y
}

= Qyy,

Ha : E
{

y
}

= Aa + Bb + Cc, D
{

y
}

= Qyy,
 (1)

where H0 and Ha denote the null and alternative hypoth-
eses, respectively. E{·} is the expectation operator and 
D{·} is the dispersion operator. The underline ′·′ denotes a 
random variable or vector. y = [φT , pT ]T ∈ R2sfk contains 
the double-differenced carrier phase φ and pseudorange p 
and we assume them to be normally distributed. R(∗) rep-
resents a (∗) dimensional real space. With this definition 
of Ha, we consider only misspecifications on the mean 
of y, which are modeled by design matrix C and vector 
c ∈ Rq, with q the dimension of the misspecification under 
Ha. a ∈ Zsf  is the unknown integer ambiguity vector and 
b ∈ R3 is the real-valued baseline vector.Z(∗) represents a 
(∗) dimensional integer space. The design matrix [A, B, C] 
is assumed to be of full column rank.

The design matrix for the ambiguity vector is

A = [ 1 0 ]T ⊗ 1k ⊗ diag (λ1, · · · , λf ) ⊗ Is, (2)

where ⊗ denotes the Kronecker product, 1k is a k × 1 
vector with values of 1, ‘ diag’ refers to a diagonal matrix, 
λf  is the wavelength of the f -th frequency, and Is is an 
s × s identity matrix.

The design matrix for the baseline is

B = 12 ⊗ Mk ⊗ 1f ⊗
(
DT G

)
, (3)

with Mk = 1k for a stationary receiver and Mk = Ik for 
a moving receiver; DT = [−1s, Is] the s × (s + 1) 
between-satellite differencing matrix ( DT = Is+1 for 
the SD model in which the between-satellite differencing 
is not conducted); G the (s + 1) × 3 geometry matrix 
contains the unit vectors from satellites to receivers. In this 
contribution, we consider the instantaneous and short time 
span cases where G is practically time-invariant.

The variance-covariance (vc) matrix of observable y is

Qyy = diag
(
σ2

φ, σ2
p

)
⊗ Rk ⊗ If ⊗ 2DT W −1D, (4)
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σ2
φ and σ2

p are the zenith-referenced undifferenced phase 
and pseudorange variances; we assume that the phase and 
pseudorange observables are uncorrelated. The non-diago-
nal elements of the k × k matrix Rk account for the time 
correlation between the observables from different epochs, 
and its diagonal values are 1 (Odijk and Teunissen 2008). 
With the f × f  identity matrix If , we assume the observ-
ables from different frequencies are uncorrelated and of the 
same precision. W = diag (w1, · · · , wi, · · · , ws+1) 
contains the elevation-dependent weights for each satellite 
(Euler and Goad 1991),

wi = 1/
(
a0 + a1exp

(
−Ei/E0

))2
, (5)

where Ei is the elevation of the i-th satellite in degrees. 
Examples of the model coefficients a0, a1 and E0 can 
be found in (Euler and Goad 1991; Jin and de Jong 1996). 
a0 = 1, a1 = 10 and E0 = 10 degrees are used in our sim-
ulation experiments.

When the DD model contains observables from two con-
stellations, the design matrices and vc-matrix can be stacked 
as follows,

A12 =
[

A1

A2

]
, B12 =

[
B1

B2

]
, Q12

yy =
[

Q1
yy

Q2
yy

]
, (6)

where Ai, Bi and Qi
yy  are the design matrices and vc-

matrix for the i-th constellation. The observables are differ-
enced within each constellation, and the receiver hardware 
delays are canceled; thus, inter-system biases do not appear 
in the model.

To evaluate the performance of the detectors for a spe-
cific model misspecification, we consider the observation 
model under Ha, in which C models a misspecification 
of size c. We evaluate the detection performance of four 
misspecifications with the DD model and of one misspecifi-
cation with the SD common oscillator model. The design 
matrices for the one-dimensional misspecification are given 
below, and they can be concatenated when we work with 
multi-dimensional misspecifications, e.g., blunders in sev-
eral pseudorange observables.

Although most errors and delays are eliminated or cor-
rected in relative positioning models, pseudorange mul-
tipath delays may appear and affect the estimation accuracy, 
ranging from several meters to even 100 m in most severe 
conditions (Braasch 2017). The design matrix for a blun-
der in pseudorange observable of the i-th satellite, j-th fre-
quency, k-th epoch is

C =
[

0
1

]
⊗ ck ⊗ cj ⊗ DT ci, (7)

where ci is a canonical vector with its i-th entry equal to 
one and zero for others.

Phase observables may contain outliers and cycle slips. 
Additionally, phase bias corrections in the network-based 
scenario may contain errors that can be interpreted as phase 
outliers in the user model at the centimeters level (e.g., Duan 
et al. 2024). To evaluate the performance of the detectors for 
phase outliers, we use the model with two epochs, and we 
assume the outlier or cycle slip appears in the observables of 
the second epoch. For the phase outlier from the i-th satel-
lite, j-th frequency, the corresponding design matrix is writ-
ten as

C =
[

1
0

]
⊗

[
0
1

]
⊗ cj ⊗ DT ci. (8)

The troposphere delay can be separated into dry and wet 
constituents, of which the dry component can be modeled 
with high precision. In relative positioning models, the wet 
delay could be canceled or corrected in most cases. How-
ever, during severe weather conditions, troposphere anoma-
lies can cause delays ranging from several centimeters to 
several decimeters in the differenced/corrected observables 
(Ahn et al. 2006; Lawrence et al. 2006; Huang and Van 
Graas 2007). The design matrix for the troposphere delay 
at the k-th epoch is

C =
[

1
1

]
⊗ ck ⊗ 1f ⊗ DT

[
m

(
E1)

· · · m
(
Es+1) ]T

, (9)

with m(·) the troposphere mapping function. 
m (E) = 1/ sin (E) is used in our simulations (Hobinger 
and Jakowski 2017). The misspecification c in this model is 
the differential zenith wet delay in meters.

Similar to the troposphere delay, the differential iono-
sphere delay can be ignored under the nominal condition, 
while this is not the case under anomalous conditions, for 
example, in the presence of ionosphere disturbance (Wan-
ninger 2004; Hernández-Pajares et al. 2011) or when the 
ionosphere spatial gradients are hundreds of millimeters per 
kilometer, which can lead to differential ionosphere delays 
at the decimeter level (Pullen et al. 2009). The performance 
of the AR detector for ionosphere delays of satellite i on 
epoch k is evaluated with the design matrix

C =
[

−1
1

]
⊗ ck ⊗ µ ⊗ DT ci, (10)

where µ =
[

λ2
1

λ2
1

· · · λ2
f

λ2
1

]T

. The misspecification 

c in this model is the size of the differential ionosphere 
delay of the first frequency in meters. The value can be 
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where ZT  is an admissible ambiguity decorrelation trans-
formation matrix (ibid.).

The success rate of the ILS estimator cannot be computed 
analytically, and the integer bootstrapping (IB) success rate 
for the decorrelated ambiguity ẑ provides a tight and easy-
to-compute lower bound for it (Teunissen 1998; Verhagen 
2003), which is computed as

P (žIB = ZT a) =
n∏

i=1

[
2Φ

(
1

2σẑi|1,··· ,i−1

)
− 1

]
, (14)

where a is the true ambiguity; 
Φ (x) =

∫ x

−∞
1√
2π

exp
{

− 1
2 v2}

dv is the cumulative 
distribution function (CDF) of the standard normal distri-
bution; the conditional standard deviations σ ẑi|1,··· ,i−1  are 
the square root of diagonal values of the diagonal matrix 
provided by the triangular matrix factorization of Qâ â.

Detection theory

Two detectors that are currently used to detect GNSS model 
misspecifications are the AF and AK detectors. The AF 
detector ignores the integer property of the ambiguity and is 
based on the ambiguity-float residual

ê = P ⊥
[A,B]y. (15)

The AK detector employs the ambiguity-known residual 
computed with the known vector a and can only be used 
when the ambiguity is fully known,

ê (a) = P ⊥
B (y − Aa). (16)

By replacing the known a in (16) with the resolved integer 
ambiguity ǎ, we obtain the ambiguity-resolved residual,

ě = ê (ǎ) = P ⊥
B (y − Aǎ). (17)

Test statistics of the AF, AK, and AR detectors are the cor-
responding squared norms of the residuals. The AF and AK 
test statistics and their distributions under H0 are written as,

AF : ∥ê∥2
Qyy

|H0 ∼ χ2(r, 0),

AK : ∥ê (a) ∥2
Qyy

|H0 ∼ χ 2 (r( a), 0),
 (18)

where r is the redundancy of the model under H0 and r (a)
is the redundancy of the model when the known ambiguity 
is excluded from the unknown vector. ∥v∥2

M = vT M−1v 
denotes the squared norm of v weighted by M−1. The AR 
detector test statistic can be written as (Teunissen 2024)

converted to TECU by multiplying the delay (in meters) by 
2f2

1
80.6× 1016 ≈ 6.1587 TECU/m.

The between-receiver single differenced model with a 
common oscillator is used for attitude determination (Chen 
2016). This model can be affected by constant biases, 
including the initial bias and the line bias caused by the dif-
ferent lengths and materials of the cables. Constant biases 
are at the centimeter level and are common for all signals 
(Keong 1999); thus, all entries of the design matrix are one,

C =
[

1
1

]
⊗ 1k ⊗ 1f ⊗ 1s+1. (11)

The SD functional and stochastic models have the same 
structures as the DD model, where the between-satellite dif-
ference matrix DT  is replaced by an identity matrix.

Ambiguity resolution

Ambiguity resolution is the key step in GNSS model vali-
dation with the AR detector (Teunissen 2024), which is a 
mapping from a float ambiguity estimator to a resolved 
ambiguity estimator, denoted as ǎ = I (â). Three classes of 
integer ambiguity estimators have been developed (Teunis-
sen 2017): integer estimator, integer aperture estimator, 
and integer equivariant estimator. In this contribution, we 
restrict ourselves to the class of integer estimators (Teunis-
sen 1999a), where the ambiguity is always resolved to an 
integer vector; thus ǎ ∈ Zn, with n the dimension of the 
ambiguity vector.

The resolved integer ambiguity ǎ is obtained in two 
steps. First, the integer property of the ambiguity vector is 
ignored. The float estimator â and its vc-matrix Qââ are

â = Ā+y, Qââ =
(
ĀT Q−1

yy Ā
)−1

, (12)

where Ā+ =
(
ĀT Q−1

yy Ā
)−1

ĀT Q−1
yy , and Ā = P ⊥

B A with 

P ⊥
B = I − B

(
BT Q−1

yy B
)−1

BT Q−1
yy . The float ambiguity 

is resolved to ǎ in the second step with one of the integer 
estimators (Teunissen 1999a), in which the integer least-
squares (ILS) estimator has the largest success rate of fix-
ing the float ambiguity to the correct integer (Teunissen 
1999b) and thus provides performance closest to the AK 
detector. The ILS solution can be obtained efficiently by 
the LAMBDA method (Teunissen 1995), which conducts 
the integer search based on the decorrelation-transformed 
ambiguity vector ẑ and its vc-matrix Qẑẑ,

ẑ = ZT â, Qẑẑ = ZT QââZ, (13)

1 3

   76  Page 4 of 17



GPS Solutions           (2025) 29:76 

∫ κα

0
f∥ě∥2

Qyy
|H0

(x) dx = 1 − α. (23)

Due to the complexity of the distribution of ∥ě∥2
Qyy

, we 
obtain κα through Monte Carlo simulation (Metropolis 
and Ulam 1949). ∥ě∥2

Qyy
can be represented as a sum of 

∥ê∥2
Qyy

 and the ∥ϵ̌∥2
Qââ

 (19). Since ∥ê∥2
Qyy

and ∥ϵ̌∥2
Qââ

 
are independent, we can first generate samples of them 
separately and then obtain samples of ∥ě∥2

Qyy
. According 

to the ‘remove-restore’ property of the integer estimator 
(Teunissen 1999b), samples of the ambiguity residual can 
be obtained without knowing the exact value of the true 
integer ambiguity. We define the number of samples to be 
generated as Nc and carry out the Monte Carlo simulation 
using the following steps.
1) Generate Nc samples of the float ambiguity vector, 

â
(1)
0 , · · · , â

(i)
0 , · · · , â

(Nc)
0 , that follow a normal dis-

tribution according to Nn (0, Qââ), which denotes an 
n-dimensional normal distribution with zero mean and 
variance-covariance matrix Qââ.

2) Conduct ambiguity resolution (Teunissen 1999a) 
to obtain samples of the resolved ambiguity, 
ǎ

(1)
0 , · · · , ǎ

(i)
0 , · · · , ǎ

(Nc)
0 . Then samples of ∥ϵ̌∥2

Qââ
 

can be obtained with ∥ϵ̌0∥2,(i)
Qââ

= ∥â
(i)
0 − ǎ

(i)
0 ∥

2
Qââ

.
3) Generate Nc samples of the AF residual, 

∥ê0∥2,(1)
Qyy

, · · · , ∥ê0∥2,(i)
Qyy

, · · · , ∥ê0∥2,(Nc)
Qyy

, that follow 
a χ2(r, 0) distribution.

4) Obtain samples of the AR test statistic with 
∥ě0∥2,(i)

Qyy
= ∥ê0∥2,(i)

Qyy
+ ∥ϵ̌0∥2,(i)

Qââ
.

5) Finally, sort the samples ∥ě0∥2,(i)
Qyy

 in ascending order, 
the critical value is approximated by the [(1 − α) Nc]
-th ordered sample, [·] denotes the rounding operation.

The number of samples Nc determines the precision of the 
critical value simulation. It can be chosen according to Yin 
et al. (2024), where the relation between Nc and simulation 
uncertainty is investigated.

Uncertainty of the AR critical value

The procedure to obtain the AR critical value falls under the 
topic of Monte Carlo quantile simulation, as the unknown 
critical value is the 1 − α quantile of the PDF f∥ě∥2

Qyy
|H0

(x)

, and it is approximated by the [(1 − α) Nc]-th ordered 
sample. The distributional property of the ordered sample 
and the quantile simulated with the Monte Carlo method are 
introduced by Serfling (1980), where several approaches 
to evaluate the uncertainty of the quantile simulation are 

AR : ∥ě∥2
Qyy

= ∥ê∥2
Qyy

+ ∥ϵ̌ ∥2
Qââ

, (19)

where ϵ̌ = â − ǎ is the ambiguity residual. The probability 
density function (PDF) of ϵ̌ is written as (Teunissen 2002)

fϵ̌ (x) =

∑
z∈Znexp

{
− 1

2 ∥x + z∥2
Qââ

}
√

|2πQââ|
s0 (x) , (20)

with s0 (x) the indicator function of the integer estimators’ 
pull-in region of zero vector (Teunissen 2017). With these 
test statistics, the detectors then read.

AF : Reject H0 if ∥ê∥2
Qyy

> χ2
α (r, 0) ,

AK : Reject H0 if ∥ê (a) ∥2
Qyy

> χ2
α (r( a), 0),

AR : Reject if ∥ě∥2
Qyy

> κα,

 (21)

where α  is the given level of significance and χ2
α(r, 0) 

refers to the 1 − α  quantile of the central χ2 PDF with 
r degrees of freedom. The AR critical value κα cannot be 
obtained analytically due to the irregular distribution of the 
AR test statistic; the method to obtain κα will be introduced 
in the following section.

The model under Ha is used to evaluate the performance 
of the detectors for a specific model misspecification, mod-
eled by the additional term Cc. The distributions of the AF 
and AK test statistics under Ha are written as

AF : ∥ê∥2
Qyy

|Ha ∼ χ2(r, λê),

AK : ∥ê (a) ∥2
Qyy

|Ha ∼ χ2 (r( a), λê(a)),
 (22)

with the noncentrality parameters

λê = ∥P ⊥
[A,B]Cc∥2

Qyy
, λê(a) = ∥P ⊥

B Cc∥2
Qyy

.

The distribution of AR test statistic under Ha cannot be 
written in a closed form; an example is shown in Fig. 1.

Performance evaluation

Implementation of detectors

The critical values of the AF and AK detectors can be 
obtained with the CDF of the central chi-squared distribu-
tion with degrees of freedom of r and r (a), denoted as 
χ2

α(r, 0), and χ2
α (r( a), 0), respectively. The critical value 

of the AR detector κα fulfills

1 3
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simulated critical value. A detailed example of this method 
can be found in (Yin et al. 2024).

Statistical power of detectors

We evaluate the performance of the AF, AK, and AR detec-
tors in the following way:

 ● We first select a misspecification, which is modeled by 
the term Cc under Ha.

 ● Then, we obtain the statistical power of the AK, AF, and 
AR detector to detect the selected misspecification for a 
particular size c and level of significance α ;

 ● We compare the performance of the detectors by com-
paring the power.

also provided. We describe one of the approaches based on 
asymptotic normality.

It is shown by Serfling (1980) that the simulated 1 − α 
quantile κ̂α with Nc samples follows
√

Nc (κ̂α − κα) → N1
(
0, σ2)

, when Nc → ∞,

with σ2 = α (1 − α)
f2

∥ě∥2
Qyy

|H0
(κα)

 (24)

in which κα denotes the true but unknown critical value. 
This property provides the asymptotic variance σ2 and 
indicates that κ̂α is asymptotically consistent. Although 
f∥ě∥2

Qyy
|H0

(κα) is unknown, it can be approximated by 

the probability density around κ̂α obtained based on the 
samples. Then σ2/Nc approximates the variance of the 

Fig. 1 (a) Normalized histogram of ∥ê∥2
Qyy

 samples under H0, and 
χ2(r, 0) PDF.(b) Normalized histogram of ∥ϵ̌∥2

Qââ
 samples under 

H0, and χ2(n, 0) PDF. (c) Normalized histogram of AR test statis-

tics and PDFs of AR and AK test statistics; dashed lines give critical 
values of detectors for α = 0.05. (d) Critical values of detectors for 
different α
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100 in practice (Morio and Balesdent 2015; El Masri et 
al. 2021).

2) Simulate the critical value and the power for the 
selected misspecification with size c. Repeat this step 
Nr times and get Nr power simulations denoted as 
γ̂ i (c) , i = 1, 2, · · · , Nr.

3) The mean of Nr power simulations is the final simu-
lated power,

γ̂ (c) = 1
Nr

Nr∑
i=1

γ̂i (c) . (27)

Its standard deviation is computed assuming γ̂i (c) are 
independent and of the same precision,

σγ̂(c) =
√

1
Nr

σγ̂i(c), with σγ̂i(c) =

√∑Nr

i=1(γ̂i (c) − γ̂ (c))2

Nr − 1
. (28)

Experiments

In this section, simulation experiments are conducted to 
evaluate the performance of the AR detector. We first con-
sider one-dimensional misspecifications. An experiment 
with a single-frequency GPS model is carried out, where 
the distributions of the test statistics under H0 and Ha and 
the detection power of detectors as functions of misspecifi-
cations’ size are presented. Then, the power functions for 
a dual-frequency GPS model are provided. After that, the 
performance of the AR detector is evaluated by simulation 
experiments over 25 user locations and five models with 
72 satellite geometries per location per model. Finally, we 
present three examples of detecting multi-dimensional mis-
specifications. The experiments for phase outlier detection 
employ two-epoch models, and single-epoch models are 
used for the other misspecifications.

Performance for single-frequency model

In this simulation experiment, we consider single-frequency 
(L1) observables from GPS satellites. Seven satellites are 
observed, and the skyplot is shown in Fig. 2. To compute 
Qyy  with (4), the zenith-referenced standard deviations 
for pseudorange and carrier phase observables are set as 
σp = 0.2m and σφ = 0.002m, respectively.

PDFs under H0

We evaluate the performance of detecting a blunder in pseu-
dorange, a phase outlier, and atmosphere delays with the 
DD observation model. The ILS success rate (14) of the 

Under Ha,  AF and AK test statistics follow non-central 
chi-squared distributions (22), and the power to detect a 
selected model misspecification with size c can be obtained 
with the CDF of their distributions as

γAF = P
[
∥ê∥2

Qyy
> χ2

α(r, 0)|Ha

]
,

γAK = P
[
∥ê (a) ∥2

Qyy
> χ2

α (r( a), 0)|Ha

]
.
 (25)

We obtain now the power of the ambiguity-resolved detec-
tor by Monte Carlo simulation. The mean of â under Ha is

E {â| Ha} = a + Ā+Cc (26)

and the noncentrality parameter of ∥ê∥2
Qyy

 is computed 
according to (22). Similar to the critical value simulation, 
we generate samples of ∥ê∥2

Qyy
and ∥ϵ̌∥2

Qââ
 independently 

with a = 0. We simulate the power using Np samples as 
follows.
1) Generate Np samples of the float ambiguity vector 

â
(1)
a , · · · , â

(i)
a , · · · , â

(Np)
a , which follow a normal 

distribution according to Nn (E{ â |Ha} , Qââ).
2) Conduct ambiguity resolution (Teunissen 1999a) 

to obtain samples of the resolved ambiguity 
ǎ

(1)
a , · · · , ǎ

(i)
a , · · · , ǎ

(Np)
a . Then samples of ∥ϵ̌∥2

Qââ
 

can be obtained with ∥ϵ̌a∥2,(i)
Qââ

= ∥â
(i)
a − ǎ

(i)
a ∥

2
Qââ

.

3) Generate Np samples of the AF residual 
∥êa∥2,(1)

Qyy
, · · · , ∥êa∥2,(i)

Qyy
, · · · , ∥êa∥2,(Np)

Qyy
, that follow 

a χ2(r, λê) distribution (22).
4) Samples of the AR test statistic can be computed as 

∥ěa∥2,(i)
Qyy

= ∥êa∥2,(i)
Qyy

+ ∥ϵ̌a∥2,(i)
Qââ

.

5) Finally, count the number of samples ∥ěa∥2,(i)
Qyy

 larger 
than the critical value, denoted as np. The simulated 
power in percentage follows as γ̂ (c) = 100 × np

Np
% .

Uncertainty of AR detection power

The power of the AR detector is obtained by a two-stage 
Monte Carlo simulation procedure. We evaluate the uncer-
tainty of the power simulation empirically by repeating the 
simulation for Nr times (Morio and Balesdent 2015).

1) Assume we use a total number of N1 samples to sim-
ulate the critical value and N2 samples to simulate 
the power. We conduct Nr repeated simulations, and 
each time with Nc = N1/Nr for the critical value and 
Np = N2/Nr for the power. Nr can be chosen as 50 or 
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with the distributions under H0 (Fig. 1c), the high-density 
regions of the distributions under Ha are shifted toward the 
larger values. This is due to the noncentrality introduced 
by the misspecifications to the AF and AK test statistics. 
For the AR test statistic, the change in its distribution com-
bines the noncentrality of ∥ê∥2

Qyy
|Ha and the bias of â|Ha 

that affects the distribution of ∥ϵ̌∥2
Qââ

|Ha. The impact of 
∥ϵ̌∥2

Qââ
 will be further explained in Fig. 4. The detection 

power is the probability that a misspecification (with size c

) can be detected. For a blunder in the pseudorange of satel-
lite G08 with the size of 1.5 m, the AR detector increases 
the power by 20%. The phase outlier of satellite G08 with 
3 cm can be detected with a 92% power by the AR detector, 
which is higher than the 68% float detection power. The AF 
detector can hardly detect the differential atmosphere delays 
of several centimeters in this experiment. However, once the 
ambiguity is known, the AK detector can detect them with 
a power equal to one. This can be explained by the closed 
form of the AF and AK noncentrality parameters (Eqs. 22 
and 23 in Teunissen 2024). Once the ambiguity is known, 
the noncentrality parameters of the ionosphere and tropo-
sphere delays are magnified by the factor σ2

p/σ2
ϕ, which 

equals 10,000 in this experiment and drives the difference in 
the detection power of AF and AK detectors. Although the 
single-epoch DD ambiguity resolution success rate in this 
experiment is only 80.5%, we still observe the improvement 
in the detection power of the AR detector compared with 
the AF detector. Table 1 also shows the significant differ-
ences between the power of the AR and AK detectors. Since 
the ambiguities are unknown in practice even when they are 
integer-estimated, one should not predict the performance 
of the AR detector relying on the assumed probabilistic 
property of the AK detector.

Power functions

Figure 5 presents the power of the AF, AK, and AR detec-
tors as functions of four misspecifications’ sizes evaluated 
with the single frequency model. The vertical error bars 
with ± 2σ  for the simulated AR powers are plotted for 
the blunder in pseudorange and phase outlier power func-
tions. The power and uncertainty are obtained with the 
steps described in ‘Uncertainty of AR detection power’ with 
N1 = N2 = 2 × 105 and Nr = 50. The powers are eval-
uated for 31 c values for the blunder in pseudorange and 
phase outlier, and 201 c values for the atmosphere delays.

The AF and AK power functions are smooth curves 
since the noncentrality of their test statistics monotoni-
cally increases with c. However, as observed in the atmo-
sphere delay experiments, the AR power function can be 

single-epoch ambiguity resolution is 80.5%. As we describe 
in ‘Implementation of detectors’, the critical value of the 
AR detector is obtained by Monte Carlo simulation. The 
histograms in Fig. 1 are normalized to provide the probabil-
ity density. We use 106 samples for Monte Carlo simula-
tion with 200 bins in each histogram. Figure 1a presents the 
distribution χ2(r, 0) and normalized histogram of ∥ê∥2

Qyy
 

samples under H0. Figure 1b compares the normalized 
histogram of ∥ϵ̌∥2

Qââ
samples under H0, and the PDF of 

χ2(n, 0), which is the distribution of ∥ϵ̂ (a) ∥2
Qââ

 with 
the n dimensional known ambiguity vector. ϵ̌ is always 
bounded inside the pull-in region of the integer estimator; 
thus, its square norm is also bounded. As a result, the nor-
malized histogram of ∥ϵ̌∥2

Qââ
 samples is compressed along 

the horizontal axis compared with χ2(n, 0). Fig. 1c exhibits 
the distributions of three detectors. The AF and AK test sta-
tistics follow chi-squared distributions (18), and the distri-
bution of the AR test statistic lies between them. The reason 
is that the AR test statistic is compressed compared with the 
AK test statistic, as shown in Fig. 1b, and is larger than the 
AF test statistic due to including the square norm of ambi-
guity residual. Figure 1d presents the critical values of the 
three detectors for different levels of significance.

PDFs under Ha

Figure 3 shows the distributions of the test statistics under 
Ha for four one-dimensional misspecifications, and the cor-
responding detection powers are given in Table 1. Compared 

Fig. 2 Skyplot of GPS satellites for single-frequency experiment

 

1 3

   76  Page 8 of 17



GPS Solutions           (2025) 29:76 

non-monotonic, which can be explained as follows. The AR 
power can be written as (Teunissen 2024)

γAR =
∫

P
[
∥ϵ̌∥2

Qââ
> κα − x|Ha

]
fx (x|Ha) dx, (29)

where x = ∥ê∥2
Qyy

. With this formulation, the impact of 

Cc on ∥ê∥2
Qyy

 is captured by fx (x| Ha) and its impact 

on ∥ϵ̌∥2
Qââ

 is captured by the probability inside the 

Table 1 Detection power corresponding to Fig. 3 ( α = 0.05)
Misspecification Size ( c) AF AR AK
Blunder in pseudorange (G08) 1.5 m 59% 79% 92%
Phase outlier (G08) 0.03 m 68% 92% 100%
Ionosphere delay (G08) 0.27 TECU 5% 26% 100%
Troposphere delay 0.07 m 5% 24% 100%

Fig. 4 Distance (under metric Qââ) between Ā+Cc and nearest inte-
ger of it, denoted by I

(
Ā+Cc

)
, as functions of misspecifications’ 

size for a blunder in pseudorange ( C1), ionosphere delay ( C2), and 
troposphere delay ( C3)

 

Fig. 3 Distributions of three test statistics under Ha for four one-dimensional misspecifications. Blue and red lines are distributions of AF and AK 
test statistics. Normalized histogram in green illustrates AR distribution. Dashed lines give their critical values for α = 0.05
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the distance oscillates with c, while it increases smoothly 
for the pseudorange. The explanation for this behaviour  is 
provided by Fig. 8 in (Teunissen 2024).

In almost all cases, the AR power functions lie between 
the AK and AF power functions. This means the AR detec-
tor provides a larger detection power than the AF detector 
for detecting the same misspecification. However, the AR 
detector may provide a lower power than the AF detector 
in an exceptional case where the bias Ā+Cc is close to an 

integral. Although the noncentrality of ∥ê∥2
Qyy

 monotoni-

cally increases with c, this is not the case for the probability 
P [∥ϵ̌∥2

Qââ
> κα − x|Ha]. This probability will be small if 

the bias of â|Ha, which equals Ā+Cc, is close to an inte-
ger, and it will be larger otherwise. Figure 4 presents the dis-
tance between Ā+Cc and the nearest integer as functions 
of c for the blunder in pseudorange ( C1), ionosphere delay 
( C2), and troposphere delay ( C3). For atmosphere delays, 

Fig. 5 Detection power for blunder in pseudorange (G08), phase outlier (G08), ionosphere (G08), and troposphere as functions of misspecifica-
tions’ size with single-frequency model. The uncertainty of simulated AR power is shown by ± 2σ  vertical error bars in first and second graphs
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case are closer to the AK detector due to the higher success 
rate.

To provide a quantitative description of the improvement 
in the AR detection power compared with the AF detector, 
we compute the average power difference between the AR 
and AF detection power with

1
Nd

Nd∑
i=1

γAR (ci) − γAF (ci) (30)

where Nd is the number of power points that are taken into 
account, ci is the i-th c value for which powers are evaluated. 
We consider the powers fulfilling 10% < γ AR (ci) < 90%
, since the power functions are convergent when the power 
is close to α and 1 (See Table 2).

As is shown in Table 2, improvement of the power is lim-
ited for detecting the blunder in pseudorange, although the 
AR detector performs almost the same as the AK detector. 
This can be explained by the noncentrality parameter for 
‘code-type’ misspecifications derived by Teunissen (2024), 
which shows that the noncentrality parameters of both the 
AK and AF detectors are driven by pseudorange precision. 
For detecting the phase outlier, we observe 28% and 26% 
increases in power on average for α = 0.005 and α = 0.01
. The power increases are over 41% and up to 73% on aver-
age for detecting the atmosphere delays and constant bias. 
In this simulation experiment with the dual-frequency GPS 
observation model, the AR detector performs better than the 
float detector as it provides higher detection powers.

Performance evaluation at different locations

We conduct simulation experiments over 25 user locations, 
which are shown in Fig. 10, with five types of observation 
models and obtain the power functions of the AR and AF 
detectors for four misspecifications: blunder in pseudor-
ange, phase outlier, ionosphere, and troposphere delays. 
For each user location and model, we formulate the DD 
observation equations with 72 satellite geometries, obtained 
every 20 min for 24 h from the precise orbit product of the 
IGS (International GNSS Service).

We are interested in the performance of the AR detector 
when the ambiguity resolution success rate of the model is 
not close to one. Therefore, we conduct experiments with 
relatively weak models listed in Table 3. We obtain 7200 
power functions for detecting a blunder in pseudorange and 
atmosphere delays and 5400 power functions for phase out-
lier detection. The average power difference is computed 
with (30) for all power functions to compare the perfor-
mance of the AR detector with the AF detector.

integer. In this case, the additional term in the AR test statis-
tic ∥ϵ̌∥2

Qââ
 turns out to be small and does not contribute to 

the detection of the misspecification. This case rarely hap-
pens for several c values, as is shown in the power functions 
of the atmosphere delays in Fig. 5.

The power functions of the constant bias detection for 
the SD common oscillator model are presented in Fig. 7. 
The powers are evaluated for 101 c values. The ambiguity 
resolution success rate for this experiment is 99.3%, which 
is higher than that of the DD ambiguity since the between-
satellite difference is not conducted. The receiver clock off-
sets and hardware delays are assumed to be canceled by the 
between-receiver differencing in the model under H0. The 
detection power is evaluated for c in the range of 0 to 0.1 m 
since the constant bias is several centimeters, as shown by 
Keong (1999). The constant bias belongs to the ‘tropo-type’ 
misspecifications described by Teunissen (2024), which 
affects the pseudorange and the carrier phase identically. 
The noncentrality parameter of the AK detector is σ2

p/σ2
ϕ 

times larger than that of the AF detector. As is shown by the 
power functions, the AK detection power is close to 100% 
for c larger than 4 cm, while the AF detector is insensitive 
to the centimeter-level bias. The AR detection power is very 
close to that of the AK detector for the bias smaller than 
4 cm. When bias increases, we observe a non-monotonic 
behavior that is driven by the distribution of ∥ϵ̌∥2

Qââ
.

Performance for dual-frequency model

In this simulation experiment, we evaluate the perfor-
mance of the AR detector with a dual-frequency (L1/L5) 
GPS observation model, and the skyplot of the satellites is 
shown in Fig. 8. The zenith-referenced standard deviations 
for pseudorange and carrier phase observables are set as 
σ p = 0.5m and σ φ = 0.005m, with which we assume the 
observables are collected from a low-cost receiver.

Figure 6 presents the power of the AF, AK, and AR 
detectors as functions of four misspecifications’ size for 
the dual-frequency DD model; the ILS success rate of the 
single-epoch DD ambiguity resolution is 97.4%. Figure 9 
shows the power functions of the constant bias detection for 
an SD common oscillator model; the ILS success rate of the 
SD ambiguity resolution is 99.9%. The number of samples 
for the Monte Carlo simulation and the number of c val-
ues used to compute powers are the same as the previous 
experiment with the single-frequency model. For detecting 
the blunder in pseudorange, phase outlier, and constant bias, 
the AR detector performs almost the same as the AK detec-
tor. Similar to Fig. 5, the power functions of the atmosphere 
delays are oscillating. Compared with the single-frequency 
experiments, the AR power functions in the dual-frequency 
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Figure 11 (left) shows the average power differences 
obtained from the power functions with α = 0.01 for four 
misspecifications. Figure 11 (right) is obtained by splitting 
the success rate range [0.6, 1] into 16 intervals and compute 
the overall average of power difference within each interval, 
four of which are provided in Table 4. Compared with the 
AF detector, the AR detector performs better in detecting 
atmospheric delays and phase outliers. Improvement can be 
observed even though the ambiguity resolution success rate 
is not close to one. For the experiments with success rates 
in [0.775, 0.8], the detection powers are increased by 10% 
and 17% on average for ionosphere and troposphere delay 
detection. The improvement is significant when the suc-
cess rate is close to one. For the experiments with success 
rates larger than 97.5%, the detection powers are increased 
by 12%, 47%, and 60% on average for phase outlier, iono-
sphere, and troposphere delay detection, respectively.

Fig. 7 Power functions of constant bias detection for single-frequency 
SD model

 

Fig. 6 Power functions of detecting blunder in pseudorange (G05), phase outlier (G05), ionosphere (G05) and troposphere delays with dual-
frequency GPS model
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to understand the performance of the AR detector since it 
lies between the AF and AK detectors. Although the AK test 
statistic has a larger noncentrality parameter, λê(a) > λê, it 
also has a larger critical value due to the stronger variability 
of ∥ê (a) ∥2

Qyy
. As a result, the AK detector can perform 

poorer than the AF detector if they have similar noncentral-
ity parameters. For the ionosphere and troposphere delay 
detection, Teunissen (2024) shows that λê(a) is magnified 
by the factor σ2

p/σ2
ϕ, which explains the superiority of the 

AR detector. For the blunder in pseudorange detection, 
according to Eq. (20) in Teunissen (2024), the difference 
between λê(a) and λê is driven by the projection of Cpc 
in the range space of the Bp, where Cp and Bp refer to 
the submatrices of C and B containing rows for the pseu-
dorange observables. With the principal angle (Björck and 
Golub 1973; Teunissen 1997) between the range space of Cp 
and Bp, denoted as θCpBp , the AK noncentrality parameter 
is magnified by a factor 1

sin2(θCpBp)  for one-dimensional 

C. The DD model in the previous dual-frequency experi-
ment can be taken as an example where θCpBp = 55.2

◦
 and 

λê(a)/λê = 1.48. This factor is close to the ratio between 
the AK and AF critical values, which equals 1.79 for 
α = 0.01 in this example. For the blunder in pseudorange 
detection, the change in the noncentrality parameters λê(a) 
and λê is not significant compared with the change in criti-
cal values. Hence, the AK detector performs similarly to the 
AF detector for detecting the blunder in pseudorange, and 
so does the AR detector.

The results show that the improvement by the AR detector 
for the atmosphere delay is larger than that for the blunder in 
pseudorange, and the AR detector can perform poorer than 
the AF detector in the latter case. Teunissen (2024) explains 
the difference between the AF and AK detectors for detect-
ing different types of misspecifications, which also helps 

Table 2 Average power difference of dual-frequency experiment
Misspecification α = 0.005 α = 0.01 α = 0.05
Blunder in pseudorange 5% 4% 2%
Phase outlier 28% 26% 19%
Ionosphere delay 49% 52% 51%
Troposphere delay 72% 73% 57%
Constant Bias 48% 47% 41%

Table 3 Observation models for AR detector performance evaluation
Misspecifica-
tions

Constellation Signal Epochs σp(σφ = σp/100)

Blunder in 
pseudorange
Ionosphere 
delay
Troposphere 
delay

GPS L1 1 {0.2, 0.35}m
GPS L1 + L5 1 0.5 m
GPS + Galileo L1 + E1 1 0.5 m

Phase outlier GPS L1 2 {0.2, 0.35}m
GPS + Galileo L1 + E1 2 0.5 m

Fig. 10 User locations for AR detector performance evaluation

 

Fig. 9 Power functions of SD constant bias detection with dual-fre-
quency model

 

Fig. 8 Skyplot of GPS satellites for dual-frequency experiment
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 ● differential ionosphere delays affect the signals from the 
southwest direction (G05 and G24, 2D).

The power functions corresponding to the qD misspecifi-
cations are qD functions, which are evaluated on the qD 
grid points of c = [ c1 · · · cq ]. The power functions 
plotted in this section are evaluated with α = 0.01 and 
N1 = N2 = 2 × 105 for the Monte Carlo simulation of the 
critical values and power.

Figure 12 (left) shows the contour lines of the AF and 
AR detector for 2D phase outliers. The AR contour lines are 
more concentrated, indicating that the AR detector provides 
a higher detection power for phase outliers of the same size. 
Table 5 presents that the average power difference between 
the AR and AF detectors is 29% for α = 0.01 in this experi-
ment. The middle and right graphs in Fig. 12 show contour 
lines for two marginal distributions of the 4D blunder in 
pseudorange power function. Similar to the results in the 
one-dimensional case, the AR and AF detectors perform 
similarly. The average increase in the detection power is 
6% for α = 0.01, as is shown in Table 5. Figure 13 shows 
the power functions of the 2D differential ionosphere delay 
detection. We observe an oscillation of the AR power func-
tion, which is higher than that of the AF detector. Table 5 
shows that the average improvement in the detection power 
is 68% for α = 0.01. The AR detector provides higher 
detection powers than the AF detector, especially for iono-
sphere delay detection in multi-dimensional misspecifica-
tion experiments.

Overall, the AR detector is better as it performs similarly 
to the AF detector for the blunder in pseudorange detection 
and delivers higher detection powers for phase outliers and 
atmosphere delays.

Multi-dimensional misspecifications

The performance of the AR detector for three multi-dimen-
sional ( qD, q > 1) misspecifications is evaluated and pre-
sented in this section. The simulation setup is the same as in 
the section ‘Performance for dual-frequency model’ where 
a dual-frequency (L1/L5) DD model is used. Detection for 
the following misspecifications is considered,

 ● carrier phase observables on L1 and L5 signals of satel-
lite G05 are outliers (2D).

 ● blunders in pseudorange observables of two low-eleva-
tion satellites, G17 and G30 (4D).

Table 4 Overall average of power difference in four success rate inter-
vals
Misspecifica-
tions

[0.775, 0.8] [0.875, 0.9] [0.925, 0.95] [0.975, 1]

Blunder in 
pseudorange

1% -0% -1% -1%

Phase outlier 4% 7% 8% 12%
Ionosphere 
delay

10% 17% 24% 47%

Troposphere 
delay

17% 32% 45% 60%

Fig. 11 Left graph shows average power difference vs. IB success rate 
of corresponding experiment for four misspecifications, which are 
computed from power functions with α = 0.01. To obtain graph at 

right, we split success rate range [0.6, 1] into 16 intervals and com-
pute overall average of power difference within each interval
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We first presented the differential observation model 
under the null ( H0) and alternative ( Ha) hypotheses. The 
model under Ha contains an additional term to account 
for misspecifications and is used to evaluate the detection 
power for the misspecification. The performance of detect-
ing the blunders in pseudorange, phase outliers, ionosphere 
and troposphere delays, and constant bias was evaluated.

Then, we described how the detectors could be imple-
mented and how to obtain power functions. The distribution 
of the AR test statistic cannot be evaluated analytically. We 
presented the procedure to obtain the AR critical value and 
detection power using Monte Carlo simulation. Moreover, 
we introduced how to assess the uncertainty of the simu-
lated critical value and detection power.

We conducted simulation experiments to evaluate the per-
formance of the AR detector. We started with three experi-
ments of detecting one-dimensional misspecifications. We 
first conducted a single-frequency GPS experiment with an 
80.5% double-differenced (DD) ambiguity resolution suc-
cess rate, in which the distributions of the test statistics under 
H0 and Ha were presented. It is shown by the power func-
tions that the AR detector has larger detection power than 
the AF detector, even though the success rate is not close to 
one. Then, we conduct a dual-frequency GPS experiment 
with a 97.4% DD success rate. The difference between the 
AR and AF detection power of atmosphere delays is over 
49% on average. In these two experiments, we also find that 
the AR power function differs from the AK power function. 
Hence, one should not predict the performance of the AR 
detector relying on the assumed probabilistic property of the 
AK detector as it is too optimistic.

Following that, we obtained power functions on 25 user 
locations, with five different observation models and 72 sat-
ellite geometries per location per model. For the experiments 

Summary and conclusions

In this contribution, we evaluated the performance of the 
ambiguity-resolved (AR) detector for the GNSS relative 
positioning model by obtaining the detection powers as 
functions of the misspecifications’ size. We compared its 
performance with the ambiguity-float (AF) and ambiguity-
known (AK) detectors.

Table 5 Average power difference for qD misspecification detection
Misspecification α = 0.005 α = 0.01 α = 0.05
Phase outlier 31% 29% 22%
Blunder in pseudorange 7% 6% 5%
Ionosphere delay 68% 68% 56%

Fig. 13 AF and AR power functions for 2D ionosphere delay detection. 
Only powers smaller than 0.999 are shown for clarity of the figure. c1 
and c2 are size (in TECU) of the differential ionosphere delays cor-
responding to G05 and G24

 

Fig. 12 Left graph shows contour lines of AF and AR power functions 
for 2D phase outlier detection, evaluated on 400 grid points. c1 and 
c2 regarding to phase outliers of G05 on L1 and L5. Middle and right 
graphs show contour lines for marginal distributions of the 4D blunder 

in pseudorange power function, which is evaluated on 134 = 28, 561 
grid points. c1 and c2 regarding to blunder in pseudoranges of G17 on 
L1 and L5. c4 is size of blunder in pseudorange of G30 on L5
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with success rates larger than 97.5%, the AR detector per-
forms similarly to the AF detector for the blunder in pseu-
dorange detection, increases the detection power by 12% 
on average for the phase outlier detection, and increases the 
detection power remarkably by 46% and 60% on average 
for the ionosphere and troposphere detection, respectively. 
Finally, we presented experiments of detecting three multi-
dimensional misspecifications. The AR detector performs 
better than the AF detector in all the experiments, especially 
for the two-dimensional ionosphere delay detection, where 
the powers are increased by 68% on average for α = 0.01.

The simulation experiments show that the AR detector 
can provide a higher detection power than the AF detector 
even if the ambiguity resolution success rate is not close to 
one. For models with low success rates, although the ambi-
guity resolution cannot be used by the parameter estimation, 
the AR detector can contribute to model validation.
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