
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Supporting Developers’ Coordination in
The IDE

Anja Guzzi, Alberto Bacchelli, Yann Riche, Arie van Deursen

Report TUD-SERG-2014-019

SERG

TUD-SERG-2014-019

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Anja Guzzi, Alberto Bacchelli, Yann Riche, Arie van Deursen. Supporting Developers’ Coordination in The
IDE. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work, CSCW 2015,
March 14–18, 2015, Vancouver, BC, Canada.

c© copyright 2014, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Supporting Developers’ Coordination in The IDE
Anja Guzzi∗, Alberto Bacchelli
Delft University of Technology

Delft, The Netherlands
{a.guzzi, a.bacchelli}@tudelft.nl

Yann Riche
Microsoft

Redmond, WA, USA
yannr@microsoft.com

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
{arie.vanDeursen}@tudelft.nl

ABSTRACT
Teamwork in software engineering is time-consuming and
problematic. In this paper, we explore how to better sup-
port developers’ collaboration in teamwork, focusing on the
software implementation phase happening in the integrated
development environment (IDE). Conducting a qualitative in-
vestigation, we learn that developers’ teamwork needs mostly
regard coordination, rather than concurrent work on the same
(sub)task, and that developers successfully deal with scenar-
ios considered problematic in literature, but they have prob-
lems dealing with breaking changes made by peers on the
same project. We derive implications and recommendations.
Based on one of the latter, we analyze the current IDE support
for receiving code changes, finding that historical information
is neither visible nor easily accessible. Consequently, we de-
vise and qualitatively evaluate BELLEVUE, the design of an
IDE extension to make received changes always visible and
code history accessible in the editor.

Author Keywords
Developers’ coordination; IDE extension; qualitative study.

ACM Classification Keywords
D.2.6 Software Engineering: Programming Environments

INTRODUCTION
Software engineering is often a team effort. It is not un-
usual for hundreds of professionals collaborate to design,
build, evaluate, and maintain software systems [71]. How-
ever, teamwork remains one of the most difficult and perva-
sive problems of software engineering, and developers face a
plethora of teamwork problems at different levels [18].

Key to this teamwork are tools and processes that revolve
around it, source code management, and development. Most
of developers’ time is spent within the Integrated Develop-
ment Environments (IDE) [48], thus researchers are trying to
leverage them by augmenting their collaborative capabilities
(e.g., [17, 27, 32, 33]). Nevertheless, the IDE remains a tool
∗Anja Guzzi was an intern with the User Experience Team, Mi-
crosoft Developer Division, Microsoft, Redmond, USA in the sum-
mer of 2012 when this work was carried out.

This paper is a pre-print of: Anja Guzzi, Alberto Bacchelli, Yann Riche, Arie van
Deursen. Supporting Developers Coordination in The IDE. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work, CSCW 2015, March
14–18, 2015, Vancouver, BC, Canada.
Copyright 2014, Software Engineering Research Group, Department of Software
Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology. All rights reserved.
No part of this series may be reproduced in any form or by any means without prior
written permission of the publisher.

that primarily helps individual programmers to be more ef-
fective in the classical edit-compile-run cycle [73].

In this paper, we explore how to better support collaboration
in teamwork within the IDE. Our research is set up in two
phases: An exploratory investigation, followed by the design
and evaluation of a medium fidelity click-through prototype.

In our investigation, we explored how developers in large de-
velopment teams experience collaboration and identify prob-
lems they face when working in team. To this end, we
(1) conducted a brainstorming session with 8 industry experts
working on the development of IDE solutions at Microsoft;
(2) identified three core opportunities for the design of im-
proved collaborative solutions, which we refined through
semi-structured interviews with developers; and (3) inter-
viewed 11 professional developers with various degrees of
experience and seniority, from 9 different companies to con-
textualize those opportunities.

In our investigation, we report how, while our participants
reported collaborating with others on code, they spend a lim-
ited amount of time actively engaged in collaboration. As a
consequence, one of the core issue emerging revolves around
managing dependencies between activities, rather than work-
ing together contemporarily on the same (sub)task. Our in-
terviews with developers also confirm that issues arise due
to the lack of information (i.e., imperfect information) when
working on shared code, and uncover existing strategies to
prevent or resolve them. Dependencies are often mediated
through code, in the form of code changes. Yet, our inves-
tigation illustrates how dealing with code changes remains a
common source of issues despite existing tools and strategies
when working on the same project. This emerges as one of
the main causes of frustration in interviewees’ experience of
teamwork. From our findings we derive implications and rec-
ommendations for improving coordination in modern IDEs.

In the second phase of this study, we focus on an investigation
of how to improve handling teams code changes from within
the IDE. Using common usability heuristics [56], we de-
scribe opportunities to better support teamwork in the IDE by
supporting information needs about change history. Conse-
quently, we leverage this analysis to: (1) derive requirements
for an IDE extension, (2) describe the design of BELLEVUE,
a prototype fulfilling these requirements, and (3) iteratively
evaluate a design called BELLEVUE with 10 senior develop-
ers from different companies and backgrounds.

BELLEVUE makes incoming code changes always visible
during development, eases the use of that history in the con-
text of the developer’s tasks and flows. It shows historical

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 1

information within the active code editor to let users modify
the code without context switch. To achieve this, BELLEVUE
takes already available historical change data and offers an
interactive view that shows detailed historical information for
files and code chunks with respect to a previous version.

EXPLORATORY INVESTIGATION: METHODOLOGY
In this section, we define the scope of our research, and our
research methodologies (illustrated in Figure 1), divided into
the following main steps: brainstorming, semi-structured in-
terviews, and data analysis with card sorting.

Scoping
We scoped our initial focus by tapping in the collective
knowledge of eight industry experts engaged in the design
and implementation of development tools (including one of
the co-authors, and the first author as researcher intern). To
do so, we organized a brainstorming on the challenges and
opportunities revolving around team development. The brain-
storming led to the identification of the following areas for
further investigation: awareness (i.e., knowing other people’s
work to anticipate issues and to proactively seek out informa-
tion when needed), work dependencies (i.e., anticipating and
understanding who I depend on and who depends on me),
and breaking changes (i.e., anticipating what and whom will
be impacted by the breaking change I am about to release).
As we will explore in more depth later, those areas describe
times where lack of information can lead to resource- and
time-consuming situations. Such situations are common not
only in development situations, but in teamwork in general
where situation of imperfect information is the norm [38].

Consistently, literature reported that developers often have
difficulties facing questions such as: “What have my cowork-
ers been doing?” “How have resources I depend on
changed?” “What information was relevant to my task?”
“What code caused this program state?” [7, 26, 45, 68] In our
work, we iterate on this by providing a more in-depth view of
some of those specific problems, and by illustrating and val-
idating ways of addressing them within the flow of activities
developers engage in.

Semi-structured Interviews
To gather more details about the context in which those is-
sues emerge, and current strategies for addressing them, we
conducted semi-structured interviews [50] with professional
developers. In total, we interviewed 11 developers from a
varying in experience, team sizes, and companies. Table 1
summarizes interviewees’ characteristics.

We conducted each 90-min interview on the phone, and tran-
scribed the interviews for latter analysis. After each inter-
view, we analyzed the transcript and split it into smaller co-
herent units (i.e., blocks expressing a single concept), which
we summarized by using an interview quotation or an ab-
stractive sentence. In addition, the interviewer kept notes
(i.e., memos) of relevant and recurring observations in a doc-
ument iteratively refined and updated. Out of the interviews,
56 memos emerged.

ID Overall In current team Team
experience Time Role Size

D1 7.5 years 4.5 months dev 4
D2 10 years 6 years dev lead 7
D3 2 months 2 months junior dev 4
D4 1.5 years 1.5 years sql dev 5
D5 20 years 10 years senior dev 4
D6 25+ years 7 years senior dev 15
D7 21 years 2 weeks senior dev 10
D8 25+ years 10 years senior dev 16
D9 1 years 1 years dev 5
D10 15 years 5 years dev lead 5
D11 20 years 6 years senior dev 11

Table 1. Interviewed developers

To analyze our data, we created the 562 cards from the tran-
scribed coherent units and the memos. Each card included:
the source (transcript/memo), the interviewee’s name (if from
the transcript), the unit/memo content, and an ID for later ref-
erence. We used card sorting [69] to extract salient themes,
leveraging a combination of open and closed card sorts. After
macro categories were discovered, we re-analyzed their cards
to obtain a finer-grained categorization. Finally, we organized
the categories using affinity diagramming [52].

EXPLORATORY INVESTIGATION: DATA
In this section, we present the results of our exploratory inves-
tigation. When quoting raw data, we refer to the individual
cards using a [DX.Y] notation, where X represents the devel-
oper, and Y (optional) the card (e.g., [D2.03] refers to card 03
from the interview with D2).

Teamwork from the developers’ perspectives
According to the interviewees, collaboration in teamwork is
defined by a wide spectrum of activities:

Communication - Collaboration is communication: As
D8 said: “It is all about communication. If you have good
communication, you have good collaboration.” Commu-
nication can be both one-to-one and one-to-many, can be
formal or informal, and goes through different channels.
Channels are “conventional,” such as email and instant
messaging (IM), but also more domain specific ones, such
as interactions via project management tools (e.g., source
code management systems and requirement tracking sys-
tems) and source code; as D4 explains: “[to communicate]
typically we use [IM], but we also have an internal wiki
that we use”. [D4.02, D7.09, D8.(01,02)]

Helping each other by sharing information - As D9 said:
“Collaboration is just sharing information and ideas.” In
particular, according to interviewees, collaboration means
being proactive and sharing useful information to make it
easier for others to complete their work (e.g., “make [the
acquisition of information] as easy as possible on the other
co-workers, so that they don’t have to struggle” [D7]). This
aspect of collaboration involves voluntarily sending notifi-
cations (e.g., “FYI–for your information” messages) and
starting discussions (e.g., “let’s coordinate on this change

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

2 TUD-SERG-2014-019

Semi-structured Interviews Data Analysis with Card Sorting Brainstorming

Brainstorming
9 Participants

21 areas of
investigation

Selected Areas

Commit Comments

Review Comment

Commit CommentsLiterature

Observations
& Interviews

11 Practitioners

Interview
Guidelines

Commit
Comments

Review
Comment

Commit
Comments

Interview
Transcript

56
Memos

56 Memos

506 Units
from Transcript

Cart Sort on 562 Units

Figure 1. The research method applied in the first phase

I need to make”) [D7]. Resource sharing involves not
only knowledge on the actual source code of the project,
but also information from external resources, for example
about new technologies or coding style; as D9 stated: “We
also like send each other things, like, style tips and like in-
teresting articles about how other companies do things”.
[D2.02, D7.(02,03,06), D9.(01,04,05)]

Knowing what others know - Collaboration, from the inter-
viewees’ perspective, also means to stay aware of the ex-
perts on the different parts of the system (i.e., “the domain
experts”) and to understand artifacts and code changes
done by colleagues. D11 explains: “[collaboration] is
keeping track of what everybody is working on and being
able to know how the different pieces are in place”. Ac-
cording to interviewees, knowing what the others know has
the aim both of preventing problems and of reacting faster
when they occur. [D2.01, D4.03, D7.04–07, D11.47]

Working on the same goal, doing different things - Overall,
developers see collaboration as working toward the same
goal (e.g., product releases), by acting in parallel on
different parts of the same project (e.g., working separately
on different code artifacts): “Collaboration is we are all
working towards the common goal, but maybe working
on different parts of it, but these components do inter-
act” [D7]; “[Collaborating meant] we divided up the work
[...], we went off these directions, and as things started
to merge together, we go on [merging] on a case by case
base.” [D3]. [D1.2, D3.01, D4.01, D7.01, D9.(02,06)]

Dealing with imperfect information in teamwork
To investigate how developers deal with imperfect informa-
tion, we outlined three concrete teamwork scenarios in which
the existence of imperfect information can generate problems.
The scenarios were derived from teamwork situations com-
monly described as problematic in literature.

Inefficient Task Assignment
Scenario. One developer is assigned to a task, while another

is already working on a similar or related task. This intro-
duces inefficiencies in the team (and potential collisions).

Related literature. Software engineering researchers have
recognized task partition and allocation as important en-
deavors in the context of teamwork [44, 46]. If depen-
dencies and common traits among tasks are not correctly
handled, developers can reduce their efficiency and gener-
ate unexpected conflicts [37]. Literature suggests different
techniques, with varying results, for efficient task assign-
ment (e.g., [16, 24]). In particular, the assignment of bug
fixes (or new features to implement), from a repository of
issues or requests to the most appropriate developers, is
one of the main instances of task assignment investigated
by researchers [1]. Researchers reported that bug triaging
is a time consuming task, which requires non-trivial infor-
mation about the system, and that often leads to erroneous
choices [2]. A number of techniques has been devised to
tackle the triaging problem, e.g., [53, 41].

Interviews’ outcome. Although considered realistic, our par-
ticipants did not see this scenario as a core issue. In fact,
the task assignment processes of teams are in general con-
sidered effective to prevent the problematic scenario to take
place. In some teams supervising figures (e.g., managers)
do the task assignment (e.g., “[a new task] goes to a man-
ager, who decides whom to assign” [D8], and “the boss
will tell you about a task [to do]” [D9]); in the other teams,
tasks are divided during team meetings, with various de-
grees of developers’ interaction (e.g., “we are using daily
SCRUM meetings” [D1], and “we break up the code, and if
the [task] is in your code, it’s yours” [D5]).

Simultaneous Conflicting Changes
Scenario. Developers find themselves in a situation where

there is a merge conflict (i.e., when different people are
touching the code at the same time).

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 3

Related literature. A recent significant effort in the software
engineering research community is devoted to detect con-
current modifications to software artifacts (e.g., [35, 36,
59, 65]). In fact, developers making inconsistent changes
to the same part of the code can cause merge conflicts when
changes are committed to the code repository, which leads
to wasted developers’ efforts and project delays [13, 42,
66]. Grinter conducted one of the first field studies that
investigated developers’ coordination strategies [29]. She
observed that it is sometimes difficult for developers (even
for expert ones) to merge conflicting code without commu-
nicating with the other person who worked on a module.
Later, de Souza et al., in an observation of the coordination
practices of a NASA software team, observed that develop-
ers in some cases think individually trying to avoid merg-
ing, while in others think collectively by holding check-ins
and explaining their changes to their team members [21].

Interviews’ outcome. Our participants reported only rarely
encountering a situation where more than one person was
working on the same file at the same time (“we don’t run
into those situations a lot” [D2]). Most of our partici-
pants’ teams were organized to make developers work on
different parts of the system, with a key person in charge
of coordinating development to prevent those issues, typ-
ically a lead developer or an architect. Some participants
also used technical solutions to avoid concurrent edits (e.g.,
“We put a lock on [the file], so it does not get edited
[by others]” [D1]). When a merge conflict happens, our
participants reported resolving it quickly and easily (e.g.,
“The best and quickest solution you have is to undo, we
roll back and [fix it].” [D1]; “typically, it is solved really
quick” [D2]), and often using merging tools (e.g., “we don’t
have to do much manually” [D8]). Although automatic
merging was used, our participants also explained that they
manually checked each conflict, revealing that it is not en-
tirely trusted.

Breaking changes
Scenario. A developer/team changed some parts of the code,

rendering the work of another developer or team unusable
or obsolete.

Related literature. Researchers consider breaking changes
problematic, not only for developers who receive the
change and have to understand and adapt their code, but
also for developers who are making a change that might
break the functionalities of many clients [3]. Literature
shows investigations (e.g., [22]) on the effect of dependen-
cies that break other people’s work, and proposed methods
to address subsequent problems, at the scale of both single
system (e.g., [10, 72]) and ecosystems (e.g., [32, 61]).

Interviews’ outcome. The reaction of our participants was
different according to the origin of the breaking changes.
When the origin was considered to be external to the team
or company or when participants felt they had opportunity
for neither intervening nor displaying their disappointment
to ‘the breaker’, they accept the breaking changes with
no strong negative emotions but rather as inevitable. This
happened even when resolving the issue might take long

time (e.g., “more than year” [D2]) or when it resulted in
large operational or maintenance costs (e.g., “this [break]
was costing the company many thousands of dollars per
minute.” [D7]).

However, when the origin was internal to the com-
pany/team, participants reported strong negative emotions
(e.g., frustration). This seemed in part due to the mismatch
between the expected communication that is made possi-
ble by being in the same company/team, and the ”waste”
of time spent finding the cause of the issue, which might in
turn be resolved relatively quickly (e.g., “I spend a couple
of hours to find out the error [...] fixed in 5 minutes.” [D3]
and “I spent a day fixing the problem I spent three days
finding.” [D8]). Generally, breaking changes leading to
syntactical errors were not considered an issue, because
they could easily be spotted with static analysis tools (e.g.
pre-compilers) and fixed. In effect, those particular breaks
were considered as a direct consequence of the lack of co-
ordination effort from the person introducing the breaking
code [D1]. Some of our participants insisted that breaking
changes when the origin of the break is internal to the team
or company should be handled more smoothly and pro-
actively. For example, some would prefer stricter rules to
avoid internal breaking changes: “people breaking other’s
people code [...], I’d like to see management being more
rigorous about it” [D8].

Receiving a code change
Managing internal breaking changes is the most problematic
scenario that emerged from our analysis, in this section, we
analyze how developers deal with changes made by peer de-
velopers working on the same project.

Our participants reported that they investigated changes in
the code-base when they were notified of them (e.g., via
automatic emails from versioning systems). However, they
mostly did so to discover whether they had an impact on their
own code. While they are not interested in building a holistic
view of the whole code base, they use this approach to dis-
cover whether the changes will impact their own work. In
doing so, they first need to assess how relevant the change
is to their current or upcoming work to decide whether or
not to investigate further. In some rare occasions, develop-
ers use this opportunity to explore other’s work not as it im-
pacts theirs, but from a style/aesthetics perspective, looking
at coding styles, norms, approaches, and solutions, especially
is changes are emitted by a respected colleague (for learn-
ing/inspiration) or a novice (for peer reviewing).

When our participants reported discovering an error caused
by a change made by someone else, their most prominent
complain regarded the lack of coordination that they felt
should have accompanied the change (e.g., they would have
expected an “heads up” email). However, in the case of clear
syntactic errors (e.g., compilation errors, or runtime errors
generating a stack trace), participants did not feel the kind of
frustration they expressed in the case of semantic errors (e.g.,
caused by a library that changes some sorting order, there-
fore impacting the dependent code) or unclear alteration in
the behavior. In fact, semantic errors required participants to

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

4 TUD-SERG-2014-019

perform a deeper and more time-consuming analysis to un-
derstand their cause [D3.(47,49), D8.(28,29,36)].

Once they found the cause, they explained they proceeded to
measure the impact on their code by, for example, measur-
ing how many files or lines of code needs to be changed (as
D8 explained: “I measure the impact of a change [looking at]
how many files/lines it affects. A few? Hundreds?”). Usually,
the developers receiving the breaking change were those au-
tomatically responsible of adapting and fixing their own code.
However, when a change had a deep impact on the code-base,
and required more information about the change (e.g., the ra-
tionale of the change) and the code-base, developers usually
wanted to contact the author.

Participants also reported that, when the change introduced a
defect, those receiving were responsible for deciding to file
an issue report against the change to the change author (e.g.,
D5 explained: “if the bug is in your code, it’s your bug to
fix. [...] I send a bug request.”) [D3.(06,09,31), D5.06], or,
occasionally, if the fix took little time, they would directly
change the code to fix it (D3 said: “If it’s small I just fix it
and notify the author”) [D3.59, D5.107, D8.38, D9.60]. The
time spent fixing the problem in the code does not seem to
bring frustration per se (e.g., “Diagnosing is almost always
harder than to fix it. With the majority of bugs, once you
know where the problem is, it’s easy to fix” [D8.29]). The
rationale to fix it directly is that the developer already has
the necessary information, which would require time to share
with the author of the faulty code.

Some participants mentioned that the lack of testing con-
tributes to faulty changes being committed to the repository
(e.g., “we are really bad at testing [...], you pull and you get
a file you try to run and it fails” [D9], “If I’d tested it better,
I wouldn’t have put [this code] in the build” [D5]). Never-
theless they also warned that running all the tests for each
change would be too expensive (“all tests, to run them all,
it would take 3 weeks. Unfeasible to take 3 weeks for each
check in” [D6]). They also warned that testing performed on
a setup might unreliable on a different one (“we test and it’s
all good, but then they test on their end and it might break
[...]. It’s something to do with customizing.” [D2]), and that
many semantic changes could not be detected by tests (“even
if there are tests that check [most] things, you’d still end up
with edge cases. [...] You still need to see that you break, and
then react, and then fix it” [D6]).

EXPLORATORY INVESTIGATION: INTERPRETATION

Teamwork Collaboration Is Coordination
The terminology used in many disciplines [51] defines coor-
dination as “managing dependencies between activities,” and
collaboration as “peers working together.” In this light, what
participants consider as collaboration in teamwork is mostly
coordination, needed to organize the individual work toward
achieving a shared goal.

By analyzing the data from the interviews, coordination
emerged—after individual work—as the dominant interaction
level when working in team, rather than collaboration. In par-
ticular, our participants described that:

1. They spend most the time doing individual work;

2. Most of their interaction is to coordinate (e.g., through
daily stand-ups);

3. In their work, collaboration happens infrequently and on a
need basis (e.g., with (bi-)weekly sprint meetings).

4. Most of the time, their intention for collaboration is coor-
dination leading to individual work.

By abstracting the explanations of interviewees, we model
developers’ interaction in three levels (from lowest to high-
est degree of interaction): individual work, coordination, and
collaboration. Individual work corresponds to no interaction
(e.g., a developer working on her own), while collaboration
means developers working together at the same time on the
same (sub)task (e.g., pair programming). Coordination is an
intermediate level of interaction, where developers interact
but are not working together on the same (sub)task (e.g., dur-
ing task assignment).

An activity is a working state that can be placed as a point
on the corresponding level of interaction. In a set of activi-
ties done to accomplish a certain subtask (i.e., ‘working sit-
uation’), particular events often serve as a transition between
levels of interaction, for example, steps from individual work
to coordination (e.g., “[when a file is locked] we just [ask]:
‘hey what are you working on? And then when you think I
can do it?’ to the author.” [D2.10]), and from coordination
to collaboration (e.g., “sometimes we [...] get together and
talk about [similar things], then realize how we can do these
things together and do them together” [D11.45]). Figure 2
depicts our model of developers’ interactions.

working situation
WS2

working situation
WS1

collaboration

coordination

individual work

interaction
level

A1

A2

A3 A4

A5

A6

Figure 2. Model of developers’ interactions in working situations

Figure 2 shows two working situations: In the first (WS1),
a developer doing individual work asks another developer to
make a change in their code (e.g., “I asked one of the guys:
‘[...] I need a method that would return [a special object],
can you write [it] for me?’ He was able to write [it] and knew
exactly where to go” [D3.(09,15)]). This requires going from
individual work (A1) to coordination (A2) when asking to
make a change to the other, and back to individual work (A3)
when they reach an agreement, without reaching a state of
collaboration. In the second situation (WS2), two developers
decide to work together on a subtask. This requires moving
from individual work (A4) to coordination (A5) when they
decide, then to collaboration (A6) for the actual work.

The steps between the different levels of interaction in the
model are not necessarily discrete: Intermediate interaction

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 5

levels can be reached. For example, while the activity of task
assignment can generally be placed on the coordination level,
when the task assignment is discussed together in a meeting it
can be put on a level between coordination and collaboration.

Implications
Our participants report that most of their time is spent in do-
ing individual work, while, unexpectedly, they report to spend
very little time collaborating on the same subtask. A direct
consequence is that interactions revolving around coordina-
tion are a more actionable area, with better research oppor-
tunities and with greater potential impact, than areas consid-
ering purely the collaboration aspects. For example, better
support to communication would have more relevance than
tools for concurrent real-time coding.

In addition, techniques for supporting information sharing
among developers should take into account that developers
spend most of their time doing individual work. Considering
that most of this individual work is spent in the development
environment (the IDE) [48], tools that support coordination
within the IDE have potential to lead to greater impact.

The role of information.
In our study, we uncovered how available information was
pivotal in transitioning between levels of interaction (Fig-
ure 3). This happened when our participants acted on infor-
mation they had already acquired earlier, reacted to incom-
ing information, or sought out to gather new information, for
example, through communication or by understanding code
changes done by colleagues.

information

information

collaboration

coordination

individual work

interaction
level

Figure 3. The role of information in developers’ interaction

Researchers have been studying the importance of infor-
mation sharing for teamwork over the years from different
angles. For example, Cataldo et al. introduced the no-
tion of socio-technical congruence, and provided evidence
that developers who share information when making changes
in dependent software components complete tasks in less
time [15]. Other researchers similarly showed that missing in-
formation correlates with coordination problems and project
failures [14, 63, 47]. Ko et al. analyzed the information needs
of developers in collocated teams and found they have dif-
ficulties in answering questions related to information about
colleagues’ work and software component dependencies [45].

From our interviews, developers reported to know how to deal
with the investigated scenarios involving imperfect informa-
tion, except when they received an internal breaking change.
We suggest that this is connected to how easy it is to access
the information they need to address the problem. Analyz-
ing the ways developers/teams successfully deal with a con-
dition of imperfect information, we see that the solutions to

the problematic scenarios require information to be shared in
two ways: (1) via direct communication (e.g., during a meet-
ing), and (2) by making it visible (e.g., in a tool).

Scenario Needed Information
Communicated Visible

Task assignment 3 3
Simultaneous changes 7 3
Breaking changes 7 7

Table 2. Information in investigated scenarios

Table 2 shows that for non-problematic scenarios, the needed
information is communicated or visible. In the case of task
assignment, the inefficiencies are avoided by centralizing the
task assignment to the team leader, who has all the informa-
tion “visible” in mind, or by conducting group meetings in
which the information is communicated. Other researchers
report evidence of this behavior: Begel et al. described
that industrial program managers and developers have reg-
ular team meetings to effectively prioritize bugs and to co-
ordinate component completion schedules [8]; and Guzzi et
al. reported that when open source software developers meet
in person, they manage to advance the coordination of their
projects better [31]. In the case of simultaneous changes that
were not avoided with the team policies (i.e., through modu-
larization and technical locks), the information necessary to
solve the merge conflict is immediately visible through the
merge tool. In their analysis of parallel development prac-
tices, de Souza and Redmiles similarly reported that issues
were averted through the mediation of configuration manage-
ment tools [22]. In the case of breaking changes, we sug-
gest that the needed information is neither communicated in
time nor easily accessible/visible. As a result, developers can
spend a long time finding the information they need to coor-
dinate. This is in agreement with other studies that report how
breaking changes are due to missing information and lead to
significant loss of time (e.g., [61]).

Implications
Our analysis showed that the efforts spent in gaining the in-
formation developers are missing can be a source of nega-
tive emotions. This underlines the importance of information
sharing practices, both active (e.g., communicated) and pas-
sive (e.g., visible via a tool).

Researchers proposed a number of tools (e.g., Palantı̀r [65]
and FASTDash [9]) to detect merge conflicts and tested them
in laboratory settings with seeded conflicts. These tools
helped developers to spend less time to resolve conflicts and
encouraged communication. An interesting venue for future
research is to verify the overall impact of these tools on teams
whose structure maps the software architecture, as our partic-
ipants reported not encountering this issue.

In addition, in most of our investigated scenarios, we ob-
served that—unexpectedly—developers already had means to
deal with missing information, or did not considered these
scenarios as issues. In contrast, the results of the study by
deSouza and Redmiles put in evidence the significant differ-
ences that two unrelated companies have when they deal with

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

6 TUD-SERG-2014-019

the management of dependencies and the underlying infor-
mation sharing [22]. This suggests that what is considered a
critical issue for a company/project could not important for
another. As a consequence, it is important, when investigat-
ing potential problems generated by lack of information, to
first study whether and how the target developers already em-
ploy any method to supply this missing information.

Changes and dependencies
As de Souza and Redmiles explained: “it is not possible to
study changes in software systems without studying depen-
dencies” [22]. In this light, our analysis of coordination and
receiving changes is related to the work by Begel et al. [8]
and by de Souza and Redmiles [22].

Begel et al. conducted a survey of Microsoft developers,
testers, and program managers to see how these coordinate on
dependencies (e.g., tasks) within the same team and among
different teams. The study reported that most Microsoft
developers (63%) minimize code dependencies to mitigate
problems. This is similar to our interviewees who use soft-
ware modularity to avoid inefficient task assignment or merge
conflicts. Similarly to our findings, Begel et al. also reported
that lack of communication often led to coordination prob-
lems, and that email is the common means by which develop-
ers kept track dependencies. In contrast, our study outlines
the difference between internal and external dependencies
and changes. Begel et al. found that internal dependencies
are managed by “send[ing] an email and pay[ing] a personal
visit to the person blocking their work,” [8], and surveyed de-
velopers do not report any negative emotion. Our findings
underlined that, in the case of internal breaking changes, the
process preceding the communication with the person block-
ing the work (i.e., finding the source of the problem) is cause
of dissatisfaction and frustration in cases where the expected
communication did not take place. Moreover, the two stud-
ies present different definitions of external dependencies and
breaking changes: (1) According to Begel et al., dependen-
cies are ‘external’ if in different teams within the same com-
pany, with which it is possible to communicate personally;
(2) according to our findings, dependencies are ‘external’ if
in different companies, with which it is extremely difficult to
communicate. In the former case, Begel et al. reported that
developers have to maintain personal communication with
external teams to remain updated of changes, and the exis-
tence of unexpected changes from external teams generates
anxiety. In the latter case, our interviewed developers did not
report anxiety (even though unexpected changes happen and
lead to loss of time), rather acceptance of the situation as part
of the natural business model of the industry.

In their work, de Souza and Redmiles investigated the strate-
gies software developers use to handle the effect of software
dependencies and changes in two industrial software devel-
opment teams [22]. The two teams deal with internal de-
pendencies according to our definition. One team (MVP) al-
lows parallel development and the modularity of the system
is low, the other team (MCW) focuses on modularity by us-
ing a reference architecture. Our interviewed developers have
complains similar to those in the MCW team, which also has

strikingly similar practices: In both studies these teams avoid
inefficient task assignment with modularity, their developers
have problems identifying their impact network (they do not
know who is consuming their code or whether changes can
modify the component they depend on) and are only inter-
ested in changes in particular parts of the architecture that im-
pact them. Moreover, developers in both MCW and our study
have expectation that major changes are accompanied by no-
tifications about their implications, yet are worried about in-
formation overload resulting from too frequent notifications.
Conversely, the MVP practices seems to align with our par-
ticipants’ description of an ideal scenario where emails are
sent to update about changes, everybody reads notification
emails, management urges developers to notify about break-
ing changes, and such email even suggest courses of action to
be taken to minimize the impact. As a result, despite the par-
allel development, coordination in MVP seems smoother than
in our participants’ experiences. One important characteristic
of MVP, mentioned by de Souza and Redmiles, is that most
developers have worked on the project for at least two years,
and their experience could also be the cause of the difference
with MWC, which is a newer project. Our results, though,
do not seem to corroborate this hypothesis, since interviewed
developers reported similar issues regardless of project matu-
rity and personal experience. Our additional analysis of code
changes looks at coordination from a low level perspective;
we found that most information developers need to coordi-
nate is typically available, but not necessarily accessible.

Implications
Our study confirms that lack of coordination leads to late dis-
covery of unexpected errors or behaviors in the code, fol-
lowed by a time-consuming analysis to find the code changes
that are the source of the issue. This calls for better support
for coordination when developers make and receive changes,
and for when they need to investigate a change to determine
its impact. As the existing body of research suggests, im-
pact analysis and support for change understanding in soft-
ware development scenario remains problematic. Research
prototypes have not yet reached widespread usage in the IDE,
and our findings underlines the substantial practical relevance
of further research in these areas.

The differences between coordination practices between our
interviewees’ teams and the MVP team described by de
Souza and Redmill [22] are an interesting venue for future
research. In fact, compelling is the hypothesis that the modu-
larity adopted by our interviewees’ teams and MWC could
create asymmetries in engineers’ perceptions of dependen-
cies [30], thus being at the basis of the differences and gener-
ating the reported coordination issues.

By investigating how developers currently handle received
code changes in the IDE, we realized that they do many tasks
manually, and spend a lot of effort to collect and remember
change information. The data that would help developers in
their tasks is available (e.g., data recorded by the versioning
systems), but not easily accessible. This implies that bet-
ter support for integrating change information in the IDE is
needed and it would impact development and coordination.

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 7

DESIGNING AND EVALUATING BELLEVUE
Design Prototyping

RITE-based Eveluation

Exploratory
Investigation

Data

current
approaches

requirements

Usability
Heuristics

Usability
Heuristics

Usability
Heuristics

Usability
Heuristics

UNMET
Usability

Heuristics

UNMET
Usability

Heuristics

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

Bellevue prototype
as slide deck

Early
Feedback
UX experts

story-board including
high-fidelity prototype

Rapid Iterative
Testing &

Evaluation
9 Practitioners

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

FINAL
Bellevue
prototype

TODO To
Investigate

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

. . .
h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

2

34

1

6
7

5

Figure 4. The research method applied in the second phase

Building upon our findings from our interviews, we aimed to
design a tool to help developers anticipate, investigate, and
react to breaking changes in a collaborative development en-
vironment. Figure 4 outlines the process.

Design requirements
We first analyzed the current approaches for receiving
changes in the IDE under the light of widespread usability
heuristics [56] (Point 1 in Figure 4). We found several un-
met heuristics that, together with the data collected in the ex-
ploratory investigation, we used as a basis to derive require-
ments for our IDE extension to improve receiving changes
and support teamwork (Point 2).

Recognition over recall
“Memory for recognizing things is better than memory for
recalling things” [49].

Once a developer decides to merge a received change with
the local version, the information about the integrated change
disappears. For this reason, when developers encounter a bug,
they must recall which change occured and whether any of
them could have generated the problem. One participant ex-
plained that the frustration when he encounters a bug comes
from “figuring out where the problem is: Trying to figure out
what really has changed” [D5]. We suggest that when look-
ing for the cause of a bug, developers’ memory can be aided
by tools to navigate change history, but existing tools require
to switch from the current development context, and typically
give the information outside of the development context.

Visibility of system status
“The system should always keep users informed about what
is going on” [56].

Once changes are integrated, development tools provide no
distinction between code already present before merge, and
the newly integrated one. Therefore, there is no clear visibil-
ity of the system status with respect to its history. “It’s kind
of impossible to know every single line of code that every-
body else on your team changed” [D3]. While historical in-
formation is available, it typically resides in dedicated tools or
views, out of the current development context, thus the status
is neither self-evident nor easily accessible: “there isn’t really
an easy method [...] that let you see [that] these ten files are
different from what you had in your current time” [D5].

Clearly Marked Exits
“A system should never capture users in situations that have
no visible escape” [55].

In software engineering, code repositories typically provide
change history which gives developers an escape: If they find
something not working after they merged some changes into
their local working copy, they can roll back to the status prior
to the merging. Problems with this approach are: (1) The
exits are not evident, and (2) the exit strategy is binary.

The first issues means developers sometimes do not realize
that their problems could be addressed by undoing the merge,
instead of trying to find an error in their own code. The sec-
ond issue means that developers can only undo all the merged
changes at once, although the error can be caused by a mis-
take in a small fraction of the changed code. Once the code
is rolled back, developers have to reconsider all the undone
changes and realize which ones could have caused the error,
without having the full IDE context at disposal, but only the
change information, and integrate all the unrelated changes
back again. D1 explained: “It’s a loss of time, we have to roll
back, figure out [what the problem was], and roll again. It’s
a loss of time, definitely.”

Help and Documentation
“[Documentation should] be easy to search, focused on the
user’s task, list concrete steps to be carried out, and not be
too large” [56].

In development processes, documentation also consists in
the explanations software developers write as they commit
their changes to the shared repository. It also includes other
sources of information, such as descriptions of work items or
bugs, stored in bug management or work item management
tools. These pieces of information are accessible to the devel-
oper, and the commit messages are available to inspect upon
receiving code changes, but once the changes are integrated
they disappear, unless the user performs a number of steps
navigating the history of the code in specialized windows or
applications. Additionally, comments in the code commit and
the work management tools are often disjointed. For example
D5 complained: “When you get the latest [changed files] you
get tons of files”; he found it very difficult to search the nec-
essary help or information due to information overload. Fi-
nally, when developers integrate more than one commit into
their local copy, often they see only the last commit message,
even though a line of code could have been changed several
times between their local copy and the current status.

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

8 TUD-SERG-2014-019

Help users recognize, diagnose, and recover from errors
Current code change management in IDEs make it difficult to
recognize and diagnose errors generated by integrated code
changes, because they are not visible and the history has to
be analyzed outside of the current development context. One
interviewed developer explained that, despite the availability
of external history tools, “one of the problems is trying to
figure out what really has changed [and] what’s the impact
on your code” [D5]. In fact, as D3 explained, external tools
are not helpful because “version control gives you a list of
files that changed and not the specific lines”: Seeing exactly
which part changed and how takes many steps. Moreover,
the only possibility to recover from errors is to do a complete
undo of the merged changes, while it might be be enough to
modify a small part of code to fix the error.

System design requirements
To address our current concerns with imperfect or missing
information in development tasks, we suggest the following
requirements for development tools:

(1) Received code changes should always be visible, (2) In-
formation should be provided in context, both semantic
(code) and procedural (history, project) without undue ac-
tions by the user, both at the project and file level (3) History
of code chunks should be easily accessible, possibly using
progressive disclosure to prevent information fatigue (4) Er-
ror identification ad diagnostics should be supported through
a fluid integration of code history, (5) Code changes should
be reversible at the sub-file level, and (6) Requiring context
switches to acquire the necessary knowledge to solve a task
should be avoided.

Prototype and evaluation
Consequently, we devised an IDE extension, named BELLE-
VUE, to fulfill the requirement outlined above and to serve as
a tool to explore our preliminary design ideas (Point 3 in Fig-
ure 4). The prototype allowed us to communicate our ideas to
various experienced designers and practitioners at Microsoft,
and to get their feedback, reveal early problems, and improve
the initial concept (Point 4 in Figure 4).

We devised a detailed storyboard including a high-fidelity
prototype of BELLEVUE (Point 5). This was implemented
as a PowerPoint presentation with a sequence of believable
action steps of interaction with the prototype. Each step was
devised to let the participants of the evaluation phase observe
what was happening, explain what they would do, and de-
scribe the effects they would expect as a consequence of their
actions. We used this prototype to evaluate BELLEVUE with
professional software developers, using the RITE (Rapid It-
erative Testing & Evaluation) method [54], to evaluate and
identify problems in the prototype, quickly fix them, and then
empirically verify the efficacy of the fixes (Point 6).

Participants in the RITE study were selected among a pop-
ulation with the following characteristics: More than three
years as a professional developer, more than one year in the
current company, and more than three months in the current
team. Moreover, interviewees had to spend at least 20 hours
per week on writing and editing code, their team had to use

a source control management system, and they had to have
at least browsed the change history, encountered a change
merge, or used the file diff comparison view in the month
before the RITE. Evaluation invitees were thanked for their
participation by a gratuity in the form of Microsoft software.

Each session occured in a full usability lab on the Microsoft
campus, and was video recorded for later analysis. To mit-
igate the moderator acceptance bias [28], we explained that
the researcher guiding the session did not created the product.
Moreover, to mitigate any social desirability bias [28], and to
encourage discussion, the storyboard plot was describing the
actions taken by a proxy developer named James. Following
the storyboard plot described by the slides and the researcher,
participants were solicited to follow a think-aloud protocol,
and indicate what they saw, would do, and would expect as a
result of their actions on each screen page.

After 9 iterations we reached a stable and validated design. At
the end of the process (Point 7 in Figure 4), we had: (1) the
finalized BELLEVUE prototype, (2) a set of changes to imple-
ment but that were not eventually integrated, and (3) a set of
candidate aspects to be investigated as future work.

We designed BELLEVUE as a prototype code editing and nav-
igation solution aimed at being a lightweight, ready to be
used, without requiring developers to change their working
style. It takes the historical change information that is already
available, but currently neither visible nor easily accessible,
and displays it in a non-obtrusive way. BELLEVUE offers an
interactive view that shows detailed historical information for
files and specific chucks with respect to a previous version.
We detail the features of BELLEVUE, as they were at the end
of the RITE phase, and the feedback from participants (men-
tioned as R1–9). The final version of the slide-deck used in
the RITE is available as a file accompanying this paper.1

Recognizable changed files and blocks
BELLEVUE decorates changed files with an arrow (Figure 5,
Point 1), and denotes changed lines with a blue2 colored sign,
both at a fine-grained granularity (Point 2), to see them in the
context of the current text window, and a more coarse-grained
one (Point 3), to see them in the context of the entire file.
One can decide (Point 4) to see only the files that were just
merged into the current local version. This design supports
recognition over recall: Once new changes are merged into
the local version, their traces remain visible. It also enhances
the visibility of the system status, with respect to changes.

RITE participants’ feedback—All the participants appreci-
ated this feature. In particular, they liked that it helps filtering
out irrelevant information when looking for the reason of an
error that could have been introduced by a received change:
“Knowing what I can ignore is huge, the larger the project,
the more beneficial it comes” [R1]. Concerning the way in
which changes are made recognizable, some users did not
find it intuitive, or appropriate: “I’d prefer a bar or something
1Also available at: http://www.st.ewi.tudelft.nl/˜guzzi/
2This color has been chosen because it is currently considered a
neutral color in the IDE. As opposed to green or red, which are often
associated to versioning systems or debuggers.

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 9

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

using"System;"
using"System.Collections.Generic;"
using"System.Linq;"
using"System.Text;"
using"System.Windows;"
using"System.Windows.Media;"
using"System.Windows.Shapes;"
"
namespace"Paint"
{"
""""public"class"PaintCanvas":"System.Windows.Controls.Canvas"
""""{"
""""""""private"List<List<PaintObject>>"history;"
""""""""private"List<PaintObject>"paintObjects;"
"
""""""""private"PaintObject"temporaryObject;"
""""""""private"PaintObject"hoveringObject;"
""""""""private"Rectangle"hoveringRender;"
"
""""""""private"bool"currentlyDrawing;"
"
""""""""public"PaintCanvas()":"base()"
""""""""{"
""""""""""""history"="new"List<List<PaintObject>>();"
""""""""""""paintObjects"="new"List<PaintObject>();"
"
""""""""""""hoveringRender"="new"Rectangle();"
""""""""""""hoveringRender.StrokeThickness"="1;"
""""""""""""hoveringRender.Stroke"="Brushes.DarkGray;"
""""""""""""hoveringRender.Visibility"="Visibility.Hidden;"
""""""""""""this.Children.Add(hoveringRender);"
"
""""""""""""currentlyDrawing"="false;"
""""""""}"
"
""""""""public"void"Repaint()"
""""""""{"
""""""""""""this.Children.Clear();"
""""""""""""foreach"(PaintObject"po"in"paintObjects)"
""""""""""""{"
""""""""""""""""this.Children.Add(po.getRendering());"
""""""""""""}"
"
""""""""""""this.Children.Add(hoveringRender);"
""""""""}"
"
"""""""""

284

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

1

2

34

Figure 5. Recognizable changed files and blocks, and filtering

much more visibile [than a blue-colored sign] to see that it’s
different” [R2]. Nevertheless, after they continued in the sce-
nario and experienced the following features of BELLEVUE,
they withdrew their concerns. Some participants suggested
to let the users personalize the color to denote changes; other
participants suggested to use different colors to clearly dis-
tinguish added, removed, or modified lines, as it currently
happens in tools that display code differences.

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

"
""""""""public"void"setHoveringObject(PaintObject"hoveringObject)"
""""""""{"
""""""""""""this.hoveringObject"="hoveringObject;"
""""""""""""if"(hoveringObject"!="null)"
""""""""""""{"
""""""""""""""""hoveringRender.Visibility"="Visibility.Visible;"
""""""""""""""""hoveringRender.Width"="hoveringRender.Height"="hoveringObject.getThickness()"+"2;"
""""""""""""""""double"offset"="hoveringObject.getThickness()"/"2"+"1;"
""""""""""""""""hoveringRender.Fill"="new"SolidColorBrush(hoveringObject.getColor());"
""""""""""""""""PaintCanvas.SetLeft(hoveringRender,"hoveringObject.getStartX()"k"offset);"
""""""""""""""""PaintCanvas.SetTop(hoveringRender,"hoveringObject.getStartY()"k"offset);"
""""""""""""""""PaintCanvas.SetZIndex(hoveringRender,"10);"
""""""""""""}"
""""""""""""else"{"hoveringRender.Visibility"="Visibility.Hidden;"}"
""""""""}"
"
""""""""public"void"addPaintObject(PaintObject"newObject)"
""""""""{"
""""""""""""currentlyDrawing"="false;"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Add(newObject);"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

106"
107"
108"
109"
110"
111"
112"
113"
114"
115"
116"
117"
118"
119"
120"
121"
122"
123"
124"
125"
126"
127"
128"
129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"

1404

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

7

5

6

Figure 6. Visibility of changes’ effect by mouse hovering

Visible changes’ effect
To show the effect of the change in the code, the user can
hover on any colored block to see the latest changes. For
example, in Figure 6, the user decided to look at the changed
block that was not visible in Figure 5. Then, by hovering on
the colored sign on the left (Point 5), (s)he can see the effect
of that change: The argument of the RemoveAt method call
has changed (Point 6), and the Refresh method call has
replaced a call present before on the same object (Point 7).

RITE participants’ feedback—This feature was introduced in
the third iteration of the tool, after considering the feedback
received by the first participants. As an example, one partici-
pant had some expectations when hovering the lines indicat-
ing a change: “toggle to highlight what’s different from the
last version, to quickly diagnose, I don’t need a true side by
side” [R3]. Once introduced, this feature was well received

by all the remaining participants (e.g., “ok, good! I can see
here how [this part] changed!” [R6]), because it also helps
with the progressive disclosure of the information about the
changes: Users can quickly verify whether the changes seem
relevant and, only if necessary, investigate more.

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"

"
"
"#9050

Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

1404

PaintCanvas.cs []

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

910
8

11

12

Figure 7. Accessible historical details

Accessible historical details
In BELLEVUE the user can see the code history of any block
that was changed with respect to the previous local version.
This is achieved with one click on the colored sign on the left
of the interesting block. For example, in Figure 7, the user de-
cided to further inspect the history of lines 142–143 because
they led to an unexpected behavior. Once the block is clicked,
a pane appears from the bottom (Point 8): It contains the his-
torical details of the changes happened to that block since the
last update of the user. Each item represents a change and
shows the changed code with respect to the previous commit
(Point 9), the commit message to document it (Point 10), and
the contact information of the change author (Point 11). The
changed code only regards the chosen block, but it is possible
to extend it by clicking on the ‘...’ before and after. It is also
possible to inspect also previous history (Point 12).

RITE participants’ feedback—As for the other steps, before
showing what would happen next, the interviewer asked the
participants how they would interact with the design and what
their expectations would be. In particular, for this feature, the
interviewer asked what participants expected it would happen
by clicking on the colored sign on the left (Point 5). In this
way, we learned that the participants wanted to have some-
thing similar to a diff with the previous version (e.g., “I’d
do a compare versus the previous version, and just look at
those particular changes” [R3]). The BELLEVUE solution
was, thus, very much appreciated and it often exceeded their
expectations: “All the details! This is exactly what I was look-
ing for: It tells me who [...] and it tells me what did each one,
and how long ago!” [R1]; “oh I see, so this is exactly what
I was looking for. It’s even better!” [R8]. Seeing the version
that could have introduced the error (i.e., #9044) was a clearly

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

10 TUD-SERG-2014-019

marked exit: Some participants considered to recover the er-
ror by reverting that particular change, because that would not
imply reverting entirely to a more complex change set.

Through the iterations, we added the clickable revision num-
ber (to open a panel to see all the changes in a revision), and
the hovering function to show the full commit comment.

Participants’ suggestions that we did not eventually include in
the iterative evaluation, due to time reasons, mostly regarded
the possibility of selecting specific parts to see the history,
instead of the contiguous block (e.g., “I want to see the whole
function [history, by] right clicking on a function” [R2]).

Editable code
BELLEVUE allows editing code while reviewing the history
(Figure 8), because it integrates history within the active
editing context. It also highlights the new code differently
(Point 13 in Figure 9) and automatically adds a new item to
the list (Point 14) to put it in its historical context. This dif-
fers from current approaches for visualizing history, which
involve opening a distinct context or application, and do not
make it possible to edit code (e.g., to fix a bug) and see history
in the same context, at the same time.

RITE participants’ feedback—This feature was very well re-
ceived by all the participants. In particular, many were pos-
itively surprised and realized the possibilities of having code
changes better integrated in the IDE: “I have a diff view, but I
am not trapped in that [...] I got my editor and my diff view, so
the split view is very very helpful [...]. Let me do what I want
to do, while looking at the information I needed to make my
change” [R1]; “Now that I see, I know what is happening [...].
That is intuitive to me: Just clicking, edit, and go” [R7]. They
also appreciated the immediate feedback of the change in the
local history (Figure 9): “Oh, I like it shows it’s local” [R4].

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Refresh();""
""""""""}"
""""}"
}"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"

142"
143"

1404

paint

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

#9050
Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

 Load previous history

x

""""
"""history.RemoveAt(history.Count"k"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

Figure 8. Editable code while accessing historical details

Contacting change’s author
The author’s photo and contact pane is inspired by
CARES [32], a tool to help developers discover and choose
relevant colleagues to speak with when seeking information
or coordinating action. In BELLEVUE, the communication

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint

 # bin

 # obj

 # Properties

app.config

App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList

…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs

PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Repaint();""
""""""""}"
""""}"
}"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"

1404

 " Paint

 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []

PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

Local
 2 seconds ago

 yourself

#9050
Latest
update

 “Improved readability and consistency.”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code and fixed some [...]
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

""""
"""history.RemoveAt(history.Count"–"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

"""history.RemoveAt(lastItemIndex);"
"""this.Repaint();""

142"
143"

..."
"
"
"
...4

"""history.RemoveAt(lastItemIndex);"
"""""""this.Repaint();""

142"
143"

1413

Figure 9. New local change added to history

icons are for contacting the author of a given commit. Fig-
ure 10 shows the email template automatically generated by
clicking on the email icon for commit #9044; it includes the
diff with the previous commit, for easier reference.

h"p://online.visualstudio.com4 Visual4Studio4 r!

James4Green4444/4444Paint4

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

 " Paint
 # bin

 # obj

 # Properties

app.config
App.xaml

App.xaml.cs

ColorPanel.xaml

ColorPanel.xaml.cs

EraserPaint.cs

IPaintObjectConstructorList
…

LinePaint.cs

PaintCanvas.cs

PaintCanvasCommands.cs

PaintObject.cs
PaintObjectConstructor.cs

PencilPaint.cs

RectPaint.cs

Window1.xaml

Window1.xaml.cs

1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"
24"
25"
26"
27"
28"
29"
30"
31"
32"
33"
34"
35"
36"
37"
38"
39"
40"
41"
42"
43"
44"
45"
46"
47"
48"

*PaintCanvas.cs [1]

"
"""""""""
""""""""}"
"
""""""""public"void"clear()"
""""""""{"
""""""""""""history.Add(new"List<PaintObject>(paintObjects));"
""""""""""""paintObjects.Clear();"
""""""""""""this.Repaint();"
""""""""}"
"
""""""""public"void"undo()"
""""""""{"
""""""""""""int"lastItemIndex"="history.Count"–"1;"
""""""""""""paintObjects"="history.Last<List<PaintObject>>();"
""""""""""""history.RemoveAt(lastItemIndex);"
""""""""""""this.Repaint();""
""""""""}"
""""}"
}"

129"
130"
131"
132"
133"
134"
135"
136"
137"
138"
139"
140"
141"
142"
143"
144"
145"
146"
147"
148"
149"
150"
151"
"
"
"

1404

 " Paint
 app.config []

LinePaint.cs []

PaintCanvas.cs []

PaintCanvasCommands.cs []
PencilPaint.cs []

RectPaint.cs []

Window1.xaml.cs []

PaintCanvas.cs []

Latest changes only [7 files]

Local
 2 seconds ago

 yourself

#9050
Latest
update

 “Improved readability”
 10 hours ago

 kathy.farewell@live.com

#9044

 “Cleaned up the code…”
 12 hours ago

 joe.smith@live.com

#8227
Previous
update

 “Added undo method” 4
 4 weeks ago

 yourself

x

""""
"""history.RemoveAt(history.Count"–"1);"
"""this.Refresh();""

141"
142"

"""history.RemoveAt(lastItemIndex);"
"""this.Refresh();""

142"
143"

"""history.RemoveAt(history.Count"k"1);"
"""this.Repaint();""

141"
142"

..."
"
"
"
...4

..."
"
"
"
...4

..."
"
"
"
...4

"""history.RemoveAt(lastItemIndex);"
"""this.Repaint();""

142"
143"

..."
"
"
"
...4

"""history.RemoveAt(lastItemIndex);"
"""""""this.Repaint();""

142"
143"

joe.smith@live.com4

james.green@live.com4

Figure 10. Contacting the author of a change from the IDE

RITE participants’ feedback—The social interaction within
the view was extremely well received by all the participants.
They especially appreciated the possibility of quickly using
email and IM: “I really like that. I’d click on chat” [R6].
When discussing the email they would write to the author of
the buggy change, they all specify the things they would like
to ideally see in the email, and when they see it, they like how
it includes everything they wanted: “That is perfect. [It is]
exactly what I would have sent” [R1]. However, some would
have liked to obtain the diff view as BELLEVUE shows it in
the IDE, while “now it’s like standard diff ” [R6].

Participants’ suggestions not integrated for time reasons are:
Adding an email all feature, change the email title to give
information about method and class in which the new change
is taking place, support for copy and paste from history to
email, and add communication clients (e.g., IRC or Skype).

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 11

Evaluation Debriefing
After each RITE session, participants filled two short ques-
tionnaires about their experience with the tool: A System Us-
ability Scale (SUS) questionnaire [11] and a proprietary 7-
point Likert scale questionnaire standardly used at Microsoft.
The SUS answers were overall positive: The mean SUS score
is 85.1 (answers had σ = 0.66, on average), which is consid-
ered a high value across different domains [5, 6, 67]; as an
example, the statement “I think that I would like to use this
product frequently” scored 4.7/5.0 (σ = 0.50). The propri-
etary survey was equally positive: Mean score was 5.4/7.0
(the higher the better: items only included positive word-
ings [40]), with σ = 1 on average. For example participants
gave 5.4/7.0 (σ = 1.13) to the statement “This product has
powerful functionality and excels at what it was designed for”
and “This product is something I am likely to share informa-
tion about” scored 5.9/7.0 (σ = 0.78).

COLLABORATIVE SOFTWARE DEVELOPMENT TOOLS
Coordination in software development has been studied in the
fields of Software Engineering and Computer Supported Co-
operative Work since the 1980s, and researchers have pro-
duced a wide range of analyses and tools [62].

BELLEVUE uses historical change information to support de-
velopers’ coordination. Sarma et al. present a comprehen-
sive review of coordination tools and defines a framework that
classifies those technologies according to multiple coordina-
tion paradigms [66]. In this framework, tools such as version-
ing systems and issue tracking systems support the develop-
ment process and are at the basis of the more sophisticated
tools that provide meaningful and automatically aggregated
information: These are research prototypes and industrial ap-
plications conceived to better support developers coordina-
tion in the IDE. Such tools includes full-fledged platforms,
specific workspace awareness solutions, information discov-
ery approaches, and code information visualization tools.

Full-fledged platforms, such as Jazz [39] and Mylyn [25], are
at the far end of the spectrum in terms of complexity [66],
and aim at transforming the IDE experience. Jazz, or Rational
Team Concert, is an IDE platform, built on top of Eclipse and
Visual Studio, that integrates several aspects of the software
development process, including integrated planning, tracking
of developer effort, project dashboards, reports, and process
support. Relations between artifacts can be defined and lever-
aged to gather project information. Jazz also offer support
for communication within the IDE (e.g., instant messaging),
more advanced than BELLEVUE. Mylyn and its successor,
Tasktop Dev [70], are based on Eclipse and Visual Studio and
use task context to improve the productivity of developers and
teams [43]; for example, they reduce information overload
by providing developers with just the artifacts and informa-
tion necessary for their current code modification task, and
offer a comprehensive task repository to support teamwork
by sharing information on tasks and their context. Both plat-
forms support the creation of novel information (e.g., tasks
and work items, and relations among artifacts) to support
developers productivity, and encourage a task or work item
based approach to evolution. BELLEVUE aims at using al-

ready available data and visualizing it in a non-obtrusive way.
Another example of improved communication in the IDE is
REmail [4], which integrates developers’ email communica-
tion in the IDE to support program comprehension; REmail
can be used in conjunction with BELLEVUE to extend the
communication feature of the latter.

Workspace awareness solutions, such as Palantı̀r [64], Light-
house [19], CollabVS [23], Syde [34], and Crystal [12] are
concerned with changes before they are committed to the
source code repository, to address the conflict detection or
real-time development information. For example, Syde tracks
fine-grained real-time changes and alerts developers on the
code editor and on a view when potential conflicts are emerg-
ing. Given the goal of these tools, differently from BELLE-
VUE, they do not show change history related information.

Interestingly, BELLEVUE design could be included in envi-
ronments such as Mylyn and Jazz, and could be used con-
currently with workspace awareness tools, in order to offer
coordination support from a complementary perspective.

Information discovery approaches, such as Ariadne [20] and
Tesseract [63], seek and assemble information to perform
tasks such as expert finding and socio-technical network anal-
ysis. Recommender systems, such as Seahawk [57, 58], ex-
ploit change information and externally generated data to sup-
port software development and comprehension. Similarly to
BELLEVUE some of these approaches also use historical code
information to inform their users. Given their goal, they offer
different, complementary views on data and integration with
the development environment.

Code information visualization tools include the “blame”
functionality offered, for example, by git or svn.This feature
allows to see who did the last change on each line of code
of a file, and when. Another tool is the concept presented by
Rastkar and Murphy, in which the developer is able to see for
a summary of commit messages connected to a line of code
in the IDE [60]. In contrast, BELLEVUE offers an interactive
view that shows detailed historical information for specific
chucks with respect to a previous version. BELLEVUE always
displays which files and lines changed, so it does not require
the developer to actively ask for the commit message of the
line, because the developer may not be already aware of the
relevance of the file and the line. In our exploratory investi-
gation narrowing down a breaking change to the file and line
causing the issue emerged as one of the most problematic and
time-consuming efforts for developers.

FINAL REMARKS
In our study we explored how to support developers’ collab-
oration in teamwork. We focused on teamwork in the soft-
ware implementation phase, which takes place in the IDE,
and we conducted a qualitative investigation to uncover ac-
tionable areas for improvement. We identified internal break-
ing changes as one of the most important areas for improve-
ment, because current IDE support for receiving changes is
not optimal. Consequently, we designed BELLEVUE to en-
able developers better coordinate, by making historical infor-
mation visible and more accessible in the IDE.

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

12 TUD-SERG-2014-019

Overall, this paper makes the following main contributions:

1. A qualitative analysis indicating that teamwork needs
mostly regard coordination, that developers are able to face
scenarios considered problematic in literature, and that
dealing with breaking changes is hard, but it only gener-
ates frustration if the breaker is internal to the project.

2. Recommendations on how to improve collaboration in
teamwork in the software implementation phase, such as to
focus on interactions revolving around coordination rather
than on collaboration on the same (sub)task.

3. Requirements for a tool to support teamwork based on cur-
rently unmet usability heuristics and the results of our qual-
itative analysis. For example, to favor recognition of code
changes over recall, and to increase the visibility of the
codebase status with respect to received changes.

4. The design and evaluation of BELLEVUE, an IDE exten-
sion to support teamwork by improving the integration
of code changes in the IDE. BELLEVUE makes received
changes visible inside the editor, and makes the history of
code chunks easily accessible using progressive disclosure.

ACKNOWLEDGMENTS
We want to express our gratitude to the anonymous reviewers,
whose valuable comments significantly helped to improve the
paper. We warmly thank Andrew Begel for his first-class
feedback on the revision of this paper, and Monty Hammon-
tree for his support during Anja’s internship.

REFERENCES
1. Anvik, J., Hiew, L., and Murphy, G. C. Who should fix this bug? In

Proceedings of ICSE 2006 (28th International Conference on Software
Engineering), ACM Press (2006), 361–370.

2. Anvik, J., and Murphy, G. C. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM Transactions
on Software Engineering and Methodology 20, 3 (Aug. 2011),
10:1–10:35.

3. Arnold, R., and Bohner, S. Software Change Impact Analysis.
Wiley-IEEE Computer Society Press, 1996.

4. Bacchelli, A., Lanza, M., and Humpa, V. RTFM (Read The Factual
Mails) –augmenting program comprehension with REmail. In
Proceedings of CSMR 2011 (15th IEEE European Conference on
Software Maintenance and Reengineering) (2011), 15–24.

5. Bangor, A., Kortum, P., and Miller, J. An empirical evaluation of the
system usability scale. International Journal of Human-Computer
Interaction 24, 6 (July 2008), 574–594.

6. Bangor, A., Kortum, P., and Miller, J. Determining what individual
SUS scores mean: Adding an adjective rating scale. Journal of
Usability Studies 4, 3 (May 2009), 114–123.

7. Begel, A., Khoo, Y. P., and Zimmermann, T. Codebook: Discovering
and exploiting relationships in software repositories. In Proceedings of
ICSE 2010 (32nd ACM/IEEE International Conference on Software
Engineering), ACM (2010), 125–134.

8. Begel, A., Nagappan, N., Poile, C., and Layman, L. Coordination in
large-scale software teams. In Proceedings of the CHASE 2009 (2nd
International Workshop on Cooperative and Human Aspects of
Software Engineering), IEEE Computer Society (2009), 1–7.

9. Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G.
FASTDash: a visual dashboard for fostering awareness in software
teams. In Proceedings of CHI 2007 (25th SIGCHI Conference on
Human Factors in Computing Systems, ACM (2007), 1313–1322.

10. Black, S. Computing ripple effect for software maintenance. Journal of
Software Maintenance 13, 4 (Sept. 2001), 263–.

11. Brooke, J. SUS: A ‘quick and dirty’ usability scale. In Usability
Evaluation in Industry, P. W. Jordan, B. Thomas, I. L. McClelland, and
B. Weerdmeester, Eds. CRC Press, 1996, ch. 21, 189–194.

12. Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Proactive detection
of collaboration conflicts. In Proceedings of ESEC/FSE 2011 (8th Joint
Meeting on Foundations of Software Engineering), ACM (2011),
168–178.

13. Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. Early detection of
collaboration conflicts and risks. IEEE Transactions on Software
Engineering 39, 10 (2013), 1358–1375.

14. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. Software
dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering 35, 6 (Nov. 2009), 864–878.

15. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M.
Identification of coordination requirements: Implications for the design
of collaboration and awareness tools. In Proceedings of CSCW 2006
(20th Anniversary Conference on Computer Supported Cooperative
Work), ACM (2006), 353–362.

16. Chen, W.-N., and Zhang, J. Ant colony optimization for software
project scheduling and staffing with an event-based scheduler. IEEE
Transactions on Software Engineering 39, 1 (Jan. 2013), 1–17.

17. Cheng, L.-T., de Souza, C. R., Hupfer, S., Patterson, J., and Ross, S.
Building collaboration into IDEs. ACM Queue 1, 9 (2003), 40–50.

18. Curtis, B., Krasner, H., and Iscoe, N. A field study of the software
design process for large systems. Communications of the ACM 31, 11
(Nov. 1988), 1268–1287.

19. da Silva, I., Chen, P., der Westhuizen, C. V., Ripley, R., and van der
Hoek, A. Lighthouse: Coordination through emerging design. In
Proceedings of ETX 2006 (OOPSLA Workshop on Eclipse Technology
eXchange, ACM Press (2006), 11–15.

20. de Souza, C. R. B., Quirk, S., Trainer, E., and Redmiles, D. F.
Supporting collaborative software development through the
visualization of socio-technical dependencies. In Proceedings of
GROUP 2007 (International ACM SIGGROUP Conference on
Supporting Group Work), ACM (2007), 147–156.

21. de Souza, C. R. B., Redmiles, D., and Dourish, P. Breaking the code,
moving between private and public work in collaborative software
development. In Proceedings of GROUP 2003 (International ACM
SIGGROUP Conference on Supporting Group Work), ACM Press
(2003), 105–114.

22. de Souza, C. R. B., and Redmiles, D. F. An empirical study of software
developers’ management of dependencies and changes. In Proceedings
of ICSE 2008 (30th ACM/IEEE International Conference on Software
Engineering), ACM (2008), 241–250.

23. Dewan, P., and Hegde, R. Semi-synchronous conflict detection and
resolution in asynchronous software development. In Proceedings of
ECSCW 2007 (10th European Conference on Computer Supported
Cooperative Work), Springer (2007), 24–28.

24. Duggan, J., Byrne, J., and Lyons, G. J. A task allocation optimizer for
software construction. IEEE Software 21, 3 (May 2004), 76–82.

25. Eclipse Foundation. Mylyn. [Software]. Available:
https://www.eclipse.org/mylyn/ [Accessed: Jun 4, 2014], 2014.

26. Fritz, T., and Murphy, G. C. Using information fragments to answer the
questions developers ask. In Proceedings of ICSE 2010 (32nd
ACM/IEEE International Conference on Software Engineering), ACM
(2010), 175–184.

27. Frost, R. Jazz and the eclipse way of collaboration. IEEE Software 24,
6 (2007), 114–117.

28. Furnham, A. Response bias, social desirability and dissimulation.
Personality and Individual Differences 7, 3 (1986), 385 – 400.

29. Grinter, R. Supporting articulation work using software configuration
management systems. Computer Supported Cooperative Work 5, 4
(1996), 447–465.

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 13

30. Grubb, A. M., and Begel, A. On the perceived interdependence and
information sharing inhibitions of enterprise software engineers. In
Proceedings of CSCW 2012 (ACM Conference on Computer Supported
Cooperative Work), ACM (2012), 1337–1346.

31. Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., and van Deursen, A.
Communication in open source software development mailing lists. In
Proceedings of MSR 2013 (10th IEEE Working Conference on Mining
Software Repositories) (2013), 277–286.

32. Guzzi, A., Begel, A., Miller, J. K., and Nareddy, K. Facilitating
enterprise software developer communication with CARES. In
Proceedings of ICSM 2012 (28th IEEE International Conference on
Software Maintenance) (2012), 527–536.

33. Hattori, L. Change-centric Improvement of Team Collaboration. PhD
thesis, Università della Svizzera Italiana, February 2012.

34. Hattori, L., and Lanza, M. Syde: A tool for collaborative software
development. In Proceedings of ICSE 2010 (32nd ACM/IEEE
International Conference on Software Engineering) (2010), 235–238.

35. Hattori, L., Lanza, M., and D’Ambros, M. A qualitative analysis of
preemptive conflict detection. Tech. Rep. 2011/05, University of
Lugano, Sept. 2011.

36. Hegde, R., and Dewan, P. Connecting programming environments to
support ad-hoc collaboration. In Proceedings of ASE 2008 (23rd
IEEE/ACM International Conference on Automated Software
Engineering, IEEE CS Press (2008), 178–187.

37. Henderson, R. M., and Clark, K. B. Architectural innovation: The
reconfiguration of existing product technologies and the failure of
established firms. Administrative Science Quarterly 35, 1 (Mar. 1990),
9–30.

38. Herbsleb, J. D., Mockus, A., and Roberts, J. A. Collaboration in
software engineering projects: A theory of coordination. In
Proceedings ICIS 2006 (International Conference on Information
Systems) (2006).

39. IBM. Rational Team Concert. [Software]. Available:
http://jazz.net/projects/rational-team-concert/ [Accessed: Jun 4, 2014],
2014.

40. Jeff, and Lewis, J. R. When designing usability questionnaires, does it
hurt to be positive? In Proceedings of CHI 2011 (29th Conference on
Human Factors in Computing Systems), CHI ’11, ACM (2011),
2215–2224.

41. Jeong, G., Kim, S., and Zimmermann, T. Improving bug triage with bug
tossing graphs. In Proceedings of ESEC/FSE 2009 (7th Joint Meeting
on Foundations of Software Engineering), ACM (2009), 111–120.

42. Kasi, B. K., and Sarma, A. Cassandra: Proactive conflict minimization
through optimized task scheduling. In Proceedings of ICSE 2013 (35th
International Conference on Software Engineering), IEEE Press
(2013), 732–741.

43. Kersten, M., and Murphy, G. C. Using task context to improve
programmer productivity. In Proceedings of FSE 2006 (14th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering), ACM (2006), 1–11.

44. Kirsch, L. J. The Management of Complex Tasks in Organizations:
Controlling the Systems Development Process. Organization Science 7,
1 (Jan. 1996), 1–21.

45. Ko, A. J., DeLine, R., and Venolia, G. Information needs in collocated
software development teams. In Proceedings of ICSE 2007 (29th
ACM/IEEE International Conference on Software Engineering), IEEE
Computer Society (2007), 344–353.

46. Kraut, R. E., and Streeter, L. A. Coordination in software development.
Communications of the ACM 38, 3 (Mar. 1995), 69–81.

47. Kwan, I., Schroter, A., and Damian, D. Does socio-technical
congruence have an effect on software build success? a study of
coordination in a software project. IEEE Transactions on Software
Engineering 37, 3 (May 2011), 307–324.

48. LaToza, T. D., Venolia, G., and DeLine, R. Maintaining mental models:
a study of developer work habits. In Proceedings of ICSE 2006 (28th
ACM International Conference on Software Engineering), ACM
(2006), 492–501.

49. Lidwell, W., Holden, K., and Butler, J. Universal Principles of Design,
Revised and Updated: 125 Ways to Enhance Usability, Influence
Perception, Increase Appeal, Make Better Design Decisions, and Teach
through Design, 2nd ed. Rockport Publishers, January 2010.

50. Lindlof, T. R., and Taylor, B. C. Qualitative Communication Research
Methods. SAGE Publications, Inc., 2010.

51. Malone, T. W., and Crowston, K. The interdisciplinary study of
coordination. ACM Computing Surveys 26, 1 (Mar. 1994), 87–119.

52. Martin, B., and Hanington, B. Universal Methods of Design: 100 Ways
to Research Complex Problems, Develop Innovative Ideas, and Design
Effective Solutions. Rockport Publishers, 2012.

53. Matter, D., Kuhn, A., and Nierstrasz, O. Assigning bug reports using a
vocabulary-based expertise model of developers. In Proceedings of
MSR 2009 (6th International Working Conference on Mining Software
Repositories), IEEE Computer Society (2009), 131–140.

54. Medlock, M. C., Wixon, D., Terrano, M., Romero, R. L., and Fulton, B.
Using the RITE method to improve products: A definition and a case
study. In Proceedings of UPA 2002 (Usability Professionals
Association) (2002).

55. Molich, R., and Nielsen, J. Improving a human-computer dialogue.
Communications of the ACM 33, 3 (Mar. 1990), 338–348.

56. Nielsen, J. 10 usability heuristics for user interface design.
http://www.nngroup.com/articles/ten-usability-heuristics/, January
1995.

57. Ponzanelli, L., Bacchelli, A., and Lanza, M. Leveraging crowd
knowledge for software comprehension and development. In
Proceedings of CSMR 2013 (17th European Conference on Software
Maintenance and Reengineering), IEEE CS Press (2013), 57–66.

58. Ponzanelli, L., Bacchelli, A., and Lanza, M. Seahawk: Stack overflow
in the ide. In Proceedings of ICSE 2013 (35th International Conference
on Software Engineering), IEEE CS Press (2013), 1295–1298.

59. Proenca, T., Moura, N., and van der Hoek, A. On the use of emerging
design as a basis for knowledge collaboration. New Frontiers in
Artificial Intelligence 6284 (2010), 124–134.

60. Rastkar, S., and Murphy, G. C. Why did this code change? In
Proceedings of ICSE 2013 (35th ACM/IEEE International Conference
on Software Engineering), IEEE Press (2013), 1193–1196.

61. Robbes, R., Lungu, M., and Röthlisberger, D. How do developers react
to api deprecation?: The case of a smalltalk ecosystem. In Proceedings
of FSE 2012 (20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering), ACM (2012), 56:1–56:11.

62. Sarma, A. A survey of collaborative tools in software development, isr.
Tech. rep., Institute for Software Research, University of California,
Irvine, 2005.

63. Sarma, A., Maccherone, L., Wagstrom, P., and Herbsleb, J. Tesseract:
Interactive visual exploration of socio-technical relationships in
software development. In Proceedings of ICSE 2009 (31st International
Conference on Software Engineering), IEEE Computer Society
(Washington, DC, USA, 2009), 23–33.

64. Sarma, A., Noroozi, Z., and van der Hoekvan der Hoek. Palantı̀r:
Raising awareness among configuration management workspaces. In
Proceedings of ICSE 2002 (23rd International Conference on Software
Engineering), IEEE CS Press (2003), 444–454.

65. Sarma, A., Redmiles, D., and van der Hoek, A. Empirical evidence of
the benefits of workspace awareness in software configuration
management. In Proceedings of FSE 2008 (16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ACM Press (2008), 113–123.

66. Sarma, A., Redmiles, D., and van der Hoek, A. Categorizing the
spectrum of coordination technology. IEEE Computer 43, 6 (June
2010), 61–67.

67. Sauro, J. A Practical Guide to the System Usability Scale: Background,
Benchmarks and Best Practices. CreateSpace, 2011.

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

14 TUD-SERG-2014-019

68. Sillito, J., Murphy, G. C., and Volder, K. D. Questions programmers ask
during software evolution tasks. In Proceedings of FSE 2006 (14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering), ACM (2006), 23–34.

69. Spencer, D. Card sorting: a definitive guide.
http://boxesandarrows.com/card-sorting-a-definitive-guide/, April 2004.

70. Tasktop. Tasktop Dev. [Software]. Available:
http://www.tasktop.com/dev [Accessed: Aug 1, 2014], 2014.

71. Whitehead, J. Collaboration in software engineering: A roadmap. In
Proceedings of FOSE 2007 (Future of Software Engineering), IEEE
Computer Society (2007), 214–225.

72. Yau, S. S., Colofello, J. S., and MacGregor, T. Ripple effect analysis of
software maintenance. In Proceedings of COMPSAC, IEEE Computer
Society Press (1978), 60–65.

73. Zeller, A. The future of programming environments: Integration,
synergy, and assistance. In Proceedings of FOSE 2007 (Future of
Software Engineering), IEEE Computer Society (2007), 316–325.

SERG Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE

TUD-SERG-2014-019 15

Guzzi, Bacchelli, Riche, and van Deursen – Supporting Developers’ Coordination in The IDE SERG

16 TUD-SERG-2014-019

TUD-SERG-2014-019
ISSN 1872-5392 SERG

