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Abstract The paper deals with a compilation of several
of our modelling studies on particle methods used for sim-
ulation of wound healing and tumor growth processes. The
paper serves as an introduction of our modelling approaches
to researchers with interest in biological cell-based models
that use particle-based modelling approaches. The particles
that we consider in the present models mimic either cells or
points on cell boundaries that are allowed to migrate as a
result of several chemical and mechanical factors. A distinct
feature of our modelling frameworks with respect to conven-
tional particle models, is that cells, mimicked by particles,
are allowed to divide, differentiate and to die as a result of
apoptosis or any causes for cell death. The paper is merely
descriptive, rather thanwritten in fullmathematical rigor, and
will show some of the potentials of the applied modelling.

Keywords Cell-based modelling ·Wound healing · Tumor
growth and initiation · Semi-stochastic modelling

1 Introduction

Wound healing and tumor growth are both biological mech-
anisms that are very common in mammalian tissues and
organisms, where the first process is indispensable for the
survival of the organism or human beings, whereas the latter
one is often life-threatening to humans. A good understand-
ing of the biological mechanisms is crucially important for
an improved treatment related to both processes. In societies
with ageing populations, elderly people are more sensitive to
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tumor development, whichmakes cancer treatment more and
more important. Besides cancer, elderly people are alsomore
likely to become bed-bound patients and/or to suffer from
diabetes, which makes them more likely to develop pressure
ulcers and/or to develop ischemic wounds that will heal very
slowly in the more fortunate cases. Since the optimisation of
treatment requires a thorough understanding of the biological
processes involved, scientific research is crucially important.
This scientific research is often based on in vivo and in vitro
experiments where one either analyses clinical data or data
from modelling samples which for instance could originate
from mono-layer cell cultures. Scientific research aims at
revealing links between various processes and parameters,
along with the development of hypotheses. Since the vali-
dation of the hypotheses with the experimental data needs a
quantification of the relations between respective processes
and parameters, mathematical relations and descriptions of
the processes and parameters come into play. These math-
ematical relations and processes are the backbone of the
mathematical models that are used to simulate the various
biological (sub-) processes.

The mathematical models for tumor growth and wound
healing often consider various aspects of the overall process
due to the enormous complexity of the processes involved.
Furthermore, the models can have different natures and be
applicable for a specific scale only, such as

– Space-Free level, where one can model DNA of cells,
often stochastic, signalling, systems biology and network
models are used here. Besides this one can also use this
modelling type by using ordinary differential equations
on very large scales for processes like wound healing
or tumor growth. On DNA level, we report [26,30] as
references on tumor sensitivity with respect to DNA. A
review on macroscopic modelling combined with ther-
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apies related to wound healing is given in [18]. Further
examples are [26,31].An example of a systemof ordinary
differential equations is given in [55] where angiogenesis
in the context of solid cancer growth is modelled;

– Compartmental level, where one models the dynamics
in several components of one cell, this approach could
be partial differential equations based where one models
diffusion over or through cellmembranes, such as in [32];

– Cellular-Based Models

– Cell-shape evolutionary models, where one models
cell deformation and migration or other processes of
one single cell or at most a low number of cells, here
one uses either partial differential equations, large
coupled systems of ordinary differential equations,
or cellular automata models (e.g. Cellular PottsMod-
elling), see for instance the work in [4,33,34,37,48];

– Constant cell-shape models, where one models a
large number of cells for migration and sometimes
including differentiation, division and death, using
(stochastic) ordinary differential equations some-
times combined with partial differential equations
for the distribution of chemicals interacting with the
cells. Here also cellular automata models are used.
Examples are in [7,20,41,49], for tumor-induced
angiogenesis we refer to [2];

– Tissue-level, where one models cells using upscaled
densities, simulated by the use of partial differential
equations, where in some models moving boundary
formulations or spinodal decomposition theory have
been adopted. Examples are in [1,2,12] for tumors and
[25,43,45] for wound contraction and healing.

In this paper, we will describe some of the results obtained
using modelling on a cellular level where deformation of
cells is taken into account, and on a cell colony level where
cells are assumed to have a predefined geometry that does
not change during the process that is being considered. Sim-
ilar modelling principles can be found in, among others,
[4,7,20,37,41,49]. Cellular automata models, which form
an important and interesting class of modelling approaches,
see for instance [19,34], will not be dealt with in the present
paper. Advantages of the small scales is that they are close
to in vitro experimental studies in the sense that one is
able to directly incorporate measured observations such as
cell deformation rates, division rates, and cell migration
velocities. One can use observations on one cell only under
laboratory circumstances, or one is able to use cell-colony
experiments with mono or multi layers. A limitation is the
interpretation to clinical cases, where the cell environment is
barely known due to its vast chemical and mechanical com-
plexity. This complexity is analogous to the complexity in
weather forecasting, and where predictions only face a lim-

ited reliability. Despite the claim of many biologists that the
dynamics regarding cell differentiation and division (prolif-
eration) is exactly known in cases where the history path of
the cell is known, we use probabilistic principles to simulate
the aforementioned processes due to lack of knowledge of
the history paths of all the cells involved. The larger-scale
models on tissues are predominantly based on continuum
modelling using systems of partial differential equations, see
for instance the studies in [16,24,25], that could make use of
the results of the smaller-scalemodels by the use of averaging
principles.

The paper will commence with the description of a cell
deformation and migration model. Subsequently, we will
deal with the migration of cells in colonies. The descrip-
tion of the models will be rather rough since the models
were already presented in earlier papers. Furthermore, some
modelling results will be presented and described in terms of
simulation andbiological interpretations.Wewill endupwith
a discussion and some conclusions concerning the applica-
bility and limitations of the modelling approaches described
here.

2 Mathematical modelling approaches for cellular
and colony modelling

The models that we currently consider are based on cell-
based formalisms, where models in which the cell shape
evolves over time and models in which the cell-shape is
fixed, are considered. The first modelling approach allows
more biology in the sense that the actual cell deformation is
taken into account. The deformability of the cells, in partic-
ular of cells that are active in the immune system response
where hazardous pathogens have to be engulfed, is of impor-
tance for the efficiency of the performance of the immune
system response. Using this modelling approach, one is able
to quantify the influence of for instance the cell stiffness on
the efficiency to engulf detrimental pathogens. In the case
of modelling colonies with large numbers of cells, the inclu-
sion of cell deformation provides a higher model-resolution,
which makes the computations more expensive in terms of
longer computation times, and here the second modelling
approach, where the cell shape is fixed, becomesmore attrac-
tive from a computational point of view. Both approaches are
based on semi-stochastic principles in the sense that random
processes are incorporated in the modelling. The inclusion
of random processes is motivated by the heterogeneity of the
extracellular matrix and the uncertainties in cellular parame-
ters in terms of age, condition and maturation levels (if it
comes to differentiation, death or proliferation processes).
The main differences in the modelling approaches of this
paper concern the scale of modelling. The cell-deformity
models are suitable for a lower number of cells, and hence
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for smaller areas than the modelling approaches where the
cell shape is fixed at all times. First a description of a cell-
deformationmodelwill be given for cell deformation and cell
migration. This description is followed by a model descrip-
tion for the colony-basedmodelswhere the cell-shape is fixed
at all times that we used in our studies.

2.1 Cell-based modelling

In this approach, one considers individual cells in reasonable
detail in the sense that the geometry of the cell is not fixed
during the simulation. Here, wemodel the process using a set
of coupled ordinary differential equations, andwe present the
approach as in [48], where only the cell boundary is divided
into mesh points, that are all connected to the central point
of the cell, which mimics the cell nucleus, see Fig. 1. The
boundary points are allowed to move depending on an exter-
nal stimulus, such as the gradient of a chemical, to model
chemotaxis or haptotaxis. Besides this movement, we also
take into account the equilibrium cell shape, which could
change in the course of time as a result of cell differentia-
tion to a different phenotype. This tendency towards a cell
shape equilibrium models can be physically interpreted as a
trick to model the stiffness of the cell where partial differ-
ential equations modelling is avoided. This approach allows
cheap computations in the sense of computation speeds. For
the sake of illustration, we consider the case of a cell that
experiences a concentration gradient and which will migrate
and deform as a result of this concentration gradient. This
case could biologicallymodel chemotaxis or haptotaxis, with
applications to the immune system response during wound
healing for instance, or the directedmovement ofwhite blood
cells towards cancer cells as a result of amechanical or chemi-
cal stimulus. Let c(t, x) denote the concentration that makes
the points on the cell boundary move. Note this quantity
could, without loss of generality, correspond to a mechani-
cal stimulus as well. Here t and x, respectively, denote time

Fig. 1 The division of the cell boundary into mesh points and its con-
nection to the neighbours and to the cell centre as in [48]

and position within the domain of computation. Further, let
Xk

j (t) denote the position of nodal point j at time t of cell
with index k, then movement as a result of a gradient of c is
determined by

dXk
j (t) = μk∇c(t,Xk

j (t))dt, j ∈ Mk(t), (1)

where we assume that Mk(t) := {Xk
j (t)}mk

j=1 denotes the set
of discrete points on the boundary (being a closed curve or
surface inR2 andR3, respectively) of cellwith index k, where
this cell boundary is divided into mk mesh nodes. The sit-
uation is as has been plotted in Fig. 1. The above equation
models a cell migrating and deforming in a medium such
as an extracellular matrix as a result of a chemical gradient.
Several experimental studies evidence that chemical gradi-
ents bias the migration of cells, such as [15] or other studies
on the Boyden assay [6], where cells are placed on a porous
filter with a chemical distribution. Byrne andOwen [8]math-
ematically investigate the relation between the random cell
motility, chemotaxis and chemokinetic cell responses. On the
basis of the behaviour of cell migration regarding concentra-
tion gradients, we postulate in our model that the position of
each point on the cell boundary moves according to the gra-
dient of concentration. This is motivated by the fact that the
Keller–Segel model is a special case of the Fokker–Planck
equation, where the chemotactic part represents the drift term
in a stochastic differential equation used for single particles
or cells. We note that the current formulation is based on a
quasi-equilibrium hypothesis. In [11], a kinetic equation for
the directional migration of individual cells according to a
chemical gradient has been taken into account. In Eq. (1),
the cell stiffness has not been incorporated yet. The above
equation would allow the cell to deform arbitrarily, which
is not realistic from a biological point of view since cells
contain a large portion of water, which is incompressible.
Since cells also contain a considerable solid fraction, which
is compressible, cells do possess a limited compressibility. To
mimic the cell stiffness, equation (1) is extended as follows

dXk
j (t) = μk∇c(t,Xk

j (t))dt + αk(X̃k
j (t) − Xk

j (t))dt,

j ∈ Mk(t), (2)

where α > 0 can be interpreted a cell-stiffness parameter
and X̃k

j (t) denotes the equilibrium position of cell k that
is subject to equilibrium phenotype (shape) determined by
migration and orientation: translation of the central point
and rotation around the central point. Note that in this sense
the stiffness relates the vector connecting the actual cell
boundary point positions to the equilibrium point positions
to the velocity of the boundary point positions. The vec-
tor connecting the actual cell boundary point positions and
the equilibrium boundary point positions may be considered
as a displacement vector. The above differential equation
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formally dictates mathematical stability of the equilibrium
points. Once the positions of the nodal points on the cell
boundary, that isXk

j (t) have been determined, the cell centre
is componentwisely determined using

Xk
c(t) =

∫
�(t) X

kd�
∫
�(t) d�

. (3)

The equilibrium points, X̃k
j (t) on the cell boundary are

determined over a time-step as follows: After having dis-
placed the boundary points, we determine the orientation
of the cell, which in two dimensions, represents the angle
between the line connecting the rear- to the front position of
the cell and the horizontal axis, as well as the translation by
using the centre point of the cell. This orientation is added
as an angular rotation to the reference position of the nodes
on the cell that is determined by the equilibrium shape of
the cell (being circular, spherical or for instance elliptic). In
order to describe the equilibrium shape of the cell, we use a
given parametrisation. For the sake of illustration, this gives
for a circular cell k with radius Rc, central positionXk

c(t) and
rotation θk(t):

X̃ k
j (t) = Xk

c (t) + Rc cos(θ j + θk(t)),

Ỹ k
j (t) = Y k

c (t) + Rc sin(θ j + θk(t)).
(4)

In such a way, the cell is inclined to become circular again
once the stimulus for migration has disappeared. The α-term
could represent a penalisation if the α-value is set to a very
large value, since then Xk

j (t) −→ X̃k
j (t) if the components

of the concentration gradient stay bounded. For small and
intermediate values, the α-term models stability of the equi-
librium positions of the nodes on the cell boundary, which
implies a stable cell equilibrium shape. This provides us with
a nonlinear problem at each time-step, which is solved using
an implicit-explicit time-integration method where all non-
linear terms were evaluated at the previous time-step. It is
noted that larger values of α make the cell deform less easily.
We note that inertial effects have been neglected. In [48], the
stiffness parameter is allowed to depend on the volume of
the cell by which the amount of compressibility of the cell
can be enlarged if desirable. Another option is to change the
mathematical problem to an optimality principle where the
cells follows an external signal as well as possible under the
condition that the volume of the cell is not allowed to change
or only allowed to change up to a maximal extent. The last-
mentioned option is currently under investigation. The above
differential Eq. (2) can be adjusted such that it also accounts
for perturbations in the extracellular matrix. In [48], this is
done by the incorporation of a Wiener process, which is in
line with the formalism adopted by [20], hence

dXk
j (t) = μk∇c(t,Xk

j (t))dt + αk(X̃k
j (t)

−Xk
j (t))dt + σdW(t), j ∈ Mk(t). (5)

Here dW(t) = [dW1(t) dW2(t)]T denotes a vector-Wiener
process, which we defined here for two dimensions for
the sake of illustration over time interval dt , The Wiener
processes dWj (t) corresponding to the coordinate axes, and
they are independent stochastic events that are normally dis-
tributed with zero mean and variance of dt , i.e. dWl(t) ∼
N (0, dt). The aforementioned (stochastic) differential equa-
tions need the initial positions for the boundary positions.
The central position is computed by averaging over all the
boundary points. Note that the above implementation of the
Wiener Process only models an stochastic aberration of the
migration of the nodal points on the cell boundary, and that
this formalism cannot be used to incorporate the effect of
random walk by the cells since the averaged displacement
of the cell will be zero by the nature of the Wiener process.
Hence the above σ parameter accounts for a stochastic varia-
tions to the cell shape. If onewants to include randomcellular
motion, whichmodels cellular diffusion, then one should add
a

√
2DcdW(t)-term, with Dc denoting the diffusion rate of

the cell, to the position of the centre of the cell. Next to
c, other signals may determine the dynamics of the cellular
points, such as hard impingement with other cells. In [48],
a potential function is used that was inspired on a Lennard-
Jones formulation in molecular dynamics where a repulsive
term is taken into account that incorporates an additional term
depending on the distance between the current node of the
current cell and points on the boundaries of the other cells.
The term used in [48], for intercellular repulsion is given by
the addition of a phenomenological term

dXk
j (t) = μk∇c(t,Xk

j (t))dt + αk(X̃k
j (t)

−Xk
j (t))dt + σdW(t)

+ ε

||Xk
j (t) − Xl

i (t)||4
· Xk

j (t) − Xl
i (t)

||Xk
j (t) − Xl

i (t)||
,

j ∈ Mk(t), i ∈ Ml(t). (6)

Here ε > 0 represents a measure for the repulsive force
between two adjacent points from different cells. Having all
the boundary points, one determines the cell centre, cell vol-
ume/area and boundary area/length easily as post-processing
parameters. The details are given in [48]. These parameters
also allow the determination of the cell geometry parameters
such as the cell shape index. As mentioned earlier, this mod-
elling can be used to simulate the immune system response
on infections in wounds, or on the clearance of cancer cells
by the immune cells. Note that this model is presented in
more detail in [48] and in [51] for the immune system
response.
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2.2 Colony-based modelling

In this section, it is assumed that the geometry of the cells is
fixed and determined by the specific phenotype. At this stage,
we assume the cells to be spherical or hemi-spherical in the
three-and two dimensional cases. For the two-dimensional
case, it is assumed that the projection of all cells onto the
substrate is circular. This substrate could mimic an extracel-
lular matrix. In [49,50], it is assumed that the cells migrate
as a result of communication based on exerting strains on the
substrate or the extracellular matrix. One can easily apply a
finite-element method to compute the displacements of the
substrate or extracellular matrix. In [49], it has been chosen
to approximate the displacement on the basis of a decaying
exponential function, which is maximal but bounded on the
cell centre. The adopted formalism is based on the strain
energy density, which has the advantage of being additive.
To this extent, using Hooke’s Law, the strain energy density
is given by

M0
i = 1

2
σε = F2

i

2Es(xi (t))π2R4 , (7)

here M0
i denotes the strain energy density exerted by cell i ,

which is located on position xi (t), which exerts a force Fi , on
a substrate or extracellular matrix with elasticity Es on the
spatial location of cell i . In the present modelling studies, the
values of the cell force Fi and the extracellular stiffness Es are
assumed to be known and hence do not have to be computed
as part of the solution. Hence, it is assumed that the cells do
not adjust the stiffness of their environment. This assumption
is reasonable for epithelial cells and immune cells. For cells
like fibroblasts andmyofibroblasts that are involved inwound
healing or wound contraction, this assumption is question-
able since these cells are indeed able to change the structure
and mechanical stiffness of their environment. The cell has
radius R. Furthermore,σ and ε, respectively, denote the stress
and strain of the extracellular matrix. Based on the analytic
solution, where we want to incorporate a finite strain energy
density at the cell centre, we approximate the attenuation of
the strain energy density signal away from the cell by

Mi (x) = M0
i exp{−λi

||x − xi ||
R

},
for x ∈ 	, i ∈ {1, . . . , n}, (8)

As far as it is known at this stage, Reinhart-King and co-
workers [9,39] were the first to experimentally evidence cells
communicate through mechanical signalling as well as that
there exists a threshold value for the signal under that can be
detected by the cells. Using the fact that energy is a scalar
physical parameter and therewith additive, the above equa-
tion is extended for a colony of cells by

M(xi ) = M0
i +

n∑

j=1 j �=i

M0
j exp

{

−λ j
||xi − x j ||

R

}

,

for all i ∈ {1, . . . , n}. (9)

Under the assumption that cellular motion is fully determin-
istic, the displacement vector of cell i over a time interval dt
is a linear combination of all unit vectors connecting the cell
i with the other cells, of which the contribution of the strain
energy density exceeds a certain threshold. To have larger
influences to the migration direction from neighbouring cells
that give high values of the local strain energy density sensed
by cell i , the weight factor from cell j is given by the contri-
bution to the strain energy density as a result of cell j . The
strain energy density of each cell-pair determines the weight-
factor. Henceforth, cell i migrates in the following direction

zi =
n∑

j=1 j �=i

M j (xi (t))
x j − xi

||x j − xi || , i ∈ {1, . . . , n}. (10)

Terms for which ||xi − x j || = 0 are set equal to zero. We
normalise by using

ẑi = zi
||zi || . (11)

In [49], the displacement of cell i reads as

dxi (t) = κiφ(c)M(xi )ẑi dt. (12)

Here the κ-parameter, dimensionally representing the ratio
between cell velocity and exerted pressure (hence being
proportional to the inverse of a stiffness (therefore a com-
pliance)), is given by

κi = γi R3

μF̂2
Fi , (13)

where μ denotes the dimensionless resistance parameter of
the substrate friction or connectivity index in a phenomeno-
logical extent, where f = μFi defines the friction force
that the cell experiences from its surroundings as a result of
migration. Further γi stands for the mobility of the cell per
unit of time, and F̃ denotes the pulling force exerted by the
cell if it is entirely viable. From the above relation, it is clear
that the friction and cell pulling forces inhibit the migration
of the cell. Furthermore, if the cell is not viable, then Fi = 0
and thenmigration is halted as well. The φ-function accounts
for modelling the influence of the chemical environment on
cell mobility. The model is enriched with chemotaxis or hap-
totaxis by adding a term with the gradient of a chemical.
Furthermore, diffusion (random walk / Brownian motion) is
added through a Wiener Process in all coordinate directions.
These additions result into

123



Comp. Part. Mech.

dxi (t) = κi M(xi )ẑi dt + β∇c(t, xi (t))dt + √
2DcdW(t),

(14)

where Dc denotes the diffusivity of the cell type under con-
sideration. Here c denotes the concentration of a certain
chemo-attractor. This field can be computed using differ-
ent methods, by finite-element like discretisations or by the
use of superpositions of Green’s Fundamental Solutions. The
latter formalism is characterised by the advantage of having
to compute the solution only at these positions where one
actually needs the solution values, whereas finite-element
discretisations need to compute the solution over the entire
domain of computation, and hence large systems of (linear)
algebraic equations need to be solved at each time-step. A
disadvantage of using the Green’s Fundamental Solutions is
the need for simplifying assumptions for the model parame-
ters and geometry of the domain of computation, whereas
finite-element approaches allow a full geometrical flexibil-
ity. Examples,where the approachwithGreen’s Fundamental
Solutions has been used in the context of the immune sys-
tem response in ischemic wounds and cancer, can be found
in [51] and [52], respectively. Regarding the stochastic part
in the migration of cells, one could use a uniform probabil-
ity density where a cell is allowed not to move further than
over a certain distance as it is done in [27,42,48]. Another
possibility is to use a Wiener process, as has been presented
here. The introduction of theWiener process (being a normal
distribution with zero mean and the time-interval as the vari-
ance) leaves the possibility that a cell can move an arbitrarily
large distance within a predefined time-interval although the
likelihood tends to zero. This latter consideration could be an
undesired side-effect. However, in order to be consistent with
the Keller–Segel model for chemotaxis, which is a special
case of the Fokker–Planck equation, the modelling approach
using the Wiener process has been chosen. Probably the dif-
ferences in the results from the two modelling approaches
will not be spectacularly large.

Cells will also possibly come into mechanical contact,
which is hard-impingement. To this extent, we use the con-
tact mechanics by Hertz for the contact of two cilinders or
spheres in the two-dimensional and three-dimensional case,
respectively. For the purpose of modelling this phenomenon,
we employ the invaginationmodel that was presented in [17].
The invagination forces are responsible for pulling cells from
one-another whenever they are in mechanical contact. We
derived in [48] the following contribution to the strain energy
density

Mi j = 6

15

√
R∗E∗h 5

2

πR3 , (15)

where h = max(2R−||xi (t)−x j (t)||, 0) is the indentation of
cell i into cell j . Since this contribution, being nonzero if and

only if cells are in physical contact,will cause the cell tomove
away from the neighbouring cell by the pushing force due to
the neighbouring cell (and itself), it has to be subtracted from
the contribution to the strain energy density resulting from
long-distance communication (making the cells converge).
Hence, the effective adjustment to the strain energy density
function is then given by

M̂i (x) = Mi (x) −
∑

j∈Ni (t)

Mi j , (16)

where M̂i and Mi j , respectively, represent the total strain
energy density and the contribution to the strain energy den-
sity from the elastic interaction between neighbouring cells.
Furthermore, the set Ni denotes the collection of indices of
cells that are in mechanical contact with cell i , that is, the
distance is less than 2R. This set can be written as

Ni (t) = { j ∈ {1, . . . , n} : ||xi (t) − x j (t)|| < 2R}. (17)

The negative sign results from treating the strain energy
density as a potential, where the long-distance and near-by
contributions give opposite migration directions and hence
contributions to the potential with opposite signs. For more
details, we refer to [49,51].

Next to cell migration, cells are also subject to division
(proliferation) and death. To this extent, we model these
processes using stochastic processes. In [52], we take the
cell-cycle into account for the modelling of cell division. A
simplified, and less elaborate procedure, is to include a sim-
ple exponential distribution for the probability of cell division
and death for t > 0 (after the appearance of the cell):

f (t ′; pe) = pe exp(−pet
′), e ∈ {division, death}. (18)

Note that at t ′ = 0, the probability that a cell dies or divides
within the interval (τ, τ + Δt) is given by f (τ ; pe)Δt for
an infinitesimal time-interval. This distribution is ’memory-
less’, and hence

P(t ′ ∈ (τ, τ + Δt)|t ′ ≥ τ)

Δt

= 1 − exp(−peΔt)

�t
−→ pe, as Δt −→ 0, (19)

where

P(t ′ ∈ (τ, τ + Δt)) =
∫ τ+Δt

τ

f (t; pe)dt. (20)

In [50], the probabilities for cell division and death were
assumed to be independent of the infectious agent that is
released by bacteria. In [52], we assumed that the probabili-
ties were effected by the strain energy density as a result of
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contact forces. In the case of tumor cells, the probabilities
for division are generally set to higher values to mimic the
increased proliferation rate of the tumor cells relative to the
other constituent cells.

2.3 The numerical methods

In this section, the following components in the numerical
implementation are described: time-integration for cell dis-
placement, fundamental solutions for chemical signals, and
finite-element approaches for the mechanical balance.

2.3.1 Time integration for cell displacement

In both modelling cases, coupled systems of ordinary differ-
ential equations have to be solved. Since analytic solutions
are impossible to generate, numerical solution techniques
are used based on time-integration methods. In this sense,
one better uses explicit time-integration methods instead of
implicit methods since the contact mechanics pose a dis-
continuity in the acceleration once cells that did not have
mechanical contact earlier just come intomechanical contact.
Implicit methods need nonlinear solution techniques for the
solution of the resulting algebraic systems where the object
functions may no longer satisfy continuity and smoothness
requirements. This loss of continuity is often detrimental
to convergence behaviour. Another reason for the use of
explicit time-integrators is that upon contact mechanics, one
wants to limit the cell migration distance over a time-interval
to avoid cells being located such that their centres move
over one-another. Despite the fact that explicit numerical
time-integration methods are well-known for exhibiting con-
ditional stability and hence limiting the maximum allowable
size of the time-step, in the current modelling, the maximum
size of the time-step is always limited so that the cellu-
lar displacement is of the order of the cell-diameter in any
time-integration method that is used. This limitation of the
time-step warrants a sufficiently small value for the time-step
so that numerical stability is attained for the explicit time-
integration method. Note that this limitation relates

||xi (t + Δt)− xi (t)||=||vi ||Δt ≤ R

2
, for all i ∈{1, . . . , n},

(21)

for the case that the cell displacement is at most one fourth
of the diameter of a cell. Hence the time-step is related to the
cell velocity and cell diameter. Runge–Kutta schemes can be
used to obtain a high order accuracy if the solution remains
smooth, that is, contact forces are not suddenly switched on
or off. As soon as contact forces are switched on or off, then,
smoothness of higher order derivatives does not apply any
longer, which makes the higher-order methods useless under

these circumstances. Therefore, here we most often rely on
the Euler Forward method for the time-integration of the
deterministic part of the equations. Besides the deterministic
part, the stochastic part of the stochastic differential equations
are integrated using the Maruyama method.

Regarding the cell-deformation and migration model,
the nonlinear problem is solved using an Implicit-Explicit
(IMEX) method, where all factors that make the problem
nonlinear are evaluated at the previous time-step.

2.3.2 Fundamental solutions for chemical concentrations

To determine the concentrations that drive the migration
of cells or its points on the boundary, fundamental solu-
tions are used as an alternative to approaches that are based
on discretisation techniques like the finite-element method.
The chemokines are assumed to be subject to diffusion and
regeneration. Regeneration taking place place as a result
of the competition between pathogens and constituent cells
for oxygen and nutrients is modeled by the use of point
sources that coincide with the centres of the pathogens.
The same approach is used for modelling the concentration
of tumor-cell derived chemokines. Let XS(t) be the point
source position (for instance coinciding with a tumor cell or
a pathogen) at time t where a cytokine is secreted, then its
concentration, cS(t, x) is modeled by the following initial
value problem

∂cS
∂t

− DΔcS = νS(t)δ(x − XS(t)),

cS(0, x) = 0.
(22)

It is assumed that initially the amount of cytokines is zero.
Here D represents the diffusivity of the cytokine, and νS(t)
represents the amount of chemicals that are produced per unit
of time by the source. Note that δ represents the Dirac Delta
Distribution, which is zero at each point except in the origin,
and satisfies

∫
	

δd	 = 1, if the origin is fully contained in
	. Since the above partial differential equation is linear, to
obtain the solution for multiple point sources (that is mul-
tiple pathogens or multiple tumor cells), the concentration,
c(t, x), is obtained by Superposition, i.e. by summing over
all contributions, to get

c(t, x) =
∑

S

cS(t, x). (23)

The solution components cS are obtained as fundamental
Green’s Functions (Duhamel Principle), which in the case of
unbounded domain with dimensionality d read as

cS(t, x)=
∫ t

0

νS(s)

[4πD(t − s)]d/2 exp

(

−||x − xS(s)||2
4D(t − s)

)

ds,

(24)
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In the above formulae, so far no correction has been carried
out to dealwith sources that are appearing due to proliferation
or disappear due to engulfment or (programmed) cell death.
In the case of newly appearing cells, one integrates from the
time at which the new-born cell becomes active νS > 0. For
dead cells, the source function νS is set equal to zero, while
the history path has still to be taken into account. As time pro-
ceeds, the contribution of a dead cell long after its death, is no
longer significant, and hence, one can truncate these values.
The main advantage of this approach compared to finite-
element like approaches is that the concentration is obtained
immediately only at those points where they are of interest. It
is not necessary like in finite-element techniques to evaluate
the solution on all the nodes in the domain of computation.
Another advantage of the current approach is that it is not
necessary to map the concentration from the finite-element
meshes onto the positions of cells where the concentration or
its gradient is actually needed. Hence one only evaluates the
solution where the solution is actually desired without the
use of mapping operations or gradient-recovery techniques
to retain the accuracy of the solution. As an alternative to the
current approach, based on an unbounded domain, one could
use Fundamental solutions based on Fourier expansions for
bounded domains. Disadvantages of the current approach are
of course the assumptions regarding isotropy and homogene-
ity of the medium. We used the approach that was presented
here in [52] for modelling early stages of tumor development
and in [48,50,51] for modelling infections and the immune
system response.

2.3.3 Finite-element approach for mechanical balance

In some other works, one uses discretisation techniques to
evaluate the concentrations or mechanical displacements. In
our studies, we used the finite-element to model mechanical
displacements.Herewe consider a boundeddomain	 ⊂ R

d ,
wherewe solve the following partial differential equation that
describes mechanical equilibrium:

∇ · σ + F = 0, in 	, (25)

where σ represents the stress tensor and F represents internal
forces. Constitutive relations describe the relation between
the stress and strain tensors. In our modelling, we used
Hook’s Law. For each cell that pulls on the surrounding
extracellular matrix, we consider pulling forces on the cell
boundary. For this purpose, the cell boundary is treated as
a polygon or a polyhedron in the respective two- and three
dimensional cases. To this extent, the cell boundary is divided
into boundary elements and on each of this element a point
force is applied with a magnitude of the cell traction per unit
area/length of the cell boundary multiplied by the size of its
area/length in the direction normal to the cell boundary. The

total force F is obtained by summing over all N boundary
elements, as in

FN (x) =
N∑

k=1

P(t, xk)n(xk)δ(x − xk)Δ�k . (26)

Here P(t, xk),n(xk), and�k , respectively, denote the cellular
normal force per unit of length (or area in the three-
dimensional case), the unit normal vector pointing into the
cell and length (or area) measure of a boundary element. The
limit transition N −→ ∞, i.e., Δ� = max j Δ� j −→ 0,
gives

FN (x) −→ F(x) =
∫

�C

P(t, x′)n(x′)δ(x − x′)d�′,

× as N −→ ∞, (27)

if �C is a piecewise, smooth curve. In the case of multiple,
say Nc, cells, one sums again over all cells in the domain of
computation, to get

F(x) =
Nc∑

j=1

∫

�
j
C (t)

P(t, x′)n(x′)δ(x − x′)d�′. (28)

Spring force boundary conditions are used. In the finite-
element method, the entire domain of computation, 	, is
divided into mesh points and elements that have the mesh
points as vertices. Using the solution for the displacements
and strain energy densities, one can determine the differen-
tiation rate of cells, or the displacement of the boundaries of
the domain of computation. In our modelling the boundary
of the domain coincided with the wound boundary and here-
with the important process of contraction in burns could be
modelled. The interested reader is able to read [53] to get to
knowmore about the integration of the finite-elementmethod
into the cell-based modelling.

2.4 Alternative modelling approaches

A widely used alternative modelling strategy is the use of
cellular automata formalisms, where the domain of com-
putation is divided into a discrete set of points that form
a lattice, where each lattice point is either occupied by a cell
or not determined by somemathematical and/or probabilistic
processes typically based on optimality principles from (vir-
tual) energy functionals. This approach has been chosen by,
among others,Merks et al [34].Merks predominantly applies
this principle to modelling angiogenesis. It is noted that cel-
lular automata (or cellular Potts) models can also be used
both on tissue scale for processes like wound healing or the
development of tumors. In this scale, each lattice point con-
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tains an identifier saying whether or not that this point is part
of the wound/tumor or the surrounding (undamaged) tissue.

The work by [46] provides a Cellular-Potts framework
where cell-matrixmechanical interactions relate to collective
endothelial durotaxis, in which cells move according to the
gradient of extracellular rigidity. The mechanical model that
they use, was developed by [28], where cellular tractions are
modelled by means of a grid that coincides with the Cellular-
Potts lattice. Here each mesh point that is occupied by a cell
is equipped with a body-force pointing towards or away from
the cell centre. Our approach is different in the sense that we
only assign forces on the cell boundary. In this sense, our
modelling approach has more similarities with the immersed
boundary method that was employed in ICCells by [40],
except that in our approach we only consider interactions
between the cell boundary and solid extracellular matrix.

Alternatively to the cellular-automata models, the evolu-
tion of the cell geometry can also be modeled using partial
differential equations where one solves free and moving
boundary problems for each cell. Madzvamuse [33] uses
visco-elasticity theory for the deformation and displacement
of cells. This requires the approximation of the solution
of a evolutionary partial equations for the evolution of the
mechanical balance. This problem poses a challenging mov-
ing surface and interface problem, which contains more
physics than in the present approaches, however, on the
other hand, the solution to the resulting problem using finite-
element like discretisation becomes more time-consuming.

3 Numerical simulation results

In this section, we show some simulation results to demon-
strate the potentials of the models. First, we deal with cell
deformation and migration, and subsequently, we deal with
the colony-based models.

3.1 Cell-deformation modelling

We start with the deformation of a three-dimensional cell
under a chemical signal and subsequently, we consider an
application of many cells in parallel applied to the immune
system.

3.1.1 The basic one-cell model

We show the deformation of a cell in R3 under the influence
of three chemical sources in Fig. 2. The three red dots mimic
pathogen sources, which do not move in this simulation. The
three pathogens release a chemical that attracts the cell, being
the red surface. The concentration gradient was determined
by the superposition of three Green’s Functions for each cell.
The Green’s Functions hold for an infinite domain of com-
putation. We note that one could also have computed the

concentrations by the use of a finite-element method. It can
be seen that the cell deforms such that three branches appear,
which engulf the pathogen sources. After engulfment of the
pathogens, the concentration gradient disappears and there-
with the cell deforms back to its equilibrium position. This
simulation was also presented in [48].

3.1.2 Application to many cells leaving a small blood vessel

The second illustration is shown in Fig. 3, where a small
blood vessel is shown containing a number of white blood
cells, see the white areas in the vessel. Blood flows through
the vessel and the flow is modelled by the use of Poissieulle
flow, of which the velocity profile is added to the velocity
of all the nodal points of the boundary of all the cells. At a
certain time, it is assumed that pathogens appear at a location
next to the small blood vessel. These pathogens competewith
the constituent cells for oxygen and nutrients and thereby
the acidity increases locally. The acidity is represented by
the biotic lactates, which diffuse over the entire tissue and
eventually they will reach the small blood vessel. In the
modelling, the pathogens are considered as migrating point
sources for the biotic lactates. These lactates trigger a chem-
ical signal in the small blood vessel, which make the white
blood cells move towards the vessel walls, and subsequently,
they transmigrate through the vessel and enter the extracellu-
lar matrix area around the blood vessel. Thewhite blood cells
are assumed to appear randomly at the inflow boundary of
the portion of the small blood vessel that wemodeled. Prolif-
eration of the white blood cells is not taken into account since
white blood cells are produced from multi potent cells in the
bonemarrowand they are found in the lymphatic system.Fur-
thermore, cell death of the white blood cells is not taken into
account in this modelling. Having arrived there, they move,
driven by the gradient of the lactate concentration, towards
the pathogens and subsequently, they engulf the pathogens.
This process can be seen in Fig. 3. We realise that the current
picture is too simple to reflect reality. In [50], the parameters
have been changed and adopted such that drug treatments can
be simulated. We note in addition that in [50], we studied the
influence of the vessel wall transmittivity on the white blood
cell motility in the simulation results to be able to model dis-
eases that inflict changes of the small vessel structure. This is
realised by locally changing theμ and σ -values in Eqs. (2, 5,
6). Similar adaptations can be made to include cell motility,
cell stiffness or leukocytes counts that can be worsened in
certain diseases like diabetes, dengue or AIDS.

3.2 Colony-based modelling

We start with the closure of a wound under the influ-
ence of pathogens that paralyse the constituent (epithelial)
cells. Subsequently, we deal with wound contraction by
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Fig. 2 Snapshots of at consecutive times of the deformation of a cell
(red surface) as a result of a chemical signal from the three dots, that rep-
resent chemical sources. Once the chemical sources have been engulfed,

they disappear and the cell retreats to its equilibrium shape, being a
spherical shape in this case. These figures were presented earlier in
[48]. (Color figure online)

(myo)fibroblasts. We end up with treating the initiation of
cancer.

3.2.1 Wound closure under the influence of pathogens

First we consider the closure of a wound under the presence
of pathogens that release an acidic chemical, i.e. a lactate
that is able to paralyse the constituent cells. In Fig. 4, it

can be seen that at the early stage there is a circular gap,
where the constituent cells have been indicated by the red cir-
cles. As time proceeds, the constituent cells re-arrange, and
pathogens proliferate and move randomly over the domain.
It is assumed that the pathogens easily enter the cells, which
is also observed in experimental studies such as by Topman
et al. [44]. The pathogens paralyse the cells by the secre-
tion of the lactates. In these simulations, the concentration of
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Fig. 3 Snapshots at consecutive times of white blood cells that flow
through a small blood vessel modelled with Poisseuille flow through
a pipe. The white blood cells are indicated by the white closed areas
with a black dot representing its nucleus. Once the bacteria occur, indi-

cated by black dots under the vessel, they are chased and subsequently
engulfed by the white blood cells. These results were also presented in
[51]. (Color figure online)

the chemicals is monitored using a superposition of Green’s
Fundamental solutions. As time proceeds, it can be seen that
the gap, which mimics a superficial wound, does not close
in time. Furthermore, it can be seen that between the con-
stituent cells, gaps appear in the undamaged region and that
these gaps do not vanish as time proceeds due to the immo-
bilisation of the cells as a result of the lactates secreted by
the pathogens. The same simulation, not shown here but
shown in [51], has been done for the case where there are
no pathogens. In the simulation without the pathogens, the
gap closes entirely and there are no gaps in the undamaged
region. It is noted that despite the fact that the model pos-
sesses many stochastic components, one could search for a
threshold of the initial amount of pathogens under which the
wound gap is still able to fully close. One should use statisti-
cal methods here with Monte–Carlo methods where for each
parameter value multiple runs have to be performed.

3.2.2 Wound contraction

The next case that we show mimics contraction of a wound.
Contraction generally takes place in burns, in particular in
deep wounds. The contraction takes place via a sequence
of processes. First, the immune system response clears
up aggressive chemicals, hazardous pathogens through the
white blood cells. Furthermore, the white blood cells release
chemicals that trigger the migration of fibroblasts, which are
a kind of skin cells, towards the wound area. The fibroblasts
produce new collagenous tissue that repair the wound site.
Furthermore, the endothelial cells are triggered and migrate
towards the wound area, by which re-vascularisation takes
place by the re-establishment of a new vascular network. In
the present simulations that we show in Fig. 5 the wound
area is portrayed by the red area. The white blood cells, not
shown in the figure, release a growth factor (VEGF-hormone)
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Fig. 4 Snapshots at consecutive times of a simulation of a mono-cell
culture with an initial gap. At the centre of the gap, bacteria migrate ran-
domly and divide, and subsequently infect the constituent cells, which
are paralysed so that the gap does not close and so that the surrounding

initially undamaged tissue gets moremicrogaps and hence a less regular
cell density and hence the quality becomes worse. These results were
also given in [50]. (Color figure online)

that triggers the surrounding fibroblast to migrate into the
wound area. The fibroblasts are visualised by the white cir-
cles. As the fibroblasts move into the wound area, they pull
the tissue and under unfavourable chemical and mechanical
circumstances they are able to differentiate tomyofibroblasts,
which are cells that pull at a larger force on the surrounding
tissue, produce more, excessive collagen, and furthermore
shorten the chemical bonds of the long polymeric chains that

constitute the collagen. These chemically and mechanically
unfavourable conditions typically refer to the concentration
of certain cytokines (growth factors) and/or to pulling forces
that the fibroblasts experience, which make them differenti-
ate to myofibroblasts, see [45] for instance for a modelling
study. It can be seen that the wound area decreases over time
and that the wound region changes shape from the initial rec-
tangular shape to a more star-shape due to the internal forces
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Fig. 5 Snapshots of the contraction process of a burn at consecutive
times. The white circles represent the fibroblast positions. The myofi-
broblasts are represented by the diamonds. The red region denotes the

damaged area, of which the boundaries move towards the centre of the
wound. The results originate from [53]. (Color figure online)

exerted by the (myo)fibroblasts. The myofibroblasts are rep-
resented by the white diamonds. Next to the snapshots at
different times in Fig. 5, we show the evolution of the wound
area in the contraction phase over time for various values of
the differentiation rate of the fibroblasts in Fig. 6. It can be
seen that the model is capable of predicting the impact of the
differentiation rate on the contraction behaviour. It can be
seen that wounds where there is no differentiation recover to
the initial area. This is beneficial in the case of burns since a
final contraction, referred to as a contracture, is an undesired
side-effect. The contracture of the skin in general reduces the
mobility of the patient. If the fibroblasts do differentiate to
a large extent to myofibroblasts, then contraction becomes
more severe and moreover the contraction becomes partly
irreversible and hence a contracture remains.

This second model for the contraction of a burn is based
on cell-based modelling with semi-stochastic cell migration

incorporating random walk (diffusion) and chemotaxis. The
mechanical forces exerted by the cells have to be monitored
on the boundaries of the wound and therefore, finite-element
simulations have been used. The details are presented
in [53].

3.2.3 Initiation of cancer

Finally, some simulations are shown for the case of the ini-
tiation of cancer. We consider a spherical tissue domain
with epithelial cells, which divide and die. During the divi-
sion process, errors in DNA copying can occur, by which
tumor cells appear. The tumor cells divide and press onto the
epithelial cells, that constitute dermal tissue but could also
constitute lung tissue. The contact forces onto the epithelial
cells make them more prone to die and less likely to divide
and therewith the tissue deteriorates. The tumor cells are
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Fig. 6 The wound area versus time for several differentiation rates
from fibroblasts to myofibroblasts, see also in [53]

allowed to divide at a high proliferation rate. The details are
given in [52]. From the surrounding vascular network, white
blood cells enter the tissue area and these white blood cells
chase the tumor cells on the basis of chemical signals that are
released by the tumor cells. The white blood cells have the
ability to neutralise the tumor cells to a certain extent. Some
snapshots of a run are shown in Fig. 7. The green spheres
denote the constituent epithelial cells, the blue spheres rep-
resent the immune cells, and the red cells visualise the tumor
cells. More details are presented in [52]. Finally we show the
number of cells as a function of time for a specific run where
it is clear that the number of cancer cells grows at the expense
of the epithelial cells. In this run, the T-cells, i.e. the white
blood cells, are not able to beat the cancer cells. Furthermore,
in the same figure, the fraction of the tumor cells is plotted
over time, which also clearly shows that the tumor is going
to develop further.

4 Discussion and conclusions

First the relation to other modelling studies in literature
will be assessed and subsequently the current modelling
approaches with possible extensions will be discussed.

4.1 Relation to other studies in literature

Themethods that have been described in the present paper are
based on cellular models where a distinction between mod-
els allowing for cell-shape evolution and cell colony models
where the cells do not change their shape has been made. In
literature, many other studies can be found concerning cell-
shape evolution, such as in the works by [4,21,29,33,36,47].
In [21], the cell moves through a complicated domain with

obstacles as a result of a chemical stimulus. The mod-
elling approach used there is based on the representation
of the cell by a set of connected nodes on which protru-
sion, cortical tension, friction and a force to keep the cell
volume constant work. In this sense, the approach differs
from the present continuous approach. The modelling of
the cell through a domain with obstacles is very interest-
ing and in our own modelling approaches, we also have
some preliminary results where cells even have to adjust
their geometry in order to go through an obstacle. Another
cell-shape evolutionary model is described in [36,37], where
a set of reaction-transport equations is solved over the cell
boundary using an ALE formulation within a finite-element
methodwith linear elements. The actualmovement of the cell
boundary is determined using a level-set method. Besides
this cellular movement, a partial differential equation for the
chemical stimulus is solved outside the cell and coupled to
the obtained receptor distribution from the boundary finite-
element method. The method differs from the approaches in
the current paper in the sense that the present methods are
simpler and based on Fundamental solutions as well as on a
simpler representation of cell boundary movement. Further,
our method does not require the discretisation of the par-
tial differential equations for the level-set method over the
entire domain of computation. Further, no partial differen-
tial equations have to be solved over the cell boundary in
our methods opposed to the studies in [36,37]. The model in
[47] treats migration of cells in larger quantities with appli-
cations to fibroblasts. The model is based on traffic rules that
were observed experimentally in collective cell movement.
The modelling physics is elegant and experimentally-based
and is based on constant magnitude forces that are exerted
from the pseudopods radially away from the nucleus. Fur-
thermore, pseudopod formation is influenced by the current
directional motion as well as by the space-time profile of the
chemokine concentration which is released by all the cells.
In this modelling work, cell collisions are rare and give rise
to randomisation of the distribution of the pseudopods. The
study in [29] models, like in [21], cells as a collection of
particles including material particles like plasma membrane
and cortical biomolecules. All particles move resulting from
Newton’s Law of motion under conservative, dissipative,
actomyosin forces and membrane tension forces. Further the
extracellular matrix is incorporated in terms of particles as
well, which directly facilitates intracellular communication.
The equations of motion are solved using the Verlet algo-
rithm for the time-integration for the particle position in the
two-dimensional domain. The main extension and result of
the model is that cellular rotation is taken into account, for
which the cause was not revealed earlier.

In our simulations, results are obtained with small compu-
tation times, although we sacrifice on the physics behind the
cell migration phenomena. On the other hand, the parameter
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Fig. 7 Snapshots at consecutive times for the early-stage development of cancer. The green spheres represent the constituent cells (epithelial cells),
the red spheres are the cancer cells and the blue spheres visualise the T-cells (immune cells), as in [52]. (Color figure online)

space in our models is much smaller, which also poses some
merits for experimental validation and regression techniques.
This is the clearest advantage of the current approach that is
shared by the approach in [47]. The model in [47] is very
interesting in the sense that it is also based on first principles
and that it is probably also cheap in terms of computation
time. The only shortcoming may be its applicability to high
cell densities where cells collide often.

Next, we review some models without cell-shape changes
over time. In [13], the dynamics of tumor growth is con-
sidered based on modelling the interaction between single
cells and the distribution of nutrients and biomechanics
forces. All cells are individual objects which is parametrised
by biophysical and cell-kinetic parameters. The simulations
show that the tumor exhibits sub-exponential growth at large
sizes and that at larger sizes the necrotic core develops as
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a result of depletion of oxygen or glucose. The individual
cells are allowed to divide and to die, and they displace
each other by acting pushing pressures on each other when-
ever they divide. The (in)active mechanical displacement is
taken into account by the use of the Metropolis algorithm.
The diffusion-reaction equation for oxygen/glucose is solved
using a square discretisation mesh, where the reaction rep-
resents the consumption rate by each cell. A mapping of the
solution onto the cellular centres is needed to compute the
concentration. In [22], similar modelling techniques are con-
sidered regarding the solution of concentration equations on
a rectangular discretisation mesh and forces of the cells on
the substrate or extracellular matrix. In the last-mentioned
article the simulation toolbox is described. In the study of
[23], cell alignment along micro vessels is modelled. The
modelling approach is roughly based on the previous two
approaches, however, now the daughter cells resulting after
division align according to the closest sinusoid. The model
is also tested against experiments on mice and the model is
able to explain the role of hepatocyte-sinusoid-alignment on
the restoration of the restored liver architecture. The study
in [10] deals with tumor-stromal interactions that stimu-
late the migration of cancer cells where cell polarisation
is taken into account. Besides the polarisation, the hetero-
geneities, which also enhance the migration of the cancer
cells, are taken into account. Strandkvist et al. [42] model
cell sorting based on local variations in cell motility. The
modelling approaches are similar to the those employed
in [49], where contact forces are applied if cells approach
each other by distances shorter than the equilibrium dis-
tance from hexagonal packing. Randomwalk is incorporated
by picking velocities from a uniform distribution and trans-
lated to a diffusion coefficient, which is an approximation
from a probabilistic point of view. This principle is used
to estimate diffusivities of larger cell colonies consisting of
several cell types with various motilities as well as the direct
multi-cell approach is used to estimate the effective diffusiv-
ity.

All these approaches are very interesting from a mod-
elling point of view. The methods that have been presented
in the present manuscript are also able to carry out most of
the same biological processes such as alignment according
to sinusoids or considering multiple cell types with varying
cell motility after some changes in the implementation. The
polarisation issue described by [10], is currently dealt with
in a study where we want to simulate development of muscle
and fat along with differentiation of mesenchymal stem cells
to myocytes and adipocytes. Furthermore, the approach of
tumor cells where the necrotic core appears could be dealt
with in the present approach by considering (point) sinks
coinciding with the tumor cells that consume oxygen or glu-
cose. Another study that has just been carried out in our
department involves modelling angiogenesis using chemi-

cal signalling and stalk and tip cells, see [3], which will be
submitted as a future journal paper. This approach could be
combined with modelling the growth of a tumor which pos-
sibly halts due to depletion of oxygen and continues to grow
as soon as oxygen levels increase due to the arrival of small
blood vesselswhere angiogenesis is triggered by chemokines
that are released by death of tumor cells in the necrotic core.
Here the modelling could largely benefit from the principles
outlined especially in [13,22,23].

A cellular-Potts model (cellular automata) is presented in
[35], where cells are represented as sets of neighbouring lat-
tice points in which lattice points may transform to a certain
cell at a probability defined from minimisation of a virtual
energy. The approach allows for inclusion of chemotaxis as
well as mechanical cell-structure interactions. Comparative
remarks have been given in [53]. The model is applied to
plant physiology but also extended to modelling angiogene-
sis. The process of angiogenesis contains some similarities
with development of dendrites in plants. The modelling of
angiogenesis is easily captured by the cellular Potts model,
and somewhat harder by the presented models in this paper.
However, as mentioned earlier, we do have the first results
using the cell-basedmodelling of this paper for angiogenesis.
Although more biological detail is dealt with in the cellu-
lar automata models, the parameter space tends to be much
larger.

In [40] an immersed boundary method is used within
the IBCell computational framework developed by Rejniak
to simulate cell migration in fluid structures in two spatial
dimensions. This issue has not been dealt with in the present
modeling, except for the simplified approach where white
blood cells move through a small blood vessel according
to Poissieulle flow. In the current approach, the cells did
not have any influence on the fluid flow. In [40], the cells
do influence the fluid pattern. It would take the solution of
the Navier–Stokes equations including cell interactions by
the immersed boundary method. The study is performed to
simulate the development of carcinoma. The computation
time would be enlarged, though new interesting effects in the
case of fluidic environments can be dealt with which cannot
be simulated in the present modelling approaches. In [14]
the packing geometry has been modeled under the influence
of mechanical force and proliferation. Cells are modeled as
polygons and a stable packing is modelled, where also the
cell-shape is part of the solution. The simulations are based
on a vertex model where cell elasticity and junctional forces
are taken into account. A force balance is reached fromamin-
imisation principle. It would be interesting to add dynamic
processes to their modelling such that one can track the cell
network configuration in terms of packing under cell prolifer-
ation, death and possible differentiation. In [38], a subcellular
element model is used to simulate multicellular structures.
The main principle is that the cells are represented as a set
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of, unlike in the cellular Potts modelling, dynamically, mov-
ing discrete particles that are connected to one-another. In
this sense, the approach by [38] possesses some similarities
with the approaches by [21] and [29]. Further, these parti-
cles interact with the particles that correspond to other cells,
and in the computation of the positions of all the particles,
an equation of motion is solved that contains intra and inter
cellular communication (in terms of the gradient of a Morse
potential). This approach allows to follow the evolution of
cell geometry in the course of time. In the simulation results,
cobble-stone structures are obtained, which also have been
obtained in our modelling approach, see Figures 8, 9 and 11
in [48]. Finally, we report the study in [54] where a discrete
element model is used to simulate directional collective cell
migration. The model takes into account the cell orientation,
mechanical contact forces if cells are in physical contact, co-
attraction forces, rotational turning, self-propulsion, contact
damping and contact polarisation. The cells are represented
by elastic spheres. In order to be able to deal with larger
cell numbers, the simulation tools have been implemented in
CUDA, which allows to employ GPU’s that facilitate mass
parallel computation on many small processor subunits.

4.2 The current modelling approaches and extensions

A mathematical cell-based framework for the simulation of
several subprocesses in wound closure, wound contraction
and tumor initiation has been developed. Cells are allowed
to deform, to migrate and to divide, to differentiate to other
phenotypes.Using the formalism, one is able tomodelmigra-
tion processes like haptotaxis, chemotaxis or mechanotaxis
which are all migration mechanisms based on chemical sig-
nalling such as concentration gradients or on mechanical
signals. Tensotaxis, defined in the sense of the collective cell
migration towards the lowest point of an applied stretching
force as in [5] will probably need a more careful assessment
before it can be treated with similar approaches. A possi-
ble way to do this is to compute the stress-strain distribution
and the strain energy density in the assay used in [5] and
subsequently check whether the point of minimal stretch-
ing force is reached by following the gradient of the strain
energy density. To monitor the signals, one can use Green’s
Fundamental Solutions or finite-element like discretisation
techniques. Where the discretisation techniques require the
signals to be computed everywhere, also at locations where
the signal is not needed, the fundamental solutions can be
determined on these locations where we want to have them,
such as on the locations on cell boundaries or on cell cen-
tres depending on the model that we consider. The Green’s
Fundamental solutions have the demerit that they only hold
for very simplified circumstances such as linearity of the
partial differential equations, physical constants being con-

Fig. 8 The number of cells regarding the various phenotypes as a func-
tion of time and the fraction of tumor cells versus time. These results
were also given in [52]

stant and not allowing boundaries to influence the solution
depending on the nature of the fundamental solution that is
employed. Chemokines that satisfy transient diffusion equa-
tions involve Green’s functions that need time-integration of
the magnitude and location of the sources of the chemicals
that coincide with pathogen positions. This time-integration
can nevertheless be a toilsome operation in the algorithm and
therefore this issue certainly needs more investigation.

Considerable advantages of the modelling approaches are
that the models are close to experimental settings in the
sense that the model parameters involve directly measurable
parameters such as cell velocities, doubling rates for the pro-
liferation, death rates anddifferentiation rates. The sensitivity
of migration and deformation with respect to chemotaxis is
also taken into account. A real challenge is the translation
of one scale into the other scale. For instance, knowing that
the cell with a certain stiffness is able to deform such that
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its effective radius from the cell centre in which pathogens
can be engulfed is actually larger than the actual cell radius.
The difference between the effective cell radius and the
actual cell radius is larger if the cell is less stiff. This issue,
which can be quantified using the cell-based model, can be
incorporated into the cell-colonymodels formany of the sub-
processes where chemotaxis and haptotaxis play a role. We
also note that the present modelling approaches are very suit-
able for visualisation purposes and hence they are suitable for
educational purposes to physicians, students, and interested
patients.

Though thefirst results and simulations seem to be promis-
ing, real interesting in vivo cases, such as very large colonies
of epithelial cells in lungs or very large communities of cells
in the region of a burn, cannot yet be simulated due to a
lack on computational power. The simulations would greatly
benefit from CPU/CUDA implementations, which is a cur-
rent topic of investigation. This step is needed in a parallel
computational environment as a result of the stochastic nature
of several components in the models. The stochastic nature
necessitates running multiple simulations in order to be able
to determine intervals of confidence such that statistically
sound claims can be issued. Some preliminary steps in this
direction have been taken in the papers that describe our
studies. It is referred to [54], where such implementation has
turned out to be successful for the discrete element model
applied to the simulation of migration of cells. Next to an
increase of computational power such that more interest-
ing three-dimensional simulations can be done, one could
invest in increasing the complexity of the models in terms of
more accurately modelling the underlying biology. Despite
the more biological detail that can be dealt with, the model
would suffer from a higher complexity in the sense that even
more parameters that are hard to get in terms of measure-
ments or regression techniques would be part of the model.
It is questionable whether this extension would increase the
applicability of the models.

We finally note that the current paper describes a compila-
tion serving to introduce our modelling work to researchers
with interest in the field of particle-based methods as well as
in bio-medical applications. The interested reader can find
more information in our references.
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