
Advancing Gaussian Process Bandit
Optimization for Time-Varying Functions

Matthias Mandl

Advancing Gaussian Process
Bandit Optimization for
Time-Varying Functions

Online Learning in the Continuous Time-Varying
Setting

by

Matthias Mandl

Student Number

4789903

Supervisor: Dr. Hanne Kekkonen
Committee members: Prof. Dr. Ir. Geurt Jongbloed, Dr. Alexander Heinlein
Project Duration: March, 2024 - September, 2024
Department: Delft Institute of Applied Mathematics

i

Acknowledgements

First and foremost I want to acknowledge Doctor Hanne Kekkonen. She consistently encour-
aged me to investigate the aspects of the topic that piqued my interest while supporting me
with mathematical insights and keeping me on track to produce a complete thesis at the
end of the project. Throughout the thesis, she has given me detailed feedback to help me
express my ideas in the language of mathematics and turn my thoughts and intuitions into a
(hopefully) convincing thesis. Without Hanne this thesis would not have been possible.
I would also like to extend my gratitude to Professor Geurt Jongbloed for all of his support
and guidance during this master. Despite his busy schedule Professor Jongbloed always made
time to meet with me. He helped me find my path in the world of mathematics at TU Delft.
I want to thank Doctor Alexander Heinlein. He was one of the professors in my very first
machine learning course, Linear Algebra and Optimization for Machine Learning, which laid
the foundation for many of the techniques used in this thesis.

I would also like to acknowledge my friends and family who have enabled me to develop as a
person as well as a mathematician. Specifically, my friends within the Applied Mathematics
MSc who have been invaluable in my personal life as well as during my academic transition
from the Aerospace Engineering BSc to the AM MSc. My partner Sterre whom I can always
count on for support in all of my endeavours. And last but not least, my parents, Gaby and
Paul, who have supported me in countless ways.

Matthias Mandl

Delft, September 2024

ii

Abstract

This thesis investigates the problem of time-varying function optimization. In particular, we
study techniques to minimize the cumulative regret when optimizing a time-varying function
in the Gaussian process setting. First, we introduce the problem and present a literature
review of the current methods and results. Following this, we we propose enhancements to
existing algorithms, demonstrating improved regret bounds. We discuss the applications
of these algorithms and where they can provide a benefit compared to existing methods.
With these applications in mind we introduce two new temporal models for time-varying
functions and their associated algorithms. We test their performance in order to validate
their effectiveness and potential benefits.

Contents

Acknowledgements . i

Abstract . ii

1 Introduction . 1

2 Gaussian Process Optimization for a Static Function 5

3 Gaussian Process Optimization for a Time-Varying Function 10

4 Improved Regret Bounds . 20

4.1 Algorithm Specific Regret Bound . 22
4.2 Algorithm Agnostic Regret Bound . 27
4.3 Cumulative regret . 32
4.4 Convergence . 36
4.5 Improved Convergence Conjecture . 39
4.6 Optimal Beta Dependence on Epsilon . 45
4.7 Comparison with Previous Regret Bound . 47

5 Simulation Study . 50

6 Online Hyperparameter Optimization . 56

6.1 Deep Reinforcement Learning . 56
6.2 Hyperparameter Changes . 59

7 Implementation . 61

7.1 Kernel Parameters . 61
7.2 Computation . 62

8 Momentum Time-Varying Function . 64

8.1 Momentum Time-Varying Gaussian Process 64
8.2 Momentum Time-Varying GP-UCB . 68

iii

Contents iv

8.3 Regret Bounds . 72
8.4 Maximum Information Gain . 73

9 Transition Time-Varying Function . 77

9.1 Transition Time-Varying Gaussian Process 77
9.2 Transition Time-Varying GP-UCB . 78

10 Validation of New Models . 82

10.1 TV Function Data . 82
10.2 MTV Function Data . 83
10.3 TTV Function Data . 84

11 Conclusion and Further Research . 87

11.1 Further Research . 89

References . 91

1
Introduction

This thesis is concerned with the topic of online learning and can be viewed as exploring an
extension of the multi-armed bandit (MAB) problem. The MAB problem was formulated by
Herbert Robbins in 1952 [24] and is described as follows; suppose you are presented with
K ∈ N+ levers. At each time step you choose one of these levers to pull which results in
some reward (drawn from a reward distribution for each lever). Your goal is to maximize the
sum of the rewards. In other words, you want to minimize the difference between the rewards
which you obtained and the maximum possible reward. This presents a challenge; when you
should simply stick with the lever which has given you the highest average reward so far
and how often should you choose levers which have given lower rewards in the past (in order
to check if you simply got unlucky with the draw from the respective reward distribution)?
This is often referred to as the exploration-exploitation trade-off which characterizes these
types of problems. It is important to note that the reward distributions of the levers are not
affected by our choices. In this paper we are concerned with an alternative setting of this
problem which retains some similar properties.

Suppose that instead of choosing from a discrete set of levers we are now concerned with
choosing a point on some continuous domain, such that an underlying reward function is
maximized. Bayesian optimization (BO) is a widely used tool for efficiently finding the
maximum of an unknown function with computationally expensive and noisy evaluations. It
aims to estimate the location in the domain at which a function will be maximized while
limiting the number of function evaluations. Suppose we want to minimize the regret of
our choices, that is; difference between the function value at the evaluated point and the
optimal (global maximum of the function over the domain). If we assume that the function
is somewhat smooth this presents a dilemma; do we choose to evaluate the function at a
point which is close to an already evaluated "good" point or do we evaluate the function at
a point which is far from any previously evaluated point; allowing us to learn more about
the underlying function and potentially find an even higher maximum than the current best
point. This is the exploration-exploitation trade-off in this new setting. This problem has
been studied in detail and Bayesian optimization has been used since the 1970’s without any
guarantees on the regret of these algorithms. In 2012 and Srinivas et al. [28] presented the
first regret bounds for BO in the setting where the underlying reward function is sampled
from a Gaussian process (GP). GPs are quite flexible which implies that this regret bound
could hold for many applications where the true reward function is not known.

1

2

One assumption which is often made is that the underlying function is constant and does
not change when it is evaluated. However, in many real world scenarios this assumption does
not hold. We can imagine that the function which is sampled at the first sample might not
be the same function which is sampled later into the optimization process. For a real world
example; consider a bird scientist who is aiming to observe as many birds as possible each
day within a given forest. Every day the researcher chooses one point in the forest to set up
her equipment and make observations of the birds. Her goal is to select a point in the forest
with a high density of birds so she can make as many observations as possible. Since she has
no prior knowledge of which areas in the forest have the most birds she records the number
of birds every day along with the location in order to inform her future choice of location.
Over time she can use this data to make better choices. However, we must also consider that
the birds behaviour can change over time. This means that she should put more weight on
her recent observations, an observation from 100 days ago might not be relevant to predicting
the current behaviour of the birds.

In 2016 Bogunovic, Scarlett, and Cevher [2] presented a Time-Varying BO (TVBO)
algorithm which is able to accommodate a function which changes over time (between
each evaluation) at some rate ε. They also present regret bounds for the performance of
their algorithm. This has been used for applications such as online optimization of deep
reinforcement learning (DRL) hyperparameters in Parker-Holder et al. [20]. Alternatives to
the TVBO algorithm have been presented in recent years, such as Event-Triggered Time-
Varying Bayesian Optimization (ET-TVBO) by Brunzema et al. [3] which assumes the
underlying function is static until a sudden change-point occurs which causes the function to
change to a different function which then remains static until another change-point occurs.
This ET-TVBO has been shown to outperform [3] the TVBO model in some real world
applications which confirms that this is still an active area of research.

The difficulty in developing these models for real world applications arises from the unknown
nature of the temporal dependence of the function as well as the requirement to minimize
the number function evaluations. Minimizing the number of evaluations implies that we
would like to develop models which work well on small datasets. This is achieved by having
good priors on the underlying function; the assumptions we want to make on how function
changes over time must be sufficiently strict. If we develop a model which is too flexible it
will likely over-fit on the small dataset of function evaluations; so the temporal relation of our
function should be informed by our prior of the underlying process. If we expect the function
to change gradually over time the TVBO algorithm is applicable. However, if we expect the
function to be mostly static which sudden change-points the ET-TVBO algorithm would
be reasonable choice. This raises the question of which other types of temporal dependence
might be relevant for real world applications.

3

In this thesis we derive improved regret bounds for the TVBO algorithm [2]. These new
bounds provide better scaling for long timescales (many evaluations). Additionally, the new
bounds build a theoretical basis for us to consider the influence of the rate of change of the
function ε on our algorithm. We support these theoretical results by conducting a simulation
study.

These algorithms can be applied to hyperparameter optimization of deep reinforcement
learning algorithms. These are algorithms which are used to train an agent to perform
certain actions within a (simulated) environment. As the agent explores the environment and
encounters different challenges we expect the optimal hyperparameters to change over time.
Suppose a robot is learning how to walk by controlling actuators. The robot receives a reward
for standing upright and an additional reward which is proportional to its forward speed.
Initially, the robot struggles to stand and falls over often. After it has mastered the task of
standing without falling over it is able to start learning how to walk forward. This is quite a
different task than learning to stand stably and requires different hyperparameters. Detecting
and adapting to these changes can be handled by the algorithms discussed in this thesis [20].
We expect that more complex learning problems will require more flexible temporal models.

To this end, we introduce two new algorithms named Momentum Time Varying Gaussian
Process Upper Confidence Bound (MTV-GP-UCB) and Transition Time Varying Gaussian
Process Upper Confidence Bound (TTV-GP-UCB) which outperform existing algorithms in
cases where the underlying function has a more complex temporal covariance structure. For
example if the function transitions from one function h1 to h2 over some time period. Or if
rather than assuming the changes in the function are completely random perturbations we
expect changes to "trend" in a more predictable fashion. We present regret bounds for these
new models and perform experiments on generated data to validate their use cases.

Theoretical Background

4

2
Gaussian Process Optimization

for a Static Function
We will begin by introducing the case where the unknown function is static and does not
change between evaluations. This is a widely studied scenario and it builds the basis for much
of the work on time varying Bayesian optimization. Our goal is to find the global maximum
of some function f over some domain D ⊆ [0, r]d, more precisely we want to find x ∈ D s.t.
f(x) is maximized:

x∗ = argmax
x∈D

f(x).

At each time step we sample the function at some point xt ∈ D. This allows us to observe a
noisy evaluation yt = f(xt) + zt with zt ∼ N (0, σ2) and then use this information (as well as
the observations of all previous samples) to inform our choice of the following point xt+1 ∈ D.

It is important to note that there are multiple interpretations to what is meant by "finding
the maximum of f". In some settings we simply want to learn as much as possible about
f and only maximize the observation of the final evaluation regardless of the observations
along the way. This is known as Bayesian experimental design, see [4]. In our case we are
concerned with also sampling "good" points of the function while we are exploring. This is
formulated as minimizing the regret. The instantaneous regret is defined as:

rt = max
x∈D

[f (x)]− f (xt)

where xt is the point we choose to sample and x∗ is the point in which the function is
maximized over the domain. Note that the regret will always be non-negative. We aim to
design an algorithm which minimizes the cumulative regret RT =

∑T
t=1 rt. It should be noted

that this is more complex than simply minimizing each individual rt because the choice of xt

will affect our estimate of f in future timesteps. It can be worthwhile to accept a high rt early
on in order to ensure that future regrets (rt+1, rt+2, . . .) can be reduced. This is reflected in
the cumulative regret RT .

5

6

Depending on the nature of f we can employ different strategies in order to minimize RT .
If we assume that f is sampled from a Gaussian Process, that is f ∼ GP(0, k), this can
provide a versatile solution for non-linear functions. If we assume the function is sufficiently
smooth and can be modelled using Gaussian Process regression (GPR) we can use this to
inform our decisions. Throughout this thesis Gaussian Processes play two roles. Firstly, we
assume that the process which is generating the function f is a Gaussian process. This is a
prior on our function f . Secondly, we use GPR to compute a posterior which combines our
prior on f with the knowledge we have gained about f from our samples {(x1, y1), ..., (xt, yt)}.

The functions which are sampled from the Gaussian Process are dictated by the mean and
chosen kernel function. The kernel function describes how strongly two points are correlated,
providing a type of pseudo-distance measure for the points in our domain. A common kernel
is the square exponential kernel which is given by:

kSE (x, x
′) = exp

(
−∥x− x′∥2

2l2

)
(2.1)

where ∥·∥ is defined as the euclidean distance. For the square exponential kernel the value is
determined by the squared euclidean distance and the "lengthscale" hyperparameter l. The
lengthscale controls how the correlation between points changes with distance. Intuitively, a
kernel with a lower lengthscale will lead to more erratic functions. The SE kernel is just one
possible kernel which serves as an example for the reader. For the remainder of this thesis the
notation k(x, x′) refers to any kernel which satisfies the assumptions of the given theorem.

The GPR model allows us to use past evaluations xt = [x1, ..., xt] and corresponding
evaluations y1, ..., yt to predict the function mean µt(x) and variance σ2

t (x, x) using the matrix
equations [28]:

µt(x) = kt(x)
T (Kt + σ2I)−1yt (2.2)

σ2
t (x, x) = k(x, x)− kt(x)

T (Kt + σ2I)−1kt(x) (2.3)

where
kt(x) := [k(xi, x)]

t
i=1 (2.4)

Kt := [k(x, x′)]x,x′∈xt . (2.5)

This GPR can now serve as a tool to inform the choice of xt in a process often referred to as
Bayesian optimization. One method of informing the choice is given by:

xt = argmax
x∈D

[
µt−1(x) + β1/2σt−1(x)

]
.

7

where µt−1(x) and σt−1(x) is the predicted mean and variance provided by the GPR, this
method is often called the Gaussian process upper confidence bound (GP-UCB) [6]. The
parameter β in the UCB algorithm controls the exploration-exploitation trade-off (it is
sometimes referred to as the trade-off parameter). Depending on the implementation and use
case β can be a constant or depend on t, if it depends on t we will denote this by βt. In 2012
the seminal work [28] was the first paper to present an algorithm which is guaranteed to
achieve sub-linear regret in this setting. This means that using their algorithm we have that:

lim
T→∞

RT

T
= 0.

In their proof β depends on t and is hence referred to βt. They presented the following
theorem (Theorem. 2 [28]):

Theorem 2.1 Let D ⊆ [0, r]d be compact and convex with d ∈ N and r > 0. Assume that
f ∼ GP(0, k). And that the kernel k(x, x′) satisfies the following probabilistic bound on the
derivatives of f for some a, b > 0:

P
{
sup
x∈D

∣∣∣∣ ∂f

∂x(j)
(x)

∣∣∣∣ > L

}
≤ ae−(L/b)2 , j = 1, . . . , d (2.6)

where x(j) denotes the partial derivative in the jth dimension. Pick some δ ∈ (0, 1), and
define:

βt = 2 log

(
t22π2

3δ

)
+ 2d log

(
t2dbr

√
log

(
4da

δ

))
.

At every timestep we observe some yt = f(xt) + zt with zt ∼ N (0, σ2). If we fit a GPR to
the observations and select xt according to:

xt = argmax
x∈D

µt−1(x) + β
1/2
t σt−1(x)

where µt−1(x) and σt−1(x) are defined as in (2.2) and (2.3). Then we will achieve the following
bounds on the cumulative regret RT :

P
{
RT ≤

√
C1TβTγT + 2 ∀T ≥ 1

}
≥ 1− δ

with C1 =
8

log(1+σ−2)
and γT the maximum information gain which will be described in more

detail at the end of this section.

8

Note that the assumption (2.6) ensures that f is smooth with high probability. Theorem
5 in [10] showed that this holds for any stationary kernel where k(x, x′) = k(x− x′) is four
times differentiable. For example, this will hold for the commonly used Matérn kernel with
ν > 2 or any square exponential kernel. It will not hold for the Ornstein-Uhlenbeck kernel.

This theorem is a powerful result as it shows that with mild assumptions on the process
which generates the underlying function f we can achieve sub-linear regret bounds. If the
cumulative regret is sub-linear it means that the average regret RT/T will converge to 0 in
the limit as T → ∞. Algorithm 1 presents pseudo-code of how this theorem would be applied
in practice.

Algorithm 1 GP-UCB algorithm
Require: Domain D, GP prior (µ0 = 0, k) and noise variance σ2

1: for t = 1, 2, . . ., T do
2: Choose xt = argmax

x∈D

[
µt−1(x) + β

1/2
t σt−1(x)

]
3: Sample yt = f(xt) + zt
4: Perform Bayesian update according to (2.2) and (2.3)
5: end for

Now we will discuss the maximum information gain γT . This is an information theoretic
[5] property of the function generating process (in this case the Gaussian process) which
describes how much can be "learned" about the underlying function with each sample. For a
set of selected points A in the GPR setting the information gain is given by:

I(yA; f) =
1

2
log |I+ σ−2KA| (2.7)

where | · | refers to the determinant of the matrix. In the proof of Theorem 2.1 the maximum
information gain is used to bound the predictive variance σt−1(x). As we learn more about
the function f the predictive variance σt−1(x) is non-increasing for every x ∈ D. In the proof
of Theorem 2.1 the maximum information gain allows us to create a bound on

∑T
t=1 σt−1(xt).

The detailed proof can be found in [28], a similar proof for a new regret bound is presented
in chapter 4.

A visual representation of the maximum information gain is provided in Figure 2.1. The
functions sampled from a Gaussian process with a lower lengthscale are easier to learn with a
small number of samples (this is the low γT case). Alternatively, the function shown in red
has a low lengthscale resulting in a higher γT and therefore likely a higher cumulative regret

9

if we try to optimize it. With the same number of samples there is more uncertainty for the
red function with the higher maximum information gain.

Figure 2.1: Impact of lengthscale on function complexity [14]

It is interesting to note that in the setting of Bayesian experimental design which is an
alternative setting where we simply want to learn as much about the function as possible
without considering regret we are actually trying to maximize this information gain. So for
Bayesian experimental design we simply want to choose an A such that (2.7) is maximized.
The optimal set of points to sample if the goal is to maximize the information gain can be
approximated by the greedy algorithm of selecting the point with the highest uncertainty at
every step:

xt = argmax
x∈D

σt−1(x). (2.8)

So if we were simply concerned with exploring the function as much as possible equation (2.8)
provides a close to optimal solution (as shown in [28]). However, this method is independent of
the expected function mean µt−1(x) which highlights that it is not concerned with exploiting
(sampling good function values along the way). Even when are concerned with minimizing
the regret RT we still observe in Theorem 2.1 that the maximum information gain plays a
large role in the performance of our algorithm.

The cumulative regret scales with the maximum information gain term γT which forms a
connection between Gaussian Process optimization and experimental design. A function with
a higher maximum information gain will result in a larger cumulative regret when applying
the GP-UCB algorithm. An interpretation of this is that we must sufficiently explore the
function in order to guarantee a bounded regret. A function which has more maximum
information gain will require more exploration which limits the exploitation (and therefore
increases the regret).

3
Gaussian Process Optimization

for a Time-Varying Function
So far we have assumed that the function f is fixed and doesn’t not change over time.
However, in some real world settings this might not be the case. In 2016 Bogunovic, Scarlett,
and Cevher [2] presented a Time-Varying BO (TVBO) model which aims to optimize a
function which is changing over time (in between evaluations). They made the assumption
that the data was generated by the following underlying model:

f1(x) = g1(x)

ft+1(x) =
√
1− εft(x) +

√
εgt+1(x) ∀t ≥ 1,

(3.1)

where g1, g2, ... are functions which are independently sampled from a Gaussian Process
gi ∼ GP(0, k). In this case ε ∈ (0, 1] controls the rate at which the function changes between
each evaluation. It is important to note that with this model we have that for all ε and
all t our prior is ft ∼ GP(0, k). The terms

√
1− ε and

√
ε ensure that the variance of

the Gaussian process does not diverge over time. Similarly to chapter 2 we again want to
create an algorithm which can select the optimal point xt to sample in order to minimize the
cumulative regret. It is important to note that in this time varying setting the maximum of
the function changes over time, so the optimal point x∗ is now also time varying and denoted
by x∗

t = argmax
x∈D

ft (x). The instantaneous regret is then defined as:

rt = max
x∈D

[ft (x)]− ft (xt) = ft (x
∗
t)− ft (xt)

In this setting we can no longer obtain any sub-linear regret such as the static function
setting of chapter 2. Intuitively; this is because the function changes significantly over time
which causes the data collected to become stale. We cannot perfectly track the maximum of
the function over time. The quality of an algorithm is now measured in how the regret scales
with ε the rate of change of the function.

The time varying GP-UCB algorithm was presented in [2] in order to tackle this problem.
It builds on previous methods and adjusts them in order to handle a function which changes
between evaluations. The previously defined equation (2.2) and equation (2.3) for the

10

11

Gaussian Process regression posterior mean and variance are used. However, the kernel
function is adapted to handle the timestamp data:

K̃t = Kt ◦Dt (3.2)

k̃t(x) = kt(x) ◦ dt, (3.3)

with ◦ as the Hadamard product (which is the element-wise product) and Kt and kt(x)

representing the original spatial kernels for the Gaussian Process regression. The time varying
kernel is defined as; Dt = [(1− ε)|i−j|/2]ti,j=1 and dt = [(1− ε)|t+1−i|/2]ti=1. The GPR model
for the time varying case now uses K̃t and k̃t(x):

µt(x) = k̃t(x)
T (K̃t + σ2I)−1yt (3.4)

σ2
t (x) = k̃(x, x)− k̃t(x)

T (K̃t + σ2I)−1k̃t(x) (3.5)

By using the same UCB algorithm with this adjusted GPR and a modified equation for βt,
regret bounds can be derived for this time varying case. In a derivation which builds on the
work described in chapter 2 the regret bounds for this algorithm are found to scale according
to (Theorem. 4.3 [2]):

Theorem 3.1 Let D ⊆ [0, r]d be compact and convex with d ∈ N and r > 0. Suppose a
time varying function is generated according to:

f1(x) = g1(x)

ft+1(x) =
√
1− εft(x) +

√
εgt+1(x) ∀t ≥ 1,

where gi ∼ GP(0, k) and ε ∈ (0, 1]. Assume that the spatial kernel k generates functions such
that there exists some a, b > 0 for which it holds that:

P
{
sup
x∈D

∣∣∣∣ ∂f

∂x(j)

∣∣∣∣ > L

}
≤ ae−(L/b)2 , j = 1, . . . , d.

At each time step we select one point in the domain xt to sample the function and observe a
noisy evaluation yt = f(xt) + zt with zt ∼ N (0, σ2). Now, choose some δ ∈ (0, 1) and define:

12

βt = 2 log
π2t2

2δ
+ 2d log

(
rdbt2

√
log

daπ2t2

2δ

)
. (3.6)

Now select the point to sample at each timestep according to the UCB rule:

xt = argmax
x∈D

[
µt−1(x) + β

1/2
t σt−1(x)

]
.

with µt−1(x) and σt−1(x) from (3.4) and (3.5). Note that this is the Gaussian process
regression which uses the combined spatial and temporal kernel. Then we will achieve
cumulative regret RT :

P
{
RT ≤

√
C1TβT γ̃T + 2

}
≥ 1− δ (3.7)

where C1 = 8/ log(1 + σ−2) and γ̃T is the maximum information gain for the time varying
function ft. Alternatively:

P

{
RT ≤

√
C1TβT

(
T

Ñ
+ 1

)(
γÑ + σ−2Ñ5/2ε

)
+ 2

}
≥ 1− δ (3.8)

where the term γÑ is the maximum information gain for the static function without changes
between samples (this would be the maximum information gain if we fixed t and sampled
ft with Ñ samples). The variable Ñ ∈ [1, ..., T] is simply a tool in the analysis and can be
freely chosen to achieve the tightest bound.

The result provides the first regret bound for this time varying setting. However, the current
regret bound still leaves much to be desired. Firstly, since βT = O(log(T)) we see from
equation (3.8) that the bound on the cumulative regret becomes O(T

√
log(T)). But then

the average regret RT

T
still grows according to

√
log(T) which implies that our algorithm

will start to perform worse over time (even though we are gaining information about the
underlying function).

Secondly, in equation (3.6) we observe that βt is chosen independently of ε. This is odd as we
would expect the rate of change of the function to have an influence on the optimal choice in
the exploration-exploitation trade-off. Exploration is less valuable if the function is changing
quickly because it means that there is little time to exploit any gained information.

Finally, βt depends on the choice of δ. The user must specify the probability with which they
want the bound to hold (1− δ) before they start the algorithm. In chapter 4 we will aim to
remedy these issues.

13

When applied in practice the algorithm is used as follows:

Algorithm 2 TV-GP-UCB algorithm
Require: Domain D, GP prior (µ0 = 0, k), parameter ε and noise variance σ2

1: for t = 1, 2, . . ., T do
2: Choose xt = argmax

x∈D

[
µt−1(x) + β

1/2
t σt−1(x)

]
3: Sample yt = f(xt) + zt
4: Perform Bayesian update according to (3.4) and (3.5)
5: end for

The maximum information gain for the time varying function γ̃T is a more complex term
than for the static function case. This is because at every timestep the function is perturbed by
a random function. This introduces new uncertainty over time which increases the predictive
variance σt−1(x) of previously sampled points. In [2] (Theorem. 4.3) it is shown that the
maximum information gain for a time varying function can be bounded. Due to a small error
in their analysis the corrected results which are presented here are slightly different to [2].
We also present the (corrected) proof.

Theorem 3.2

Consider the setting of theorem 3.1, then the maximum information gain for the time varying
function can be bounded as follows:

γ̃T ≤
(
T

Ñ
+ 1

)(
γÑ + σ−2Ñ5/2ε

)
(3.9)

where γÑ is the maximum information gain for a static function f ∼ GP(0, k) which is
sampled Ñ times.

Proof. The information gain for a time varying function which is sampled from a Gaussian
process is defined as:

Ĩ (fT ;yT) =
1

2
log |IT + σ−2K̃T |

γ̃T := max
x1,...,xT

Ĩ (fT ;yT)

where γ̃T is the maximum information gain. We use the notation xT = (x1, . . . , xT) for
the sampled points, fT = (f1(x1), . . . , fT (xT)) the function values at those locations, and

14

yT = (y1, . . . , yT) the noisy observations. We will bound the information gain for the time
varying function by splitting the steps {1, . . . , T} into T

Ñ
1 blocks on length Ñ . This is useful

because within the small time interval of each block the function ft is close to static (and we
will add a small overhead to account for the fact that the function is still changing within
each block). From the chain rule for mutual information and the fact that the noise in the
observations is independent ([5], Lemma 7.9.2):

Ĩ(fT ;yT) ≤
T/Ñ∑
i=1

Ĩ(f
(i)

Ñ
;y

(i)

Ñ
)

where y
(i)

Ñ
= (yÑ(i−1)+1, . . . ,yÑi) refers to the i-th block of yT and f

(i)

Ñ
is defined in the same

manner. This leads to the bound:

γ̃T ≤ T

Ñ
γ̃Ñ

where γ̃Ñ is the maximum information gain for the time varying function within the block
of size Ñ . We must now bound this term (and account for the fact that ft is not a static
function within the block). For this we return to the definition of the information gain (this
time for the case of one block of size Ñ):

Ĩ(f
(i)

Ñ
;y

(i)

Ñ
) =

1

2
log |IÑ + σ−2K̃Ñ | ≤ γ̃Ñ . (3.10)

We will focus on the relevant covariance matrix K̃Ñ . Recall from equation (3.2) that this
matrix can be written as an element-wise product of the spatial and temporal covariance
matrix:

K̃Ñ = KÑ ◦DÑ .

We introduce a new matrix:

AÑ := KÑ ◦DÑ −KÑ = KÑ ◦ (DÑ − 1Ñ)

where DÑ is the Ñ × Ñ matrix of ones. This now allows us to write:

K̃Ñ = KÑ +AÑ .

1We assume T
Ñ

is an integer for now and we will discuss the impact of this at the end of the proof

15

Recall that we defined Dt = [(1− ε)|i−j|/2]ti,j=1 which now implies that the (i, j)-th entry of
(DÑ − 1Ñ) has absolute value:

1− (1− ε)
|i−j|

2 ≤ ε|i− j| ∀ε ∈ [0, 1]. (3.11)

Consider the inequality 1− (1− ε)
|i−j|

2 − ε|i− j| ≤ 0. For |i− j| = 0 we have equality. The
inequality holds for |i − j| ≥ 2 because the function is concave, passes through the origin
and is non-positive (equal to −ε) for |i − j| = 2. For |i − j| = 1 consider the inequality
1− (1− ε)

1
2 − ε ≤ 0. Observe that we have equality for ε ∈ {0, 1} and 1− (1− ε)

1
2 − ε is

convex w.r.t. ε so the inequality also holds for ε ∈ (0, 1).

Since we assumed k(x, x) ≤ 1 we know that the entries of KÑ are all ≤ 1. Then we can
obtain the following bound on the Frobenius norm of the matrix AÑ :

∥AÑ∥
2
F = ∥KÑ ◦ (DÑ − 1Ñ)∥

2
F ≤ ∥(DÑ − 1Ñ)∥

2
F (3.12)

≤
∑
i,j

(i− j)2ε2 (3.13)

=
1

6
Ñ2(Ñ − 1)2ε2 (3.14)

≤ Ñ4ε2 (3.15)

where (3.12) follows from the fact that every entry of KÑ is ≤ 1. Equation (3.13) results
from equation (3.11) which provides an upper bound on the entries of (DÑ − 1Ñ). Equation
(3.14) is a result of computing the double summation. The final inequality is a simplification
for readability; (Ñ − 1)2 ≤ Ñ2. We will now use this inequality to bound γ̃Ñ . We introduce
Mirsky’s theorem, which allows us to make a statement about the eigenvalues of K̃Ñ .

Lemma 3.1 (Mirsky’s theorem [[13], Cor. 7.4.9.3]) For any matrices UÑ and VÑ , and any
unitarily invariant norm |||·|||, we have

|||diag(λ1(UÑ), ..., λÑ(UÑ))− diag(λ1(VÑ), ..., λÑ(VÑ))||| ≤ |||UÑ −VÑ |||

where λi is the i-th largest eigenvalue.

For readability, we now define:

16

∆i := λi(K̃Ñ)− λi(KÑ). (3.16)

Applying lemma 3.1 with UÑ = K̃Ñ = KÑ +AÑ and VÑ = KÑ . We choose |||·||| = ∥·∥2F
which gives us the following bound on {∆i}Ñi=1:

∥diag(λ1(UÑ), ...)− diag(λ1(VÑ), ...)∥
2
F =

Ñ∑
i=1

(
λi(K̃Ñ)− λi(KÑ)

)2
(3.17)

=
Ñ∑
i=1

∆2
i (3.18)

≤ ∥UÑ −VÑ∥
2
F = ∥AÑ∥

2
F (3.19)

≤ Ñ4ε2. (3.20)

Here equation (3.17) follows from the definition of the Frobenius norm and (3.18) from
our definition of ∆i. The first inequality (3.19) results from applying lemma 3.1. Finally,
equation (3.20) results from our previous bound in equation (3.15). We have shown that:

Ñ∑
i=1

∆2
i ≤ Ñ4ε2. (3.21)

Observe that we can rewrite equation (3.16) as λi(K̃Ñ) = λi(KÑ + AÑ) = λi(KÑ) + ∆i.
Combining this with equation (3.21) we now have the following bound on the eigenvalues
λi(K̃Ñ):

Ñ∑
i=1

λi(K̃Ñ) =
Ñ∑
i=1

λi(KÑ) + ∆i ≤ Ñ4ε2 +
Ñ∑
i=1

λi(KÑ).

We now have a bound on the sum of λi(K̃Ñ). We will now return to bounding the maximum
information gain for the time-varying function:

17

γ̃Ñ = max
x1,...,xÑ

1

2
log |IÑ + σ−2K̃Ñ | (3.22)

= max
x1,...,xÑ

1

2

Ñ∑
i=1

log
(
1 + σ−2λi(KÑ +AÑ)

)
(3.23)

= max
x1,...,xÑ

1

2

Ñ∑
i=1

log
(
1 + σ−2 [λi(KÑ) + ∆i]

)
(3.24)

≤ max
x1,...,xÑ

1

2

 Ñ∑
i=1

log
(
1 + σ−2λi(KÑ)

)
+

Ñ∑
i=1

log
(
1 + σ−2∆i

) (3.25)

= γÑ + max
x1,...,xÑ

1

2

Ñ∑
i=1

log
(
1 + σ−2∆i

)
(3.26)

≤ γÑ + max
x1,...,xÑ

1

2
σ−2

Ñ∑
i=1

∆i (3.27)

≤ γÑ +
1

2
σ−2Ñ5/2ε ≤ γÑ + σ−2Ñ5/2ε. (3.28)

Here, equation (3.22) follows from the definition of the maximum information gain (3.10).
Equation (3.23) results from the fact that the determinant of a matrix is equal to the product
of its eigenvalues. Equation (3.24) follows from our definition (3.16). The first inequality
(3.25) results from the inequality log(1 + a+ b) ≤ log(1 + a) + log(1 + b) which holds for non-
negative a, b. Equation (3.26) results from our original definition of the maximum information
gain. The second inequality (3.27) follows from log(1 + a) ≤ a for non-negative a. Finally,
equation (3.28) results from observing that the sum of ∆i is maximized (while respecting
(3.21)) by choosing ∆i = Ñ3/2ε for all i. We disregard the factor 1

2
in order to simplify notation.

We have shown that for integer T
Ñ

we have the bound:

γ̃T ≤ T

Ñ
γ̃Ñ ≤ T

Ñ

(
γÑ + σ−2Ñ5/2ε

)
.

So far we have assumed that T
Ñ

is an integer. Observe that γ̃T is an increasing function of T
which means that we can generalize the bound for non-integer T

Ñ
by adding 1 which yields

the final bound:

γ̃T ≤
(
T

Ñ
+ 1

)(
γÑ + σ−2Ñ5/2ε

)
.

18

In equation (3.9) Ñ is a variable which is used to split the data into smaller blocks (where
the function does not vary too much). The block size Ñ ∈ [1, ..., T] can be chosen such that
the r.h.s. of equation (3.9) is minimized (such that the tightest bound is achieved).

Improvements Time Varying Gaussian
Process Optimization

19

4
Improved Regret Bounds

The regret bounds derived by [2] for the time varying case were presented in chapter 3.
They have some undesirable properties which we will aim to remedy in this chapter. We
will present new regret bounds for time-varying GP optimization and show that they can
be achieved by choosing a value for βt which remains constant over time. On a high level
this bound is achieved by combining a probabilistic bound on the regret for the specific
algorithm with an algorithm agnostic bound on the tail probability. These are used to bound
the instantaneous regret E[rt]. Finally we show that for any ε ∈ (0, 1] the average regret RT

T

will converge in probability to the expected average regret E[RT]
T

. We provide two bounds on
the cumulative regret. Firstly, we show that E[RT] = O(T). We also provide a bound of the
from: RT ≤ h(T) with probability (1− ω) which can be compared to the bounded presented
in [2]. This will be explained in more detail after introducing the theorem.

Theorem 4.1 Consider a compact and convex set D ⊆ [0, r]d with d ∈ N and r > 0.
Suppose a time varying function ft is generated according to:

f1(x) = g1(x)

ft+1(x) =
√
1− εft(x) +

√
εgt+1(x) ∀t ≥ 1,

(4.1)

where gi ∼ GP(0, k) and ε ∈ (0, 1]. Assume that for functions sampled from GP(0, k) there
exists some a, b > 0 for which it holds that:

P
{
sup
x∈D

∣∣∣∣ ∂f

∂x(j)

∣∣∣∣ > L

}
≤ ae−(L/b)2 , ∀L j = 1, . . . , d. (4.2)

At each time step we select one point in the domain xt to sample the function and observe
a noisy evaluation yt = f(xt) + zt with zt ∼ N (0, σ2). Choose some δ ∈ (0, 1) and τ ∈ N+,
then if we select the point to sample at each timestep according to the UCB rule:

20

21

β = 2(log(
3

2δ
) + d log(τ)) (4.3)

xt = argmax
x∈D

[
µt−1(x) + β1/2σt−1(x)

]
.

we will obtain cumulative regret RT with the following upper bounds on the expectation:

E[RT] ≤ (1− δ)
[√

C1Tβγ̃T + TC2

]
+ TδC3. (4.4)

with:

C1 =
8

log(1 + σ−2)

C2 =
rdb
√

log(3ad
δ
)

τ

C3 = rdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

The assumption described by equation (4.2) implies that steep gradients are sufficiently
unlikely. That is, for a given kernel k and domain D there exists some a, b > 0 such that the
statement holds for all L. This assumption holds for many of the commonly used kernels
in Bayesian optimization such as the square exponential (RBF) and Matérn kernel with
ν > 2. According to [10] Theorem 5, a bound of this form exists for any stationary kernels
(k(x, x′) = k(x− x′)) which are four times differentiable.

The parameters δ and τ are mainly tools for the analysis. In practice, these parameters
only affect the algorithm through their influence on β according to equation (4.3). We will
briefly describe the role that δ and τ play in the analysis (more detail will be found in
the following sections). The proof of the regret bound combines a bound on the specific
(UCB) algorithm with a algorithm agnostic bound. The algorithm specific bound holds with
probability (1 − δ) and the influence of the remaining probability δ is bounded using the
algorithm agnostic bound. Hence, δ can be seen as a term which controls the amount to
which each bound is used. If δ is close to 0 then most of the probability will be bounded
by the algorithm specific bound (but this bound will be bigger) and vice versa. Now, the
parameter τ is introduced because we are optimizing the function over a continuous domain.
In the analysis it is difficult to compare our choice xt to infinitely many alternatives x ∈ D.

4.1. Algorithm Specific Regret Bound 22

This is handled by using a discretization of D where we approximate it by a finite set D∗.
We add an additional overhead term to bound the effect (additional regret) due to using this
discretization. The parameter number of points in the discretization is chosen as τ d (so the
parameter τ determines the number of points in our discretization). Choosing a larger τ will
decrease the required overhead term as we using a better approximation of the continuous
domain D. However, a larger τ will increase β which in turn increases the first term in
equation (4.4). In order to achieve the best performing algorithm we must choose δ and τ to
minimize the bound.

In the following sections we will introduce lemmas which we will use to prove this theorem.

4.1. Algorithm Specific Regret Bound
We will provide a probabilistic bound on the instantaneous regret rt for the UCB algorithm
(this proof builds on the work in [28] and [2]). First we will define two common bounds which
we will utilize throughout the rest of this chapter:

Lemma 4.1 (Gaussian tail bound) Let X ∼ N (µ, σ2). We claim that:

P(X − µ ≥ t) ≤ 1

2
e−

t2

2σ2 .

Note that due to symmetry of the Gaussian distribution around the mean this also implies:

P(µ−X ≥ t) ≤ 1

2
e−

t2

2σ2 .

Proof. Define Z = X−µ
σ

and z = t
σ
≥ 0, then define the function:

d(z) = P(Z ≥ z)− 1

2
e−

z2

2 (4.5)

We claim that this function is ≤ 0 which represents the same claim in the original lemma. Note
that Z ∼ N (0, 1). We can take the derivative of d(z) (here we use that P(Z ≥ z) = 1−FZ(z),
and the derivative of the cumulative distribution function CDF is the probability density
function PDF):

d′(z) = (z −
√

2/π)
1

2
e−

z2

2 .

4.1. Algorithm Specific Regret Bound 23

So d(z) is decreasing on [0,
√
2/π] and increasing on [

√
2/π,∞). We also have that d(0) = 0

and limz→∞(d(z)) = 0, but this implies that the claimed inequality in (4.5) holds which
completes the proof.

Lemma 4.2 (Union bound) For a countable set of events A1, A2, A3, . . . we have that
the probability that at least one of the events happens is no greater than the sum of the
probabilities of the individual events:

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai)

1− P

(
∞⋃
i=1

Ai

)
≥ 1−

∞∑
i=1

P(Ai).

This is a common result known as Boole’s inequality.

Lemma 4.3 (Algorithm specific regret bound) Consider the setting of Theorem 4.1.
Choose δ ∈ (0, 1) and τ ∈ N+. If we use β = 2(log(3

2δ
) + d log(τ)) and select the point to

sample according to the UCB rule xt = argmax
x∈D

[
µt−1(x) + β1/2σt−1(x)

]
then we will achieve

the following bound on the instantaneous regret:

rt = max
x∈D

[ft (x)− ft (xt)] ≤ 2β1/2σt−1 (xt) +
rdb
√
log(3ad

δ
)

τ

with probability (1− δ).

Proof. Given τ choose a set of points D∗ ⊂ D ⊆ [0, r]d of size |D∗| = τ d and choose the
points such that:

∥x− [x]∥1 ≤
rd

τ
, ∀x ∈ D (4.6)

where [x] is the ℓ1-closest point in D∗ to x. We will refer to D∗ as the discretization of D.
An example of a sufficient discretization is a uniformly spaced grid. We need a discretization
where any chosen point x ∈ D has a closest point in D∗ that is at most rd/τ away when

4.1. Algorithm Specific Regret Bound 24

distance is measured in the ℓ1-norm. If a uniformly spaced grid is used as the discretization
then τ can be interpreted as the number points used to discretize each dimension. For
example consider the case of D = [0, 5]2 and τ = 6, this would lead to a 6x6 grid in two
dimensions. This is shown in Figure 4.1, you can observe that for any point x ∈ D there
exists a point in D∗ which closer than rd

τ
= 10

6
w.r.t. the ℓ1-norm.

1 2 3 4 5

1

2

3

4

5

Figure 4.1: Grid discretization example

Given some δ ∈ (0, 1), fix t ≥ 1. We will consider three high probability events which should
each occur with probability at least 1− δ

3
:

1.) We claim that if we choose β ≥ 2 log(3
2δ
) and fix some xt ∈ D the following holds with

probability 1− δ
3
:

µt−1(xt)− ft(xt) ≤ β
1
2σt−1(xt). (4.7)

Since our function is sampled from a Gaussian process. We can condition on the previously
sampled points (x1, . . . , xt−1) and outputs (y1, . . . , yt−1). Then for any xt ∈ D we have that
ft(xt) ∼ N (µt−1(xt), σ

2
t−1(xt)). Where µt−1(x) and σt−1(x) from (3.4) and (3.5). From lemma

4.1 we have that:

P(µ− ft(xt) ≤ s) ≤ 1

2
e−(s2/2σ2

t−1(xt)).

Now, if we choose s = β
1
2σt−1(xt) we directly see that the statement in equation (4.7) occurs

with probability at least 1− δ
3
.

4.1. Algorithm Specific Regret Bound 25

2.) We also want an upper bound on function for every point in the discretization. This is
a bound on every point x ∈ D∗ rather than one specific point such as in 1.). If we choose
β ≥ 2 log(3|D

∗|
2δ

) = 2(log(3
2δ
) + d log(τ)) we can show that:

ft(x) ≤ µt−1(x) + β
1
2σt−1(x) ∀x ∈ D∗. (4.8)

holds with probability at least 1− δ
3
. Similarly to 1.) we can use lemma 4.1 for some fixed

x ∈ D∗. In this case we find that the inequality holds with probability 1 − δ
3|D∗| for that

specific x. Now in order to obtain the probability that it holds ∀x ∈ D∗ we apply De Morgan’s
law with lemma 4.2. Fix xi ∈ D∗ and denote the event that (4.8) does not hold as Ei. Lemma
4.2 states that the probability that at least one event happens is at most the the sum of the
probabilities of the individual events:

1− P

|D∗|⋃
i=1

Ei

 ≥ 1−
|D∗|∑
i=1

P(Ei) ≥ 1−
|D∗|∑
i=1

δ

3|D∗|
= 1− δ

3
.

We see that the probability that every event Ei does not happen; that is, the probability that
the bound holds for every x ∈ D∗, is at least 1− δ

3

3.) Finally we also claim that setting L = b
√

log(3ad
δ
) we obtain:

|ft(x)− ft (x
′)| ≤ L ∥x− x′∥1 ∀x, x′ ∈ D (4.9)

with probability at least 1− δ
3
.

By equation (4.2), it follows that for each j ∈ {1, ..., d} the partial derivative with respect
to x(j) is at most L with probability 1− ae−(L/b)2 . Now taking the union bound over every
coordinate x(j) of x using Boole’s inequality as in 2.), we find that the partial derivative in
each direction is at most L with probability 1−ade−(L/b)2 . Substituting our choice of L yields
1− ade−(L/b)2 = 1− 3

δ
. Finally, due to the fundamental theorem of calculus, a bound on the

partial derivative of a continuous function can be used to bound the change of that function
between two points:

f(b)− f(a) =

∫ b

a

f ′(x)dx ≤ L

∫ b

a

dx = (b− a)L

where the inequality holds if f ′(x) ≤ L. This implies:

4.1. Algorithm Specific Regret Bound 26

sup
x∈D, j∈{1,...,d}

∣∣∣∣ ∂f

∂x(j)

∣∣∣∣ ≤ L ⇒ |ft(x)− ft (x
′)| ≤ L ∥x− x′∥1 ∀x, x′ ∈ D.

We have shown that the three events 1.), 2.) and 3.) all occur with probability at least 1− δ
3
.

Now we again apply lemma 4.2 over the complements of all three events which yields that
the probability of them all occurring is at least 1 − δ. For the remainder of the proof we
assume β = 2(log(3

2δ
) + d log(τ)) and L = b

√
log(3ad

δ
).

We start by making a statement about the difference between ft(x) and ft([x]), where, as
introduced earlier, [x] ∈ D∗ is the point closest to x (w.r.t. the ℓ1 norm). For any x ∈ D we
have (with probability at least 1− δ

3
):

|ft(x)− ft([x])| ≤ L ∥x− [x]∥1 ≤
Lrd

τ
=

rdb
√

log(3ad
δ
)

τ
= C2. (4.10)

The first inequality holds due to equation (4.9) and the second inequality follows from
equation (4.6). By 3.) this inequality holds with probability at least 1 − δ

3
. This can be

interpreted as an extra overhead term we must add to our regret bound later in order to
account for the fact that we are using a finite discretization of a continuous domain. It can
be observed that this term decreases as we increase τ since the discretization becomes a
better approximation of our true continuous domain as we increase the number of points.
For readability we refer to this term as C2.

Take x∗
t as the maximizing point over the domain D, x∗

t = argmax
x∈D

ft(x). Then with

probability at least 1− 2δ
3

we have that:

ft(x
∗
t) ≤ ft([x

∗
t]) + C2 ≤ µt−1([x

∗
t]) + β

1
2σt−1([x

∗
t]) + C2 (4.11)

where the first inequality holds due to equation (4.10) and the second inequality follows
from equation (4.8) because [x∗

t] ∈ D∗. This holds with probability at least 1− 2δ
3

because it
requires both 2.) and 3.) to hold.

Now we will bound the instantaneous regret rt (with probability at least 1− δ):

rt = ft (x
∗
t)− ft (xt)

≤ µt−1 ([x
∗
t]) + β1/2σt−1 ([x

∗
t]) + C2 − ft (xt) (4.12)

≤ µt−1 (xt) + β1/2σt−1 (xt) + C2 − ft (xt) (4.13)

≤ 2β1/2σt−1 (xt) + C2. (4.14)

4.2. Algorithm Agnostic Regret Bound 27

Here (4.12) follows directly from (4.11). (4.13) follows from the algorithm since we maximize
the UCB so by definition we have µt−1([x

∗
t])+β1/2σt−1([x

∗
t]) ≤ µt−1(xt)+β1/2σt−1(xt). Finally,

(4.14) follows from (4.7). Combining 1.), 2.) and 3.) implies that this holds with probability
at least 1− δ.

We now have a bound for rt which holds with probability at least 1− δ. The goal is to bound
E[rt], the current bound is not sufficient for this as the remaining probability δ could have
an unbounded impact on the expectation. We would like to create a bound of the following
form:

E[rt] ≤ (1− δ)B1 + δB2 (4.15)

where B2 represents the contribution of the remaining probability δ to the expectation. One
way to interpret B2 is as an upper bound on the expectation of rt given that the three events
don’t all occur E[rt|¬(1. ∧ 2. ∧ 3.)] ≤ B2. In order to derive the value of B2 we will create an
algorithm agnostic bound for the regret.

4.2. Algorithm Agnostic Regret Bound
In this section we will outline how we can use an algorithm agnostic bound on rt to bound
the contribution of the remaining probability δ to the expectation of rt. This can be viewed
as bounding the tail mass:

E[rt] =
∫ ∞

0

ρfrt(ρ)dρ

=

∫ a

0

ρfrt(ρ)dρ+

∫ ∞

a

ρfrt(ρ)dρ

where frt(ρ) is the PDF of rt. First we will introduce a general lemma which we will use later
in the section in order to bound the tail mass.

Lemma 4.4 Let Y be a non-negative continuous random variable taking values on [0,∞)

with CDF FY (y). If there exists a lower bound L(y) on the CDF such that FY (y) ≥ L(y),
limy→∞ L(y) = 1 and L(y) is continuous and monotone on [0,∞), then the following bound
holds:

4.2. Algorithm Agnostic Regret Bound 28

∫ ∞

F−1
Y (1−δ)

yfY (y)dy ≤
∫ δ

0

H(p)dp

where H(p) is the inverse of 1− L(y), defined as:

H(p) = {y : 1− L(y) = p}

Proof. Define the following functions (these are well defined because FY (y) is monotone):

p = FY (y)

QY (p) = F−1
Y (p)

GY (p) = (1− FY (p))
−1

H(p) = (1− L(p))−1

where the notation g−1 refers to the inverse of the function of g. We have that:

∫ ∞

F−1
Y (1−δ)

yfY (y)dy =

∫ ∞

QY (1−δ)

yfY (y)dy (4.16)

=

∫ 1

1−δ

QY (p)dp (4.17)

=

∫ δ

0

GY (p)dp. (4.18)

Here we have that (4.16) follows from our definition of QY . (4.17) follows from our definition of
p = FY (y) and hence dp = fY (y)dy and from the fact that QY (p) = F−1

Y (p) = F−1
Y (FY (y)) = y.

Finally, (4.18) follows from the inverse of a composition of functions (g ◦ f)−1 = f−1 ◦ g−1.
Hence we have that QY (p) = GY (1− p).

It remains to show that:

∫ δ

0

GY (p)dp ≤
∫ δ

0

H(p)dp.

Since both 1− FY (y) and 1− L(y) are monotonic decreasing with limit 0 (and FY (0) = 0

since Y is non-negative); fix some s ∈ (0, 1] then there is some y1, y2 ∈ [0,∞) such that:

4.2. Algorithm Agnostic Regret Bound 29

1− L(y1) = s = 1− FY (y2) ≤ 1− L(y2)

where the inequality follows from 1 − FY (y) ≤ 1 − L(y). Thus we have that 1 − L(y1) ≤
1 − L(y2) ⇒ y1 ≥ y2 by the fact that 1 − L(y1) is a decreasing monotonic function. Note
that by definition of the inverse function GY (s) = y2 and H(s) = y1. But this implies that
GY (s) ≤ H(s) which completes the proof. A visual representation of the functions in this
proof are given in Figure 4.2.

0.5 1 1.5 2

0.5

1

1.5

1− F

∫ δ

0
GY (p)dp

1− L

y

p

Figure 4.2: Visual representation of lemma 4.4

We will now return to our specific setting where we are interested in bounding the second
term on the tail mass of our expected regret E[rt]:

E[rt] =
∫ ∞

0

ρfrt(ρ)dρ

=

∫ a

0

ρfrt(ρ)dρ+

∫ ∞

a

ρfrt(ρ)dρ

where frt(ρ) is the PDF of rt. If Frt(ρ) is the cumulative distribution function and we choose
a = F−1

rt (1 − δ) we will refer to this second integral as the contribution of the tail with
probability mass δ to the expectation of rt.

Lemma 4.5 Consider the setting of Theorem 4.1. We claim that regardless of the algorithm
used to select xt, we have the following bound on the contribution of the tail with probability
mass δ to the expectation of rt:

4.2. Algorithm Agnostic Regret Bound 30

∫ ∞

F−1
rt (1−δ)

ρfrt(ρ)dρ ≤ δrdb

√log

(
ad

δ

)
+

√
π

2
√
log(ad

δ
)

Proof. The algorithm agnostic bound will be largely based on equation (4.2). If there is an
upper bound on the derivative of the function this allows us to bound the difference between
any two points within the domain D. First observe that since D ⊆ [0, r]d we have that:

∥x− x′∥1 ≤ rd, ∀x, x′ ∈ D.

Now, by 4.2 we have that with probability at least 1− ade−(L/b)2 :

|ft(x)− ft (x
′)| ≤ L ∥x− x′∥1 ≤ Lrd = ρ ∀x, x′ ∈ D

this follows by the same logic as 3.) in lemma 4.3. Since we have that this inequality holds
∀x, x′ ∈ D this allows us to create a probabilistic bound on rt, since rt can never be more
than the maximum difference between the function at two points. Observe that even if we
select the worst possible xt we still have that rt can be at most ρ:

rt = max
x∈D

[ft (x)− ft (xt)] ≤ max
x,x′∈D

(ft(x)− ft (x
′)) ≤ ρ (4.19)

where the second inequality holds with probability at least 1− ade−(L/b)2 = 1− ade−(ρ/rdb)2 .

Ideally we would like to use the cumulative distribution function Frt(ρ) of rt. Unfortunately
it is hard to explicitly quantify this function (especially because it also depends on the chosen
xt). Instead we will create a lower bound for Frt(ρ) which holds for any xt and show that this
can be used to control the contribution of the remaining probability δ to the expectation:

Frt(ρ) = P (rt ≤ ρ) ≥ 1− ade−(ρ/rdb)2 . (4.20)

The inequality holds as a result of equation (4.19). We will now bound the expectation of the
tail probability. (4.20) gives us that that Frt(ρ) ≥ 1−ade−(ρ/rdb)2 ⇒ 1−Frt(ρ) ≤ ade−(ρ/rdb)2 .
The inverse of ade−(ρ/rdb)2 equals rdb

√
log(ad

ρ
). Then we can apply lemma 4.4:

∫ ∞

F−1
rt (1−δ)

yfrt(y)dy ≤
∫ δ

0

rdb

√
log(

ad

ρ
)dρ

4.2. Algorithm Agnostic Regret Bound 31

We can now compute the r.h.s. of this expression to get an upper bound. The resulting upper
bound is given by:

∫ δ

0

rdb

√
log(

ad

ρ
)dρ =

rdb

(
2

√
log
(

ad
ρ

)
ρ−

√
π ad erf

(√
log
(

ad
ρ

)))
2

δ

0

where erf(·) refers to the Gauss error function given by:

erf(x) =
2√
π

∫ x

0

e−y2dy.

We use the following upper and lower bounds of the Gauss error function in order to simplify
the expression:

1− e−x2

2x
≤ erf(x) ≤ 1.

the integral is upper bounded by:

rdb

√

log

(
ad

ρ

)
ρ−

√
π ad erf

(√
log
(

ad
ρ

))
2

δ

0

≤ rdb

√log

(
ad

δ

)
δ +

√
πδ

2
√
log(ad

δ
)

 .

This now completes the agnostic upper bound. In equation (4.15) we can say that:

δB2 = δrdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

Combining this with the previous results in lemma 4.3 provides an upper bound on E[rt]:

4.3. Cumulative regret 32

E[rt] ≤ (1− δ)

2β1/2σt−1 (xt) +
rdb
√

log(3ad
δ
)

τ

+ δrdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 . (4.21)

The parameters δ and τ can be chosen such that this upper bound is minimized for a given
problem (there is no explicit solution but optimal values can be approximated numerically).
This will also allow us to determine the optimal value of β given by β = 2(log(3

2δ
) + d log(τ))

which is required as an input to the algorithm.

4.3. Cumulative regret
The following step will be to take sum of the instantaneous regrets r1 + . . . + rt = Rt so
that we can consider the cumulative regret RT . In equation (4.21) the term σt−1 (xt) is not
constant between timesteps which means we cannot take it out of the sum. However, we can
bound this sum using the maximum information gain (in a similar fashion as [28]). We will
handle the remaining sum using Lemma 5.3 from [28] which states that the information gain
can be expressed in terms of predictive variances:

I (yT ;fT) =
1

2

T∑
t=1

log
(
1 + σ−2σ2

t−1 (xt)
)
. (4.22)

However, we currently have a sum of σ2
t−1 (xt) and not log

(
1 + σ−2σ2

t−1 (xt)
)
. We must use

Lemma 5.4 from [28] to rewrite this sum. We include the relevant result for completeness:

Lemma 4.6 Consider the setting of Theorem 2.1. The predictive variance of the GPR can
be upper bounded as:

σ2
t−1 (xt) ≤

log
(
1 + σ−2σ2

t−1 (xt)
)

log(1 + σ−2)

Proof. We first claim that for any s2 ∈ [0, σ−2]:

s2 ≤ σ−2

log(1 + σ−2)
log(1 + s2). (4.23)

4.3. Cumulative regret 33

For the case of s2 = 0 and s2 = σ−2 we achieve equality. For s2 ∈ (0, σ−2) we will show that:

l(s) =
σ−2

log(1 + σ−2)
log(1 + s2)− s2 ≥ 0.

This is done by showing that the derivative is initially positive for s2 ∈ (0, a) and then negative
for s2 ∈ (a, σ−2). Since l(s) = 0 for s2 = 0 or σ−2 this then implies that the inequality holds
on then entire interval. The derivative is given by:

l′(s) =
2s

log
(

1
σ2 + 1

)
σ2 (s2 + 1)

− 2s = 2s

[
1

log (σ−2 + 1) σ2 (s2 + 1)
− 1

]
. (4.24)

Note that:
log(1 + σ−2)σ2 ≤ σ−2σ2 = 1.

And hence:
1

log(1 + σ−2)σ2
≥ 1.

We have that equation (4.24) is positive for small s and it has at most one root on the interval
s2 ∈ (0, σ−2) which occurs at:

s2 =
1

log
(

1
σ2 + 1

)
σ2

− 1.

This proves the claim (4.23). Now we will use this to complete the proof of the lemma. We
have the following steps:

σ2
t−1 (xt) = σ2

(
σ2
t−1 (xt)σ

−2
)
≤ σ2 σ−2

log(1 + σ−2)
log(1 + σ−2σ2

t−1 (xt)) =
log(1 + σ−2σ2

t−1 (xt))

log(1 + σ−2)

where the inequality follows from applying (4.23) with s2 = σ−2σ2
t−1 (xt)) ≤ σ−2k(xt, xt) ≤

σ−2. Recall that we assumed in Theorem 2.1 that k(x, x) ≤ 1 ∀x ∈ D. This completes the
proof.

We now have all the required tools to bound the expectation of cumulative regret which is the
sum of the instantaneous regrets over all timesteps. This leads to the proof of theorem 4.1.

Proof of Theorem 4.1. Let frt(ρ) denote the PDF and Frt(ρ) the CDF of rt. We start by
splitting the expectation of the instantaneous regret into two parts:

4.3. Cumulative regret 34

E[rt] =
∫ F−1

rt (1−δ)

0

ρfrt(ρ)dρ+

∫ ∞

F−1
rt (1−δ)

ρfrt(ρ)dρ

this follows from the definition of the expectation and the fact that rt is a non-negative
random variable. Fix t (so we are considering rt of a specific timestep) and assume that xt

is selected according to the UCB rule (algorithm 2). We can then make the following two
statements:

∫ F−1
rt (1−δ)

0

ρfrt(ρ)dρ ≤ (1− δ)(2β1/2σt−1 (xt) + C2) (4.25)

∫ ∞

F−1
rt (1−δ)

ρfrt(ρ)dρ ≤ δC3. (4.26)

Here (4.25) follows from lemma 4.3 since it states that with probability at least (1 − δ):
rt ≤ 2β1/2σt−1 (xt) + C2. This lemma holds in the case that xt is selected using the UCB
algorithm which is assumed here. And (4.26) follows from lemma 4.5. Now we will compute
the cumulative regret RT :

RT =
T∑
t=1

rt.

By the linearity of the expectation we can simply sum the expectations of the instantaneous
regrets rt in order to compute the expectation of the cumulative regret. This may seem
counter-intuitive as we first used lemma 4.3 to provide a probabilistic bound on rt for some
fixed t, but now we are taking the sum over all t. However, since we are simply concerned
with the expectation E[rt] this method is valid. In section 4.4 we consider RT in more detail
and investigate how it might deviate from it’s expectation.

E[RT] =
T∑
t=1

E[rt] ≤
T∑
t=1

(1− δ)

2β1/2σt−1 (xt) +
rdb
√
log(3ad

δ
)

τ

+ δrdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

Most terms are independent of t and can be taken out of the sum which yields:

4.3. Cumulative regret 35

E[RT] ≤ Tδrdb

√log

(
ad

δ

)
+

√
π

2
√
log(ad

δ
)

+ (1− δ)

Trdb
√

log(3ad
δ
)

τ
+

T∑
t=1

2β1/2σt−1 (xt)

 . (4.27)

This result can now be combined with the alternative form of the information gain presented
in equation (4.22) in order to bound the sum of the predictive variances using the maximum
information gain. We will bound the sum as follows (this is not a probabilistic bound, it will
always hold):

T∑
t=1

2β1/2σt−1 (xt) ≤

√√√√T
T∑
t=1

4βσ2
t−1 (xt) (4.28)

≤
√
C1Tβγ̃T (4.29)

where C1 =
8

log(1+σ−2)
and γ̃T is the maximum information gain for the time varying Gaussian

process. Equation (4.28) follows from the fact that ∥z∥1 ≤
√
T∥z∥2 for any z ∈ RT . Equation

(4.29) follows from applying lemma 4.6 and equation (4.22).

Similarly to previous results in literature ([28], [2]) we observe that there is a strong
connection between the maximum information gain and the cumulative regret. A higher
maximum information gain will result in a higher cumulative regret because it is "harder" to
learn the underlying function. Placing this result into (4.27) yields:

E[RT] ≤ (1− δ)
[√

C1Tβγ̃T + TC2

]
+ TδC3 (4.30)

with:

C1 =
8

log(1 + σ−2)

C2 =
rdb
√

log(3ad
δ
)

τ

C3 = rdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

4.4. Convergence 36

Now we have an upper bound for the expectation of RT which completes the proof.

In theorem 3.2 we showed that the maximum information gain γ̃T for the time varying
function ft can be bounded:

γ̃T ≤
(
T

Ñ
+ 1

)(
γÑ + σ−2Ñ5/2ε

)
where Ñ ∈ N is a parameter which can be chosen. This result was discussed in more detail
in chapter 3 equation (3.9). This inequality implies that γ̃T = O(T) which means that we
can now state that with our bound E[RT] = O(T).

4.4. Convergence
We have provided an upper bound for the expectation of RT . But how close can we expect
the cumulative regret RT to be to E[RT]? And with what probability can we expect the
algorithm to under-perform and achieve a much higher regret RT >> E[RT] if we get unlucky?
To answer this question we introduce the following lemma:

Lemma 4.7 Consider the setting of Theorem 4.1. Then for any ω ∈ (0, 1) we have with
probability at least (1− ω):

RT ≤ E[RT] +
3T√
ω
.

Proof. We start by providing a bound on this variance based on the Cauchy–Schwarz inequality.
We are interested in bounding:

Var (RT) = Var

(
T∑
t=1

rt

)
=

T∑
i,j=1

Cov (ri, rj) (4.31)

where the second equality follows from Bienaymé’s identity [17]. Now, we are left to bound
Cov (ri, rj). Let’s start by considering the case of i = j, in other words Var[rt]. Recall that
the instantaneous regret is defined as:

4.4. Convergence 37

rt = max
x∈D

[ft (x)− ft (xt)] = max
x∈D

[ft (x)]− ft (xt) .

The difficulty in analysing this term stems from the max
x∈D

[ft (x)] which is the maximum of

ft ∼ GP(0, k). We will use the Borell-TIS inequality [1]:

Theorem 4.2 (Borell–TIS inequality) Let T be a topological space and let X(t) be a
centered Gaussian process with sup

t∈T
X(t) a.s. finite. Let σ = E[X(t)]. Then

P
(
sup
t∈T

X(t) > E[sup
t∈T

X(t)] + u

)
≤ e−u2/2σ2

and by symmetry:

P
(
|sup
t∈T

X(t)− E[sup
t∈T

X(t)]| > u

)
≤ 2e−u2/2σ2

.

Which implies that:

Var

(
sup
t∈T

X(t)

)
= E[sup

t∈T
X(t)− E[sup

t∈T
X(t)]]

=

∫ ∞

0

2uduP
(
|sup
t∈T

X(t)− E[sup
t∈T

X(t)]| > u

)
≤
∫ ∞

0

2udu2e−u2/2σ2

= 4σ2

Recall that in our case we have made the assumption that k(x, x) ≤ 1. This means that
Var[ft(x)] ≤ 1 for all x ∈ D. By theorem 4.2 this implies that:

Var[max
x∈D

[ft (x)]] ≤ 4 (4.32)

We can now bound the variance of rt:

Var[rt] = Var[max
x∈D

[ft (x)]] + Var[ft(xt)] + 2Cov

(
max
x∈D

[ft (x)] , ft(xt)

)
≤ 9 (4.33)

4.4. Convergence 38

Where the equality follow again from Bienaymé’s identity and the inequality follows from
equation (4.32) combined with the Cauchy–Schwarz inequality which states that:

Cov[X, Y] ≤
√
Var[X]Var[Y].

Since equation (4.33) hold for all t we can now use the same Cauchy–Schwarz inequality to
state that:

Cov (ri, rj) ≤ 9.

This yields an upper bound for the variance of RT by evaluating equation (4.31):

Var (RT) ≤ 9T 2

In order to translate this bound on the variance into a probabilistic bound on RT we shall
use Chebyshev’s inequality [9]:

Lemma 4.8 (Chebyshev’s inequality)

Let X be a random variable with finite variance σ2 > 0 with mean µ ∈ R. Then for any
k ∈ R:

P(|X − µ| ≥ kσ) ≤ 1

k2
.

Now suppose we want a bound which holds with probability at least (1− ω). Then we apply
lemma 4.8 with k = 1√

ω
. Note that we have shown σ2 ≤ 9T 2. This yields the bound:

P(RT ≥ E[RT] +
3T√
ω
) ≤ ω

and thus with probability at least (1− ω):

RT ≤ E[RT] +
3T√
ω
. (4.34)

4.5. Improved Convergence Conjecture 39

As both terms on the right hand side are O(T) we now have a probabilistic bound of O(T)

which holds for any ω ∈ (0, 1). This bound can be compared with the result achieved in [2].
We have introduced a new variable ω which was not present in the analysis of the original
regret bound [2]. This is because in the original regret bound the choice of δ influenced
β as well as the probability that the bound would hold. In this new bound δ is simply a
variable used for the analysis (and it plays a similar role to the proof of the previous bound).
However, δ no longer impacts the probability that the bound will hold. This is convenient
as the user should simply choose δ and τ in order to minimize the r.h.s. of equation (4.4).
These will determine the choice of β (constant), but they will not impact the probability. For
applications, if the user wants to determine the probability of a certain bound holding they
can use equation (4.34) to determine which bound will hold with what probability. There is
an optimal β regardless of the desired certainty of the bound holding.

4.5. Improved Convergence Conjecture
We are not completely satisfied with the bound obtain in section 4.4. While we have shown
that RT = O(T), we believe it should be possible to show that RT

T
will converge in probability

to E[RT]
T

. This is equivalent to showing that for any η > 0:

lim
T→∞

P
[∣∣∣∣RT

T
− E[RT]

T

∣∣∣∣ > η

]
= 0.

On a high level we expect that this is possible because the instantaneous regrets rt, rt′ for
two timesteps t, t′ will become increasingly uncorrelated for large differences in time |t− t′|.
We can then apply the following lemma:

Lemma 4.9 Consider a sum of random variables Xi with finite variance:

ST =
T∑
i=1

Xi.

Note that the RVs Xi are not required to be independent or identically distributed, they must
each individually have a finite variance. We claim that if we have a bound on the covariance
of these random variables of the following form:

4.5. Improved Convergence Conjecture 40

Cov(Xi, Xj) ≤ m · c|i−j|

with c ∈ [0, 1) and m ∈ R+, then we can make the following statements about the distribution
of ST :

1.) For any η > 0:

lim
T→∞

P
[∣∣∣∣ST

T
− E[ST]

T

∣∣∣∣ > η

]
= 0.

2.) For any ω ∈ (0, 1), we have with probability at least 1− ω:

ST ≤ E[ST] +

√
m

[
T +

2c

(c− 1)2
(cT+1 + 1) +

2c

1− c
T

]
1

ω
.

Proof. 1.) Choose some η > 0 then for any T ∈ N we have by the Chebyshev inequality:

P
[∣∣∣∣ST

T
− E[ST]

T

∣∣∣∣ > η

]
≤

Var
(
ST

T

)
η2

. (4.35)

It remains to bound Var
(
ST

T

)
:

Var

(
ST

T

)
=

Var (ST)

T 2
=

∑T
i=1

∑T
j=1Cov(Xi, Xj)

T 2
≤

m
∑T

i=1

∑T
j=1 c

|i−j|

T 2

4.5. Improved Convergence Conjecture 41

We can compute the nested sum using the properties of geometric series:

T∑
i=1

T∑
j=1

c|i−j| =
T∑
i=1

c|i−i| + 2
T∑
i=1

i−1∑
j=1

c|i−j|

= T + 2
T∑
i=1

i−1∑
j=1

c|i−j|

= T + 2
T∑
i=1

i−1∑
j=1

ci−j

= T + 2
T∑
i=1

ci
1− c−i

1− c−1

= T + 2
T∑
i=1

ci − 1

1− c−1

= T +
2c

c− 1

T∑
i=1

ci − 1

= T +
2c

c− 1

(
1− cT+1

1− c
− T

)
= T +

2c

(c− 1)2
(
cT+1 + 1

)
+

2c

1− c
T

Substituting this back into equation (4.35) and taking the limit yields:

lim
T→∞

P
[∣∣∣∣ST

T
− E[ST]

T

∣∣∣∣ > η

]
≤ lim

T→∞

Var
(
ST

T

)
η2

≤ lim
T→∞

m
[
T + 2c

(c−1)2

(
cT+1 + 1

)
+ 2c

1−c
T
]

T 2η2
= 0.

The choice of η was arbitrary which implies that the equation holds for any η > 0 which
means ST

T
converges to E[ST]

T
in probability.

2.) By the same logic we have that:

P [|ST − E[ST]| > η] ≤
m
[
T + 2c

(c−1)2

(
cT+1 + 1

)
+ 2c

1−c
T
]

η2
.

Choose ω ∈ (0, 1) now we define:

η =

√
m

[
T +

2c

(c− 1)2
(cT+1 + 1) +

2c

1− c
T

]
1

ω
.

4.5. Improved Convergence Conjecture 42

Then we obtain:

P [|ST − E[ST]| > η] ≤ ω

So we have with probability at least 1− ω:

ST ≤ E[ST] + η = E[ST] +

√
m

[
T +

2c

(c− 1)2
(cT+1 + 1) +

2c

1− c
T

]
1

ω
.

This lemma can’t be directly applied to our sum of rt’s as we must have a bound on the
covariance of the form:

Cov(ri, rj) ≤ m · c|i−j|

We introduce the following conjecture which makes this possible:

Conjecture 4.1 Let D ⊆ [0, r]d be compact and convex. We sample two functions (i.i.d.)
from a Gaussian process g1, g2 ∼ GP(0, k) with k(x, x) ≤ 1. Define:

f1(x) := g1(x)

f2(x) :=
√
1− εg1(x) +

√
εg2(x)

where ε ∈ [0, 1].

Corr (f1(x), f2(x
′)) ≤

√
1− ε ∀x, x′ ∈ D (4.36)

Corr

(
max
x∈D

[f1 (x)] ,max
x∈D

[f2 (x)]

)
≤

√
1− ε (4.37)

Corr

(
max
x∈D

[f1 (x)] , f2(x)

)
≤

√
1− ε ∀x ∈ D. (4.38)

4.5. Improved Convergence Conjecture 43

We can show that equation (4.36) holds by simply considering the covariance of our two
functions for any arbitrary x, x′ ∈ D. First observe that we can write f2 as:

f2(x) =
√
1− εf1(x) +

√
εg2(x) (4.39)

Cov(f1(x), f2(x
′)) =

√
1− εE[f1(x)f2(x′)] =

√
1− εk(x, x′) ≤

√
1− ε

where k(x, x′) is the spatial covariance due to the kernel k. The first equality follows from the
definition of covariance and equation (4.39) with the fact that g2(x′) is independent of f1(x)
for all x, x′ ∈ D. The second equality follows from our prior on f1, f2 ∼ GP(0, k). Recall
that we assumed k(x, x) ≤ 1 which yields the inequality and hence the first statement in the
conjecture holds.

Unfortunately it is not possible to prove equation (4.37) and equation (4.38) in a similar
manner. This is due to the complexities associated with analysing the probability distribution
of the maximum of f1, f2 ∼ GP(0, k). The conjecture clearly holds for ε = 0 (from the bound
on the variance provided by theorem 4.2) and ε = 1 since the two functions are independent
in that case. We will assume the conjecture holds for ε ∈ (0, 1) and show that we can use
this to prove that E[RT]

T
converges in probability.

Lemma 4.10 Consider the setting of theorem 4.1. Assume that conjecture 4.1 holds. Then
for any ω ∈ (0, 1) we have that the following statement holds with probability at least (1−ω):

RT ≤ E[RT] +

√
9

[
T
1 + (1− ε)1/2

1− (1− ε)1/2
+

2(1− ε)1/2

((1− ε)1/2 − 1)2
((1− ε)(T+1)/2 + 1)

]
1

ω
(4.40)

and as T → ∞, the average regret will converge in probability to the expected average regret:

RT

T
→ E[RT]

T
.

Proof. First, recall that the time varying function ft is generated according to (4.1):

f1(x) = g1(x)

ft+1(x) =
√
1− εft(x) +

√
εgt+1(x) ∀t ≥ 1,

4.5. Improved Convergence Conjecture 44

where gi ∼ GP(0, k) i.i.d. and ε ∈ (0, 1]. Observe that we can write:

ft+j(x) = (1− ε)j/2 · ft(x) +
√
ε

j∑
i=1

(1− ε)(j−i)/2gt+i(x) (4.41)

This means that the covariance of the function at two different timesteps t and t+ j and two
spatial locations x, x′ ∈ D is of the following form:

Cov(ft(x), ft+j(x
′)) = (1− ε)j/2E[ft(x)ft(x′)] = (1− ε)j/2k(x, x′) ≤ (1− ε)j/2 (4.42)

where k(x, x′) is the spatial covariance due to the kernel k. The first equality follows from the
definition of covariance and equation (4.41) with the fact that gt+i(x) is independent of ft(x)
for all i ≥ 1. The second equality follows from our prior on ft ∼ GP(0, k) for all t. Recall
that we assumed k(x, x) ≤ 1 which yields the inequality. Now, consider the instantaneous
regret associated with two timesteps t, t′ ≥ 1:

rt = ft(x
∗
t)− ft(xt) rt′ = ft′(x

∗
t′)− ft′(xt′)

where ft(x
∗
t) = max

x∈D
[ft(x)]. We can express the covariance of the instantaneous regrets:

Cov [rt, rt′] = Cov [ft(x
∗
t)− ft(xt), ft′(x

∗
t′)− ft′(xt′)]

= Cov [ft(x
∗
t), ft′(x

∗
t′)] + Cov [ft(xt), ft′(xt′)]− Cov [ft(x

∗
t), ft′(xt′)]− Cov [ft(xt), ft′(x

∗
t′)]

≤ 9c|t−t′|. (4.43)

with c = (1− ε)1/2, the inequality holds due to equation (4.42) combined with conjecture 4.1.
Note that here we applied the assumption that −1 ≤ k(x, x′) ≤ 1. In most common kernels
used for Bayesian optimization (such as the RBF kernel or the Matérn kernel) we actually
have 0 ≤ k(x, x′) ≤ 1 which would improve the final inequality to 8c|t−t′| rather than 9c|t−t′|.
Equation (4.43) provides an upper bound on the covariance between two regrets. Now we
can apply lemma 4.9 which states that for any η > 0:

lim
T→∞

P
[∣∣∣∣RT

T
− E[RT]

T

∣∣∣∣ > η

]
= 0.

as η is arbitrary this means we have that:

RT

T
→ E[RT]

T

4.6. Optimal Beta Dependence on Epsilon 45

in probability. Additionally we have from lemma 4.9 that for any ω ∈ (0, 1) we can achieve a
bound on RT

T
which holds with probability (1− ω). This is achieved by choosing:

η =

√
9

[
T +

2c

(c− 1)2
(cT+1 + 1) +

2c

1− c
T

]
1

ω

=

√
9

[
T
1 + c

1− c
+

2c

(c− 1)2
(cT+1 + 1)

]
1

ω
.

Then we have that:

P [|RT − E[RT]| > η] ≤
4
[
T 1+c

1−c
+ 2c

(c−1)2

(
cT+1 + 1

)]
η2

= ω.

So we have with probability at least (1− ω):

RT ≤ E[RT] + η = O(T) (4.44)

since E[RT] = O(T) by (4.30). This concludes the proof of Theorem 4.1.

We have improved the regret bound provided in [2] and shown that it is possible to achieve
this regret with a constant value of β. The optimal value of β depends on the parameters of
the problem. We achieved the probabilistic bound in equation (4.44) by taking advantage
of the fact that the time-varying function ft allows us to bound the covariance between
regrets at different timesteps. Our method varies from [2] in that rather than taking a union
bound over every timestep, which requires an unbounded increasing βt, we can bound the
instantaneous regret and show that the variance of the average regret converges to zero in
the limit. This method of bounding the regret would not be feasible for a static function
and hence only holds for ε ∈ (0, 1] as this is required to upper bound the covariance when
applying lemma 4.9.

4.6. Optimal Beta Dependence on Epsilon
It is interesting to consider how the optimal β might change with rate of change ε of the
function ft. In the regret bounds provided in [2] the choice of β was independent of ε. For
our bound we want to choose a β = 2(log(3

2δ
) + d log(τ)) such that the r.h.s. is minimized:

E[RT] ≤ (1− δ)
[√

C1Tβ(δ, τ)γ̃T + TC2(δ, τ)
]
+ TδC3(δ). (4.45)

4.6. Optimal Beta Dependence on Epsilon 46

Depending on the choice of δ and τ we are making a trade-off between the algorithm
specific regret (1− δ)

√
C1Tβ(δ, τ)γ̃T , and the overhead terms T (1− δ)C2(δ, τ) and TδC3(δ).

Unfortunately it is not possible to explicitly solve for the optimal choice of δ and τ . On a high
level we see that increasing β will decrease the overhead terms (but increase the first term).
If we consider for example the square exponential kernel; [2] showed that γ̃T = O(Tε1/5).
Suppose we consider a function which is changing more rapidly; increase ε and thereby
increase γ̃T . This would increase only the first term on the r.h.s. of equation (4.45) which
implies that we should lower the value of β to find a new optimal bound. This is intuitive as
it means the model should put less effort into exploration when the function is changing more
rapidly. Exploring has less value as the data will become stale more quickly. The inverse is
also true; if we have a more constant function (lower ε) it is more worthwhile to explore (and
we should increase β).

In a more detailed analysis we can fix τ and investigate how varying δ will affect the
expected cumulative regret bound. We will make a number of assumptions and then show
that we expect the optimal β to decrease with the rate of the change of the function ε.
We will consider the case where the spatial kernel is the square exponential kernel and the
maximum information gain is O(Tε2/5). We start with:

E[RT] ≤ (1− δ)
(√

C1Tβγ̃T + TC2

)
+ TδC3

≃ T
[
ε1/5(1− δ)

√
C1β + (1− δ)C2 + δC3

]
Since we simply wanna minimize the bound we can divide by T and consider the remaining
term:

U = ε1/5(1− δ)
√

C1β + (1− δ)C2 + δC3.

By optimizing δ we want to find δ such that:

dU

dδ
= 0.

Let’s consider the derivatives of the three components of U separately:

4.7. Comparison with Previous Regret Bound 47

K1 =
d(1− δ)

√
C1β

dδ
≃

d(1− δ)
√
log(3

2δ
)

dδ
= −

(
2 log

(
3
2δ

)
− 1
)
δ + 1

2
√

log
(

3
2δ

)
δ

= −
√
log(

3

2δ
) +

δ − 1√
log(3

2δ
)
< 0

K2 =
d(1− δ)

rdb
√

log(3ad
δ

)

τ

dδ
≃

d(1− δ)
√
log(3ad

δ
)

dδ
= −

(
2 log

(
3ad
δ

)
− 1
)
δ + 1

2
√

log
(
3ad
δ

)
δ

< 0

K3 =
dδC3

dδ
≃ δ

√log

(
ad

δ

)
+

1√
log
(
ad
δ

)
 =

2 log2
(
ad
δ

)
+ log

(
ad
δ

)
+ 1

2 log
3
2

(
ad
δ

) > 0.

Note that for K1 we are not including ε1/5 which is a constant that is independent of δ. If we
are located at an optimum (wrt δ) then these derivatives should sum to zero:

U ′ =
dU

dδ
= ε1/5K1 +K2 +K3 = 0

Now if we increase ε the first term will increase while the other terms remain the same. But
this then implies that the derivative wrt U is negative:

dU

dδ
< 0

since we want to minimize U this implies we should increase δ until this gradient is again
equal to zero. Increasing δ leads to a smaller β; as we expected a larger ε has lead to a
smaller optimal β. While we can’t explicitly solve for the relation between ε and the β at the
optimal values of δ and τ this provides some motivation for how the ε will affect the optimal
β via γ̃T . This is an advantage when comparing this regret bound to the one presented in [2]
(as their β was independent of ε). In chapter 5 we perform simulation studies to investigate
if this theoretical result can be supported by data.

4.7. Comparison with Previous Regret Bound
The benefits of this new regret bound are listed as follows:

• Scaling w.r.t. T : The previous regret bounds showed that RT

T
= O(

√
log(T)). The new

bounds achieve linear cumulative regret which results in RT

T
= O(1).

• Probabilistic bounds: The previous result required the user to pick δ and choose βt

accordingly before running the algorithm. This would then result in a bound on the
regret which holds with probability (1 − δ). The new bounds allow the user to pick

4.7. Comparison with Previous Regret Bound 48

the optimal β regardless of the desired probability. After running the algorithm the
user can compute an upper bound on the regret for any desired probability (1 − ω)

according to equation (4.40).

• Algorithm dependence on ε: In the previous regret bounds βt was chosen based on the
desired probability of the bound holding according to equation (3.6). For new regret
bounds we choose β such that equation (4.4) is minimized. This optimal value will
depend on ε which means our algorithm will act differently depending on the rate of
change of the function ft, as described in section 4.6.

Now, let us consider how the algorithm performs as ε → 0. For ε = 0 we simply have the
static case which has been studied in detail and allows us to achieve sub-linear regret [28].
However, it is interesting to consider how well our algorithm might perform for small ε. Let
us consider how cumulative regret scales as a function of T and ε:

RT = O(L(T, ε)) as T → ∞ and ε → 0.

It has been shown (in Theorem 4.1 [2]) that a lower bound on this scaling is Tε. When
designing an algorithm we aim to achieve regret bound of the form O(Tεα) with the highest
possible α.

Let us consider the square exponential kernel to compare the two bounds. Using the
corrected version of the maximum information gain for the time varying function presented in
theorem 3.2 we find that γ̃T = O(Tε2/5) by choosing Ñ = ε−2/5. Then, for the regret bounds
from [2] given in (3.7) we have:

RT = O(T
√
log(T)ε1/5).

Now, recall that our new regret bounds are of the from:

(1− δ)
(√

C1Tβγ̃T + TC2

)
+ TδC3 ≤

√
C1Tβγ̃T + TC2 + TδC3

with:

4.7. Comparison with Previous Regret Bound 49

C1 =
8

log(1 + σ−2)

C2 =
rdb
√

log(3ad
δ
)

τ

C3 = rdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

The first term is clearly O(Tε1/5) based on γ̃T . Unfortunately, the other two terms seem to
be independent of ε. This would imply that for our regret bound we can only achieve O(T)

which is independent of ε. However, recall that δ and τ were variables which could be chosen.
If for example we choose:

δ = ε2/5

τ =
⌈
ε−2/5

⌉
.

We observe that when we consider C2 and δC3 as ε → 0 we obtain:

C2 = O(

√
log(ε−2/5)

ε−2/5
) = O(ε−1/5)

δC3 = O(ε2/5
√

log(ε−2/5)) = O(ε−1/5).

Therefore we have RT = O(T)ε1/5. While these choices of τ and δ might not be optimal, it
does confirm that with this bound we are able to achieve at least as good scaling (w.r.t. to ε)
as the previous bound. Our regret bound improves on the scaling w.r.t. T and matches the
scaling w.r.t. ε.

It is interesting to note that, while we might not be using the optimal values for δ and τ ,
this result could also give us some intuition for how the optimal β might scale as a function
of ε (especially for small values of ε):

β = 2(log(
3

2δ
) + d log(τ)) = O(− log(ε)) as ε → 0

where we used the values of δ = ε2/5 and τ =
⌈
ε−2/5

⌉
.

5
Simulation Study

In chapter 4 have provided theoretical results which imply that using the TV-GP-UCB
algorithm 2 with a constant value of β will result in lower cumulative regret compared to the
traditional scaling of the form βt = O(log(t)). In this chapter we will support these theoretical
results by testing the algorithm on synthetic data. We consider the two dimensional case
with a grid of 50 x 50 points. We have D = [0, 1]2 and we generate the data using the squared
exponential kernel (2.1) with the length-scale parameter set equal to

√
0.2. For the case of

increasing βt we set values according to the heuristic used in past research ([28], [15], [2]);
βt = 0.8 log(4t). We test this against various constant values of β sampled in an evenly
spaced manner on a log scale.

In figure 5.1 we present the results of testing the algorithm in this setting with rate of
change ε = 0.09 and observation noise σ = 0.1. We observe that there is indeed a constant
value of β which outperforms the βt = 0.8 log(4t) heuristic. In fact, the estimated average
regret falls below the average regret of the increasing βt for all β ∈ [0.5, 5.0] and we achieve
the best performance for β = 2.0.

Figure 5.1: Average regret after 200 timesteps vs β. We compare
constant values of β (shown on the horizontal axis with log scale) to
βt = 0.8 log(4t) including the 95% confidence interval of the mean after

200 trials. [ε = 0.09 and σ = 0.1]

50

51

In figure 5.2 the results of a similar test with lower ε are presented. We first observe that
the average regret for this setting is lower. This is as a result of a slower changing function
ft which allows the algorithm to put more weight on older data which results in a better
estimate of the current function. Additionally, we observe that the confidence intervals are
larger, this supports the result of (lemma 4.9):

Var

(
RT

T

)
= O

(
1 + (1− ε)1/2

T (1− (1− ε)1/2)

)
as T → ∞.

Which shows that the variance of RT

T
will increase with decreasing ε. We also observe that

there is a smaller range in which our constant value of β outperforms. In this case the range
is β ∈ [1.0, 4.0].

Figure 5.2: Average regret after 200 timesteps vs β. We compare
constant values of β (shown on the horizontal axis with log scale) to
βt = 0.8 log(4t) including the 95% confidence interval of the mean after

200 trials. [ε = 0.03 and σ = 0.1]

Next, we investigate the impact of the variance of the noise σ2 from our samples yt =

f(xt) + zt with zt ∼ N (0, σ2). We present figure 5.3 which are tests performed with very
small and very large noise variance respectively. We first observe that the average regret
in the high variance case is significantly higher than the low variance case. This is to be
expected as the samples are less informative about the underlying function. Additionally,
we see that the confidence intervals for the high variance case are quite large. This is a
result of the algorithm’s choices of xt becoming more random due to the high amount of
noise. Due to the large confidence intervals (and possible small or non-existent effect) the
results are inconclusive about the impact of σ on the optimal choice of β. Although there is

52

a high uncertainty in the estimates, in both cases the expected cumulative regret is lower for
constant β ∈ [1.5, 5.0].

(a) [ε = 0.01 and σ = 0.01] (b) [ε = 0.01 and σ = 1.0]

Figure 5.3: Average regret after 200 timesteps vs β. We compare constant values of β (shown on the
horizontal axis with log scale) to βt = 0.8 log(4t) including the 95% confidence interval of the mean after 200

trials.

These results support the theoretical result that a constant value for β is able to achieve lower
cumulative regret. The optimal value of β will depend on the problem. However in these
experiments we found that a value of β ∈ [2.0, 4.0] is a good heuristic when knowledge of the
underlying function is limited. In fact, values of β in this range consistently outperform the
heuristic βt = 0.8 log(4t) which has been used in past research.

Finally, we perform a more detailed test to determine the impact of ε on β. In this case
we choose a low observation noise (σ = 0.01) to reduce the variance of the final estimate. In
previous tests we sampled β in the range [0.2, 20] and observed that in most cases the optimal
value was attained in the range [2.0, 4.0]. For this test we instead sample 8 values of β in
[1.0, 8.0] in order to get a more detailed resolution of the average regret around the optimal
point. We also increase the total number of timesteps of the simulation to 300 to obtain a
better approximation of how the algorithm performs for long time horizons. Performing long
simulations is computationally costly as the compute time of the GPR scales according to
O(t3) (discussed in more detail in chapter 7). However, for the case of ε = 0.003 we increase
the time horizon of the simulation to T = 600 since the effects of the time-varying function
with such a low rate of change can only be seen on long time horizons.

In figure 5.4 we present the results of this test. The results indicate that the optimal value
of β does depend on ε and there is an inverse correlation. As we increase ε the optimal value
of β decreases. This is in line with the results of theorem 4.1 and the discussion in section 4.6.

53

(a) [ε = 0.003 and T = 600] (b) [ε = 0.01 and T = 300]

(c) [ε = 0.03 and T = 300] (d) [ε = 0.09 and T = 300]

Figure 5.4: Average regret vs β. We compare constant values of β (shown on the horizontal axis with log
scale) to βt = 0.8 log(4t) including the 95% confidence interval of the mean after 400 trials. [σ = 0.01]

Alternative Temporal Covariance

54

55

In our analysis so far we have assumed that the function ft changes over time according
to equation (3.1). In the existing literature there are various types of temporal covariances
considered for Gaussian process optimization. In [2] it is assumed that the temporal covariance
decays exponentially with time. In [3] the case of change-points is considered where the
underlying function changes instantaneously at some timestep and remains static at the
remaining timesteps. For real world applications it is useful to consider alternative temporal
covariance structures. In chapter 6 we introduce deep reinforcement learning (DRL) which
forms some of the motivation for developing the new temporal models which are introduced
in the following chapters.

It is important to note that in practice we often do not know the true kernel parameters
of the function generating process. When this knowledge is limited we must estimate these
parameters from the observations of the function {(x1, y1), ..., (xt, yt)}. This is discussed in
more detail in chapter 7. One of the implications of fitting the kernel parameters to the
data is that a covariance kernel with many parameters quickly becomes intractable which we
will show to be relevant in chapter 10. In other words, it is not feasible to use a temporal
covariance kernel which is too flexible. With this in mind we introduce and test two new
temporal covariance structures which we expect to be relevant for real world applications.

First, in chapter 8 we consider the case where the perturbations which influence the
function ft at every timestep also have a decaying effect on the changes of the function at
future timesteps. This causes the variations of the function ft to be positively correlated
with the changes of the function in previous timesteps {ft−1, ft−2 . . .}. This can be seen
as a form of momentum; we expect the function to continue to increase at points where it
has increased in recent timesteps. We introduce a new algorithm to deal with this type of
temporal dependence called Momentum Time Varying Gaussian Process Upper Confidence
Bound (MTV-GP-UCB). Returning to the bird scientist example from the introduction this
could occur if heavy rainfall causes worms to emerge from the ground which increases the
bird density around a clearing in the forest. This will not only affect the bird behaviour on
the following day but could have a continued effect on the changes in multiple following days.

In chapter 9 we examine the case where the function transitions from one static state to
another (similarly to [3]). However, rather than assuming this transition happens instantly
we consider the case where this change occurs over a larger time frame. For example we
could have a function which is equal to h1 at t = 0 and equal to h2 at t = 100. In between
t = 0 and t = 100 the function is some combination of h1 and h2. To tackle this problem we
introduce an algorithm called Transition Time Varying Gaussian Process Upper Confidence
Bound (TTV-GP-UCB). If we again return to the bird example in the introduction this
would be the case if there was a new predator introduced into the ecosystem. This causes the
birds the adapt to this change in their environment, for example they might learn to avoid
areas with lower trees. This can be seen as a transition from h1 to h2.

6
Online Hyperparameter

Optimization
We will now describe some applications with real data where the data generating model is
completely unknown. Consider a hypothetical deep reinforcement learning (DRL) model
which is learning (within a simulation) to control a robot body with the goal of learning how
to run. Initially the model learns to how to stand up and avoid falling over. This transitions
into the model learning how to walk which then finally transitions into the model learning
to run. This transitions are not necessarily abrupt; the model can already start learning
how to walk while it is still learning how to stand in a stable manner. It is quite likely that
each of these three tasks are learned most efficiently with different training hyperparameters
(learning rate, batch size etc.). In this sense one can imagine that the underlying function
(with hyperparameters as domain) is initially quite constant, as the model is still learning
how to balance, but once the transition to walking starts to happen the function changes
significantly.

The TVBO model has been successfully applied the problem of online hyperparameter
optimization of DRL models [20]. It was shown to outperform other methods such as BO
for a static function and genetic algorithms for this task. This implies that the optimal
hyperparameters are indeed changing throughout the learning process and can be modelled by
a Gaussian process. We expect that the the new models; MTV-GP-UCB and TTV-GP-UCB
are well suited for this task and will outperform TV-GP-UCB in more complex environments.
In this chapter we provide some motivation for this belief.

6.1. Deep Reinforcement Learning
We will give a brief introduction into DRL which will serve as background knowledge for the
following sections. DRL algorithms are deployed in order to solve complex Markov decision
problems. This is a problem in which an agent observes a state St ∈ S ⊂ Rd and must choose
some action (represented by a vector) at ∈ A ⊂ Rm. Following this the agent receives a
reward gt+1 and observes the following state St+1. Again, the agent must choose at+1 ∈ A
and so forth. A flowchart which illustrates this is show in figure 6.1.

56

6.1. Deep Reinforcement Learning 57

Figure 6.1: Flowchart of simple DRL training environment

The goal of the agent is to choose at ∈ A as to maximize the expected discounted future
rewards:

E [Gt] = E
[
gt + γgt+1 + γ2gt+1 + . . .

]
= E

[
n∑

i=0

γigt+i

]

where the discount factor γ ∈ (0, 1] ensures that the agent prefers rewards sooner rather than
later which often helps with stability of the model. Note that depending on the environment;
n can be finite or E [Gt] could involve an infinite sum (n = ∞). Some environments have
a maximum number of timesteps. Alternatively, there could be a condition such as; the
environment stops if some terminal state is reached (St ∈ ST ⊂ S). The action is sampled
according to a policy π(a):

at ∼ π(a|S = St)

which is a function that maps states St to a specific action a ∈ A or a probability distribution
over actions. The "deep" part of DRL refers to the fact that these algorithms use deep neural
networks (NNs) to approximate this policy π.

Note that there are some similarities between this topic and the online learning we have
covered so far in this thesis. In both cases we are optimizing some function (which is unknown
to us). We have limited information and must choose between exploring the domain or
exploiting the function where we have already gained knowledge. The key difference between
DRL and online learning problems (such as Bayesian optimization) arises from the fact that
in these Markov decision problems the chosen action at ∈ A will influence future states

6.1. Deep Reinforcement Learning 58

St+1, St+2, This is fundamentally different from the assumptions we have made so far, we
have always assumed our choice of xt ∈ D did not impact the function ft.

The removal of this assumption greatly increases the number of tasks which can be solved
by these models. DRL has been applied to many tasks; from solving board games and robotic
control problems [19] to autonomous vehicles [29] and even controlling the magnetic fields
inside fusion reactors; ensuring the stability of the plasma [26]. However, the learning process
for these tasks is significantly more complex than online learning scenarios. It is hard to
achieve any useful theoretical guarantees for these complex problems.

Training DRL agents typically takes place in a simulated environment where the neural
network (representing π(a|S = St)) is initialized with random weights. These NN weights
are updated (using stochastic gradient descent/backpropagation [12]) as the agent interacts
with the environment and learns which actions (in which states) result in positive and
negative rewards. There is a large body of research [27] on how to optimally train neural
networks for these problems. DRL algorithms control this training procedure and how the NN
weights are updated. However, most state of the art DRL algorithms have a large number of
hyperparamters which influence the rate at which the neural network is able to converge to an
effective policy. Additionally, from experiments we observe that the optimal hyperparameters
can be vastly different depending on the environment [7]. Since for most environments we do
not know beforehand which hyperparameter schedule will result in fast learning this motivates
the use of hyperparameter optimization algorithms such as TV-GP-UCB to adjust these
parameters during the training process (based on the rate at which the model is learning).

As an example we consider the popular Proximal Policy Optimization (PPO) [25] algorithm.
During training this algorithm uses a stochastic policy, which means that actions are drawn
from a probability distribution. The probability distribution is represented by the neural
network. The goal in training is to increase the probability of taking "good" actions. Without
delving into the details of the PPO implementation we can discuss three key hyperparameters
[22] which we expect to change over the course of the training session:

• Learning rate: this parameter controls the step-size of the updates during the stochastic
gradient descent which updates the NN weights. A larger learning rate will increase
the rate at which the policy changes. However, a learning rate which is too large could
also cause the policy to "over-correct".

• Batch size: this hyperparameter determines the number of interactions with the
environment are included in each update of the NN weights. A lower batch size allows
for more frequent updates but might not include a representative sample.

• Entropy coefficient: the entropy coefficient is used to steer the NN towards more
exploration. It is a term which is added to the computed loss that encourages the

6.2. Hyperparameter Changes 59

gradient descent step to adjust weights towards a more "random" policy. If the entropy
coefficient is too low it is possible that the agents becomes stuck in a local optimum
and doesn’t sufficiently explore the environment.

6.2. Hyperparameter Changes
As an example we will consider the Gymnasium Mujoco Humanoid environment [30]. This is
a physics simulation in which the agent is tasked with controlling the body of a 3D bipedal
robot. With the ultimate goal of the environment; to walk forward as fast as possible without
falling over. The NN receives relevant state information as input (such as the position and
velocities of the various parts of the body). The policy can choose to activate "muscles"
which allow it to control the movement of the robot. A visualization of this environment is
presented in figure 6.2.

Figure 6.2: Render of the Gymnasium Mujoco Humanoid environment

The agent receives a positive at each timestep reward if the robot is able to keep it’s torso
above 1m. An additional reward is provided proportional to the forward velocity of the robot.
If the robots torso falls below 1m the environment is reset (into an initial standing position).
Let’s consider training an agent to learn in this environment using the PPO algorithm (while
adjusting the hyperparameters according to figure 6.3, using the TTV model). The NN is
initialized with random weights and we selecting random hyperparameters as a starting point.
This causes the agent to take random actions which quickly result in the environment being
reset (due to the torso passing below 1m) resulting in a negative reward. Over time the GPR
model learns which region in the hyperparameter domain is most effective. The agent learns
to balance the body in order to avoid the environment resetting and continue collecting the
positive rewards. At this point there is a gradual transition as most of the additional reward
can be gained by increasing the forward velocity of the robot. This can be seen as a different
task and likely has different optimal hyperparameters. For example the learning rate might
be reduced to avoid the policy changing too far from the current policy which is able to

6.2. Hyperparameter Changes 60

balance the robot. The TTV-GP-UCB is designed to handle this type of transition in the
underlying function. As the agent starts to learn to walk (while staying balanced) the TTV
model adapts the hyperparameters to this new task. Finally, once the NN has converged
to a policy which is able to stay balanced and walk a final transition may take place. In
this case the agent is transitioning from walking to running. Again, this likely results in a
change in the hyperparameters which is captured by the TTV model. For example it might
be required to reduce the Entropy coefficient so that the policy becomes less random (thereby
allowing to agent to take more risks and walk faster). Note that the temporal model derived
in chapter 9 assumed only one single transition will occur in the dataset. However, this
could be adapted to handle multiple transitions, either by discarding old data or by adding
additional parameters to model additional transitions. In theory, using TTV-GP-UCB to
dynamically adapt the choice of hyperparameters allows for efficient learning which reduces
the training time.

Figure 6.3: Simplified training loop TV-GP-UCB

Alternatively, let’s consider the environment where an agent is learning to play the
stochastic casino game Blackjack. Again, we initially have a random policy due to the random
initialization of the NN. At the beginning of the training process a small batch size and high
learning rate might be optimal to rapidly update the policy (and move it roughly in the
correct direction). However, throughout the training and as we get closer to the optimal
policy we must increasing our batch size. The stochastic nature of the environment can cause
the samples to not be representative of the expected reward. In some steps the agent might
take optimal actions but still lose the game. It is possible that this is a consistent trend
over time (the optimal batch size simply increases over time throughout the entire training
process). As we get closer to the final "perfect" policy we continue to increase our batch size.
This type of evolution of the optimal hyperparameters can be handled by the MTV-GP-UCB
algorithm which is able to capture trends time varying function ft.

7
Implementation

Before we can introduce the two new models we must discuss some of the technicalities related
to the implementation of these algorithms. The Gaussian process regression was implemented
using the python library GPy [11] and the functions were sampled from a Gaussian process
using the scikit-learn python library [21].

7.1. Kernel Parameters
So far we have assumed that the parameters (k, ε, σ) of the GP prior were known to the
algorithm. This has allowed us to derive regret bounds and simulate the performance of
the algorithm for various values of β. However, in many real world applications the user
may not have exact knowledge of some or all of these parameters. When we are evaluating
the performance of these algorithms for real applications we must consider how this lack of
knowledge will affect their performance.

Since we must determine the parameters in order to apply the Gaussian process regression
we must estimate them based on the available data. A commonly used technique to overcome
this is to "fit" these parameters to the data by maximizing the log marginal likelihood (LML)
of observing the data [23]:

log(p(y | X)) = −1

2
yT (K̃t + σ2I)−1y − 1

2
log
∣∣∣K̃t + σ2I

∣∣∣− n

2
log 2π (7.1)

where K̃t is the covariance matrix as defined in equation (3.2) for the case of the time-varying
function with random perturbations. This is not guaranteed to be a convex optimization
problem which introduces additional computational cost. Additionally, it has been empirically
observed [14] that having good priors for the parameters is essential to making GPs scale to
higher dimensional data.

We will be testing our algorithms on synthetic data and compare the performance with
perfect knowledge of the true parameters and fitting the parameters based on the observed
data. In order to efficiently maximize (7.1) it is convenient to compute the derivative of
log marginal likelihood with respect to the parameters. Therefore, as we introduce the new

61

7.2. Computation 62

temporal models we will also aim to explicitly formulate these derivatives which can directly
be implemented in the GPy model in python.

7.2. Computation
One of the major drawbacks of Gaussian process regression is that in general the computational
cost scales according to O(t3) [23]. This arises from the computationally expensive inversion
(K + σ2I)

−1, which occurs both during the prediction of µ(x) and σ2(x), as well as during the
learning of the kernel parameters using (7.1). Recall that the mean and variance estimates
are computed as:

µt(x) = k̃t(x)
T (K̃t + σ2I)−1yt (7.2)

σ2
t (x) = k̃(x, x)− k̃t(x)

T (K̃t + σ2I)−1k̃t(x) (7.3)

where k̃t and K̃t were defined in (3.3) and (3.2) respectively. In chapter 11 we will discuss
how these algorithms can be improved to achieve better scaling than O(t3) for the case of a
time-varying function.

This poor scaling limits the extent to which we can tests our algorithms on long time
horizons. Additionally, we must choose the amount of compute time used to optimize (7.1).
As the optimization problem is non-convex it is possible that we will not attain the global
optimal kernel parameters according to the LML. We adjust our algorithm to Algorithm 3
when the true parameters are unknown, this version includes an additional loop which
optimizes the kernel parameters. Here, the n_restarts determines the computational effort
put into finding a global optimal set of parameters for the LML.

This Algorithm 3 will be used to test the performance in the case of unknown kernel
parameters.

7.2. Computation 63

Algorithm 3 TV-GP-UCB algorithm (with kernel parameter estimation)
Require: Domain D, lower and upper bounds for the parameters (k, ε, σ)
1: for t = 1, 2, . . . , T do
2: Choose xt = argmax

x∈D

[
µt−1(x) + β

1/2
t σt−1(x)

]
3: Sample yt = f(xt) + zt
4: for i = 1, 2, . . . , n_restarts do
5: if i = 1 then
6: Use the optimal parameters from the previous t as the starting (k, ε, σ)
7: else
8: Initialize (k, ε, σ) randomly within the given bounds
9: end if

10: Maximize (7.1) by performing gradient descent steps
11: end for
12: Select the (k, ε, σ) which achieved the maximum LML in the previous loop
13: Perform Bayesian update according to (7.2) and (7.3)
14: end for

8
Momentum Time-Varying

Function
We now aim to derive a model which is able to capture a slightly more complex temporal
covariance structure. Suppose that instead of the perturbations gt having a single instanta-
neous effect on ft, they instead also cause (decaying) changes to f at future timesteps ft+1,
This can be seen as a sort of momentum where previous changes in the function are expected
to persist in the future. In order to make this model useful for inference we would like to
be able to efficiently fit the model to the data by maximizing the log marginal likelihood
(LML) and determining the values of the hyper-parameters of the kernels. Ideally, we would
like to have a model which has an explicit function for the covariance kernel and an explicit
derivative of the LML w.r.t. these kernel parameters.

8.1. Momentum Time-Varying Gaussian Process
We introduce the following model which is a generalization of the time varying model presented
in chapter 3. We call this the momentum time varying Gaussian process model (MTV-GP):

ft+1(x) = εft(x) +
√
λ

∞∑
i=0

αigt+1−i(x) (8.1)

where ε ∈ [0, 1) controls the rate of change of the function and α ∈ [0, ε] controls the rate of
decay of the momentum. The functions gi are independently sampled from a Gaussian process
gi ∼ GP(0, k). The parameter λ is chosen such that for all t we have the prior ft ∼ GP(0, k).
The correct choice of λ is proven in lemma 8.1. It is interesting to note that this model is a
generalization of the time varying model presented in [2]. If we set α = 0 the momentum
effect is completely removed and the model returns to the simple TV-GP.

By adding an additional parameter to the temporal kernel the model is able to capture
more complex dynamics in the time varying function. To give some intuition for this we again
compare with the simple TV-GP model. In that model it is assumed that at each time step
the underlying function ft is perturbed by combining it with an independent sample from

64

8.1. Momentum Time-Varying Gaussian Process 65

a GP(0, k). This implies that the underlying function changes in a random fashion at each
time step. If the change of the function also includes the decaying momentum effect from
past perturbations there is a different temporal covariance structure. The MTV-GP model
tackles this case by ensuring that the random samples from the GP(0, k) have a delayed
decaying effect on the function. We observe that at some time t the function is perturbed by
α0gt + α1gt−1 + α2gt−2 + ... a geometric series of past samples from GP(0, k). This can be
interpreted as a form of momentum as each perturbation gt also has a decaying effect on the
future changes of the function ft.

We want that for all t; ft ∼ GP(0, k). Thus we must ensure that the variance does not
diverge over time. This can be achieved by setting λ correctly. The value of λ is derived in
the following lemma.

Lemma 8.1 If a time varying function is generated according to (8.1) with ε ∈ [0, 1],
α ∈ [0, ε] and k(x, x) = 1 and we choose:

λ =
(ε− α)2

α2

1−α2 +
ε2

1−ε2
− 2 αε

1−αε

if α < ε

and
λ =

(1− ε2)3

ε2 + 1
if α = ε

then we will have a GP(0, k) prior for ft which results in:

Var(ft(x)) = 1 ∀x ∈ D , ∀t ∈ R

Proof. In the current formulation of (8.1) the term εft contains previous terms gi and hence
is not independent of the second term. We will rewrite ft as a sum of independent gi terms
which will allow us to compute the variance. Let t be arbitrary and fix some x ∈ D, then:

ft+1(x) = εft(x) +
√
λ

∞∑
i=0

αigt+1−i(x)

= ε2ft−1(x) + ε
√
λ

∞∑
i=0

αigt−i(x) +
√
λ

∞∑
i=0

αigt+1−i(x)

=
√
λ

∞∑
j=0

gt+1−j(x)

j∑
i=0

αiεj−i. (8.2)

8.1. Momentum Time-Varying Gaussian Process 66

The final step follows from recursively unpacking ft, ft−1, It should be noted that due to
the nested sum gt+1 occurs one time, gt occurs twice, etc. This is a result of the fact that the
perturbation gi is included in the computation of ft at every timestep t ≥ i. We will first
consider the case of α < ε, we can now rewrite this sum as:

ft+1(x) =
√
λ

∞∑
j=0

gt+1−j(x)

j∑
i=0

αiεj−i

=
√
λ

∞∑
j=0

gt+1−j(x)ε
j

j∑
i=0

(α
ε

)i
=

√
λ

∞∑
j=0

gt+1−j(x)ε
j

(
1− (α

ε
)j+1

1− α
ε

)

=
√
λ

∞∑
j=0

gt+1−j(x)

(
εj+1 − αj+1

ε− α

)

=

√
λ

ε− α

∞∑
j=0

gt+1−j(x)
(
εj+1 − αj+1

)
Recall that each gi(x) ∼ N (0, 1) and every gi is independent. We can now compute the
variance of a sum of independent random variables (which is equal to the sum of the variances):

Var(ft(x)) = Var

(√
λ

ε− α

∞∑
j=0

gt+1−j(x)
(
εj+1 − αj+1

))

=
λ

(ε− α)2

∞∑
j=0

Var(gt+1−j(x))
(
εj+1 − αj+1

)2
=

λ

(ε− α)2

[
∞∑
j=0

ε2j+2 + α2j+2 − 2εj+1αj+1

]

=
λ

(ε− α)2

[
α2

1− α2
+

ε2

1− ε2
− 2

αε

1− αε

]

where the final step follows from the sum of an infinite geometric series. Now it should be
clear that by choosing:

λ =
(ε− α)2

α2

1−α2 +
ε2

1−ε2
− 2 αε

1−αε

we obtain that the variance is equal to 1. Since t was arbitrary and this holds for any x ∈ D

this completes the proof for α < ε.

8.1. Momentum Time-Varying Gaussian Process 67

We will now consider the case of α = ε. We return to our representation of ft+1(x) given
in equation (8.2). Note that this now becomes:

ft+1(x) =
√
λ

∞∑
j=0

gt+1−j(x)

j∑
i=0

εj (8.3)

=
√
λ

∞∑
j=0

gt+1−j(x)ε
j

j∑
i=0

1 (8.4)

=
√
λ

∞∑
j=0

gt+1−j(x)ε
j(j + 1) (8.5)

=

√
λ

ε

∞∑
j=1

gt+2−j(x)ε
jj (8.6)

where (8.3) follows from equation (8.2) first since α = ε. Equation (8.4) follows because
εj is independent of i. Equations (8.5) and (8.6) follow from evaluating the inner sum and
re-indexing the outer sum.

Now in order to compute the variance of ft+1(x) we again take the sum of the variances:

Var(ft(x)) = Var

(√
λ

ε

∞∑
j=1

gt+2−j(x)ε
jj

)

=
λ

ε2

∞∑
j=1

Var(gt+2−j(x))ε
2jj2

=
λ

ε2

∞∑
j=1

(ε2)jj2.

We must still compute the sum of the form:

∞∑
k=1

k2rk =
1

1− r

∞∑
k=1

(2k − 1)rk

=
1

1− r

[
2r

(1− r)2
− r

1− r

]
=

(1 + r)r

(1− r)3
.

8.2. Momentum Time-Varying GP-UCB 68

Where the first step follows from [8] and the second step uses the common arithmetico-
geometric (Gabriel’s staircase). This means that our sum can be evaluated as:

∞∑
j=1

(ε2)jj2 =
ε4 + ε2

(1− ε2)3
.

Which implies that we want to choose λ such that:

λ

ε2
ε4 + ε2

(1− ε2)3
= 1.

This yields:

λ =
(1− ε2)3

ε2 + 1

for the case of α = ε

8.2. Momentum Time-Varying GP-UCB
We now introduce the algorithm which will be used to optimize a function which is changing
in this manner. The algorithm builds on the methods presented in chapter 2 and chapter 3.
We use the GP-UCB algorithm with an adjusted covariance kernel in order to handle the
time varying function. In order to define this covariance kernel k̃(x, x) for this new setting
we must derive the temporal covariance function.

Lemma 8.2 Consider a time varying function which is generated according to (8.1), with
k(x, x) = 1. If we fix some x ∈ D then the covariance of the function at two different times
(t and t+ k) is given by:

Cov(ft(x), ft+k(x)) =
(ε2 − 1)αk+1 + (1− α2)εk+1

(ε− α) (εα + 1)
if α < ε

Cov(ft(x), ft+k(x)) = εk
[
1 + k

1− ε2

1 + ε2

]
if α = ε

Proof. Similarly to Lemma 8.1 it is convenient to decompose ft into a sum of independent gi
terms. From the proof of Lemma 8.1 we have the following equation for ft:

8.2. Momentum Time-Varying GP-UCB 69

ft(x) =

√
λ

ε− α

∞∑
j=0

gt−j(x)
(
εj+1 − αj+1

)
.

For ft+k we simply shift the subscript of g:

ft+k(x) =

√
λ

ε− α

∞∑
j=0

gt+k−j(x)
(
εj+1 − αj+1

)
.

We can now start to compute the desired covariance. Note that every gi is i.i.d. sampled
from the Gaussian process. And for a fixed x ∈ D we have gi(x) ∼ N (0, 1). Then we can use
the property of covariance (for any constant a,b):

Cov(agi(x), bgj(x)) = 0 i ̸= j

Cov(agi(x), bgj(x)) = ab i = j.

This, combined with the properties of geometric series allows us to explicitly compute the
covariance. For the case of α < ε:

Cov(ft(x), ft+k(x)) =
λ

(ε− α)2
Cov

(
∞∑
j=0

gt−j(x)
(
εj+1 − αj+1

)
,

∞∑
j=0

gt+k−j(x)
(
εj+1 − αj+1

))

=
λ

(ε− α)2

∞∑
j=0

(
εj+1 − αj+1

) (
εj+k+1 − αj+k+1

)
=

λ

(ε− α)2

∞∑
j=0

(
ε2j+k+2 + α2j+k+2 − (εk + αk)(αε)j+1

)
=

λ

(ε− α)2

[
εk+2

1− ε2
+

αk+2

1− α2
− (εk + αk)(αε)

1− αε

]
Now replacing the λ we defined in Lemma 8.1:

Cov(ft(x), ft+k(x)) =
λ

(ε− α)2

[
εk+2

1− ε2
+

αk+2

1− α2
− (εk + αk)(αε)

1− αε

]
=

εk+2

1−ε2
+ αk+2

1−α2 − (εk+αk)(αε)
1−αε

α2

1−α2 +
ε2

1−ε2
− 2 αε

1−αε

=
εk+2(1− α2)(1− αε) + αk+2(1− ε2)(1− αε)− (εk + αk)(αε)(1− α2)(1− ε2)

ε2(1− α2)(1− αε) + α2(1− ε2)(1− αε)− 2(αε)(1− α2)(1− ε2)

=
(ε− α)

[
εk+1(1− α2)− αk+1(1− ε2)

]
ε2(1− α2)(1− αε) + α2(1− ε2)(1− αε)− 2(αε)(1− α2)(1− ε2)

=
(ε2 − 1)αk+1 + (1− α2)εk+1

(ε− α) (εα + 1)
.

8.2. Momentum Time-Varying GP-UCB 70

This is the desired result and thus completes the proof for α < ε.

Now for the case of α = ε. Based on equation (8.6) we have:

Cov(ft(x), ft+k(x)) =
λ

ε2
Cov

(
∞∑
j=1

gt+1−j(x)ε
jj,

∞∑
j=1

gt+1+k−j(x)ε
jj

)

=
λ

ε2

∞∑
j=1

εjjεj+k(j + k)

= λεk−2

∞∑
j=1

ε2jj2 + ε2jjk

= λεk−2

[
ε4 + ε2

(1− ε2)3
+ k

ε2

(1− ε2)2

]
=

(1− ε2)3

ε2 + 1
εk
[

ε2 + 1

(1− ε2)3
+ k

1

(1− ε2)2

]
= εk

[
1 + k

1− ε2

1 + ε2

]
.

This is the desired result for α = ε which completes the proof.

We will now restrict to the case of α < ε and derive the relevant expressions for the
implementation of the algorithm. The case of α = ε can be treated analogously.

The partial derivatives of the covariance w.r.t. α and ε can also be explicitly computed
(this is useful when fitting the model using LML maximization):

∂Cov(ft(x), ft+k(x))

∂α
= −

(ε2 − 1)
(
αk · ((εk − ε)α2 + (1− ε2) kα− εk − ε) + εk+1α2 + εk+1

)
(α− ε)2 (εα + 1)2

.

(8.7)

Due to symmetry the partial derivative with respect to ε is of the same form and can be
obtained by swapping α with ε.

Now we can use this covariance function as the temporal component of our kernel function.
Similarly to [2] the kernel is produced by taking the element-wise product of the spatial and
temporal covariance kernel as follows:

8.2. Momentum Time-Varying GP-UCB 71

k̃MTV (x, x) = k(x, x′) · dMTV (t, t
′)

K̃MTV
t = Kt ◦DMTV

t

k̃MTV
t (x) = kt(x) ◦ dMTV

t (8.8)

where ◦ denotes the Hadamard product and k(x, x′) representing the spatial kernels for
the Gaussian Process regression (these could for example be the commonly used Squared
Exponential kernel or the Matérn kernel). The vector kt(x) and matrix Kt are defined as in
(2.4) and (2.5) respectively based on k(x, x′) . The temporal kernel is defined as:

dMTV (t, t
′) :=

(ε2 − 1)α|t−t′|+1 + (1− α2)ε|t−t′|+1

(ε− α) (εα + 1)
(8.9)

DMTV
t :=

[
(ε2 − 1)α|i−j|+1 + (1− α2)ε|i−j|+1

(ε− α) (εα + 1)

]t
i,j=1

dMTV
t :=

[
(ε2 − 1)α|t+1−i|+1 + (1− α2)ε|t+1−i|+1

(ε− α) (εα + 1)

]t
i=1

.

Note that equation (8.9) follows from lemma 8.2. Recall that the Gaussian process regression
is defined as:

µt(x) = k̃T
t (K̃t + σ2I)−1yt (8.10)

σ2
t (x, x) = k̃(x, x)− k̃T

t (K̃t + σ2I)−1k̃t (8.11)

We can now compute the predicted mean and variance using (8.10) and (8.11) with the new
K̃MTV

t and k̃ given in equation (8.9). The algorithm chooses the point to sample according
to the UCB rule where, as in the previous algorithms, the exploration-exploitation trade-off
is controlled by βt:

xt = argmax
x∈D

µt−1(x) + β
1/2
t σt−1(x)

For updating the LML in the implementation we would like to compute the partial derivative
of the terms of DMTV

t w.r.t. α and ε. This can be done using equation (8.7) and populating
the matrix as follows:

8.3. Regret Bounds 72

∂DMTV
t

∂α
=

[
∂Cov(ft(x), ft+|i−j|(x))

∂α

]t
i,j=1

.

The partial derivative w.r.t. ε is computed using the same method. We now have all the
equations required to implement the UCB algorithm for this setting according to Algorithm 3.

8.3. Regret Bounds
The regret bounds can be derived using the same procedure as the TV-GP model which is
described in detail in chapter 4. This yields the following regret bounds:

Theorem 8.1 Let D ⊆ [0, r]d be compact and convex with d ∈ N and r > 0. Suppose a
time varying function ft is generated according to:

ft+1(x) = εft(x) +
√
λ

∞∑
i=0

αigt+1−i(x)

where gi ∼ GP(0, k) and ε ∈ (0, 1]. Assume that the spatial kernel k generates functions such
that there exists some a, b > 0 for which it holds that:

P
{
sup
x∈D

∣∣∣∣ ∂f

∂x(j)

∣∣∣∣ > L

}
≤ ae−(L/b)2 , ∀L j = 1, . . . , d.

At each time step we select one point in the domain xt to sample the function and observe a
noisy evaluation yt = f(xt) + zt with zt ∼ N (0, σ2). Choose some δ ∈ (0, 1) and τ ∈ N+. If
we select the point to sample at each timestep according to the UCB rule:

β = 2(log(
3

2δ
) + d log(τ))

xt = argmax
x∈D

[
µt−1(x) + β1/2σt−1(x)

]
.

then we will achieve the following bounds on the expected cumulative regret RT :

E[RT] ≤ (1− δ)
[√

C1Tβγ̃T + TC2

]
+ TδC3.

And assuming that conjecture 4.1 holds. We have with probability at least (1− ω):

8.4. Maximum Information Gain 73

RT ≤ E[RT] +

√
9

[
T
1 + (1− ε)1/2

1− (1− ε)1/2
+

2(1− ε)1/2

((1− ε)1/2 − 1)2
((1− ε)(T+1)/2 + 1)

]
1

ω

= O(T)

where γ̃T is the maximum information gain and:

C1 =
8

log(1 + σ−2)

C2 =
rdb
√

log(3ad
δ
)

τ

C3 = rdb

√log

(
ad

δ

)
+

√
π

2
√

log(ad
δ
)

 .

And in the limit as T → ∞ the average regret will converge in probability to the expected
average regret:

RT

T
→ E[RT]

T
.

Note that the maximum information gain for this function is not identical to the maximum
information gain of the original time varying function equation (3.1). Therefore, we will
discuss the maximum information gain for this alternative function in more detail.

8.4. Maximum Information Gain

Theorem 8.2

Consider the setting of theorem 8.1, then the maximum information gain for the time varying
function can be bounded as follows:

γ̃T ≤ γÑ + σ−2Ñ5/2

(
(1− α2)ε

(ε− α) (εα + 1)
(1− ε) +

(ε2 − 1)α

(ε− α) (εα + 1)

(1− αÑ−1)

Ñ − 1

)

where γÑ is the maximum information gain for a static function f ∼ GP(0, k) which is
sampled Ñ times.

8.4. Maximum Information Gain 74

Proof. Similarly to chapter 3, from the chain rule for mutual information and the fact that
the noise terms in the observations are independent ([5], Lemma 7.9.2):

Ĩ(fT ;yT) ≤
T/Ñ∑
i=1

Ĩ(f
(i)

Ñ
;y

(i)

Ñ
)

where (i) refers to the i-th block of yÑ and f
(i)

Ñ
. This leads to the bound:

γ̃T ≤ T

Ñ
γ̃Ñ .

So it remains to bound γ̃Ñ . Recall that we have the covariance matrix derived previously
in equation (9.3) as K̃t. We rewrite the covariance matrix for each block as as sum of two
matrices:

K̃Ñ = KÑ ◦DÑ = KÑ +AÑ

where we define AÑ as:

AÑ = KÑ ◦DÑ −KÑ = KÑ ◦ (DÑ − 1Ñ)

and 1Ñ is the Ñ × Ñ matrix of ones. Now we want to create an upper bound for the absolute
value of the terms in the matrix (DÑ − 1Ñ). Without loss of generality (due to symmetry)
we consider the case of ε ≥ α. We define the following variables to simplify notation:

ω :=
(1− α2)ε

(ε− α) (εα + 1)
θ :=

(ε2 − 1)α

(ε− α) (εα + 1)

Observe that we have θ ≤ 0 and ω ≥ 1 for all ε, α ∈ [0, 1] and θ + ω = 1. Now we define
|i− j| = k:

|(DÑ − 1Ñ)i,j| = 1− θαk − ωεk = [θ − θαk] + [ω − ωεk] (8.12)

We will now create an upper bound for both terms. [ω − ωεk] is concave in k and it is upper
bounded by (the functions are equal for k = 0, 1):

8.4. Maximum Information Gain 75

u1(k) = kω(1− ε) ∀k ∈ N+

Now, we upper bound [θ − θαk] (which is convex because θ is negative) by:

u2(k) = kθ
(1− αÑ−1)

Ñ − 1
0 ≤ k ≤ Ñ − 1

This now allows us to combine these two upper bounds to bound equation (8.12):

|(DÑ − 1Ñ)i,j| ≤ u1(|i− j|) + u2(|i− j|) = k

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)
(8.13)

We now will use this to obtain an upper bound on the square Frobenius norm of the matrix
(DÑ − 1Ñ):

∥(DÑ − 1Ñ)∥
2
F ≤

∑
i,j

(i− j)2

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)2

≤ 1

6
Ñ2(Ñ − 1)2

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)2

≤ Ñ4

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)2

where the first inequality follows from equation (8.13). The second inequality is a common
double summation and the final inequality is simply a removal of the constant factor to
simplify notation. We define the following variable:

∆i := λi(K̃Ñ)− λi(KÑ)

where λi is the i-th largest eigenvalue. We now use Mirsky’s theorem (which has been
defined earlier: lemma 3.1) to analyze the eigenvalues of K̃Ñ . We apply this lemma to
UÑ = KÑ +AÑ and VÑ = KÑ . We choose the Frobenius norm as our norm which gives us;
λi(KÑ +AÑ) = λi(KÑ) + ∆i for some {∆i}Ñi=1 which must satisfy:

Ñ∑
i=1

∆2
i ≤ Ñ4

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)2

(8.14)

8.4. Maximum Information Gain 76

This now allows us to derive an upper bound on γ̃Ñ (according to the definitions given in
[28]):

γ̃Ñ =
Ñ∑
i=1

log
(
1 + σ−2λi(KÑ +AÑ)

)
=

Ñ∑
i=1

log
(
1 + σ−2λi(KÑ) + σ−2∆i

)
≤ γÑ +

Ñ∑
i=1

log
(
1 + σ−2∆i

)
(8.15)

≤ γÑ + Ñ log

(
1 + σ−2Ñ3/2

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

))
(8.16)

≤ γÑ + σ−2Ñ5/2

(
ω(1− ε) + θ

(1− αÑ−1)

Ñ − 1

)
(8.17)

(8.15) follows from log(1 + a + b) ≤ log(1 + a) + log(1 + b for a, b ≥ 0 and (8.16) follows
from considering the worst case scenario with the knowledge that equation (8.14) must
hold. This yields ∆i = Ñ3/2

(
ω(1− ε) + θ (1−αÑ−1)

Ñ−1

)
for every i. Finally, (8.17) follows from

log(1 + a) ≤ a. This leaves us with an upper bound for γ̃Ñ , upon replacing the defined ω and
θ we obtain the desired result:

γ̃T ≤ γÑ + σ−2Ñ5/2

(
(1− α2)ε

(ε− α) (εα + 1)
(1− ε) +

(ε2 − 1)α

(ε− α) (εα + 1)

(1− αÑ−1)

Ñ − 1

)

9
Transition Time-Varying

Function
In this chapter we introduce a new type of time varying function which we expect will be
present in real world applications. We would like to consider the case of a function changing
in a more predictable way than what has been discussed so far. Specifically, the case where a
function is transitioning from some function h1 at t = t1 to h2 at t = t2 (with unknown h1

and h2). At the times in between t ∈ (t1, t2) the function is some combination of h1 and h2.
This can be viewed as a setting with less uncertainty compared to the time varying cases
where a new sample from a GP is introduced at every timestep. Since there are only two
unknown functions (h1 and h2) this case could be considered to be somewhere in between
the static function [28] and time-varying function [2] case.

For a real world example of when we would want to optimize a function changing like this
(and limit regret) consider the bird scientist example from the introduction who is observing
birds in a forest. Every day she chooses a location to observe. Her goal is to observe as
many birds as possible every day. If we assume the density of birds throughout the forest can
initially be modeled as a static function by a Gaussian process (call it h1), then she could
use the procedure mentioned in chapter 2 to inform her choice of which location to observe
each day. However, suppose that a new predator starts hunting in the forest. This causes
a gradual change in the birds behavior (for example; they start to avoiding areas with low
trees in order to avoid risks). Eventually, the ecosystem settles to a new equilibrium with a
new density function (h2). We would like create a model which can identify and capture this
type of change while limiting the regret throughout the transition period.

9.1. Transition Time-Varying Gaussian Process
We will analyse the case where during the transition from h1 to h2 the function ft is a
weighted average of the two functions:

ft(x) = (1− s(t))h1(x) + s(t)h2(x) (9.1)

where 0 ≤ s(t) ≤ 1 is a function which controls the rate of change of ft and h1, h2 ∼ GP(0, k).

77

9.2. Transition Time-Varying GP-UCB 78

We expect s(t) to be a monotonically non-decreasing function which means that the transition
occurs in one direction with the weight of h2(x) non-decreasing over time (and vice versa).

It should be noted that in this case our prior on ft is not GP(0, k) for all t (as it was for the
previous models). This is a result of taking a weighted average of two independent Gaussian
processes. Suppose k(x, x) = 1 so Var(h1(x)) = Var(h2(x)) = 1 and we are at s(t) = 1

2
. Then

for some fixed x ∈ D the variance of ft is less than 1:

Var(ft(x)) = Var(
1

2
h1(x)) + Var(

1

2
h2(x)) =

1

4
(Var(h1(x)) + Var(h2(x))) =

1

2
< 1.

Using this reasoning we can observe that the variance of our prior ft is minimized at s(t) = 1
2

which can be considered to be the "middle" of the transition. While this might not seem
intuitive at first, it is a result of using an independent Gaussian process prior for h1 and h2

which results in h1(x) and h2(x) being a normal random variable. The average of two i.i.d.
normal random variables will have a lower variance than each individual normal RV as a
result of the central limit theorem.

However, using this weighted average method for the transition is useful as it ensures some
properties which we expect our function to have. For example suppose that for some x ∈ D

we have that h1(x) = h2(x) = 1. In this case we would expect ft(x) = 1 for all t as the
function is constant at x. Indeed, we see that this is the case when we assume that ft is
generated according to equation (9.1). Consider, what happens if we generate the function
such that the variance stays constant throughout the transition. This can be achieved by:

vt(x) =
√

(1− s(t))h1(x) +
√
s(t)h2(x).

In this case Var(vt(x)) = 1 for all t. However, if h1(x) = h2(x) = 1 we observe that
vt(x) =

√
2 at s(t) = 1

2
. This is undesirable as we would expect a constant point to stay

constant throughout the transition. Therefore, we proceed with using equation (9.1) as our
transition model.

9.2. Transition Time-Varying GP-UCB
We will now derive an algorithm which can optimize this type of time varying function while
minimizing the regret. Again, we will work within the UCB framework and create a new
covariance kernel which is able to capture this temporal dependence. In the previous section
s(t) was an arbitrary function (with certain requirements). For the rest of this chapter (as
well as the experiments in the following chapter) we will use the sigmoid function:

9.2. Transition Time-Varying GP-UCB 79

s(t) =
1

1 + e
τ−t
ρ

.

the parameter τ ∈ R controls the center of the transition (the point where s(t) = 0.5), the
parameter ρ > 0 controls how rapidly the transition occurs (how steep the function is). In
figure 9.1 we present a visualisation of this function for the case of τ = 10 and ρ = 1. This
is a commonly used function for machine learning applications (often used as an activation
function for neural networks).

4 6 8 10 12 14 16

0.5

1

t

σ(t)

σ(t)

Figure 9.1: Sigmoid function centered at t = 10

This function is desirable for this use case as the partial derivatives can be expressed explicitly:

∂s(t)

∂τ
= −

exp
(

t−τ
ρ

)
ρ
(
exp

(
t−τ
ρ

)
+ 1
)2 (9.2)

∂s(t)

∂ρ
=

(τ − t) exp
(

t−τ
ρ

)
ρ2
(
exp

(
t−τ
ρ

)
+ 1
)2

which allows them to be directly implemented in the python code. Additionally, as the
derivative of the function w.r.t. t is non-zero for all finite values of t we expect it to improve
the convergence of the LML optimization process.

The following step is to formulate the covariance function for a fixed x ∈ D as a function of
t, t′. We will use the fact that h1 is independent of h2. First consider the functions ft and ft′ :

9.2. Transition Time-Varying GP-UCB 80

ft(x) = (1− s(t))h1(x) + s(t)h2(x) ft′(x) = (1− s(t′))h1(x) + s(t′)h2(x).

Now suppose that k(x, x) = 1, then:

Cov(ft(x), ft′(x)) = (1− s(t))(1− s(t′))Var(h1(x)) + s(t)s(t′)Var(h2(x))

= (1− s(t))(1− s(t′)) + s(t)s(t′)

= 2s(t)s(t′)− s(t)− s(t′) + 1.

We observe for the first time that the temporal covariance is not stationary. This means that
the covariance can no longer be computed from the difference in t. For the previous kernels
the covariance was only a function of |t− t′| and hence we had d(t, t′) = d(|t− t′|). In this
transition time-varying setting we see that this is no longer the case. From an implementation
perspective this slightly complicates the matter as we can no longer compute the temporal
kernel matrix from a matrix of temporal differences.

Our goal is to use the UCB algorithm which requires equation (8.10) and equation (8.11).
Similarly to the MTV-GP algorithm we define our new temporal kernel function as:

k̃TTV (x, x) = k(x, x′) · dTTV (t, t
′)

K̃TTV
t = Kt ◦DTTV

t

k̃TTV
t (x) = kt(x) ◦ dTTV

t . (9.3)

Based on the covariance function we have that d(t, t′) is defined as:

dTTV (t, t
′) := 2s(t)s(t′)− s(t)− s(t′) + 1.

For the implementation we define the two matrices:

A = [s(i)]ti,j=1 B = AT = [s(j)]ti,j=1 .

Then:

DTTV
t = 1 + 2A ◦B − A−B.

And finally the partial derivatives are computed as:

9.2. Transition Time-Varying GP-UCB 81

∂DTTV
t

∂τ
= 2

∂A

∂τ
◦B + 2

∂B

∂τ
◦ A− ∂A

∂τ
− ∂B

∂τ
.

Where ∂A
∂τ

and ∂B
∂τ

are computed element-wise according to equation (9.2). The derivative
w.r.t. ρ is computed in the same manner. This allows us to implement the UCB algorithm
(including the LML maximization) according to Algorithm 3.

10
Validation of New Models

In this chapter we will test the newly developed models to validate their utility. We use a
similar setting to chapter 5 where we consider the two dimensional case with a grid of 50 x
50 points. We have D = [0, 1]2 and we generate the data using the spatial square exponential
kernel with the length-scale parameter set equal to

√
0.2. We set the noise parameter to

σ = 0.1. In order to produce a fair comparison of how well these models perform in real world
settings we have to consider the fact that the new models both have an additional kernel
parameter. This could mean that in practice (when the true parameters are unknown) our
models under-perform. In order to simulate this we use algorithm 3 which has been described
in chapter 7. In this version of the algorithm the kernel parameters are fit using a LML
maximization approach along with quasi newton methods. The LML function can be very
hard to optimize over which often results in the parameters getting stuck in local optima,
hence the starting point is sampled multiple times according to the parameter n_restarts.
Based on our testing we found that using algorithm 3 with n_restarts = min(10, 200/t)

provides a good balance between fitting the kernel parameters to the data and computational
efficiency, we will be using this for all tests.

We will be comparing three models; TV-GP-UCB, TV-GP-UCB and TTV-GP-UCB. Each
of these models also correspond to methods to generate time-varying functions ft. For a
fair comparison we will generate data according to each method and compare the model
performance of each model on each dataset. In each case we will include a perfect model
which is given the true parameters and all three models with LML estimation of parameters.
The average results (as well as 95% confidence intervals of this average) over 200 trials are
presented in the following sections. We include the average cumulative regret Rt/t over time
as well a 20 step moving average of the instantaneous regret rt (the moving average is required
to make the graphs readable because rt is very noisy). The Rt/t graph serves to indicate the
overall performance of the algorithm. The rt graphs gives some indication at which timesteps
the algorithms are incurring high regret and when exploration/exploitation is taking place.

10.1. TV Function Data
In figure 10.1 we present the numerical performance of the algorithms on a function generated
according to the TV kernel. We observe that the TTV model has quite poor performance in
this setting. This is because the model is not able to fit to the dataset. It is assuming the

82

10.2. MTV Function Data 83

function is transitioning between two static functions when in fact the function is continuously
being perturbed randomly. As to be expected, the best performance is achieved by the
TV algorithm with true parameters. This model is given the true parameters at the start
and therefore does not have to learn them from the data. The TV model without true
parameters also performs well and quite rapidly is able to learn the kernel parameters, it is
already achieving similar instantaneous regret rt as the model with true parameters after 75
timesteps. Finally, the MTV model is a generalization of the TV model. As such, we expect
it to perform well in this setting. Indeed, we see that the model obtains only slightly worse
performance than the TV model. This is due to the fact that the model is overparameterized
for this setting which somewhat limits its ability to learn the correct kernel parameters.

(a) Average regret Rt
t

(b) Instantaneous regret rt (20 step moving average)

Figure 10.1: Numerical performance over time of algorithms on data generated by the TV model [200
trials, ε = 0.01]

10.2. MTV Function Data
In the MTV (figure 10.2) setting we see that similarly to the TV setting, the TTV model
performs badly when the function is being continuously (randomly) perturbed. The MTV
model with true parameters performs significantly better than all other models. We observe
a larger difference between the model with true parameters and with parameter estimation
compared to the TV setting. This is likely because it is harder to correctly learn this more
complex temporal dependence from limited data. We do see that over time the MTV model
is able to learn the parameters and obtain similar rt to the model with true parameters. The
TV model performs worse than the MTV model because it does not have the flexibility to
fully capture the temporal dependence of this function ft.

10.3. TTV Function Data 84

(a) Average regret Rt
t

(b) Instantaneous regret rt (20 step moving average)

Figure 10.2: Numerical performance of algorithms on data generated by the MTV model [200 trials,
ε = 0.99, α = 0.98]

10.3. TTV Function Data
We now consider the TTV setting. In this case the function the functions transitions between
two static functions. As we have set τ = 100 center of the sigmoid occurs at t = 100 which
implies that f100(x) = 0.5h1(x) + 0.5h2(x). In order to give some indication at how rapidly
this transition occurs consider the timesteps at which ft is 95% h1 and h2:

f85(x) ≈ 0.95h1(x) + 0.05h2(x)

f115(x) ≈ 0.05h1(x) + 0.95h2(x).

So we could say that the majority of the transition occurs between t = 85 and t = 115. In this
case we keep n_restarts = 3 fixed over time as the models must re-fit their kernel parameters
after the steepest point of the transition occurs at t = 100. In figure 10.3 we present the results
for this setting. We observe that the model with true parameters significantly outperforms
the rest. This is because the model "knows" that the initial function is almost static and
can exploit this. We see that the MTV model slightly outperforms the TV model (due to its
increased flexibility). However, it is clear that both of these models were not designed for
this setting. After t = 100 the models are not capable of discarding the early data which is
mostly representative of h1 while highly weighting the data after t = 100. On the other hand
the TTV model with parameter estimation is able to reduce its instantaneous regret rt and
fit well to the underlying function. Overall the TTV with LML estimation of parameters still
achieves poor cumulative regret in this setting. This implies that the model should only be
used if there is a good prior on when we expect the function ft to transition.

10.3. TTV Function Data 85

(a) Average regret Rt
t

(b) Instantaneous regret rt (20 step moving average)

Figure 10.3: Numerical performance of algorithms on data generated by the TTV model [200 trials, ρ = 5,
τ = 100]

We also perform a similar test with a more gradual transition. The results are presented in
Figure 10.4. In this case we keep τ = 100 and set ρ = 20 which implies that the majority of
the transition occurs between timesteps 40 and 160:

f40(x) ≈ 0.95h1(x) + 0.05h2(x)

f160(x) ≈ 0.05h1(x) + 0.95h2(x).

We observe similar trends in the performance of the algorithms. In general we see that in
this slower transition the MTV model is able to perform closer to the TTV model with true
parameters. It is clear that the TTV model with parameter estimation performs quite poorly
in this setting which reinforces the result that this model should only be used if we have a
good prior for τ and ρ.

10.3. TTV Function Data 86

(a) Average regret Rt
t

(b) Instantaneous regret rt (20 step moving average)

Figure 10.4: Numerical performance of algorithms on data generated by the TTV model [200 trials, ρ = 20,
τ = 100]

11
Conclusion and Further Research
This thesis has investigated the problem of minimizing the cumulative regret RT while
sampling a time-varying function ft. This is relevant in problems where we are interested in
simultaneously exploring and exploiting (maximizing) some unknown dynamic function. In
chapter 1 we introduced the history of this topic as well as some of the applications. The
problem falls into the class of online learning problems and can be seen as an extension to the
multi-armed bandit problem [24]. In chapter 2 we discuss the progress that has been made
for optimizing a static function. In 2012 the first sub-linear regret bounds for this setting
were derived in [28]. The algorithm is based on the upper confidence bound (UCB) method
where a single parameter (βt) controls the exploration-exploitation trade-off at each timestep.
Sub-linear regret implies that for long time horizons the average instantaneous regret rt
converges to zero. This is desirable as it implies that we are eventually able to sample the
maximum point of the function with high certainty. The proof of this regret bound relies on a
property of the Gaussian process (which is generating the function) known as the maximum
information gain [5]. The maximum information gain allows us to quantify how rapidly we
can reduce our uncertainty of the underlying function. It is fundamental property in regret
analysis in Gaussian process setting and we see it return in the time-varying case.

In chapter 3, we discuss the literature on time-varying function case. In this setting the
function is no longer static between samples. In 2016 Bogunovic et al. [2] introduced a
new problem setting in which the function changes over time by being randomly perturbed
between each sample. The rate of change of this function is controlled by a single parameter
ε ∈ (0, 1). The superposition of many random perturbations leads to the function changing
significantly over long time horizons. This time-varying setting makes it harder to minimize
the regret as old data becomes stale over time and is no longer representative of the current
function. In fact, Theorem 4.1 in [2] proved that it is possible to achieve at best linear regret
in this setting; sub-linear regret is not feasible. They adjust the UCB method which has
previously been used for static function to develop an algorithm which achieves super-linear
regret in this time varying setting. This proof relies on βt increasing with time proportionally
to log(t). In a similar manner to the static case their proof relies on the maximum information
gain to bound the regret.

In chapter 4 we consider this same time-varying setting with random perturbations. We
modify the algorithm introduced in [2] by using a constant value for βt = β. We show that

87

88

by adjusting the derivation of the regret bound it is possible to achieve linear regret with this
modified algorithm. This alternative approach motivates us to investigate the influence of
the rate of the change of the function ε on the optimal value of the exploration-exploitation
parameter β. This is a connection which was not present in the original regret bound
presented in [2]. We hypothesize that a low rate of change ε of the function should lead to
more exploration (higher β) as we have more timesteps to exploit the gained information
before the data becomes stale. In chapter 5 we perform a simulation study to support these
claims. We see that in every tested setting there exists a constant value of β is able to
outperform a heuristic from literature where βt = O(log(t)). Additionally, we observe that
the optimal value of β is inversely correlated with ε. We find that choosing a constant value
of β in the range [2.0, 4.0] provides a good heuristic if the optimal value is unknown. However,
more research is required to test a wider range of settings (higher dimensions, more erratic
functions, etc.).

Following this we consider some of the use cases for these algorithms and introduce two new
temporal models which we expect to be relevant for real world applications. The algorithm
derived in [2] has been successfully applied to the task of hyperparameter optimization for
deep reinforcement learning (DRL) in [20]. In chapter 6 we give a surface level introduction
to DRL which provides the basis for the following chapters. We describe why time-varying
functions are relevant in this problem and provide some motivation for introducing new
temporal models. Chapter 7 discusses some of the considerations regarding implementing
these algorithms for real world problems. In most applications we do not have full knowledge
of the function generating process. Hence, we estimate the parameters of the Gaussian process
using log marginal likelihood (LML) maximization. This adds some additional steps to our
algorithm and has some implications for how we should design the new temporal models.

Chapter 8 introduces the Momentum Time Varying Gaussian Process Upper Confidence
Bound (MTV-GP-UCB) algorithm. We first introduce a new temporal model which allows for
the time-varying function to "trend" rather than change through random perturbations. The
new temporal model can be seen as a generalization of the time-varying function model with
random perturbations. It contains one additional parameter to model the rate at which the
momentum decays. This also results in one additional parameter which has to be estimated
when using the MTV-GP-UCB algorithm. We derive analogous regret bounds to those
presented in chapter 4 and provide a modified upper bound on the maximum information
gain for this setting. In chapter 9 we introduce the second new temporal model. In this case
we are concerned with a function which is transitioning from one static function h1 to a new
function h2. We introduce the Transition Time Varying Gaussian Process Upper Confidence
Bound (TTV-GP-UCB) algorithm to handle this setting. The current version of the model is
designed to handle a single transition in the dataset but can be expanded to handle multiple
transitions.

11.1. Further Research 89

Finally, in chapter 10 we test these new models in various settings. There are three types of
temporal models discussed in this thesis; time-varying functions with random perturbations,
time-varying functions with momentum and the transition time-varying function. In reality
we often do not know the true temporal setting we are in and we might use the incorrect
model. Hence, we generate data for all three settings and test all there models in every
setting to consider how they perform when there is model misspecification. We observe that,
as expected, each model outperforms the other models in the setting it was designed for. For
the model misspecification case MTV model performs best overall which can be attributed to
the high level of flexibility in the temporal kernel.

11.1. Further Research
There are various directions for further research in this topic. Theoretically, there is 4.1 which
we have not been able to prove. We expect it to hold without any additional assumptions.
However, proving it seems to be quite complex due to the difficulties in analysing the
(conditional) distribution of the maximum of a Gaussian process.

With regards to applications the new algorithms from chapter 8 and chapter 9 still need to
be tested on DRL hyperparameter optimization as discussed in chapter 6. This can allow us
to identify which temporal structures are most relevant for this task and potentially develop
new algorithms based on the results.

One of the major limitations of Gaussian process regression methods is that they scale
poorly to large datasets. As discussed in chapter 7, the computational cost of estimating the
mean and variance will scale according to O(t3) in the general case. This cost arises from the
inverse of the covariance matrix. However, the time-varying nature of the function opens the
opportunity to greatly speed up the computation for long time horizons. This is a result of
the matrix containing the temporal covariances Dt. This matrix has a very specific structure,
where entries which are far from the diagonal are by definition close to zero. Hence, it can be
approximated by a banded matrix:

Dt ∼

D11 D12 D13 0 · · · 0

D22 D23 D24
.

D33 D34 D35 0

D44 D45 D46

sym D55 D56

D66

where we choose some bandwidth k and approximate all entries by zero if they fall outside
the bandwidth:

11.1. Further Research 90

Di,j = 0 if |i− j| > k. (11.1)

This results in a sparse matrix for large t. There are algorithms available for banded matrices
[16] which allow for computing the inverse in O(k2t). We assume that we can choose some
fixed bandwidth. Then, when using this approach we can compute the log marginal likelihood
according to equation (7.1) in O(t). Since all of the data which is further in the past than
the bandwidth can be disregarded we will be able to compute µt(x) and σ2

t (x) in O(1). Note
that some additional work is required to determine the additional regret we can expect to
incur by using the approximation equation (11.1). This computational speedup is one of the
reasons that these algorithms are particularly well suited for handling time varying functions
as even with large datasets it is still feasible to apply this method.

Another direction of research is the process of fitting the kernel parameters to the data. In
this thesis the regret bounds are based on the assumption that the true kernel parameters
are known to the user. In chapter 7 the LML maximization procedure is described which is
the method used in chapter 10 to test the performance of models in the unknown parameter
case. However, there are many alternative approaches available for fitting these parameters.
One such approach involves using makov chain monte carlo (MCMC) [18] to sample from
the marginal likelihood distribution (rather than simply maximizing it). This approach is
quite computationally expensive which might not make it feasible for many applications. The
complications around fitting the kernel parameters raises another question. Can we adjust
our algorithm to sample points in a manner that allows us to learn these parameters faster?
Currently we only consider exploring ft but for many applications the kernel parameters must
also be "explored". The results presented in chapter 10 imply that learning the parameters
earlier could lead to significant improvements in the performance.

Finally, it would be interesting to consider a setting in which we can sample multiple points
at each timestep. This occurs in applications when we are running models in parallel. For
example in DRL we might choose to simultaneously train 8 agents with different combinations
of hyperparameters. This requires us to re-define the problem. Rather than choosing a single
point xt we choose a set of n points; Xt = {x1

t , . . . , x
n
t }. The regret in this new setting could

be defined as:
rt = max

x∈D
[ft(x)]−max

x∈Xt

[ft(x)] .

By simply choosing all of the points as xt according to our current algorithm we would achieve
the same regret. However, it is interesting to consider how we could reduce the regret further
by using all n points. Can we develop a better algorithm for this setting? And how does it
scale with n? These are all relevant questions which can improve the functionality of these
algorithms for applications.

References
[1] Robert J Adler and Jonathan E Taylor. Random fields and geometry. Springer Science

& Business Media, 2009.

[2] Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. “Time-varying Gaussian process
bandit optimization”. In: Artificial Intelligence and Statistics. PMLR. 2016, pp. 314–323.

[3] Paul Brunzema et al. “Event-triggered time-varying bayesian optimization”. In: arXiv
preprint arXiv:2208.10790 (2022).

[4] Kathryn Chaloner and Isabella Verdinelli. “Bayesian experimental design: A review”.
In: Statistical science (1995), pp. 273–304.

[5] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in Telecom-
munications and Signal Processing. Wiley, 1991. isbn: 9780471062592. url: https:
//books.google.nl/books?id=CX9QAAAAMAAJ.

[6] Dennis D Cox and Susan John. “A statistical method for global optimization”. In:
[Proceedings] 1992 IEEE international conference on systems, man, and cybernetics.
IEEE. 1992, pp. 1241–1246.

[7] Zihan Ding et al. “RLzoo: A Comprehensive and Adaptive Reinforcement Learning
Library”. In: arXiv preprint arXiv:2009.08644 (2020).

[8] Tom Edgar. “Staircase series”. In: Mathematics Magazine 91.2 (2018), pp. 92–95.

[9] William Feller. An introduction to probability theory and its applications, Volume 2.
Vol. 81. John Wiley & Sons, 1991.

[10] Subhashis Ghosal and Anindya Roy. “Posterior consistency of Gaussian process prior
for nonparametric binary regression”. In: (2006).

[11] GPy. GPy: A Gaussian process framework in python. http://github.com/Sheffield
ML/GPy. since 2012.

[12] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural
networks for perception. Elsevier, 1992, pp. 65–93.

[13] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 2012. isbn:
9781139788885. url: https://books.google.nl/books?id=O7sgAwAAQBAJ.

[14] Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. “Vanilla Bayesian Optimization
Performs Great in High Dimension”. In: arXiv preprint arXiv:2402.02229 (2024).

91

https://books.google.nl/books?id=CX9QAAAAMAAJ
https://books.google.nl/books?id=CX9QAAAAMAAJ
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://books.google.nl/books?id=O7sgAwAAQBAJ

References 92

[15] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. “High dimensional
Bayesian optimisation and bandits via additive models”. In: International conference
on machine learning. PMLR. 2015, pp. 295–304.

[16] Emrah Kılıç and Pantelimon Stanica. “The inverse of banded matrices”. In: Journal of
Computational and Applied Mathematics 237.1 (2013), pp. 126–135.

[17] Achim Klenke. Wahrscheinlichkeitstheorie. Vol. 1. Springer, 2006.

[18] Vidhi Lalchand and Carl Edward Rasmussen. “Approximate inference for fully Bayesian
Gaussian process regression”. In: Symposium on Advances in Approximate Bayesian
Inference. PMLR. 2020, pp. 1–12.

[19] Yuxi Li. “Deep reinforcement learning: An overview”. In: arXiv preprint arXiv:1701.07274
(2017).

[20] Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. “Provably efficient online
hyperparameter optimization with population-based bandits”. In: Advances in neural
information processing systems 33 (2020), pp. 17200–17211.

[21] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[22] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementa-
tions”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8. url: http:
//jmlr.org/papers/v22/20-1364.html.

[23] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adap-
tive Computation and Machine Learning series. MIT Press, 2005. isbn: 9780262182539.
url: https://books.google.nl/books?id=GhoSngEACAAJ.

[24] Herbert Robbins. “Some aspects of the sequential design of experiments”. In: (1952).

[25] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[26] Jaemin Seo et al. “Avoiding fusion plasma tearing instability with deep reinforcement
learning”. In: Nature 626.8000 (2024), pp. 746–751.

[27] Mohit Sewak. Deep reinforcement learning. Springer, 2019.

[28] Niranjan Srinivas et al. “Information-theoretic regret bounds for gaussian process
optimization in the bandit setting”. In: IEEE transactions on information theory 58.5
(2012), pp. 3250–3265.

[29] Victor Talpaert et al. “Exploring applications of deep reinforcement learning for real-
world autonomous driving systems”. In: arXiv preprint arXiv:1901.01536 (2019).

[30] Mark Towers et al. “Gymnasium: A Standard Interface for Reinforcement Learning
Environments”. In: arXiv preprint arXiv:2407.17032 (2024).

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://books.google.nl/books?id=GhoSngEACAAJ

	Acknowledgements
	Abstract
	Introduction
	Gaussian Process Optimization for a Static Function
	Gaussian Process Optimization for a Time-Varying Function
	Improved Regret Bounds
	Algorithm Specific Regret Bound
	Algorithm Agnostic Regret Bound
	Cumulative regret
	Convergence
	Improved Convergence Conjecture
	Optimal Beta Dependence on Epsilon
	Comparison with Previous Regret Bound

	Simulation Study
	Online Hyperparameter Optimization
	Deep Reinforcement Learning
	Hyperparameter Changes

	Implementation
	Kernel Parameters
	Computation

	Momentum Time-Varying Function
	Momentum Time-Varying Gaussian Process
	Momentum Time-Varying GP-UCB
	Regret Bounds
	Maximum Information Gain

	Transition Time-Varying Function
	Transition Time-Varying Gaussian Process
	Transition Time-Varying GP-UCB

	Validation of New Models
	TV Function Data
	MTV Function Data
	TTV Function Data

	Conclusion and Further Research
	Further Research

	References

