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Abstract

Children are generally underrepresented in music recommender system research, despite hav-
ing distinct preferences and developmental needs that set them apart from adult audiences. Tra-
ditional recommender approaches, designed primarily for adults, often fail to capture the unique
listening behaviors of younger users and may fail to serve them effectively. At the same time,
acoustic features play a significant role in shaping children’s music preferences, yet their poten-
tial to enhance and provide optimal recommendations for children remains largely unexplored.

To address this gap, our study examines whether extending a standard collaborative filtering
recommender with individual acoustic features can yield more age-appropriate music suggestions
for children. We integrate content-based attributes, such as acousticness, danceability, energy, in-
strumentalness, liveness, loudness, mode, speechiness, tempo, and valence, into an item-based
collaborative filtering algorithm and evaluate its performance on users aged 15 through 18. By
comparing accuracy and diversity metrics before and after the inclusion of each feature, we iden-
tify which acoustic feature improves recommendation quality for each age group and results in
the highest performance.

Our findings emphasize the significance of acoustic features, including mode, instrumental-
ness, and acousticness, in improving performance metrics for distinct age groups. By identifying
these age-specific features, our research contributes to the development of age-appropriate and
child-centric music recommender systems.

1 Introduction
Music plays a vital role in people’s lives, serving purposes such as education, motivation, and enter-
tainment. Unlike other media forms, songs are typically short and often consumed repeatedly or in
sessions [1]. These distinct consumption patterns distinguish music from different types of content,
creating a unique kind of user interaction. As a result, users tend to listen to familiar tracks while
constantly seeking new music that aligns or expands their tastes. In this context, music recommender
systems (MRS) are essential tools, as they help users widen and develop their music preferences and
discover new content.

Collaborative filtering (CF) is a widely used technique in music recommendation [1], relying
on user interaction data to predict preferences. On the other hand, the significance of content-based
filtering (CBF), particularly the role of acoustic and descriptive song features, is especially important
in music domains, primarily due to the relative sparsity of explicit feedback on music platforms
[1]. This limitation makes it more challenging to apply CF effectively on its own [2]. Given these
constraints, incorporating content features into CF-based algorithms presents a promising direction
[2], as it combines the robustness of collaborative techniques with the contextual information of
content-based (CB) approaches to enhance recommendation quality.

Despite advances in recommendation technologies, most existing systems are designed for gen-
eral audiences [3], particularly adults [4], and often neglect the distinct preferences and consumption
patterns of children [4]. Children represent a unique user group with different musical interests [4]
and developmental needs such as language acquisition, emotional regulation, and identity formation,
where music plays a critical supportive role [5]. Yet the difference in the consumption patterns is
rarely considered in the design or evaluation of recommender systems [3, 4]. Moreover, there is
limited research on how age influences music preferences [6], especially during childhood. Some
studies indicate a strong association between age and genre preferences among children [6, 7], fur-
ther emphasizing the need to consider age as a critical factor in recommendation models [8]. This
shortcoming can result in suboptimal user experiences, where recommendations may fail to meet
children’s unique tastes or developmental needs. While some studies acknowledge age-related dif-
ferences in music preference in MRS, they are often not targeted at children. This highlights a
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critical research gap in our understanding of how to design MRS that effectively caters to the diverse
needs, preferences, and listening behaviors of children.

In this context, acoustic features emerge as a valuable resource for improving music recommen-
dations for children [9]. Prior research highlights the role of acoustic similarity in shaping musical
preferences [10]. While children’s genre preferences often vary with age [6, 7], both preferences
and genres can often be described by acoustic properties such as instrumentation, tempo, and sound
textures [2]. These features not only help define genres [2] but also influence how young listeners
engage with music [9]. However, relying on genre labels alone can be limiting, as genre boundaries
are often ambiguous and inconsistent [11]. In contrast, acoustic features provide more consistent and
structured information for recommendations, which is vital given the diverse and evolving listening
habits of children. This highlights a crucial gap in current research as MRS frequently overlooks
age-specific preferences, especially those of children. Additionally, acoustic features can identify
specific musical characteristics that are particularly relevant to younger audiences. This presents
an opportunity to enhance the quality of recommendations by designing systems that are more tai-
lored to meet these needs. However, there is currently a lack of research on the impact of individual
acoustic features on the performance of MRS for children.

This gap highlights the need for research on how the incorporation of song acoustic features
influences the performance of recommender systems across different age groups. To address this,
we pose the following research question: “To what degree can the incorporation of different
acoustic features improve the performance of a CF-based recommender system for children?”

To investigate this question, we examine how incorporating individual content features into col-
laborative filtering can enhance music recommendations for children. Using the LFM-2b dataset [3]
for age-related user interactions and the LFM-BeyMS dataset [12] for acoustic song features, we
focus on age groups 15 to 18. Our analysis evaluates the impact of various content features, such as
energy and mode, on recommendation performance when used as an extension to CF, considering
both accuracy and diversity metrics. We aim to identify which feature, when integrated into the sys-
tem, yields the best results for each age group. Additionally, we explore whether performance trends
remain consistent or vary significantly across these groups. To support reproducibility, all code and
materials will be published in a public repository.1

The outcomes of this work provide empirical evidence on the performance of acoustic content
features in age-specific MRS, revealing the acoustic features that are most relevant for different age
groups in MRS design. This research extends the CF approaches by identifying the features that can
improve music recommenders for children.

2 Related Work
In this section, we review the related literature on children’s music perception, followed by an
overview of MRS, with a focus on CBF and CF algorithms and how incorporating content fea-
tures can benefit CF-based algorithms. Finally, we discuss acoustic features and their relationship to
musical preferences.

2.1 Children in Music Recommender Systems
Music plays a significant role in children’s lives, often more so than for adults, serving both as
entertainment and a means of socialization and skill development [9]. However, most MRS are
designed for general or adult audiences, often overlooking the specific needs of younger users [3, 4].

1https://github.com/Protestak/RP_Project
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Consequently, the lack of focus on children limits the effectiveness of the MRS algorithms even
though they aim to enhance user satisfaction.

Understanding children’s listening behavior is key to developing more inclusive systems. Studies
identify diverse preference clusters among children based on audio features like energy, danceability,
acousticness, and instrumentalness [4, 13]. While these findings show the variation in children’s
musical preferences, their implications for improving recommender systems remain unclear. This
suggests a need to explore how the diversification in audio features can be leveraged to design
systems that better serve young listeners.

Adolescence is a formative period for shaping musical preferences [7]; therefore, making ac-
curate recommendations for children is especially important. Research using the LFM-1B dataset
shows genre preferences vary widely across child age groups, emphasizing the need for age-aware
recommender systems [6]. Furthermore, [14] suggests that users in adolescence and young adult-
hood exhibit the greatest variability in music listening behavior, whereas this variation declines sig-
nificantly as listeners reach middle adulthood [7, 14]. Consequently, designing an MRS that takes
into account the developmental stages is important.

2.2 Music Recommender Systems
Music recommendation systems employ various algorithms to provide personalized suggestions,
with CF being one of the most common approaches [1]. In music, CB features like acoustic descrip-
tors are more influential than in other domains [1]. However, many systems overlook contextual and
personal factors that can be identified by CB features [15].

CF recommends items based on the preferences of similar users, but it can suffer from cold start
issues when user data is limited [16]. On the other hand, CBF, which relies on item characteristics,
can help mitigate these problems but may struggle to capture highly diverse user preferences. While
CF generally outperforms CB filtering in tasks like playlist generation [17], CF systems that integrate
acoustic features from CB methods can effectively complement CF [2].

Research indicates that CF systems trained on the LFM dataset have better performance for
children than adults [6], suggesting that CF may be especially beneficial for users under 18. Conse-
quently, combining CF with CB features such as acoustic descriptors could further improve recom-
mendations for younger listeners. Furthermore, hybrid systems that integrate CF and CB methods
offer a promising solution by utilizing their complementary strengths [16, 18]. However, most ex-
isting systems still overlook the unique needs of children, highlighting the need for age-aware MRS
design.

2.3 The Role of Acoustic Features in Music Recommendation
Acoustic features are used in music classification and recommendation. Studies have demonstrated
that genres can be effectively predicted using machine learning models trained on acoustic features
such as acousticness, energy, speechiness, loudness, valence, instrumentalness, liveness, tempo, and
danceability [19, 20]. For example, [20] identified which acoustic features are most predictive for
genre classification tasks. Additionally, [21] showed that features like speechiness, danceability, and
loudness significantly influence secondary genre preferences. These findings suggest a connection
between acoustic features and user-specific music preferences, which can be incorporated into MRS.
A related study [9] trained a recommender system using a complete set of acoustic features for chil-
dren aged 6 to 17. Although their model outperformed the baseline, their results were not significant,
suggesting that acoustic features can be promising but require further investigation. .
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3 Experimental Setup
We adopt an offline evaluation approach to assess the performance of our recommender systems,
which generate top-10 music recommendations for the age groups 15, 16, 17, and 18. Our choice of
offline experimentation is driven by ethical constraints associated with conducting live experiments
on children and collecting real-time user data. As a result, we rely on historical interaction data for
model training and evaluation.

3.1 Data
Our research utilizes two datasets. The first is the publicly available LFM-BeyMS [12] dataset,
which comprises 4,148 users and 1,084,922 tracks—each with acoustic features—along with 110,898
artists and 16,687,363 listening events. We use the LFM-BeyMS dataset due to its public availability
and its inclusion of acoustic music features that align with the objectives of our study. The dataset
provides ten key acoustic features commonly used in music information retrieval research [9, 21, 22].
Table 1 presents the audio features and their short descriptions.

Feature Description Range
Mode Binary (1 = major, 0 = minor) {0,1}
Acousticness Probability a track is acoustic [0,1]
Danceability Suitability for dancing [0,1]
Energy Perceived intensity of a track [0,1]
Instrumentalness Likelihood of instrumental-only composition [0,1]
Liveness Probability of live performance [0,1]
Loudness Loudness in decibels (dB) [−60,0]
Speechiness Presence of spoken words [0,1]
Tempo Speed in beats per minute [0,294]
Valence Emotional tone or mood of the track [0,1]

Table 1: Description of Audio Features

The second dataset used is LFM-2B [3], which contains 2,014,164,872 listening events from
120,322 users across 50,813,373 songs, collected between February 2005 and March 2020 [3]. Each
listening event in this dataset is tagged with the user’s age at the time of listening, enabling the
formation of age-based groupings. This dataset is chosen as it represents the most extensive and
up-to-date resource in the domain [23], and it includes age labels, which are central to the aims of
this research.

To maintain consistent input for our extended recommender system, we eliminate all listening
interactions involving tracks that lack any required acoustic features. This filtering step ensures
that only songs with complete content information are used, enabling balanced comparisons across
different models that rely on various feature types. To standardize the interaction data, we binarize
listening events by considering each user interaction with a track as a positive interaction. Since the
dataset does not contain explicit ratings, we employ an implicit feedback approach. In this method,
the presence of an interaction is regarded as a positive signal, while the absence of interaction is
viewed as negative. Additionally, we exclude users under 12 due to social media policies [3], and
those over 18 to maintain a focus on children. As a result, we retain only the listening interactions
of users aged 12 to 18 that are associated with tracks containing full content feature information.

To ensure the generalizability of the dataset, we limit our analysis to interactions from 2012,
the year with the highest number of retained listening events after applying the filtering steps de-
scribed above. Focusing on a single calendar year allows us to preserve stable user age information
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and avoids shifts in musical preferences over time. This decision supports the ecological validity
of our research by aligning data selection with realistic listening patterns [24]. We then apply a
global temporal split to divide the dataset into training (January–May), validation (June–July), and
test (August–October) sets, addressing temporal inconsistencies present in random or order-aware
splits [24]. This split is chosen to maximize interaction volume in the training set while ensuring
meaningful overlap across all periods. We exclude November and December due to low user activ-
ity and minimal user overlap with previous months. To further improve consistency, we only retain
users who are active in all three periods. This ensures that the model can be trained, validated, and
tested on the same users, improving evaluation quality.

We apply a user-level k-filtering strategy to ensure that each user contributes sufficient data for
effective model training and evaluation. Specifically, we retain users with more than 25 interactions
in the training set and more than 7 interactions in both the validation and test sets. We select these
thresholds to retain the majority of listening events and maximize user inclusion. In particular,
we observe that the number of user interactions drops significantly after 25, providing a trade-off
between sparsity and retained user interactions. We also chose the value of 7 interactions for the
validation and test sets to represent approximately 20% of the total interactions. After applying
k-core filtering, the average number of interactions per age group in the validation and test sets
ranges from 10 to 11 interactions. This is illustrated in Table 2, which aligns well with our top-
10 recommendation setup and supports a balanced performance evaluation. While previous work
recommends a 70%/30% train/evaluation split [24], we adopt a 65%/17.5%/17.5% split. This
provides slightly more training data while having enough interactions in the evaluation phases to
make top-10 recommendations feasible and meaningful.

Following user-level filtering, we apply a second round of k-filtering at the song level. We retain
only tracks that have at least 10 total interactions across the full dataset, at least 5 in the training set,
and at least 1 interaction in both the validation and test sets. This helps reduce the sparsity of the
interaction matrix and ensures that all retained songs are relevant in each data split.

Lastly, to ensure consistent and standardized comparisons, we balance the number of users in
each age group. We achieve this by randomly downsampling the age groups with the most users to
match the size of the smallest group. Specifically, we focus on the 15-, 16-, 17-, and 18-year-old
groups, as they have sufficient users meeting the above criteria. Users aged 12 to 14 are excluded
due to insufficient user data. This final step ensures that no age group dominates the results due to
size, allowing for more reliable analysis of age-based patterns in music recommendation.

Age Test Set Validation Set Training Set
Total Int. Avg. Int. Users Total Int. Avg. Int. Users Total Int. Avg. Int. Users

15 3219 11.54 279 3158 11.32 279 10958 39.28 279
16 3233 11.59 279 2854 10.23 279 10642 38.14 279
17 3190 11.43 279 2958 10.60 279 10850 38.89 279
18 3321 11.90 279 2753 9.87 279 10660 38.21 279

Total 12963 11.62 1116 11723 10.50 1116 43110 38.63 1116

Table 2: Interaction Data by Age Group

Table 2 shows the distribution of user interactions across the training, validation, and test sets
for each age group. Each set contains 279 users per age group, totaling 1116 users overall. The
training set includes approximately 10,600- 11,000 interactions per age group, with an average of
around 38 interactions per user. The validation set contains between 2,700 and 3,100 interactions
per age group, averaging about 10 to 11 interactions per user. Similarly, the test set has roughly
3,200 interactions per age group, with average interactions per user ranging from 11.4 to 11.9. This
shows that the interaction counts are relatively consistent and balanced across all age groups.
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3.2 Algorithms and Recommender System Design
We use the aiolli 2 implementation of the item-based k-Nearest Neighbors (item-kNN) as the base-
line CF algorithm, training it on the training set and tuning it using the validation set. Item-kNN
is widely recognized in the literature as a robust and commonly used memory-based method. A
comparative study [25] also showed its strong performance on the LFM dataset, reinforcing its
suitability as a reliable baseline for our evaluation.

To evaluate the contribution of individual acoustic features in music recommendation, we extend
the traditional item-based k-Nearest Neighbors (item-kNN) algorithm by incorporating acoustic fea-
tures. In doing so, we aim to enhance the performance of the widely used item-kNN algorithm. In
its original form, item-kNN operates on a user-item interaction matrix with binary values, where a
value of 1 indicates that a user has interacted with an item, and 0 indicates no interaction. Similarity
between items is then computed based on item interaction data using a similarity metric.

User \ Item Song A Song B Song C
Standard ItemKNN 1 (listened) 0 (not listened) 1 (listened)
Hybrid (Danceability) 0.7 (danceability) 0 (no interaction) 0.4 (danceability)

Table 3: Comparison of User-Item Interaction Matrix Representations

In our approach, we replace the binary values in the user-item interaction matrix with corre-
sponding acoustic feature values. Traditionally, in the item-kNN algorithm, a value of 1 is assigned
to an entry (u, i) if a user u listened to a track i, and 0 otherwise. However, we enhance the item-kNN
algorithm by substituting the positive interactions with the respective acoustic feature values while
keeping the negative interactions unchanged.

Specifically, for each positive interaction in the training set, when a user listens to a song, we
replace the binary value of 1 with the content value of a selected acoustic feature associated with the
item. For example, if a user listened to a track with a danceability score of 0.4, the corresponding
matrix entry becomes 0.4 instead of 1. Negative or missing interactions remain 0, as in the orig-
inal binary interaction matrix. This modification allows the model to capture more nuanced user
preferences by leveraging item-level content features, as illustrated in Table 3.

This modification is motivated by the need to capture content similarity between items, not
just co-occurrence frequency. While standard item-kNN relies solely on co-listening behavior, this
combination enables the model to account for the musical characteristics users are likely responding
to. This is particularly useful in music recommendation, where audio content (e.g., tempo, mood, or
danceability) often aligns more closely with user taste than pure interaction frequency. We employ
cosine similarity to normalize these feature-weighted interactions to ensure that differences in feature
scale do not dominate the similarity computation.

3.3 Acoustic Features and Genre Distribution
After preprocessing, 4,700 songs remained for analysis. To ensure reliability, we examine the distri-
butions of acoustic features and genres. Although genre is not directly used, it is included to verify
that the preprocessing preserved the natural music catalog. As shown in Figure 1, the genre distri-
bution closely matches previous LFM-based studies [6], indicating that the dataset’s diversity and
balance are maintained. Similarly, the distribution of acoustic features aligns with patterns reported
in prior work [4], supporting the applicability of existing insights to our context.

2https://github.com/sisinflab/elliot/blob/master/elliot/recommender/knn/item_knn/aiolli_
ferrari.py
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(a) Genre Distribution of the Test Age Groups (b) Genre Distribution of the Training Age Groups

Figure 1: Genre Distributions of Test and Training Age Groups

This analysis serves two main purposes: first, to verify that our preprocessing steps did not
introduce any imbalances that could distort the recommendation process; and second, to gain insight
into how acoustic features are distributed across the dataset. This is particularly important because
tightly clustered or skewed features may lead to high performance, as the model could rely on feature
similarity rather than capturing meaningful user preferences. To identify such cases, we use ECDF
plots (Figure 2) to visualize feature distributions. If two features have similar distributions but
lead to different model outcomes, this may highlight the relative importance of one feature over
another. Conversely, if features with similar distributions yield similar performance, it could indicate
redundancy or the potential for feature grouping. In both cases, analyzing these patterns can help us
better understand the role of individual features in the recommendation process and inform future
model design choices.

(a) Acousticsness (b) Danceability (c) Energy (d) Instrumentalness (e) Liveness

(f) Loudness (g) Mode (h) Speechiness (i) Tempo (j) Valence

Figure 2: ECDF Plots of Audio Features
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For most of the acoustic feature values, the ECDF plots indicate a near-linear distribution, sug-
gesting that these features are approximately uniformly distributed across the dataset. However, for
liveness, acousticness, and speechiness, there is a high concentration of values in the 0–0.2 range,
indicating that most songs exhibit low levels of these characteristics. Additionally, the distribution
of the mode feature shows a notable inclination toward major mode songs. This presents, overall, a
potential imbalance in the dataset toward more mainstream musical attributes, which could influence
the generalizability.

3.4 Evaluation
The primary goal of recommender systems, both in research and industry, is to enhance user satis-
faction [23]. As a result, evaluation metrics are typically focused on ranking and accuracy. However,
when designing systems for children, additional care is necessary, as they have unique developmen-
tal needs and are more susceptible to the effects of digital interactions.

According to a literature survey [25], Hit Rate (HR), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain (NDCG) are among the most commonly used evalua-
tion metrics. Each serves a distinct purpose: MRR measures how early the first relevant item appears
in the ranked list, reflecting the system’s ability to present useful content quickly. HR, on the other
hand, assesses whether at least one relevant item is included in the top-K recommendations, which
is crucial to ensure the recommender provides some value to the user. NDCG evaluates the ranking
quality by taking the positions of all relevant items into account, giving higher importance to those
appearing higher in the list, and thus rewards well-ordered recommendation lists.

In the context of child-oriented systems, HR is crucial to ensure at least one relevant recom-
mendation, while MRR assesses how well a system ranks the most appropriate items. Additionally,
beyond accuracy-focused metrics, diversity and coverage should also be considered to promote a
richer and more engaging user experience [26]. Intra-list diversity refers to the similarity among
songs recommended in the top-N list, where we use all ten content features to measure it. Moreover,
coverage is defined as the percentage of the catalog recommended to users in the top-N recommen-
dations.

3.5 Experiments
The goal of our experiments is to assess the contribution of individual acoustic features to the CF-
based recommender system, specifically for users aged 15 to 18 years old. To achieve this, we
extend the item-kNN algorithm by modifying the interaction matrix to incorporate the values of one
acoustic feature at a time, rather than combining multiple features. This setup allows us to compare
the performance of these feature-specific extended recommenders across age groups and iden-
tify which features most enhance recommendation quality and diversity, offering insights for
designing systems tailored to young users.

We conduct offline top-10 recommendation experiments, evaluating each model on age-specific
test sets using the historical interactions of 279 users per group as ground truth. In total, we train
11 models: a baseline using binary interactions and 10 extended models, each utilizing a single
acoustic feature, substituting the binary values in the baseline algorithm. Each model is evaluated
independently for each age group.

Given that the test set includes approximately 12 items per user, we focus on the top-10 recom-
mendations to ensure evaluations remain meaningful and metrics are reliable. Grid search is used
to conduct hyperparameter tuning for optimal configurations. Hyperparameters are adjusted with a
validation set and applied consistently across all models to ensure comparable results.
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To maintain internal validity [24], we hold control variables constant and vary only the inde-
pendent variable of the acoustic feature. Multiple experimental runs ensure repeatability, while
statistical testing addresses generalizability.

To evaluate whether each extended model significantly differs from the baseline, we use the
Wilcoxon signed-rank test, following the methodology in [27]. This non-parametric test is chosen
because it does not assume normality, as our Shapiro-Wilk scores indicate 0.0000 for each feature
in MRR and NDCG metrics visible in Table 9 in the appendix. We apply a two-tailed hypothesis
with a significance threshold of p < 0.05. Paired comparisons are conducted using MRR and NDCG
for each of the 279 users in each age group, comparing the baseline model to its content-extended
version. For HR, we use McNemar’s test, which is appropriate for paired binary outcomes. This test
has been used in CF and list-based recommendation studies [27, 28, 29] and statistical significance
is assessed at p < 0.05.

4 Results
We present the results separately for each age group (15, 16, 17, and 18) in Table 4. Detailed
p-values for the accuracy metrics are provided in the appendix in the Tables 5, 6, 7, and 8 for
reference. Following the individual results, we examine patterns across age groups to highlight
common trends and notable differences, enabling both within-group and cross-group analysis. For
significance, all the extended models are compared to the baseline model, and the importance refers
to that throughout the section.

Recommender Algorithm Age 15 Age 16

HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

Item-KNN + Acousticness 0.1326 0.0402 0.0200 0.3448 0.9950 0.1183 0.0306 0.0190 0.3567 0.9949
Item-KNN + Danceability 0.1362 0.0372 0.0194 0.3501 0.9951 0.1147 0.0314 0.0183 0.3574 0.9950
Item-KNN + Energy 0.1326 0.0366 0.0188 0.3510 0.9952 0.1147 0.0325 0.0183 0.3576 0.9950
Item-KNN + Instrumentalness 0.1577 0.0416 0.0226 0.3280 0.9945 0.1183 0.0382 0.0180 0.3202 0.9946
Item-KNN + Liveness 0.1326 0.0360 0.0185 0.3478 0.9952 0.1147 0.0322 0.0185 0.3569 0.9951
Item-KNN + Loudness 0.1470 0.0390 0.0200 0.3503 0.9953 0.1183 0.0318 0.0180 0.3531 0.9951
Item-KNN + Mode 0.1613 0.0418 0.0219 0.3076 0.9952 0.1039 0.0324 0.0162 0.3127 0.9947
Item-KNN + Speechiness 0.1326 0.0353 0.0185 0.3484 0.9951 0.1147 0.0319 0.0182 0.3552 0.9951
Item-KNN + Tempo 0.1398 0.0369 0.0195 0.3486 0.9953 0.1147 0.0320 0.0188 0.3561 0.9950
Item-KNN + Valence 0.1326 0.0368 0.0189 0.3493 0.9952 0.1147 0.0318 0.0184 0.3578 0.9951
Item-KNN (Baseline) 0.1326 0.0361 0.0187 0.3503 0.9952 0.1147 0.0320 0.0182 0.3569 0.9950

Recommender Algorithm Age 17 Age 18

HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

Item-KNN + Acousticness 0.1039 0.0203 0.0116 0.3773 0.9950 0.1219 0.0315 0.0168 0.3695 0.9953
Item-KNN + Danceability 0.1039 0.0192 0.0106 0.3739 0.9952 0.1111 0.0306 0.0169 0.3714 0.9954
Item-KNN + Energy 0.1004 0.0184 0.0101 0.3737 0.9952 0.1075 0.0306 0.0163 0.3714 0.9955
Item-KNN + Instrumentalness 0.1111 0.0276 0.0123 0.3416 0.9946 0.1183 0.0315 0.0167 0.3446 0.9952
Item-KNN + Liveness 0.0968 0.0182 0.0099 0.3759 0.9951 0.1183 0.0313 0.0172 0.3688 0.9955
Item-KNN + Loudness 0.1004 0.0187 0.0102 0.3782 0.9952 0.1183 0.0290 0.0174 0.3701 0.9955
Item-KNN + Mode 0.1434 0.0390 0.0169 0.3208 0.9951 0.1398 0.0387 0.0196 0.3263 0.9954
Item-KNN + Speechiness 0.1039 0.0190 0.0106 0.3741 0.9952 0.1219 0.0292 0.0172 0.3722 0.9955
Item-KNN + Tempo 0.0932 0.0178 0.0096 0.3724 0.9952 0.1147 0.0286 0.0169 0.3697 0.9955
Item-KNN + Valence 0.1004 0.0187 0.0102 0.3735 0.9952 0.1111 0.0280 0.0158 0.3731 0.9955
Item-KNN (Baseline) 0.0968 0.0181 0.0099 0.3756 0.9951 0.1075 0.0302 0.0163 0.3714 0.9955

Table 4: Combined Performance of Recommender Algorithms Across Ages 15 to 18. Metrics in-
clude HitRate@10, MRR@10, NDCG@10, Coverage@10, and Diversity@10. Significant improve-
ments over the baseline are bolded.
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Among all acoustic features, mode emerges as the most robust and consistent attribute across
multiple age groups, particularly for users aged 15, 17, and 18. At age 15, the recommender ex-
tended with mode achieves the highest performance across all ranking metrics. Similarly, for age 17,
the inclusion of mode yields substantial and statistically significant improvements over the baseline
in HR, MRR, and NDCG. Age 18 also benefits from mode, showing improved recommendation
quality, although without statistical significance, similar to the age group 15. These patterns suggest
that mode, as a musical attribute, plays a crucial role in enhancing the quality of recommendations
for older teens, particularly in terms of ranking precision and top-item placement.

However, this trend does not hold uniformly across all age groups. For age 16, mode performs
the worst compared to all features and baseline, showing reduced effectiveness across ranking met-
rics. This contrast indicates that mode, while generally a strong contributor to recommendation
performance, may have an age-dependent effect and might not align with the preferences of specific
age groups. It is also important to note that no feature performed significantly better than the base-
line for the age 16 group, suggesting that the results for this group may lack descriptive power or
reveal less distinct patterns in feature effectiveness.

Beyond mode, instrumentalness also shows notable performance improvements across various
age groups to a lesser extent. Instrumentalness demonstrates a significant increase in performance
for users aged 15 and a non-significant improvement for users aged 17. For users aged 16 and
18, the improvements are near baseline, with the MRR being highest for the 16-year-old group,
although this difference is not statistically significant. These findings suggest the potential benefit of
incorporating instrumentalness into recommender systems targeted at children as a broader group,
rather than focusing solely on age-specific significance. However, further investigation is necessary
to draw definitive conclusions.

Moreover, acousticness emerges as a prominent feature that performs well for users aged 15
and 17. Although the 16-year-old age group does not show a clear improvement in recommenda-
tions based on this feature, its performance remains stable. For users aged 18, the recommender
extended with acousticness slightly improves recommendation quality. These patterns suggest that
acousticness, as a song attribute, can generally contribute positively to enhancing recommendation
systems, particularly for younger teen users. While the improvement in acousticness is significant
in the MRR and NDCG metrics for the 15- and 17-year-old age groups, the HR shows only a slight
increase. This suggests that, even though there is no strong evidence of an increase in new hits,
the improvement in ranking metrics over the baseline indicates that for users to whom acousticness
mattered, this extension helped rank the first relevant item higher and improved the overall ranking
quality. This further suggests that users who enjoy acoustic songs or have previously interacted with
acoustic content may benefit more from recommendations based on this feature during these ages.

Furthermore, acousticness and instrumentalness showed statistical significance in different
quality metrics: acousticness in MRR and instrumentalness in NDCG for users aged 15. Both
features showed relatively similar performance improvements in other metrics, indicating consistent
performance across evaluation criteria. This consistency might be due to their similar value distribu-
tions, as illustrated in Table 2. Given their comparable distributions and complementary performance
in ranking metrics, it may be reasonable to group these features for further exploration. For the other
age groups, this pattern was not observed, suggesting that a unique and valuable relationship may
exist specifically for age 15, indicating a promising direction.

It is worth noting that loudness also demonstrated significance in MRR and NDCG, further
supporting the idea that it may be a particularly suitable feature for users in the age group of 15.
Although the generalizability of these findings has not yet been established, the current results indi-
cate that loudness can contribute meaningfully to recommendation quality for the age group of 15.
The relevance of the loudness could be attributed to younger children listening to more energetic
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and upbeat music [4]. This suggests that this feature stands out for the 15-year-old age group, with
potential for more performative recommendations.

These findings demonstrate that CB features, such as mode, instrumentalness, acousticness, and
loudness, can enhance recommendations, particularly when aligned with user demographics. How-
ever, the weak performance of the mode for age 16 underscores the importance of tailoring features
to age-specific preferences. Coverage trends reveal that features such as loudness and acousticness
broaden item reach across age groups, while mode and instrumentalness reduce it. This suggests
a trade-off between ranking accuracy and diversity of item coverage. The intra-list diversity re-
mains high across all features and age groups, driven by the itemKNN algorithm. This suggests that
incorporating content features does not introduce additional diversity.

5 Discussion
Across our experimental analysis, the features that established statistical significance are acoustic-
ness, instrumentalness, and loudness for the age group 15; acousticness, danceability, and mode
for the age group 17. Among these, mode emerges as the most impactful feature, consistently con-
tributing to improved performance across all age groups, except for age 16, where it shows the
lowest effect. Furthermore, the age groups 16 and 18 have no hybrid recommenders that establish
significance.

The prominence of mode as a key feature in our analysis can be attributed to its strong influence
on emotional responses to music, which likely enhances the effectiveness of personalized recom-
mendations. Mode distinguishes between major and minor scales, with major modes evoking happy,
uplifting emotions and minor modes conveying sadder, more melancholic tones [30]. Research high-
lights mode as a critical factor in shaping listeners’ emotional reactions, often more influential than
other musical elements [30]. This emotional resonance explains the mode’s significant contribution
to recommendation performance for age groups 15 and 17, where preferences may align with dis-
tinct emotional profiles. The lower impact observed in the age group 16 could reflect unique musical
tastes or a reduced sensitivity to mode-driven emotional responses, possibly due to developmental
or contextual factors.

These findings highlight the significant role of mood in tailoring music recommendations to
individual emotional preferences across most age groups of children. The mode values of the age
groups were further analyzed based on their listening events in the test and training sets, leading to
the results shown in Figure 3.

Figure 3: Mode Value Distribution of Test and Training Sets per Age Group
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There appears to be no prominent difference in the distribution of mode values, reducing con-
cerns about over-representation or under-representation of these values across age groups, which
could impact the performance of the recommender system. This suggests that mode values can be
effectively utilized for age-centric music recommendations, particularly for the 15 and 17-year-old
age groups.

An important point to highlight, as explained in [4], is that as users mature (from age 15 to 17),
the cluster of users who deviate from mainstream trends becomes more prominent. This trend is
also visible in our study: we observe a decreasing performance of the baseline algorithm concerning
age, with age 15 achieving the best results across metrics such as HR, MRR, and NDCG, followed
by ages 16, 18, and 17. This suggests that as adolescents mature, they develop more individualized
musical preferences, leading to increased diversity in their listening habits. As a result, recommender
algorithms perform relatively worse, particularly those based on CF, which rely on shared patterns
across users. We can make this claim because we balance the age groups in terms of song interactions
in the training, validation, and test sets, and each group is represented approximately equally. The
stronger performance among younger users may be attributed to the fact that they tend to follow
more common trends. This aligns with findings from developmental psychology, which suggest that
music often serves as a tool for social bonding and peer interaction during adolescence [6].

This study also extends the research by [9], which showed that including audio features im-
proved MRR, HR, and NDCG metrics in top-10 recommendation systems for high school students,
despite the lack of statistical evidence. Unlike [9], which combines all audio features, our work an-
alyzes each feature separately to gain more precise insights. Our findings suggest that specific audio
features, such as instrumentalness, loudness, and acousticness for age 15, as well as danceability
and particularly mode for age 17, can be practically valuable in refining music recommendation
strategies for adolescent users. These insights can inform the design of more targeted, age-aware
recommender systems for children. More broadly, this research encourages a shift away from gen-
eral recommender systems toward more personalized, age-aware recommenders that utilize these
acoustic features that reflect the emotional and social roles music plays in adolescent life.

Additionally, our research can be extended in a backward-looking manner. Due to the age group
balancing in our dataset, we were unable to assess the performance of the recommender system for
younger users, specifically those aged 12, 13, and 14. Previous studies [4, 9] on the LFM-2B dataset
analyze children’s musical preferences grouping by their educational stages—Grade School (GS 6–
11), Middle School (MS 12–14), and High School (HS 15–17). Our research focuses only on age
groups corresponding to the HS segment.

Having identified performance patterns for HS users aged 15–17 (with 18 as an exception), we
can potentially extrapolate insights about recommender system behavior in GS and MS users. This
can be done by drawing on earlier findings about age- or education-level-related similarities and
differences in music listening behavior. Therefore, while we do not directly evaluate younger age
groups, our analysis contributes to understanding how recommender systems might perform for
them, given observed developmental and behavioral trends.

To contextualize what other research has done in terms of comparing educational levels, [9]
indicates that GS students exhibit distinctly different listening patterns compared to both MS and
HS students, particularly across all measured audio features. Moreover, it states that the musical
preferences of MS and HS users are much more aligned. This suggests a closer similarity in audio
feature preferences between MS and HS students, with GS users standing out as a more unique group
in terms of musical behavior. Based on these findings, we might expect features such as acousticness,
loudness, mode, and instrumentalness—which performed well for HS users—to also be effective for
MS users, due to their comparable listening behavior. This implies that future research could explore
applying the features identified here to recommender systems targeting the MS group.
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In contrast, given the significant differences observed in GS users’ preferences, it is difficult
to draw clear conclusions about how recommenders trained on specific features might perform for
this group. Furthermore, [4] found that GS users tend to prefer music that is more “happy” or
“upbeat” than that preferred by MS and HS students, which aligns with the idea that this age group
is generally more energetic and expressive. From this, we can suggest that features such as energy,
tempo, danceability, valence, or the use of major modes may be more appropriate for recommender
systems designed for GS users.

One study [10] found that acoustic similarity plays a significant role in both playlist construction
and music recommendation, using both quantitative and qualitative analysis. The researchers also
examined whether the perceived similarity was related to the acoustic content features used in our
study. Although they found no statistically significant evidence for acoustic music similarity, they
identified features such as valence, speechiness, tempo, liveness, and energy as having p-values close
to significance. While this study did not focus on children or assess recommender algorithms, its
findings offer a useful perspective for interpreting our results.

This insight may be particularly relevant when considering children, whose music preferences
and listening behaviors are still developing. It raises the question of whether acoustic similarity
holds the same importance for younger users as it does for adults. Furthermore, it challenges the
generalizability of such findings, as listeners of different ages may interpret acoustic similarity in
distinct ways. It also highlights the importance of considering the characteristics of the data samples
used to analyze recommenders and listening events, which is particularly critical when establishing
statistical evidence. These factors further support the idea that music preferences and behaviors are
highly diverse across individuals.

Despite improved ranking metrics and HR, the recommender extended with mode as a feature
has the lowest coverage across all age groups, which recommends fewer unique songs. Instrumen-
talness, although beneficial for performance, also led to lower coverage. In contrast, features like
acousticness and loudness improved performance without compromising coverage, suggesting they
are more suitable for balanced recommenders. For younger users, who are often exploring their
musical preferences, this reduced coverage could limit exposure to a broad range of songs, poten-
tially decreasing engagement with the system despite improved performance. Additionally, mode
and instrumentalness tend to create mainstreamness due to lower coverage, thus limiting users’ op-
portunities to discover diverse genres and songs.

Finally, diversity scores indicate low intra-list diversity for all recommenders. This can be ex-
plained by the fact that the item-KNN algorithm serves as the foundation for the extended recom-
mender, resulting in recommendations that are highly similar to one another.

6 Responsible Research
Studying children in real-world settings presents significant ethical challenges, particularly regarding
privacy, consent, and data handling. To address these concerns and avoid the need for formal univer-
sity ethics approval for online evaluation, our research exclusively relies on historical datasets that
do not contain any personally identifiable information. Specifically, our study utilizes the publicly
available LFM-BeyMS [12] dataset and the LFM-2B [3] dataset, which is not publicly distributed
at the moment but has been used in many previous research studies.

The decision to use these pre-existing datasets ensures that no direct interaction with minors
or data collection from children was required. This approach supports ethical standards in child-
centered research while still enabling meaningful analysis of listening behavior across different age
groups.
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This study provides valuable insights into age-specific recommendation patterns and has prac-
tical implications beyond academic research. For instance, music producers and digital platforms
could leverage these findings to design content and recommendation systems that are better aligned
with the preferences and emotional needs of specific age groups. This not only enhances user en-
gagement but also supports the development of safer and more age-appropriate digital experiences.
However, if misused, such insights could potentially be exploited to steer users in undesirable direc-
tions or expose them to inappropriate content.

In terms of reproducibility, all code developed during this study will be made publicly available
through a dedicated GitHub repository. A comprehensive README file outlining the necessary
steps to replicate the full pipeline, including preprocessing and evaluation, is also published, ensur-
ing transparency and encouraging future work. We also disclose all hyperparameter choices for our
item-KNN model, including neighborhood size, similarity measure, shrinkage, and normalization
method. We also follow in the reproducibility best practices outlined in [31] in our README file to
ensure that our results can be reliably reproduced.

7 Conclusions, Limitations, and Future Work
In this work, we investigated how the incorporation of music acoustic features influences the perfor-
mance of a CF-based recommender for children across different age groups. By isolating acoustic
features and analyzing their effects individually, we uncovered age-specific patterns in recommender
performance. Our results show that mode, among all features, consistently contributed to improved
performance, especially for ages 15 and 17. Importantly, we also observed that while certain fea-
tures enhanced ranking metrics, they came at the cost of coverage, raising concerns about reinforcing
mainstream consumption.

However, these findings have some limitations and require further exploration in the future.
Our preprocessed dataset comprises only 279 users from each age group, achieved through random
down-sampling, treating age as a controlled variable. However, this method may have excluded
users who are less responsive to certain features. Additionally, for the further generalizability of
our findings, more users are required. Another limitation is the dataset’s age, collected in 2012.
Over the past 13 years, music culture and listening habits have evolved significantly due to social
media, diverse listening contexts, and accessible streaming platforms like Spotify and YouTube [1].
These shifts suggest that today’s youth preferences likely differ from those in the dataset, meaning
our study’s findings may not fully reflect current music consumption trends. A further limitation
involves the use of implicit data. Because we binarized listening events, it is unclear whether users
fully listened to the songs, skipped them after a few seconds, or actively selected the tracks versus
receiving them through recommendations [1]. This limits our ability to interpret user intent.

Finally, a limitation of our algorithm arises from replacing binary interaction values with acoustic
features in recommenders extended with the mode feature. Specifically, incorporating the mode
feature as 0 for minor-mode tracks causes these tracks to resemble non-interacted items in similarity
calculations after substitution. This results in zero similarity scores during cosine comparisons,
reducing the recommendation frequency of minor-mode tracks. Consequently, the system favors
major-mode content, and users who prefer minor-mode music may receive recommendations that
do not align with their tastes. This issue is likely the primary reason for the low coverage of the
recommender when incorporating the mode feature.

Building on these insights, future work could explore how the identified acoustic features, such
as mode, instrumentalness, and loudness, can be integrated into real-world recommendation systems
to assess their practical impact. This would involve deploying the system in a live environment and
collecting user interaction data to evaluate the effectiveness, user satisfaction, and generalizability
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of the feature-based models. Additionally, a similar study could be conducted using a new dataset or
by collecting data directly from children to assess the recommender’s performance based on these
features. Finally, zero feature values indicating no interaction, such as in the case of a minor mode,
could be mitigated with improved algorithm design.
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Appendix

7.1 Results Tables with Corresponding p-values

Recommender Algorithm HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
p-val

MRR
p-val

NDCG
p-val

Item-KNN + Acousticness 0.1326 0.0402 0.0200 0.3448 0.9950 1.0000 0.0447 0.0584
Item-KNN + Danceability 0.1362 0.0372 0.0194 0.3501 0.9951 1.0000 0.1386 0.1420
Item-KNN + Energy 0.1326 0.0366 0.0188 0.3510 0.9952 1.0000 0.1834 0.3313
Item-KNN + Instrumentalness 0.1577 0.0416 0.0226 0.3280 0.9945 0.2295 0.0894 0.0391
Item-KNN + Liveness 0.1326 0.0360 0.0185 0.3478 0.9952 1.0000 0.5281 0.6784
Item-KNN + Loudness 0.1470 0.0390 0.0200 0.3503 0.9953 0.1250 0.0031 0.0037
Item-KNN + Mode 0.1613 0.0418 0.0219 0.3076 0.9952 0.2153 0.1874 0.2184
Item-KNN + Speechiness 0.1326 0.0353 0.0185 0.3484 0.9951 1.0000 0.2249 0.2249
Item-KNN + Tempo 0.1398 0.0369 0.0195 0.3486 0.9953 0.5000 0.4007 0.2326
Item-KNN + Valence 0.1326 0.0368 0.0189 0.3493 0.9952 1.0000 0.4004 0.6002
Item-KNN (Baseline) 0.1326 0.0361 0.0187 0.3503 0.9952 - - -

Table 5: Results for Age 15: Performance metrics and Wilcoxon p-values for MRR@10, and
NDCG@10; McNemar p-values for HitRate@10. Statistically significant p-values compared to
the baseline (p < 0.05) are highlighted in bold.

Recommender Algorithm HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
p-val

MRR
p-val

NDCG
p-val

Item-KNN + Acousticness 0.1183 0.0306 0.0190 0.3567 0.9949 1.0000 0.8766 0.6873
Item-KNN + Danceability 0.1147 0.0314 0.0183 0.3574 0.9950 1.0000 0.3985 0.2845
Item-KNN + Energy 0.1147 0.0325 0.0183 0.3576 0.9950 1.0000 0.8923 0.7532
Item-KNN + Instrumentalness 0.1183 0.0382 0.0180 0.3202 0.9946 1.0000 0.2678 0.6374
Item-KNN + Liveness 0.1147 0.0322 0.0185 0.3569 0.9951 1.0000 0.4615 0.2249
Item-KNN + Loudness 0.1183 0.0318 0.0180 0.3531 0.9951 1.0000 0.8335 0.8334
Item-KNN + Mode 0.1039 0.0324 0.0162 0.3127 0.9947 0.6900 0.7512 0.5015
Item-KNN + Speechiness 0.1147 0.0319 0.0182 0.3552 0.9951 1.0000 0.4615 0.6002
Item-KNN + Tempo 0.1147 0.0320 0.0188 0.3561 0.9950 1.0000 0.8880 0.5406
Item-KNN + Valence 0.1147 0.0318 0.0184 0.3578 0.9951 1.0000 0.2164 0.4838
Item-KNN (Baseline) 0.1147 0.0320 0.0182 0.3569 0.9950 - - -

Table 6: Results for Age 16: Performance metrics and Wilcoxon p-values for MRR@10, and
NDCG@10; McNemar p-values for HitRate@10. Statistically significant p-values compared to
the baseline (p < 0.05) are highlighted in bold.

19



Recommender Algorithm HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
p-val

MRR
p-val

NDCG
p-val

Item-KNN + Acousticness 0.1039 0.0203 0.0116 0.3773 0.9950 0.6875 0.1649 0.0499
Item-KNN + Danceability 0.1039 0.0192 0.0106 0.3739 0.9952 0.5000 0.0343 0.0910
Item-KNN + Energy 0.1004 0.0184 0.0101 0.3737 0.9952 1.0000 0.7150 0.7525
Item-KNN + Instrumentalness 0.1111 0.0276 0.0123 0.3416 0.9946 0.6076 0.4405 0.8213
Item-KNN + Liveness 0.0968 0.0182 0.0099 0.3759 0.9951 1.0000 0.9165 0.8885
Item-KNN + Loudness 0.1004 0.0187 0.0102 0.3782 0.9952 1.0000 0.5743 0.7533
Item-KNN + Mode 0.1434 0.0390 0.0169 0.3208 0.9951 0.0294 0.0011 0.0067
Item-KNN + Speechiness 0.1039 0.0190 0.0106 0.3741 0.9952 0.5000 0.0769 0.0796
Item-KNN + Tempo 0.0932 0.0178 0.0096 0.3724 0.9952 1.0000 0.5754 0.4838
Item-KNN + Valence 0.1004 0.0187 0.0102 0.3735 0.9952 1.0000 0.1041 0.1380
Item-KNN (Baseline) 0.0968 0.0181 0.0099 0.3756 0.9951 - - -

Table 7: Results for Age 17: Performance metrics and Wilcoxon p-values for MRR@10, and
NDCG@10; McNemar p-values for HitRate@10. Statistically significant p-values compared to
the baseline (p < 0.05) are highlighted in bold.

Recommender Algorithm HitRate
@10

MRR
@10

NDCG
@10

Coverage
@10

Diversity
@10

HitRate
p-val

MRR
p-val

NDCG
p-val

Item-KNN + Acousticness 0.1219 0.0315 0.0168 0.3695 0.9953 0.2891 0.1767 0.2789
Item-KNN + Danceability 0.1111 0.0306 0.0169 0.3714 0.9954 1.0000 0.5534 0.4406
Item-KNN + Energy 0.1075 0.0306 0.0163 0.3714 0.9955 1.0000 0.1088 0.2249
Item-KNN + Instrumentalness 0.1183 0.0315 0.0167 0.3446 0.9952 0.6900 0.4717 0.7267
Item-KNN + Liveness 0.1183 0.0313 0.0172 0.3688 0.9955 0.2500 0.1207 0.2353
Item-KNN + Loudness 0.1183 0.0290 0.0174 0.3701 0.9955 0.2500 0.1806 0.1404
Item-KNN + Mode 0.1398 0.0387 0.0196 0.3263 0.9954 0.1628 0.1060 0.2651
Item-KNN + Speechiness 0.1219 0.0292 0.0172 0.3722 0.9955 0.1250 0.2334 0.1677
Item-KNN + Tempo 0.1147 0.0286 0.0169 0.3697 0.9955 0.5000 0.2204 0.1621
Item-KNN + Valence 0.1111 0.0280 0.0158 0.3731 0.9955 1.0000 0.8927 0.6744
Item-KNN (Baseline) 0.1075 0.0302 0.0163 0.3714 0.9955 - - -

Table 8: Results for Age 18: Performance metrics and Wilcoxon p-values for MRR@10, and
NDCG@10; McNemar p-values for HitRate@10. Statistically significant p-values compared to
the baseline (p < 0.05) are highlighted in bold.
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Feature Age 15 Age 16 Age 17 Age 18
MRR/NDCG MRR/NDCG MRR/NDCG MRR/NDCG

Acoust. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Dance. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Energy 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Instrumentallness 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Live. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Loud. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Mode 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Speech. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Tempo 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Val. 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

Table 9: Shapiro-Wilk p-values for MRR/NDCG by Age

7.2 LLM Usage
We used ChatGPT and Grok to generate Tables 1, 2, 4, 5, 6, 7, 8, 9 and Figures 1, 2. After generating
the tables and figures, we carefully verified all values to ensure accuracy by cross-checking them
against the original data.

Furthermore we used Grammarly’s generative AI solely for grammar checking and proofreading.
It was not used to extend the text. Only specific unclear sentences were revised for grammatical
correctness. The resulting texts were not used directly; instead, they were manually paraphrased
before use.

Prompts Used for LLM-Based Table and Figure Generation
We utilized Large Language Models only for table creation and figure layout. The following bullet
points show the example prompts that we used, and Figures 4 and 5 are an example of precise
prompts that we used.

• "Here are the raw results from my Python script. Can you convert them into a LaTeX table?"

• "The LaTeX table does not fit within the document margins. Can you adjust it accordingly?"

• "Can you create a LaTeX histogram using the following data?"

• "Can you create a LaTeX table from the descriptive text provided below?"

• "Can you align these images in two rows with five columns each? Here is the directory
containing the image files."

Figure 4: Prompt for Table Creation
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Figure 5: Prompt for Table Creation for Age Group 18
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