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The latest advances in the field of zeolitic membranes for gas separation are critically reviewed with
special emphasis on new synthetic protocols. After introducing the most relevant aspects to membrane
performance, including adsorption trends, permeation mechanisms and support effects, we review re-
cent achievements in membrane synthesis and discuss in detail the effect of zeolite topology and che-
mical composition on membrane gas separation. We pay special attention to promising 8MR high-silica
structures. As the formation of defects during synthesis remains one of the major challenges for large-
scale production of such membranes, we review various approaches to either limit defect formation or
decrease their adverse effect by post-synthesis modification. Finally, the current challenges for this field
of research are summarized and an outlook is offered on approaches to decrease fabrication costs, im-
prove reproducibility and rational design of zeolite membranes.
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1. Introduction

Membrane technology constitutes an increasingly important,
convenient and versatile way of separating gas mixtures. Com-
pared with other approaches, membranes reduce energy and other
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operational cost for gas separation and, moreover, membrane
operations are more scalable than conventional separation unit
operations in the chemical industry [1,2]. Several important in-
dustrial processes would benefit from the use of membranes, such
as air separation (N2/O2) [3], recovery of hydrogen from mixtures
(H2/N2, H2/CO, H2/CO2, H2/hydrocarbons) [4], hydrocarbon se-
parations (olefins/paraffins, linear/branched isomers, etc.) [5], and
CO2 capture from natural gas, flue gas, biogas and syngas (CO2/air,
CO2/CH4, CO2/H2) [6,7].

Membranes are usually categorized in four main groups based
on the nature of the membrane material: polymeric, inorganic,
mixed-matrix and liquid membranes. Polymeric membranes cur-
rently dominate the global membrane separation market [8], be-
cause of their good processability, economic competiveness, scal-
ability and tuneability [9,10]. On the other hand, polymeric
membranes suffer from several limitations such as their inherent
permeability/selectivity trade-off [11,12] and low thermal and
chemical instability limiting, respectively, the overall performance
and the range of operation conditions. Similar issues disturb in-
dustrial implementation of liquid membranes [13–16]. Mixed
matrix membranes (MMM) are obtained when selective inorganic
fillers are introduced into a polymeric matrix. The advantage of
the MMM concept is that it combines the ease of polymer film
processing with the high selectivity and permeability of inorganic
materials. Several inorganic materials have been explored in this
approach such as carbon molecular sieves [17,18], zeolites [19,20]
and metal-organic frameworks [21–23].

Inorganic membranes are particularly interesting, as these
materials can usually withstand high temperature and pressure.
Several materials have already been explored for the preparation
of dense and porous inorganic membranes. Dense structures
conduct only particular gases or ions by solution-diffusion or
mixed ionic-electronic conductivity mechanisms. Examples of
such membranes are thin metallic (palladium, vanadium, iron,
etc.) films for recovery of hydrogen [4,24] and ceramics (per-
ovskites, fluorites) for oxygen separation [25]. The advantages of
dense inorganic membranes are high selectivity (approaching in-
finity for high quality membranes) and thermal stability. On the
other hand, low permeability and/or sensitivity to poisoning of
dense membranes are their main drawbacks. Porous inorganic
membranes, including those made of carbon, amorphous silica,
zeolites and metal-organic frameworks, generally offer much
higher fluxes and chemical stability.

Microporous amorphous silica membranes are usually ther-
mally stable supported films with a thickness of several tens of
nanometers capable of separating gases with very high fluxes.
Such films can be prepared by sol–gel or chemical vapor deposi-
tion (CVD) techniques [26,27]. Low hydrothermal stability is,
however, often a major weakness of silica membranes. Some
methods including surface grafting (silylation) [28,29] and pre-
paration of hybrid silica membranes [30,31] have been explored to
improve hydrothermal properties of amorphous silica.

Carbon membranes are prepared by conversion of polymer
layers by pyrolysis or carbonization at high temperature in inert
atmosphere [32]. In general, pore sizes and adsorption properties
of carbon membranes may to a certain extent be tuned by varying
pyrolysis conditions and/or the polymeric precursor [33–35]. Un-
fortunately, carbon membranes are usually brittle, sensitive to
strongly adsorbing components and possess pores of random size
distribution, which make them difficult to apply for many relevant
separations.

Metal-organic frameworks (MOFs) constitute a relatively new
class of materials, which already have been extensively studied for
membrane applications [36]. MOFs are porous coordination poly-
mers consisting of metal ions (clusters) interconnected by poly-
topic organic linkers to form ordered porous structures. The
number of possible MOF structures is only limited by synthetic
imagination, as there are myriads of cluster-linker combinations.
Accordingly, it is possible, within certain limits [37], to tune
structure properties for a particular separation [38]. There are
many examples of the preparation and application of MOF mem-
branes. The interested reader is referred to recent review papers
describing in detail state-of-the-art techniques, concepts and
achievements in the field [39–42].

Finally, zeolites, owing to the uniform system of pores with
molecule-sized dimensions, high porosity, excellent thermal and
chemical stability, are particularly promising for fabrication of
molecular sieving membranes, capable of separating gases at in-
dustrially relevant conditions.

Several reviews discussing advances in zeolite membrane fab-
rication and their separation properties are available. These in-
clude contributions of Caro and co-workers [43,44] and, more
recently, the work of Pera-Titus [45] that reviewed the perfor-
mance of zeolite and other porous inorganic membranes in CO2

capture. Tsapatsis, Caro and co-workers discussed the preparation
of ultra-thin and oriented zeolite films and also compared the
separation properties of MOF and zeolite membranes [46]. The
current review focuses on gas separation applications of zeolite
membranes. First, we discuss general aspects of gas separation by
zeolite membranes, including separation mechanisms, the influ-
ence of the porous membrane support and the main issues in-
volved in the preparation of high-quality membranes. Second,
zeolites and zeotypes of different topology and chemical compo-
sition are reviewed in terms of potential for membrane applica-
tions; post-synthesis modifications of such membranes to enhance
separation performance are highlighted as well. Finally, we sum-
marize our work by providing some general conclusions about the
state of the art and an outlook on important development
directions.
2. Zeolite membranes: general aspects

2.1. Permeation: adsorption

Any zeolite membrane separation starts with the adsorption of
the molecules from the gas phase onto the zeolite pore surface.
Accordingly, adsorption affinity plays an important role in overall
separation performance. At low to moderate operation tempera-
tures (up to 100–200 °C depending on zeolite structure and po-
larity) zeolite membranes usually exhibit adsorption selectivity.
That is, the more strongly adsorbing component of a mixture
disturbs or blocks permeation of other components for which
zeolite channels remain (partially) inaccessible. Adsorption based
separations are particularly effective for dewatering and CO2 cap-
ture, namely when a strong adsorbates needs to be removed.
Adsorption of certain gas molecules on the surface of a given
zeolite material depends on the adsorbate and the adsorbent. The
most important adsorbate parameters are polarizability and dipole
and quadrupole moments (see Table 1). These parameters de-
termine the strength of the interaction between the adsorbing
molecule and the zeolite surface. For instance, H2O and CO2 are
usually the strongest adsorbed species on zeolites among the
compounds considered in Table 1, because of their large dipole
and quadrupole moments. As an example, Fig. 1 provides ambient
temperature adsorption isotherms of CO2, CH4 and N2 on high-
silica SSZ-13 zeolite.

As for zeolite adsorbents, such properties as polarity, topology
and flexibility of the framework, the type of counter cation com-
pensating for possible negative framework charges and the zeolite
pore size determine adsorption behavior. One of the most im-
portant parameters is polarity, which in turns depends on the



Table 1
Properties of some gas molecules [47,48].

Molecule Kinetic dia-
meter (Å)*

Polarizability (Å3) Dipole mo-
ment (D)

Quadrupole mo-
ment (D Å)

H2O 2.65 1.450 1.870 2.30
H2 2.89 0.80 0.000 0.66
CO2 3.30 2.650 0.000 4.30
O2 3.47 1.600 0.000 0.39
N2 3.64 1.760 0.000 1.52
CO 3.69 1.95 0.112 2.50
CH4 3.76 2.600 0.000 0.02
C2H4 4.16 4.260 0.000 1.50
C2H6 4.44 4.470 0.000 0.65
n-C4H10 4.69 8.20 0.050 –

i-C4H10 5.28 8.29 0.132 –

SF6 5.50 6.54 0.000 0.00

* Derived by using the experimental second virial coefficients of gases at dif-
ferent temperatures and assuming that the intermolecular interaction follows the
Lennard-Jones potential [49].

Fig. 1. Adsorption of CO2 (■), CH4 (●) and N2 (▲) on high-silica SSZ-13 (Si/Al 85) at
273 K.

Fig. 2. CO2 adsorption isotherms measured at 303 K in the (a) low- and (b) high-pressu
Reprinted from [50]. Copyright 2010, with permission from the American Chemical Soc
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chemical composition of the zeolite. With increasing Al content,
the framework becomes more polar. In general, the more polar the
zeolite framework, the stronger it adsorbs various molecules
through enhanced interactions. Fig. 2 illustrates this trend for the
adsorption of CO2 on zeolite LTA crystals with varying Si/Al ratio.

As these adsorption effects play a very important role in zeolite
membrane separation, proper choice of the zeolite material is re-
quired to design an effective membrane for a given separation.

2.2. Permeation: diffusion

Permeation of gases through the zeolitic micropores at mod-
erate temperature is generally controlled by surface (configura-
tional) diffusion; it can be conveniently described in terms of
hopping of molecules from one adsorption site to another [51,52].
Microporous transport of non-adsorbing as well as adsorbing
molecules at higher temperature, that is when molecules keep the
physical properties of the gas to a large extent because of weak
adsorption, is defined by activated gaseous diffusion [53–55]. In
general, excluding flow through defects, the overall flux through
the zeolite film is a combination of surface and gaseous diffusion.
The surface diffusion contribution (also indicated as zeolitic dif-
fusion) to the overall permeance i

surf diff. .Π can be presented [56,57],
assuming Langmuir adsorption, as:

q g D exp
E

RT p p
ln 1

1
,

1
i
surf diff

sat i i
s a i

s

i
i r i p

. .
,

,0 ,

, ,

ρ θΠ = ∙ ∙ ∙ ∙ (
−

)∙∇ ( − )∙
− ( )

where ρ is the zeolite density, qsat the saturation concentration
of adsorbed phase, g a geometrical factor, Ds the surface diffusivity,
Ea activation energy of diffusion, R the universal gas constant, T
temperature, Θ occupancy and pr and pp the partial pressures of
component i on the two sides of the membrane. The concentration
of the gas in the adsorbed phase reaches saturation at certain
pressure. At this point the surface diffusion flux does not increase
further with increasing pressure. Increasing temperature, at con-
stant pressure, leads to lowering of the concentration of adsorbed
component and, accordingly, to lowered driving force while its
activated character increases the flux. Thus, the contribution of
surface diffusion may increase, decrease or have a maximum as a
function of temperature, depending on the values of the activation
re ranges of LTA zeolites having Si/Al ratios of 1 (■), 2 (●), 3.5 (▲), 5 (▼), and 1 (♦).
iety.



Fig. 3. Single gas permeance of several gases vs corresponding kinetic diameters
through high-silica SSZ-13 membrane. Reproduced from [61] by permission of The
Royal Society of Chemistry. Fig. 4. Estimated contribution of Knudsen diffusion through defects of different

size to the total flux of propane through an MFI membrane. The propane per-
meation through MFI layer is based on data from van de Graaf et al. [66].
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energy and the adsorption enthalpy [58].
In turn, activated gaseous diffusion contribution to permeance

i
act gas diff. . .Π can be defined [59] as:

RT
g

d
RT
M

exp
E

RT
1 8

2i
act gas diff

i

a i
g

. . . ,

δ π
Π = ∙ ∙ ∙ ∙ (

−
)

( )

where δ is the membrane thickness, d the diffusion length and
Mi the molar weight of component i. This contribution does not
depend on pressure and, being an activated process, increases with
temperature. Another important factor is that molecules sig-
nificantly larger than the zeolite pores cannot adsorb and diffuse
through. Fig. 3 demonstrates how the different diffusion con-
tributions can vary with temperature. Expectedly, permeance of
strongly adsorbing CO2 molecules through small 8MR (eight-
membered ring) pores of high-silica SSZ-13 membrane is the most
affected by temperature, demonstrating a decrease of the surface
diffusion contribution. SF6 and CH4 molecules, whose kinetic dia-
meters are larger and similar to CHA pore size respectively,
permeate much slower than smaller molecules. This is clearly an
example of a molecular sieving effect, which can also be observed
for DDR zeolites, another 8MR structure [60].

The main separation mechanisms by high quality (i.e., defect-
free) zeolite membranes can be summarized in the following
manner [62].

(1) Adsorption selectivity takes place when adsorption of one
component is much stronger than that of another component;
the zeolite occupancy with the more strongly adsorbing
component is much higher and this leads to increased driving
force. In addition, the strongly adsorbing component can block
the micropores and hinder the transport of the other com-
ponent, as for instance occurs in CO2/H2 separation [63].
Adsorption selectivity is usually the dominant separation
mechanism at low temperatures.

(2) Diffusion selectivity takes place when molecules of one com-
ponent are smaller and their diffusivity in zeolite micropores
is much faster than that of the larger component (e.g., H2/CH4

in many 8MR zeolite membranes). The contribution of diffu-
sion selectivity increase with temperature.

(3) Size exclusion (molecular sieving) – an extreme case of dif-
fusion selectivity-when one component can scarcely or not at
all permeate through zeolite pores (H2/i-butane in 8MR
membranes) [64].
It should be noted that these considerations pertain to high
quality zeolite membranes. If many non-zeolitic pores of much
larger size are present in the zeolite film, contributions of Knudsen
diffusion, molecular diffusion, and even viscous flow can be sig-
nificant and, eventually, become the dominant diffusion pathways
[65]. Fig. 4 demonstrates how extremely low defect concentration
can yield large contribution of unselective Knudsen flow. In ad-
dition, Knudsen diffusivity is proportional to the pore diameter, so
that the size of defects plays an important role. Based on these
results, the fraction of defect area should constitute less than
10 ppm for a zeolite membrane to render it operating in the mo-
lecular sieving regime.

2.3. Preparation of zeolite membranes

Two main techniques to prepare supported polycrystalline
zeolite films are in situ synthesis and secondary growth. In situ
synthesis was the first method used to obtain zeolite membranes
[67,68]. A typical synthesis mixture contains an appropriate silica
source (colloidal silica, fumed silica, sodium silicate, tetraethyl
orthosilicate (TEOS), etc.), an alumina source (aluminum hydro-
xide, sodium aluminate, aluminum salts), a structure-directing
agent (amines, tetralkylammonium salts, crown-ethers, etc.), base
(e.g., alkali and/or organic bases) and water. After the mixture is
homogenized, normally by stirring, the gel is poured in an auto-
clave vessel where the porous support is placed. During synthesis
at elevated temperature zeolite crystals nucleate on the support
surface and become intergrown upon crystallization. The main
advantage of in situ synthesis is the minimal number of prepara-
tion steps. Furthermore, varying conditions of in situ synthesis
allows obtaining either thin zeolite films on the support surface or
infiltrated nano-composite membranes [69–71]. The latter method
is called pore-plugging and it yields remarkably thermally and
mechanically stable membranes [72–74]. The pore-plugging
method, however, has a drawback of low permeance as the ef-
fective thickness of the infiltrated membrane can be extremely
high [75,76]. To prevent zeolite crystallization in the support
pores, its surface can be masked with polymer layers [77].

Another possibility to prepare zeolite films (quasi) in situ is the
direct gel conversion method. The principle of the method is de-
position (impregnation) of an aluminosilicate gel (dry or wet) on
the support surface followed by crystallization [78]. A modification
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of this method is a direct conversion of supported amorphous si-
lica layers into zeolite films. In this case, the original support layer
acts as a silica source so that crystallization is directed to occur on
the support surface [79,80].

Secondary growth approaches involve preparation of nano-
crystals (usually 50–1000 nm) of the targeted zeolite structure and
their deposition as a thin layer on the support surface followed by
hydrothermal secondary crystallization. Many methods exist to
deposit thin layers of zeolite nano-crystals including dip-coating,
filtration, rubbing, electrostatic and chemical deposition. Con-
tinuity, density and uniformity of the seed layer often determine
the quality of the final membrane. By secondary growth, well-
defined and sub-micron thin films may be crystallized, owing to
the directed growth from the seed nano-crystals. Recently, Tsa-
patsis group reported extremely thin films (�200 nm) synthe-
sized by secondary growth from MFI nano-sheet layers [81]. These
ultra-thin membranes showed good selectivity in p-xylene/o-xy-
lene separation and the permeance through such a thin zeolite
layer was similar to the permeance through a bare porous support.
Furthermore, secondary growth approach may be applied to con-
trol orientation of zeolite films by deposition of pre-oriented seed
layers [82,83]. As zeolite crystals are often anisotropic, the or-
ientation of the film may play an important role in the membrane
performance, as it was convincingly shown for various MFI
membranes by the Tsapatsis group [84,85].

Overall, it can be concluded that, despite the more laborious
approach, secondary growth is a more versatile and convenient
way to fabricate zeolite films. Accordingly, this approach prevails
in recent research reports. As an illustration of secondary growth
advantage, Fig. 5 provides a comparison between SSZ-13 (CHA)
films synthesized on similar porous α-alumina supports at the
same synthesis conditions in situ and by pre-seeding the support
with SSZ-13 nanocrystals (ca. 120 nm). Clearly, thinner, more
uniform and much higher quality membranes are obtained by
directed crystallization on the support surface through secondary
growth.

2.4. Supports

Zeolite membranes are usually supported thin films and the
properties of porous support play a crucial role in successful
membrane preparation. A rigid inorganic support is necessary to
make the thin membrane layer mechanically stable. The main
requirements to be fulfilled by the support are high stability in
hydrothermal and alkaline synthesis conditions, low permeation
resistance, a smooth surface without pinholes and affinity for the
membrane layer material. Porous supports are mostly ceramic
materials (α-alumina, titania, silica) or stainless steel, but ex-
amples of carbon [86], and even zeolite-based supports [87,88]
have been reported. The choice of support material is to a high
degree dictated by the compatibility of its thermal expansion with
that of zeolite material. Zeolites usually have very specific negative
Fig. 5. SSZ-13 (CHA) films prepared in similar conditions b
thermal expansion coefficients, meaning that they contract upon
heating [89]. In contrast, most ceramic materials expand upon
heating. The mismatch between the thermal expansion coeffi-
cients is considered to be the main reason for the often en-
countered temperature-induced formation of defects within the
zeolite layer upon calcination, which is the conventional way to
(re-)activate (remove the structure-directing agent (SDA, tem-
plate) molecules or other species occluded in the micropores)
zeolite membranes [90,91].

Recent developments to avoid formation of thermally induced
defects include application of rapid thermal processing (RTP)
when a composite membrane is instantly heated by IR illumina-
tion to 600–900 °C, kept at this temperature for several minutes
and then quickly cooled to room temperature [92]. Application of
such a treatment to detemplate stainless steel and α-alumina
supported zeolite (MFI) films was shown to yield membranes with
much less intercrystalline defects and, hence, improved separation
performance as compared with membranes calcined using con-
ventional ramp rates. This phenomenon was explained by elim-
ination of grain boundary defects because of strengthening the
bonding between the grains [93–95]. Another viable alternative to
conventional air calcination is ozonication performed in oxygen-
ozone mixtures [96]. Owing to the high oxidation strength of
ozone the temperature necessary for detemplation of MFI can be
decreased to ca. 200 °C [97,98]. Accordingly, it was shown that
ozonication is an efficient method to detemplate some zeolite
membranes that cannot be treated at high temperature without
deterioration [99]. More recently atmospheric pressure plasma
treatment was shown to yield fast (ca. 60 s) and effective detem-
plation of thin MFI films [100].

The chemical, thermal, hydrothermal, and mechanical stability
of the support material is also an important issue as zeolite films
are usually prepared at elevated temperatures and hydrothermal
conditions. Often, measures should be taken to prevent leaching of
the support material. It was reported that Al from α- or γ-alumina
supports can be incorporated into the zeolite layer during hydro-
thermal synthesis, which is often not desirable because of in-
creased polarity of the resulting membranes.

In addition to zeolite film stability issues, properties of the
support will often define the membrane separation performance.
Textural characteristics of the support may influence both se-
lectivity and permeance through a composite membrane. The
driving force for permeation through any membrane is a partial
pressure gradient. As Fig. 6 demonstrates, in case of highly
permeable support: (pfeed�pinterface)-(pfeed�pinterface)¼Δp, and,
thus, the overall membrane permeance approaches the intrinsic
permeance of the zeolite film. On the other hand, in case a support
has high diffusion resistance the pressure difference over the
zeolite layer (pfeed�pinterface)-0 and overall membrane per-
meance decreases. Hence, the key factor determining the mem-
brane flux is the permeance ratio of the support material and the
zeolite film; the higher this ratio, the less the support resistance
y (left) in situ and (right) secondary growth method.



Fig. 6. Partial pressure drops over a zeolite membrane in case of low (a) and high
(b) support diffusion resistance.

Fig. 7. Theoretical membrane A/B selectivity vs. support-zeolite permeance ratio.
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limits the overall flux. Ultimately, since bare supports typically
display negligible Knudsen selectivity, the overall membrane se-
lectivity is also reduced, because diffusion of the faster permeating
component would suffer more from support limitations than that
of the retained one, as illustrated in Fig. 7. In this respect, the
selective layer should face the feed side. Reversing the asymmetric
membrane may result in a strongly reduced selectivity as the
support induces then a polarization layer [101].

The support texture is of extreme importance for very thin
zeolite films. High flux through such films requires avoiding an
interface pressure build-up, otherwise the overall membrane
performance might be strongly limited [57,102]. Korelskiy et al.
evaluated ultra-thin (500 nm) hydrophobic MFI membranes, with
less than 0.5% of defect flow contribution, for the recovery of
ethanol and butanol from respective aqueous solutions [103]. Al-
though the authors reported an unprecedentedly high flux for
these separations, the selectivity was only low to moderate.
Modeling showed that significant mass-transfer limitations,
caused by the support, led to ca. 50% selectivity reduction of the
composite membrane compared to the intrinsic selectivity of the
zeolite film. In another work, comparison of high-silica SSZ-13
membranes of similar quality and thickness prepared on supports
differing in porosity was made [99]. The gas separation results
showed significantly higher (3–4 times) permeance of CO2 and H2
through membranes prepared on a more permeable support at
similar CO2/CH4 and H2/CH4 selectivities. From this perspective, it
is very important that researchers reporting separation properties
of various zeolite membranes provide detailed textural data to-
gether with permeation data of the bare supports. Only in this case
a fair comparison of zeolite membrane performance prepared by
different groups can be made.

It is clear that supports possessing high porosity and as large as
possible pores are preferred for fabrication of zeolite films. How-
ever, to facilitate formation of a thin and defect-free zeolite layer
the support surface should be smooth, without microscopic
roughness and imperfections. This condition practically limits the
maximum support pore size to about 1 μm to prepare a zeolite
film of ca. 1 μm thick. One solution for this problem is the fabri-
cation of multilayered asymmetric supports, where a thin top layer
provides the smoothness necessary for zeolite layer deposition
and a coarse bottom layer provides sufficient transport properties.
These advantages of asymmetric supports are, however, compro-
mised by higher costs to fabricate them. Moreover, in case of
asymmetric high aspect ratio hollow fiber supports, the thermal
stability of zeolite (e.g., ZSM-5 and SSZ-13) films on smooth and
highly curved surface has been shown to be impeded [99]. Overall,
since the support may constitute up to 70% of total zeolite mem-
brane cost [104], significant progress in production and application
of cheaper and, at the same time, less diffusion resistant supports
is necessary for large-scale commercialization of zeolite mem-
branes for gas separation [105,106].

Recently, some efforts have been made to prepare high quality
zeolite films on relatively cheap and large pore supports contain-
ing many microscopic imperfections. Yan et al. reported the
synthesis of high-performance LTA membranes on the surface of
coarse and inexpensive α-alumina tubes with 1–3 μm pores
[107,108]. The preparation was based on rubbing the support
surface with a synthesis gel (or LTA seeds embedded in the gel)
followed by crystallization. The resulting membranes display high
and reproducible performance in the dehydration of 10% water/
90% ethanol mixtures by pervaporation. The same group reported
the synthesis of MFI membranes on commercially available low-
cost (150 $/m2) α-alumina tubes [109,110]. The authors developed
a so-called wetting rubbing method, which initially involves the
impregnation of the support with solvent and then coating with
MFI seeds layer by rubbing. Optimum results were obtained with
n-butanol as the wetting agent. The hydrophilic membranes
showed good performance in recovery of ethanol from a 5% aqu-
eous solution by pervaporation. Li et al. synthesized LTA films on
coarse α-alumina tubes by the hot dip-coating technique [111].
Using consequent dip-coating steps with decreasing seed particle
sizes followed by secondary growth, the authors obtained high-
performance hydrophilic membranes for the dehydration of or-
ganic solvents. In another work dip-coating at low pH to stabilize
the precursor suspension was performed, yielding thin and dense
seed layers of MFI and MEL zeolites on the rough surface of
symmetric α-alumina hollow fibers [112]. After secondary growth,
supports coated in this way yielded thin and good quality poly-
crystalline membranes for hydrophobic pervaporation and se-
paration of butane isomers.

2.5. Chemical composition

The zeolitic Si/Al ratio not only influences framework polarity
and adsorption properties but also has a strong effect on the in-
tegrity of the zeolite layer. Noack et al. observed that increasing
the Si/Al ratio from 20 to 600 in ZSM-5 (MFI) membranes drasti-
cally enhanced membrane quality [113]; similar results were ob-
tained by Kosinov et al. for a series of SSZ-13 membranes with Si/
Al ratio varied from 5 to 85 [114]. It is generally accepted that the



Fig. 8. Cross-section SEM images of SSZ-13 zeolite films synthesized at similar
conditions from synthesis mixtures with an Si/Al ratio of 10 (left) and 100 (right).
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repulsion between strongly negatively charged Al-rich zeolite
crystals leads to formation of defects between the crystals and
poor overall intergrowth [115]. Fig. 8 demonstrates how the
synthesis mixture Si/Al ratio influences the integrity of SSZ-13
membranes prepared by the similar procedure. Clearly, the high-
silica film is dense and uniform, while the low-silica film consists
of barely intergrown single crystals.

Caro et al. developed a strategy of balancing the negative
charge of Al-rich zeolite crystals by using “intergrowth supporting
substances” (ISS) such as quaternary polyammonium salts, char-
acterized by a high positive charge density [116]. Indeed, the
membranes prepared with ISS addition contained less defects.
Nevertheless, the contribution of defect flow for low-silica FAU
and LTA membranes was still substantial leading to poor gas se-
lectivities [117].

To summarize, the application of low-silica membranes ap-
pears currently to be restricted to moderate-temperature adsorp-
tion-controlled removal of H2O, CO2, H2S and other highly polar
compounds. In diffusion-controlled gas separation where the ab-
sence of defects is more important than adsorption properties, the
Knudsen selectivity is rarely exceeded by using low-silica mem-
branes. Thus, for genuine molecular sieving separations high-silica
zeolite structures should be considered. In addition, it is important
to note that the hydrothermal and chemical stability of zeolites
increases with Si/Al ratio. For instance, Drobek et al. compared
stability of ZSM-5 (Si/Al 100) and silicalite-1 membranes in long-
term desalination runs (up to 560 h) and found much higher ro-
bustness for pure-silica zeolite [118]. Moreover, pure-silica DDR
[119] and high-silica CHA membranes [120] were shown to have
promising hydrothermal stability at industrially relevant
conditions.

Silicoaluminophosphates (SAPOs) with stoichiometry of
SixAlyPzO2, where typically 0oxo0.2, are a family of zeotype
materials consisting of SiO4, AlO4 and PO4 tetrahedra. The struc-
ture of SAPO materials corresponds to that of their aluminosilicate
analogs, while the chemistry significantly differs. First of all, the
intrinsic polarity of SAPO frameworks is higher than of alumino-
silicate ones because of more ionic character of bonding – every
PO4 and AlO4 tetrahedron is respectively positively and negatively
charged. This fact leads to enhanced hydrophilicity and lower
hydrothermal stability of SAPO materials as compared to high-si-
lica zeolites [121]. Important consequence of increased polarity is
the sensitivity of SAPO-based membranes to water vapor, which is
often present in gas streams. Poshusta et al. studied the effects of
short and long-term exposure of SAPO-34 membranes to water
vapor. They found that SAPO-34 micropores were nearly blocked
in the presence of 0.6–0.9% water vapor, leading to drastically
decreased CO2 permeance and negligible CO2/CH4 selectivity [122].
In addition, SAPO-34 membranes permanently degraded after
long-term exposure to laboratory atmosphere (1–2% of water va-
por, considering the average humidity and atmospheric pressure
in Boulder, Colorado). It should, on the other hand, be noted that
long-term exposure to an atmosphere with low water content
(170 ppm) had only a slight effect on SAPO-34 membrane se-
paration performance [123]. Nevertheless, the high sensitivity of
SAPO structures to water vapor means that real gas streams must
be thoroughly dehydrated before separation, which may turn ap-
plication of SAPO membranes unfeasible.

To conclude, development of advanced seeding techniques
made it possible to prepare high-quality zeolite films, even on very
rough support surfaces. Further progress in this direction can
significantly decrease fabrication costs and eventually help com-
mercializing the gas separation and hydrophobic pervaporation
zeolite membranes. In this respect, demonstration of synthesis
reproducibility and membrane stability with respect to high
temperature, pressure and presence of water and other typical
components of gas streams will be key factors.
3. Zeolite topology

Many zeolite structures and their combinations with various
substrates have been utilized for preparation of molecular sieving
membranes. It is fair to say that zeolite topology plays an crucial
role in zeolite membrane separations. A brief overview of selected
existing membranes and their performance in various gas se-
parations is given by Fig. 9.

3.1. 10MR and 12MR membranes

By far the most studied zeolite structure for preparation of
membranes is ZSM-5 (MFI topology), named silicalite-1 in its
pure-silica form. MFI possesses a 3-dimensional pore network
consisting of intersecting sinusoidal (a-direction) and straight (b-
direction) channels; the 10MR pores of MFI are ca. 5.5 Å in size.
The popularity of this structure is explained by the relatively ease
of preparation, which has led to many studies into MFI membrane
growth enabling controlled synthesis of promising membranes
[132]. Fig. 10 illustrates the dominance of MFI-type zeolites in
scientific reports about zeolite membranes. Strikingly, there are
nearly three times more publications on MFI membranes than on
already commercialized LTA membranes.

From the perspective of gas separation, it should be noted that
MFI pores are larger than the kinetic diameter of most permanent
gases (Table 1). Thus, MFI and other 10MR and 12MR zeolite
membranes can only be efficient for adsorption-controlled gas
separations or separation of larger hydrocarbon molecules [133].
This fact limits application of these membranes to moderate
temperatures, where adsorption still plays a significant role.



Fig. 9. Reported examples of mixture gas separation by various supported zeolite
membranes [60,114,124–131]. In each case the measurements were performed in
the temperature range of 20–35 °C, pressure range of 100–600 kPa with (nearly)
equimolar mixtures.

Fig. 10. Number of publications indexed in Scopus containing term “XXX zeolite
membranes” (where XXX is zeolite topology code; note that zeolite T is an ERI-OFF
intergrowth-type zeolite) in the article title, the abstract or the keywords. Different
zeotypes belonging to one topology are combined, e.g. MFI¼MFIþZSM-
5þsilicalite-1; CHA¼chabaziteþCHAþSAPO-34þSSZ-13, etc.

Table 2
Properties of selected 8MR zeolite structures.

Zeolite structure
(examples)

Pore size
(Å�Å)a

Dimensions Accessible vo-
lume (%)

Max. Si/Alb

AEI (SSZ-39,
AlPO-18)a

3.8�3.8 3D 17.3 4100
3.8�3.8
3.8�3.8

DDR (ZSM-58,
DD3R)a

3.6�4.4 2D 9.2 1

CHA (SSZ-13,
SAPO-34)a

3.8�3.8 3Dc 17.3 1

LTA (Na-A, ITQ-
29)a

4.1�4.1 3Dc 21.4 1

RHO (Rho, DNL-6
[188])a

3.6�3.6 3Dc 20.6 5

ERI (UZM-12,
AlPO-17)

3.6�5.1 3Dc 15.1 10

AFX (SSZ-16,
SAPO-56)

3.6�3.4 3Dc 17.3 6

SFW (SSZ-52) 4.1�4.1 3Dc 17.2 10
RTH (SSZ-50) 3.8�4.1 2D 16.0 1

2.5�5.6
KFI (ZK-5) 3.9�3.9 3Dc 17.9 5
ITE (ITQ-3) 3.8�4.3 2D 16.5 1

2.7�5.8
IHW (ITQ-32) 3.5�4.3 2D 9.7 1
ITW (ITQ-12) 2.4�5.4 2D 8.2 1

3.9�4.2
NSI (Nu-6(2)) 2.6�4.5 2D 3.5 1

2.4�4.8
LEV (Levyne) 3.6�4.8 2D 14.3 50

a Structure has been applied for preparation of a thin film.
b Maximum reported Si/Al for aluminosilicates.
c Identical channels in a, b, c-directions.
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Nevertheless, there are many examples of successful gas separa-
tions, especially CO2-involving ones, by 10MR and 12MR zeolite
membranes.

Recently, Hedlund et al. in a series of publications evaluated the
performance of thin (o1 μm) α-alumina supported silicalite-1
membranes in low-temperature CO2/H2 and CO2/CO separations
[134,135]. These membranes displayed CO2 permeances as high as
10�6–10�5 mol m�2 s�1 Pa�1 and CO2 selectivities as high as 10–
100. Similar membranes were also applied for cryogenic O2/N2

separation with O2 permeance of about 10�7 mol m�2 s�1 Pa�1

and a separation factor of 5 at 80 K [136]. MFI membranes were
also reported to be effective for separation of linear hydrocarbon
isomers from their branched analogs. Separation of n-butane/i-
butane mixtures is a common MFI membrane quality test [137].

Low-silica FAU type NaY and NaX membranes with 12MR pores
(7.4 Å) are polar and thus highly CO2 selective. Successful CO2/CH4

[129], CO2/N2 [138] and CO2/H2 [139] separations by FAU mem-
branes have indeed been reported. Because of its large pores, FAU
membranes offer high CO2 flux at reasonable selectivity, which
decreases with increasing temperature. An important advantage of
FAU zeolites is that the use of organic SDAs is not always required
in their synthesis. Thus, fabrication of FAU membranes is cheaper
and consists of fewer steps as template removal can be omitted.
On the other hand, the high Al content in FAU structures makes
their synthesis in the shape of membranes quite challenging [140].

Organic-free mixtures are also applied for the synthesis of
zeolite T membranes. Zeolite T is a low-silica (Si/Al 3–4) inter-
growth of offretite (OFF, 1-dimensional, 12MR) and erionite (ERI,
3-dimensional, 8MR). Zeolite T membranes were evaluated in the
separation of CO2 from CH4 [141] and other gases [124] and dis-
played decent performance at low temperature and pressure
conditions.

3.2. 8MR membranes

Zeolites with smaller pores can offer real molecular sieving for
separation of permanent gases, as typical pore size of these zeo-
lites is below 4 Å, which is close to the kinetic diameter of many
permanent molecules. To date, several 8MR structure have been
utilized for preparation of gas selective zeolite membranes. Table 2
gives an overview of already applied and other promising 8MR
structures.

LTA is a three-dimensional 8MR zeolite with very high acces-
sible pore volume. Polar low-silica Na-A (Si/Al¼1) membranes,
commercialized for the dehydration of alcohols, rarely display
selectivity above respective Knudsen values in separation of per-
manent gases [142,143]. The reason for this poor performance is
the abundant presence of non-selective pathways in dehydrated
Na-A membranes, caused by highly surface charged crystal nuclei
during the synthesis [115], and the strong adsorption of traces of
water vapor, blocking the permeation of other gases. On the other
hand, recently developed pure-silica LTA (ITQ-29) [144] and neu-
tral aluminophosphate AlPO-4 [145] membranes possess much



Fig. 11. Separation results for an equimolar H2/CO2 mixture during the CCD mod-
ification. (I) heating from �298 to 723 K; (II) dwelling at 723 K; (III) first MDES
CCD; (IV) annealing in H2/CO2 feed without MDES; (V) second MDES CCD; and (VI)
H2/CO2 feed without MDES. Reprinted from [165]. Copyright 2009, with permission
from the American Chemical Society.
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less defects and were accordingly shown to separate H2/CH4

mixture with a selectivity of �6, well above the Knudsen value
(2.6) [146]. The reasons for the superior quality of high-silica
aluminosilicate membranes compared with their low-silica ana-
logs will be discussed in the next section. Currently, the main
problems associated with the fabrication of high-silica LTA mem-
branes are the very expensive templates necessary for the synth-
esis (cryptand “Kryptofix 222” or alkyl-substituted polycyclic hy-
droxides) and the troublesome synthesis procedure involving hy-
drofluoric acid and a nearly dry initial mixture, making it difficult
to grow uniform and thin zeolite layers. In addition, LTA pores of
4.1 Å are somewhat bigger than many light gas molecules, which
limits the molecular sieving capacity of LTA membranes to se-
parations involving hydrocarbons starting from ethylene and
larger.

DDR is a two-dimensional zeolite with moderate porosity and
3.6�4.4 Å pores [147]. Excellent stability of high-silica DDR
membranes, even at temperatures as high as 500 °C, has been
reported [148,149]. Main applications of these membranes are CO2

and H2 separations [150]. For instance, selectivities of the order of
103 and 102 have been reported for CO2/CH4 and CO2/air separa-
tions, respectively [60]. The DDR membranes were also shown to
be effective for selective removal of hydrogen during catalytic
dehydrogenation of isobutane [64].

The main drawback of DDR is the relatively low permeance that
can be achieved, due to its two-dimensional pore structure and
also the low porosity of DDR. Another pitfall is the troublesome
synthesis of DDR, known to be poorly reproducible. So far, NGK is
the only company that has been able to produce DDR membranes
of high quality [119].

CHA membranes, high-silica SSZ-13 and zeotype SAPO-34 (si-
licoaluminophosphate), are currently considered the most pro-
mising candidates for light gases separation [151]. Excellent results
were obtained using SAPO-34 membranes; they are highly selec-
tive and permeable for CO2 in various mixtures as well as for H2

and other small molecules [152,153]. More recently, high-silica
SSZ-13 membranes have already been demonstrated to have at
least comparable performance to SAPO-34 membranes [154],
while possessing much higher thermal and hydrothermal stability.
The open, highly symmetric 3-dimensional CHA structure is sui-
table for reproducible fabrication of membranes capable of se-
parating various gas and liquid mixtures at close to industrial
conditions [61].

Finally, zeotype AlPO-18 (AEI) membranes were recently re-
ported to possess very promising separation properties towards
CO2 and H2 [155,156].

3.3. 6MR membranes

Zeolites with exclusively 6MR pores (ca. 2.8 Å) are considered
permeable to only very small molecules (e.g. water or hydrogen)
[157–159]. For instance, low-silica sodalite (SOD) membranes
displayed H2/n-C4H10 ideal selectivities over 1000 [160]. The per-
meance through the extremely small 6MR pores is, however, very
low which makes commercial application of sodalite membranes
for gas separation unlikely. In addition, SOD hydrothermal stability
is low because of the high Al content [161].

3.4. Post-synthesis modification

Post-synthesis modification is a convenient way to alter prop-
erties or reduce the number of defects within the zeolite film. This
can include chemical modification by grafting, making use of
surface silanols, to turn the surface hydrophobic or affinitive to
specific compound. Such modification alters the zeolite adsorption
properties and sometimes allows more selective separation [162].
Another approach involves tuning the zeolite pore size by CVD of
silica or carbon layers [163]. For instance, Hong et al. tuned pores
of B-ZSM-5 and SAPO-34 membranes by catalytic cracking de-
position (CCD) of methyldiethoxysilane (MDES) and observed a
significant improvement in H2/CO2 selectivity without propor-
tional decrease of H2 permeance [164]. Tang et al. observed an
even more pronounced increase of the H2/CO2 selectivity (Fig. 11)
after several consecutive CCD steps [165]. It should be noted that,
although the separation selectivity increased ca. 40 times, the H2

permeance of silylated membrane was just two times lower. Lin
et al. performed similar CVD treatment on high-quality MFI
membranes and concluded that, upon reducing the pore size, the
transport of small molecules like H2 and He was governed by ac-
tivated gaseous diffusion instead of Knudsen flow [166]. Im-
portantly, membranes silylated by MDES exhibited improved
thermal and hydrothermal stability [167]. Thus, pore size tuning
by deposition of molecular silica inside the zeolite pores offers a
possibility to turn initially adsorption selective into stable and
truly molecular sieving membranes with high selectivity towards
small molecules (mainly H2).

Expectedly, the combination of these properties led to appli-
cation of pore tuned MFI membranes in catalytic membrane re-
actors. Among others, the use of membranes the thermo-
dynamically limited water-gas shift reaction (WGSR) attracted a
lot of attention [168]. In a catalytic membrane reactor, the equili-
brium can be shifted towards the products by selectively removing
the hydrogen from the reaction. It was shown by Dong et al. that,
indeed, a catalytic membrane reactor based on high-quality MFI
membrane modified by CCD is capable of surpassing the equili-
brium limits in the WGS reaction. At 550 °C and 1.5 bar conversion
of CO achieved in the zeolite membrane reactor was 81.7% well
above the equilibrium value of 65% [169].

Post-synthesis modification can be also a way to decrease
number of defects within zeolite film. Noble et al. applied soaking
in cyclodextrin solution to improve the separation performance of
SAPO-34 membranes [170]. Since cyclodextrin molecules are too
large to penetrate into zeolite pores, they selectively block the
intercrystalline defects. As a result, the CO2/CH4 separation tests
showed significant increase of CO2/CH4 selectivity without affect-
ing much the CO2 permeance through the modified membranes.
Similar methods to seal the defects including dip-coating of MFI
membranes with amorphous silica layer [171], silicone rubber
[172] and CVD of silica within defects by counter diffusion [173]
have been proposed. Another relevant approach is fabrication of
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poly-layer zeolite membranes in order to close defects in the
bottom layer by another layer of the same material grown on top
[174] or to combine desired properties of two different zeolite
types in one structure [175].

Apart from blocking membrane defects and decreasing the
pore size, post-synthesis modification can be used to tune zeolite
adsorption properties. For example, grafting with methylamine
enhances the performance of silicalite-1 membranes in CO2/H2

and CO2/CH4 separations [176]. The reason for the improvement is
the much higher affinity of the modified material to CO2, origi-
nating from the strong interaction of methylamine with the zeolite
framework. As a result of Si–N–Si bridge formation the overall
framework basicity strengthens, leading to increased CO2 ad-
sorption [177]. Another way to improve CO2 affinity and, hence,
membrane selectivity is impregnation with a calcium nitrate so-
lution followed by its thermal decomposition, resulting in CO2

specific adsorption sites [178]. A similar approach was applied to
enhance the hydrophobicity of MFI membranes. Grafting with
triethoxyfluorosilane yielded materials with drastically decreased
affinity to water, authors explained this phenomena by partial
replacement of polar Si–OH groups with Si–F ones within the
zeolite layer [179].

To conclude, post-synthesis modification is a convenient and
versatile method to adjust specific separation and adsorption
properties as well as to improve the overall quality of zeolite
membranes.
4. Perspectives

Although during the last decade the field of zeolite membranes
has witnessed very important developments, several promising
directions should be explored further. Among them, development
and improvement of preparation methods, design of novel mem-
branes by combining the existing synthetic repertoire with ap-
propriate zeolite structures and reduction of costs associated with
the preparation of zeolite membranes are of special interest.

4.1. Improvement of synthesis techniques

In this section we will briefly discuss several perspective di-
rections in the fabrication of zeolite films. As highlighted above
secondary growth remains the predominant technique for syn-
thesizing high-quality thin and often oriented zeolite films. Nor-
mally, the secondary growth method requires nano-crystals to be
used as seeds. Synthesis of zeolite nano-crystals is often difficult
[180] and a ball-milling step can be a convenient strategy to pre-
pare seed crystals of suitable size. For instance, it was shown for
NaA and CHA crystals (originally 5–10 μm) that ball-milling led to
highly crystalline nano-crystals with relatively narrow particle size
distributions which could be successfully applied for surface
coating [181,182].

Use of fluoride anions as mineralizing agents has some ad-
vantages compared with conventional hydroxyl media [183].
Fluoride-mediated synthesis is well-known to result in zeolite
crystals with much lower density of silanol defects and, hence,
higher overall zeolite hydrophobicity and hydrothermal stability
[184]. Now, the first examples of successful fluoride route mem-
brane preparations are emerging. For instance, the group of He-
dlund recently reported fabrication of high-quality and thin
(o0.5 μm) F-silicalite-1 films on α-alumina discs [185]. The
synthesis was performed in fluoride media at near neutral pH. The
quality of the resulting membranes was determined by high-re-
solution permporometry; in this way, it was found that more than
99.5% of He flow through the [F]-MFI membrane passes through
zeolite pores. In accordance with permporometry results [F]-MFI
membranes performed well in CO2/H2 and n-butanol/water se-
parations. Liu et al. reported the possibility to heal the lattice de-
fects of as-synthesized [OH]-zeolites by simple hydrothermal
treatment in NH4F solution [186]. By using 29Si, 19F and 1H NMR,
the authors proved that zeolites (silicalite-1, ITQ-13 and ZSM-48),
originally synthesized in basic media, after treatment with NH4F,
possess all the properties of the fluoride route synthesized mate-
rials. Crystal shape and zeolite structure were not disturbed after
the modification, as demonstrated by SEM and XRD. This concept
can be particularly interesting for the fabrication of zeolite mem-
branes. By converting conventional [OH]-zeolite films into [F]-
zeolite films, high-quality hydrophobic membranes can be ob-
tained without dealing with troublesome fluoride route synthesis,
which involes HF as a reagent and often very viscous gels making
it difficult to grow a uniform membrane layer [187].

As discussed in previous sections, post-synthesis modification,
which include blocking the defect pathways or tuning the zeolite
pores as well as altering the surface or framework chemistry is a
promising strategy worth further exploring. For instance, poly-
meric membranes have been widely applied in practice after de-
fect healing strategies were developed. In addition post-synthesis
treatment can help overcoming issues with synthesis reproduci-
bility, which is often inherent to zeolite membrane synthesis.

4.2. Rational zeolite membrane design

To properly choose a zeolite structure for a given separation
several factors should be taken into account. These include the size
and adsorption properties of the molecules to be separated, op-
erational conditions, presence of impurities (e.g. water vapor), etc.
For instance, polar low-silica structures often display high ad-
sorption selectivity for CO2 separations (CO2/CH4, CO2/N2, CO2/H2);
however, the presence of even low amounts of water is detri-
mental for their performance. Thus, if the target separation in-
volves water or other strongly adsorbing impurities, high-silica
8MR zeolites offering molecular sieving properties, hydrothermal
stability and low polarity should be considered. Table 2 and Fig. 12
highlight 8MR frameworks promising for preparation of molecular
sieving gas selective membranes.

Some of these structures (AEI, CHA, DDR, LTA and the silico-
aluminophosphate version of RHO) have already been applied for
membrane preparation. For instance, the aluminosilicate version
of one of the most interesting frameworks – RHO – has only been
prepared with a rather low Si/Al ratio of about 5, which is hardly
suitable for membrane preparation. RHO is characterized by a very
open framework (density of only 14.5 T-atoms/1000 Å3), a highly
symmetric system of channels (i.e. the same channels in a, b and c
directions, which usually has positive effect on the film synthesis
because of isotropic growth), a cage-like pore structure (as dis-
cussed above, often advantageous for adsorption discrimination),
and last and probably the most important – pores of 3.6�3.6 Å
that would favor high molecular-sieving selectivity. High-silica
RHO membranes would be particularly promising for industrially
important separations involving He (He/air), H2 (H2/CH4) and
other small molecules.

Currently, novel approaches of rational zeolite design and ne-
cessary structure-directing agents are being developed. According
to the International Zeolite Association there are over 220 dis-
covered frameworks and,among them, there are over 70 8MR
structures. This number constantly increases owing to advances in
zeolite chemistry. Although the complete mechanism of zeolite
growth remains unclear, the progress in the field of rational zeolite
design is remarkable. Starting from a nearly alchemical trial and
error approach, now it is possible to model geometrical properties
of organic SDAs in view of their fit into zeolite channels and cages
and interaction with the framework, and accordingly suitable



Fig. 12. Structures of selected 8MR zeolite structures suitable for fabrication of gas separation membranes.
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templates for novel zeolite structures can be designed [189,190].
The progress in synthesis of new zeolites will undoubtedly lead to
an increased number of zeolite structures suitable for preparation
of thin films and membranes with optimal separation properties.

4.3. Cost reduction

The main pitfall en route to practical gas separation zeolite
membranes is high fabrication cost. Some promising approaches
to decrease fabrication expenses are discussed below.

(1) The support may constitute up to 70% of the total zeolite
membrane cost; thus research efforts should be made to de-
crease the cost of the support. Optimization of seeding and
secondary growth processes may lead to the possibility of
synthesizing high-quality thin zeolite films on rough surfaces
of cheaper extruded supports and several such membranes
were discussed in this review.

(2) Recently, the library of zeolites that can be prepared in or-
ganic-free media has been significantly expanded. The method
is based on adding the targeted zeolite as seeds to a synthesis
gel that can yield another zeolite, containing common building
units with the target structure, when the reaction is per-
formed without seeds [191]. According to such approaches,
several 8MR zeolites including RUB-13 (RTH) [192], RUB-50
(LEV) [193], ECR-18 (PAU) [194] have already been successfully
synthesized. Further propagation of these methods to higher
silica zeolites and their implementation in membrane synth-
esis can reduce the preparation costs by saving expensive
organic SDAs. Such preparations would be also faster and
more energy-efficient as it is not necessary to detemplate the
as-synthesized membranes. A recent example is a SAPO-34
membrane with excellent CO2/CH4 separation performance
prepared in organic-free media by microwave heating [195]. In
addition, elimination of the calcination step can help avoiding
formation of thermally-induced defects, which would posi-
tively influence membrane quality and reproducibility [196–
199].

(3) The use of phosphorous-based molecules as templates for
zeolite synthesis is another way to reduce costs associated
with organic SDAs. Phosphorous-containing molecules are
more stable than conventional nitrogen-based compounds
that are usually decomposed during the membrane synthesis.
Phosphonium cations and phosphazenes, on the other hand,
can be recovered and re-used for further preparations [200].
In addition, the unique properties of phosphorous-based SDAs
have already led to the discovery of several new zeolite
structures [201,202].
5. Conclusions

Although usually separation performance, as well as thermal
and chemical stability of zeolite membranes are unsurpassed by
other materials, their commercialization for gas separation re-
quires significant reduction of fabrication costs and improvement
of preparation reproducibility. To this end, implementation of
cheaper extruded porous supports for fabrication of membranes is
crucial. It is now becoming possible because of remarkable ad-
vances recently achieved in coating very rough support surfaces
with zeolite seed layers and healing/blocking the membrane de-
fects by post-synthesis modification methods. Synthesis reprodu-
cibility is another critical factor closely related to the support
properties. In most cases reproducible production of novel zeolite
films requires parallel development of zeolite and support layers
in terms of permeability, chemical properties and morphology. The
importance of the support would only increase with inevitable and
ever ongoing decrease of membrane thickness. Additionally, de-
tailed long-term stability studies (high temperature, pressure,
presence of aggressive impurities) are necessary to evaluate the
robustness of zeolite membranes, which is often considered to be
their main advantage.

Finally, improvement of existing and design of novel high-silica
8MR membranes deserves more attention of the scientific com-
munity than they currently attract. After major synthetic advances,
it is now clear, that suitable ultra-thin and defect-free high- or
pure-silica 3-dimensional 8MR membrane would be the ultimate
material for highly efficient recovery/removal of small gas
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molecules in a wide temperature and pressure range.
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