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1

Introduction

In a very general sense one may say that functional calculus theory studies
the pairing of an operator A on some Banach space X and a function f = f (z)
of a variable z as an operator f (A) on X. One would then like to derive
properties of f (A), for example norm bounds, from properties of the function
f and the operator A. This thesis will be concerned with several instances of
this problem.

Functional calculus theory arises in various contexts. The spectral the-
orem yields a beautiful functional calculus in which one can associate a
bounded operator f (A) with any normal operator A on a Hilbert space X
and any bounded measurable function f on the spectrum of A. A similar
theory exists on Banach spaces for scalar type operators, which correspond
to diagonalizable matrices if X is a finite dimensional space. In these cases,
the existence of a spectral measure allows for a natural definition of the func-
tional calculus, and this calculus has many desirable properties.

A general bounded operator A on a Banach space does not have a spectral
measure, and therefore the construction of a functional calculus for such op-
erators should proceed in a different manner. The Riesz-Dunford functional
calculus takes Cauchy’s formula as a starting point, using that for a bounded
operator A and λ not in the spectrum of A the definition of the operator

1
λ−z (A) = (λ− A)−1 is obvious. One then obtains a bounded operator f (A)
on X for each holomorphic function on a neighborhood of the spectrum of
A, and the mapping f 7→ f (A) that arises from this procedure allows one
to study a large class of operators associated with A, such as spectral projec-
tions corresponding to parts of the spectrum of A.

If A is an unbounded operator and f is holomorphic on a neighborhood
of the spectrum of A and on a neighborhood of infinity, then one can use an
extension of the Riesz-Dunford functional calculus to construct a functional
calculus for A, see for instance [41]. However, since many interesting func-
tions are not holomorphic on a neighborhood of infinity, this calculus is of
limited use in applications.
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An additional complication is that one is often interested in functions
which have singularities. By this we mean that the function f need not in
general be defined on a full neighborhood of the spectrum of A. For instance,
in the functional calculus theory for generators of strongly continuous semi-
groups one often deals with an operator A with spectrum in the standard
closed right half-plane and which intersects the imaginary axis, in particu-
lar at zero. In this case it is often unnatural to consider functions defined on
regions which strictly contain zero, as this would restrict the number of in-
teresting examples the theory applies to (think for instance of the fractional
powers of an operator).

A functional calculus theory for a specific class of unbounded operators
and functions with singularities at zero and infinity was developed by McIn-
tosh and collaborators (see e.g. [88], [29]). This theory is now called the theory
of H∞-functional calculus, or simply H∞-calculus (throughout, H∞ denotes
the Hardy space of bounded holomorphic functions on some domain). In
the theory of H∞-calculus problems arise that are not present in the Riesz-
Dunford calculus for bounded operators. For example, for general bounded
and holomorphic f one can only define f (A) as an unbounded operator. The
question for which bounded holomorphic functions f and operators A the
operator f (A) is bounded is still mostly unanswered in general.

It turns out that these obstacles make the theory of H∞-calculus highly
nontrivial, and many basic questions remain unanswered. If A is an operator
such that f (A) is bounded for all bounded holomorphic functions (on some
domain) then A is said to have a bounded H∞-calculus. It was shown early
on by McIntosh that on Hilbert spaces, the boundedness of the H∞-calculus
for A is equivalent to the boundedness of certain square functions for A. The
result in question deals with so-called sectorial operators, defined in Section
2.2.3. For the moment it suffices to note that a sectorial operator A of angle
ϕ ∈ (0, π) has spectrum contained in the closure of the sector Sϕ with ver-
tex at zero and opening angle 2ϕ which is symmetric around the positive
real axis. If A is injective then A has a natural functional calculus that asso-
ciates with functions in the class H∞(Sψ), for any ψ ∈ (ϕ, π), an unbounded
operator f (A). By H∞

0 (Sψ) we denote the subspace of H∞(Sψ) consisting of
bounded holomorphic functions on Sψ which decay polynomially at zero
and infinity. The following then holds, cf. [88].

Theorem 1.1. Let A be an injective sectorial operator of angle ϕ ∈ (0, π) on a
Hilbert space X. Then the following assertions are equivalent.

• For some ψ ∈ (ϕ, π) and all f ∈ H∞(Sψ), f (A) is bounded;
• For all ψ ∈ (ϕ, π) and all f ∈ H∞(Sψ), f (A) is bounded;
• For some ψ ∈ (ϕ, π) and some nonzero f ∈ H∞

0 (Sψ), there are constants
C1, C2 > 0 such that

C1 ‖x‖ ≤
(∫ ∞

0
‖ f (tA)x‖2 dt

t

)1/2
≤ C2 ‖x‖
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for all x ∈ X.
• For all ψ ∈ (ϕ, π) and all nonzero f ∈ H∞

0 (Sψ), there are constants C1, C2 > 0
such that

C1 ‖x‖ ≤
(∫ ∞

0
‖ f (tA)x‖2 dt

t

)1/2
≤ C2 ‖x‖ (1.1)

for all x ∈ X.

Later, Cowling, Doust, McIntosh and Yagi generalized Theorem 1.1 to
sectorial operators on general Banach spaces using weak square function es-
timates ( [29]). The latter theory is useful in particular on Lp-spaces.

The square functions or quadratic estimates which occur in Theorem 1.1
come from harmonic analysis and go back to the classical Littlewood-Paley
g-functions (see [115]). In fact, for A the square root of the negative Laplacian
on Rn and f (z) := z

(1+z)2 , a change of variables shows that (1.1) is a gener-
alization of the Littlewood-Paley g-function. The connection between square
functions and functional calculus theory has been investigated by many au-
thors, see for example [68], [75], [80] and [54]. It is a manifestation of the link
between harmonic analysis and functional calculus theory which appears
frequently throughout this thesis. In fact, one could say that it is one of the
central themes of this work.

An instance of the link between functional calculus theory and harmonic
analysis can also be found in the study of symmetric contraction semigroups
on Lp-spaces. Let A be a positive operator (i.e. A is selfadjoint and the spec-
trum of A is contained in the nonnegative real numbers) on L2(Ω, µ), where
(Ω, µ) is a measure space. Let the operators e−tA = e−t·(A) be defined by
the Borel functional calculus for A, and assume that

∥∥e−tA f
∥∥

p ≤ ‖ f ‖p for

all f ∈ Lp(Ω, µ) ∩ L2(Ω, µ) and all p ∈ [1, ∞]. In this case (e−tA)t≥0 ex-
tends to a consistent semigroup of bounded operators on Lp(Ω, µ) for all
p ∈ [1, ∞), and we say that −A generates a symmetric contraction semigroup.
Then A, considered as an operator on Lp, is a sectorial operator and one may
ask whether A has a bounded H∞-calculus. This question was considered by
Stein in [115], who proved the first general theorem on functional calculus
for symmetric contraction semigroups. Cowling extended this result in [28],
from which we take the following theorem.

Theorem 1.2. Let −A be an injective generator of a symmetric contraction semi-
group and let p ∈ (1, ∞). Then A has a bounded H∞-calculus on Lp(Ω, µ) for all
ψ ∈ (π| 1p −

1
2 |, π).

The reason for stating this result here is, apart from its importance for
functional calculus theory, the method of proof employed by Cowling. He
used transference techniques of Coifman and Weiss (see [27]) to show that, if
f is a bounded holomorphic function on the standard right half-plane such
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that the Fourier transform of the non-tangential limit of f on the imagi-
nary axis is a Fourier multiplier (see section 2.4 for definitions), then f (A)
is bounded. He then used the Mikhlin Multiplier Theorem, Theorem 2.19
below, to deduce that A has a bounded H∞(Sψ)-calculus for ψ ∈ (π/2, π)
and all p ∈ (1, ∞). Finally, Stein interpolation yields Theorem 1.2. (It should
be noted that the angle π| 1p −

1
2 | in Theorem 1.2 is not optimal and that the

optimal angle was determined recently in [25]).
The transference techniques developed by Coifman and Weiss in [27] (see

also [26]) were influenced by work of Wiener in [123] and Calderón ( [24], see
also the survey [9]). Since then, they have been studied in e.g. [13] and [59],
and applied to the theory of H∞-calculus in [64], [58] and [59]. One of the
key components in all these transference techniques is the idea of bound-
ing the norm of an operator by relating it to another operator which is bet-
ter understood, and then using bounds for the latter operator to bound the
norm of the former. Usually the operators which are better understood come
from harmonic analysis, for example as Fourier multipliers. This is the main
technique, and simultaneously the central viewpoint on functional calculus
theory, that one will find throughout this thesis.

If A is a normal operator on a Hilbert space, or more generally a scalar
type operator on a Banach space (see Section 2.2.5 for definitions), then de-
termining which functions f lead to bounded operators f (A) is trivial: the
spectral measure associated with A allows one to define in a natural way a
bounded operator f (A) for each bounded measurable function on the spec-
trum of A. However, there are still many nontrivial functional calculus ques-
tions that arise naturally. For instance, one may wonder for which unitarily
invariant norms ‖·‖ and which continuous functions f : R→ R an estimate
of the form

‖ f (A + B)− f (A)‖ ≤ C ‖B‖ (1.2)

holds for all selfadjoint operators A and B on a Hilbert space H, with a con-
stant C ≥ 0 independent of A and B. Such questions arise when studying the
interactions between atoms in a crystal ( [82,83]) and also occur in scattering
theory ( [15, 16]). Equivalently, one can consider

‖ f (B)− f (A)‖ ≤ C ‖B− A‖ (1.3)

for selfadjoint operators A and B.
If (1.3) holds then f is said to be operator Lipschitz with respect to ‖·‖, since

(1.3) implies that f is Lipschitz as a mapping on the class of selfadjoint oper-
ators with respect to the norm ‖·‖. Determining when a function is operator
Lipschitz with respect to a specific norm turns out to be highly nontrivial.
Clearly (1.3) implies that f is Lipschitz (by letting A := a ∈ R, B := b ∈ R),
but for which norms ‖·‖ are all Lipschitz functions operator Lipschitz? For
which norms and specific important functions such as the absolute value
function f does (1.3) hold? Answers to these questions can also be found by
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using tools from harmonic analysis. For example, when considering the op-
erator norm ‖·‖L(H) on a Hilbert space H, (1.3) was obtained by Peller in [95]
for f in the Besov class Ḃ1

∞,1(R) from Section 2.3.

Theorem 1.3. Let H be a Hilbert space and f ∈ Ḃ1
∞,1(R). Then there exists a con-

stant C ≥ 0 such that

‖ f (B)− f (A)‖L(H) ≤ C ‖B− A‖L(H)

for all selfadjoint A, B ∈ L(H).

To prove this result, Peller uses the technique of double operator integrals
which goes back to Daleckiı̆ and S. Kreı̆n ( [30]) and was developed exten-
sively by Birman and Solomyak in a series of papers (see [17–20]). This tech-
nique views the difference f (B)− f (A) as the image under a certain transfor-
mation of B− A. One then studies the associated transformation, and if the
divided difference f (y)− f (x)

y−x of f is sufficiently regular then one can bound
the norm of this transformation to deduce the desired result. For example,
Peller used the Littlewood-Paley decomposition of functions in Ḃ1

∞,1(R) to
show that the divided difference of f belongs to a class of functions (con-
sidered in Section 2.3) which have a specific integral representation. This in-
tegral representation ensures that the associated transformation is bounded
with respect to ‖·‖L(H), from which one deduces Theorem 1.3.

In this sense, the approach used to prove Theorem 1.3 is analogous to that
of the transference techniques described above. To bound the norm of the dif-
ference f (B)− f (A) one relates it to a better understood transformation. One
then uses other techniques to bound the norm of this transformation to de-
duce the desired result. Moreover, the transformations which occur via the
double operator integral technique are (continuous versions of) Schur mul-
tipliers. Since Schur multipliers can be viewed as noncommutative versions
of Fourier multipliers, the analogy between transference techniques and the
theory of double operator integration is even stronger.

Another link with harmonic analysis occurs when considering (1.3) with
respect to other norms than the operator norm. It was proved by M. Kreı̆n
in [74] that, if B− A is an element of the Schatten ideal S1 of trace-class oper-
ators, then f (B)− f (A) ∈ S1 for all f ∈ C∞

c (R). Moreover, (1.9) holds with
respect to the S1-norm. He also asked whether this result could be extended
to all f ∈ C1(R). One could then pose the same question for the Schatten
ideal Sp for other values of p ∈ [1, ∞].

Kreı̆n’s question has an affirmative answer for p = 2 but is false for p = 1
and p = ∞, as was shown by Farforovskaja in [46–48]. It was proved by Kato
in [69] that the absolute value function f does not satisfy (1.3) with respect
to the operator norm on an infinite dimensional Hilbert space. Later, it was
proved by Davies [31] that for f the absolute value function, (1.3) holds with
respect to the Sp-norm if and only if p ∈ (1, ∞). Finally, a complete answer
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to the question above was recently given by Potapov and Sukochev in [102],
where they proved the following.

Theorem 1.4. Let p ∈ (1, ∞) and let f : R → R be Lipschitz. Then there exists a
constant C ≥ 0 such that

‖ f (B)− f (A)‖Sp
≤ C ‖B− A‖Sp

for all selfadjoint operators A and B on `2 such that A− B ∈ Sp.

This result is proved by using double operator integral theory to relate the
difference f (B) − f (A) to the norm of a Schur multiplier, and then bound-
ing the norm of this Schur multiplier. For the latter one uses vector-valued
harmonic analysis, in particular the vector-valued Marcinkiewicz Multiplier
Theorem due to Bourgain ( [21]). Here one finds a very clear analogy with
the pairing of transference methods and vector-valued Fourier analysis that
was mentioned before, using as a vital ingredient that the Schatten p-classes
are UMD spaces for p ∈ (1, ∞). One possible proof of Theorem 1.4 even ex-
plicitly uses transference techniques.

The discussion above shows that many of the same principles that oc-
cur in the study of H∞-calculus using transference principles apply also in
the study of operator Lipschitz estimates using double operator integrals.
It is the aim of this thesis to use transference methods and double operator
integration theory to derive some new results concerning H∞-calculus and
operator Lipschitz estimates.

Applications of H∞-calculus to semigroup theory can be found in various
areas, for example in questions of maximal regularity (see e.g. [39] and [75]).
In this thesis we shall mostly be interested in applications of H∞-calculus to
numerical analysis. Consider the abstract Cauchy problem

du
dt (t) = −Au(t) (t ≥ 0)
u(0) = x

(1.4)

on a Banach space X. It is well-known that a unique mild solution to (1.4)
exists for each initial value x ∈ X (that is, (1.4) is well-posed) if and only if
−A generates a C0-semigroup (T(t))t≥0 ⊆ L(X) of bounded operators on X.
In this case the mild solution to (1.4) is given by u(t) = T(t)x for all t ≥ 0
and x ∈ X. If −A generates a C0-semigroup then A has a natural functional
calculus for all bounded holomorphic functions on suitable half-planes, and
T(t) = e−tA for all t ≥ 0.

Even when (1.4) is well-posed, the semigroup (T(t))t≥0 is often not given
explicitly or is hard to work with analytically. Hence one would like to ap-
proximate the solution u(t) = T(t)x at any time t > 0 by simpler functions.
One possible way to do this is to approximate T(t) by rational functions of
A. In functional calculus terms this comes down to approximating e−tAx by
rn(tA)x for a sequence (rn)n∈N of rational functions. In other words, one
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would like to determine when
∥∥e−tAx− rn(tA)x

∥∥ converges to zero as n
tends to infinity. If, for some function norm ‖·‖F and a constant C (possibly
depending on x), an estimate of the form∥∥∥e−tAx− rn(tA)x

∥∥∥
X
≤ C

∥∥e−t· − rn(t·)
∥∥

F (1.5)

holds for all n ∈N, and if
∥∥e−t· − rn(t·)

∥∥
F → 0 as n→ ∞, then rn(tA)x con-

verges to e−tAx. Hence functional calculus estimates as in (1.5) can yield con-
vergence of numerical approximation schemes for evolution equations. The
classical result of Brenner and Thomée from [23] on convergence of rational
approximation schemes is proved in this manner. More recently, a general
functional calculus approach to the convergence of approximation schemes
was set up in [53].

Most of these applications of functional calculus theory deal with the
Hille-Phillips functional calculus (see Section 2.2 for the definition) and let
F in (1.5) be the space of Laplace transforms of bounded measures. One then
attempts to estimate the variation norm of the inverse Laplace transform of
(a modified version of) e−t· − rn(t·) and show that it converges to zero as
n → ∞. This is the most general approach possible, in the sense that the
Hille-Phillips calculus applies to all generators of C0-semigroups and an es-
timate of the form (1.5) for this F is the best that one can expect in general.
However, for specific semigroups one might be able to obtain (1.5) for larger
function spaces F and smaller norms ‖·‖F, which then allows for a faster
convergence rate of

∥∥e−tAx− rn(tA)x
∥∥

X to zero. This approach was applied
in [49] to generators of analytic semigroups with a bounded H∞-calculus.
Transference principles can also prove useful in this setting, as these allow
one to obtain stronger functional calculus estimates for specific classes of
semigroups using results from harmonic analysis.

In this thesis we shall use functional calculus theory to derive new re-
sults on convergence of approximation schemes. In particular, we shall use
both the Hille-Phillips calculus to derive results valid for general bounded
C0-semigroups, and functional calculus estimates obtained using transfer-
ence principles to improve the convergence rates for specific classes of semi-
groups.

Applications of the operator Lipschitz estimates in (1.3) can be found in
matrix analysis, see [14]. Specifically, (1.2) shows that the functional calculus
is stable under perturbations, with a constant independent of the size of the
matrices involved.

Most of the research in this area has focused on the case of selfadjoint or
normal matrices and unitarily invariant norms in (1.3). However, there are
many interesting matrix norms that are not unitarily invariant. For example,
the operator norm of an n× n-matrix as an operator on Cn with the `p-norm
for p 6= 2 and n > 1 is not unitarily invariant. In this case, when deriving
operator Lipschitz estimates for diagonalizable matrices from those for nor-
mal matrices one gets a dependence of the constant C on the dimension n, as
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follows from the fact that the Banach-Mazur distance from `
p
n to `2

n tends to
infinity as n tends to infinity.

The discussion above might lead one to think that estimates such as (1.2)
and (1.3) for diagonalizable matrices and norms which are not unitarily in-
variant cannot be independent of the dimension. However, the double opera-
tor integral technique that has been useful in obtaining (1.3) in various cases
relies mainly on the fact that the operators A and B in (1.3) have spectral
measures. Just like a normal matrix, any diagonalizable matrix has a spectral
measure. Therefore one could hope that the double operator integral tech-
nique can also prove useful when considering diagonalizable matrices and
norms which are not unitarily invariant. In this thesis we shall show that this
is indeed the case, and we shall derive an extension of Theorem 1.3 to gen-
eral symmetric matrix norms and diagonalizable operators. This then yields
dimension-independent perturbation inequalities such as (1.2) for diagonal-
izable matrices.

We now give a more detailed description of the contents of this thesis.

Part I: Preliminaries

In the first part of this thesis we collect some background material that is
necessary for the understanding of the rest of the thesis. Most of this material
is not new, and the parts which are new generally concern adaptations of
existing concepts.

Preliminaries

We first introduce the basic notation and terminology that will be used
throughout this thesis, after which we move on to discuss various func-
tional calculi. In particular, we treat the Hille-Phillips calculus for generators
of C0-semigroups and C0-groups. We also treat the half-plane type calculus
for operators of half-plane type (of which generators of C0-semigroups are
the main example), the strip type calculus for strip type operators (of which
generators of C0-groups are the main example), the sectorial calculus for sec-
torial operators (of which generators of analytic semigroups are the main
example) and briefly the parabola type calculus for generators of cosine func-
tions. We discuss some of the basics of these calculi, such as the Convergence
Lemma. We mention examples of operators which do not have a bounded
H∞-calculus, and give sufficient conditions for operators to have a bounded
H∞-calculus. Finally, we discuss the Borel functional calculus for scalar type
operators defined by integration with respect to a spectral measure. These
functional calculi are well known and much of this material can be found in,
e.g. [45], [55] and [42].

We then introduce some of the function spaces which appear in this work.
In particular, inhomogeneous Besov spaces will be essential in Chapter 4,
whereas a particular homogeneous Besov space is important for Chapter 5.
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We then discuss a class of functions A which allow for a specific integral
representation. This class will be important in Chapter 5, and has been stud-
ied for functions on the square of the real line in [32], [101]. We define it for
functions on subsets of C×C, and we discuss some of its basic properties.

We then treat Fourier multipliers on vector-valued spaces and some of
their properties. We first consider Fourier multiplier operators on Lp-spaces
and discuss the connection between Fourier multipliers and the geometry
of the underlying space in the form of the UMD property and the Mikhlin
Multiplier Theorem. This material is classical. We then move on to Fourier
multipliers on vector-valued Besov spaces, which play a key role in Chapter
4. The most useful property of such multipliers is that one can obtain results
about their boundedness regardless of the geometry of the underlying Ba-
nach space. This material is taken mostly from [51].

In the next section we consider several transference principles which link
functional calculus with Fourier multiplier theory. In particular, we mention
the transference principle by Berkson and Gillespie from [13] and the abstract
transference principle from [59]. The latter we discuss in a specific, more con-
crete setting that will be sufficient for our purposes.

The notion of γ-boundedness is treated next. This notion was intro-
duced by Kalton and Weis in [68] and is related to the more well known
R-boundedness. It has been studied extensively since its introduction (see
the survey [120]) and is known to allow one to transfer results that follow
from Plancherel’s Theorem on Hilbert spaces to general Banach spaces. In
particular, this holds for Fourier multiplier results, which is why this notion
is useful for us in Chapters 3 and 6. We consider the ideal property of the
ideal of γ-radonifying operators and the γ-Multiplier Theorem. Moreover,
we give two applications of the notion of γ-boundedness for H∞-calculus on
general Banach spaces.

Finally, we treat some basics of real interpolation spaces. These will
mostly be used in Chapter 4, but will appear at several other places in this
thesis as well. In particular, we use that vector-valued Besov spaces occur as
interpolation spaces between vector-valued Sobolev spaces. This material is
classical (see [12] and [86]).

Part II: Functional calculus using transference methods

In Part I of this thesis we present some new functional calculus results for
(semi)group generators, obtained using transference principles.

We note that the transference approach has also been employed in [105] to
derive functional calculus results for C0-groups using the geometric notions
of type and cotype of a Banach space.

Functional calculus for semigroup generators

In this chapter we consider functional calculus for semigroup generators. The
study of H∞-calculus for generators of general, not necessarily analytic, C0-
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semigroups is relatively new. Historically, H∞-calculus has mostly been stud-
ied for sectorial operators and analytic semigroups. This theory allows for
many elegant results, see for instance the theorems of McIntosh and Cowl-
ing discussed before.

In contrast, far less is known about H∞-calculus for general semigroups.
Many results about sectorial operators also apply to generators of semi-
groups, but often they yield bounded calculi on sectors bigger than the stan-
dard half-plane. Such statements are relatively useless for applications, due
to the lack of interesting examples of functions which are bounded and holo-
morphic on these bigger sectors. For semigroup generators with spectrum
in a half-plane, it is more natural to consider functional calculi for functions
defined on half-planes. In particular, for −A the generator of a uniformly
bounded C0-semigroup one would like to consider functions on half-planes
which are slightly bigger than the standard right half-plane.

The desire to study functional calculus for functions defined on half-
planes led in [7] to the definition of an operator of half-plane type, a notion
which extends that of a generator of a C0-semigroup. One can study func-
tional calculus for such operators, and in [7] results were obtained about the
boundedness of certain operators. Moreover, in [59] it was shown that gener-
ators of uniformly bounded C0-semigroups allow for a bounded Besov-type
functional calculus, a result similar to one obtained for generators of analytic
semigroups by Vitse in [121].

To prove the results in [59] a general abstract transference principle was
set up that will be used in this chapter as well. In [59] one can already see
the interplay between harmonic analysis, the geometry of the underlying
space and functional calculus theory that underlines this thesis. The results
in [59] are most useful on Hilbert spaces or for γ-bounded semigroups, are
still interesting on UMD spaces, and are of a more abstract nature on general
Banach spaces.

In [59] the notion of an analytic multiplier algebra is introduced, a con-
cept which allows one to elegantly capture results obtained from transfer-
ence principles. The analytic multiplier algebra depends on both a parameter
p ∈ [1, ∞] and a Banach space X, and it is the algebra of bounded holomor-
phic functions which are Lp(R; X)-Fourier multipliers on the boundary of
their domain. By Plancherel’s Theorem, the analytic multiplier algebra coin-
cides with H∞ for p = 2 and X a Hilbert space, but for general Banach spaces
it is a smaller class. If X is a UMD space then various multiplier theorems,
in particular the Mikhlin Multiplier Theorem, allow one to identify a large
subclass of functions of the analytic multiplier algebra. For general Banach
spaces, for instance L1-spaces, it may occur that the analytic multiplier alge-
bra consists of only the Laplace transforms of bounded measures.

Apart from the results about Besov-type functional calculi for semigroup
generators mentioned above, significant results were obtained by Zwart
in [125]. He showed that for −A the generator of an exponentially stable
C0-semigroup (T(t))t∈R+ on a separable Hilbert space and f a bounded
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holomorphic function defined on the standard right half-plane, f (A)T(t) is
bounded for each t > 0. It is this result which led to the present chapter of
this thesis.

To prove his results Zwart used notions from systems theory, and al-
though this approach to functional calculus theory was extended to a more
general setting in [110], the method of proof in [125] does not appear to be
easily extendable to UMD spaces or general Banach spaces. In this chapter
we use the abstract transference principle in [59] to reprove some of the re-
sults in [125] and extend them to general Banach spaces.

In [125] it is shown that, for −A the generator of an exponentially sta-
ble C0-semigroup (T(t))t∈R+ on a separable Hilbert space and f a bounded
holomorphic function defined on the standard right half-plane, ‖ f (A)T(t)‖
grows at most like t−1/2 as t ↓ 0. In this chapter we show that on general
Banach spaces in fact ‖ f (A)T(t)‖ grows at most logarithmically in t for f a
function in the analytic multiplier algebra associated with X. In particular,
this improves the results in [125] on Hilbert spaces. It should be noted that
our result was recently shown to be sharp, in [111].

From the logarithmic growth mentioned above one can deduce the do-
main inclusion D(Aα) ⊆ D( f (A)) for all α > 0 and all functions in the an-
alytic multiplier algebra. This in turn is equivalent to saying that f (A)(1 +
A)−α is bounded for all α > 0 and all such f . This shows that the domain
of f (A) for functions in the analytic multiplier algebra is quite large, and
also that f (A) is a bounded operator for any f which decays exponentially
at infinity. For generators of analytic semigroups such results are a simple
consequence of the definition of the functional calculus, but for general semi-
group generators they are new. That f (A)T(t) is bounded for each t > 0 is
again easy to deduce for generators of analytic semigroups, since the func-
tion z 7→ e−tz decays rapidly on sectors. Moreover, for analytic semigroups
it has since been shown in [112] by more elementary means that the norm
bound of f (A)T(t) grows at most logarithmically in t as t ↓ 0.

It was shown by Mubeen in [90] (see also [7]) that semigroup generators
on Hilbert spaces allow for a so-called m-bounded H∞-calculus. By this we
mean that, if −A generates a uniformly bounded C0-semigroup on a Hilbert
space, then f (m)(A) is bounded for each bounded holomorphic function f
on a half-plane, where f (m) is the m-th derivative of f . Moreover, an estimate

‖ f (m)(A)‖ ≤ C‖ f ‖∞ (1.6)

holds with a constant C independent of f . In fact, it is shown that semigroup
generators are characterized by (1.6), at least if one assumes that the con-
stant C depends in a specific way on the size of the half-plane on which f is
bounded and holomorphic. Moreover, for group generators the existence of
an m-bounded H∞-calculus for functions defined on strips is equivalent to
the boundedness of the H∞-calculus.



12 1 Introduction

The method of proof in [90] and [7] relies on the underlying Hilbert space
structure via Plancherel’s Theorem, and it is not clear how one should extend
the method to general Banach spaces. In this chapter we use a transference
principle to reprove the results in [90] and extend them to general Banach
spaces, using again the analytic multiplier algebra. This m-bounded calculus
can be used to give an alternative proof of the fractional domain inclusion
from above.

Apart from allowing for extensions to general Banach spaces via the ana-
lytic multiplier algebra, the transference principles we consider are also use-
ful for extensions to γ-bounded semigroups. In particular, by factorizing op-
erators via the space of γ-radonifying operators and using the ideal property
of this space, we are able to extend the results on Hilbert spaces which were
discussed above to γ-bounded semigroups on general Banach spaces.

The contents of this chapter are based on joint work with Markus Haase
and have appeared in [61].

Functional calculus on real interpolation spaces for generators of
C0-groups

Although a semigroup generator on a Hilbert space need not have a bounded
H∞-calculus in general, each group generator on a Hilbert space has a
bounded H∞-calculus for functions on strips. For bounded groups this is
classical, and for unbounded groups it was shown in [22]. On UMD spaces,
it was shown in [64] that generators of uniformly bounded groups have a
bounded H∞-calculus on double sectors. These results can be proved using
transference principles, and in [58] a transference principle for unbounded
groups was developed that shows that unbounded groups on UMD spaces
also have a specific bounded calculus for functions on strips.

As indicated before, the transference principles which we use throughout
rely on the boundedness of certain Fourier multipliers to obtain functional
calculus estimates. This approach therefore automatically seems to restrict
one to considering Hilbert spaces or at least UMD spaces. In this chapter we
show that one can in fact also obtain results on general Banach spaces for a
large class of functions.

The approach that we use is as follows. Let −iA generate a C0-group
(U(s))s∈R on a Banach space X. The classical transference principle of Berk-
son and Gillespie from [13], as well as the recent transference principle for
unbounded groups in [58], rely on factorizing an operator Uµ of the form

Uµ(x) :=
∫

R
U(s)x µ(ds) (x ∈ X) (1.7)

via a convolution operator on Lp(R; X) related to the measure µ. Then results
about Fourier multipliers on Lp(R; X) can be used to obtain norm bounds for
Uµ.
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It was shown in [51] that on X-valued Besov spaces, Fourier multiplier re-
sults hold that do not require a UMD assumption on the geometry of X. The
results in [51] hold for operator-valued Fourier multipliers and depend on
the Fourier type of X. Fourier type is a geometric condition which imposes a
restriction on the generality of the space X. However, for scalar-valued mul-
tipliers no assumptions on the Fourier type of X, nor any other assumptions
on X, are needed. In particular, a version of the Mikhlin Multiplier Theorem
holds for Fourier multipliers on X-valued Besov spaces and general Banach
spaces X.

Since it is well-known that Besov spaces are real interpolation spaces be-
tween Lp-spaces and Sobolev spaces, one can try to modify the transference
principles mentioned above to factorize via X-valued Sobolev spaces. One is
then naturally led to the domain D(A) of A (and the domains of other pow-
ers of A), and interpolation between the Lp-spaces and Sobolev spaces leads
one to consider real interpolation spaces between X and D(A).

We use this approach to show that each group generator −iA on a gen-
eral Banach space X has a bounded calculus on the real interpolation space
(X, D(A))θ,q for each θ ∈ (0, 1) and q ∈ [1, ∞], for functions in the so-called
analytic Mikhlin algebra H∞

1 . This algebra consists of all bounded and holo-
morphic functions f on strips which satisfy the condition (coming from the
multiplier theorem in [51]) that z 7→ (1 + |z|)| f ′(z)| is bounded. Moreover, if
the group generated by −iA is uniformly bounded then the constant bound-
ing the H∞

1 -calculus is independent of the size of the strip. This result mirrors
the analogous statement in [58] for group generators on UMD spaces, where
the theorems are obtained for operators on X.

By considering the imaginary powers of a sectorial operator one can re-
late results about functional calculi for generators of groups to results about
functional calculi for sectorial operators with bounded imaginary powers.
In particular, as a consequence of our results we obtain the boundedness of
the functional calculus for a new class of functions and operators A with
bounded imaginary powers on a general Banach space X. This result is sim-
ilar to a result obtained on UMD spaces in [58]. In our case restriction on the
generality of the underlying space X is avoided by dealing with functional
calculus on the real interpolation space (X, D(log(A)))θ,q, for θ ∈ (0, 1) and
q ∈ [1, ∞].

In a similar manner, we deduce results for generators of cosine functions
from the results for group generators.

This chapter is influenced by the results of Dore in [37] (see also [38] and
[56]), who showed that the part of an invertible sectorial operator A on a
Banach space X in the real interpolation space (X, D(A))θ,q has a bounded
sectorial H∞-calculus for all θ ∈ (0, 1) and q ∈ [1, ∞]. Note that the operator
A need not have a bounded calculus on X. The method of proof used in [38]
is “elementary” in the sense that it relies on the definition of f (A), for f a
bounded holomorphic function of sufficient decay, via the Cauchy integral
formula. This proof does not seem to apply to functions defined on strips.
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However, in this chapter we show that transference techniques in fact yield
nontrivial results for functions on strips.

We could have formulated our results in terms of analytic multiplier alge-
bras, as in Chapter 3. Doing so would have led us to consider bounded holo-
morphic functions on strips whose restrictions to the boundary of the strip
are Fourier multipliers on Besov spaces. For simplicity we have chosen to
confine ourselves to considering the analytic Mikhlin algebra H∞

1 . Moreover,
the value of such abstract multiplier algebras only arises when considering
functions which do not satisfy the Mikhlin Multiplier Theorem but which
satisfy other multiplier theorems.

The results in this chapter are based on joint work with Markus Haase
(see [62]).

Part III: Double operator integrals and perturbation inequalities

Part II of this thesis is of a noncommutative nature. In this part we consider
the technique of double operator integration and use it to derive perturbation
inequalities for the functional calculus associated with scalar type operators
on Banach spaces.

Operator Lipschitz functions on Banach spaces

We have already indicated that for normal operators on Hilbert spaces the
questions considered before, about boundedness of various functional cal-
culi, are trivial. The existence of a spectral measure E associated with a nor-
mal operator A on a Hilbert space H means that one can define a bounded
operator f (A) for each bounded measurable function f : σ(A)→ C by

f (A) :=
∫

σ(A)
f (z)dE(z). (1.8)

Then f 7→ f (A) is a continuous algebra homomorphism from the space
of bounded measurable functions on σ(A), endowed with the supremum
norm, to L(H).

However, in this theory new questions arise that are far from trivial to
answer. For instance, under what conditions on f do bounds of the form

‖ f (B)− f (A)‖ ≤ C ‖B− A‖ (1.9)

hold for all selfadjoint operators A and B with respect to a given norm ‖·‖?
Answers to this question have been obtained in [95, 96, 102] (see also Theo-
rems 1.3 and 1.4) by combining harmonic analysis with the theory of double
operator integration. In the theory of double operator integration one views
the difference f (B) − f (A) in (1.9) as a double integral with respect to the
spectral measures E and F of A respectively B:
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f (B)− f (A) =
∫

C

∫
C

ψ f (x, y)dF(y)(B− A)dE(x).

Here ψ f (x, y) = f (y)− f (x)
y−x is the divided difference of f . Then (1.9) can be

obtained by studying the operator

S 7→
∫

C

∫
C

ψ f (x, y)dF(y)SdE(x) (1.10)

and determining its boundedness with respect to various norms.
The technique of double operator integration is similar to the transference

principles that were discussed before. To study the quantity one is interested
in, in this case the difference f (B)− f (A), one instead studies a transforma-
tion which is easier to understand. For transference principles this is done by
factorizing an operator via a Fourier multiplier. In the theory of double op-
erator integration the factorization is trivial, it merely consists of the change
of viewpoint in studying (1.10) instead of f (B)− f (A).

In this chapter we contribute some new results to the theory of double op-
erator integration and perturbation inequalities. The viewpoint we take is the
following: results about selfadjoint or normal operators on separable Hilbert
spaces can be viewed as results about operators on `2. Not all Lipschitz func-
tions are operator Lipschitz with respect to the operator norm on `2. In partic-
ular, (1.9) does not hold for f the absolute value function (see [69]). However,
in this chapter we show that a similar inequality does hold for the absolute
value function and for operators A on `p and B on `q for p < q.

In order to clarify what we mean by the previous statement, we rewrite
(1.9) as

‖ f (B)S− S f (A)‖ ≤ C ‖BS− SA‖ (1.11)

for S the identity operator. Note that (1.11) makes sense even for operators A
and B defined on different spaces X and Y, if we let S be a bounded operator
from X to Y. In the case where X = Y and A = B, (1.11) yields a norm bound
for the commutator of f (A) and S in terms of the commutator of A and S.
For this reason we will often refer to (1.11) as a commutator estimate.

A nontrivial difficulty in interpreting (1.11) for operators on `p and `q

with p 6= q is that at least one of the operators in question will not be defined
on a Hilbert space. Hence we need to define f (A) and f (B) for operators on
general Banach spaces. Since the absolute value function is not holomorphic
one cannot use the Riesz-Dunford functional calculus for this. Moreover, the
theory of double operator integration relies on the existence of a spectral
measure for the underlying operators, and for general operators on a Banach
space such a spectral measure is not available. It should be noted here that the
double operator integration theory has been extended to the Banach space
setting in [33]. However, these results are much weaker than in the Hilbert
space setting.
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One can identify an important class of examples for which a spectral mea-
sure does exist, the class of diagonalizable matrices. A diagonalizable matrix
A has a spectral measure associated with it, namely the measure which as-
sociates with an eigenvalue λ of A the spectral projection corresponding to
the eigenspace of λ. Dunford and collaborators studied (see [5,40,109]) more
general operators on Banach spaces with a spectral measure, so-called spec-
tral operators and scalar type operators. A scalar type operator A on a finite
dimensional space is simply a diagonalizable matrix, and for f the absolute
value function one can define f (A) as in (1.8). In light of this discussion it
seems natural to study (1.11) for scalar type operators on Banach spaces. In
particular, we consider the class of scalar type operators which are diagonal-
izable with respect to an unconditional Schauder basis.

In this chapter we establish the following version of (1.11):

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ C ‖BS− SA‖L(`p ,`q) . (1.12)

Here f is the absolute value functions, S ∈ L(`p, `q) and A and B are diago-
nalizable operators on `p respectively `q for p, q ∈ [1, ∞] with p < q, and A
and B have real spectrum. The constant C in (1.12) in fact depends on A, B, p
and q in the following sense:

C = Cp,q inf ‖U‖L(`p)‖U−1‖L(`p)‖V‖L(`q)‖V−1‖L(`q), (1.13)

where the infimum is taken over all U ∈ L(`p) and V ∈ L(`q) which di-
agonalize A respectively B, and Cp,q is a constant depending only on p and
q.

It might seem like this result is not the goal that we set out to achieve,
which was to obtain (1.11) with a constant independent of A and B. How-
ever, when considering normal operators on `2 the constant C in (1.13) is in
fact independent of A and B. Indeed, a normal matrix is diagonalizable by a
unitary matrix, hence the infimum in (1.13) is a constant (in fact equal to 1) if
A and B are normal matrices. This explains why the constants which appear
in the classical results about (1.9) on Hilbert spaces do not depend on the op-
erators A and B. In our setting one can also obtain constants independent of
the underlying operators by restricting to diagonalizable operators for which
the infimum in (1.13) is less than a prefixed value, as is already done implic-
itly on Hilbert spaces by considering only selfadjoint or normal operators, as
opposed to all operators which are similar to a normal operator.

Commutator estimates for the absolute value function and operator ide-
als in L(H) have been studied in [36]. The proofs in [31, 33, 36] are based on
Macaev’s celebrated theorem (see [52]) or on the UMD-property of the reflex-
ive Schatten von-Neumann ideals. In the presence of the UMD-property one
can apply techniques from harmonic analysis, as we have discussed before.
However, the spaces L(X, Y) are not UMD spaces, and therefore the tech-
niques used in [31,33,36] do not apply. To study (5.2) for X = `p and Y = `q,
we use methods completely different from those of [31, 33, 36]. In this sense
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the results in the present chapter differ from earlier chapters, where the use
of vector-valued Fourier analysis was a key ingredient. However, our analy-
sis shows that one can still deduce nontrivial results in situations where the
underlying space is not a UMD space, a philosophy which is also present in
Chapter 4.

To obtain (1.12) we proceed in several steps. We first set up the general
theory of double operator integration for scalar type operators on Banach
spaces. We then establish a version of Theorem 1.3 for scalar type operators,
which shows that for a large class of functions f one can obtain (1.11). Since
the absolute value function f is not contained in this class, a more refined
analysis is needed for this function. We relate estimates for (1.10) to esti-
mates for so-called triangular truncation operators and thereby establish in
our setting a connection which has already been observed for various spaces
of operators (see [36, 71]).

We then study the boundedness of triangular truncation operators on
L(`p, `q) using properties of Schur multipliers on L(`p, `q), established by
Bennett in [11]. In particular, we use that the classical triangular truncation
operator is bounded on L(`p, `q) for p < q (see [10]).

We also obtain results for operators on `p and `q with p ≥ q, and we
develop the theory of double operator integration in the setting of operator
ideals. In particular, we show that each Lipschitz function is operator Lip-
schitz on the ideal of p-summing operators from `p′ to `p.

The results that are obtained in this chapter specialize on finite dimen-
sional spaces to results for diagonalizable matrices. In particular, we obtain
(1.12) for diagonalizable matrices A and B with a constant independent of
the size of the matrices. A particular case of this is the perturbation estimate

‖ f (B)− f (A)‖L(`p
n ,`q

n)
≤ C ‖B− A‖L(`p

n ,`q
n)

for f the absolute value function and diagonalizable n× n-matrices A and B,
obtained by letting S be the identity matrix in (1.2).

The results in this chapter are based on joint work with Fedor Sukochev
and Anna Tomskova (see [106]).

Part IV: Applications to numerical approximation methods

Part III of this thesis contains applications of the results in earlier chapters to
numerical approximation methods. In particular, we prove convergence of
a specific approximation method and determine the corresponding conver-
gence rates.

Convergence of subdiagonal Padé approximations of C0-semigroups

As indicated before, given a well-posed Cauchy problem
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du
dt (t) = −Au(t) (t ≥ 0)
u(0) = x

(1.14)

on a Banach space X, one often wants to approximate the solution u of (1.14)
by simpler expressions. A common way to do this is to use rational approx-
imation: one takes a suitable sequence of rational functions (rn)n∈N and
tries to approximate u(t) = e−tAx by rn(tA) as n → ∞. One would like
to know when such an approximation is stable, meaning that ‖rn(tA)x‖ is
uniformly bounded in n, and when it converges, by which we mean that
‖u(t)− rn(tA)x‖ → 0 as n→ ∞.

Assume that the solution u of (1.14) stays bounded for all initial val-
ues x, i.e. that the semigroup (T(t))t∈R+ generated by −A is uniformly
bounded. Then, in order for there to be any chance of stability and conver-
gence in general, (rn)n∈N should be a bounded sequence in H∞(C+) such
that rn(tz) → e−tz as n → ∞ for all z ∈ C+ and t ≥ 0. A common choice is
to take a rational function r which approximates the exponential function to
a fixed order around zero and to let rn(z) := r( z

n )
n for z ∈ C+. For example,

the classical result by Brenner and Thomée in [23] establishes convergence of
approximation methods of this form.

A drawback of the method sketched above is that, for r = p/q with p
and q polynomials, p( A

n )
n and q( A

n )
−n need to be computed for large values

of n. This can be time-consuming, already for A a finite matrix. Therefore,
in [66] a method of rational approximation was proposed which does not
require the computation of high powers of resolvents (see also [91]). This
method was called rational approximation without scaling and squaring and re-
lies on the partial fraction decomposition of a rational function r = p/q with
deg(p) ≤ deg(q) and with distinct poles to write r(tA) as a linear combi-
nation of resolvents of A. If one can find a sequence (rn)n∈N such that each
rn is of this form and if rn(tA)x → T(t)x as n → ∞, then higher powers of
resolvents of A are not needed to approximate the solution u of (1.14).

Hence in [66] the question was posed whether, for −A the generator
of a uniformly bounded C0-semigroup (T(t))t∈R+ , one can find a sequence
(rn)n∈N such that each rn = pn/qn has distinct poles and satisfies deg(pn) ≤
deg(qn), and such rn(tA)x → T(t)x as n → ∞ for each x ∈ D(A) and t > 0.
Numerical experiments seemed to indicate that convergence should indeed
hold, with rate O( 1√

n ).
The fact that convergence of such methods might not hold on all of X,

and that the rates of convergence may depend on the subset of X which x
belongs to, is classical (see [23]). From a functional calculus perspective this
can be explained as follows. For a sequence (rn)n∈N of rational functions
which is bounded in H∞(C+) and which satisfies rn(z)→ e−z for all z ∈ C+,
convergence of rn to e−z in H∞(C+) (that is, uniform convergence on C+)
generally will not hold. However, for appropriately chosen (rn)n∈N one can
often find an α > 0 such that
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sup
z∈C+

∣∣∣∣ rn(z)− e−z

(1 + z)α

∣∣∣∣→ 0

as n→ ∞. Now, if A has a bounded H∞(C+)-calculus then∥∥∥rn(tA)x− e−tAx
∥∥∥ =

∥∥∥(rn(tA)− e−tA)(1 + A)−α(1 + Aα)x
∥∥∥

≤ C
∥∥∥∥ rn(t·)− e−t·

(1 + ·)−α

∥∥∥∥
H∞(C+)

‖(1 + Aα)x‖ → 0

as n→ ∞ for all t ≥ 0 and x ∈ D(Aα). More generally, if∥∥∥ rn(t·)− e−t·

(1 + ·)−α

∥∥∥
F
→ 0 (1.15)

for some function space norm ‖·‖F and if A has a bounded F-calculus, i.e. if

‖ f (A)‖ ≤ C ‖ f ‖F

for all f ∈ F with C ≥ 0 independent of F, then convergence of rn(tA)x to
e−tAx as n → ∞ follows in the same manner for x ∈ D(Aα). The rate of

convergence then depends on the rate of convergence of rn(t·)−e−t·

(1+·)−α to 0 in F.
This viewpoint has been used extensively, either explicitly or implicitly, in

the past (see for instance [23] and [53]). Much of this research has focused on
the case where F = AM1(C+), the space of Laplace transforms of bounded
measures with ‖ f ‖F the variation norm of the pre-Laplace transform of f ∈
F. Scalar convergence results such as (1.15) obtained in this manner yield
convergence of rn(tA) to T(t)x on D(Aα) for general uniformly bounded
semigroups, since any generator −A of a uniformly bounded semigroup has
a bounded AM1(C+)-calculus, by definition of the Hille-Phillips calculus.

Scalar convergence results of the form (1.15) for function spaces F which
are larger than AM1(C+) necessarily yield convergence of rn(tA)x to T(t)x
for a smaller class of generators A. However, for larger F it might be eas-
ier to obtain (1.15) and the convergence might occur with better rates. This
is where the functional calculus theory considered in other chapters of this
thesis proves to be useful.

In this chapter, by deriving (1.15) for F = AM1(C+) and (rn)n∈N the
sequence of subdiagonal Padé approximants, we answer the question posed
in [66] in an affirmative manner: rn(tA)x → T(t)x as n → ∞ for all t ∈ X
and x ∈ D(A), with rate O

(
1√
n

)
and locally uniformly in t. Using results

from Chapter 3, we then improve the rates of convergence for generators
of exponentially γ-stable semigroups, in particular for exponentially stable
semigroups on Hilbert spaces. We also improve the results for generators of
analytic semigroups and for operators with a bounded calculus for the class
of bounded rational functions on C+, and we extend our results to obtain
convergence on Favard spaces.
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One can find applications of these results when considering inversion of
the vector-valued Laplace transform. Let Y be a Banach space and let X :=
Cub(R+; Y) be the space of X-valued uniformly continuous and bounded
functions. Let (T(t))t∈R+ be the left translation semigroup and −A its gen-
erator. Then

((λ + A)−1 f )(0) =
∫ ∞

0
e−λt(T(t) f )(0)dt =

∫ ∞

0
e−λt f (t)dt = f̂ (λ) (1.16)

for f ∈ X and λ ∈ C+, where f̂ is the Laplace transform of f . Since
(T(t) f )(0) = f (t) for all t > 0 and f ∈ X, convergence of linear combina-
tions of (λ + A)−1 f to T(t) f implies the convergence of linear combinations
of f̂ (λ) to f (t). In other words, in this way one can numerically invert the
Laplace transform f̂ of f using only knowledge of f̂ . This is not the case for
other numerical inversion formulas for the Laplace transform, which either
make additional assumptions on f or require derivatives of f̂ in the compu-
tation (see [85, 117]).

This chapter is based on joint work with Moritz Egert and has appeared
in [43].

Appendix A: Growth estimates

In this appendix we provide the proof of an estimate which is vital for Chap-
ter 3, because it implies the logarithmic bound for the growth of the constant
bounding ‖ f (A)T(t)‖ as t ↓ 0. The estimate is proved using an adaptation
of a lemma due to T. Hytönen in [59].

Appendix B: Estimates for Padé approximants

In this appendix we provide a technical analysis of the behavior of the sub-
diagonal Padé approximants. These results are essential for the proof of the
main result in Chapter 6, but are quite technical and have been placed in an
appendix to improve readability of the main text.
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Preliminaries

In this chapter we present the background knowledge which will be used
throughout this thesis.

We treat the basic functional calculi that occur in this work, and we intro-
duce some of the function spaces which occur frequently throughout. Then
we treat Fourier multipliers on vector-valued Lp-spaces and Besov spaces,
and link them to functional calculus theory via transference principles. We
discuss the notions of γ-radonifying operators and γ-boundedness, and we
give an overview of the basics of real interpolation spaces.

2.1 Notation and terminology

The natural numbers are N := {1, 2, . . .} and we let N0 := N∪{0}. We write
R+ := [0, ∞) for the nonnegative reals. The letters X and Y are used to denote
Banach spaces over the complex number field C. We write X∗ for the dual of
X. The space of bounded linear operators from X to Y is denoted by L(X, Y),
and L(X) := L(X, X). We identify the algebraic tensor product X∗⊗ Y with
the space of finite rank operators in L(X, Y) via (x∗⊗ y)(x) := 〈x∗, x〉y for
x ∈ X, x∗ ∈ X∗ and y ∈ Y.

The domain D(A) ⊆ X of a closed unbounded operator A on a Banach
space X is a Banach space when endowed with the norm

‖x‖D(A) := ‖x‖+ ‖Ax‖ (x ∈ D(A)).

The range of A is denoted by ran(A), its spectrum by σ(A), and the resolvent
set is ρ(A) := C \ σ(A). The identity operator on X is denoted by I, and
R(z, A) := (zI− A)−1 ∈ L(X) is the resolvent of A at z ∈ ρ(A).

The Borel σ-algebra on a Borel measurable subset W ⊆ C will be denoted
by BW , and B := BC. For measurable spaces (Ω1, Σ1) and (Ω2, Σ2) we de-
note by Σ1 ⊗ Σ2 the σ-algebra on Ω1 ×Ω2 generated by all measurable rect-
angles W1 ×W2 with W1 ∈ Σ1 and W2 ∈ Σ2. If (Ω, Σ) is a measurable space
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then B(Ω, Σ) is the space of all bounded Σ-measurable complex-valued func-
tions on Ω, a Banach algebra with the supremum norm

‖ f ‖B(Ω,Σ) := sup
ω∈Ω
| f (ω)| ( f ∈ B(Ω, Σ)).

We simply write B(Ω) := B(Ω, Σ) and ‖ f ‖∞ := ‖ f ‖B(Ω,Σ) when Σ respec-
tively (Ω, Σ) are clear from the context.

If µ is a complex Borel measure on a measurable space (Ω, Σ) and X is a
Banach space then a function f : Ω → X is µ-measurable if there exists a se-
quence of X-valued simple functions converging to f µ-almost everywhere.
For Banach spaces X and Y and a function f : Ω → L(X, Y), we say that f
is strongly measurable if ω 7→ f (ω)x is a µ-measurable mapping Ω → Y for
each x ∈ X.

For p ∈ [1, ∞], Lp(R; X) is the Bochner space of equivalence classes of X-
valued Lebesgue-measurable, p-integrable functions on R. The Hölder con-
jugate of p is p′, defined by 1

p + 1
p′ = 1. The norm on Lp(R; X) is usually

denoted by ‖·‖p. In the case X = C we simply write Lp(R) := Lp(R; C).
For p ∈ [1, ∞] and m ∈ N0, Wm,p(R; X) is the Sobolev space of all f ∈

Lp(R; X) which are m times weakly differentiable with f (k) ∈ Lp(R; X) for
all k ∈ {0, 1, . . . , m}. We endow Wm,p(R; X) with the norm

‖ f ‖Wm,p(R;X) := ‖ f ‖p + ‖ f (m)‖p ( f ∈Wm,p(R; X)).

We often write ‖·‖m,p = ‖·‖Wm,p(R;X), and in the case X = C we let
Wm,p(R) := Wm,p(R; C).

The space of uniformly continuous and bounded functions on R with
values in a Banach space X is Cub(R; X). For m ∈ N, Cm

ub(R; X) consists of
all f ∈ Cub(R; X) which are m times differentiable with f (k) ∈ Cub(R; X) for
all k ∈ {1, . . . , m}.

For p ∈ [1, ∞], we denote by `p the space of all p-summable sequences
(xk)k∈N ⊂ C, and by `p(Z) the space of all p-summable sequences (xk)k∈Z ⊂
C. Similarly, `p(N0) consists of the p-summable sequences (xk)k∈N0 ⊂ C.

For p ∈ [1, ∞] we let Sp denote the Schatten p-class of compact opera-
tors T ∈ L(`2) such that the sequence of singular values (λn)∞

n=1 of T is an
element of `p, and we let

‖T‖Sp
:= ‖(λn)

∞
n=1‖`p .

For ω ∈ R and z ∈ C we let eω(z) := eωz. For Ω = R or Ω = R+, we
denote by M(Ω) the space of complex-valued Borel measures on Ω, and we
write Mω(Ω) for the distributions µ on Ω of the form µ(ds) = eω|s|ν(ds) for
some ν ∈ M(Ω). Then Mω(Ω) is a Banach algebra under convolution with
the norm

‖µ‖Mω(Ω) := ‖e−ωµ‖M(Ω) .
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For µ ∈ Mω(Ω) we let supp(µ) be the support of e−ωµ. A function g such
that e−ωg ∈ L1(Ω) is usually identified with its associated measure µ ∈
Mω(Ω) given by µ(ds) = g(s)ds.

For an open subset Ω 6= ∅ of C we let H∞(Ω) be the space of bounded
holomorphic functions on Ω, a unital Banach algebra with respect to the
norm

‖ f ‖∞ := ‖ f ‖H∞(Ω) := sup
z∈Ω
| f (z)| ( f ∈ H∞(Ω)).

We shall mainly consider the case where Ω is equal to a right half-plane

Rω := {z ∈ C | Re(z) > ω}

for some ω ∈ R (we write C+ := R0), or a strip of the form

Stω := {z ∈ C | |Im(z)| < ω}

for ω > 0, with St0 := R. At times we shall also let Ω be a sector

Sϕ := {z ∈ C \ {0} | |arg z| < ϕ} (2.1)

for ϕ ∈ (0, π), or a parabola

Πω :=
{

z2 | z ∈ Stω

}
(2.2)

for ω ≥ 0.
For ω ∈ R and f ∈ H∞(Rω), we let f (ω + i·) ∈ L∞(R) denote the trace of

the holomorphic function f on the boundary ∂Rω = ω + iR, given by

f (ω + is) := lim
ω′↘ω

f (ω′ + is) (2.3)

for almost all s ∈ R. Then ‖ f (ω + i·)‖L∞(R) = ‖ f ‖H∞(Rω)
(see [104, Corollary

5.17]).
The Schwartz class S(R; X) is the space of X-valued rapidly decreasing

smooth functions on R, and the space of X-valued tempered distributions is
S ′(R; X). The Fourier transform of an X-valued tempered distribution Φ ∈
S ′(R; X) is denoted by FΦ. For example, if µ ∈ Mω(R) for ω > 0 then
Fµ ∈ H∞(Stω) ∩C(Stω) is given by

Fµ(z) :=
∫

R
e−iszµ(ds) (z ∈ Stω).

For ω ∈ R and µ ∈ Mω(R+) we let µ̂ ∈ H∞(Rω) ∩C(Rω),

µ̂(z) :=
∫ ∞

0
e−zs µ(ds) (z ∈ Rω),
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be the Laplace-Stieltjes transform of µ.
If µ is a positive measure on a measurable space (Ω, Σ) and f : Ω→ [0, ∞]

is a function then we let∫
Ω

f (ω)dµ(ω) := inf
∫

Ω
g(ω)dµ(ω) ∈ [0, ∞],

where the infimum is taken over all measurable g : Ω → [0, ∞] such that
g(ω) ≥ f (ω) for ω ∈ Ω.

The indicator function of a subset W of a set Ω is denoted by 1W . We will
often identify functions defined on W with their extensions to Ω by setting
them equal to zero off W, in particular if Ω = R and W = R+.

For convenience we abbreviate the coordinate function z 7→ z simply by
the letter z. Under this convention, f = f (z) for a function f defined on some
domain Ω ⊆ C.

Let X be a topological space and f : X → C, g : X → R+, x0 ∈ X. We
write f (x) ∈ O(g(x)) as x → x0 if there exists a neighborhood U ⊆ X of x0
and a constant C ≥ 0 such that | f (x)| ≤ Cg(x) for all x ∈ U.

We will occasionally use the abbreviation SOT for the strong operator
topology.

2.2 Functional calculus

Here we summarize some of the basics of functional calculus theory for gen-
erators of operator (semi)groups. For more on operator (semi)groups see [45].

2.2.1 Semigroup generators

A C0-semigroup (T(t))t∈R+ ⊆ L(X) is a strongly continuous representation
of (R+,+) on a Banach space X. Each C0-semigroup (T(t))t∈R+ is of type
(M, ω) for some M ≥ 1 and ω ∈ R, which means that ‖T(t)‖ ≤ Meωt for all
t ≥ 0. If the semigroup is of type (M, 0) for some M ≥ 1, then it is uniformly
bounded, and the semigroup is exponentially stable if it is of type (M, ω) for
some ω < 0.

The generator of T is the unique closed operator −A such that

(λ + A)−1x =
∫ ∞

0
e−λtT(t)x dt (x ∈ X)

for Re(λ) large. The Hille-Phillips (functional) calculus for A is defined as
follows. Fix M ≥ 1 and ω0 ∈ R such that T is of type (M,−ω0). For
µ ∈ Mω0(R+) define Tµ ∈ L(X) by

Tµx :=
∫ ∞

0
T(t)x µ(dt) (x ∈ X). (2.4)
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For f = µ̂ set f (A) := Tµ. (This is allowed by the injectivity of the Laplace
transform.) The mapping f 7→ f (A) is an algebra homomorphism. In a sec-
ond step the definition of f (A) is extended to a larger class of functions on
Rω0 via regularization:

f (A) := e(A)−1(e f )(A)

if there exists µ ∈ Mω0(R+) such that e = µ̂, such that e(A) is injective
and such that e f = ν̂ for some ν ∈ Mω0(R+). Then f (A) is a closed and (in
general) unbounded operator on X and the definition of f (A) is independent
of the choice of regularizer e. The following lemma shows in particular that
for ω < ω0 the operator f (A) is defined for all f ∈ H∞(Rω) by virtue of the
regularizer e(z) = (z− λ)−1, where Re(λ) < ω.

Lemma 2.1. Let α > 1
2 , λ ∈ C and ω, ω0 ∈ R with Re(λ) < ω < ω0. Let

f ∈ H∞(Rω). Then there exists µ ∈ Mω0(R+) with

f (z)(z− λ)−α = µ̂(z)

for all z ∈ Rω0 .

Proof. After shifting we may suppose that ω = 0. Set h(z) := f (z)(z− λ)−α

for z ∈ C+. Then h(i ·+a) ∈ L2(R) with

‖h(i ·+a)‖2
L2(R) ≤

∫
R

| f (is + a)|2
|is + a− λ|2α

ds ≤ ‖ f ‖2
H∞(C+)

∫
R

1
|is− λ|2α

ds

for all a > 0, hence the Paley-Wiener Theorem ( [104, Theorem 5.28]) implies
that h = ĝ for some g ∈ L2(R+). Now µ(ds) := g(s)ds defines µ ∈ Mω0(R+)
as required. ut

The Hille–Phillips calculus is an extension of the holomorphic functional
calculus for operators of half-plane type. An operator A is of half-plane type
ω0 ∈ R if σ(A) ⊆ Rω0 with

sup {‖R(λ, A)‖ | λ ∈ C \ Rω} < ∞ for all ω < ω0.

For such an A, one can associate bounded operators f (A) ∈ L(X) with

f ∈ E(Rω) :=
{

g ∈ H∞(Rω)
∣∣g(z) ∈ O(|z|−α) for some α > 1 as |z| → ∞

}
for ω < ω0. This is done using a Cauchy integral

f (A) :=
1

2πi

∫
∂Rω′

f (z)R(z, A)dz,

where ∂Rω′ is the positively oriented boundary of Rω′ for ω′ ∈ (ω, ω0).
This procedure is independent of the choice of ω′ by Cauchy’s theorem,
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and yields an algebra homomorphism E(Rω) → L(X). Just as for the Hille-
Phillips calculus, the definition of f (A) is extended to a larger class of func-
tions by regularization:

f (A) := e(A)−1(e f )(A)

if there exists e ∈ E(Rω) with e(A) injective and e f ∈ E(Rω). This yields a
closed unbounded operator f (A) on X, and the definition of f (A) is inde-
pendent of the choice of the regularizer e. Each f ∈ H∞(Rω) is regularizable
by the function (λ− z)−2 for Re(λ) < ω. It is straightforward to check that

f (A) + g(A) ⊆ ( f + g)(A) and f (A)g(A) ⊆ ( f g)(A) (2.5)

if f and g are regularizable functions, with D( f (A) + g(A)) = D( f (A)) ∩
D(g(A)) and D( f (A)g(A)) = D(( f g)(A)) ∩D(g(A)). Hence equality holds
in (2.5) if g(A) ∈ L(X).

If −A generates a C0-semigroup of type (M, ω0) then A is an operator of
half-plane type −ω0. Conversely, the following lemma from [7, Proposition
2.5] gives a functional calculus characterization of when an operator of half-
plane type generates a C0-semigroup.

Lemma 2.2. Let A be an operator of half-plane type ω ∈ R on a Banach space X.
Then−A generates a C0-semigroup (T(t))t∈R+ ⊆ L(X) if and only if A is densely
defined and if e−tA ∈ L(X) for all t ∈ [0, 1], with supt∈[0,1]

∥∥e−tA
∥∥ < ∞. In this

case T(t) = e−tA for all t ∈ R+.

If −A generates a C0-semigroup of type (M,−ω0) then [7, Proposition
2.8] and [55, Proposition 3.3.2] imply that for ω < ω0 and f ∈ H∞(Rω) the
definitions of f (A) via the Hille-Phillips calculus and the half-plane calculus
coincide.

For −A the generator of a C0-semigroup (T(t))t∈R+ ⊆ L(X) of type
(M, ω0) on a Banach space X, we will at times consider the scaled semigroup
(eωtT(t))t∈R+ ⊆ L(X) of type (M, ω0 + ω) for ω ∈ R. It is straightforward
to check that this C0-semigroup is generated by −(A − ω). The following
lemma relates the functional calculi of A and A−ω.

Lemma 2.3. Let A be an operator of half-plane type ω0 ∈ R on a Banach space X,
and let ω ∈ R. Then A−ω is of half-plane type ω0 −ω, and

f (·+ ω)(A−ω) = f (A)

for all ω′ < ω0 and f ∈ H∞(Rω′).

Proof. It is straightforward to check that A− ω is of half-plane type ω0 − ω,
since R(λ, A) = R(λ− ω, A− ω) for λ ∈ ρ(A). Let ω′ < ω0, ν ∈ (ω′, ω0)
and f ∈ E(Rω′). Then f (·+ ω) ∈ E(Rω′−ω) and
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f (·+ ω)(A−ω) =
1

2πi

∫
∂Rν−ω

f (z + ω)R(z, A−ω)dz

=
1

2πi

∫
∂Rν

f (z)R(z−ω, A−ω)dz

=
1

2πi

∫
∂Rν

f (z)R(z, A)dz = f (A).

For general f ∈ H∞(Rω′), let e(z) := (λ− z)−2 for Re(λ) < ω′ and z ∈ Rω′ .
Then e, e f ∈ E(Rω′) and e(· + ω), (e f )(· + ω) ∈ E(Rω′−ω). By what has
already been shown,

f (·+ ω)(A−ω) = (e(·+ ω)(A− w))−1(e f )(·+ ω)(A−ω)

= e(A)−1e f (A) = f (A). ut

The next lemma will be fundamental throughout this thesis. The proof is
taken from [7, Theorem 3.1].

Lemma 2.4 (Convergence Lemma for operators of half-plane type). Let A
be an operator of half-plane type ω0 ∈ R on a Banach space X. Let ω < ω0 and let
( f j)j∈J ⊆ H∞(Rω) be a net satisfying the following conditions:

• sup
{
| f j(z)| | z ∈ Rω, j ∈ J

}
< ∞;

• f (z) := limj∈J f j(z) exists for all z ∈ Rω.

Then f ∈ H∞(Rω) and f j(A)x → f (A)x for all x ∈ D(A2).
Suppose moreover that A is densely defined and that f j(A) ∈ L(X) for all j ∈ J

with supj∈J
∥∥ f j(A)

∥∥ < ∞. Then f (A) ∈ L(X), f j(A)→ f (A) strongly and

‖ f (A)‖ ≤ lim sup
j∈J

∥∥ f j(A)
∥∥ .

Proof. Vitali’s theorem ( [3, Theorem A.5]) implies that f ∈ H∞(Rw) and that
f j(z) → f (z) uniformly on compact subsets of Rω. Let λ < ω < ω′ < ω0.
Then ( f j(z)

(λ− z)2

)
(A) = lim

n→∞

−1
2π

∫ n

−n

f j(ω
′ + is)

(λ−ω′ − is)2 R(ω′ + is)ds

for each j ∈ J, where the limit is uniform in j. Since f j converges to f uni-
formly on compacts, it is straightforward to show that

(
f j(z)(λ− z)−2) (A)

converges to
(

f (z)(λ− z)−2) (A) in norm. Hence

f j(A)x =
(

f j(z)(λ− z)−2
)
(A)(λ− A)2x

→
(

f (z)(λ− z)−2
)
(A)(λ− A)2x = f (A)x

for all x ∈ D(A2). If A is densely defined, then D(A2) is dense as well, and
we deduce that f (A) ∈ L(X) and ‖ f (A)‖ ≤ lim supj

∥∥ f j(A)
∥∥. The density

of D(A2) also implies that f j(A)→ f (A) strongly. ut
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Let A be an operator of half-plane type ω0 and ω < ω0. For a Banach
algebra F of functions continuously embedded in H∞(Rω), we say that A has
a bounded F-calculus if there exists a constant C ≥ 0 such that f (A) ∈ L(X)
with

‖ f (A)‖L(X) ≤ C ‖ f ‖F for all f ∈ F. (2.6)

The following result due to Le Merdy (see [79]) shows that on a Hilbert space
the generator of a semigroup (that is even immediately compact) need not
have a bounded H∞-calculus.

Proposition 2.5. Let H be a separable infinite dimensional Hilbert space. Then there
exists an operator A on H such that −A generates an exponentially stable C0-
semigroup (T(t))t∈R+ such that T(t) is compact for all t > 0 and such that A
does not have a bounded H∞(C+)-calculus.

Finally, in Chapter 6 we will consider operators A of half-plane type 0
on a Banach space X which have a bounded R(C+)-calculus, where R(C+)
consists of all rational functions in H∞(C+). In other words, we assume that
there exists a constant C ≥ 0 such that

‖r(A)‖L(X) ≤ C ‖r‖H∞(C+)
(2.7)

for all r ∈ R(C+). By [55, Proposition F.3], the closure of R(C+) in H∞(C+)
is the algebra

A(C+) :=
{

f ∈ H∞(C+) ∩C(C+)
∣∣∣ lim
z→∞

f (z) exists
}

.

For f ∈ A(C+) set

f (A) := lim
n→∞

rn(A),

where (rn)n∈N ⊆ R(C+) is such that ‖rn − f ‖H∞(C+)
as n → ∞. This def-

inition is independent of the choice of approximating sequence (rn)n∈N ⊆
R(C+), and is the unique way in which to extend the definition of f (A) to
all f ∈ A(C+) so that

‖ f (A)‖L(X) ≤ C ‖ f ‖H∞(C+)

holds for all f ∈ A(C+). Now f 7→ f (A) is a continuous algebra ho-
momorphism A(C+) → L(X), and one can extend this calculus to all
f ∈ H∞(C+) ∩C(C+) by regularizing. Then (2.5) holds.

After Proposition 2.5, we choose to conclude with the positive result that
(2.7) holds if −A generates a contraction semigroup on a Hilbert space (see
[55, Theorem 7.1.7]).

Proposition 2.6. Let −A generate a C0-semigroup (T(t))t∈R+ ⊆ L(H) of type
(1, 0) on a Hilbert space H. Then A has a boundedR(C+)-calculus. More precisely,
(2.7) holds with C = 1.
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2.2.2 Group generators

A C0-group U = (U(s))s∈R ⊆ L(X) is a strongly continuous representation
of (R,+) on a Banach space X. For each C0-group U the group type of U,

θ(U) := inf
{

ω ≥ 0
∣∣∣∃M ≥ 1 : ‖U(s)‖ ≤ Meω|s| for all s ≥ 0

}
, (2.8)

is finite. A C0-group (U(s))s∈R is (uniformly) bounded if sups∈R ‖U(s)‖ < ∞.
The generator of a C0-group (U(s))s∈R ⊆ L(X) is the unique closed oper-

ator −iA on X which generates the C0-semigroup (U(t))t∈R+ . Such an A is a
strip type operator of height ω0 := θ(U). This means that σ(A) ⊆ Stω0 and

sup
λ∈C\Stω

‖R(λ, A)‖ < ∞ for all ω > ω0.

The strip type functional calculus for A is defined in a similar manner as for
operators of half-plane type. Let

E(Stω) :=
{

g ∈ H∞(Stω)
∣∣g(z) ∈ O(|z|−α) for some α > 1 as |Re(z)| → ∞

}
for ω > ω0. Associate an operator f (A) ∈ L(X) with f ∈ E(Stω) by a
Cauchy-type integral

f (A) :=
1

2πi

∫
∂Stω′

f (z)R(z, A)dz.

Here ∂Stω′ is the positively oriented boundary of Stω′ for ω′ ∈ (ω0, ω).
This procedure is independent of the choice of ω′ by Cauchy’s theorem, and
yields an algebra homomorphism E(Stω) → L(X). The definition of f (A) is
extended to a larger class of functions by regularization as before:

f (A) := e(A)−1(e f )(A)

if there exists e ∈ E(Stω) with e(A) injective and e f ∈ E(Stω). This yields a
closed unbounded operator f (A) on X, and the definition of f (A) is inde-
pendent of the choice of the regularizer e. Each f ∈ H∞(Stω) is regularizable
by the function z 7→ (λ− z)−2 for |Im(λ)| > ω, and (2.5) holds.

Let−iA generate a C0-group on a Banach space X. Then the Hille-Phillips
functional calculus for A yields certain functions f that give rise to bounded
operators f (A). Fix M ≥ 1 and ω ≥ 0 such that ‖U(s)‖ ≤ Meω|s| for all
s ∈ R. For µ ∈ M−ω(R) define

Uµx :=
∫

R
U(s)x µ(ds) (x ∈ X). (2.9)

Then µ 7→ Uµ is an algebra homomorphism M−ω(R) → L(X). The fol-
lowing lemma from [57, Lemma 2.2] shows that the Hille-Phillips calculus
extends the strip type calculus for A.



32 2 Preliminaries

Lemma 2.7. Let X A and U be as above, and let ω′ > ω ≥ 0.

a) For each f ∈ E(Stω′) there exists a µ ∈ M−ω(R) such that f = Fµ.
b) Let µ ∈ M−ω(R) be such that Fµ extends to a regularizable function on Stω′ .

Then Fµ(A) = Uµ ∈ L(X) and

sup
t∈R

‖Fµ(t + A)‖ ≤ M ‖µ‖M−ω(R) .

The next lemma from [55, Proposition 5.1.7] is the strip type version of
Lemma 2.4. The proof is similar to that of Lemma 2.4.

Lemma 2.8 (Convergence Lemma for strip type operators). Let A be a
densely defined strip type operator of height ω0 on a Banach space X. Let ω > ω0
and let ( f j)j∈J ⊆ H∞(Stω) be a net satisfying the following conditions:

• supj∈J
∥∥ f j
∥∥

H∞(Stω)
< ∞;

• f (z) := limj f j(z) exists for all z ∈ Stω;
• supj∈J

∥∥ f j(A)
∥∥
L(X)

< ∞.

Then f ∈ H∞(Stω), f (A) ∈ L(X), f j(A)→ f (A) strongly and

‖ f (A)‖ ≤ lim sup
j∈J

∥∥ f j(A)
∥∥ .

Let A be a strip type operator of height ω0 and ω > ω0. For a Banach
algebra F of functions that is continuously embedded in H∞(Stω), we say
that A has a bounded F-calculus if there exists a constant C ≥ 0 such that
f (A) ∈ L(X) with

‖ f (A)‖L(X) ≤ C ‖ f ‖F for all f ∈ F.

In Proposition 2.5 we have seen that semigroup generators on Hilbert spaces
do not have a bounded H∞-calculus in general. For group generators the sit-
uation is different, as the following result by Boyadzhiev and de Laubenfels
from [22] shows. We will sketch a proof of this result in Section 2.5.

Theorem 2.9. Let−iA generate a C0-group (U(s))s∈R ⊆ L(H) on a Hilbert space
H. Then A has a bounded H∞(Stω)-calculus for all ω > θ(U).

If (U(s))s∈R is uniformly bounded then the constant bounding the H∞(Stω)-
calculus can be chosen independent of ω > 0.

2.2.3 Sectorial operators

An operator A on a Banach space X is sectorial of angle ϕ ∈ (0, π) if σ(A) ⊆
Sϕ, where Sϕ is as in (2.1), and

sup
{
‖λR(λ, A)‖ | λ ∈ C \ Sψ

}
< ∞
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for all ψ ∈ (ϕ, π). We say that A is sectorial of angle 0 if A is sectorial of angle
ϕ for all ϕ ∈ (0, π). If −A generates a uniformly bounded C0-semigroup
(T(t))t∈R+ ⊆ L(X), then A is sectorial of angle π

2 . We say that (T(t))t∈R+ is
bounded analytic if A is sectorial of angle ϕ ∈ (0, π

2 ). In this case (T(t))t∈R+

extends to a holomorphic mapping T : Sπ/2−ϕ → L(X) such that

• T(λ)T(µ) = T(λ + µ) for all λ, µ ∈ Sπ/2−ϕ;
• supλ∈Sψ

‖T(λ)‖L(X) < ∞ for all ψ ∈ (0, π/2− ϕ).

Conversely, each densely defined sectorial operator of angle ϕ ∈ (0, π
2 ) gen-

erates a uniformly bounded C0-semigroup, which is then bounded analytic.
Sectorial operators admit a sectorial functional calculus, defined as follows.

Let ψ ∈ (0, π) and let H∞
0 (Sψ) be the class of all f ∈ H∞(Sψ) for which there

exist C ≥ 0 and s > 0 such that

| f (z)| ≤ C min{|z|s, |z|−s} (z ∈ Sψ).

If A is a sectorial operator of angle ϕ ∈ (0, π) and f ∈ H∞
0 (Sψ) for ψ ∈ (ϕ, π)

then one can define f (A) ∈ L(X) as

f (A) :=
1

2πi

∫
∂Sν

f (z)R(z, A)dz,

where ν ∈ (ϕ, ψ) and ∂Sν is the positively oriented boundary of Sν. This inte-
gral converges absolutely and is independent of the choice of ν, by Cauchy’s
theorem. Furthermore, define

g(A) := f (A) + c(I + A)−1 + d

if g is of the form g(·) = f (·) + c(1 + ·)−1 + d for f ∈ H∞
0 (Sψ) and c, d ∈ C.

This definition is independent of the particular representation of g and yields
an algebra homomorphism

H∞
0 (Sψ)⊕ 〈(1 + ·)−1〉 ⊕ 〈1C〉 → L(X), g 7→ g(A).

In the same manner as before one extends this homomorphism by regular-
ization to a larger class of functions on Sψ, and (2.5) then holds. In particu-
lar, if A is injective, then each f ∈ H∞(Sψ) is regularizable by the function
z 7→ z(z + 1)−2.

For general A and α ∈ C+, the function z 7→ zα is regularizable by z 7→
(1 + z)−n, where n > Re(α), and yields the fractional power Aα of A with
domain D(Aα). Clearly, A1 = A and A0 = I. Moreover, Aα+β = Aα Aβ for all
α, β ∈ C with Re(α), Re(β) > 0 (see [55, Proposition 3.1.1]. This implies the
domain inclusion

D(Aβ) ⊆ D(Aα) (2.10)

for all α, β ∈ C with 0 < Re(α) < Re(β).
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If −A generates a uniformly bounded C0-semigroup, then the Hille-
Phillips calculus extends the holomorphic functional calculus for angles
ψ ∈ (π

2 , π), see Lemma 3.3.1 and Proposition 3.3.2 in [55]. In particular, for
α ∈ C+ the fractional power Aα defined by the Hille-Phillips calculus yields
the same operator as in the sectorial calculus.

Let ψ ∈ (0, π) and let F be a Banach algebra of functions that is contin-
uously embedded in H∞(Sψ). Similarly as for half-plane type operators and
strip type operators, we say that a sectorial operator A of angle ϕ ∈ (0, ψ) has
a bounded F-calculus if there exists a constant C ≥ 0 such that f (A) ∈ L(X)
with

‖ f (A)‖L(X) ≤ C ‖ f ‖F for all f ∈ F.

If A is an injective sectorial operator of angle ϕ ∈ (0, π) then z 7→ log(z) is
regularizable. An injective sectorial operator A has bounded imaginary powers
if −i log(A) is the generator of a C0-group (U(s))s∈R ⊆ L(X) on X. Then
U(s) = A−is for all s ∈ R, and for ψ ∈ [0, π) we write A ∈ BIP(X, ψ) if
θ(U) ≤ ψ (here θ(U) is the group type of U from (2.8)). We write A ∈ BIP(X)
if A ∈ BIP(X, ψ) for some ψ ∈ [0, π). If A ∈ BIP(X, ψ) then A is sectorial of
angle ψ (see [55, Corollary 4.3.4]).

Proposition 2.5 showed that the generator of an exponentially stable
semigroup on a Hilbert space need not have a bounded H∞-calculus. That
result in fact also yields an example of a sectorial operator without bounded
imaginary powers. However, for historical reasons we state the following re-
sult which shows that on a Hilbert space, a sectorial operator of angle 0 need
not have bounded imaginary powers. It is due to Baillon and Clément ( [6])
and appeared around the same time as a similar example of McIntosh and
Yagi ( [89]).

Proposition 2.10. Let H be a separable Hilbert space. Then there exists an injective
sectorial operator A on H of angle 0 such that Ais /∈ L(H) for all s ∈ R \ {0}. In
particular, A /∈ BIP(X) and A does not have a bounded H∞(Sψ)-calculus for any
ψ ∈ (0, π).

We conclude by recalling that Theorem 1.1 gives a characterization of
when an injective sectorial operator on a Hilbert space has a bounded H∞-
calculus, in terms of square function estimates. Moreover, Theorem 1.2 pro-
vides a large class of sectorial operators which have a bounded H∞-calculus.

2.2.4 Generators of cosine functions

In this section we briefly discuss the basics of functional calculus theory for
cosine function generators, as will be needed in Chapter 4. As the procedure
here is analogous to that in previous sections, we do not provide details. For
more information on functional calculus for generators of cosine functions
see [60].
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A cosine function Cos : R → L(X) on a Banach space X is a strongly
continuous mapping such that Cos(0) = I and

Cos(t + s) + Cos(t− s) = 2Cos(t)Cos(s)

for all s, t ∈ R. Then

θ(Cos) = inf
{

ω ≥ 0
∣∣∣∃M ≥ 0 : ‖Cos(t)‖ ≤ Meω|t| for all t ∈ R

}
< ∞.

The generator of a cosine function is the unique operator −A on X that satis-
fies

λR(λ2,−A) =
∫ ∞

0
e−λtCos(t)dt

for λ > θ(Cos). The solution to the abstract Cauchy problem

u′′(t) = Au, u(0) = x, u′(0) = 0

is then given by u(t) = Cos(t)x for t ∈ R.
If −A generates a cosine function, then A is an operator of parabola type

ω = θ(Cos). This means that σ(A) ⊆ Πω, where Πω is as in (2.2), and that
for all ω′ > ω there exists Mω′ ≥ 0 such that

‖R(λ, A)‖ ≤ Mω′√
|λ|
(
|Im(
√

λ)| −ω′
)

for all λ /∈ Πω′ . For such operators there is a natural functional calculus,
constructed in the same way as for half-plane type, strip type and sectorial
operators. In particular, if f ∈ H∞(Πω′) for ω′ > ω then f (A) is defined as
an unbounded operator on X.

The following proposition, a combination of [70, Theorem 2] and [57, The-
orem 6.2], will be needed in Chapter 4.

Proposition 2.11. Let −A generate a cosine function (Cos(s))s∈R ⊆ L(X) on a
Banach space X. Then there is a unique subspace V ⊆ X with D(A) ⊆ V such that
the operator −iA, where

A := i
[

0 IV
−A 0

]
with domain D(A) := D(A) × V, generates a C0-group (U(s))s∈R on V × X.
Moreover, θ(Cos) = θ(U).

The space V in Proposition 2.11 is called the Kisyński space.
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2.2.5 Scalar type operators

In this section we summarize some of the basics of scalar type operators,
taken from [42].

Let X be a Banach space, and recall that B denotes the Borel σ-algebra on
C. A spectral measure on X is a map E : B → L(X) such that the following
hold:

• E(∅) = 0 and E(C) = I;
• E(W1 ∩W2) = E(W1)E(W2) for all W1, W2 ∈ B;
• E(W1 ∪W2) = E(W1) + E(W2)− E(W1)E(W2) for all W1, W2 ∈ B;
• E is σ-additive in the strong operator topology.

These conditions imply that E is projection-valued. Moreover, by the Uni-
form Boundedness Principle there exists (see [42, Corollary XV.2.4]) a con-
stant K such that

‖E(W)‖L(X) ≤ K (W ∈ B). (2.11)

An operator A ∈ L(X) is a spectral operator if there exists a spectral measure
E on X such that AE(W) = E(W)A and σ(A, E(W)X) ⊆ W for all W ∈ B,
where σ(A, E(W)X) denotes the spectrum of A in the space E(W)X. For a
spectral operator A, we let ν(A) denote the minimal constant K occurring
in (2.11) and call ν(A) the spectral constant of A. This is well-defined since
the spectral measure E associated with A is unique, cf. [42, Corollary XV.3.8].
Moreover, E is supported on σ(A) in the sense that E(σ(A)) = I ( [42, Corol-
lary XV.3.5]). Hence we can define an integral with respect to E of bounded
Borel measurable functions on σ(A), as follows. For f = ∑n

j=1 αj1Wj a finite
simple function with αj ∈ C and Wj ⊆ σ(A) mutually disjoint Borel sets for
1 ≤ j ≤ n, let ∫

σ(A)
f dE :=

n

∑
j=1

αjE(Wj). (2.12)

This definition is independent of the representation of f , and∥∥∥∥∫
σ(A)

f dE
∥∥∥∥
L(X)

= sup
‖x‖X=‖x∗‖X∗=1

∣∣∣∣∣ n

∑
j=1

αj〈x∗, E(Wj)x〉
∣∣∣∣∣

≤ sup
j
|αj| sup

‖x‖X=‖x∗‖X∗=1
‖〈x∗, E(·)x〉‖M(C)

≤ 4 ‖ f ‖B(σ(A)) sup
‖x‖X=‖x∗‖X∗=1

sup
W⊆σ(A)

|〈x∗, E(W)x〉|

≤ 4ν(A) ‖ f ‖B(σ(A)) ,

where ‖x∗E(·)x‖M(C) is the variation norm of the measure x∗E(·)x on C.
Since the simple functions lie dense in B(σ(A)), for general f ∈ B(σ(A)) we
may define
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∫
σ(A)

f dE := lim
n→∞

∫
σ(A)

fn dE ∈ L(X)

if ( fn)n∈N ⊆ B(σ(A)) is a sequence of simple functions with ‖ fn − f ‖∞ → 0
as n → ∞. This definition is independent of the choice of approximating
sequence and ∥∥∥∥∫

σ(A)
f dE

∥∥∥∥
L(X)

≤ 4ν(A) ‖ f ‖B(σ(A)) . (2.13)

It is straightforward to check that∫
σ(A)

(α f + g)dE = α
∫

σ(A)
f dE +

∫
σ(A)

g dE,∫
σ(A)

f g dE =

(∫
σ(A)

f dE
)(∫

σ(A)
g dE

)
for all α ∈ C and simple f , g ∈ B(σ(A)), and approximation extends these
identities to general f , g ∈ B(σ(A)). Moreover,

∫
σ(A) 1 dE = E(σ(A)) = I.

Hence the map f 7→
∫

σ(A) f dE is a continuous morphism B(σ(A)) → L(X)

of unital Banach algebras. Since σ(A) is compact, the identity function λ 7→ λ
is bounded on σ(A) and

∫
σ(A) λ dE(λ) ∈ L(X) is well defined.

Definition 2.12. A scalar type operator is a spectral operator A ∈ L(X) with
spectral measure E such that

A =
∫

σ(A)
λ dE(λ).

The class of scalar type operators on X is denoted by Scal(X).

For A ∈ Scal(X) with spectral measure E and f ∈ B(σ(A)) we define

f (A) :=
∫

σ(A)
f dE. (2.14)

Then, as remarked above, f 7→ f (A) is a continuous morphism B(σ(A)) →
L(X) of unital Banach algebras with norm bounded by 4ν(A). Note also that

〈x∗, f (A)x〉 =
∫

σ(A)
f (λ)d〈x∗, E(λ)x〉 (2.15)

for all f ∈ B(σ(A)), x ∈ X and x∗ ∈ X∗. Indeed, for simple functions this
follows from (2.12), and by taking limits one obtains (2.15) for general f ∈
B(σ(A)).

Finally, we note that a normal operator A on a Hilbert space H is a scalar
type operator with ν(A) = 1, and in this case (2.13) improves to∥∥∥∥∫

σ(A)
f dE

∥∥∥∥
L(H)

≤ ‖ f ‖B(σ(A)) , (2.16)

as is known from the Borel functional calculus for normal operators.
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2.3 Function spaces

In this section we introduce some of the function spaces which will be used
throughout this work.

2.3.1 Besov spaces

First we define the Besov spaces which will be used in Chapters 4 and 5. We
combine material from [93], [118] and [1].

Let ψ ∈ C∞(R) be a nonnegative function with support in [ 1
2 , 2] such that

∞

∑
k=−∞

ψ(2−ks) = 1 for all s ∈ (0, ∞).

For k ∈ N and s ∈ R let ϕk(s) := ψ(2−k|s|), and let ϕ0(s) := 1−∑∞
k=1 ϕk(s).

Let X be a Banach space and let p, q ∈ [1, ∞] and r ∈ R be given. The (inho-
mogeneous) Besov space Br

p,q(R; X) consists of all X-valued tempered distribu-
tions f ∈ S ′(R; X) such that

‖ f ‖Br
p,q(R;X) :=

∥∥∥∥(2kr∥∥F−1(ϕk) ∗ f
∥∥

Lp(R;X)

)
k∈N0

∥∥∥∥
`q(N0)

< ∞,

endowed with the norm ‖·‖Br
p,q(R;X). Then Br

p,q(R; X) is a Banach space such
that S(R; X) ⊆ Br

p,q(R; X), and a different choice of ψ leads to an equivalent
norm on Br

p,q(R; X).
The following continuous inclusions hold for each Banach space X, m ∈

N0 and p ∈ [1, ∞):

Bm
p,1(R; X) ⊆Wm,p(R; X) ⊆ Bm

p,∞(R; X), (2.17)

where Wm,p(R; X) is the X-valued Sobolev space with paramaters m and p.
These are proved in the same way as for X = C, i.e. one proves the result
for m = 0 directly and then uses that f ′ ∈ Bs−1

p,q (R; X) if and only if f ∈
Bs

p,q(R; X) for s ∈ R and p, q ∈ [1, ∞]. For details see [118, Proposition 2.5.7].
Similarly, the continuous inclusions

Bm
∞,1(R; X) ⊆ Cm

ub(R; X) ⊆ Bm
∞,∞(R; X) (2.18)

hold for each Banach space X and each m ∈ N0. The norm bounds of the
inclusions in (2.17) and (2.18) do not depend on the underlying space X.

In the case X = C we also define the homogeneous Besov spaces. Let ψ
be as before and let ψk(s) := ψ(2−k|s|) for k ∈ Z and s ∈ R. For p, q ∈ [1, ∞]
and r ∈ R, we let Ḃr

p,q(R) be the space of all f ∈ S ′(R) such that

‖ f ‖Ḃr
p,q(R) :=

∥∥∥∥(2kr∥∥F−1(ψk) ∗ f
∥∥

Lp(R)

)
k∈Z

∥∥∥∥
`q(Z)

< ∞,
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modulo polynomials. More precisely, if f ∈ S ′(R) is such that ‖ f ‖Ḃr
p,q(R) <

∞, then it admits a representation

f = ∑
k∈Z

F−1(ψk) ∗ f + P

for some polynomial P (see [93, Chapter 3]). We let the homogeneous Besov
space Ḃr

p,q(R) consist of all those f for which P = 0, endowed with the norm
‖·‖Ḃr

p,q(R). Then Ḃr
p,q(R) is a Banach space.

2.3.2 The class A

In Chapter 5 another function space will play a vital role. Let W1, W2 ⊆ C be
Borel measurable subsets and let A(W1 ×W2) be the class of Borel functions
ϕ : W1 ×W2 → C such that

ϕ(λ1, λ2) =
∫

Ω
a1(λ1, ω)a2(λ2, ω)dµ(ω) (2.19)

for all (λ1, λ2) ∈ W1 ×W2, where (Ω, Σ, µ) is a finite measure space (with
µ positive) and a1 ∈ B(W1 × Ω,BW1 ⊗ Σ), a2 ∈ B(W2 × Ω,BW2 ⊗ Σ) are
bounded Borel measurable functions. For ϕ ∈ A(W1 ×W2) let

‖ϕ‖A(W1×W2)
:= inf

∫
Ω
‖a1(·, ω)‖B(W1)

‖a2(·, ω)‖B(W2)
dµ(ω),

where the infimum runs over all possible representations1 in (2.19). One can
show that the map ω 7→ ‖a1(·, ω)‖B(W1)

‖a2(·, ω)‖B(W2)
is measurable by

first considering simple a1 and a2 and then approximating general a1, a2 uni-
formly by simple functions.

Remark 2.13. The class A(σ1 × σ2) coincides with the class of functions ϕ :
W1 ×W2 7→ C admitting the representation

ϕ(λ1, λ2) =
∫

Ω
b1(λ1, ω)b2(λ2, ω)dν(ω) (2.20)

for all (λ1, λ2) ∈ W1 ×W2, where (Ω, Σ, ν) is a measure space and bj : Wj ×
Ω → C, for j = 1, 2, are such that bj(·, ω) : Wj → C is a bounded Borel
function for ω ∈ Ω, with∫

Ω
‖b1(·, ω)‖B(W1)

‖b2(·, ω)‖B(W2)
dν(ω) < ∞.

1 Taking an infimum over all such representations might seem problematic from a
set-theoretic viewpoint. The problem can be fixed by choosing an equivalence class
of such a representation for each real number which can occur in the infimum.
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Indeed, any ϕ ∈ A(W1×W2) has a representation as in (2.20), and conversely
any ϕ : W1 ×W2 → C satisfying (2.20) also satisfies (2.19), with aj ∈ B(Wj ×
Ω) defined by

aj(λj, ω) :=
b(λj, ω)

‖b(·, ω)‖B(Wj)

for j = 1, 2, λj ∈ σj and ω ∈ Ω, and with the finite measure µ given by
dµ(ω) = ‖b1(·, ω)‖B(W1)

‖b2(·, ω)‖B(W2)
dν(ω).

Lemma 2.14. For all W1, W2 ⊆ C measurable, A(W1 ×W2) is a unital Banach
algebra which is contractively included in B(W1 ×W2).

Proof. The proof is straightforward, we provide it for completeness.
Fix W1, W2 ⊆ C measurable and let ϕ1, ϕ2 ∈ A(W1 ×W2). For j = 1, 2,

let (Ωj, Σj, µj) be finite measure spaces and let a1,j ∈ B(W1 ×Ωj,BW1 ⊗ Σj),
a2,j ∈ B(W2 × Ωj,BW2 ⊗ Σj) be bounded Borel measurable functions such
that

ϕj(λ1, λ2) =
∫

Ωj

a1,j(λ1, ω)a2,j(λ2, ω)dµj(ω)

for all (λ1, λ2) ∈ W1 ×W2. Let (Ω, Σ, µ) be the direct sum measure space of
(Ω1, Σ1, µ1) and (Ω2, Σ2, µ2) and define a1 ∈ B(W1 ×Ω,BW1 ⊗ Σ) by

a1(λ, ω) :=
{

a1,1(λ, ω) if ω ∈ Ω1
a1,2(λ, ω) if ω ∈ Ω2

for λ ∈W1. Define a2 ∈ B(W1 ×Ω,BW2 ⊗ Σ) similarly. Then

ϕ1(λ1, λ2) + ϕ2(λ1, λ2)

=
∫

Ω1

a1,1(λ1, ω)a2,1(λ2, ω)dµ1(ω) +
∫

Ω2

a1,2(λ1, ω)a2,2(λ2, ω)dµ2(ω)

=
∫

Ω
a1(λ1, ω)a2(λ2, ω)dµ(ω)

for all (λ1, λ2) ∈W1 ×W2, and∫
Ω
‖a1(·, ω)‖B(W1)

‖a2(·, ω)‖B(W2)
dµ(ω)

=
∫

Ω1

‖a1,1(·, ω)‖B(W1)
‖a2,1(·, ω)‖B(W2)

dµ1(ω)

+
∫

Ω2

‖a1,2(·, ω)‖B(W1)
‖a2,2(·, ω)‖B(W2)

dµ2(ω).

Therefore ϕ1 + ϕ2 ∈ A(W1 ×W2) with

‖ϕ1 + ϕ2‖A(W1×W2)
≤ ‖ϕ1‖A(W1×W2)

+ ‖ϕ2‖A(W1×W2)
.
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To show that ϕ1 ϕ2 ∈ A(W1×W2), let (Ω, Σ, µ) be the product of the measure
spaces (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2). Let

a1(λ, (ω1, ω2)) := a1,1(λ, ω1)a1,2(λ, ω2)

for λ ∈W1, (ω1, ω2) ∈ Ω1 ×Ω2, and define a2 similarly. Then

ϕ1(λ1, λ2)ϕ2(λ1, λ2)

=
∫

Ω1

a1,1(λ1, ω1)a2,1(λ2, ω1)dµ1(ω1)
∫

Ω2

a1,2(λ1, ω2)a2,2(λ2, ω2)dµ2(ω2)

=
∫

Ω
a1(λ1, (ω1, ω2))a2(λ2, (ω1, ω2)dµ((ω1, ω2))

for (λ1, λ2) ∈W1 ×W2 and∫
Ω
‖a1(·, (ω1, ω2))‖B(W1)

‖a2(·, (ω1, ω2))‖B(W2)
dµ((ω1, ω2))

≤
∫

Ω1

‖a1,1(·, ω1)‖B(W1)
‖a1,2(·, ω1)‖B(W2)

dµ1(ω1)

·
∫

Ω2

‖a1,2(·, ω2)‖B(W1)
‖a2,2(·, ω2)‖B(W2)

dµ2(ω2).

If ϕ ∈ A(W1 ×W2) and λ ∈ C, then multiplying µ by λ in (2.19) shows that
λϕ ∈ A(W1 ×W2) with ‖λϕ‖A(W1×W2)

= |λ| ‖ϕ‖A(W1×W2)
. Hence we have

shown that A(W1 ×W2) is an algebra. Moreover,

|ϕ(λ1, λ2)| ≤
∫

Ω
‖a1(·, ω)‖B(W1)

‖a2(·, ω)‖B(W2)
dµ(ω)

for all ϕ ∈ A(W1 ×W2) with representation (2.19) and (λ1, λ2) ∈ W1 ×W2.
Taking the infimum over all representations as in (2.19) yields that A(W1 ×
W2) is contractively embedded in B(W1 ×W2), and now the considerations
above imply that ‖·‖A(W1×W2)

is a normed algebra.
To show that A(W1 ×W2) is complete, let (ϕn)n∈N ⊆ A(W1 ×W2) be a

sequence in A(W1 ×W2) with ∑∞
n=1 ‖ϕn‖A(W1×W2)

< ∞. For each n ∈ N let
(Ωn, Σn, µn) and a1,n ∈ B(W1 × Ωn,BW1 ⊗ Σn), a2,n ∈ B(W2 × Ωn,BW2 ⊗
Σn) be such that

ϕn(λ1, λ2) =
∫

Ωn
a1,n(λ1, ω)a2,n(λ2, ω)dµn(ω)

for all (λ1, λ2) ∈W1 ×W2 and∫
Ωn
‖a1,n(·, ω)‖B(W1)

‖a2,n(·, ω)‖B(W2)
dµn(ω) ≤ ‖ϕn‖A(W1×W2)

+ 2−n.

Let (Ω, Σ, µ) be the direct sum of the measure spaces (Ωn, Σn, µn) for n ∈
N, and define a1 ∈ B(W1 × Ω,BW1 ⊗ Σ), a2 ∈ B(W2 × Ω,BW2 ⊗ Σ) by
a1(λ, ω) := a1,n(λ, ω) and a2(λ, ω) := a2,n(λ, ω) if ω ∈ Ωn. Then
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∫
Ω
‖a1(·, ω)‖B(W1)

‖a2(·, ω)‖B(W2)
dµ(ω)

=
∞

∑
n=1

∫
Ωn
‖a1,n(·, ω)‖B(W1)

‖a2,n(·, ω)‖B(W2)
dµn(ω) < ∞

and

ϕ(λ1, λ2) :=
∞

∑
n=1

ϕn(λ1, λ2) =
∫

Ω
a1(λ1, ω)a2(λ2, ω)dµ(ω)

uniformly in B(C2). Hence ϕ ∈ A(W1 ×W2) and the series ∑∞
n=1 ϕn con-

verges in A(W1 ×W2) to ϕ. We conclude that A(W1 ×W2) is complete. ut

We now state sufficient conditions for a function to belong to A. The first
is [101, Theorem 9] and will be used in Chapter 5.

Lemma 2.15. Let g ∈W1,2(R) and let

ψg(λ1, λ2) :=

{
g(log( λ1

λ2
)) if λ1, λ2 > 0

0 otherwise
. (2.21)

Then ψg ∈ A(R2) with
∥∥ψg

∥∥
A(R2)

≤
√

2 ‖g‖W1,2(R).

The second condition involves the homogeneous Besov space Ḃ1
∞,1(R).

For f ∈ Ḃ1
∞,1(R), define ψ f : R2 → C by

ψ f (λ1, λ2) :=

{
f (λ2)− f (λ1)

λ2−λ1
if (λ1, λ2) ∈ R2 and λ1 6= λ2

f ′(λ1) if λ1 = λ2 ∈ R
.

Lemma 2.16. There exists a constant C ≥ 0 such that ψ f ∈ A(R2) for each f ∈
Ḃ1

∞,1(R), with ‖ψ f ‖A(R2) ≤ C‖ f ‖Ḃ1
∞,1(R).

Proof. Let f ∈ Ḃ1
∞,1(R). In [96, Theorem 2] (see also [97, p. 535]) it is shown

that ψ f has a representation

ψ f (λ1, λ2) =
∫

Ω
a1(λ1, ω)a2(λ2, ω)dµ(ω)

for (λ1, λ2) ∈ R2, where (Ω, µ) is a measure space and a1 and a2 are measur-
able functions on R×Ω such that∫

Ω
‖a1(·, ω)‖∞ ‖a2(·, ω)‖∞ d|µ|(ω) ≤ C ‖ f ‖Ḃ1

∞,1(R)

for some constant C ≥ 0 independent of f . Now apply Remark 2.13. ut
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2.4 Fourier multipliers

In this section we collect some basic facts about Fourier multipliers, taken
from [55, Appendix E], [1] and [51].

We note that, recently, in [107] new vector-valued Fourier multiplier the-
orems were proved using the geometric notions of type and cotype of a Ba-
nach space.

2.4.1 Fourier multipliers on Lp-spaces

First we consider Fourier multipliers on vector-valued Lp-spaces.
Let X be a Banach space and let m ∈ L∞(R;L(X)) and p ∈ [1, ∞]. Then m

is a bounded Lp(R; X)-Fourier multiplier if there exists a constant C ≥ 0 such
that

Tm( f ) := F−1(m · F f ) ∈ Lp(R; X) and ‖Tm( f )‖p ≤ C ‖ f ‖p

for all f ∈ S(R; X). In this case Tm extends uniquely to a bounded operator
on Lp(R; X) for p < ∞ and on C0(R; X) for p = ∞. We let ‖m‖Mp(X) be the
norm of the operator Tm and letMp(X) be the unital Banach algebra of all
bounded Lp(R; X)-Fourier multipliers, endowed with the norm ‖·‖Mp(X).
ThenMp(X) is contractively embedded in L∞(R;L(X)).

Each µ ∈ M(R) yields a bounded Lp(R; X)-Fourier multiplier Fµ for all
p ∈ [1, ∞], with

TFµ( f ) = Lµ( f ) := µ ∗ f (2.22)

for each f ∈ Lp(R; X). Indeed, Young’s inequality implies that

‖Fµ‖Mp(X) ≤ ‖Fµ‖M1(X) =
∥∥Lµ

∥∥
L1(R;X)

= ‖µ‖M(R) = ‖Fµ‖M∞(X)

(2.23)

for all p ∈ (1, ∞). Moreover, a scalar-valued function m ∈ L∞(R) is a
bounded L1(R; X)-Fourier multiplier if and only if m = Fµ for some
µ ∈ M(R), and this in turn is the case if and only if m is a bounded L∞(R; X)-
Fourier multiplier.

A straightforward computation shows that m ∗ n ∈ Mp(X) for each m ∈
Mp(X), n ∈ L1(R) and p ∈ [1, ∞], with

‖m ∗ n‖Mp(X) ≤ ‖m‖Mp(X) ‖n‖L1(R) . (2.24)

The following lemma from [55, Lemma E.4.1] will be used later on.
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Lemma 2.17. Let X be a Banach space and p ∈ [1, ∞].

i) Let m ∈ Mp(X), a ∈ R and b ∈ R \ {0}. Then eia·m(·), m(b·) ∈ Mp(X),
with ∥∥∥eia·m(·)

∥∥∥
Mp(X)

= ‖m(b·)‖Mp(X) = ‖m‖Mp(X) . (2.25)

ii) Let m : R → C and let (mn)n∈N ⊆ Mp(X) be a ‖·‖Mp(X)-bounded se-
quence such that mn(s) → m(s) for almost all s ∈ R. Then m ∈ Mp(X) with
‖m‖Mp(X) ≤ lim supn→∞ ‖mn‖Mp(X).

Lemma 8.2.3 in [3] yields a useful class of bounded Fourier multipliers:

Proposition 2.18. Let m ∈ C1(R) be such that

max
{

sup
s∈R

|s|δ|m(s)|, sup
s∈R

|s|1+δ|m′(s)|
}
< ∞

for some δ > 0. Then m ∈ Mp(X) for each Banach space X and each p ∈ [1, ∞].

2.4.2 UMD spaces

If X is a Hilbert space then Plancherel’s Theorem yields

M2(X) = L∞(R;L(X)) with ‖m‖M2(X) = ‖m‖L∞(R;L(X)) (2.26)

for all m ∈ M2(X). If X is not a Hilbert space then such a simple description
ofMp(X) for p ∈ (1, ∞) is in general not known. In this section we discuss a
class of spaces for which a useful sufficient condition for being an Lp(R; X)-
Fourier multiplier is known.

A Banach space X is a UMD space if the function s 7→ sgn(s) is a bounded
L2(X)-Fourier multiplier. By (2.26), any Hilbert space is a UMD space, and
so is the X-valued Bochner space Lp(Ω, µ; X) for (Ω, µ) a measure space, X
UMD and p ∈ (1, ∞). In particular, the scalar-valued Lp-spaces are UMD
spaces for p ∈ (1, ∞). Each UMD space is reflexive (see [100]).

On UMD spaces the following result, the vector-valued Mikhlin Multi-
plier Theorem, yields a large class of bounded scalar-valued Fourier multi-
pliers. It shows that on UMD spaces one can let δ = 0 in Lemma 2.18. For the
following formulation see for instance [55, Theorem E.6.2].

Theorem 2.19. Let X be a UMD space and p ∈ (1, ∞). Then there exists a constant
C ≥ 0 such that the following holds. Let m ∈ C1(R \ {0}) be such that

max
{
‖m‖L∞(R) , sup

s∈R

|sm′(s)|
}
< ∞.

Then m ∈ Mp(X) with

‖m‖Mp(X) ≤ C max
{
‖m‖L∞(R) , sup

s∈R

|sm′(s)|
}

.
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To indicate the use of UMD spaces for functional calculus theory we
present a result from [58] which is a version of Theorem 2.9 on UMD spaces.
For ω > 0 let

H∞
(1)(Stω) :=

{
f ∈ H∞(Stω)

∣∣∣∣∣ sup
z∈Stω

|z f ′(z)| < ∞
}

(2.27)

be the (homogeneous) analytic Mikhlin algebra on Stω, endowed with the norm

‖ f ‖H∞
(1)(Stω)

:= sup
z∈Stω

| f (z)|+ |z f ′(z)| ( f ∈ H∞
(1)(Stω)). (2.28)

The first statement in the following result is [58, Theorem 3.6]. The second
statement follows in the same manner as the first by using a transference
principle for bounded groups, as we will explain in Section 2.5.

Theorem 2.20. Let−iA generate a C0-group (U(s))s∈R ⊆ L(X) on a UMD space
X. Then A has a bounded H∞

(1)(Stω)-calculus for all ω > θ(U).
If (U(s))s∈R is uniformly bounded then the constant bounding the H∞

(1)(Stω)-
calculus can be chosen independent of ω > 0.

2.4.3 Fourier multipliers on Besov spaces

We now collect some facts about Fourier multipliers on (inhomogeneous)
vector-valued Besov spaces, to be used in Chapter 4.

Let m ∈ L∞(R;L(X)), p, q ∈ [1, ∞] and r ∈ R. We say that m is a
bounded Br

p,q(R; X)-Fourier multiplier if there is a unique bounded operator
Tm : Br

p,q(R; X)→ Br
p,q(R; X) such that

Tm( f ) = F−1 (m · F f ) (2.29)

for all f ∈ S(R; X). As in (2.22), each µ ∈ M(R) induces a bounded
Br

p,q(R; X)-Fourier multiplier Fµ for all r ∈ R and p, q ∈ [1, ∞], with

TFµ( f ) = Lµ( f ) = µ ∗ f ( f ∈ S(R; X)).

The main results about Br
p,q(R; X)-Fourier multipliers that we will need are

the following.

Theorem 2.21. [51, Corollary 4.15] There exists a constant C ≥ 0 such that the
following holds. Let X be a Banach space, p, q ∈ [1, ∞] and r ∈ R. If m : R→ C is
such that ϕkm ∈ B1/2

2,1 (R; C) for all k ∈N0, and

M := sup
k∈N0

inf
a>0
‖(ϕkm)(a·)‖B1/2

2,1 (R;C)
< ∞,

then m is a bounded Br
p,q(R; X)-Fourier multiplier with ‖Tm‖L(Br

p,q(R;X)) ≤ CM.
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It should be noted that some of the results in [51] were improved in [65].
However, the actual improvements occur when considering Fourier multi-
pliers on Rn for n > 1, hence for us the results in [51] suffice.

Corollary 2.22. There exists a constant C ≥ 0 such that for all Banach spaces X,
p, q ∈ [1, ∞], r ∈ R and all m ∈ C1(R; C) with

N := sup
s∈R

|m(s)|+ (1 + |s|)|m′(s)| < ∞,

m is a bounded Br
p,q(R; X)-Fourier multiplier with ‖Tm‖L(Br

p,q(R;X)) ≤ CN.

Proof. This follows as in [51, Corollary 4.11]. See also [51, Remark 4.16]. ut

Note that, for Fourier multipliers on Besov spaces, no geometric assump-
tions on X are needed, in contrast with the situation for Lp(R; X)-multipliers,
cf. Theorem 2.19. Note however that singularities of m at zero are not allowed
in Corollary 2.22, whereas in Theorem 2.19 m was allowed to have a singu-
larity at zero. This is relevant for Chapter 4.

2.5 Transference principles

In this section we discuss some of the basic transference principles that will
be used throughout this work.

We first state the classical transference principle by Berkson, Gillespie and
Muhly from [13], for uniformly bounded groups. For µ ∈ M(R) and p ∈
[1, ∞], recall the definition of the convolution operator Lµ ∈ L(Lp(R; X))
from (2.22).

Proposition 2.23. Let (U(s))s∈R ⊆ L(X) be a C0-group on a Banach space X
such that M := sups∈R ‖U(s)‖ < ∞. Let p ∈ [1, ∞] and µ ∈ M(R). Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥ ≤ M2 ∥∥Lµ

∥∥
L(Lp(R;X)) ‖x‖

for all x ∈ X.

A transference principle for unbounded groups was established in [58,
Theorem 3.2]. For ω ≥ 0 and µ ∈ M−ω(R) let µω ∈ M(R) be given by

µω(ds) := cosh(ωs)µ(ds). (2.30)

Proposition 2.24. Let 0 ≤ ω0 < ω and p ∈ [1, ∞]. Then there exists a constant
C > 0 such that the following holds. Let (U(s))s∈R ⊆ L(X) be a C0-group on a
Banach space X such that ‖U(s)‖ ≤ M cosh(ω0s) for all s ∈ R and some M ≥ 1,
and let µ ∈ M−ω(R). Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥ ≤ CM2 ∥∥Lµω

∥∥
L(Lp(R;X)) ‖x‖

for all x ∈ X.
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We will reprove Propositions 2.23 and 2.24 in Section 4.1. By combining
Propositions 2.23 and 2.24 with (2.22) and (2.26), and using Lemma 2.8 as
in [58, Theorem 3.6], one can now prove Theorem 2.9. Theorem 2.20 follows
in the same manner, appealing to Theorem 2.19 instead of (2.26). In the same
way one can obtain the result of Hieber and Prüss that the generator of a
bounded group on a UMD space has a bounded H∞-calculus on double sec-
tors (see [64]).

In [59], an abstract transference principle for general sub-semigroups of
locally compact groups was described, of which we present a specific case
here. Let S = R or S = R+ and let (T(s))s∈S ⊆ L(X) be a strongly continu-
ous representation of S on a Banach space X such that ‖T(s)‖ ≤ Meω|s| for
certain M ≥ 1, w ∈ R and all s ∈ S. Let Φ(R; X) and Ψ(R; X) be Banach
spaces of X-valued Bochner measurable functions on R. Let q ∈ [1, ∞] and
let ϕ ∈ Lq(S) and ψ ∈ Lq′(S). Recall that we extend functions and measures
on R+ to R by setting them equal to zero off R+. Let

η(s) := ϕ ∗ ψ(s) =
∫

S
ϕ(t)ψ(s− t)dt

for s ∈ S. Suppose that µ ∈ M(S) is such that ηµ(ds) := η(s)µ(ds) defines
an element ηµ ∈ M−ω(S). Now define the following maps:

• ι : X → Ψ(R; X), ιx(s) := ψ(−s)T(−s)x for x ∈ X and s ∈ R;
• Lµ : Ψ(R; X)→ Φ(R; X), Lµ( f ) := µ ∗ f for f ∈ Ψ(R; X);
• P : Φ(R; X)→ X, Pg :=

∫
S ϕ(t)T(t)g(t)dt for g ∈ Φ(R; X).

Recall that

Tνx :=
∫

S
T(s)x ν(ds)

for ν ∈ M−ω(S) and x ∈ X. The following is [59, Proposition 2.3]:

Proposition 2.25. Suppose that the maps ι, Lµ and P are well-defined and bounded.
Then the following diagram of bounded maps commutes:

Ψ(R; X)
Lµ
// Φ(R; X)

P
��

X

ι

OO

Tηµ
// X

For S = R, Proposition 2.25 yields a transference principle for C0-groups
that can be used to prove Propositions 2.23 and 2.24, as is demonstrated in
[59, Section 2]. This will be used in Chapter 4 to yield new results. In Chapter
3 we use the case S = R+ to obtain a new transference principle for C0-
semigroups.



48 2 Preliminaries

2.6 γ-Boundedness

In this section we discuss the notions of γ-radonifying operators and γ-
boundedness that will be used in Chapters 3 and 6. Much of this material
can be found in [120].

2.6.1 γ-Radonifying operators

Recall that a random variable γ : Ω → C on a probability space Ω is a
complex-valued standard Gaussian random variable if γ = γ1 + iγ2 for γ1, γ2 :
Ω→ R independent standard Gaussian random variables. Let H be a Hilbert
space and X a Banach space. A linear operator T : H → X is γ-summing if

‖T‖γ := sup
F

(
E

∥∥∥ ∑
h∈F

γhTh
∥∥∥2

X

)1/2
< ∞,

where the supremum is taken over all finite orthonormal systems F ⊆ H
and where (γh)h∈F is an independent collection of complex-valued standard
Gaussian random variables on some probability space. Endow

γ∞(H; X) := {T : H → X | T is γ-summing}

with the norm ‖·‖γ and let the space γ(H; X) of all γ-radonifying opera-
tors be the closure in γ∞(H; X) of the finite rank operators H ⊗ X. The fol-
lowing proposition states one of the main properties of γ-summing and γ-
radonifying operators. In particular, it shows that γ∞(H; X) and γ(H; X) are
Banach ideals in L(H, X) as defined in Section 5.3. For a proof see [120, The-
orem 6.2].

Proposition 2.26. Let H, K be Hilbert spaces and X, Y Banach spaces. Let R ∈
L(X, Y), S ∈ γ∞(H; X) and T ∈ L(K; H). Then RST ∈ γ∞(K; Y) with

‖RST‖γ ≤ ‖R‖L(X,Y) ‖S‖γ ‖T‖L(K;H) .

If S ∈ γ(H; X) then RST ∈ γ(K; Y).

For a measure space (Ω, µ), let γ2(Ω; X) be the space of all f ∈ L2(Ω; X)
such that J f ∈ γ(L2(Ω); X), where J f : L2(Ω)→ X is given by

J f (g) :=
∫

Ω
g · f dµ (2.31)

for g ∈ L2(Ω). Endow γ2(Ω; X) with the norm2 ‖ f ‖γ2(Ω;X) := ‖J f ‖γ. Then
γ2(Ω; X) is a space of X-valued functions, and any finite rank operator T ∈

2 This definition of the norm on γ2(Ω; X) is different from that in [54], where the
quantity ‖ f ‖L2(R;X) + ‖J f ‖γ is considered. The present definition will be more use-
ful for us.



2.6 γ-Boundedness 49

L2(Ω) ⊗ X induces an element of γ2(Ω; X). Since the finite rank operators
lie dense in γ(L2(Ω); X), but in general not every T ∈ γ(L2(Ω); X) satisfies
T = J f for some f ∈ L2(Ω; X), γ2(Ω; X) is not a Banach space in general.
Nevertheless, it will be a useful space for us later on.

The following corollary of Proposition 2.26 is of fundamental impor-
tance. For µ ∈ M(R), recall the definition of the convolution operator
Lµ ∈ L(L2(R; X)) from (2.22).

Corollary 2.27. Let µ ∈ M(R). Then Lµ ∈ L(γ2(R; X)) with∥∥Lµ

∥∥
L(γ2(R;X))

≤ ‖Fµ‖L∞(R) .

Proof. Let f ∈ L2(R; X). Then µ ∗ f ∈ L2(R; X) and Jµ∗ f (g) = J f (µ̃ ∗ g̃) for
each g ∈ L2(R). Here h̃(s) = h(−s) for h ∈ L2(R) and s ∈ R. Since

‖µ̃ ∗ g̃‖L2(R) ≤ ‖Fµ‖L∞(R)‖g‖L2(R)

by Plancherel’s Theorem, Proposition 2.26 yields the desired result. ut

Corollary 6.3 from [59] yields a useful class of functions in γ2(Ω; X) for
Ω = (a, b) ⊆ R (we use the convention ∞ · 0 = 0):

Lemma 2.28. Let X be a Banach space, (a, b) ⊆ R, u ∈ W1,1
loc ((a, b); X) and ϕ :

(a, b)→ C. Suppose that one of the following conditions is satisfied:

• ‖ϕ‖L2(a,b) ‖u(a)‖X < ∞ and
∫ b

a ‖ϕ‖L2(s,b) ‖u′(s)‖X ds < ∞;

• ‖ϕ‖L2(a,b) ‖u(b)‖X < ∞ and
∫ b

a ‖ϕ‖L2(a,s) ‖u′(s)‖X ds < ∞;

Then ϕ · u ∈ γ2((a, b); X).

A collection T ⊆ L(X) is γ-bounded if there exists a constant C ≥ 0 such
that ∥∥∥ ∑

T∈T ′
γTTxT

∥∥∥
L2(Ω;X)

≤ C
∥∥∥ ∑

T∈T ′
γTxT

∥∥∥
L2(Ω;X)

for all finite subsets T ′ ⊆ T , sequences (xT)T∈T ′ ⊆ X and independent
complex-valued standard Gaussian random variables (γT)T∈T ′ on some
probability space Ω. The smallest such C is the γ-bound of T and is denoted
by JT Kγ. Every γ-bounded collection is uniformly bounded with supremum
bound less than or equal to the γ-bound, and the converse holds if X is a
Hilbert space.

A basic result concerning γ-boundedness (as well as boundedness with
respect to more general random variables, although we will not discuss such
generalizations here) is the Kahane contraction principle from [67]:
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Lemma 2.29. Let p ∈ [1, ∞], n ∈ N and let (γk)
n
k=1 be a sequence of independent

complex-valued standard Gaussian random variables on some probability space Ω.
Let λ1, . . . , λn ∈ C and x1, . . . , xn ∈ X. Then∥∥∥ n

∑
k=1

λkγkxk

∥∥∥
Lp(Ω;X)

≤ max
1≤k≤n

|λk|
∥∥∥ n

∑
k=1

γkxk

∥∥∥
Lp(Ω;X)

.

Another important result involving γ-boundedness is the γ-Multiplier
Theorem. We state a version that is tailored to our purposes. Given a Ba-
nach space Y, a function g : R → Y is piecewise W1,∞ if g ∈ W1,∞(R \
{a1, . . . , an} ; Y) for some finite set {a1, . . . , an} ⊆ R.

Theorem 2.30 (γ-Multiplier Theorem). Let X and Y be Banach spaces and T :
R→ L(X, Y) a strongly measurable mapping such that

T := {T(s) | s ∈ R}

is γ-bounded. Suppose furthermore that there exists a dense subset D ⊆ X such that
s 7→ T(s)x is piecewise W1,∞ for all x ∈ D. Then the multiplication operator

MT : L2(R)⊗ X → L2(R; Y) MT( f ⊗ x) = f (·)T(·)x

defines a bounded operatorMT ∈ L(γ2(R; X)) with ‖MT‖L(γ2(R;X)) ≤ JT Kγ.

Proof. Let f ∈ γ2(R; X). That JMT( f ) ∈ γ∞(L2(R); Y) with
∥∥∥JMT f

∥∥∥
γ
≤ JT Kγ

is the content of [120, Theorem 5.2]. To see that in fact JMT f ∈ γ(L2(R); Y) we
use an approximation argument. Let x ∈ D and f ∈ Cc(R). Let a1, . . . , an ∈ R

be such that s 7→ T(s)x ∈ W1,∞(R \ {a1, . . . , an} ; Y), and set a0 := −∞,
an+1 := ∞. Note that∫ aj+1

aj

‖ f ‖L2(s,aj+1)

∥∥T(s)′x
∥∥ ds < ∞

for all j ∈ {1, . . . , n}. Furthermore,∫ a1

−∞
‖ f ‖L2(−∞,s)

∥∥T(s)′x
∥∥ ds < ∞.

Lemma 2.28 yields (1(aj ,aj+1)
f )(·)T(·)x ∈ γ2(R; Y) for all 0 ≤ j ≤ n, hence

f (·)T(·)x ∈ γ2(R; Y). Now, Cc(R)⊗ D is dense in L2(R)⊗ X, which in turn
is dense in γ(L2(R); X). For a general f ∈ γ2(R; X), approximate J f by ele-
ments of Cc(R)⊗ D to obtain JMT f ∈ γ(L2(R); Y). ut

2.6.2 γ-Bounded (semi)groups

To illustrate the use of the concept of γ-boundedness for functional calculus
theory, we state the following important result due to Kalton and Weis [68].
Note that it extends Proposition 2.9 to general Banach spaces.
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Theorem 2.31. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X, and suppose that there exists an ω ∈ R+ such that{

e−ω|s|U(s)
∣∣∣ s ∈ R

}
⊆ L(X)

is γ-bounded. Then A has a bounded H∞(Stω′)-calculus for each ω′ > ω.

We note that, under the assumption that X has the so-called property (α),
the converse implication in Theorem 2.31 also holds, although not necessarily
for the same ω (for details see [68]).

We note for later reference the following result due to Le Merdy (see [81]),
which links γ-bounded C0-groups to the scalar type operators from Section
2.12.

Proposition 2.32. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X. Then {U(s) | s ∈ R} ⊆ L(X) is γ-bounded if and only if A is a scalar
type operator.

We now present some terminology for C0-semigroups which will be use-
ful later on. Note that a C0-semigroup (T(t))t∈R+ is of type (M, ω) (as
defined in Section 2.2.1), if and only if sup

{∥∥e−ωtT(t)
∥∥ | t ∈ R+

}
≤ M.

This motivates the following definition. We say that a C0-semigroup T =
(T(t))t∈R+ is of γ-type (M, ω) ∈ [1, ∞) ×R if Je−ωtT(t) | t ∈ R+Kγ ≤ M.
The exponential γ-bound of T is defined as

ωγ(T) := inf{ω ∈ R | T is of γ-type (M, ω)} ∈ [−∞, ∞],

and T is exponentially γ-stable if ωγ(T) < 0. Clearly type and γ-type coincide
for semigroups on Hilbert spaces.

In Chapter 6 we will use the following corollary of Theorem 2.31. Note
that it applies in particular to an exponentially stable semigroup (T(t))t∈R+

on a Hilbert space for which all the operators T(t), t > 0, are invertible.

Corollary 2.33. Let−A be the generator of an exponentially γ-stable C0-semigroup
(T(t))t∈R+ on a Banach space X. Suppose that T(t) is invertible for each t ∈ R+,
and that {e−w0tT(t)−1 | t > 0} ⊆ L(X) is γ-bounded for some ω0 ∈ R+. Then
A has a bounded H∞(C+)-calculus.

Proof. Let ω1 > 0 and M ≥ 1 be such that (T(t))t∈R+ is of type (M,−ω1),
and set ω2 := ω0

2 + ω1 ∈ R+. Let B := −i(A − ω2). Then −iB generates
the C0-group (U(s))s∈R ⊆ L(X) given by U(s) = eω2sT(s) for s ∈ R+, and
U(s) = eω2sT(−s)−1 for s < 0. Let ω := ω0

2 . Then

{e−wsU(s) | s ∈ R+} = {ew1tT(t) | t ∈ R+}

is γ-bounded by assumption. By Lemma 2.29, so is
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{ewsU(s) | s < 0} = {e−(ω0+w1)tT(t)−1 | t > 0}.

Hence Theorem 2.31 yields a constant C ≥ 0 such that

‖ f (ω2 + i ·)(B)‖L(X) ≤ C ‖ f (ω2 + i ·)‖H∞(Stω2 )
≤ C ‖ f ‖H∞(C+)

(2.32)

for all f ∈ H∞(C+). In the same manner as in Lemma 2.3, one can show
that f (ω2 + i ·)(B) = f (A) for each f ∈ H∞(C+). Hence (2.32) concludes the
proof. ut

2.7 Interpolation spaces

In this section we give a summary of some aspects of interpolation theory
that will be used in Chapter 4.

2.7.1 Real interpolation spaces

If X and Y are Banach spaces that are embedded continuously into a Haus-
dorff topological vector space Z, then we call (X, Y) an interpolation couple.
We let

K(t, z) := inf {‖x‖X + t ‖y‖Y | x ∈ X, y ∈ Y, x + y = z}

for t > 0 and z ∈ X + Y ⊆ Z. The real interpolation space of X and Y with
parameters θ ∈ [0, 1] and q ∈ [1, ∞] is

(X, Y)θ,q :=
{

z ∈ X + Y | [t 7→ t−θK(t, z)] ∈ Lq((0, ∞), dt/t)
}

, (2.33)

a Banach space when equipped with the norm

‖z‖(X,Y)θ,q
:=
∥∥∥t 7→ t−θK(t, z)

∥∥∥
Lq((0,∞), dt/t)

(z ∈ (X, Y)θ,q).

If T : X + Y → X + Y restricts to a bounded operator on X and a bounded
operator on Y then

‖T‖L((X,Y)θ,q)
≤ ‖T‖1−θ

L(X) ‖T‖
θ
L(Y) (2.34)

for all θ ∈ (0, 1) and q ∈ [1, ∞] (see [12, Theorem 3.1.2]).
By [12, Theorem 3.4.1], the following holds for any interpolation couple

(X, Y) and θ ∈ (0, 1), q ∈ [1, ∞]:

(Y, X)θ,q = (X, Y)1−θ,q (2.35)

with equality of norms.
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In the case where Y is continuously embedded in X, the real interpolation
spaces are nested, cf. [86, Proposition 1.1.4]:

(X, Y)θ2,p ⊆ (X, Y)θ1,q (2.36)

for 0 < θ1 < θ2 < 1 and all p, q ∈ [1, ∞].
In Chapter 4 we will need the following version of the Reiteration Theorem.

For a proof see e.g. [12, Theorem 3.5.3].

Theorem 2.34. Let (X, Y) be an interpolation couple and let q, q1, q2 ∈ [1, ∞] and
θ, θ1, θ2 ∈ (0, 1) with θ1 6= θ2. Then

((X, Y)θ1,q1 , (X, Y)θ2,q2)θ,q = (X, Y)(1−θ)θ1+θθ2,q

with equivalent norms.

An important class of real interpolation spaces is the class of Besov spaces
from Section 2.3.1. For m ∈ N and p ∈ [1, ∞], recall the definition of the
Sobolev space Wm,p(R; X) from Section 2.1.

Lemma 2.35. Let θ ∈ (0, 1), p ∈ [1, ∞), q ∈ [1, ∞] and m ∈ N. Then there exists
a constant C > 0 such that, for each Banach space X,

(Lp(R; X), Wm,p(R; X))θ,q = Bmθ
p,q(R; X)

with

1
C
‖ f ‖Bmθ

p,q(R;X) ≤ ‖ f ‖(Lp(R;X),Wm,p(R;X))θ,q
≤ C ‖ f ‖Bmθ

p,q(R;X)

for each f ∈ Bmθ
p,q(R; X).

Similarly, (Cub(R; X), Cm
ub(R; X))θ,q = Bmθ

∞,q(R; X) with equivalent norms,
and the constant describing the equivalence of the norms is independent of X.

Proof. The proof is the same as that of [118, Theorem 2.5.7] in the case X = C.
One first uses that

Bmθ
p,q(R; X) = (B0

p,1(R; X), Bm
p,1(R; X))θ,q = (B0

p,∞(R; X), Bm
p,∞(R; X))θ,q,

with equivalent norms (where the constant of equivalence does not depend
on X). This is shown just as in [118, Theorem 2.4.2]. Then the inclusions

Bmθ
p,q(R; X) = (B0

p,1(R; X), Bm
p,1(R; X))θ,q ⊆ (Lp(R; X), Wm,p(R; X))θ,q

⊆ (B0
p,∞(R; X), Bm

p,∞(R; X))θ,q = Bmθ
p,q(R; X)

follow from (2.17). The proof of the second statement is analogous. ut
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2.7.2 Functional calculus on interpolation spaces

We now discuss functional calculus for operators on interpolation spaces. We
will deal with strip type operators and generators of C0-groups, because of
the applications of the theory in this section to Chapter 4. However, much of
the material in this section is equally valid for the other types of operators
that were considered in Section 2.2, and the proofs are analogous. This will
be used at times in Chapter 4.

We mainly consider interpolation spaces for the couple (X, D(A)), where
A is a closed operator on X. We write

DA(θ, q) := (X, D(A))θ,q (2.37)

and

‖x‖θ,q := ‖x‖DA(θ,q) (x ∈ DA(θ, q)).

If −A generates a C0-semigroup on X, the following inclusions hold for
α, β, γ ∈ C with Re(γ) < Re(β) < Re(α) and Re(γ) > 0 or γ = 0, by [55,
Corollary 6.6.3]:

(D(Aγ), D(Aα))θ,1 ⊆ D(Aβ) ⊆ (D(Aγ), D(Aα)θ,∞, (2.38)

where θ ∈ (0, 1) satisfies Re(β) = (1− θ)Re(γ) + θ Re(α).
For an operator B on X and a continuously embedded Y ↪→ X, the oper-

ator BY on Y that satisfies BYy = By for elements in its domain

D(BY) := {y ∈ D(B) ∩Y | By ∈ Y}

is the part of B in Y. If Y = DA(θ, q) for θ ∈ (0, 1) and q ∈ [1, ∞] then we
write

Bθ,q := BDA(θ,q). (2.39)

Now let A be a strip type operator as in Section 2.2.2. The following
lemma shows, in particular, that the functional calculi for A and Aθ,q are
compatible.

Lemma 2.36. Let A be a strip type operator of height ω0 ≥ 0 on a Banach space X
and let θ ∈ (0, 1), q ∈ [1, ∞] and m, n ∈N0. Let Y := (D(Am), D(An))θ,q.

a) The part AY of A in Y is a strip type operator of height ω0. Furthermore, each
f : Stω → C with ω > ω0 which is regularizable in the calculus for A is
regularizable in the calculus for AY, and f (AY) = f (A)Y.

b) If−iA generates a C0-group (U(s))s∈R on X and q < ∞, then−iAY generates
the C0-group (U(s)Y)s∈R. In particular, D(AY) is dense in Y.
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Proof. a) First note that, for all k ∈ N0 and λ ∈ ρ(A), R(λ, A) leaves D(Ak)
invariant with ‖R(λ, A)‖L(D(Ak)) ≤ ‖R(λ, A)‖L(X). By (2.34), R(λ, A) leaves
Y invariant with

‖R(λ, A)‖L(Y) ≤ ‖R(λ, A)‖L(X) . (2.40)

By [55, Proposition A.2.8], σ(AY) ⊆ σ(A) and R(λ, AY) = R(λ, A)Y for all
λ ∈ ρ(A). Hence (2.40) yields the first statement. Let ω > ω0 and f ∈ E(Stω)
be given. Then

f (AY)y =
1

2πi

∫
Γ

f (z)R(z, AY)y dz =
1

2πi

∫
Γ

f (z)R(z, A)y dz = f (A)y

for some contour Γ and all y ∈ Y. Now let f : Stω → C be a function which
is regularizable in the calculus for A and let e be a regularizer for f . Then e
is a regularizer for f in the calculus for AY, since e(AY) = e(A)Y is injective.
The rest follows by regularization.

b) By (2.34), ‖U(s)Y‖ ≤ ‖U(s)‖ for all s ∈ R. Hence (U(s)Y)s∈R is locally
bounded. Since it is strongly continuous on the subset D(Amax(n,m)) ⊆ Y,
which is dense by [86, Proposition 1.2.5], it is strongly continuous on Y. By
[45, p. 60], −iAY is its generator. ut

Remark 2.37. It follows from part b) of Lemma 2.36 that, for x ∈ DA(θ, q) with
q < ∞,

Uµx =
∫

R
U(s)x µ(ds) (2.41)

exists as an integral of a DA(θ, q)-valued function. Even though in general
(U(s))s∈R is not strongly continuous on DA(θ, ∞), for x ∈ DA(θ, ∞) (2.41)
exists as an integral of an X-valued function. Since DA(θ, q) is continuously
embedded in X for all θ ∈ (0, 1) and q ∈ [1, ∞], the value of (2.41) does not
depend on the space in which we consider s 7→ U(s)x. Hence we regularly
will not specify in which space we consider (2.41).

We conclude with an important link between real interpolation spaces
and functional calculus theory provided by a theorem of Dore (see [37]). It
is the first instance of a theme that will be further investigated in Chapter 4,
namely that the functional calculus properties of an operator may improve
upon restriction to a real interpolation space.

Theorem 2.38. Let A be an invertible sectorial operator of angle ϕ ∈ (0, π) on
a Banach space X, and let θ ∈ (0, 1) and q ∈ [1, ∞]. Then Aθ,q has a bounded
H∞(Sψ)-calculus on (X, D(A))θ,q for all ψ ∈ (ϕ, π).

Versions of this result for operators which are not invertible can be found
in [38] and [55, Chapter 6]. Note that, by Proposition 2.10, there exists a sec-
torial operator A of angle 0 on a Hilbert space X which does not have a
bounded H∞(Sψ)-calculus on X for any ψ ∈ (0, π).





Part II

Functional calculus using transference methods





3

Functional calculus for semigroup generators

We have seen in Proposition 2.5 that not every semigroup generator has
a bounded H∞-calculus, even if the underlying Banach space is a Hilbert
space. However, by Proposition 2.9 group generators on Hilbert spaces do
have a bounded H∞-calculus, and this follows from the fact that group gen-
erators allow for transference principles as in Propositions 2.23 and 2.24. In
the present chapter we derive a transference principle for operators Tµ as
in (2.4) in the case where µ has support away from zero. This allows us to
show that, although a semigroup generator −A does not in general have a
bounded H∞-calculus, there is a large class of functions f for which f (A) is
bounded. In particular, on Hilbert spaces we obtain the following result. (See
Section 3.3 for the definition of a strong m-bounded calculus.)

Theorem 3.1. Let −A be the generator of a uniformly bounded C0-semigroup
(T(t))t∈R+ of type (M, 0) on a Hilbert space H. Then the following assertions hold.

a) For ω < 0 and f ∈ H∞(Rω) one has f (A)T(τ) ∈ L(H) with

‖ f (A)T(τ)‖ ≤ c(τ)M2 ‖ f ‖H∞(Rω)
, (3.1)

where c(τ) ∈ O(|log(τ)|) as τ ↘ 0, and c(τ) ∈ O(1) as τ → ∞.
b) For ω < 0 < α and λ ∈ C with Re λ < 0 there is C ≥ 0 such that∥∥ f (A)(A− λ)−α

∥∥ ≤ CM2 ‖ f ‖H∞(Rω)
(3.2)

for all f ∈ H∞(Rω). In particular, D(Aα) ⊆ D( f (A)).
c) A has a strong m-bounded H∞-calculus of type 0 for each m ∈N.

When X is a UMD space one can derive similar results, stated in Section
3.4.2. Our results generalize to arbitrary Banach spaces by using (subalge-
bras of) the analytic Lp(R; X)-Fourier multiplier algebra from (3.3). How-
ever, they are useful only if the underlying Banach space has a geometry that
allows for nontrivial Fourier multiplier operators. In Section 3.5 we take a dif-
ferent approach, in the spirit of Theorem 2.31, and extend the Hilbert space
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results to general Banach spaces by replacing the assumption of bounded-
ness of the semigroup by its γ-boundedness. In particular, Theorem 3.1 holds
true for γ-bounded semigroups on arbitrary Banach spaces with M being the
γ-bound of the semigroup.

In Section 3.1 we introduce the analytic multiplier algebras which will
be used throughout this chapter, and we study some of their properties.
In Section 3.2 we derive a transference principle for semigroup generators
and measures with support away from zero, and apply it to deduce results
about boundedness of certain functional calculi. In Section 3.3 we study m-
bounded functional calculus, and show that each semigroup generator has
an m-bounded analytic multiplier calculus. In Section 3.4 we specialize the
results in the preceding sections to Hilbert and UMD spaces. In Section 3.5
we study γ-bounded semigroups and apply our results to their generators.

As noted in Section 2.2.1, −A generates a C0-semigroup (T(t))t∈R+ of
type (M, ω) if and only if−(A+ω) generates the semigroup (e−ωtT(t))t∈R+

of type (M, 0). By Lemma 2.3, the functional calculi for A and A + ω are
linked by the composition rule “ f (A + ω) = f (ω + z)(A)”. Therefore, in
this chapter we shall almost exclusively consider uniformly bounded semi-
groups; all results carry over to general semigroups by shifting.

3.1 Multiplier algebras

In this section we define the analytic multiplier algebras that occur frequently
in this chapter, and we derive some of their basic properties.

Let X be a Banach space and p ∈ [1, ∞], and recall the definition of the
spaceMp(X) of all bounded Lp(R; X)-Fourier multipliers from Section 2.4.
For ω ∈ R and p ∈ [1, ∞] we let

AMX
p(Rω) :=

{
f ∈ H∞(Rω) | f (ω + i·) ∈ Mp(X)

}
(3.3)

be the analytic Lp(R; X)-Fourier multiplier algebra on Rω, endowed the norm

‖ f ‖AMX
p

:= ‖ f ‖AMX
p(Rω)

:= ‖ f (ω + i·)‖Mp(X) .

Here f (ω + i·) ∈ L∞(R) is the trace of f from (2.3). To simplify notation we
sometimes omit reference to the Banach space X and write AMp(Rω) instead
of AMX

p(Rω) whenever it is convenient.
The space AMX

p(Rω) is a unital Banach algebra. SinceMp(X) is contrac-
tively embedded in L∞(R;L(X)), AMX

p(Rω) is contractively embedded in
H∞(Rω). Moreover, AMX

1(Rω) = AMX
∞(Rω) is contractively embedded in

AMX
p(Rω) for all p ∈ (1, ∞), as follows from (2.23) and the fact that any

scalar-valued m ∈ M1(X) satisfies m = Fµ for some µ ∈ M(R).
For our main results we need a few lemmas about the analytic multiplier

algebra.
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Lemma 3.2. For every Banach space X, all ω ∈ R and p ∈ [1, ∞],

AMX
p(Rω) =

{
f ∈ H∞(Rω)

∣∣∣ sup
ω′>ω

∥∥ f (ω′ + i·)
∥∥
Mp(X) < ∞

}
with ‖ f ‖AMX

p(Rω)
= supω′>ω ‖ f (ω′ + i·)‖Mp(X) for all f ∈ AMX

p(Rω).

Proof. Let ω ∈ R, p ∈ [1, ∞] and f ∈ AMp(Rω). For all ω′ > ω and s ∈ R,

f (ω′ + is) =
ω′ −ω

π

∫
R

f (ω− ir)
(s− r)2 + (ω′ −ω)2 dr

by [104, Theorem 5.18]. The right-hand side is the convolution of f (ω − i·)
and the Poisson kernel given by Pω′−ω(r) := ω′−ω

π(r2+(ω′−ω)2)
for r ∈ R. It is

straightforward to check that ‖Pω′−ω‖L1(R) = 1, so (2.24) yields∥∥ f (ω′ + i·)
∥∥
Mp(X) ≤ ‖ f (ω− i·)‖Mp(X) = ‖ f ‖AMX

p(Rω)
.

The converse follows from (2.3) and Lemma 2.17 (ii). ut

For µ ∈ M(R) and p ∈ [1, ∞] recall the definition of the convolution
operator Lµ ∈ L(Lp(R; X)) from (2.22).

Lemma 3.3. For each ω ∈ R the Laplace transform induces an isometric algebra
isomorphism from Mω(R+) onto AMC

1 (Rω) = AMX
1(Rω). Moreover,

‖µ̂‖AMX
p(Rω)

=
∥∥Le−ωµ

∥∥
L(Lp(X))

for all µ ∈ Mω(R+), p ∈ [1, ∞].

Proof. The mappings µ 7→ e−ωµ and f 7→ f (· + ω) are isometric algebra
isomorphisms Mω(R+)→ M(R+) and AMp(Rω)→ AMp(C+) respectively.
Hence it suffices to let ω = 0. If µ ∈ M(R+) and f = µ̂ ∈ H∞(C+) then
f (i·) = Fµ(·). Therefore (2.22) and (2.23) imply that f (i·) ∈ M1(X) with
‖ f (i·)‖M1(X) = ‖µ‖M(R+)

, and that ‖ f (i·)‖Mp(X) =
∥∥Lµ

∥∥
L(Lp(X))

for p ∈
[1, ∞]. Conversely, if f ∈ AM1(C+) then f (i·) = Fµ for some µ ∈ M(R).
An application of Liouville’s theorem shows that supp(µ) ⊆ R+, hence f =
µ̂. ut

Lemma 3.3 implies that Lemma 2.1 can be reformulated as follows, using
the analytic multiplier algebra.

Lemma 3.4. Let α > 1
2 , λ ∈ C and ω, ω0 ∈ R with Re(λ) < ω < ω0. Then

f (z)(z− λ)−α ∈ AM1(Rω0) for all f ∈ H∞(Rω).
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3.2 Transference and functional calculus for semigroups

In this section we establish a transference principle for C0-semigroups and
measures with support away from zero. We then apply this transference prin-
ciple to obtain the main functional calculus result of this chapter.

3.2.1 Transference for measures with support away from zero

Define the function η : (0, ∞)× (0, ∞)× [1, ∞]→ R+ by

η(α, t, q) := inf
{
‖ψ‖q ‖ϕ‖q′ | ψ ∗ ϕ ≡ e−α on [t, ∞)

}
. (3.4)

Here the infimum is taken over all ψ ∈ Lq(R+) and ϕ ∈ Lq′(R+) with ψ ∗
ϕ(s) = e−αs for all s ∈ [t, ∞). This set is not empty: choose for instance
ψ := 1[0,t]e−α and ϕ := 1

t e−α. By Lemma A.2,

η(α, t, q) ∈ O(|log(αt)|) as αt→ 0,

for q ∈ (1, ∞). We now derive the main transference principle of this chapter.

Proposition 3.5. Let (T(t))t∈R+ be a C0-semigroup of type (M, 0) on a Banach
space X. Let p ∈ [1, ∞], τ, ω > 0 and µ ∈ M−ω(R+) with supp(µ) ⊆ [τ, ∞).
Then ∥∥Tµ

∥∥
L(X)

≤ M2η(ω, τ, p)
∥∥Leωµ

∥∥
L(Lp(R;X))

. (3.5)

Proof. Let ψ ∈ Lp(R+) and ϕ ∈ Lp′(R+) be such that ψ ∗ ϕ ≡ e−ω on [τ, ∞).
Define ι : X → Lp(R; X) by ιx(s) := ψ(−s)T(−s)x for s ≤ 0 and ιx(s) := 0
for s > 0. Clearly

‖ιx‖Lp(R;X) ≤ M ‖ψ‖p ‖x‖ (x ∈ X), (3.6)

so ι is well-defined and bounded. Moreover, let P : Lp(R; X) → X be given
by

P f :=
∫ ∞

0
ϕ(t)T(t) f (t)dt ( f ∈ Lp(R; X)).

By Hölder’s inequality,

‖P f ‖ ≤ M ‖ϕ‖p′ ‖ f ‖Lp(R;X) ( f ∈ Lp(R; X)), (3.7)

so P is also well-defined and bounded. Finally, Leωµ is a bounded operator on
Lp(R; X), by Young’s inequality. Letting Ψ(R; X) = Φ(R; X) = Lp(R; X) and
using that (ψ ∗ ϕ)eωµ = µ, Proposition 2.25 yields the commutative diagram
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Lp(R; X)
Leω µ
// Lp(R; X)

P
��

X

ι

OO

Tµ
// X

Estimating
∥∥Tµ

∥∥ through this factorization and using (3.6) and (3.7) yields∥∥Tµ

∥∥ ≤ M2 ‖ψ‖p
∥∥Leωµ

∥∥
L(Lp(R;X)) ‖ϕ‖p′ .

Finally, taking the infimum over all such ψ and ϕ yields (3.5). ut

3.2.2 Functional calculus for functions of exponential decay

Define, for a Banach space X, ω ∈ R, p ∈ [1, ∞] and τ > 0, the space

AMX
p,τ(Rω) :=

{
f ∈ AMX

p(Rω) | f (z) ∈ O(e−τ Re(z)) as |z| → ∞
}

,

endowed with the norm of AMX
p(Rω).

Lemma 3.6. For every Banach space X, ω ∈ R, p ∈ [1, ∞] and τ > 0

AMX
p,τ(Rω) = AMX

p(Rω) ∩ e−τH∞(Rω) = e−τAMX
p(Rω). (3.8)

In particular, AMX
p,τ(Rω) is a closed ideal in AMX

p(Rω).

Proof. The first equality in (3.8) is clear, as is the inclusion e−τAMp(Rω) ⊆
AMp,τ(Rω). Conversely, if f ∈ AMp(Rω) ∩ e−τH∞(Rω) then eτ f ∈ AMp(Rω)
since

‖eτ(ω+i·) f (ω + i·)‖Mp(X) = eτω‖ f (ω + i·)‖Mp(X),

by Lemma 2.17 (i).
Now suppose that ( fn)n∈N ⊆ AMp,τ(Rω) converges to f ∈ AMp(Rω).

The maximum principle for holomorphic functions implies

‖eτ fn‖H∞(Rω)
= eτω ‖ fn‖H∞(Rω)

,

hence (eτ fn)n∈N is Cauchy in H∞(Rω). Since it converges pointwise to eτ f ,
(3.8) implies f ∈ AMp,τ(Rω). ut

We are now ready to prove the main result of this section. Note that the
union of the ideals AMX

p,τ(Rω) for τ > 0 is dense in AMX
p(Rω) with respect to

pointwise and bounded convergence of sequences. If there were a single con-
stant independent of τ bounding the AMX

p,τ(Rω)-calculus for all τ, Lemma
2.4 would imply that A has a bounded AMX

p(Rω)-calculus, but this is false in
general, by Proposition 2.5. Moroever, it was shown recently in [111] that the
logarithmic bound in the following result is sharp in general.
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Theorem 3.7. For each p ∈ (1, ∞) there exists a constant cp ≥ 0 such that the
following holds. Let −A generate a C0-semigroup (T(t))t∈R+ of type (M, 0) on a
Banach space X and let τ, ω > 0. Then f (A) ∈ L(X) and

‖ f (A)‖ ≤

cp M2|log(ωτ)| ‖ f ‖AMX
p

if ωτ ≤ min( 1
p , 1

p′ ),

2M2e−ωτ ‖ f ‖AMX
p

if ωτ > min( 1
p , 1

p′ )

for all f ∈ AMX
p,τ(R−ω). In particular, A has a bounded AMX

p,τ(R−ω)-calculus.

Proof. First consider f ∈ AM1,τ(R−ω). Let δτ ∈ M−ω(R+) be the unit point
mass at τ. By Lemmas 3.6 and 3.3 there exists a µ ∈ M−ω(R+) such that
f = e−τ µ̂ = δ̂τ ∗ µ. Since δτ ∗ µ ∈ M−ω(R+) with supp(δτ ∗ µ) ⊆ [τ, ∞),
Proposition 3.5 and Lemma 3.3 yield

‖ f (A)‖ ≤ M2η(ω, τ, p) ‖ f ‖AMX
p

. (3.9)

Now suppose that f ∈ AMp,τ(R−ω) is arbitrary. For ε > 0, k ∈ N and z ∈
R−ω set gk(z) := k

z−ω+k and fk,ε(z) := f (z + ε)gk(z + ε). Lemma 3.4 yields
fk,ε ∈ AM1,τ(R−ω), hence, by what we have already shown,∥∥ fk,ε(A)

∥∥ ≤ M2η(ω, τ, p)
∥∥ fk,ε

∥∥
AMX

p
.

The inclusion AM1(R−ω) ⊆ AMp(R−ω) is contractive, so Lemma 3.3 implies
that gk ∈ AMp(R−ω) with

‖gk‖AMX
p
≤ ‖gk‖AMX

1
= k ‖e−k‖L1(R+)

= 1.

Combining this with Lemma 3.2 yields∥∥ fk,ε
∥∥

AMX
p
≤ ‖ f (·+ ε)‖AMX

p
‖gk(·+ ε)‖AMX

p

≤ ‖ f ‖AMX
p

.

In particular, supk,ε

∥∥ fk,ε
∥∥

∞ < ∞ and supk,ε

∥∥ fk,ε(A)
∥∥ < ∞. Lemma 2.4

implies that f (A) ∈ L(X) satisfies (3.9), and Lemma A.2 concludes the
proof. ut

Remark 3.8. Because AM1(R−ω) = AM∞(R−ω) is contractively embedded in
AMp(R−ω), Theorem 3.7 also holds for p = 1 and p = ∞. However, A triv-
ially has a bounded AM1-calculus and a bounded AM∞-calculus, by Lemma
3.3 and the definition of Hille-Phillips calculus.

Note that the exponential decay of | f (z)| is only required as the real part
of z tends to infinity. If | f (z)| decays exponentially as |z| → ∞ the result is
not interesting. Indeed, Lemma 3.4 then implies that f ∈ AM1 and therefore
that f (A) ∈ L(X).
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We can equivalently formulate Theorem 3.7 as a statement about compo-
sition with semigroup operators.

Corollary 3.9. Under the assumptions of Theorem 3.7, f (A)T(τ) ∈ L(X) and

‖ f (A)T(τ)‖ ≤

cp M2|log(ωτ)| eωτ ‖ f ‖AMX
p

if ωτ ≤ min( 1
p , 1

p′ ),

2M2 ‖ f ‖AMX
p

if ωτ > min( 1
p , 1

p′ )

for all f ∈ AMX
p(R−ω).

Proof. Note that f (A)T(τ) = (e−τ f )(A) and

‖e−τ f ‖AMX
p(R−ω)

=
∥∥∥e−τ(−ω+i·) f (−ω + i·)

∥∥∥
Mp(X)

= eωτ ‖ f ‖AMX
p(R−ω)

,

by Lemma 2.17 (i). Hence Theorem 3.7 yields the result. ut

3.2.3 Additional results for semigroup generators

In this section we discuss some additional results that can be derived from
Theorem 3.7.

As a first corollary of Theorem 3.7 we obtain a sufficient condition for a
semigroup generator to have a bounded AMX

p -calculus.

Corollary 3.10. Let −A generate a uniformly bounded C0-semigroup (T(t))t∈R+

on X with ⋃
τ>0

ran(T(τ)) = X.

Then A has a bounded AMX
p(Rω)-calculus for all ω < 0, p ∈ [1, ∞].

Proof. Using Corollary 3.9, f (A)T(τ) ∈ L(X) implies ran(T(τ)) ⊆ D( f (A)).
Therefore f (A) ∈ L(X) for each f ∈ AMX

p(Rω) and the map AMX
p(Rω) →

L(X), f 7→ f (A), is well-defined and linear. Suppose that f ∈ AMX
p(Rω),

( fk)k∈N ⊆ AMX
p(Rω) and T ∈ L(X) are such that fk → f in AMX

p(Rω) and
fk(A) → T in L(X) as k → ∞. By Lemma 2.4, fk(A)x → f (A)x for each
x ∈ D(A2). Since D(A2) is dense in X, f (A) = T. Now the closed graph
theorem yields (2.6). ut

Theorem 3.11. Let p ∈ (1, ∞), ω > 0 and α, λ ∈ C with Re(λ) < 0 < Re(α).
There exists a constant C = C(p, α, λ, ω) ≥ 0 such that the following holds. Let
−A generate a C0-semigroup (T(t))t∈R+ of type (M, 0) on a Banach space X. Then
D((A− λ)α) ⊆ D( f (A)) and∥∥ f (A)(A− λ)−α

∥∥ ≤ CM2 ‖ f ‖AMX
p (R−ω)

for all f ∈ AMX
p(R−ω).
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Proof. −(A−λ) generates the exponentially stable semigroup (eλtT(t))t∈R+ .
So Corollary 3.3.6 in [55] allows us to write

(A− λ)−αx =
1

Γ(α)

∫ ∞

0
tα−1eλtT(t)x dt (x ∈ X).

Fix f ∈ AMp(R−ω) and set a := 1
ω min

{
1
p , 1

p′

}
. By Corollary 3.9,

∫ ∞

0
tRe(α)−1eRe(λ)t ‖ f (A)T(t)x‖dt ≤ CM2 ‖ f ‖AMX

p
‖x‖ < ∞ (3.10)

for all x ∈ X, where

C = cp

∫ a

0
tRe(α)−1|log(ωt)|e(Re(λ)+ω)t dt + 2

∫ ∞

a
tRe(α)−1eRe(λ)t dt

is independent of f , M, and x. Since f (A) is a closed operator, this implies
that (A− λ)−α maps into D( f (A)) with

f (A)(A− λ)−αx =
1

Γ(α)

∫ ∞

0
tα−1eλt f (A)T(t)x dt (3.11)

for all x ∈ X. Applying (3.10) to (3.11) concludes the proof. ut

Remark 3.12. Theorem 3.11 shows that for each analytic multiplier function
f the domain D( f (A)) is relatively large, it contains the real interpolation
spaces (X, D(A))θ,q for all θ ∈ (0, 1) and q ∈ [1, ∞]. This follows from (2.36)
and (2.38).

Remark 3.13. We can describe the range of f (A)(A − λ)−α in Theorem 3.11
more explicitly. In fact,

ran( f (A)(A− λ)−α) ⊆ D
(
(A− λ)β

)
for all Re(β) < Re(α). Indeed, this follows if we show ran(A − λ)−α ⊆
D((A− λ)β f (A)), and [55, Theorem 1.3.2] implies

D((A− λ)β f (A)) = D( f (A)) ∩D
(
[(z− λ)β f (z)](A)

)
.

The inclusion ran((A− λ)−α) ⊆ D( f (A)) follows from Theorem 3.11. Since

[(z− λ)β f (z)](A)(A− λ)−α = [(z− λ)β−α f (z)](A) = f (A)(A− λ)β−α,

the same holds for the inclusion ran((A− λ)−α) ⊆ D
(
[(z− λ)β f (z)](A)

)
.



3.3 m-Bounded functional calculus 67

3.3 m-Bounded functional calculus

In this section we describe another transference principle for semigroups,
one that provides estimates for the norms of operators of the form f (m)(A)

for f an analytic multiplier function and f (m) its m-th derivative, m ∈ N.
We use terminology from Section 5 of [7]. Moreover, we recall our notational
simplification AMp(Rω) := AMX

p(Rω).
Let ω < ω0 be real numbers. An operator A of half-plane type ω0 on a

Banach space X has an m-bounded AMX
p(Rω)-calculus if there exists C ≥ 0

such that f (m)(A) ∈ L(X) with

‖ f (m)(A)‖L(X) ≤ C‖ f ‖AMX
p

for all f ∈ AMX
p(Rω).

This is well defined since the Cauchy integral formula implies that f (m) is
bounded on every half-plane Rω′ with ω′ > ω:

| f (m)(z)| ≤ ‖ f ‖H∞(Rω)

m!
2π

∫
δRω

1
|y−ω′|m+1 d|y| (z ∈ Rω′).

We say that A has a strong m-bounded AMX
p -calculus of type ω0 if A has an

m-bounded AMX
p(Rω)-calculus for every ω < ω0 and if for some C ≥ 0 one

has

‖ f (m)(A)‖L(X) ≤
C

(ω0 −ω)m ‖ f ‖AMX
p(Rω)

(3.12)

for all f ∈ AMX
p(Rω) and ω < ω0.

Lemma 3.14. Let A be an operator of half-plane type ω0 ∈ R on a Banach space X,
and let p ∈ [1, ∞] and m ∈N. If A has a strong m-bounded AMX

p -calculus of type
ω0, then A has a strong n-bounded AMX

p -calculus of type ω0 for all n > m.

Proof. Let ω < α < β < ω0, f ∈ AMp(Rω) and n ∈N. Then

f (n)(β + is) =
n!

2πi

∫
R

f (α + ir)
(α + ir− (β + is))n+1 dr

=
n!

2πi

(
f (α + i·) ∗ (α− β− i·)−n−1

)
(s)

for all s ∈ R, by the Cauchy integral formula. Hence, using Lemma 3.2 and
(2.24),

‖ f (n)(β + i·)‖Mp(X) ≤
n!
2π
‖(α− β− i·)−n−1‖L1(R)‖ f (α + i·)‖Mp(X)

≤ C
(β− α)n ‖ f ‖AMp(Rω)
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for some C = C(n) ≥ 0 independent of f , β, α and ω. Letting α tend to ω
yields

‖ f (n)‖AMp(Rβ)
= ‖ f (n)(β + i·)‖Mp(X) ≤

C
(β−ω)n ‖ f ‖AMp(Rω). (3.13)

Now let n > m. Applying (3.13) with n−m in place of n shows that f (n−m) ∈
AMp(Rβ) with

‖ f (n)(A)‖L(X) ≤
C′

(ω0 − β)m ‖ f (n−m)‖AMp(Rβ)

≤ CC′

(ω0 − β)m(β−ω)n−m ‖ f ‖AMp(Rω).

Finally, letting β = 1
2 (ω + ω0),

‖ f (n)(A)‖L(X) ≤
C′′

(ω0 −ω)n ‖ f ‖AMp(Rω)

for some C′′ ≥ 0 independent of f and ω. ut

For the transference principle in Proposition 3.5 it is essential that the sup-
port of µ ∈ Mω(R+) is contained in some interval [τ, ∞) with τ > 0. In gen-
eral one cannot expect to find such a transference principle for arbitrary µ,
as this would allow one to prove that semigroup generators have a bounded
analytic multiplier calculus. But this is false in general, cf. Proposition 2.5.
However, if we let tµ be given by (tµ)(dt) := tµ(dt) then we can deduce the
following transference principle. We use the conventions 1/∞ := 0, ∞0 := 1.

Proposition 3.15. Let −A be the generator of a C0-semigroup (T(t))t∈R+ of type
(M, 0) on a Banach space X. Let p ∈ [1, ∞], ω < 0 and µ ∈ Mω(R+). Then

∥∥Ttµ
∥∥ ≤ M2

|ω| p
−1/p(p′)−1/p′ ∥∥Le−ωµ

∥∥
L(Lp(R;X))

.

Proof. As in the proof of Proposition 3.5, define ι : X → Lp(R; X) by ιx(s) :=
e−ωsT(−s)x for s ≤ 0, while ιx(s) := 0 if s > 0. Then

‖ιx‖Lp(R;X) ≤ M(|ω|p)−1/p ‖x‖ (x ∈ X), (3.14)

so ι is well-defined and bounded. Moreover, let P : Lp(R; X) → X be given
by

P f :=
∫ ∞

0
eωtT(t) f (t)dt ( f ∈ Lp(R; X)).

By Hölder’s inequality,
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‖P f ‖ ≤ M(|ω|p′)−1/p′ ‖ f ‖Lp(R;X) ( f ∈ Lp(R; X)), (3.15)

so P is also well-defined and bounded. Moreover, Le−ωµ is a bounded op-
erator on Lp(R; X), by Young’s inequality. Letting Ψ(R; X) = Φ(R; X) =
Lp(R; X) and using

(1R+ eω ∗ 1R+ eω)(t)e−ω(t)µ(dt) = tµ(dt),

Proposition 2.25 yields the commutative diagram

Lp(R; X)
Le−ω µ

// Lp(R; X)

P
��

X

ι

OO

Ttµ
// X

Finally, estimate the norm of Ttµ through this factorization, and combine
(3.14) and (3.15) to conclude the proof. ut

We are now ready to prove our main result on m-bounded functional
calculus, a generalization of [7, Theorem 7.1] to arbitrary Banach spaces. The
idea for the proof of the implication (ii)⇒ (i) comes from [7, Theorem 6.4].

Theorem 3.16. Let A be a densely defined operator of half-plane type 0 on a Banach
space X. Then the following assertions are equivalent:

(i) −A is the generator of a uniformly bounded C0-semigroup on X.
(ii) A has a strong m-bounded AMX

p -calculus of type 0 for some/all p ∈ [1, ∞] and
some/all m ∈N.

In particular, if −A generates a uniformly bounded C0-semigroup then A has an
m-bounded AMX

p(Rω)-calculus for all ω < 0, p ∈ [1, ∞] and m ∈N.

Proof. (i) ⇒ (ii) By Lemma 3.14 it suffices to let m = 1. We proceed along
the same lines as in the proof of Theorem 3.7. Let (T(t))t∈R+ ⊆ L(X) be the
semigroup generated by −A and fix ω < 0, p ∈ [1, ∞] and f ∈ AMp(Rω).
Define the functions fk,ε := f (· + ε)gk(· + ε) for k ∈ N and ε > 0, where
gk(z) := k

z−ω+k for z ∈ Rω. Then fk,ε ∈ AM1(Rω) by Lemma 3.4, and Lemma
3.3 yields µk,ε ∈ Mω(R+) with fk,ε = µ̂k,ε. Now

f ′k,ε(z) = lim
h→0

fk,ε(z + h)− fk,ε(z)
h

= lim
h→0

∫ ∞

0

e−(z+h)t − e−zt

h
µk,ε(dt)

= −
∫ ∞

0
te−zt µk,ε(dt) = −t̂µk,ε(z)

for z ∈ Rω, by the Dominated Convergence Theorem. Hence f ′k,ε(A) =
−Ttµk,ε , and Proposition 3.15 and Lemma 3.3 imply
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‖ f ′k,ε(A)‖L(X) ≤
M2

|ω| p−1/p(p′)−1/p′‖ fk,ε‖AMX
p(Rω)

.

By Lemma 3.2 and because the inclusion AMX
1(Rω) ⊆ AMX

p(Rω) is contrac-
tive,

‖ fk,ε‖AMp(Rω) ≤ ‖ f (·+ ε)‖AMp(Rω)‖gk(·+ ε)‖AMp(Rω)

≤ ‖ f ‖AMp(Rω)‖gk‖AM1(Rω) = ‖ f ‖AMp(Rω).

In particular, the fk,ε are uniformly bounded on Rω. By the Cauchy integral
formula, the derivatives f ′k,ε are uniformly bounded on Rω′ for each ω′ ∈
(ω, 0). Since f ′k,ε(z)→ f ′(z) for all z ∈ Rω′ as k→ ∞, ε→ 0, the Convergence
Lemma yields f ′(A) ∈ L(X) with

‖ f ′(A)‖L(X) ≤
M2

|ω| p−1/p(p′)−1/p′‖ f ‖AMX
p(Rω)

,

which is (3.12) for m = 1.
For (ii) ⇒ (i) assume that A has a strong m-bounded AMp-calculus of

type 0 for some p ∈ [1, ∞] and some m ∈N. Then

e−t ∈ AM1(Rω) ⊆ AMp(Rω)

for all t > 0 and ω < 0, with

‖e−t‖AMp(Rω)
≤ ‖e−t‖AM1(Rω)

= e−tω.

Now (e−t)(m) = (−t)me−t implies that e−tA ∈ L(X) with

tm‖e−tA‖L(X) ≤
C
|ω|m e−tω.

Letting ω := − 1
t and using Lemma 2.2 yields the required statement. ut

3.4 Semigroups on Hilbert and UMD spaces

In this section we apply the results from previous sections, which involve the
abstract analytic multiplier algebra, to C0-semigroups on Hilbert spaces and
UMD spaces.

3.4.1 Semigroups on Hilbert spaces

If X = H is a Hilbert space then (2.26) implies that AMH
2 = H∞ with equality

of norms. Hence the theory in Section 3.2 specializes to the following result,
yielding a) and b) of Theorem 3.1.
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Corollary 3.17. Let −A generate a C0-semigroup (T(t))t∈R+ of type (M, 0) on a
Hilbert space H. Then the following assertions hold.

a) There exists a universal constant c ≥ 0 such that the following holds. Let τ, ω >
0 and f ∈ e−τH∞(R−ω). Then f (A) ∈ L(H) and

‖ f (A)‖ ≤
{

c M2|log(ωτ)| ‖ f ‖H∞(R−ω)
if ωτ ≤ 1

2 ,
2M2e−ωτ ‖ f ‖H∞(R−ω)

if ωτ > 1
2

Moreover, f (A)T(τ) ∈ L(H) with

‖ f (A)T(τ)‖ ≤
{

c M2|log(ωτ)|eωτ ‖ f ‖H∞(R−ω)
if ωτ ≤ 1

2 ,
2M2 ‖ f ‖H∞(R−ω)

if ωτ > 1
2

for all f ∈ H∞(R−ω).
b) If ⋃

τ>0
ran(T(τ)) = H,

then A has a bounded H∞(Rω)-calculus for all ω < 0.
c) For ω < 0 and α, λ ∈ C with Re(λ) < 0 < Re(α) there is C = C(α, λ, ω) ≥

0 such that ∥∥ f (A)(A− λ)−α
∥∥ ≤ CM2 ‖ f ‖H∞(Rω)

for all f ∈ H∞(Rω). In particular, D(Aα) ⊆ D( f (A)).

Part c) shows that, even though semigroup generators on Hilbert spaces
do not have a bounded H∞-calculus in general, each function f that decays
with polynomial rate α > 0 at infinity yields a bounded operator f (A). For
α > 1

2 this is already covered by Lemma 3.4, but for α ∈ (0, 1
2 ] it appears to

be new.

Remark 3.18. Part c) of Corollary 3.10 implies the stability of certain numerical
methods. Let −A generate an exponentially stable semigroup (T(t))t≥0 on a
Hilbert space, let r ∈ H∞(C+) be such that ‖r‖H∞(C+)

≤ 1, and let α, h > 0.
Then

sup {‖r(hA)nx‖ | n ∈N, x ∈ D(Aα), ‖Aαx‖ ≤ 1} < ∞ (3.16)

follows from c) in Corollary 3.10 after shifting the generator. Elements of the
form rn(hA)x are often used in numerical methods to approximate the so-
lution of the abstract Cauchy problem associated to −A with initial value
x, and (3.16) shows that such approximations are stable whenever the semi-
group is exponentially stable on a Hilbert space and if x ∈ D(Aα) for some
α > 0.
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Theorem 3.16 specializes to the following result, which contains part c) of
Theorem 3.1. This result also follows from [7, Corollary 6.5 and (7.1)].

Corollary 3.19. Let A be a densely defined operator of half-plane type 0 on a Hilbert
space H. Then the following assertions are equivalent:

(i) −A is the generator of a bounded C0-semigroup on H.
(ii) A has a strong m-bounded H∞-calculus of type 0 for some/all m ∈N.

In particular, if −A generates a uniformly bounded C0-semigroup then A has an
m-bounded H∞(Rω)-calculus for all ω < 0 and m ∈N.

3.4.2 Semigroups on UMD spaces

For ω ∈ R let

H∞
1 (Rω) :=

{
f ∈ H∞(Rω) | (z−ω) f ′(z) ∈ H∞(Rω)

}
be the analytic Mikhlin algebra on Rω, a Banach algebra endowed with the
norm

‖ f ‖H∞
1
= ‖ f ‖H∞

1 (Rω)
:= sup

z∈Rω

| f (z)|+ |(z−ω) f ′(z)| ( f ∈ H∞
1 (Rω)).

Theorem 2.19 yields the continuous inclusion

H∞
1 (Rω) ↪→ AMX

p(Rω)

for each p ∈ (1, ∞), if X is a UMD space. Combining this with Theorems 3.7
and 3.16 and Corollaries 3.9 and 3.10 proves the following theorem.

Theorem 3.20. Let −A generate a C0-semigroup (T(t))t∈R+ of type (M, 0) on a
UMD space X. Then the following assertions hold.

a) For each p ∈ (1, ∞) there exists a constant cp = c(p, X) ≥ 0 such that the
following holds. Let τ, ω > 0. Then f (A) ∈ L(X) with

‖ f (A)‖ ≤

cp M2|log(ωτ)| ‖ f ‖H∞
1 (Rω)

if ωτ ≤ min
{

1
p , 1

p′

}
,

2cp M2e−ωτ ‖ f ‖H∞
1 (Rω)

if ωτ > min
{

1
p , 1

p′

}
for all f ∈ H∞

1 (R−ω) ∩ e−τH∞(R−ω), and f (A)T(τ) ∈ L(X) with

‖ f (A)T(τ)‖ ≤

cp M2|log(ωτ)|eωτ ‖ f ‖H∞
1 (Rω)

if ωτ ≤ min
{

1
p , 1

p′

}
,

2cp M2 ‖ f ‖H∞
1 (Rω)

if ωτ > min
{

1
p , 1

p′

}
for all f ∈ H∞

1 (R−ω).
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b) If ⋃
τ>0

ran(T(τ)) = X,

then A has a bounded H∞
1 (Rω)-calculus for all ω < 0.

c) A has a strong m-bounded H∞
1 -calculus of type 0 for all m ∈N.

Remark 3.21. Theorem 3.11 yields the domain inclusion D(Aα) ⊆ D( f (A))
for all α ∈ C+, ω < 0 and f ∈ H∞

1 (Rω), on a UMD space X. However,
this inclusion in fact holds true on a general Banach space X. Indeed, for
λ ∈ C with Re(λ) < 0, Proposition 2.18 implies f (z)

(λ−z)α ∈ AM1(C+), hence
f (A)(λ− A)−α ∈ L(X) and D(Aα) ⊆ D( f (A)). The estimate∥∥ f (A)(λ− A)−α

∥∥ ≤ C ‖ f ‖H∞
1 (Rω)

(3.17)

then follows from Lemma 2.4. Indeed, the Convergence Lemma implies that
the map f 7→ f (A)(λ − A)−α is a closed operator, hence the closed graph
theorem yields (3.17).

Remark 3.22. To apply Theorem 3.20 one can use the continuous inclusion

H∞(Rω ∪ (Sϕ + a)) ⊆ H∞
1 (Rω′) (3.18)

for ω′ > ω, a ∈ R and ϕ ∈ (π/2, π]. Here Rω ∪ (Sϕ + a) is the union of
Rω and the translated sector Sϕ + a. Indeed, it suffices to consider a < 0 in
(3.18). Then for each f ∈ H∞(Rω ∪ (Sϕ + a)) and z ∈ Rω′ the Cauchy integral
formula yields

|z f ′(z)| ≤ 1
2π

∫
Γ

|z f (y)|
|y− z|2 d|y| (3.19)

for Γ the boundary of Rω′′ ∪ Sϕ, for ω′′ ∈ (ω, ω′). To obtain (3.18) from
this, split the integral in (3.19) into two parts, corresponding to the part of
Γ on ∂Rω′′ respectively ∂Sϕ. For the first part, which is bounded, use that
supz∈Rω′

| f ′(z)| ≤ ‖ f ‖H∞(Rω)
. For the second part use a rescaling argument

(see also [55, Lemma 8.2.6]).

3.5 γ-Bounded semigroups

The geometry of the underlying Banach space X played an essential role in
the results of Sections 3.2 and 3.3 in the form of properties of the analytic
multiplier algebra AMX

p . Indeed, in order to identify nontrivial functions in
AMX

p one needs a geometric assumption on X, for instance that it is a Hilbert
or a UMD space. In this section we take a different approach and make ad-
ditional assumptions on the semigroup instead of the underlying space. We
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show that if the semigroup in question is γ-bounded then one can recover
the Hilbert space results on an arbitrary Banach space X.

The following theorem generalizes part a) of Corollary 3.17. Recall that

e−τH∞(Rω) =
{

f ∈ H∞(Rω) | f (z) ∈ O(e−τ Re(z)) as |z| → ∞
}

for τ > 0, ω ∈ R.

Theorem 3.23. There exists a universal constant c ≥ 0 such that the following
holds. Let −A generate a C0-semigroup (T(t))t∈R+ ⊆ L(X) of γ-type (M, 0) on a
Banach space X, and let τ, ω > 0. Then f (A) ∈ L(X) with

‖ f (A)‖ ≤
{

c M2|log(ωτ)| ‖ f ‖∞ if ωτ ≤ 1
2

2M2e−ωτ ‖ f ‖∞ if ωτ > 1
2

(3.20)

for all f ∈ e−τH∞(R−ω).
In particular, A has a bounded e−τH∞(R−ω)-calculus.

Proof. We first show that the estimate (3.5) in Proposition 3.5 can be refined
to ∥∥Tµ

∥∥ ≤ M2η(ω, τ, 2)
∥∥Leωµ

∥∥
L(γ2(R;X))

(3.21)

for µ ∈ M−ω(R+) with supp(µ) ⊆ [τ, ∞). To this end, let ψ, ϕ ∈ L2(R+)
be such that ψ ∗ ϕ ≡ e−ω on [τ, ∞), and define ι : X → γ2(R; X) and P :
γ2(R; X)→ X by

ιx(s) := ψ(−s)T(−s)x (x ∈ X, s ∈ R),

Pg :=
∫ ∞

0
ϕ(t)T(t)g(t)dt (g ∈ γ2(R; X)).

Note that s 7→ T(−s)x is piecewise W1,∞ for all x in the dense subset D(A) ⊆
X and that

ψ(−·)⊗ x ∈ L2(−∞, 0)⊗ X ⊆ γ2(R; X).

Theorem 2.30 now implies that ι is well-defined and bounded, with

‖ιx‖γ2(R;X) ≤ M ‖ψ(−·)⊗ x‖L2(−∞,0) = M ‖ψ‖L2(R+)
‖x‖X (3.22)

for x ∈ X. As for P, write

Pg =
∫ ∞

0
ϕ(t)T(t)g(t)dt = JTg(ϕ) (g ∈ γ2(R; X)),

where JTg is as in (2.31). Now use Theorem 2.30 once again to see that Tg ∈
γ2(R; X), with
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‖Pg‖X ≤
∥∥JTg

∥∥
γ
‖ϕ‖L2(R+)

≤ M ‖ϕ‖L2(R+)
‖g‖γ2(R;X) (3.23)

for each g ∈ γ2(R; X).
Hence ι and P are well-defined and bounded maps, and Proposition 2.25

yields the commutative diagram

γ2(R; X)
Leω µ
// γ2(R; X)

P
��

X

ι

OO

Tµ
// X

Finally, estimating the norm of Tµ through this factorization, taking the infi-
mum over all ψ and ϕ and using (3.22) and (3.23) yields (3.21).

Now one uses that∥∥Leωµ

∥∥
L(γ(R;X))

≤ ‖êωµ‖H∞(C+)
= ‖µ̂‖H∞(R−ω)

by 2.27, to obtain

‖ f (A)‖ ≤ M2η(ω, τ, 2) ‖ f ‖H∞(R−ω)

if f = µ̂ for some µ ∈ M−ω(R+) with supp(µ) ⊆ [τ, ∞). For a general
f ∈ e−τH∞(Rω), define gk(z) := k

z−ω+k and fk,ε(z) := f (z + ε)gk(z + ε) for
ε > 0 k ∈ N and z ∈ R−ω. Then Lemmas 3.4 and 3.6 imply that fk,ε = µ̂
for some µ ∈ M−ω(R+) with supp(µ) ⊆ [τ, ∞). Hence, by what we have
already shown, ∥∥ fk,ε(A)

∥∥ ≤ M2η(ω, τ, p)
∥∥ fk,ε

∥∥
H∞(R−ω)

.

Moreover,∥∥ fk,ε
∥∥

H∞(R−ω)
≤ ‖ f (·+ ε)‖H∞(R−ω)

‖gk(·+ ε)‖H∞(R−ω)
≤ ‖ f ‖H∞(R−ω)

.

Now Lemma 2.4 implies that f (A) ∈ L(X) and that f (A) satisfies (3.20), and
finally Lemma A.2 concludes the proof. ut

Corollary 3.24. Let −A generate a γ-bounded C0-semigroup (T(t))t∈R+ ⊆ L(X)
of γ-type (M, 0) on a Banach space X. Then the following assertions hold.

a) There exists a universal constant c ≥ 0 such that the following holds. Let τ, ω >
0 and f ∈ H∞(R−ω). Then f (A)T(τ) ∈ L(H) with

‖ f (A)T(τ)‖ ≤
{

c M2|log(ωτ)|eωτ ‖ f ‖H∞(R−ω)
if ωτ ≤ 1

2 ,
2M2 ‖ f ‖H∞(R−ω)

if ωτ > 1
2

for all f ∈ H∞(R−ω).
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b) If ⋃
τ>0

ran(T(τ)) = H,

then A has a bounded H∞(Rω)-calculus for all ω < 0.
c) For ω < 0 and α, λ ∈ C with Re(λ) < 0 < Re(α) there exists a C =

C(α, λ, ω) ≥ 0 such that∥∥ f (A)(A− λ)−α
∥∥ ≤ CM2 ‖ f ‖H∞(Rω)

for all f ∈ H∞(Rω). In particular, D(Aα) ⊆ D( f (A)).

Proof. Part a) follows from Theorem (3.23) just as Corollary 3.9 followed from
Theorem 3.7, using that ‖e−τ f ‖H∞(R−ω)

= eωτ ‖ f ‖H∞(R−ω)
.

Part b) follows from part a) in the same way as Corollary 3.10 followed
from Corollary 3.9, by noting that the map H∞(R−ω) → L(X), f 7→ f (A),
is well-defined and linear, and by using the Closed Graph Theorem and
Lemma 2.4.

For part c), Corollary 3.3.6 in [55] yields

(A− λ)−αx =
1

Γ(α)

∫ ∞

0
tα−1eλtT(t)x dt (x ∈ X),

since −(A− λ) generates the exponentially stable semigroup (eλtT(t))t∈R+ .
Fix f ∈ H∞(R−ω) and set a := 1

2ω . By part a),∫ ∞

0
tRe(α)−1eRe(λ)t ‖ f (A)T(t)x‖dt ≤ CM2 ‖ f ‖H∞(R−ω)

‖x‖ < ∞ (3.24)

for all x ∈ X, where

C = c
∫ a

0
tRe(α)−1|log(ωt)|e(Re(λ)+ω)t dt + 2

∫ ∞

a
tRe(α)−1eRe(λ)t dt

is independent of f , M, and x. Since f (A) is a closed operator, this implies
that (A− λ)−α maps into D( f (A)) with

f (A)(A− λ)−αx =
1

Γ(α)

∫ ∞

0
tα−1eλt f (A)T(t)x dt

for all x ∈ X. Applying (3.24) to this expression concludes the proof of c). ut

The following result will be used in Section 6.2.3.

Corollary 3.25. Let −A generate a C0-semigroup (T(t))t∈R+ ⊆ L(X) of γ-type
(M,−ω) for M ≥ 1 and ω > 0, and let β > 0. Then there is a constant C =
C(ω, β) ≥ 0 such that f (A)A−β ∈ L(X) with

‖ f (A)A−β‖L(X) ≤ CM2‖ f ‖H∞(C+)

for all f ∈ H∞(C+).
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Proof. Let f ∈ H∞(C+) and note that −(A − ω) generates the semigroup
(eωtT(t))t∈R+ of γ-type (M, 0). Moreover, f (· + ω) ∈ H∞(R−ω) with f (· +
ω)(A−ω) = f (A), by Lemma 2.3. Hence Corollary 3.24 c) yields a constant
C = C(ω, β) ≥ 0 such that

‖ f (A)A−β‖L(X) = ‖ f (·+ ω)(A−ω)(A−ω− (−ω))−β‖L(X)

≤ CM2‖ f (·+ ω)‖H∞(R−ω) ≤ CM2‖ f ‖H∞(C+). ut

Theorem 3.16 can also be extended to a γ-version:

Theorem 3.26. Let −A generate a C0-semigroup (T(t))t∈R+ ⊆ L(X) of γ-type
(M, 0) on a Banach space X. Then A has a strong m-bounded H∞-calculus of type
0 for all m ∈N. In particular,

‖ f ′(A)‖L(X) ≤
M2

2|ω| ‖ f ‖H∞(R−ω) (3.25)

for each ω > 0 and f ∈ H∞(R−ω).

Proof. By replacing AMX
p by H∞ in the proof of Lemma 3.14, it suffices to let

m = 1. Let ω > 0. We first obtain (3.25) for f = µ̂, where µ ∈ M−ω(R+).
A modification of the proof of Proposition 3.15, along the same lines as in
the proof of Theorem 3.23, shows that the maps ι : X → γ2(R; X) and P :
γ2(R; X)→ X, given by

ιx(s) := e−ωsT(−s)x (x ∈ X, s ∈ R),

P f :=
∫ ∞

0
eωtT(t) f (t)dt ( f ∈ γ2(R; X)),

are well-defined and bounded. More precisely, one obtains

‖ιx‖γ2(R;X) ≤ M(2|ω|)−1/2 ‖x‖X (3.26)

for x ∈ X, and

‖P f ‖X ≤ M(2|ω|)−1/2 ‖ f ‖γ2(R;X) (3.27)

for f ∈ γ2(R; X). By Lemma 2.27,∥∥Le−ωµ

∥∥
L(γ(R;X))

≤ ‖êωµ‖H∞(C+)
= ‖µ̂‖H∞(R−ω)

. (3.28)

Letting Ψ(R; X) = Φ(R; X) = γ2(R; X) in Proposition 2.25, and using that

(1R+ eω ∗ 1R+ eω)(t)e−ω(t)µ(dt) = tµ(dt),

we obtain the commutative diagram
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γ2(R; X)
Le−ω µ

// γ2(R; X)

P
��

X

ι

OO

Ttµ
// X

As in Theorem 3.16, f ′(z) = t̂µ(z) for all z ∈ R−ω. Hence estimating the
norm of Ttµ = f ′(A) through the above factorization, and using (3.26), (3.27)
and (3.28) one obtains (3.25) if f = µ̂ for µ ∈ M−ω(R+).

For general f ∈ H∞(Rw) define the functions fk,ε := f (·+ ε)gk(·+ ε) for
k ∈N and ε > 0, where gk(z) := k

z−ω+k for z ∈ R−ω. Lemma 3.4 and Lemma
3.3 yield µk,ε ∈ Mω(R+) with fk,ε = µ̂k,ε for each k ∈ N and ε > 0. We have
shown above that

‖ f ′k,ε(A)‖L(X) ≤
M2

2|ω| ‖ fk,ε‖H∞(Rω) ≤
M2

2|ω| ‖ f ‖H∞(Rω),

where we used that
∥∥ fk,ε

∥∥
H∞(Rω)

≤ ‖ f ‖H∞(Rω)
for all k ∈ N and ε > 0. In

particular, the fk,ε are uniformly bounded on R−ω. By the Cauchy integral
formula, the derivatives f ′k,ε are uniformly bounded on Rω′ for each ω′ ∈
(−ω, 0). Since f ′k,ε(z) → f ′(z) for all z ∈ Rω′ as k → ∞, ε → 0, Lemma 2.4
yields f ′(A) ∈ L(X) with

‖ f ′(A)‖L(X) ≤
M2

2|ω| ‖ f ‖H∞(R−ω),

which is (3.12) for m = 1. ut
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Functional calculus on real interpolation spaces for
generators of C0-groups

In Theorems 2.9 and 2.20 we have seen that group generators have a bounded
calculus for a class of functions which may depend on the underlying space.
Given what we encountered in Chapter 3, where the results depended heav-
ily on the geometry of the underlying space, this is perhaps not very surpris-
ing. Moreover, just like the results in Chapter 3, Theorems 2.9 and 2.20 can
be proved using transference principles.

Although Theorems 2.9 and 2.20 are powerful statements, geometric as-
sumptions on the underlying space restrict the generality of the results. In
particular, Hilbert and UMD spaces are reflexive. Therefore the transference
approach which we used so far does not yield interesting results for groups
of operators on non-reflexive spaces such as C(K)-spaces or L1-spaces.

In this chapter we take a different approach and consider transference
principles on interpolation spaces. We have seen in Theorem 2.38 that the
functional calculus properties of an operator can improve upon restriction to
interpolation spaces. However, unlike in Theorem 2.38 we are interested in
the strip type functional calculus considered in Section 2.2.2, which is a more
natural and useful functional calculus for group generators.

The reason that the transference principles in Propositions 2.23 and 2.24
do not directly yield anything interesting for C0-groups on spaces X which
are not UMD is that no results about Lp(R; X)-Fourier multipliers are avail-
able in this context. However, we have seen in Theorem 2.21 that Br

p,q(R; X)-
Fourier multiplier results exist that do not depend on the geometry of X. We
have also seen in Lemma 2.35 that Besov spaces are obtained from real inter-
polation between Lp and Sobolev spaces, and this fits well into the setting of
a transference principle on interpolation spaces.

In this chapter we consider transference principles on the real interpo-
lation space DA(θ, q) from (2.37). In particular, in Proposition 4.4 we estab-
lish the following interpolation version of the classical transference principle
from 2.23.
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Proposition 4.1. Let θ ∈ (0, 1), p ∈ [1, ∞) and q ∈ [1, ∞]. Then there exists
a constant C ≥ 0 such that the following holds. Let −iA generate a C0-group
(U(s))s∈R ⊆ L(X) on a Banach space X with M := sups∈R ‖U(s)‖ < ∞, and
let µ ∈ M(R). Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥
θ,q
≤ CM2 ∥∥Lµ

∥∥
L(Bθ

p,q(R;X)) ‖x‖θ,q

for all µ ∈ M(R) and x ∈ DA(θ, q).

We also establish an interpolation version of the transference principle for
unbounded groups from Proposition 2.24.

We then combine these transference principles with Theorem 2.21 to de-
rive a functional calculus result for the part Aθ,q of A in DA(θ, q) from (2.39).
To this end, for each ω > 0 define the (inhomogeneous) analytic Mikhlin algebra

H∞
1 (Stω) :=

{
f ∈ H∞(Stω)

∣∣∣∣∣ sup
z∈Stω

(1 + |z|) | f ′(z)| < ∞

}
(4.1)

on Stω, endowed with the norm

‖ f ‖H∞
1 (Stω)

:= sup
z∈Stω

| f (z)|+ (1 + |z|) | f ′(z)| ( f ∈ H∞
1 (Stω)). (4.2)

It is straightforward to show that, for all ω > 0, H∞
1 (Stω) is equal to the

homogenous analytic Mikhlin algebra H∞
(1)(Stω) from (2.27), with equiva-

lent norms. However, (4.2) is more natural in the setting of transference
principles on inhomogeneous Besov spaces, since Fourier multiplier results
on such spaces require an inhomogeneous condition at zero. Moreover, the
norm equivalence of H∞

1 (Stω) and H∞
(1)(Stω) fails as ω ↓ 0, which means that

the distinction between the two spaces is relevant for uniformly bounded
groups. See also Remarks 4.9 and 4.11.

The main functional calculus result of this chapter is the following ver-
sion of Theorems 2.9 and 2.20 on interpolation spaces. For a proof see Theo-
rem 4.10.

Theorem 4.2. Let−iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach space
X, and let θ ∈ (0, 1), q ∈ [1, ∞]. Then Aθ,q has a bounded H∞

1 (Stω)-calculus on
DA(θ, q) for all ω > θ(U).

If (U(s))s∈R is uniformly bounded then the constant bounding the H∞
1 (Stω)-

calculus can be chosen independent of ω > 0.

Theorem 4.2 shows that, just as in Theorem 2.38, the functional calculus
properties of an operator can improve upon restriction to a real interpolation
space.
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An important class of C0-groups is given by the groups of imaginary
powers of a sectorial operator with bounded imaginary powers. For a sec-
torial operator A with bounded imaginary powers one can use Theorem 4.2
to obtain a specific bounded calculus on real interpolation spaces between
the underlying space X and the domain of the logarithm of A. This result
complements Theorem 2.38.

In a similar manner, one can deduce results about convergence of princi-
pal value integrals and functional calculus for generators of cosine functions
from Theorem 4.2.

In Section 4.1 we establish transference principles on interpolation spaces,
and in Section 4.2 we prove Theorem 4.2. Section 4.3 contains additional re-
sults that can be derived from this.

4.1 Transference principles on real interpolation spaces

In this section we derive versions of Propositions 2.23 and 2.24 on interpola-
tion spaces.

4.1.1 Unbounded groups

We first establish an interpolation version of the transference principle for
unbounded groups from Proposition 2.24. For ω ≥ 0 and µ ∈ M−ω(R),
recall the definition of the measure µω ∈ M(R) from (2.30).

Proposition 4.3. Let 0 ≤ ω0 < ω, θ ∈ (0, 1), p ∈ [1, ∞) and q ∈ [1, ∞]. Then
there exists a constant C ≥ 0 such that the following holds. Let −iA generate
a C0-group (U(s))s∈R ⊆ L(X) on a Banach space X such that ‖U(s)‖L(X) ≤
M cosh(ω0s) for all s ∈ R and some M ≥ 1, and let µ ∈ M−ω(R). Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥
θ,q
≤ CM2 ∥∥Lµω

∥∥
L(Bθ

p,q(R;X)) ‖x‖θ,q

for all x ∈ DA(θ, q).

Proof. Let Uµ be as in (2.9). By Proposition 2.25, we can factorize Uµ ∈ L(X)
as Uµ = P ◦ Lµω ◦ ι, where

• ι : X → Lp(R; X) is given by

ιx(s) := ψ(−s)U(−s)x (x ∈ X, s ∈ R),

with

ψ(s) :=
1

cosh(2ωs)
(s ∈ R).
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• P : Lp(R; X)→ X is given by

P f :=
∫

R
ϕ(s)U(s) f (s)ds ( f ∈ Lp(R; X)),

with

ϕ(s) :=

√
8ω

π

cosh(ωs)
cosh(2ωs)

(s ∈ R).

Here we use that ψ ∗ ϕ(s) = 1
cosh(ωs) for s ∈ R, as can be seen by taking

Fourier transforms (see [58, Theorem 3.2]). By Hölder’s inequality,

‖ι‖L(X,Lp(R;X)) ≤ M ‖ψ cosh(ω0·)‖p , (4.3)

‖P‖L(Lp(R;X),X) ≤ M ‖ϕ cosh(ω0·)‖p′ . (4.4)

We claim that ι : D(A) → W1,p(R; X) and P : W1,p(R; X) → D(A) are well-
defined and bounded. To prove this claim, let x ∈ D(A). Then ιx ∈ C1(R; X)
with

(ιx)′(s) = −ψ′(−s)U(−s)x + iψ(−s)U(−s)Ax

= −2ω
tanh(2ωs)
cosh(2ωs)

U(−s)x + i
1

cosh(2ωs)
U(−s)Ax

for all s ∈ R. Hence (ιx)′ ∈ Lp(R; X) with

∥∥(ιx)′∥∥p≤ 2ωM ‖tanh‖L∞(R)

∥∥∥∥ cosh(ω0·)
cosh(2ω·)

∥∥∥∥
p
‖x‖X + M

∥∥∥∥ cosh(ω0·)
cosh(2ω·)

∥∥∥∥
p
‖Ax‖X .

Combining this with (4.3) implies that ιx ∈W1,p(R; X) with

‖ιx‖1,p ≤ M(2ω ‖tanh‖L∞(R) + 1)
∥∥∥∥ cosh(ω0·)

cosh(2ω·)

∥∥∥∥
p
‖x‖D(A) . (4.5)

This shows that ι : D(A) → W1,p(R; X) is bounded. To prove the claim for
P, fix f ∈ S(X) and note that

1
h
(U(h)− I)P f =

∫
R

U(s)
ϕ(s− h) f (s− h)− ϕ(s) f (s)

h
ds

for h > 0. The latter expression converges to −
∫

R
U(s)(ϕ f )′(s)ds ∈ X as

h→ 0, by the dominated convergence theorem. Hence P f ∈ D(A) with

AP f = lim
h→0

1
h
(U(h)− I)P f = −

∫
R

U(s)(ϕ′(s) f (s) + ϕ(s) f ′(s))ds.

Another application of Hölder’s inequality yields
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‖AP f ‖X ≤ M
∥∥ϕ′ cosh(ω0·)

∥∥
p′ ‖ f ‖p + M ‖ϕ cosh(ω0·)‖p′

∥∥ f ′
∥∥

p .

Combining this with (4.4) implies

‖P f ‖D(A) ≤ M
(
‖ϕ cosh(ω0·)‖p′ +

∥∥ϕ′ cosh(ω0·)
∥∥

p′

)
‖ f ‖1,p . (4.6)

As S(X) is dense in W1,p(R; X), P : W1,p(R; X)→ D(A) is bounded.
Since Lµω ∈ L(W1,p(R; X)), we can factorize Uµ ∈ L(D(A)) as Uµ =

P ◦ Lµω ◦ ι via bounded maps through W1,p(R; X). Applying the real inter-
polation method with parameters θ and q to the two factorizations of Uµ,
through Lp(R; X) respectively W1,p(R; X), yields the commutative diagram
of bounded maps

(Lp(R; X), W1,p(R; X))θ,q
Lµω
// (Lp(R; X), W1,p(R; X))θ,q

P
��

DA(θ, q)

ι

OO

Uµ
// DA(θ, q)

Finally, estimate the norms of ι and P in this diagram by applying (2.34) to
(4.3) and (4.5) respectively (4.4) and (4.6). This yields∥∥Uµ

∥∥
L(DA(θ,q)) ≤ C′M2 ∥∥Lµ

∥∥
L((Lp(R;X),W1,p(R;X))θ,q)

(4.7)

for a constant C′ ≥ 0 independent of µ. Now Lemma 2.35 concludes the
proof. ut

4.1.2 Bounded groups

In this section we establish a version of Proposition 2.23 on interpolation
spaces, already stated in the introduction to this chapter as Proposition 4.1.
In the proof we use the convention 1/∞ := 0.

Proposition 4.4. Let θ ∈ (0, 1), p ∈ [1, ∞) and q ∈ [1, ∞]. Then there exists
a constant C ≥ 0 such that the following holds. Let −iA generate a C0-group
(U(s))s∈R ⊆ L(X) on a Banach space X with M := sups∈R ‖U(s)‖ < ∞, and
let µ ∈ M(R). Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥
θ,q
≤ CM2 ∥∥Lµ

∥∥
L(Bθ

p,q(R;X)) ‖x‖θ,q (4.8)

for all µ ∈ M(R) and x ∈ DA(θ, q).

Proof. First note that it suffices to establish (4.8) for measures with compact
support. Indeed, approximating by measures with compact support then ex-
tends (4.8) to all µ ∈ M(R). So fix N > 0 and suppose that supp(µ) ⊆
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[−N, N]. We will factorize Uµ using Proposition 2.25. To this end, let ρ ∈
C∞(R) be defined by

ρ(s) :=

{
c1 exp

(
1

s2−1

)
|s| < 1

0 |s| ≥ 1
,

where c1 ≥ 0 is such that
∫

R
ρ(s)ds = 1. Fix α, β > 0 and define σ(s) :=

1
α ρ
( s

α

)
for s ∈ R, and let

ψ := σ ∗ 1[−(N+3α+β),N+3α+β] and ϕ :=
1

2(α + β)
σ ∗ 1[−(α+β),α+β].

Then ψ, ϕ ∈ C∞(R) are such that supp(ϕ) ⊆ [−(2α + β), 2α + β],

ψ ≡ 1 on [−(2α + N + β), 2α + N + β] and
∫ 2α+β

−(2α+β)
ϕ(s)ds = 1.

Hence ψ ∗ ϕ ≡ 1 on [−N, N]. Let ι : X → Lp(R; X) be given by

ιx(s) := ψ(−s)U(−s)x (x ∈ X, s ∈ R),

and P : Lp(R; X)→ X by

P f :=
∫

R
ϕ(s)U(s) f (s)ds ( f ∈ Lp(R; X)).

Proposition 2.25 yields the factorization Uµ = P ◦ Lµ ◦ ι, where we use that
(ψ ∗ ϕ)µ = µ. By Hölder’s inequality,

‖ι‖L(X,Lp(R;X)) ≤ M ‖ψ‖p and ‖P‖L(Lp(R;X),X) ≤ M ‖ϕ‖p′ (4.9)

Moreover, ι : D(A) → W1,p(R; X) and P : W1,p(R; X) → D(A) are bounded
with

‖ι‖L(D(A),W1,p(R;X)) ≤ M ‖ψ‖1,p and ‖P‖L(W1,p(R;X),D(A)) ≤ M ‖ϕ‖1,p′ .
(4.10)

This follows by arguments analogous to those in the proof of Proposition
4.3. Applying the real interpolation method with parameters θ and q to the
two factorizations of Uµ, through Lp(R; X) and W1,p(R; X), produces the
commutative diagram of bounded maps

(Lp(R; X), W1,p(R; X))θ,q
Lµ
// (Lp(R; X), W1,p(R; X))θ,q

P
��

DA(θ, q)

ι

OO

Uµ
// DA(θ, q)
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Use (2.34) on (4.9) and (4.10) to estimate the norms of ι and P in this factor-
ization as ‖ι‖ ≤ M ‖ψ‖1,p and ‖P‖ ≤ M ‖ϕ‖1,p′ . This yields

‖Uµ‖L(DA(θ,q)) ≤ M2‖ψ‖1,p‖ϕ‖1,p′‖Lµ‖L((Lp(R;X),W1,p(R;X))θ,q)
. (4.11)

To determine ‖ψ‖1,p and ‖ϕ‖1,p′ note that

‖ψ‖p ≤ ‖σ‖1‖1[−(N+3α+β),N+3α+β]‖p = (2(N + 3α + β))1/p,

‖ϕ‖p′ ≤
1

2(α + β)
‖σ‖1‖1[−(α+β),α+β]‖p′ = (2(α + β))−1/p,

by Young’s inequality. Since σ is an even function that is decreasing on [0, α]
and supported on [−α, α], its derivative satisfies

‖σ′‖1 = −2
∫ α

0
σ′(s)ds = 2(σ(0)− σ(α)) =

2ρ(0)
α

.

Let c2 := 2ρ(0). Another application of Young’s inequality yields

‖ψ′‖p ≤ ‖σ′‖1‖1[−(N+3α+β),N+3α+β]‖p =
c2

α
(2(N + 3α + β))1/p,

‖ϕ′‖p ≤
1

2(α + β)
‖σ′‖1‖1[−(α+β),α+β]‖p =

c2

α
(2(α + β))−1/p.

Hence (4.11) becomes

∥∥Uµ

∥∥
L(DA(θ,q)) ≤ M2

(
1 +

c2

α

)2
(

N + 3α + β

α + β

)1/p∥∥Lµ

∥∥
L((Lp(R;X),W1,p(R;X))θ,q)

and taking the infimum over α and β yields∥∥Uµ

∥∥
L(DA(θ,q)) ≤ M2 ∥∥Lµ

∥∥
L((Lp(R;X),W1,p(R;X))θ,q)

. (4.12)

Lemma 2.35 now establishes (4.8) and concludes the proof. ut

Remark 4.5. Note that the constant C in Proposition 4.4 comes only from
the equivalence of the norms on (Lp(R; X), W1,p(R; X))θ,q and Bθ

p,q(R; X),
whereas in Proposition 4.3 a constant is present which is inherent to the trans-
ference method.

Remark 4.6. Let p ∈ [1, ∞) and let (U(s))s∈R ⊆ L(Lp(R)) be the left trans-
lation group given by U(s) f (t) := f (t + s) for f ∈ Lp(R), s ∈ R and al-
most all t ∈ R. Then (U(s)))s∈R is generated by −iA, where A f := i f ′ for
f ∈ D(A) = W1,p(R). Hence DA(θ, q) = (Lp(R), W1,p(R))θ,q for θ ∈ (0, 1)
and q ∈ [1, ∞]. Moreover, for µ ∈ M(R) and f ∈ Lp(R),∫

R
U(s) f dµ(s) = µ ∗ f = Lµ( f ).
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Hence, with Uµ as in (2.9),∥∥Uµ

∥∥
L(DA(θ,q)) =

∥∥Lµ

∥∥
L((Lp(R),W1,p(R))θ,q)

.

This shows that (4.12) is sharp in general, up to possibly a change of constant.
By Lemma 2.35, the same holds for (4.8).

Proposition 4.4 and Corollary 2.22 combine to yield the following result.

Corollary 4.7. Let θ ∈ (0, 1) and q ∈ [1, ∞]. Then there exists a constant C ≥ 0
such that the following holds. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on
a Banach space X with M := sups∈R ‖U(s)‖ < ∞, and let µ ∈ M(R) be such that
Fµ ∈ C1(R) with sups∈R(1 + |s|) |(Fµ)′(s)| < ∞. Then∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥
θ,q
≤ CM2 ‖x‖θ,q sup

s∈R

(
|Fµ(s)|+ (1 + |s|) |(Fµ)′(s)|

)
for all x ∈ DA(θ, q).

Remark 4.8. For Corollary 4.7 we used Corollary 2.22, but there are other ways
to verify the conditions of Proposition 2.21, for instance Hörmander-type as-
sumptions, cf. [51, pp. 47-49]. These then yield functional calculus results for
other function norms than in Corollary 4.7.

Remark 4.9. If X is a UMD space then Proposition 2.23 and Theorem 2.19 yield
an estimate∥∥∥∥∫

R
U(s)x µ(ds)

∥∥∥∥
X
≤ CM2 ‖x‖X sup

s∈R

(
|Fµ(s)|+ |s(Fµ)′(s)|

)
for all x ∈ X. Corollary 4.7 then follows from (2.34), and in fact in this case
(Fµ)′ need not be bounded near zero. However, the inhomogeneity of the
Besov space Br

p,q(R; X) implies that for general Banach spaces in Corollary
4.7 a condition at zero on the multiplier is needed to deal with the term ϕ0m
in Proposition 2.21.

4.2 Functional calculus results for groups on interpolation
spaces

We now use the theory established in the previous sections to prove the main
functional calculus result of this chapter, Theorem 4.2. Recall the definition
of the (inhomogeneous) analytic Mikhlin algebra H∞

1 (Stω) from (4.1).

Theorem 4.10. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X and let θ ∈ (0, 1), q ∈ [1, ∞] and ω > θ(U). Then there exists a constant
C ≥ 0 such that f (Aθ,q) ∈ L(DA(θ, q)) with
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∥∥ f (Aθ,q)
∥∥
L(DA(θ,q)) ≤ C ‖ f ‖H∞

1 (Stω)

for all f ∈ H∞
1 (Stω). If (U(s))s∈R is uniformly bounded then C can be chosen

independent of ω > 0.

Proof. First consider f ∈ H∞
1 (Stω) ∩ E(Stω) and fix α ∈ (θ(U), ω) and p ∈

[1, ∞). By Lemma 2.7 there exists a µ ∈ M−α(R) such that f = Fµ. Let µα be
as in (2.30). By Lemmas 2.7 and 2.36 and Proposition 4.3,∥∥ f (Aθ,q)

∥∥ =
∥∥(Uµ)θ,q

∥∥ ≤ C1
∥∥Lµα

∥∥
L(Bθ

p,q(R;X))
= C1

∥∥TFµα

∥∥
L(Bθ

p,q(R;X))

(4.13)

for some constant C1 ≥ 0, where TFµα
is as in (2.29). Since

Fµα(s) =
f (s + iα) + f (s− iα)

2
(s ∈ R),

Corollary 2.22 yields a constant C2 ≥ 0 such that

‖ f (Aθ,q)‖ ≤ C2 sup
s∈R

(
|Fµα(s)|+ (1 + |s|)|(Fµα)

′(s)|
)
≤ C2‖ f ‖H∞

1 (Stω).

(4.14)

For general f ∈ H∞
1 (Stω) first assume that q < ∞. By part b) of Lemma 2.36,

D(Aθ,q) is dense in DA(θ, q). Let τk(z) := −k2(ik− z)−2 for k ∈N with k > ω
and z ∈ Stω. Then τk, f τk ∈ H∞

1 (Stω) ∩ E(Stω),

sup
k
‖ f τk‖H∞

1 (Stω)
≤ ‖ f ‖H∞

1 (Stω)
sup

k
‖τk‖H∞

1 (Stω)
< ∞

and f τk(z)→ f (z) as k→ ∞, for all z ∈ Stω. Now (4.14) yields∥∥ f τk(Aθ,q)
∥∥ ≤ C2 ‖ f τk‖H∞

1 (Stω)
≤ C ‖ f ‖H∞

1 (Stω)

for some C ≥ 0. Hence Lemma 2.8 implies f (A) ∈ L(X) and∥∥ f (Aθ,q)
∥∥ ≤ C ‖ f ‖H∞

1 (Stω)
. (4.15)

Finally, for q = ∞ Theorem 2.34 yields

DA(θ, ∞) = (DA(θ1, 1), DA(θ2, 1))θ3,∞

with equivalence of norms, where θ1, θ2, θ3 ∈ (0, 1) are such that θ1 6= θ2 and
θ1(1− θ3) + θ2θ3 = θ. Combining (3.9) and (2.34) concludes the proof of the
first statement.

In the case where (U(s))s∈R is uniformly bounded, use Proposition 4.4
instead of 4.3 in (4.13) to obtain∥∥ f (Aθ,q)

∥∥ ≤ C1
∥∥TFµ

∥∥
L(Bθ

p,q(R;X))

for all f ∈ H∞
1 (Stω) ∩ E(Stω) and some constant C1 ≥ 0 independent of ω.

The rest of the proof is the same as before. ut
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Remark 4.11. If X is a UMD space then Theorem 4.10 follows from Theorem
2.20 by interpolation. Moreover, in this case one seems to obtain a stronger
result since the term supz∈Stω

| f ′(z)| which occurs in ‖ f ‖H∞
1 (Stω)

does not ap-
pear in the norm

‖ f ‖H∞
(1)(Stω)

= sup
z∈Stω

| f (z)|+ |z f ′(z)|

of H∞
(1)(Stω). However, the norms ‖·‖H∞

(1)(Stω)
and ‖·‖H∞

1 (Stω)
are equivalent,

since 0 ∈ Stω for all ω > 0. So for generators of unbounded groups, The-
orem 2.20 does not yield an essentially better estimate than Theorem 4.10
on DA(θ, q). This is different for generators of uniformly bounded groups,
since the norm equivalence of supz∈Stω

| f (z)|+ |z f ′(z)| and ‖ f ‖H∞
1 (Stω)

fails
as ω ↓ 0. For generators of uniformly bounded groups on UMD spaces, The-
orem 2.20 yields a strictly stronger result on DA(θ, q) than Theorem 4.10.

Remark 4.12. Let λ ∈ C with Re(λ) > ω. By (2.38), D((λ− iA)α) ⊆ DA(α, ∞)
for each α ∈ (0, 1). Hence Theorem 4.10 yields f (A)(λ − iA)−α ∈ L(X)
for all ω > θ(U), f ∈ H∞

1 (Stω) and α > 0. However, this already fol-
lows from Proposition 2.18, in a similar manner as indicated in Remark 3.21.
Moreover, using arguments as in Remark 3.13, Proposition 2.18 implies that
f (A) : DA(θ, q) → DA(θ

′, q′) is bounded for all θ′ < θ and q, q′ ∈ [1, ∞]. The
improvement that Theorem 4.10 provides lies in going from θ′ < θ to θ′ = θ.

Remark 4.13. As already noted in Remark 4.8, in the proof above we could
have used Fourier multiplier results on Besov spaces other than Corollary
2.22. These lead to statements about the boundedness of functional calculi
for other function algebras.

For ψ ∈ (0, π/2) and ω > 0 let

Σψ := Sψ ∪−Sψ,

where Sψ is as in (2.1), and

Vψ,ω := Stω ∪ Σψ.

The next lemma follows from [58, Lemma 4.5], using that H∞
1 (Stω) =

H∞
(1)(Stω) with equivalent norms for each ω > 0.

Lemma 4.14. Let ω > ω′ > 0 and ψ ∈ (0, π/2). Then H∞(Vω,ψ) is continuously
embedded in H∞

1 (Stω′).

Corollary 4.15. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X and let θ ∈ (0, 1) and q ∈ [1, ∞]. Then Aθ,q has a bounded H∞(Vω,ψ)-
calculus for all ω > θ(U) and ψ ∈ (0, π/2).
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So far we have considered functional calculus on interpolation spaces for
the couple (X, D(A)). The next corollary extends our results to other inter-
polation couples.

Corollary 4.16. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X and let θ ∈ (0, 1), q ∈ [1, ∞] and m, n ∈N0 with m 6= n. Then the part of
A in (D(Am), D(An))θ,q has a bounded H∞

1 (Stω)-calculus for all ω > θ(U).
If (U(s))s∈R is uniformly bounded then the constant bounding the H∞

1 (Stω)-
calculus can be chosen independent of ω > 0.

Proof. By (2.35) we may assume that m < n. Using the similarity transform
R(λ, A)m : X → D(Am), it suffices to let m = 0. Suppose that nθ /∈ N. By
Lemma 3.1.3 and Proposition 3.1.8 in [86],

(X, D(An))θ,q = (D(Ak), D(Ak+1))θ′ ,q

for some k ∈N0 and θ′ ∈ (0, 1). Another similarity transform shows that we
can let k = 0. Now Theorem 4.10 yields the statement.

If k := nθ ∈N, then Theorem 2.34 yields

(X, D(An))θ,q =
(
(D(Ak−1), D(Ak))1/2,q, (D(Ak), D(Ak+1))1/2,q

)
1/2,q

.

By what we have already shown and by (2.34), this concludes the proof. ut

4.3 Additional results on interpolation spaces

We now consider several results which follow from Theorem 4.10. Corollary
4.16 can be applied in this section to yield results for other interpolation cou-
ples.

4.3.1 Principal value integrals

We first state a proposition about the convergence of certain principal value
integrals. If g ∈ L1[−1, 1] is an even function then by PV− g(s)/s we mean
the distribution defined by

〈PV− g(s)/s, ϕ〉 := lim
ε↘0

∫
ε≤|s|≤1

g(s)ϕ(s)
ds
s

=
∫ 1

0
g(s)

ϕ(s)− ϕ(−s)
s

ds

for ϕ ∈ C∞
c (R). By BV[−1, 1] we denote the functions g of bounded variation

Var[−1,1](g) on [−1, 1].

Lemma 4.17. Let g ∈ BV[−1, 1] be an even function and set f := F (PV −
g(s)/s). Then f ∈ H∞

1 (Stω) for all ω > 0, with

‖ f ‖H∞
1 (Stω)

≤ C(Var[−1,1](g) + g(1)) (4.16)

for a constant C = C(ω) ≥ 0 independent of g.
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Proof. By [58, Lemma 4.3], f ∈ H∞
(1)(Stω) for each ω > 0 and (4.16) holds

with respect to the H∞
(1)(Stω)-norm. But as noted in Remark 4.11, H∞

1 (Stω) =

H∞
(1)(Stω) with equivalent norms. ut

The following is an interpolation version of [58, Theorem 4.4] on general
Banach spaces.

Proposition 4.18. Let −iA generate a C0-group (U(s))s∈R ⊆ L(X) on a Banach
space X. Let g ∈ BV[−1, 1] be an even function and set f := F (PV− g(s)/s).
Then f (Aθ,q) ∈ L(DA(θ, q)) for all θ ∈ (0, 1), q ∈ [1, ∞], and

f (A)x = lim
ε↘0

∫
ε≤|s|≤1

g(s)U(s)x
ds
s

(4.17)

for all θ ∈ (0, 1), q ∈ [1, ∞) and x ∈ DA(θ, q).

Proof. By Lemma 4.17, f ∈ H∞
1 (Stω) for all ω > 0. Theorem 4.10 now yields

the first statement.
Let q < ∞, and for ε > 0 let gε := (1[−1,1] − 1(−ε,ε))g and fε := F (PV−

gε(s)/s). Then

sup
ε>0

Var[−1,1](gε) + gε(1) < ∞

and fε(z) → f (z) as ε ↓ 0 for z ∈ C. Moreover, supε>0 ‖ f ‖H∞
1 (Stω)

< ∞ by
Lemma 4.17. Hence Theorem 4.10 and Lemma 2.8 conclude the proof. ut

4.3.2 Results for sectorial operators and cosine functions

We now apply the results from previous sections to functional calculus the-
ory for sectorial operators and generators of cosine functions.

For ψ ∈ (0, π) define H∞
log(Sψ) to be the unital Banach algebra of all f ∈

H∞(Sψ) for which

‖ f ‖H∞
log(Sψ)

:= sup
z∈Sψ

| f (z)|+ (1 + |log(z)|)|z f ′(z)| < ∞,

endowed with the norm ‖·‖H∞
log(Sψ)

. Recall the definition of a sectorial opera-

tor with bounded imaginary powers from Section 2.2.3.

Proposition 4.19. Let X be a Banach space and A ∈ BIP(X, ϕ) with ϕ < π. Let
θ ∈ (0, 1) and q ∈ [1, ∞]. Set Y := (X, D(log(A)))θ,q. Then AY has a bounded
H∞

log(Sψ)-calculus on Y for all ψ ∈ (ϕ, π).
If sups∈R

∥∥Ais
∥∥ < ∞ then the constant bounding the H∞

log(Sψ)-calculus can be
chosen independent of ψ > 0.
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Proof. Let ψ ∈ (ϕ, π) be given and note that f 7→ f ◦ log is an isometric alge-
bra isomorphism H∞

1 (Stψ) → H∞
log(Sψ). By Lemma 2.36 as well as Theorem

4.2.4 and Proposition 6.1.2 from [55],

f (log(A)Y) = f (log(A))Y = ( f ◦ log)(A)Y = ( f ◦ log)(AY)

for all f ∈ H∞
1 (Stψ). Now Theorem 4.10 concludes the proof. ut

Remark 4.20. Let A be an injective sectoral operator of angle ϕ ∈ (0, π),
and let α > 0, θ ∈ (0, 1) and q ∈ [1, ∞]. By [55, Corollary 6.6.3], a spe-
cial case of which is Theorem 2.38, the part of A in (X, D(Aα) ∩ ran(Aα))θ,q
has a bounded H∞(Sψ)-calculus for all ψ ∈ (ϕ, π). By (2.38), and because
log(A)Aαθ(1 + A)−2αθ ∈ L(X) (by definition of the sectorial calculus for A),

(X, D(Aα) ∩ ran(Aα))θ,q ⊆ (X, D(Aα))θ,q ⊆ D(Aαθ) ⊆ D(log(A)),

and in general D(log(A)) is strictly included in (X, D(log(A)))θ′ ,q′ for all
θ′ ∈ (0, 1) and q′ ∈ [1, ∞]. Hence Theorem 2.38 does not imply Proposition
4.19.

We now apply Theorem 4.10 to the generators of cosine functions consid-
ered in Section 2.2.4. For ω > 0 let

H∞
1 (Πω) :=

{
f ∈ H∞(Πω)

∣∣∣ ‖ f ‖H∞
1 (Πω)

:= sup
z∈Πω

| f (z)|+ (1 + |z|)| f ′(z)| < ∞
}

be the (inhomogeneous) analytic Mikhlin algebra on Πω, a Banach algebra en-
dowed with the norm ‖·‖H∞

1 (Πω)
.

In the following result we use that a version of Lemma 2.36 holds for
operators of parabola type. This is proved in the same manner as Lemma
2.36.

Proposition 4.21. Let −A generate a cosine function (Cos(s))s∈R ⊆ L(X) on a
Banach space X and let θ ∈ (0, 1), q ∈ [1, ∞]. Then the part Aθ,q of A in DA(θ, q)
has a bounded H∞

1 (Πω)-calculus for all ω > θ(Cos).
If sups∈R ‖Cos(s)‖ < ∞ then the constant bounding the H∞

1 (Πω)-calculus
can be chosen independent of ω > 0.

Proof. Let V ⊆ X be the Kisyński space from Proposition 2.11, and let

A := i
[

0 IV
−A 0

]
,

with domain D(A) := D(A)× V, be such that −iA generates the C0-group
(U(s))s∈R on V × X with θ(Cos) = θ(U).

Note that

A2 :=
[

AV 0
0 A

]
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with domain D(A2) = D(AV)×D(A). By [86, Proposition 3.1.4],

D(A)×V ∈ K1/2(V × X, D(AV)×D(A)) ∩ J1/2(V × X, D(AV)×D(A)) ,

where the classes K1/2 and J1/2 are as in [86, Definition 1.3.1]. Inspecting the
second component yields

V ∈ K1/2(X, D(A)) ∩ J1/2(X, D(A)) .

Now [86, Theorem 1.3.5] yields

Y : = (V × X, D(A))θ,q(V × X, D(A)×V)θ,q = (V, D(A))θ,q × (X, V)θ,q

= DA

(
1+θ

2 , q
)
×DA

(
θ
2 , q
)

.

Let ω > θ(Cos). Then f ∈ H∞(Πω) is an element of H∞
1 (Πω) if and only if

g(z) := f (z2) defines an element of H∞
1 (Stω), with ‖g‖H∞

1 (Stω)
≤ 4 ‖ f ‖H∞

1 (Πω)
.

Moreover, it is straightforward to see that f (AV)⊕ f (A) = g(A) and

g(AY) = g(A)Y = ( f (AV)⊕ f (A))Y = f (A(1+θ)/2,q)⊕ f (Aθ/2,q)

for all f ∈ H∞
1 (Πω), by what we have already shown. Theorem 4.10 and the

Reiteration Theorem, Theorem 2.34, conclude the proof. ut



Part III

Double operator integrals and perturbation
inequalities





5

Operator Lipschitz functions on Banach spaces

Up until now we have investigated the functional calculus properties of
generators of strongly continuous (semi)groups. For such operators one is
usually most interested in determining whether they have a bounded H∞-
calculus, and Chapters 3 and 4 were dedicated to determining boundedness
of various functional calculi for (semi)group generators. We now leave this
setting behind and consider the scalar type operators from Section 2.2.5. As
we have seen, these operators have a very rich functional calculus theory as-
sociated with them which renders questions about the boundedness of var-
ious functional calculi trivial. Instead, we will consider operator Lipschitz
estimates

‖ f (B)− f (A)‖L(X) ≤ C ‖B− A‖L(X) (5.1)

for a bounded Borel function f ∈ B(C) and scalar type operators A, B ∈
L(X), with a constant C ≥ 0 independent of A and B. More generally, we
study commutator estimates of the form

‖ f (B)S− S f (A)‖L(X,Y) ≤ C ‖BS− SA‖L(X,Y) (5.2)

for Banach spaces X and Y, scalar type operators A ∈ L(X) and B ∈ L(Y),
and S ∈ L(X, Y).

We have seen in Theorem 1.3 that (5.1) was established by Peller for self-
adjoint operators on a Hilbert space and f ∈ Ḃ1

∞,1(R). In this chapter we
extend Theorem 1.3 to scalar type operators on general Banach spaces. More
generally, (5.2) holds for f ∈ Ḃ1

∞,1(R) and for all S ∈ L(X, Y) (see Corollary
5.12).

If f is the absolute value function then f /∈ Ḃ1
∞,1(R) and the results men-

tioned above do not apply. Moreover, the techniques which we use to obtain
(5.1) for f ∈ Ḃ1

∞,1(R), and which involve the class A from Section 2.3.2, can-
not be applied to the absolute value function (see Remark 5.43). Because of
the importance of the absolute value function for matrix analysis and pertur-
bation theory (see [14, Sections VII.5 and X.2]), we study (5.2) for this function
in the case X = `p and Y = `q with p, q ∈ [1, ∞].
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It was shown by Kato in [69] that the absolute value function does not
satisfy (5.1) for X = `2. An earlier example of McIntosh [87] showed the
failure of the commutator estimate (5.2) for this function in the case X = Y =
`2. Nonetheless, in this chapter we establish a version of (5.2) for X = `p and
Y = `q with p < q. More precisely, in Theorem 5.28 we prove the following
result. For the definition of a diagonalizable operator see Section 5.3.

Theorem 5.1. Let p, q ∈ [1, ∞] with p < q, and let f (t) := |t| for t ∈ R. Let
A ∈ L(`p) and B ∈ L(`q) (where `∞ should be replaced by c0) be diagonalizable
operators with real spectrum. Then

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ CA,B,p,q ‖BS− SA‖L(`p ,`q) (5.3)

for all S ∈ L(`p, `q), where

CA,B,p,q = Cp,q inf ‖U‖L(`p)‖U−1‖L(`p)‖V‖L(`q)‖V−1‖L(`q) (5.4)

for a constant Cp,q ≥ 0 depending only on p and q, and where the infimum is taken
over all U ∈ L(`p) and V ∈ L(`q) which diagonalize A and B, respectively.

If p = 1 or q = ∞ then (5.3) holds for each Lipschitz function f with
Cp,q = ‖ f ‖Lip, where

‖ f ‖Lip := sup
z1,z2∈C
z1 6=z2

| f (z1)− f (z2)|
|z1 − z2|

. (5.5)

In fact, (5.3) holds for p = q = 1 and p = q = ∞ (with `∞ replaced by c0) and
therefore (5.1) holds on `1 and c0, for each Lipschitz function f (see Theorem
5.29).

We also obtain results for p ≥ q. In particular, for p = q = 2 we prove
(see Corollary 5.35) that for each ε ∈ (0, 1] there exists a constant C ≥ 0 such
that the following holds. Let A, B ∈ L(`2) be compact selfadjoint operators,
and let U, V ∈ L(`2) be unitaries such that

UAU−1 =
∞

∑
j=1

λjPj and VBV−1 =
∞

∑
j=1

µjPj,

where (λj)
∞
j=1 and (µj)

∞
j=1 are sequences of real numbers and Pj ∈ L(`2), for

j ∈N, is the j-th standard basis projection. Then

‖|B|−|A|‖L(`2)≤ C min(‖V(B− A)U−1‖L(`2,`2−ε), ‖V(B− A)U−1‖L(`2+ε ,`2))

(5.6)

where the right-hand side equals infinity if V(B − A)U−1 /∈ L(`2, `2−ε) ∪
L(`2+ε, `2).
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The results stated here for the absolute value function in fact extend to a
larger class of functions. This is briefly mentioned in Remark 5.36.

The constants in our results, for example the constant CA,B,p,q in Theorem
5.1, depend on A and B via the infimum in (5.4). This quantity is indepen-
dent of the norms of A and B, and to obtain constants in (5.3) which do not
depend on A and B in any way one merely has to restrict to operators with
a sufficiently bounded spectral or diagonalizability constant. This is already
done implicitly on Hilbert spaces by considering normal operators, for which
this quantity is equal to 1. For example, in (5.6) the constant C does not de-
pend on A or B in any way. Our results therefore truly extend the known
estimates on Hilbert spaces, the main difference between Hilbert spaces and
general Banach spaces being that on Hilbert spaces one has a large and easily
identifiable class of operators which are diagonalizable by an isometry.

Throughout this chapter we in fact study the commutator estimate in (5.2)
in the more general form

‖ f (B)S− S f (A)‖I ≤ C ‖BS− SA‖I , (5.7)

where I is a Banach ideal in L(X, Y) (for the definition of a Banach ideal
see Section 5.1). For example, in Corollary 5.12 we extend Theorem 1.3 to a
general Banach ideal I inL(X) with the strong convex compactness property
(for the definitions of this property see Section 5.1), with respect to the norm
‖·‖I .

We also present (see Theorem 5.39) an example of a Banach ideal (I , ‖ ·
‖I ) in L(`p′ , `p), for p ∈ [1, ∞) and 1

p + 1
p′ = 1 (with `∞ replaced by c0),

namely the ideal of p-summing operators, such that any Lipschitz function f
(in particular, the absolute value function) satisfies (5.7).

One of the main motivations for the work in this chapter is that any diag-
onalizable matrix is a scalar type operator. Hence the results in this chapter,
e.g. (5.3), (5.6) and (5.7) hold for diagonalizable matrices A and B with a con-
stant independent of the size of the matrix. It should be noted that, by Propo-
sition 2.32, the results in this chapter also apply to generators of γ-bounded
C0-groups on general Banach spaces.

In Section 5.1 we study the convex compactness property which plays a
major role when studying (5.7). In Section 5.2 we set up the theory of dou-
ble operator integration for scalar type operators on Banach spaces and ex-
tend Theorem 1.3 to this setting. We then study the absolute value function
and relate (5.7), for f the absolute value function, to estimates for triangu-
lar truncation operators. In Section 5.4 we study these triangular truncation
operators on L(`p, `q) and prove Theorem 5.1. We then study (5.7) for the
ideal of p-summing operators from `p′ to `p, and in the final section we ap-
ply our results to finite dimensional spaces to obtain dimension-independent
inequalities for diagonalizable matrices.
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5.1 The strong convex compactness property

In this section we discuss a property which will be used extensively in this
chapter.

First we provide a lemma about approximation by finite rank operators.
Recall that a Banach space X has the bounded approximation property if there
exists M ≥ 1 such that, for each K ⊆ X compact and ε > 0, there exists
S ∈ X∗⊗X with ‖S‖L(X) ≤ M and supx∈K ‖Sx− x‖X < ε.

Lemma 5.2. Let X and Y be Banach spaces such that X is separable and either X or
Y has the bounded approximation property. Then each T ∈ L(X, Y) is the SOT-limit
of a norm bounded sequence of finite rank operators.

Proof. Fix T ∈ L(X, Y). By [84, Proposition 1.e.14] there exists a norm
bounded net (Tj)j∈J ⊆ X∗⊗Y having T as its SOT-limit. It is straightforward
to see that the strong operator topology is metrizable on bounded subsets of
L(X, Y) by

d(S1, S2) :=
∞

∑
k=1

2−k ‖S1xk − S2xk‖Y (S1, S2 ∈ L(X, Y)),

where {xk}k∈N ⊆ X is a countable subset that is dense in the unit ball of X.
Hence there exists a subsequence of (Tj)j∈J with T as its SOT-limit. ut

Let X and Y be Banach spaces and let Z be a Banach space which is con-
tinuously embedded in L(X, Y). Following [122] (in the case where Z is a
subspace of L(X, Y)), we say that Z has the strong convex compactness prop-
erty if the following holds. For any finite measure space (Ω, Σ, µ) and any
strongly measurable and bounded f : Ω → Z, the operator T ∈ L(X, Y)
defined by

Tx :=
∫

Ω
f (ω)x dµ(ω) (x ∈ X), (5.8)

belongs to Z with ‖T‖Z ≤
∫

Ω‖ f (ω)‖Z dµ(ω). By the Pettis Measurability
Theorem, any separable Z has this property. Indeed, if Z is separable then
combining Propositions 1.9 and 1.10 in [119] shows that any strongly mea-
surable f : Ω → Z is µ-measurable as a map to Z. If f is bounded as well,
then (5.8) defines an element of Z with

‖T‖Z ≤
∫

Ω
‖ f (ω)‖Z dµ(ω).

It is shown in [122] and [108] that the subspaces of compact and weakly com-
pact operators in L(X, Y) have the strong convex compactness property, but
not all subspaces of L(X, Y) do.
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Lemma 5.3. Let X and Y be separable Banach spaces and Z a Banach space con-
tinuously embedded in L(X, Y). If BZ := {z ∈ Z | ‖z‖Z ≤ 1} is SOT-closed in
L(X, Y), then Z has the strong convex compactness property.

Proof. The proof follows that of [4, Lemma 3.5]. First we show that BZ is a
Polish space in the strong operator topology. As in the proof of Lemma 5.2,
bounded subsets of L(X, Y) are SOT-metrizable. The finite rank operators
are SOT-dense in L(X, Y), hence L(X, Y) is SOT-separable. Therefore BZ is
SOT-separable and metrizable. By assumption, BZ is complete.

Now let (Ω, µ) be a finite measure space and let f : Ω → Z be bounded
and strongly measurable. Without loss of generality, we may assume that
f (Ω) ⊆ BZ and that µ is a probability measure. For each y∗ ∈ Y∗ and x ∈
X, the mapping BZ → [0, ∞), T 7→ |〈y∗, Tx〉|, is continuous. The collection
of all these mappings, for y∗ ∈ Y∗ and x ∈ X, separates the points of BZ.
Moreover, ω 7→ |〈y∗, f (ω)x〉| is a measurable mapping Ω → [0, ∞) for each
y∗ ∈ Y∗ and x ∈ X. By [119, Propositions 1.9 and 1.10], f is the µ-almost
everywhere SOT-limit of a sequence of BZ-valued simple functions ( fk)

∞
k=1.

Let Tk :=
∫

Ω fk dµ ∈ BZ for k ∈ N. By the dominated convergence theorem,
Tk(x) → T(x) :=

∫
Ω f (ω)x dµ(ω) as k → ∞, for all x ∈ X. Since BZ is

SOT-closed by the assumption, we conclude that T ∈ BZ.
Now let g : Ω → [0, ∞) be measurable such that 1 ≥ g(ω) ≥ ‖ f (ω)‖Z

for ω ∈ Ω, and define h(ω) := f (ω)
g(ω)

and dν(ω) := g(ω)∫
Ω g(η)dµ(η)

dµ(ω)

for ω ∈ Ω (where we let 0
0 := 1). By what we have shown above, x 7→∫

Ω h(ω)x dν(ω) defines an element of BZ. Since Tx =
∫

Ω f (ω)x dµ(ω) =∫
Ω g(ω)dµ(ω)

∫
Ω h(ω)x dν(ω), we obtain ‖T‖Z ≤

∫
Ω g(ω)dµ(ω), as re-

mained to be shown. ut

Remark 5.4. Note that the converse implication does not hold. Indeed, if X is
a Hilbert space (or more generally, a Banach space with the metric approx-
imation property) then the finite rank operators of norm less than or equal
to 1 are SOT-dense in the unit ball of L(X). Therefore the compact operators
of norm less than or equal to 1 are not SOT-closed in L(X) if X is infinite di-
mensional. However, by [122, Theorem 1.3], the space of compact operators
on X has the strong convex compactness property.

Let X and Y be Banach spaces and I a Banach space which is continu-
ously embedded inL(X, Y). We say that (I , ‖ · ‖I ) is a Banach ideal inL(X, Y)
if

• For all R ∈ L(Y), S ∈ I and T ∈ L(X), RST ∈ I with ‖RST‖I ≤
‖R‖L(Y) ‖S‖I ‖T‖L(X);

• X∗⊗Y ⊆ I with ‖x∗⊗ y‖I = ‖x∗‖X∗ ‖y‖Y for all x∗ ∈ X∗ and y ∈ Y.

By Lemma 5.3 and [34, Proposition 17.21] (using that the SOT and weak op-
erator topology closures of a convex set coincide), for separable X and Y,
any maximal Banach ideal (for the definition see e.g. [99]) in L(X, Y) has the
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strong convex compactness property. This includes a large class of operator
ideals, such as the ideal of absolutely p-summing operators, the ideal of in-
tegral operators, etc (see [34, p. 203]).

5.2 Double operator integrals and Lipschitz estimates

In this section we extend the theory of double operator integration to scalar
type operators on Banach spaces, and use this theory to obtain commutator
and Lipschitz estimates for scalar type operators.

5.2.1 Double operator integrals

Fix Banach spaces X and Y, scalar type operators A ∈ Scal(X) and B ∈
Scal(Y) with spectral measures E respectively F, and ϕ ∈ A(σ(A) × σ(B))
(recall the definition of the class A from Section 2.3). Let a representation as
in (2.19) for ϕ be given:

ϕ(λ1, λ2) =
∫

Ω
a1(λ1, ω)a2(λ2, ω)dµ(ω) (5.9)

for all (λ1, λ2) ∈ σ(A)× σ(B), where (Ω, Σ, µ) is a finite measure space and
a1 ∈ B(σ(A) × Ω,Bσ(A) ⊗ Σ), a2 ∈ B(σ(B) × Ω,Bσ(B) ⊗ Σ) are bounded
Borel measurable functions. For ω ∈ Ω, let a1(A, ω) := a1(·, ω)(A) ∈ L(X)
and a2(B, ω) := a2(·, ω)(B) ∈ L(Y) be defined by the functional calculus for
A respectively B from Section 2.2.5.

Lemma 5.5. Let S ∈ L(X, Y) have separable range. Then, for each x ∈ X, ω 7→
a2(B, ω)Sa1(A, ω)x is a weakly measurable map Ω→ Y.

Proof. Fix x ∈ X. If a1 = 1W for some W ⊆ σ(A)×Ω then it is straightfor-
ward to show that 〈x∗, a1(A, ·)x〉 is measurable for each x∗ ∈ X∗. As S has
separable range, Sa1(A, ·)x is µ-measurable by the Pettis Measurability The-
orem. If a2 is an indicator function as well, the same argument shows that
a2(B, ·)y is weakly measurable for each y ∈ Y. General arguments, approxi-
mating Sa1(A, ·)x by simple functions, show that a2(B, ·)Sa1(A, ·)x is weakly
measurable. By linearity this extends to simple a1 and a2, and for general a1
and a2 let ( fk)k∈N, (gk)k∈N be sequences of simple functions such that a1 =
limk→∞ fk and a2 = limk→∞ gk uniformly. Then a1(A, ω) = limk→∞ fk(A)
and a2(B, ω) = limk→∞ gk(B) in the operator norm, for each ω ∈ Ω. The
desired measurability now follows. ut

Now suppose that Y is separable, that I is a Banach ideal in L(X, Y) and
let S ∈ L(X, Y). By (2.13),

‖a2(B, ω)Sa1(A, ω)‖I ≤ 16 ν(A)ν(B) ‖S‖I ‖a1(·, ω)‖B(σ(A))‖a2(·, ω)‖B(σ(B))
(5.10)
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for w ∈ Ω. Since I is continuously embedded in L(X, Y), by the Pettis Mea-
surability Theorem, Lemma 5.5 and (5.10) we can define the double operator
integral

TA,B
ϕ (S)x :=

∫
Ω

a2(B, ω)Sa1(A, ω)x dµ(ω) ∈ Y (x ∈ X). (5.11)

Throughout, we will use Tϕ for TA,B
ϕ when the operators A and B are clear

from the context.

Proposition 5.6. Let X and Y be separable Banach spaces such that X or Y has
the bounded approximation property, and let A ∈ Scal(X), B ∈ Scal(Y), and
ϕ ∈ A(σ(A) × σ(B)). Let I be a Banach ideal in L(X, Y) with the strong con-
vex compactness property. Then (5.11) defines an operator TA,B

ϕ ∈ L(I) which is
independent of the choice of representation of ϕ in (2.19), with

‖TA,B
ϕ ‖L(I) ≤ 16 ν(A)ν(B)‖ϕ‖A(σ(A)×σ(B)). (5.12)

Proof. By (5.10) and the strong convex compactness property, Tϕ(S) ∈ L(I)
for all S ∈ I , with∥∥Tϕ(S)

∥∥
I ≤ 16 ν(A)ν(B) ‖S‖I

∫
Ω
‖a1(·, ω)‖B(σ(A))‖a2(·, ω)‖B(σ(B)) dµ(ω).

Clearly Tϕ is linear, hence the result follows if we establish that Tϕ is inde-
pendent of the representation of ϕ. For this it suffices to let ϕ ≡ 0. Now, first
consider S = x∗⊗ y for x∗ ∈ X∗ and y ∈ Y, and let x ∈ X, y∗ ∈ Y∗ and w ∈ Ω.
Recall that E and F are the spectral measures of A and B, respectively. Then

〈y∗, a2(B, ω)Sa1(A, ω)x〉

=
∫

σ(B)
a2(η, ω)d〈y∗, F(η)Sa1(A, ω)x〉

=
∫

σ(B)
a2(η, ω)〈x∗, a1(A, ω)x〉d〈y∗, F(η)y〉

=
∫

σ(B)

∫
σ(A)

a1(λ, ω)a2(η, ω)d〈x∗, E(λ)x〉d〈y∗, F(η)y〉

by (2.15). Now Fubini’s Theorem and the assumption on ϕ yield

〈y∗, Tϕ(S)x〉

=
∫

Ω
〈y∗, a2(B, ω)Sa1(A, ω)x〉dµ(ω)

=
∫

Ω

∫
σ(B)

∫
σ(A)

a1(λ, ω)a2(η, ω)d〈x∗, E(λ)x〉d〈y∗, F(η)y〉dµ(ω)

=
∫

σ(B)

∫
σ(A)

∫
Ω

a1(λ, ω)a2(η, ω)dµ(ω)d〈x∗, E(λ)x〉d〈y∗, F(η)y〉
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=
∫

σ(B)

∫
σ(A)

ϕ(λ, η)d〈x∗, E(λ)x〉d〈y∗, F(η)y〉 = 0.

By linearity, Tϕ(S) = 0 for all S ∈ X∗ ⊗ Y. By Lemma 5.2, a general element
S ∈ I is the SOT-limit of a bounded (in L(X, Y)) sequence (Sn)n∈N ⊆ X∗ ⊗
Y. Hence for each x ∈ X there exists a constant C ≥ 0 such that, for all n ∈N,∫

Ω
‖a2(B, ω)Sna1(A, ω)x‖Y dµ(ω)

≤ 16 ν(A)ν(B) ‖Sn‖L(X,Y) ‖x‖X

∫
Ω
‖a1(·, ω)‖B(σ(A))‖a2(·, ω)‖B(σ(B)) dµ(ω)

≤ C
∫

Ω
‖a1(·, ω)‖B(σ(A))‖a2(·, ω)‖B(σ(B)) dµ(ω) < ∞,

where we have used (2.13). Now the dominated convergence theorem shows
that Tϕ(S)x = limn→∞ Tϕ(Sn)x = 0 for all x ∈ X, which implies that Tϕ is
independent of the representation of ϕ and concludes the proof. ut

If A and B are normal operators on separable Hilbert spaces X and Y,
then (5.12) improves to

‖TA,B
ϕ ‖L(I) ≤ ‖ϕ‖A(σ(A)×σ(B)) (5.13)

by appealing to (2.16) instead of (2.13) in (5.10).

Remark 5.7. Let H be an infinite dimensional separable Hilbert space and S2
the ideal of Hilbert-Schmidt operators on H. There is a natural definition
(see [20]) of a double operator integral T A,B

ϕ ∈ L(S2) for all ϕ ∈ B(C2)

and normal operators A, B ∈ L(H), such that T A,B
ϕ = TA,B

ϕ if ϕ ∈ A(σ(A)×
σ(B)). One could wonder whether Proposition 5.6 can be extended to a larger
class of functions than A(σ(A)× σ(B)) using an extension of the definition of
TA,B

ϕ in (5.11) which coincides with T A,B
ϕ on S2. But it follows from [95, The-

orem 1] (see also Remark 2.13) that T A,B
ϕ extends to a bounded operator on

I = L(H) if and only if ϕ ∈ A(σ(A)× σ(B)). Hence Proposition 5.6 cannot
be extended to a larger function class than A(σ(A)× σ(B)) in general. How-
ever, for specific Banach ideals, e.g. ideals with the UMD property, results
have been obtained for larger classes of functions [33, 102].

Remark 5.8. The assumption in Proposition 5.6 that X or Y has the bounded
approximation property is only used, via Lemma 5.2, to ensure that each
S ∈ I is the SOT-limit of a bounded (in L(X, Y)) net of finite rank opera-
tors. Clearly this is true for general Banach spaces X and Y if I is the closure
in L(X, Y) of X∗⊗ Y. In [78] the authors consider an assumption on X and
I, called condition c∗λ, which guarantees that each S ∈ I is the SOT-limit of
a bounded net of finite rank operators. It is shown in [78] that for certain
nontrivial ideals this condition is strictly weaker than the bounded approxi-
mation property. In the results throughout the paper where we assume that
X has the bounded approximation property, one may assume instead that X
satisfies condition c∗λ for I for some λ ≥ 1.
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5.2.2 Commutator and Lipschitz estimates

For W1, W2 ⊆ C Borel, let p1 : W1 ×W2 → W1 and p2 : W1 ×W2 → W2
be the coordinate projections given by p1(λ1, λ2) := λ1, p2(λ1, λ2) := λ2 for
(λ1, λ2) ∈W1×W2. Note that f ◦ p1, f ◦ p2 ∈ A(W1×W2) for all W1, W2 ⊆ C

Borel and f ∈ B(W1 ∪W2). For selfadjoint operators A and B on a Hilbert
space and for a Schatten von Neumann ideal I , the following lemma is [101,
Lemma 3].

Lemma 5.9. Under the assumptions of Proposition 5.6, the following hold:

1. The map ϕ 7→ TA,B
ϕ is a morphism A(σ(A)× σ(B))→ L(I) of unital Banach

algebras.
2. Let f ∈ B(σ(A) ∪ σ(B)) and S ∈ L(X, Y). Then Tf ◦p1(S) = S f (A) and

Tf ◦p2(S) = f (B)S. In particular, Tp1(S) = SA and Tp2(S) = BS.

Proof. The structure of the proof is the same as that of [101, Lemma 3]. Lin-
earity in (1) is straightforward. Fix ϕ1, ϕ2 ∈ A(σ(A)× σ(B)) with representa-
tions as in (2.19), with corresponding measure spaces (Ωj, µj) and bounded
Borel functions a1,j ∈ B(σ(A)×Ωj) and a2,j ∈ B(σ(B)×Ωj) for j ∈ {1, 2}.
Then ϕ := ϕ1 ϕ2 also has a representation as in (2.19), with Ω = Ω1 ×Ω2,
µ = µ1 × µ2 the product measure and a1 = a1,1a1,2, a2 = a2,1a2,2. By multi-
plicativity of the functional calculus for A,

a1(A, (ω1, ω2)) =
(
a1,1(·, ω1)a1,2(·, ω2)

)
(A) = a1,1(A, ω1)a1,2(A, ω2)

for all (ω1, ω2) ∈ Ω, and similarly for a2(B, (ω1, ω2)). Applying this to (5.11)
yields

Tϕ(S)x =
∫

Ω
a2(B, ω)Sa1(A, ω)x dµ(ω)

=
∫

Ω1

a2,1(B, ω1)Tϕ2(S)a1,1(A, ω1)x dµ1(ω1)

= Tϕ1(Tϕ2(S))x

for all S ∈ I and x ∈ X, which proves (1). Part (2) follows from (5.11) and
the fact that Tϕ is independent of the representation of ϕ. ut

For f : σ(A) ∪ σ(B)→ C define

ϕ f (λ1, λ2) :=
f (λ2)− f (λ1)

λ2 − λ1
(5.14)

for (λ1, λ2) ∈ σ(A)× σ(B) with λ1 6= λ2.

Theorem 5.10. Let X and Y be separable Banach spaces such that X or Y has the
bounded approximation property, and let I be a Banach ideal in L(X, Y) with the
strong convex compactness property. Let A ∈ Scal(X) and B ∈ Scal(Y), and let
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f ∈ B(σ(A) ∪ σ(B)) be such that ϕ f extends to an element of A(σ(A)× σ(B)).
Then

‖ f (B)S− S f (A)‖I ≤ 16 ν(A)ν(B)
∥∥ϕ f

∥∥
A(σ(A)×σ(B)) ‖BS− SA‖I (5.15)

for all S ∈ L(X, Y) such that BS− SA ∈ I .
In particular, if X = Y and B− A ∈ I ,

‖ f (B)− f (A)‖I ≤ 16 ν(A)ν(B)
∥∥ϕ f

∥∥
A(σ(A)×σ(B)) ‖B− A‖I .

Proof. Note that (p2 − p1)ϕ f = f ◦ p2 − f ◦ p1. By Lemma 5.9,

f (B)S− S f (A) = Tf ◦p2(S)− Tf ◦p1(S) = T(p2−p1)ϕ f
(S)

= Tp2 ϕ f (S)− Tp1 ϕ f (S) = Tϕ f (Tp2(S)− Tp1(S))

= Tϕ f (BS− SA)

for each S ∈ I . Proposition 5.6 now concludes the proof. ut

Letting X and Y be Hilbert spaces and A and B normal operators, we
generalize results from [20, 101] to all Banach ideals with the strong convex
compactness property. As mentioned in Section 5.1, this includes all separa-
ble ideals and the so-called maximal operator ideals, which in turn is a large
class of ideals containing the absolutely (p, q)-summing operators, the inte-
gral operators, and more [34, p. 203]. Note that, for normal operators, we can
improve the estimate in (5.15) by appealing to (5.13) instead of (5.12).

Corollary 5.11. Let A ∈ L(X) and B ∈ L(Y) be normal operators on separable
Hilbert spaces X and Y. Let I be a Banach ideal in L(X, Y) with the strong convex
compactness property, and let f ∈ B(σ(A) ∪ σ(B)) be such that ϕ f extends to an
element of A(σ(A)× σ(B)). Then

‖ f (B)S− S f (A)‖I ≤
∥∥ϕ f

∥∥
A(σ(A)×σ(B)) ‖BS− SA‖I

for all S ∈ L(X, Y) such that BS− SA ∈ I . In particular, if X = Y and B− A ∈
I ,

‖ f (B)− f (A)‖I ≤
∥∥ϕ f

∥∥
A(σ(A)×σ(B)) ‖B− A‖I .

Combining Theorem 5.10 with Lemma 2.16 yields the following, a gener-
alization of [96, Theorem 4].

Corollary 5.12. There exists a universal constant C ≥ 0 such that the following
holds. Let X and Y be separable Banach spaces such that X or Y has the bounded
approximation property, and let I be a Banach ideal in L(X, Y) with the strong
convex compactness property. Let f ∈ Ḃ1

∞,1(R), and let A ∈ Scal(X) and B ∈
Scal(Y) be such that σ(A) ∪ σ(B) ⊆ R. Then
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‖ f (B)S− S f (A)‖I ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖BS− SA‖I (5.16)

for all S ∈ L(X, Y) such that BS− SA ∈ I . In particular, if X = Y and B− A ∈
I ,

‖ f (B)− f (A)‖I ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖B− A‖I .

In the case where the Banach ideal I is the space L(X, Y) of all bounded
operators from X to Y, we obtain the following corollary, an extension of
Theorem 1.3 to scalar type operators on Banach spaces.

Corollary 5.13. There exists a universal constant C ≥ 0 such that the following
holds. Let X and Y be separable Banach spaces such that either X or Y has the
bounded approximation property. Let f ∈ Ḃ1

∞,1(R), and let A, B ∈ Scal(X) be such
that σ(A) ∪ σ(B) ⊆ R. Then

‖ f (B)S− S f (A)‖L(X,Y) ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖BS− SA‖L(X,Y) (5.17)

for all S ∈ L(X, Y). In particular, if X = Y then

‖ f (B)− f (A)‖L(X) ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖B− A‖L(X) .

Remark 5.14. Corollaries 5.12 and 5.13 yield global estimates, in the sense that
(5.16) and (5.17) hold for all scalar type operators A and B with real spec-
trum, and the constant in the estimate depends on A and B only through
their spectral constants ν(A) and ν(B). Local estimates follow if f ∈ B(R) is
contained in the Besov class locally. More precisely, given scalar type opera-
tors A ∈ Scal(X) and B ∈ Scal(Y) with real spectrum, suppose there exists
g ∈ Ḃ1

∞,1(R) with g(s) = f (s) for all s ∈ σ(A)∪ σ(B). Then (with notation as
in Corollary 5.12), Theorem 5.10 yields

‖ f (B)S− S f (A)‖I ≤ Cν(A)ν(B) ‖g‖Ḃ1
∞,1(R)‖BS− SA‖I (5.18)

for all S ∈ L(X, Y) such that BS− SA ∈ I .

5.3 Spaces with an unconditional basis

In this section we prove some results for specific scalar type operators,
namely operators which are diagonalizable with respect to an unconditional
Schauder basis. These results will be used in later sections. In this section we
assume all spaces to be infinite dimensional, but the results and proofs carry
over directly to finite dimensional spaces. This will be used in Section 5.6.



106 5 Operator Lipschitz functions on Banach spaces

5.3.1 Diagonalizable operators

A sequence (ej)
∞
j=1 ⊆ X in a Banach space X is said to be a Schauder basis if,

for each x ∈ X, there exists a unique sequence (xj)
∞
j=1 ⊆ C such that

x =
∞

∑
j=1

xjej,

where the sum converges in the norm of X. A Schauder basis (ej)
∞
j=1 ⊆ X is

unconditional if, for each sequence (xj)
∞
j=1 ⊆ C such that ∑∞

j=1 xjej converges
in X and for each permutation π of N, ∑∞

j=1 xπ(j)ej converges in X.
Let X be a Banach space with an unconditional Schauder basis (ej)

∞
j=1 ⊆

X. For j ∈ N, let Pj ∈ L(X) be the projection given by Pj(x) := xjej for all
x = ∑∞

k=1 xkek ∈ X.

Assumption 5.15. We assume in this section that
∥∥∥∑j∈N Pj

∥∥∥
L(X)

= 1 for all

nonempty N ⊆ N. This condition is satisfied in the examples we consider in later
sections, and simplifies the presentation. For general bases one merely gets additional
constants in the results.

An operator A ∈ L(X) is diagonalizable (with respect to (ej)
∞
j=1) if there

exists U ∈ L(X) invertible and a sequence (λj)
∞
j=1 ∈ `∞ of complex numbers

such that

UAU−1x =
∞

∑
j=1

λjPjx (x ∈ X), (5.19)

where the series converges since (ek)
∞
k=1 is unconditional (see [113, Lemma

16.1]). In this case A is a scalar type operator, with point spectrum equal to
{λj}∞

j=1, σ(A) =
{

λj
}∞

j=1 and spectral measure E given by

E(σ) = ∑
λj∈W

U−1PjU (5.20)

for W ⊆ C Borel. The set of all diagonalizable operators on X is denoted by
Ld(X). We do not explicitly mention the basis (ej)

∞
j=1 with respect to which

an operator is diagonalizable, since this basis will be fixed throughout. Often
we write A ∈ Ld(X, (λj)

∞
j=1, U) in order to identify the operator U and the

sequence (λj)
∞
j=1 from above (note that the set Ld(X, (λj)

∞
j=1, U) consists of

at most one element). For A ∈ Ld(X, (λj)
∞
j=1, U) and f ∈ B(C), it follows

from (2.14) that

f (A) = U−1
( ∞

∑
j=1

f (λj)Pj

)
U. (5.21)
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Since any Banach space with a Schauder basis is separable and has the
bounded approximation property, we can apply the results from the previous
section to diagonalizable operators, and we obtain for instance the following.

Corollary 5.16. There exists a universal constant C ≥ 0 such that the following
holds. Let X and Y be Banach spaces with unconditional Schauder bases, and let
I be a Banach ideal in L(X, Y) with the strong convex compactness property. Let
f ∈ Ḃ1

∞,1(R), and let A ∈ Ld(X) and B ∈ Ld(Y) be such that σ(A)∪ σ(B) ⊆ R.
Then

‖ f (B)S− S f (A)‖I ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖BS− SA‖I

for all S ∈ L(X, Y) such that BS− SA ∈ I . In particular, if X = Y and B− A ∈
I ,

‖ f (B)− f (A)‖I ≤ Cν(A)ν(B) ‖ f ‖Ḃ1
∞,1(R)‖B− A‖I .

Since this result does not apply to the absolute value function (and nei-
ther does the more general Theorem 5.10), and because of the importance of
the absolute value function, we will now study Lipschitz estimates for more
general functions.

Let Y be a Banach space with an unconditional Schauder basis ( fk)
∞
k=1 ⊆

Y, and let the projections Qk ∈ L(Y) be given by Qk(y) := yk fk for all y =
∑∞

l=1 yl fl ∈ Y and k ∈ N. Let λ = (λj)
∞
j=1 and µ = (µk)

∞
k=1 be sequences of

complex numbers, and let ϕ : C2 → C. For n ∈ N, define Tλ,µ
ϕ,n ∈ L(L(X, Y))

by

Tλ,µ
ϕ,n (S) :=

n

∑
j,k=1

ϕ(λj, µk)QkSPj (S ∈ L(X, Y)). (5.22)

Note that Tλ,µ
ϕ,n ∈ L(I) for each Banach ideal I in L(X, Y).

For f ∈ B(C) extend the divided difference ϕ f from (5.14), given by

ϕ f (λ1, λ2) := f (λ2)− f (λ1)
λ2−λ1

for (λ1, λ2) ∈ C2 with λ1 6= λ2, to a function
ϕ f : C2 → C.

Lemma 5.17. Let X and Y be Banach spaces with unconditional Schauder bases,
and let I be a Banach ideal in L(X, Y). Let λ = (λj)

∞
j=1 and µ = (µk)

∞
k=1 be

sequences of complex numbers, and let A ∈ Ld(X, λ, U), B ∈ Ld(Y, µ, V), f ∈
B(C) and n ∈N. Then

‖ f (B)Sn − Sn f (A)‖I ≤ ‖U‖L(X)‖V−1‖L(Y)‖T
λ,µ
ϕ f ,n(V(BS− SA)U−1)‖I

for all S ∈ L(X, Y) such that BS− SA ∈ I , where

Sn :=
n

∑
j,k=1

V−1QkVSU−1PjU.
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Proof. Let S ∈ I be such that BS − SA ∈ I . For the duration of the proof
write Pj := U−1PjU ∈ L(X) and Qk := V−1QkV ∈ L(Y) for j, k ∈ N. By
(5.21), and using that PjPk = 0 and QjQk = 0 for j 6= k,

f (B)Sn − Sn f (A) =
∞

∑
k=1

f (µk)Qk

( n

∑
i,l=1

QlSPi

)
−

∞

∑
j=1

f (λj)
( n

∑
i,l=1

QlSPi

)
Pj

=
n

∑
j,k=1

( f (µk)− f (λj))QkSPj

=
n

∑
j,k=1

∑
µk 6=λj

f (µk)− f (λj)

µk − λj
(µkQkSPj − λjQkSPj)

=
n

∑
j,k=1

ϕ f (λj, µk)Qk

(( ∞

∑
l=1

µlQl

)
S− S

( ∞

∑
i=1

λiPi

))
Pj

=
n

∑
j,k=1

ϕ f (λj, µk)Qk(BS− SA)Pj

= V−1TA,B
ϕ f

(V(BS− SA)U−1)U.

Now use the ideal property of I to conclude the proof. ut

For A ∈ Ld(X, λ, U) define

KA := inf
{
‖U‖L(X)‖U−1‖L(X)

∣∣∣ ∃λ such that A ∈ Ld(X, λ, U)
}

. (5.23)

We call KA the diagonalizability constant of A. Using the unconditionality of
the Schauder basis of X and Assumption 5.15, one can show that KA does
not depend on the specific ordering of the sequence λ. Since the sequence
λ is, up to ordering, uniquely determined by A (it is the point spectrum
of A), KA only depends on A. Moreover, by Assumption 5.15 and (5.20),
‖E(W)‖L(X) ≤

∥∥U−1
∥∥
L(X) ‖U‖L(X) for all W ⊆ C Borel and U ∈ L(X)

such that A ∈ Ld(X, λ, U), where E is the spectral measure of A. Hence

ν(A) ≤ KA, (5.24)

where ν(A) is the spectral constant of A from Section 2.2.5.
We now derive commutator estimates for A and B in the operator norm,

under a boundedness assumption which will be verified for specific X and Y
in later sections.

Proposition 5.18. Let X and Y be Banach spaces with unconditional Schauder
bases, A ∈ Ld(X, λ, U), B ∈ Ld(Y, µ, V) and f ∈ B(C). Suppose that

C := sup
n∈N

∥∥∥Tλ,µ
ϕ f ,n

∥∥∥
L(L(X,Y))

< ∞. (5.25)
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Then

‖ f (B)S− S f (A)‖L(X,Y) ≤ CKAKB ‖BS− SA‖L(X,Y)

for all S ∈ L(X, Y).

Proof. Let S ∈ L(X, Y) and for n ∈ N let Sn ∈ L(X, Y) be as in Lemma 5.17.
It is straightforward to show that, for each x ∈ X, Snx → Sx as n → ∞.
Hence f (B)Snx − Sn f (A)x → f (B)Sx − S f (A)x as n → ∞, for each x ∈ X.
Lemma 5.17 and (5.25) now yield

‖ f (B)S− S f (A)‖L(X,Y) ≤ lim sup
n→∞

‖ f (B)Sn − Sn f (A)‖L(X,Y)

≤ C‖U‖‖V−1‖‖V(BS− SA)U−1‖L(X,Y)

≤ C‖U‖‖U−1‖‖V‖‖V−1‖ ‖BS− SA‖L(X,Y).

Taking the infimum over U and V concludes the proof. ut

Remark 5.19. Proposition 5.18 also holds for more general Banach ideals in
L(X, Y). Indeed, let I be a Banach ideal in L(X, Y) with the property that,
if (Sm)∞

m=1 ⊆ I is an I-bounded sequence which SOT-converges to some
S ∈ L(X, Y) as m→ ∞, then S ∈ I with ‖S‖I ≤ lim supm→∞ ‖Sm‖I . If

C := sup
n∈N

∥∥∥Tλ,µ
ϕ f ,n

∥∥∥
L(I)

< ∞

then the proof of Proposition 5.18 shows that

‖ f (B)S− S f (A)‖I ≤ CKAKB ‖BS− SA‖I

for all S ∈ L(X, Y) such that BS− SA ∈ I .

5.3.2 Estimates for the absolute value function

It is known that operator Lipschitz estimates for the absolute value function
are related to estimates for so-called triangular truncation operators. For ex-
ample, in [71] and [36] it was shown that the boundedness of the standard
triangular truncation on many spaces of operators is equivalent to Lipschitz
estimates for the absolute value function. We prove that triangular truncation
operators are connected to Lipschitz estimates for the absolute value function
in our setting as well. We do so by relating the assumption in (5.25) to trian-
gular truncation operators associated to sequences. We will then bound the
norms of these operators in later sections for specific X and Y.

Let λ = (λj)
∞
j=1 and µ = (µk)

∞
k=1 be sequences of real numbers, and let X,

Y, (Pj)
∞
j=1 and (Qk)

∞
k=1 be as before. For n ∈N define Tλ,µ

∆,n ∈ L(L(X, Y)) by
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Tλ,µ
∆,n (S) :=

n

∑
j,k=1

∑
µk≤λj

QkSPj (S ∈ L(X, Y)). (5.26)

We call TA,B
∆ the triangular truncation associated with λ and µ.

For f (t) := |t|, t ∈ R, define ϕ f : C2 → C by

ϕ f (λ1, λ2) :=

{
|λ1|−|λ2|

λ1−λ2
if λ1 6= λ2

1 otherwise
.

The following result relates the norm of Tλ,µ
ϕ f ,n to that of Tλ,µ

∆,n .

Proposition 5.20. There exists a universal constant C ≥ 0 such that the following
holds. Let X and Y be Banach spaces with unconditional Schauder bases and let I be
a Banach ideal in L(X, Y) with the strong convex compactness property. Let λ and
µ be bounded sequences of real numbers. Let f (t) := |t| for t ∈ R. Then

‖Tλ,µ
ϕ f ,n(S)‖I ≤ C

(
‖S‖I + ‖T

λ,µ
∆,n (S)‖I

)
for all n ∈ N and S ∈ I . In particular, if supn∈N ‖T

λ,µ
∆,n (S)‖L(L(X,Y)) < ∞ then

(5.25) holds.

Proof. Let n ∈ N and S ∈ I , and write λ = (λj)
∞
j=1 and µ = (µk)

∞
k=1.

Throughout the proof we will only consider λj and µk for 1 ≤ j, k ≤ n,
but to simplify the presentation we will not mention this explicitly. We can
decompose Tλ,µ

ϕ f ,n(S) as

Tλ,µ
ϕ f ,n(S) = ∑

λk ,µk≥0
QkSPj − ∑

µk<0<λj

µk + λj

µk − λj
QkSPj+

∑
λj<0<µk

µk + λj

µk − λj
QkSPj − ∑

λk ,µk≤0
QkSPj + ∑

λk ,µk=0
QkSPj.

Note that some of these terms may be zero. By the ideal property of I and
Assumption 5.15,∥∥∥ ∑

λj ,µk≥0
QkSPj

∥∥∥
I
≤
∥∥∥ ∑

µk≥0
Qk

∥∥∥
L(Y)
‖S‖I

∥∥∥ ∑
λj≥0
Pj

∥∥∥
L(X)

≤ ‖S‖I . (5.27)

Similarly,
∥∥∥∑λk ,µk≤0QkSPj

∥∥∥
I

and
∥∥∥∑λk ,µk=0QkSPj

∥∥∥
I

are each bounded by

‖S‖I . To bound the other terms it is sufficient to show that∥∥∥ ∑
λj ,µk>0

µk − λj

µk + λj
QkSPj

∥∥∥
I
≤ C′

(
‖S‖I +

∥∥∥Tλ,µ
∆,n (S)

∥∥∥
I

)



5.3 Spaces with an unconditional basis 111

for some universal constant C′ ≥ 0. Indeed, replacing λ by −λ and µ by −µ
then yields the desired conclusion. Let

Φ(S) := ∑
λj ,µk>0

µk − λj

µk + λj
QkSPj,

and define g ∈W1,2(R) by g(t) := 2
e|t|+1

for t ∈ R. Note that Φ(S) is equal to

∑
0<µk≤λj

(
g
(

log
λj
µk

)
− 1
)
QkSPj + ∑

0<λj<µk

(
1− g

(
log

λj
µk

))
QkSPj.

Now let ψg : R2 → C be as in (2.21), and let A := ∑∞
j=1 λjPj ∈ L(X) and

B := ∑∞
k=1 µkQk ∈ L(Y). Let TA,B

ψg
be as in (5.11). One can check that

Φ(S) =TA,B
ψg

(Tλ,µ
∆,n (S))− ∑

λj ,µk>0
QkTλ,µ

∆,n (S)Pj

+ ∑
λj ,µk>0

Qk(S− Tλ,µ
∆,n (S))Pj − TA,B

ψg
(S− Tλ,µ

∆,n (S)).

Any Banach space with a Schauder basis is separable and has the bounded
approximation property, hence Lemma 2.15 and Proposition 5.6 yield∥∥∥TA,B

ψg
(Tλ,µ

∆,n (S))
∥∥∥
I
≤ 16

√
2 ν(A)ν(B) ‖g‖W1,2(R)

∥∥∥Tλ,µ
∆,n (S))

∥∥∥
I

.

By (5.24), ν(A) = ν(B) = 1. Similarly,∥∥∥TA,B
ψg

(S− Tλ,µ
∆,n (S))

∥∥∥
I
≤ 16

√
2 ‖g‖W1,2(R)

(∥∥∥S
∥∥∥
I
+
∥∥∥Tλ,µ

∆,n (S))
∥∥∥
I

)
.

By the same arguments as in (5.27),∥∥∥ ∑
λj ,µk>0

QkTλ,µ
∆,n (S)Pj

∥∥∥
I
+
∥∥∥ ∑

λj ,µk>0
Qk(S− Tλ,µ

∆,n (S))Pj

∥∥∥
≤ 2

∥∥∥S
∥∥∥
I
+
∥∥∥Tλ,µ

∆,n (S)
∥∥∥
I

.

Combining all these estimates yields

‖Φ(S)‖I ≤
(

2 + 32
√

2 ‖g‖W1,2(R)

)(∥∥∥S
∥∥∥
I
+
∥∥∥Tλ,µ

∆,n (S)
∥∥∥
I

)
,

as desired. ut
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5.4 The absolute value function on L(`p, `q)

In this section we study the absolute value function on the space L(`p, `q).
We obtain the commutator estimate (5.2) for the absolute value function and
X = `p and Y = `q with p < q, and we obtain (5.1) for each Lipschitz function
and X = L(`1) or X = L(c0). We also obtain results for p ≥ q.

The key idea of the proof is entirely different from the techniques used
in [31], [33], [36] and [71], which are based on the fact that the reflexive Schat-
ten von Neumann ideals are UMD spaces, a property which L(`p, `q) obvi-
ously does not have (L(`p, `q) is not reflexive). Instead, we prove our results
by relating estimates for the operators from (5.26) to the standard triangu-
lar truncation operator, defined in (5.28) below. For this we use the theory of
Schur multipliers on L(`p, `q) developed in [11]. We then appeal to results
from [10] about the boundedness of the standard triangular truncation on
L(`p, `q).

5.4.1 Schur multipliers

For p ∈ [1, ∞), let (ej)
∞
j=1 be the standard Schauder basis of `p, with the

corresponding projections Pj(x) := xjej for x = ∑∞
k=1 xkek and j ∈ N. We

consider this basis and the corresponding projections on all `p-spaces simul-
taneously, for simplicity of notation. Note that Assumption 5.15 is satisfied
for this basis. For q ∈ [1, ∞], any operator S ∈ L(`p, `q) can be represented
by an infinite matrix S̃ = (sjk)

∞
j,k=1, where sjk := Pj(S(ek)) for j, k ∈ N. For

an infinite matrix M = (mjk)
∞
j,k=1 the product M ∗ S̃ := (mjksjk) is the Schur

product of the matrices M and S̃. The matrix M is a Schur multiplier if the map-
ping S̃ 7→ M ∗ S̃ is a bounded operator on L(`p, `q). Throughout, we identify
Schur multipliers with their corresponding operators.

The notion of a Schur multiplier is a discrete version of a double oper-
ator integral (for details see e.g. [103, 114]). Schur multipliers on the space
L(`p, `q) are also called (p, q)-multipliers. We denote byM(p, q) the Banach
space of (p, q)-multipliers with the norm

‖M‖(p,q) := sup
{∥∥M ∗ S̃

∥∥
L(`p ,`q)

∣∣∣‖S‖L(`p ,`q) ≤ 1
}

.

Remark 5.21. We also consider (p, q)-multipliers M for p = ∞ and q ∈ [1, ∞].
Any operator S ∈ L(c0, `q) corresponds to an infinite matrix S̃ = (sjk)

∞
j,k=1,

and M is said to be an (∞, q)-multiplier if the mapping S 7→ M ∗ S̃ is a
bounded operator on L(c0, `q). We define the Banach spaceM(∞, q) in the
obvious way. Often we do not explicitly distinguish the case p = ∞ from
1 ≤ p < ∞, but the reader should keep in mind that for p = ∞ the space `p

should be replaced by c0.

Remark 5.22. It is straightforward to see that ‖M‖(p,q) ≥ supj,k∈N|mj,k| for all
p, q ∈ [1, ∞] and M = (mjk)

∞
j,k=1 ∈ M(p, q).
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For p, q ∈ [1, ∞] and S ∈ L(`p, `q), define

T∆(S) := ∑
k≤j
PkSPj, (5.28)

which is a well-defined element of L(`r, `s) for suitable r, s ∈ [1, ∞] by
Proposition 5.23 below. The operator T∆ is the (standard) triangular truncation
(see [76]). This operator can be identified with the following Schur multiplier.
Let T′∆ = (t′jk)

∞
j,k=1 be a matrix given by t′jk = 1 for k ≤ j and t′jk = 0 other-

wise. It is clear that T∆ extends to a bounded linear operator on L(`p, `q)
if and only if T′∆ is a (p, q)-multiplier. For n ∈ N and r, s ∈ [1, ∞] we will
consider the operators T∆,n ∈ L(L(`p, `q),L(`r, `s)), given by

T∆,n(S) := ∑
1≤k≤j≤n

PkSPj (S ∈ L(`p, `q).

The dependence of the (p, q)-norm of T∆ on the indices p and q was de-
termined in [10] and [76] (see also [116]), and is as follows.

Proposition 5.23. Let p, q ∈ [1, ∞]. Then the following statements hold.

(i) [10, Theorem 5.1] If p < q, 1 = p = q or p = q = ∞, then T∆ ∈ M(p, q).
(ii) [76, Proposition 1.2] If 1 6= p ≥ q 6= ∞, then there is a constant C > 0 such

that

‖T∆,n‖L(L(`p ,`q)) ≥ C ln n

for all n ∈N.
(iii) [10, Theorem 5.2] If 1 6= p ≥ q 6= ∞, then for each s > q and r < p,

T∆ : L(`p, `q)→ L(`p, `s) and T∆ : L(`p, `q)→ L(`r, `q)

are bounded.

Remark 5.24. In Proposition 5.23 (i), a stronger statement holds if p = 1 or
q = ∞. Then, for M = (mjk)

∞
j,k=1 a matrix, M ∈ M(p, q) if and only if

supj,k∈N |mjk| < ∞, in which case ‖M‖(p,q) = supj,k∈N |mjk|. This follows
immediately from the well-known identities (see [11, p. 605, (2) and (3)])

‖S‖L(`1,`q) = sup
k∈N

( ∞

∑
j=1
|sjk|q

)1/q

for q ∈ [1, ∞) and S = (sjk)
∞
j,k=1 ∈ L(`

1, `q), and

‖S‖L(`p ,`∞) = sup
j∈N

( ∞

∑
k=1
|sjk|p

′)1/p′

for p ∈ [1, ∞] and S = (sjk)
∞
j,k=1 ∈ L(`

p, `∞) (with the obvious modification
for p = 1).
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We will also need the following result, a generalization of [11, Theorem
4.1]. For a matrix M = (mjk)

∞
j,k=1, let M̃ = (m̃jk)

∞
j,k=1 be obtained from M by

repeating the first column, i.e. m̃j1 = mj1 and m̃jk = mj(k−1) for j ∈ N and
k ≥ 2.

Proposition 5.25. Let p, q, r, s ∈ [1, ∞] with r ≤ p. Let M = (mjk)
∞
j,k=1 be such

that S 7→ M ∗ S is a bounded mapping L(`p, `q)→ L(`r, `s). Then S 7→ M̃ ∗ S is
also a bounded mapping L(`p, `q)→ L(`r, `s), with

‖M‖L(L(`p ,`q),L(`r ,`s)) = ‖M̃‖L(L(`p ,`q),L(`r ,`s)).

In particular, if M ∈ M(p, q) then M̃ ∈ M(p, q) with ‖M‖(p,q) = ‖M̃‖(p,q).

Proof. For any S = (sj,k)
∞
j,k=1 ∈ L(`

p, `q), the matrix Ŝ = (ŝj,k)
∞
j,k=1 given by

ŝj1 = 0 and ŝjk = sjk for j ∈N, k ≥ 2 satisfies Ŝ ∈ L(`p, `q) with
∥∥Ŝ
∥∥
L(`p ,`q) ≤

‖S‖L(`p ,`q) and M̃ ∗ Ŝ ∈ L(`r, `s) with
∥∥∥M̃ ∗ Ŝ

∥∥∥
L(`r ,`s)

= ‖M ∗ S‖L(`r ,`s).

Hence
∥∥∥M̃

∥∥∥ ≥ ‖M‖.
For the converse inequality, let S ∈ L(`p, `q) and x = (xk)

∞
k=1 ∈ `r. Define

x̂ = (x̂k)
∞
k=1 by x̂1 := (|x1|r + |x2|r)1/r, x̂k := xk+1 for k ≥ 2. Then x̂ ∈ `r with

‖x̂‖`r = ‖x‖`r . Define also T = (tjk)
∞
j,k=1 by tj1 x̂1 = sj1x1 + sj2x2 if x̂1 6= 0,

and tj1 = 0 otherwise, and tjk = sj(k+1) for j ∈ N, k ≥ 2. We claim that
T ∈ L(`p, `q) with ‖T‖L(`p ,`q) ≤ ‖S‖L(`p ,`q). If this is true, we obtain

‖(M̃ ∗ S)x‖s
`s =

∞

∑
j=1
|

∞

∑
k=1

m̃jksjkxk|s =
∞

∑
j=1
|

∞

∑
k=1

mjktjk x̂k|s

≤ ‖M‖s‖T‖s
L(`p ,`q)‖x̂‖

s
`r ≤ ‖M‖‖S|L(`p ,`q)‖x‖`r ,

as was to be shown. Hence it only remains to prove the claim.
Let y = (yk)

∞
k=1 ∈ `p and define ŷ = (ŷk)

∞
k=1 by x̂1ŷ1 = x1y1, x̂1ŷ2 = x2y1

if x̂1 6= 0, and ŷ1 = ŷ2 = 0 otherwise, and ŷk = yk−1 for k ≥ 3. Then ŷ ∈ `p

with

‖ŷ‖p
`p =

∞

∑
k=1
|ŷk|p ≤

( |x1|p + |x2|p

(|x1|r + |x2|r)p/r |y1|p +
∞

∑
k=2
|yk|p

)
≤ ‖y‖p

`p ,

where we have used that |x1|p+|x2|p
(|x1|r+|x2|r)p/r ≤ 1 since p ≥ r. Hence we obtain

‖Ty‖q
`q =

∞

∑
j=1
|

∞

∑
k=1

tjkyk|q =
∞

∑
j=1
|

∞

∑
k=1

sjk ŷk|q

≤ ‖S‖q
L(`p ,`q)

‖ŷ‖q
`p ≤ ‖S‖q

L(`p ,`q)
‖y‖q

`p .

Therefore ‖T‖L(`p ,`q) ≤ ‖S‖L(`p ,`q) and the claim is proved. ut
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Remark 5.26. For a matrix M = (mjk)
∞
j,k=1, let M′ = (m′jk)

∞
j,k=1, with m′jk = mkj

for j, k ∈ N, be the transpose of M. Let S ∈ L(`q′ , `p′), S = (sjk)
∞
j,k=1 and let

S′ = (s′jk)
∞
j,k=1 be the transpose of S. Then S′ ∈ L(`p, `q) with ‖S′‖L(`p ,`q) =

‖S‖L(`q′ ,`p′ ). Let y ∈ `s′ . Then

‖(M′ ∗ S)y‖`r′ = sup
‖x‖`r≤1

|〈(M′ ∗ S)y, x〉| = sup
‖x‖`r≤1

∣∣∣ ∞

∑
j=1

( ∞

∑
k=1

m′jksjkyk

)
xj

∣∣∣
= sup
‖x‖`r≤1

∣∣∣ ∞

∑
k=1

( ∞

∑
j=1

mkjs′kjxj

)
yk

∣∣∣ ≤ ‖M ∗ S′‖L(`r ,`s)‖y‖`s′

≤ ‖M‖L(L(`p ,`q),L(`r ,`s))

∥∥S′
∥∥
L(`p ,`q) ‖y‖`s′

= ‖M‖L(L(`p ,`q),L(`r ,`s))‖S‖L(`q′ ,`p′ )‖y‖`s′ ,

hence ‖M′‖L(L(`q′ ,`p′ ),L(`s′ ,`r′ )) ≤ ‖M‖L(L(`p ,`q),L(`r ,`s)). Taking transposes
again yields ‖M′‖L(L(`q′ ,`p′ ),L(`s′ ,`r′ )) = ‖M‖L(L(`p ,`q),L(`r ,`s)).

Hence Proposition 5.25 implies that row repetitions do not change the
L(L(`p, `q), L(`r, `s))-norm of a matrix if s ≤ q. Moreover, since ‖S‖L(`p ,`q)

is invariant under permutations of the columns and rows of S ∈ L(`p, `q),
rearrangements of the rows and columns of M ∈ L(L(`p, `q), L(`r, `s)) leave
‖M‖L(L(`p ,`q),L(`r ,`s)) invariant.

The following lemma is crucial to our main results.

Lemma 5.27. Let p, q, r, s ∈ [1, ∞] with r ≤ p and s ≤ q. Let λ = (λj)
∞
j=1 and

µ = (µk)
∞
k=1 be sequences of real numbers. Then

‖Tλ,µ
∆,n‖L(L(`p ,`q),L(`r ,`s)) ≤ ‖T∆,n‖L(L(`p ,`q),L(`r ,`s))

for all n ∈N.

Proof. Note that Tλ,µ
∆,n (S) = M ∗ S for all S ∈ L(`p, `q), where M = (mjk)

∞
j,k=1

is such that mjk = 1 if 1 ≤ j, k ≤ n and µk ≤ λj, and mjk = 0 otherwise. We
show that ‖M‖L(L(`p ,`q),L(`r ,`s)) ≤ ‖T∆,n‖L(L(`p ,`q),L(`r ,`s)). Assume that M is
nonzero, otherwise the statement is trivial. By Remark 5.26, rearrangement
of the rows and columns of M does not change its norm. Hence we may
assume that (λj)

n
j=1 and (µk)

n
k=1 are decreasing. Now M has the property

that if mjk = 1 then mil = 1 for all i ≤ j and k ≤ l ≤ m2. By Proposition
5.25 and Remark 5.26, we may omit repeated rows and columns of M, and
doing this repeatedly reduces M to T∆,N for some 1 ≤ N ≤ n. Noting that
‖T∆,N‖L(L(`p ,`q),L(`r ,`s)) ≤ ‖T∆,n‖L(L(`p ,`q),L(`r ,`s)) concludes the proof. ut



116 5 Operator Lipschitz functions on Banach spaces

5.4.2 The case p < q

We now combine the theory from the previous sections to deduce our main
result, Theorem 5.1.

Theorem 5.28. Let p, q ∈ [1, ∞] with p < q, and let f (t) := |t| for t ∈ R. Then
there exists a constant C ≥ 0 such that the following holds (where `∞ should be
replaced by c0). Let A ∈ Ld(`

p) and B ∈ Ld(`
q) have real spectrum. Then

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ CKAKB ‖BS− SA‖L(`p ,`q) (5.29)

for all S ∈ L(`p, `q).

Proof. Simply combine Propositions 5.18 and 5.20 and Lemma 5.27 with
Proposition 5.23 (i), using that ‖T∆,n‖(p,q) ≤ ‖T∆‖(p,q) for all n ∈N. ut

We can deduce a stronger statement if p = 1 or q = ∞ in Theorem 5.28.
For f : C→ C a Lipschitz function, recall the definition of ‖ f ‖Lip from (5.5).
Moreover, let ϕ f : C2 → C be given by

ϕ f (λ1, λ2) :=

{
f (λ1)− f (λ2)

λ1−λ2
if λ1 6= λ2

0 otherwise
. (5.30)

Theorem 5.29. Let p, q ∈ [1, ∞] with p = 1 or q = ∞ (with `∞ replaced by c0).
Let A ∈ Ld(`

p) and B ∈ Ld(`
q), and let f : C→ C be Lipschitz. Then

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ KAKB ‖ f ‖Lip ‖BS− SA‖L(`p ,`q) (5.31)

for all S ∈ L(`p, `q). In particular, for p = q = 1,

‖ f (B)− f (A)‖L(`1) ≤ KAKB ‖ f ‖Lip ‖B− A‖L(`1) ,

and for p = q = ∞,

‖ f (B)− f (A)‖L(c0)
≤ KAKB ‖ f ‖Lip ‖B− A‖L(c0)

.

Proof. Let λ = (λj)
∞
j=1 and µ = (µk)

∞
k=1 be sequences such that A ∈

Ld(`
p, λ, U) and B ∈ Ld(`

q, µ, V) for certain U ∈ L(`p) and V ∈ L(`q). By
Proposition 5.18, it suffices to prove that supn∈N ‖T

λ,µ
ϕ f ,n‖L(L(`p ,`q)) ≤ ‖ f ‖Lip.

Fix n ∈ N and note that Tλ,µ
ϕ f ,n(S) = M ∗ S for all S ∈ L(`p, `q), where

M = (mjk)
∞
j,k=1 is the matrix given by mjk = ϕ f (λj, µk) for 1 ≤ j, k ≤ n,

and mjk = 0 otherwise. Then

sup
j,k∈N

|mjk| ≤ sup
j,k∈N

|ϕ f (λj, µk)| ≤ ‖ f ‖Lip .

Remark 5.24 now concludes the proof. ut
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Remark 5.30. Theorem 5.29 shows that each Lipschitz function f is operator
Lipschitz on `1 and c0, in the following sense. For fixed M ≥ 1 and f : C→ C

Lipschitz, there exists a constant C ≥ 0 such that

‖ f (B)− f (A)‖L(`1) ≤ C ‖B− A‖L(`1)

for all A, B ∈ Ld(`
1) such that KA, KB ≤ M, and C is independent of A and

B. Similarly for c0.
For p < q an analogous statement holds. By considering A, f (A) ∈ L(`p)

and B, f (B) ∈ L(`q) as operators from `p to `q, and by letting S be the in-
clusion mapping `p ↪→ `q in Theorems 5.28 and 5.29, one can suggestively
write

‖ f (B)− f (A)‖L(`p ,`q) ≤ C ‖B− A‖L(`p ,`q) ,

for all A ∈ Ld(`
p) and B ∈ Ld(`

q) with KA, KB ≤ M. Here f is the absolute
value function for general p < q in [1, ∞] and any Lipschitz function if p = 1
or q = ∞.

This remark also applies to Corollaries 5.31 and 5.32 below.

In the case of Theorems 5.28 and 5.29 where p = 2 or q = 2, we can apply
our results to compact normal operators. By the spectral theorem, any com-
pact normal operator A ∈ L(`2) has an orthonormal basis of eigenvectors,
and therefore A ∈ Ld(`

2, λ, U) for some sequence λ of real numbers and
an isometry U ∈ L(`2). Thus Theorems 5.28 and 5.29 yield the following
corollaries.

Corollary 5.31. Let p ∈ (1, 2). Then there exists a constant C ≥ 0 such that the
following holds. Let A ∈ Ld(`

p) have real spectrum and let B ∈ L(`2) be compact
and selfadjoint. Then

‖ f (B)S− S f (A)‖L(`p ,`2) ≤ CKA ‖BS− SA‖L(`p ,`2)

for all S ∈ L(`p, `2), where f (t) := |t| for t ∈ R. Moreover,

‖ f (B)S− S f (A)‖L(`1,`2) ≤ KA ‖ f ‖Lip ‖BS− SA‖L(`1,`2)

for each A ∈ Ld(`
1) and S ∈ L(`1, `2), each compact and normal B ∈ L(`2) and

each Lipschitz function f : C→ C.

Corollary 5.32. Let q ∈ (2, ∞). Then there exists a constant C ≥ 0 such that the
following holds. Let A ∈ L(`2) be compact and selfadjoint, and let B ∈ Ld(`

q)
have real spectrum. Then

‖ f (B)S− S f (A)‖L(`2,`q) ≤ CKB ‖BS− SA‖L(`2,`q)

for all S ∈ L(`2, `q), where f (t) := |t| for t ∈ R. Moreover,

‖ f (B)S− S f (A)‖L(`2,c0)
≤ KB ‖ f ‖Lip ‖BS− SA‖L(`2,c0)

for each compact and normal A ∈ Ld(`
2), each B ∈ Ld(c0) and S ∈ L(`2, c0),

and each Lipschitz function f : C→ C.
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5.4.3 The case p ≥ q

We now examine the absolute value function f on L(`p, `q) for p ≥ q, and
obtain the following result.

Proposition 5.33. Let p, q ∈ (1, ∞] with p ≥ q. Then for each s < q there exists
a constant C ≥ 0 such that the following holds (where `∞ should be replaced by
c0). Let A ∈ Ld(`

p, λ, U) and B ∈ Ld(`
q, µ, V) have real spectrum, and let S ∈

L(`p, `q) be such that V(BS− SA)U−1 ∈ L(`p, `s). Then

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ C‖U‖L(`p)‖V−1‖L(`q)‖V(BS− SA)U−1‖L(`p ,`s).

In particular, if p = q and V(B− A)U−1 ∈ L(`p, `s), then

‖ f (B)− f (A)‖L(`p) ≤ C‖U‖L(`p)‖V−1‖L(`p)‖V(B− A)U−1‖L(`p ,`s).

Proof. Let R := V(BS− SA)U−1. With notation as in Lemma 5.17,

‖ f (B)Sn − Sn f (A)‖L(`p ,`q) ≤ ‖U‖L(`p)‖V−1‖L(`q)‖T
λ,µ
ϕ f ,n(R)‖L(`p ,`q)

for each n ∈ N. Proposition 5.20, Lemma 5.27 (with p = r and with q and s
interchanged) and Proposition 5.23 (iii) (with q and s interchanged) yield a
constant C′ ≥ 0 such that

‖Tλ,µ
ϕ f ,n(R)‖L(`p ,`q) ≤ C′(‖R‖L(`p ,`q) + ‖R‖L(`p ,`s)).

Since L(`p, `s) ↪→ L(`p, `q) contractively,

‖ f (B)Sn − Sn f (A)‖L(`p ,`q) ≤ C‖U‖L(`p)‖V−1‖L(`q)‖V(BS− SA)U−1‖L(`p ,`s)

for all n ∈N, where C := 2C′. Finally, as in the proof of Proposition 5.18, one
lets n tend to infinity to conclude the proof. ut

In the same way, appealing to the second part of Proposition 5.23 (iii),
one deduces the following result.

Proposition 5.34. Let p, q ∈ [1, ∞) with p ≥ q. Then for each r > p there exists
a constant C ≥ 0 such that the following holds (where `∞ should be replaced by
c0). Let A ∈ Ld(`

p, λ, U) and B ∈ Ld(`
q, µ, V) have real spectrum, and let S ∈

L(`p, `q) be such that V(BS− SA)U−1 ∈ L(`r, `q). Then

‖ f (B)S− S f (A)‖L(`p ,`q) ≤ C‖U‖L(`p)‖V−1‖L(`q)‖V(BS− SA)U−1‖L(`r ,`q).

In particular, if p = q and V(B− A)U−1 ∈ L(`r, `q), then

‖ f (B)− f (A)‖L(`p) ≤ C‖U‖L(`p)‖V−1‖L(`p)‖V(B− A)U−1‖L(`r ,`q).
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We single out the case where p = q = 2. Here we write f (A) = |A| for
a normal operator A ∈ L(`2), since then f (A) is equal to |A| :=

√
A∗A.

Note that the following result, stated before as (5.6), applies in particular
to compact selfadjoint operators. For simplicity of the presentation we only
consider ε ∈ (0, 1].

Corollary 5.35. For each ε ∈ (0, 1] there exists a constant C ≥ 0 such that the
following holds. Let A ∈ Ld(`

2, λ, U) and B ∈ Ld(`
2, µ, V) be selfadjoint, with U

and V unitaries, and let S ∈ L(`2). If V(BS− SA)U−1 ∈ L(`2, `2−ε), then

‖|B|S− S|A|‖L(`2) ≤ C‖V(BS− SA)U−1‖L(`2,`2−ε)

and if V(BS− SA)U−1 ∈ L(`2+ε, `2) then

‖|B|S− S|A|‖L(`2) ≤ C‖V(BS− SA)U−1‖L(`2+ε ,`2).

In particular, if V(B− A)U−1 ∈ L(`2, `2−ε), then

‖|B| − |A|‖L(`2) ≤ C‖V(B− A)U−1‖L(`2,`2−ε)

and if V(B− A)U−1 ∈ L(`2+ε, `2), then

‖|B| − |A|‖L(`2) ≤ C‖V(B− A)U−1‖L(`2+ε ,`2).

Remark 5.36. Let J be the class of all f : R→ R such that

f (t) = at + b +
∫ t

−∞
(t− s)dµ(s) (5.32)

for all t ∈ R, where a, b ∈ R and µ is a signed measure of compact support.
This class is introduced by Davies in [31, p. 156], and he states that f : R→ R

satisfies (5.32) for a positive µ if and only if f is convex and linear for large |t|.
The results in this section for f the absolute value function can be extended
to all f ∈ J , in the same way as in [31, Theorem 17].

5.5 Lipschitz estimates on the ideal of p-summing operators

Let H be a separable infinite dimensional Hilbert space. It was shown in [2]
that a matrix M = (mjk)

∞
j,k=1 is a Schur multiplier on the Hilbert-Schmidt

class S2 ⊆ L(H) if and only if supj,k |mjk| < ∞. By [94], S2 coincides with the
Banach ideal Πp(H) of all p-summing operators (see the definition below) for
all p ∈ [1, ∞). Hence a matrix M = (mjk)

∞
j,k=1 is a Schur multiplier on Πp(H)

if and only if supj,k |mjk| < ∞. In Corollary 5.38 below we show that the same

statement is true for the Banach ideal Πp(`p′ , `p) in L(`p′ , `p), for p ∈ [1, ∞).
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As a corollary we obtain operator Lipschitz estimates on Πp(`p′ , `p) for each
Lipschitz function f on C.

Let X and Y be Banach spaces and 1 ≤ p < ∞. An operator S : X → Y
is p-absolutely summing if there exists a constant C such that for each n ∈ N

and each collection {xj}n
j=1 ⊆ X,( n

∑
j=1

∥∥S(xj)
∥∥p

Y

) 1
p ≤ C sup

‖x∗‖X∗≤1

( n

∑
j=1
|〈x∗, xj〉|p

) 1
p
. (5.33)

The smallest such constant is denoted by πp, and Πp(X, Y) is the space of
p-absolutely summing operators from X to Y. We let Πp(X) := Πp(X, X).
By Propositions 2.3, 2.4 and 2.6 in [35], (Πp(X, Y), πp(·)) is a Banach ideal in
L(X, Y).

Below we consider p-absolutely summing operators from `p′ to `p. We
first present the following result.

Lemma 5.37. Let p ∈ [1, ∞) and S = (sjk)
∞
j,k=1. Then S ∈ Πp(`p′ , `p) (with `∞

replaced by c0) if and only if

cp :=
( ∞

∑
j=1

∞

∑
k=1
|sjk|p

) 1
p
< ∞.

In this case, πp(S) = cp.

Proof. It follows from [35, Example 2.11] that, if cp < ∞ for p ∈ (1, ∞), then
S ∈ Πp(`p′ , `p) with πp(S) ≤ cp. An inspection of the proof of [35, Example
2.11] shows that this statement in fact also holds for p = 1. For the converse,
let n ∈ N and let xj := ej ∈ `p′ for 1 ≤ j ≤ n. By (5.33) (with X = `p′ and
Y = `p), ( n

∑
k=1

∞

∑
j=1
|sjk|p

) 1
p ≤ πp(S).

Letting n tend to infinity concludes the proof. ut

For the following corollary of Lemma 5.37, recall that a matrix M is said to
be a Schur multiplier on a subspace I ⊆ L(`p, `q) if S 7→ M ∗ S is a bounded
map on I . Recall also the definition of the standard triangular truncation T∆
from (5.28).

Corollary 5.38. Let p ∈ [1, ∞) and let M = (mjk)
∞
j,k=1 be a matrix. Then

M is a Schur multiplier on Πp(`p′ , `p) (with `∞ replaced by c0) if and only if
supj,k∈N |mjk| < ∞. In this case,

‖M‖L(Πp(`p′ ,`p))
= sup

j,k∈N

|mjk|.

In particular, T∆ ∈ L(Πp(`p′ , `p)) with ‖T∆‖L(Πp(`p′ ,`p))
= 1.
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Observe that T∆ /∈ L(L(`p′ , `p)) if p′ ≥ p, by Proposition 5.23 (ii). Never-
theless, T∆ is bounded on the ideal Πp(`p′ , `p) ⊂ L(`p′ , `p) for all p ∈ [1, ∞).

We now prove our main result concerning commutator estimates on
Πp(`p′ , `p).

Theorem 5.39. Let p ∈ [1, ∞), A ∈ Ld(`
p′) (with `∞ replaced by c0) and B ∈

Ld(`
p). Let f : C→ C be Lipschitz. Then

πp( f (B)S− S f (A)) ≤ KAKB ‖ f ‖Lip πp(BS− SA) (5.34)

for all S ∈ L(`p′ , `p) such that BS− SA ∈ Πp(`p′ , `p).

Proof. Let A ∈ Ld(`
p′ , λ, U) and B ∈ Ld(`

p, µ, V) for certain λ = (λj)
∞
j=1,

µ = (µk)
∞
k=1, U ∈ L(`p′) and V ∈ L(`p). If (Sm)∞

m=1 ⊆ Πp(`p′ , `p) is
a πp-bounded sequence which SOT-converges to S ∈ L(X, Y), then S ∈
Πp(`p′ , `p) with πp(S) ≤ lim supm→∞ πp(Sm), by (5.33). Hence, by Remark

5.19, it suffices to prove that supn∈N ‖T
λ,µ
ϕ f ,n‖L(Πp(`p′ ,`p))

≤ ‖ f ‖Lip, where ϕ f

is as in (5.30). This is done as in the proof of Theorem 5.29, using Corollary
5.38 instead of Remark 5.24. ut

5.6 Matrix inequalities

In this section we apply the theory developed in Sections 5.2, 5.3 and 5.4 to fi-
nite dimensional spaces, and in doing so we obtain Lipschitz estimates which
are independent of the dimension of the underlying space. The dimension-
independent estimates that follow from the results in Section 5.5 can be ob-
tained in the same manner.

5.6.1 Finite dimensional spaces

Let n ∈N and let X be an n-dimensional Banach space with basis {e1, . . . , en}
and the corresponding basis projections Pk ∈ L(X) for 1 ≤ k ≤ n. Recall that
an operator A ∈ L(X) is diagonalizable if there exists U ∈ L(X) invertible
such that

UAU−1 =
n

∑
k=1

λkPk

for some (λ1, . . . , λn) ∈ Cn. We then write A ∈ Ld(X, (λj)
n
j=1, U). Recall also

the definition of spectral and scalar type operators from Section 2.2.5.

Lemma 5.40. Let A ∈ L(X). Then A is a spectral operator, and A is a scalar
type operator if and only if A is diagonalizable. If A ∈ Ld(X, (λj)

n
j=1, U) then the

spectral measure E of A is given by E(W) = 0 if W ∩ σ(A) = ∅, and E({λ}) =
∑λj=λ U−1PjU for λ ∈ σ(A).
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Proof. It was already remarked in Section 5.3 that any diagonalizable opera-
tor is a scalar type operator, with spectral measure as specified. By [42, Theo-
rem XV.4.5], an operator T ∈ L(Y) on an arbitrary Banach space Y is a spec-
tral operator if and only if T = S + N for a commuting scalar type operator
S ∈ L(Y) and a generalized nilpotent operator N ∈ L(Y), and this decompo-
sition is unique. The Jordan decomposition for matrices yields a commuting
diagonalizable S and a nilpotent N such that A = S + N, hence A is a spec-
tral operator. If A is a scalar type operator, then the Jordan decomposition
for matrices yields a commuting diagonalizable S and a nilpotent N such
that A = S + N. Since A = A + 0 and A = S + N are two decompositions of
A as a sum of a commuting scalar-type operator and a nilpotent operator, the
uniqueness of such a decomposition [42, Theorem XV.4.5] implies that N = 0
and that A = S is diagonalizable. ut

Let Y be a finite dimensional Banach space. As in [14], a norm ‖·‖ on
L(X, Y) is said to be symmetric if

• ‖RST‖ ≤ ‖R‖L(Y) ‖S‖ ‖T‖L(X) for all R ∈ L(Y), S ∈ L(X, Y) and T ∈
L(X);

• ‖x∗⊗ y‖ = ‖x∗‖X∗‖y‖Y for all x∗ ∈ X∗ and y ∈ Y.

Clearly (L(X, Y), ‖·‖) is a Banach ideal in L(X, Y) in the sense of Section 5.1
if and only if ‖·‖ is symmetric. Note that, for A ∈ Ld(X, (λj)

n
j=1, U),

f (A) = U−1
( n

∑
k=1

f (λk)Pk

)
U,

as in (5.21). Let A := A(C× C) be as in Section 2.3, and for f ∈ B(C) and
(λ1, λ2) ∈ C2 with λ1 6= λ2 let ϕ f (λ1, λ2) := f (λ2)− f (λ1)

λ2−λ1
, as in (5.14). The

following corollary of Theorem 5.10 extends results for selfadjoint operators
and unitarily invariant norms (see e.g. [71] and [14, Chapter X]) to diago-
nalizable operators and symmetric norms. Note that a symmetric norm on
L(X, Y) need not be unitarily invariant.

Proposition 5.41. Let f ∈ B(C) be such that ϕ f extends to an element of A. Let X
and Y be finite dimensional Banach spaces, let ‖·‖ be a symmetric norm on L(X, Y),
and let A ∈ Ld(X) and B ∈ Ld(Y). Then

‖ f (B)S− S f (A)‖ ≤ 16 ν(A)ν(B)‖ϕ f ‖A‖BS− SA‖

for all S ∈ L(X, Y). In particular, if X = Y,

‖ f (B)− f (A)‖ ≤ 16 ν(A)ν(B)‖ϕ f ‖A‖B− A‖. (5.35)

Corollary 5.42. There exists a universal constant C ≥ 0 such that the following
holds. Let X and Y be finite dimensional Banach spaces and ‖·‖ a symmetric norm
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on L(X, Y). Let f ∈ Ḃ1
∞,1(R), and let A ∈ Ld(X) and B ∈ Ld(Y) be such that

sp(A) ∪ sp(B) ⊆ R. Then

‖ f (B)S− S f (A)‖ ≤ C ν(A)ν(B)‖ f ‖Ḃ1
∞,1(R)‖BS− SA‖

for all S ∈ L(X, Y). In particular, if X = Y,

‖ f (B)− f (A)‖ ≤ C ν(A)ν(B)‖ f ‖Ḃ1
∞,1(R)‖B− A‖.

Remark 5.43. Let W1, W2 ⊂ C be finite sets. Then any ϕ : W1 ×W2 → C

belongs to A(W1 ×W2). Indeed, one can find a representation as in (2.19)
by letting Ω be finite and solving a system of linear equations. Therefore
Theorem 5.10 yields an estimate

‖ f (B)S− S f (A)‖ ≤ 16 ν(A)ν(B)‖ϕ f ‖A(σ(A)×σ(B))‖BS− SA‖

as in (5.15) for all f ∈ B(C). This might lead one to think that the assumption
in Theorem 5.41 that ϕ f extends to an element of A is not really necessary.
However, for general f ∈ B(C) the norm

∥∥ϕ f
∥∥
A(σ(A)×σ(B)) may blow up as

the number of points in σ(A) and σ(B) grows to infinity. Indeed, for f ∈
B(C) the absolute value function and ‖·‖ the operator norm, a dimension-
independent estimate as in (5.35) does not hold for all selfadjoint operators
on all finite dimensional Hilbert spaces [14, (X.25)]. Hence ϕ f does not extend
to an element of A, and one cannot expect to obtain Theorem 5.41 for all
bounded Borel functions on C.

5.6.2 The absolute value function

We now apply our results for the absolute value function to finite dimen-
sional spaces. First note that Lemma 5.17 and Proposition 5.20 relate com-
mutator estimates for general symmetric norms to triangular truncation op-
erators.

For n ∈N and p ∈ [1, ∞) let `n
p denote Cn with the p-norm

‖(x1, . . . , xn)‖p :=
( n

∑
j=1
|xj|p

)1/p (
(x1, . . . , xn) ∈ Cn),

and let `n
∞ be Cn with the norm

‖(x1, . . . , xn)‖∞ := max
1≤j≤n

|xj|
(
(x1, . . . , xn) ∈ Cn).

Applying Theorem 5.28 with S : Cn → Cn the identity operator immediately
yields the following result. It shows that, although the operator Lipschitz
estimate
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‖ f (B)− f (A)‖L(`n
p ,`n

q )
≤ C ‖B− A‖L(`n

p ,`n
q )

does not hold with a constant independent of the dimension n for f the ab-
solute value function, p = q = 2 and all selfadjoint operators on `n

2 , one can
nevertheless obtain such estimates for p < q, p = q = 1 or p = q = ∞ by
considering diagonalizable operators A and B for which KA, KB ≤ M, for
some fixed M ≥ 1. For A a diagonalizable operator, recall the definition of
KA from (5.23).

Theorem 5.44. Let f (t) := t for t ∈ R, and let p, q ∈ [1, ∞] with p < q, p = q =
1 or p = q = ∞. Then there exists a constant C ≥ 0 such that the following holds.
Let n ∈N and let A ∈ Ld(`

n
p) and B ∈ Ld(`

n
q ) have real spectrum. Then

‖ f (B)S− S f (A)‖L(`n
p ,`n

q )
≤ CKAKB ‖BS− SA‖L(`n

p ,`n
q )

for all S ∈ L(`n
p, `n

q ). In particular,

‖ f (B)− f (A)‖L(`n
p ,`n

q )
≤ CKAKB ‖B− A‖L(`n

p ,`n
q )

.

Theorem 5.29 shows that, for p = 1 or q = ∞, Theorem 5.44 extends to
all Lipschitz functions f : C→ C, with C = ‖ f ‖Lip. Corollaries 5.31 and 5.32
imply that for p = 2 or q = 2 and A or B selfadjoint, the estimate in Theorem
5.44 simplifies.

For p ≥ q, Propositions 5.33 and 5.34 yield dimension-independent esti-
mates. We state the estimates which follow from Proposition 5.33, the analo-
gous estimates which follow from Proposition 5.34 should be obvious.

Proposition 5.45. Let p, q ∈ (1, ∞] with p ≥ q. For each s < q there exists a
constant C ≥ 0 such that the following holds. Let n ∈N, and let A ∈ Ld(`

n
p, λ, U)

and B ∈ Ld(`
n
q , µ, V) have real spectrum. Then

‖ f (B)S− S f (A)‖L(`n
p ,`n

q )
≤ C‖U‖L(`n

p)
‖V−1‖L(`n

q )
‖V(BS− SA)U‖L(`n

p ,`n
s )

for all S ∈ L(`n
p, `n

q ). In particular,

‖ f (B)− f (A)‖L(`n
p ,`n

q )
≤ C‖U‖L(`n

p)
‖V−1‖L(`n

q )
‖V(B− A)U‖L(`n

p ,`n
s )

.

In the case p = q = 2, Corollary 5.35 implies the following. Again we
only consider ε ∈ (0, 1], for simplicity, but the result extends in an obvious
manner to other ε > 0. We write f (A) = |A| =

√
A∗A for a normal operator

A on `n
2 .

Corollary 5.46. For each ε ∈ (0, 1] there exists a constant C ≥ 0 such that the
following holds. Let n ∈N. Then

‖|B|−|A|‖L(`2
n)
≤ C min(‖V(B− A)U−1‖L(`2

n ,`2−ε
n ),‖V(B− A)U−1‖L(`2+ε

n ,`2
n)
)

for all A ∈ Ld(`
2
n, λ, U) and B ∈ Ld(`

2
n, µ, V) selfadjoint, with U and V unitaries.
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Finally note that, under the assumptions of Corollary 5.46,

‖|B| − |A|‖L(`2
n)
≤ C‖B− A‖L(`2

n)
min(‖V‖L(`2

n ,`2−ε
n ), ‖U

−1‖L(`2+ε
n ,`2

n)
).





Part IV

Applications to numerical approximation methods





6

Convergence of subdiagonal Padé approximations
of C0-semigroups

In [66, Rem. 3] the question was raised, whether there are complex numbers
λn,m and bn,m such that any uniformly bounded C0-semigroup (T(t))t∈R+

with generator −A on a Banach space X can be approximated in the strong
sense on the domain D(A) of A by sums of the form

bn,1

t

(
λn,1

t
+ A

)−1

+ · · ·+ bn,mn

t

(
λn,mn

t
+ A

)−1

(t > 0),

as n → ∞, locally uniformly in t ∈ R+ (see also [91]). According to [91]
such a method is called rational approximation without scaling and squar-
ing, because of the absence of both the successive squaring of the resolvent
and the scaling of the generator by 1

n that is common to other approximation
methods for the choice n = 2k, k ∈ N, see e.g. [23]. Recently, the rational
approximation method above has been used to provide new powerful inver-
sion formulas for the vector-valued Laplace transform (see [66, 91]).

Suppose (rn)n∈N is a sequence of rational functions such that the degree
of the numerator of rn is less than the degree of its denominator and such that
each rn has pairwise distinct poles λn,m which all lie in the open right half-
plane C+. Developing rn into partial fractions, there are complex numbers
bn,m such that

rn(z) =
bn,1

λn,1 − z
+ · · ·+ bn,mn

λn,mn − z
(z ∈ C \ {λn,1, . . . , λn,mn}).

If −A generates a uniformly bounded C0-semigroup, the open right half-
plane belongs to the resolvent set of−tA for any t ∈ R+. By the Hille-Phillips
calculus,

rn(−tA) =
bn,1

t

(
λn,1

t
+ A

)−1

+ · · ·+ bn,mn

t

(
λn,mn

t
+ A

)−1

.

Hence the stated problem is solved provided one can prove that there ex-
ists a sequence (rn)n∈N of rational functions satisfying the properties above
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and such that, for any generator −A of a uniformly bounded semigroup
(T(t))t∈R+ on a Banach space X,

rn(−tA)x n→∞−→ T(t)x (6.1)

for all x ∈ D(A), locally uniformly in t ∈ R+.
For bounded generators −A this was shown in [124]. There, the author

takes rn to be the n-th subdiagonal Padé approximation to the exponential
function and uses a refinement of an error estimate shown in [91]. For this
choice of rn numerical experiments in [124] indicate that (6.1) holds with
rate O( 1√

n ) for each (unbounded) generator −A of a uniformly bounded
C0-semigroup.

The main result of this chapter is as follows. For n ∈ N, let rn be the n-
th subdiagonal Padé approximation to the exponential function, defined in
Section 6.1.

Theorem 6.1. Let α > 1
2 . Then there exists a constant C = C(α) ≥ 0 such that

the following holds. Let (T(t))t∈R+ be a C0-semigroup of type (M, 0) on a Banach
space X, with generator −A, and let x ∈ D(Aα). Then

‖rn(−tA)x− T(t)x‖ ≤ CM tα(n + 1)−α+ 1
2 ‖Aαx‖

for all t ≥ 0 and n ∈N with n ≥ α− 1
2 .

For a proof of this result see Theorem 6.9. Theorem 6.1 shows that (6.1)
holds with rate O(n−α+ 1

2 ) for x ∈ D(Aα), locally uniformly in t ∈ R+. In
particular, the choice α = 1 yields the rate suggested by the numerical exper-
iments in [124]. In this case the approximation method without scaling and
squaring converges with the same rate as is known for the classical scaling
and squaring methods due to Brenner and Thomée [23].

Improvements on Theorem 6.1 are established in the following cases:

(i) The semigroup T is bounded analytic. In this case (6.1) holds on D(Aα)
for each α > 0 with rate O(n−α), locally uniformly in t ∈ R+. See
Theorem 6.12.

(ii) The semigroup T is exponentially γ-stable, as defined in Section 2.6.
Then, by results from Chapter 3, for each α > 0, (6.1) holds with rate⋂
a<α
O(n−a) on D(Aα), locally uniformly in t ∈ R+. This holds in partic-

ular for any exponentially stable C0-semigroup on a Hilbert space. See
Theorem 6.14.

(iii) The operator A has a bounded R(C+)-calculus, where R(C+) is the
space of bounded rational functions r ∈ H∞(C+) with no poles in C+.
In this case (6.1) holds for each α > 0 with rate O(n−α) on D(Aα), lo-
cally uniformly in t. In addition, one has local uniform convergence in
t on the whole space X. This applies in particular if T is (similar to) a
contraction semigroup on a Hilbert space. See Theorem 6.16.
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This chapter is organized as follows. Section 6.1 provides some of the ba-
sics on Padé approximation and states several lemmas that are crucial for
Section 6.2, where the results stated above are proved. To improve readabil-
ity, the technical lemmas from Section 6.1 are proved in Appendix B. Exten-
sions of the main results to intermediate spaces such as Favard spaces can be
found in Section 6.3. Finally, Section 6.4 discusses some applications of our
results to the inversion of the vector-valued Laplace transform.

6.1 Padé approximation

Let n ∈N. Set

Pn(z) =
n

∑
j=0

(2n + 1− j)!n!
(2n + 1)!j!(n− j)!

zj,

Qn(z) =
n+1

∑
j=0

(2n + 1− j)!(n + 1)!
(2n + 1)!j!(n + 1− j)!

(−z)j
(6.2)

for z ∈ C, and define rn := Pn
Qn

. Then rn is said to be the n-th subdiagonal Padé
approximant to the exponential function. Cf. [63, Thm. 3.11], Pn and Qn are
the unique polynomials of degree n and n + 1 such that Pn(0) = Qn(0) = 1
and

|rn(z)− ez| ≤ C|z|2n+2

for z ∈ C in a neighborhood of 0. It was observed by Perron [98, Sect. 75] that

rn(z)− ez =
(−1)n+2

Qn(z)
1

(2n + 1)!
z2n+2ez

∫ 1

0
sn(1− s)n+1e−sz ds (6.3)

for all z ∈ C such that Qn(z) 6= 0. By [44, Cor. 3.2], rn isA-stable, which means
that rn is holomorphic in a neighborhood of the closed left halfplane C \C+

and |rn(z)| ≤ 1 for all z ∈ C \C+. The polynomial Qn has pairwise distinct
roots [63, Thm. 4.11] and, combining Corollaries 1.1 and 3.7 in [44], it follows
that these roots are contained in C+.

The following proposition is proved in Appendix B, as Proposition B.2.

Proposition 6.2. Let n ∈N and z ∈ C+. Then

|rn(−z)− e−z| ≤ 1
2

(
n!

(2n + 1)!

)2
|z|2n+2

and

|r′n(−z)− e−z| ≤
(

n!
(2n + 1)!

)2 (4
5
|z|2n+2 + (n + 1)|z|2n+1

)
.
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For n ∈N and α > 0, define fn,α : C+ \ {0} → C by

fn,α(z) :=
rn(−z)− e−z

zα
(z ∈ C+ \ {0}). (6.4)

Corollary 6.3. Let n ∈N and α ∈ (0, 2n + 2). Then

| fn,α(z)| ≤ 2
(

n!
(2n + 1)!

) α
n+1

for all z ∈ C+ \ {0}.

Proof. Since rn is A-stable,

| fn,α(z)| =
∣∣∣∣ rn(−z)− e−z

zα

∣∣∣∣ ≤ 2
|z|α

for all z ∈ C+ \ {0}. Hence Proposition 6.2 yields

sup
z∈C+\{0}

| fn,α(z)| ≤ sup
z∈C+\{0}

min

{
2
|z|α ,

1
2

(
n!

(2n + 1)!

)2
|z|2n+2−α

}
. (6.5)

Note that |z|−α is a strictly decreasing function and |z|2n+2−α a strictly in-
creasing function of |z| ∈ (0, ∞). Hence, the supremum on the right-hand
side of (6.5) is actually a maximum that is attained at the value of |z| for
which

2
|z|α =

1
2

(
n!

(2n + 1)!

)2
|z|2n+2−α,

that is, for

|z| =
(

2(2n + 1)!
n!

) 1
n+1

.

Inserting such a z in (6.5) concludes the proof. ut

We collect the following two straightforward lemmas for later use.

Lemma 6.4. Let u, v, U, V > 0 and w ∈
[

0,
(

V
U

) 1
u+v
]

. Then

∫ ∞

w
min

{
Uru, Vr−v} dr

r
= V

(
U
V

) v
u+v u + v

uv
− U

u
wu.
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Proof. Let r0 ≥ 0 be such that Uru
0 = Vr−v

0 and note that r0 ≥ w. Hence∫ ∞

w
min

{
Uru, Vr−v} dr

r
=
∫ r0

w
Uru dr

r
+
∫ ∞

r0

Vr−v dr
r

.

Calculating the integrals on the right-hand side and simplifying yields the
claim. ut

Lemma 6.5. Let n ∈N. Then(
n!

(2n + 1)!

) 1
n+1
≤ 1

n + 1
.

Proof. Simply note that

(
n!

(2n + 1)!

) 1
n+1

(n + 1) =
(

n!(n + 1)n+1

(2n + 1)!

) 1
n+1

≤ 1. ut

For the proof of the main result of this chapter, the following L2-estimates
for the restriction of fn,α to the imaginary axis are crucial. This proposition is
proved in Appendix B as Proposition B.5.

Proposition 6.6. Let n ∈N and α ∈ ( 1
2 , n + 1

2 ]. Then

‖ fn,α(i ·)‖2 ≤
4√

2α− 1
(n + 1)−α+ 1

2

and

∥∥( fn,α(i ·))′
∥∥

2 ≤
(

8α

(2α + 1)3/2 +
13α

10α

√
52α

6 · 132α
+

360
13(2α− 1)

)
(n + 1)−α+ 1

2 .

6.2 Convergence of Padé approximations

In this section we prove the results stated in the introduction to this chapter.
In particular, we prove Theorem 6.1. Then we improve this theorem for ana-
lytic semigroups, exponentially γ-stable semigroups, and semigroups whose
generator has a bounded calculus for the class of bounded rational functions
on C+.

6.2.1 Uniformly bounded semigroups

To prove Theorem 6.1 we require the following lemma.
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Lemma 6.7. Let f ∈ H∞(C+) be such that f (i·) ∈ W1,2(R). Then there exists a
g ∈ L1(R+) with f (z) = ĝ(z) for all z ∈ C+, and

‖g‖L1(R+)
≤ 1√

2
‖ f (i ·)‖

1
2
L2(R)

∥∥( f (i ·))′
∥∥ 1

2
L2(R)

.

Proof. The Paley-Wiener Theorem ( [104, Theorem 5.28]) yields a g ∈ L2(R+)
such that f (z) = ĝ(z) for all z ∈ C+. Let h(s) = f (is) for s ∈ R. Then F−1h
is the extension of g to the whole real axis by setting g equal to zero off R+.
Plancherel’s Theorem implies that F−1h ∈ L2(R) with

[ξ 7→ −iξ(F−1h)(ξ) = (F−1h′)(ξ)] ∈ L2(R).

Therefore Carlson’s inequality [8, p.175] yields F−1h ∈ L1(R) with

‖F−1h‖L1(R) ≤
√

π‖F−1h‖
1
2
L2(R)

‖F−1h′‖
1
2
L2(R)

.

Thus, by definition of h and by Plancherel’s Theorem,

‖g‖L1(R+)
= ‖F−1( f (i ·))‖L1(R) ≤

1√
2
‖ f (i ·)‖

1
2
L2(R)

‖( f (i ·))′‖
1
2
L2(R)

. ut

Remark 6.8. Lemma 6.7 is very similar to Lemmas 1 and 2 in [23]. However,
we use that supp(F−1h) ⊆ R+. This results in a constant smaller by a factor
of 1

2 in Carlson’s inequality and consequently also in the L1-estimate for g.

We are now ready to prove Theorem 6.1, with an explicit estimate for the
constant involved.

Theorem 6.9. Let (T(t))t∈R+ be a C0-semigroup of type (M, 0) on a Banach space
X, with generator −A. Let α > 1

2 and x ∈ D(Aα). Then

‖rn(−tA)x− T(t)x‖ ≤ C(α)Mtα(n + 1)−α+ 1
2 ‖Aαx‖ (6.6)

for all t ∈ R+ and n ∈N with n ≥ α− 1
2 . Here,

C(α) :=

√
2

(2α− 1)1/4

√√√√ 8α

(2α + 1)3/2 +
13α

10α

√
52α

6 · 132α
+

360
13(2α− 1)

. (6.7)

In particular, for each α > 1
2 the sequence (rn(−tA))n∈N converges strongly

on D(Aα) and locally uniformly in t ∈ R+ to T(t) with rate O(n−α+ 1
2 ).

Proof. Fix t ∈ R+ and n ∈ N with n ≥ α − 1
2 . Since rn is A-stable and

rn = Pn
Qn

with deg(Qn) = n + 1 > n = deg(Pn), it follows from Lemma 6.7
that rn(−t·) is the Laplace transform of a bounded measure. Note also that
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e−t· is the Laplace transform of the unit point mass at t. Hence rn(−tA) =
rn(−t ·)(A) and e−t ·(A) = T(t) are well-defined in the Hille-Phillips calcu-
lus for A. Set

f (z) := tα fn,α(tz) =
rn(−tz)− e−tz

zα
(z ∈ C+ \ {0})

with fn,α as in (6.4). Then f ∈ H∞(C+)∩C(C+), by Corollary 6.3, and f (z) ∈
O(|z|−α) as |z| → ∞, since rn is A-stable. Moreover, f (i ·) ∈ W1,2(R) by
Proposition 6.6. Thus Lemma 6.7 yields a function g ∈ L1(R+) such that
f = ĝ and

‖g‖L1(R+)
≤ 1√

2
‖ f (i ·)‖

1
2
L2(R)

∥∥( f (i ·))′
∥∥ 1

2
L2(R)

=
tα

√
2
‖ fn,α(i ·)‖

1
2
L2(R)

∥∥( fn,α(i ·))′
∥∥ 1

2
L2(R)

.

By the definition of the Hille-Phillips calculus,

(rn(−tA)− T(t))x = f (A)Aαx = ĝ(A)Aαx =
∫ ∞

0
g(s)T(s)Aαx ds. (6.8)

Hence, by taking norms,

‖rn(−tA)x− T(t)x‖ ≤ Mtα

√
2
‖ fn,α(i ·)‖

1
2
L2(R)

∥∥( fn,α(i ·))′
∥∥ 1

2
L2(R)

‖Aαx‖ .

The conclusion follows by using Proposition 6.6 for the right-hand side of
this inequality. ut
Remark 6.10. For applications to numerical analysis, one might inquire about
the size of C(α) for α = 1 and other small values. It is easily checked that

C(1) ≤ 4.10, C(2) ≤ 2.76, C(3) ≤ 2.41, C(4) ≤ 2.28.

Remark 6.11. Suppose that, in the setting of Theorem 6.9, T = (T(t))t∈R+ is
exponentially stable. Then, depending on the type of T, it may be possible to
provide a sharper upper bound for the approximation error. More precisely,
let T be of type (M,−ω) for some ω > 0. With f , fn,α and g as in the proof of
Theorem 6.9, Lemma 6.7 and Plancherel’s Theorem yield

‖g‖L2(R+)
=

1√
2π
‖ f (i ·)‖L2(R) =

tα− 1
2

√
2π
‖ fn,α(i ·)‖L2(R) .

Taking norms in (6.8) and applying Hölder’s inequality yields

‖rn(−tA)x− T(t)x‖ ≤ M ‖ge−ω‖L1(R)

≤ M√
4πω

4√
2α− 1

tα− 1
2 (n + 1)−α+ 1

2 ‖Aαx‖

for all α > 1
2 , n ≥ α− 1

2 , t ∈ R+ and x ∈ D(Aα), which is a sharper estimate
than (6.6) for sufficiently large ω > 0.
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6.2.2 Analytic semigroups

For A a sectorial operator of angle ϕ ∈ (0, π) on a Banach space X, and
ψ ∈ (ϕ, π], let

M(A, ψ) := sup
λ∈C\Sψ

‖λR(λ, A)‖ < ∞. (6.9)

Note that MA := M(A, π) = supt>0

∥∥t(t + A)−1
∥∥ and that

M(A, π) = inf
ψ∈(ϕ,π)

M(A, ψ), (6.10)

by [55, Remark 2.1.2].
For bounded analytic semigroups we deduce the following improvement

of Theorem 6.9.

Theorem 6.12. Let A be a densely defined sectorial operator of angle ϕ ∈ (0, π
2 )

on a Banach space X and let (T(t))t∈R+ ⊆ L(X) be the bounded analytic C0-
semigroup generated by −A. Let α > 0 and x ∈ D(Aα). Then

‖rn(−tA)x− T(t)x‖ ≤ 4MA
απ

tα(n + 1)−α ‖Aαx‖

for all t ∈ R+ and n ∈N such that n ≥ α− 1.
In particular, for each α > 0 the sequence (rn(−tA))n∈N converges strongly on

D(Aα) and locally uniformly in t ∈ R+ to T(t) with rate O(n−α).

Proof. Fix n ≥ α− 1. Observe that for t = 0 the statement is trivial, while for
t > 0 the operator tA is also sectorial of angle ϕ with MA = MtA. Hence it
suffices to consider t = 1.

Let ν ∈ (ϕ, π
2 ) and let fn,α be as in (6.4). Proposition 6.2 and theA-stability

of rn yield

| fn,α(z)| ≤ min

{
1
2

(
n!

(2n + 1)!

)2
|z|2n+2−α, 2|z|−α

}
(6.11)

for z ∈ C+, so that fn,α ∈ H∞
0 (Sν). By the holomorphic functional calculus

for sectorial operators,

(rn(−A)− T(1))x = fn,α(A)Aαx =
1

2πi

∫
∂Sψ

fn,α(z)R(z, A)Aαx dz

for ψ ∈ (ν, π
2 ). By taking operator norms and estimating the integrand on

the right-hand side by means of (6.9) and (6.11), ‖(rn(−A)− T(1)) x‖ is
bounded from above by

M(A, ψ)

π
‖Aαx‖

∫ ∞

0
min

{
1
2

(
n!

(2n + 1)!

)2
r2n+2−α, 2r−α

}
dr
r

.
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By Lemma 6.4,

‖(rn(−A)− T(1))x‖ ≤ 4M(A, ψ)

απ

n + 1
2n + 2− α

(
n!

2(2n + 1)!

) α
n+1
‖Aαx‖

≤ 4M(A, ψ)

απ

(
n!

(2n + 1)!

) α
n+1
‖Aαx‖.

The last term can be estimated by means of Lemma 6.5. This leads to

‖(rn(−A)− T(1))x‖ ≤ 4M(A, ψ)

απ
(n + 1)−α‖Aαx‖.

Taking the infimum over all ψ ∈ (ν, π
2 ) and using (6.10) yields the required

estimate for t = 1, and concludes the proof. ut

Remark 6.13. In the situation of Theorem 6.12 the scaling and squaring meth-
ods associated to a fixed subdiagonal Padé approximant converge strongly
on X and even inL(X), see [77, Thm. 4.4]. Whether this is true for the method
without scaling and squaring as well is an open problem. In Section 6.2.4 we
prove strong convergence on X if A has a bounded calculus for the collection
of bounded rational functions on C+.

6.2.3 Exponentially γ-stable semigroups

In this section we improve Theorem 6.9 for the exponentially γ-stable C0-
semigroups from Section 2.6. Recall the definition of γ-type from Section 2.6.
Note that the following result applies in particular to exponentially stable
C0-semigroups on Hilbert spaces.

Theorem 6.14 (Convergence for exponentially γ-stable semigroups). Let
−A generate a C0-semigroup T = (T(t))t∈R+ of γ-type (M,−ω), for M ≥ 1
and ω > 0, on a Banach space X. Let α > 0, a ∈ (0, α) and x ∈ D(Aα) be given.
Then there is a constant C = C(M, ω, α− a) such that

‖rn(−tA)x− T(t)x‖ ≤ Cta(n + 1)−a‖Aαx‖

for all t ∈ R+ and all n ∈N such that n > a
2 − 1.

In particular, for each α > 0 the sequence (rn(−tA))n∈N converges strongly on
D(Aα) and locally uniformly in t ∈ R+ to T(t) with rate

⋂
a<αO(n−a).

Proof. The proof is very similar to that of Theorem 6.9, appealing to Corol-
lary 3.25 instead of Lemma 6.7. Fix t ∈ R+ and n > a

2 − 1, and let

f (z) := ta fn,a(tz) =
rn(−tz)− e−tz

za (z ∈ C+ \ {0}).

Then Corollary 3.25 yields
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∥∥(rn(−tA)− T(t))A−α
∥∥ =

∥∥ f (A)Aa−α
∥∥ ≤ C(M, ω, α− a) ‖ f ‖H∞(C+)

.

Lemma 6.3 and Lemma 6.5 imply

‖ f ‖H∞(C+)
= sup

z∈C+

ta
∣∣∣∣ rn(−tz)− e−tz

(tz)a

∣∣∣∣ ≤ 2ta
(

n!
(2n + 1)!

) a
n+1
≤ 2ta(n + 1)−a.

Combining these two estimates yields

‖(rn(−tA)− T(t))x‖ =
∥∥(rn(−tA)− T(t))A−α Aαx

∥∥ ≤ Cta(n + 1)−a ‖Aαx‖

for some constant C = C(M, ω, α− a) ≥ 0. ut

Remark 6.15. Theorem 6.14 yields convergence rate O(n−a) on D(Aα) for ar-
bitrary a < α but does not make any statement concerning the limit case
a = α. If, in addition to the hypotheses from Theorem 6.14, the operators
T(t), for t > 0, are invertible and that the collection

{
e−ω0tT(t)−1 | t > 0

}
is γ-bounded for some ω0 ∈ R. Then Corollary 2.33 implies that A has a
bounded H∞(C+)-calculus. Hence, Theorem 6.16 from the next section im-
plies convergence of order O(n−α) on D(Aα) and even strong convergence
on the whole space X. This remark applies in particular to exponentially sta-
ble semigroups T on a Hilbert space for which all the operators T(t), t ∈ R+,
are invertible.

6.2.4 Generators with a boundedR(C+)-calculus

Let −A be the generator of a uniformly bounded semigroup T = (T(t))t∈R+

on a Banach space X. Up until now, in the results of this chapter we have
obtained

rn(−tA)x n→∞−→ T(t)x

only for x belonging to some proper subspace of X, at least if A is un-
bounded. In this section we show that this convergence can be extended to
all x ∈ X if A has a bounded R(C+)-calculus, where R(C+) is the space of
all bounded rational functions on C+. In other words, we assume that (2.7)
holds:

‖r(A)‖L(X) ≤ C ‖r‖H∞(C+)

for all r ∈ R(C+). We call the smallest constant C in this inequality the H∞-
bound of A. For such A the following improvement of Theorem 6.9 holds. We
note that this result for instance applies to generators of contraction semi-
groups on Hilbert spaces (with C = 1), by Proposition 2.6, to generators
of bounded analytic semigroups which satisfy the square function estimates
in Theorem 1.1, and to the generators of symmetric contraction semigroups
from Theorem 1.2.
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Theorem 6.16. Let −A generate a uniformly bounded C0-semigroup (T(t))t∈R+

on a Banach space X and suppose that A has a boundedR(C+)-calculus with H∞-
bound C. Let α > 0 and x ∈ D(Aα) be given. Then

‖rn(−tA)x− T(t)x‖ ≤ 2Ctα(n + 1)−α ‖Aαx‖ (6.12)

for all t ∈ R+ and all n ∈N such that n > α
2 − 1.

In particular, for each α > 0 the sequence (rn(−tA))n∈N converges to T(t)
strongly on D(Aα) and locally uniformly in t ∈ R+ to T(t) with rate O(n−α).
Moreover, (rn(−tA))n∈N converges strongly on X and locally uniformly in t ∈ R+

to T(t).

Proof. As noted in Section 2.2.1, under the present assumptions one can ex-
tend the functional calculus for A to all functions f ∈ H∞(C+) ∩ C(C+) by
taking uniform limits of rational functions (see [55, Proposition F.3]) and then
regularizing. Then

‖ f (A)‖L(X) ≤ C ‖ f ‖H∞(C+)
(6.13)

for all f ∈ A(C+), where A(C+) consists of all f ∈ H∞(C+) ∩ C(C+) for
which limz→∞ f (z) exists.

Fix t ∈ R+ and n > α
2 − 1 and let

f (z) :=
rn(−tz)− e−tz

zα
(z ∈ C+ \ {0}).

Then f ∈ A(C+) by Lemma 6.2 and by A-stability of the rn. Hence,

‖rn(−tA)x− T(t)x‖ = ‖ f (A)Aαx‖ ≤ C ‖ f ‖H∞(C+)
‖Aαx‖ ,

and (6.12) follows by estimating ‖ f ‖H∞(C+)
using Lemma 6.3 and Lemma 6.5.

Finally, we prove that (rn(−tA))n∈N converges strongly to T(t) on X,
locally uniformly in t ∈ R+. To this end note that, for K a bounded subset of
R+, the family

{rn(−tA)− T(t) | n ∈N, t ∈ K} ⊆ L(X)

is bounded due to (6.13). Since rn(−tA) converges to T(t) strongly on D(A)
and uniformly in t ∈ K as n → ∞, the density of D(A) in X implies that this
convergence extends to all of X. ut

6.3 Extension to other intermediate spaces

In this section the results from the previous sections are extended to other
classes of intermediate spaces. Throughout, let −A be the generator of a uni-
formly bounded C0-semigroup T = (T(t))t∈R+ on a Banach space X. For
k ∈N the k-th Favard space is
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Fk :=
{

x ∈ D(Ak−1) | L(Ak−1x) := lim sup
t↓0

1
t ‖T(t)Ak−1x− Ak−1x‖ < ∞

}
.

Then D(Ak) ⊆ Fk and for non-reflexive Banach spaces this inclusion can be
strict, see e.g. Section 6.4 below. It is therefore noteworthy that the conver-
gence results from the previous sections immediately extend from D(Ak) to
Fk upon replacing ‖Akx‖ by L(Ak−1x). This is due to the following lemma
from [73, Prop. 1].

Lemma 6.17. Let S ∈ L(X) and suppose there exist k ∈ N and C ≥ 0 such that
‖Sx‖ ≤ C‖Akx‖ for all x ∈ D(Ak). Then ‖Sx‖ ≤ CL(Ak−1x) for all x ∈ Fk.

Proof. Approximate x ∈ Fk by elements

xt :=
1
t

∫ t

0
T(s)x ds ∈ D(Ak) (t > 0)

and note that

‖Sxt‖ ≤ C‖Akxt‖ = C‖ 1
t (T(t)Ak−1x− Ak−1x)‖ (t > 0).

The conclusion follows by passing to the limit superior as t ↓ 0. ut

Using (2.10) and (2.38) as well as [55, Proposition B.3.5], the convergence
results in this chapter carry over to the domains of certain complex fractional
powers, as well as to real interpolation spaces. This includes Favard spaces
of non-integer order, as discussed in [72, Section 3.3].

6.4 Application to the inversion of the Laplace transform

Following an idea from [91], we show how the results in this chapter can be
used to obtain inversion formulas for the vector-valued Laplace transform,
with precise error-estimates.

For X a Banach space and k ∈ N, denote by Ck,1
ub(R+; X) the space of all

functions f ∈ Ck
ub(R+; X) for which f (k) is Lipschitz. For f : R+ → X define

L( f ) := lim sup
t↓0

1
t
‖ f (t + ·)− f ‖∞ ∈ [0, ∞].

On Cub(R+; X) we consider the differential operator A f := − f ′ with
maximal domain C1

ub(R+; X). Then −A generates the strongly continuous
left translation semigroup Tl = (Tl(t))t∈R+ , where (Tl(t) f )(·) = f (t + ·). By
definition, the associated Favard spaces are given by

Fk = { f ∈ Ck−1
ub (R+; X) | L( f (k−1)) < ∞} = Ck−1,1

ub (R+; X) (k ∈N).
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Moreover, Tl is of type (1, 0) and if f ∈ Cub(R+; X) and λ ∈ C+, then

((λ + A)−1 f )(0) =
∫ ∞

0
e−λt(Tl(t) f )(0)dt =

∫ ∞

0
e−λt f (t)dt = f̂ (λ),

with f̂ : C+ → X the (vector-valued) Laplace transform of f . Let

rn(z) =
bn,1

λn,1 − z
+ · · ·+ bn,n+1

λn,n+1 − z
(z ∈ C \ {λn,1, . . . , λn,n+1})

be the partial fraction decomposition of the n-th subdiagonal Padé approx-
imation. Applying Theorem 6.9 to Tl and evaluating at zero yields the fol-
lowing result for all f ∈ Ck

ub(R+; X). Lemma 6.17 then extends it to all
f ∈ Ck−1,1

ub (R+; X).

Corollary 6.18. Let X be a Banach space and f ∈ Ck−1,1
ub (R+; X) for some k ∈ N.

Let t > 0 and n ∈N such that n ≥ k− 1
2 . Then

∥∥∥ n+1

∑
j=1

bn,j

t
f̂
(

λn,j

t

)
− f (t)

∥∥∥
X
≤ C(k)tk(n + 1)−k+ 1

2 L( f (k−1)),

where C(k) is as in (6.7). In particular, ∑n+1
j=1

bn,j
t f̂
(

λn,j
t

)
converges locally uni-

formly in t to f (t) with rate O(n−k+ 1
2 ).

Remark 6.19. The Laplace inversion formula from Corollary 6.18 actually con-
verges for any f ∈ Cub(R+; X) that is α-Hölder continuous for some α ∈
( 1

2 , 1) with rate depending on α. This follows again from Theorem 6.9, since
such an f is contained in the real interpolation space (Cub(R+; X), D(A))α,∞,
which continuously embeds into D(Aa) for any a < α, as follows from (2.36)
and (2.38).

Remark 6.20. It should be noted that Corollary 6.18 provides a Laplace inver-
sion formula that does not require any knowledge of derivatives of f̂ and
only uses finite sums as approximants, compare with e.g. [66], [3]. Moreover,
C(k) can be computed explicitly (see Remark 6.10).





A

Growth estimates

In this appendix we examine the function η : (0, ∞)× (0, ∞)× [1, ∞] → R+

from (3.4) given by

η(α, t, q) := inf
{
‖ψ‖q ‖ϕ‖q′ | ψ ∗ ϕ ≡ e−α on [t, ∞)

}
.

We will need the following lemma. It is contained in the proof of [59,
Lemma A.1] and is due to T. Hytönen.

Lemma A.1. Let θ ∈ (0, 1). Then there exist sequences (β j)j, (β′j)j ⊆ R+ such
that β j = O((1 + j)−θ) and β′j = O((1 + j)θ−1) as j→ ∞, and such that

ψ0 :=
∞

∑
j=0

β j1(j,j+1) and ϕ0 :=
∞

∑
j=0

β′j1(j,j+1)

satisfy

(ψ0 ∗ ϕ0)(s) =
{

s, s ∈ [0, 1)
1, s ≥ 1

In this appendix we will use the notation f . g for real-valued functions
f , g : Z → R on some set Z to indicate that there exists a constant c ≥ 0 such
that f (z) ≤ cg(z) for all z ∈ Z.

Lemma A.2. For each q ∈ (1, ∞) there exist constants cq, dq ≥ 0 such that

dq|log(αt)| ≤ η(α, t, q) ≤ cq|log(αt)| (A.1)

if αt ≤ min
{

1
q , 1

q′

}
. If αt > min

{
1
q , 1

q′

}
then

e−αt ≤ η(α, t, q) ≤ 2e−αt. (A.2)
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Proof. First note that η(α, t, q) = η(αt, 1, q) = η(1, αt, q) for all α, t and q.
Indeed, for ψ ∈ Lq(R+), ϕ ∈ Lq′(R+) with ψ ∗ ϕ ≡ e−α on [1, ∞) define
ψt(s) := 1

t1/q ψ(s/t) and ϕt(s) := 1
t1/q′ ϕ(s/t) for s ≥ 0. Then

ψt ∗ ϕt(r) =
∫ ∞

0
ψ
( r−s

t
)

ϕ
( s

t
) ds

t = ψ ∗ ϕ
( r

t
)

for all r ≥ 0, so ψt ∗ ϕt ≡ e−α on [t, ∞). Moreover,

‖ψt‖q
q =

∫ ∞

0
|ψ( s

t )|
q ds

t =
∫ ∞

0
|ψ(s)|q ds = ‖ψ‖q

q ,

and similarly ‖ϕt‖q′ = ‖ϕ‖q′ . Hence η(α, t, q) ≤ η(αt, 1, q). Considering ψ1/t

and ϕ1/t yields η(α, t, q) = η(αt, 1, q). The other equality follows immedi-
ately. Hence, to prove any of the inequalities in (A.1) or (A.2), we can assume
either that α = 1 or that t = 1 (but not both).

For the left-hand inequalities, we assume that α = 1 and we first consider
the left-hand inequality of (A.1). Let t < 1 and ψ ∈ Lq(R+), ϕ ∈ Lq′(R+)
such that ψ ∗ ϕ ≡ e−1 on [t, ∞). Then

|log(t)| = − log(t) =
∫ 1

t

ds
s
≤ e

∫ 1

t
e−s ds

s
= e

∫ 1

t
|ψ ∗ ϕ(s)|ds

s

≤ e
∫ 1

t

∫ s

0
|ψ(s− r)| · |ϕ(r)|dr

ds
s

≤ e
∫ ∞

0

∫ ∞

r

|ϕ(s− r)|
s

ds |ψ(r)|dr

= e
∫ ∞

0

∫ ∞

0

|ψ(r)||ϕ(s)|
s + r

ds dr ≤ eπ

sin(π/q)
‖ψ‖q ‖ϕ‖q′ ,

where we used Hilbert’s absolute inequality [50, Theorem 5.10.1]. It follows
that

η(1, t, q) ≥ sin(π/q)
eπ

|log(t)|.

For the left-hand inequality of (A.2), we assume that α = 1 and let t > 0 be
arbitrary. Then

e−t = (ψ ∗ ϕ)(t) ≤
∫ t

0
|ψ(t− s)||ϕ(s)|ds ≤ ‖ψ‖q ‖ϕ‖q′

by Hölder’s inequality, hence e−t ≤ η(1, t, q).
For the right-hand inequalities in (A.1) and (A.2), we assume that t = 1

and first consider the right-hand inequality in (A.1) for α ≤ min
{

1
q , 1

q′

}
.

Lemma A.1 (with θ = 1/q) yields
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(ψ0 ∗ ϕ0)(s) =
{

s, s ∈ [0, 1)
1, s ≥ 1 ,

where

ψ0 :=
∞

∑
j=0

β j1(j,j+1) and ϕ0 :=
∞

∑
j=0

β′j1(j,j+1)

for sequences (β j)j and (β′j)j of positive scalars such that β j = O((1+ j)−1/q)

and β′j = O((1 + j)−1/q′) as j → ∞. Let ψ := e−αψ0 and ϕ := e−α ϕ0. Then
ψ ∗ ϕ ≡ e−α on [1, ∞) and

‖ψ‖q
q = ‖e−αψ0‖q

q =
∞

∑
j=0

β
q
j

∫ j+1

j
e−αqs ds .

∞

∑
j=0

e−αqj

1 + j

≤ 1 +
∫ ∞

0

e−αqs

1 + s
ds = 1 + eαq

∫ ∞

αq

e−s

s
ds.

The constant in the first inequality depends only on q. Since αq ≤ 1,

‖ψ‖q
q . 1 + eαq

(∫ 1

αq

e−s

s
ds +

∫ ∞

1

e−s

s
ds
)
≤ 1 +

∫ 1

αq

1
s

ds + eαq
∫ ∞

1
e−s ds

= 1− log(αq) + eαq−1 ≤ log
(

1
α

)
+ 2.

Moreover, 1
α ≥ q > 1 hence log

(
1
α

)
≥ log(q) > 0 and

log
(

1
α

)
+ 2 ≤

(
1 +

2
log(q)

)
log
(

1
α

)
.

Therefore

‖ψ‖q . log
(

1
α

)1/q
= | log(α)|1/q,

for a constant depending only on q. In a similar manner we deduce

‖ϕ‖q′ . | log(α)|1/q′

for a constant depending only on q′ (and thus on q). This yields (A.1).
For the right-hand side of (A.2) we assume that t = 1 and, without loss of

generality (since η(α, t, q) = η(α, t, q′)), that α > 1
q . Let ϕ := 1[0,1]eα(q−1) and

ψ := αq
eαq−1 1R+ e−α. Then

ψ ∗ ϕ(r) =
αq

eαq − 1

∫ 1

0
eα(q−1)se−α(r−s) ds = e−αr
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for r ≥ 1. Hence

η(α, 1, q) ≤ ‖ψ‖q ‖ϕ‖q′ =
αq

eαq − 1

(∫ ∞

0
e−αqs ds

)1/q (∫ 1

0
eα(q−1)q′s ds

)1/q′

=
(αq)(q−1)/q

eαq − 1

(∫ 1

0
eαqs ds

) q−1
q

= (eαq − 1)−1/q ≤ 21/qe−α ≤ 2e−α,

where we have used the assumption α > 1
q in the penultimate inequality. ut



B

Estimates for Padé approximants

In this appendix we prove several technical results from Section 6.1.
The following lemma, proved recently in [92], is essential for the results

in this appendix. For n ∈ N, recall the definitions of Qn and rn from Section
6.1.

Lemma B.1. Let n ∈N and t ∈ R. Then

|Qn(it)| ≥ 1,
∣∣∣∣Q′n(it)Qn(it)

∣∣∣∣ ≤ 1, and |r′n(it)| ≤ 2.

We use this lemma to prove Proposition 6.2 from the main text.

Proposition B.2. Let n ∈N and z ∈ C+. Then

|rn(−z)− e−z| ≤ 1
2

(
n!

(2n + 1)!

)2
|z|2n+2

and

|r′n(−z)− e−z| ≤
(

n!
(2n + 1)!

)2 (4
5
|z|2n+2 + (n + 1)|z|2n+1

)
.

Proof. By standard properties of Euler’s beta function,∫ 1

0
sn(1− s)n+1ds =

n!(n + 1)!
(2n + 2)!

.

Hence (6.3) yields

|rn(−z)− e−z| ≤ 1
|Qn(−z)|

1
(2n + 1)!

|z|2n+2
∫ 1

0
sn(1− s)n+1|e(s−1)z|ds

≤ 1
|Qn(−z)|

1
(2n + 1)!

|z|2n+2 n!(n + 1)!
(2n + 2)!

.
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As Qn is a polynomial having all its roots in C+, Lemma B.1 and the maxi-
mum principle for holomorphic functions imply 1

|Qn(−z)| ≤ 1. Hence

|rn(−z)− e−z| ≤ n!(n + 1)!
(2n + 1)!(2n + 2)!

|z|2n+2 =
1
2

(
n!

(2n + 1)!

)2
|z|2n+2,

which is the first statement that was to be proved. Now differentiate (6.3)
with respect to z and write

r′n(−z)− e−z = Tn,1(z) + Tn,2(z) + Tn,3(z), (B.1)

where

Tn,1(z) =
(−1)n+3Q′n(−z)

Qn(−z)2
(−z)2n+2

(2n + 1)!

∫ 1

0
sn(1− s)n+1e(s−1)z ds

= −Q′n(−z)
Qn(−z)

(rn(−z)− e−z),

Tn,2(z) =
(−1)n+2

Qn(−z)
(2n + 2)(−z)2n+1

(2n + 1)!

∫ 1

0
sn(1− s)n+1e(s−1)z ds

= −2n + 2
z

(rn(−z)− e−z), and

Tn,3(z) =
(−1)n+2

Qn(−z)
(−z)2n+2

(2n + 1)!

∫ 1

0
sn(1− s)n+2e(s−1)z ds.

We estimate these three terms separately. As all roots of Qn lie in C+,
Lemma B.1 and the maximum principle for holomorphic functions yield∥∥∥Q′n(− ·)

Qn(− ·)

∥∥∥
H∞(C+)

≤ 1. The first part of this lemma then implies

|Tn,1(z)| ≤
1
2

(
n!

(2n + 1)!

)2

|z|2n+2 (B.2)

and

|Tn,2(z)| ≤ (n + 1)
(

n!
(2n + 1)!

)2

|z|2n+1. (B.3)

Finally, note that the only difference between Tn,3(z) and rn(−z) − e−z is
an additional factor (1− s) under the respective integral sign. By the same
arguments as in the proof of the first assertion of this lemma, taking into
account that n+2

2n+3 ≤
3
5 ,

|Tn,3(z)| ≤
n!(n + 2)!

(2n + 1)!(2n + 3)!
|z|2n+2 ≤ 3

10

(
n!

(2n + 1)!

)2

|z|2n+2. (B.4)

The proof is concluded by combining (B.1) with (B.2), (B.3) and (B.4). ut
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We now recall Lemmas 6.4 and 6.5.

Lemma B.3. Let u, v, U, V > 0 and w ∈
[

0,
(

V
U

) 1
u+v
]

. Then

∫ ∞

w
min

{
Uru, Vr−v} dr

r
= V

(
U
V

) v
u+v u + v

uv
− U

u
wu.

Lemma B.4. Let n ∈N. Then(
n!

(2n + 1)!

) 1
n+1
≤ 1

n + 1
.

We now prove Proposition 6.6. For n ∈ N and α ∈ (0, ∞), recall the
function fn,α : C+ \ {0} → C,

fn,α(z) =
rn(−z)− e−z

zα
(z ∈ C+ \ {0}),

from (6.4).

Proposition B.5. Let n ∈N and α ∈ ( 1
2 , n + 1

2 ]. Then

‖ fn,α(i ·)‖2 ≤
4√

2α− 1
(n + 1)−α+ 1

2

and

∥∥( fn,α(i ·))′
∥∥

2 ≤
(

8α

(2α + 1)3/2 +
13α

10α

√
52α

6 · 132α
+

360
13(2α− 1)

)
(n + 1)−α+ 1

2 .

Proof. First, we prove the estimate for ‖ fn,α(i ·)‖2. By Proposition B.2 and the
A-stability of rn,

| fn,α(it)| ≤ min

{
1
2

(
n!

(2n + 1)!

)2
|t|2n+2−α, 2|t|−α

}

for all t ∈ R \ {0}. Hence

‖ fn,α(i ·)‖2
2 ≤ 2

∫ ∞

0
min

{
1
4

(
n!

(2n + 1)!

)4
|t|4n+5−2α, 4|t|−(2α−1)

}
dt
t

.

By Lemma B.3,

‖ fn,α(i ·)‖2
2 ≤

1
2α− 1

32(n + 1)
4n + 5− 2α

(
n!

2(2n + 1)!

) 2α−1
n+1

.



150 B Estimates for Padé approximants

Now, Lemma B.4 and α ≤ n + 3
2 imply

‖ fn,α(i ·)‖2
2 ≤

16
2α− 1

(
n!

2(2n + 1)!

) 2α−1
n+1
≤ 16

2α− 1
(n + 1)−2α+1,

which proves the first statement.
For the proof of the second statement we write

d
dt

fn,α(it) = −i
r′n(−it)− e−it

(it)α
− iα

rn(−it)− e−it

(it)α+1 =: −ign,α(t)− iαhn,α(t)

(B.5)

for t 6= 0. Note that hn,α(·) = fn,α+1(i ·). Since we have only used α ≤ n + 3
2

to prove the first part of this lemma, we can apply the first part with α + 1 in
place of α to find

‖hn,α‖2 ≤
4√

2α + 1
(n + 1)−α− 1

2 ≤ 8
(2α + 1)3/2 (n + 1)−α+ 1

2 , (B.6)

where the second step is valid since α ∈ ( 1
2 , n + 1

2 ].
As for gn,α, combining Lemma B.1 and Proposition B.2 yields

|gn,α(t)| ≤ min
{(

n!
(2n + 1)!

)2(4
5
|t|2n+2−α + (n + 1)|t|2n+1−α

)
, 3|t|−α

}
dt

for t 6= 0. Let K :=
( n!
(2n+1)!

)2 and L := n + 9
5 . As |t|2n+2−α ≤ |t|2n+1−α if and

only if |t| ≤ 1,

‖gn,α‖2
2 ≤ 2

∫ 1

0
K2L2t4n+2−2α dt + 2

∫ ∞

1
min

{
K2L2t4n+5−2α, 9t−(2α−1)

} dt
t

.

(B.7)

Using Lemma B.4, α ≤ n + 1
2 and n+ 9

5
n+1 ≤

7
5 in sequence yields

K2L2

3(n + 1)
≤

(
n + 9

5
)2

3(n + 1)4n+5 ≤
2

3(n + 1)4α+1 ≤
1

3 · 22α+1(n + 1)2α−1 . (B.8)

In particular, 9K−2L−2 ≥ 9
2 (n+ 1)4α ≥ 1, which in turn allows us to compute

the second integral in (B.7) by means of Lemma B.3. This yields

‖gn,α‖2
L2(R) ≤

2K2L2

4n + 3− 2α
+

18
2α− 1

(
KL
3

) 2α−1
2n+2 4n + 4

4n + 5− 2α
− 2K2L2

4n + 5− 2α
.

Simplifying this expression, using α ∈ ( 1
2 , n + 1

2 ] and (B.8), we can estimate
‖gn,α‖2

2 from above by
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K2L2

3(n + 1)
+

36
2α− 1

(
KL
3

) 2α−1
2n+2

≤ 1
3 · 22α+1 n−2α+1 +

36
2α− 1

(
KL
3

) 2α−1
2n+2

.

For the second term in this inequality, Lemma B.4 and the inequality n + 9
5 ≤(

13
10

)2n+2
, which can easily be verified by induction, yield

(
KL
3

) 1
2n+2

=

(
n!√

3(2n + 1)!

) 1
n+1
(

n +
9
5

) 1
2n+2

≤ 13
10

1
n + 1

.

Hence

‖gn,α‖2
2 ≤

1
3 · 22α+1 (n + 1)−2α+1 +

36
2α− 1

(
13
10

)2α−1
(n + 1)−2α+1

=
132α

102α

(
52α

6 · 132α
+

360
13(2α− 1)

)
(n + 1)−2α+1.

The conclusion follows by combining the estimate above, (B.6) and (B.5). ut
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18. M.Š. Birman and M.Z. Solomjak. Estimates of singular numbers of integral op-
erators. II. Vestnik Leningrad. Univ., 22(13):21–28, 1967.
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Summary

Functional calculus via transference,
double operator integrals

and applications

This thesis is dedicated to the study of several aspects of the theory of func-
tional calculus. This theory considers the combination of an operator A and
a function f (z) of a variable z, resulting in an operator f (A). One then at-
tempts to study properties of the operator f (A) in terms of properties of the
operator A and the function f .

A classical example of a functional calculus is the calculus for diagonal-
izable matrices. This calculus is based on the idea that for a diagonal matrix
D = (dij)

n
i,j=1 and a function f , f (D) should be defined by simply apply-

ing f to the entries of D. In other words, f (D) := ( f (dij))
n
i,j=1. Then, for a

matrix A and an invertible matrix U such that UAU−1 = D has diagonal
form, one defines f (A) := U−1 f (D)U. Despite its relatively straightforward
construction, many nontrivial questions arise when studying this calculus.

Recently, functional calculus theory has also proven useful when study-
ing partial differential equations from a functional analytic perspective. The
functional analytic viewpoint on a large class of partial differential equation
leads to an equation of the form

du
dt

= Au, u(0) = x (.1)

on an infinite-dimensional space X. Formally, (.1) has the solution u(t) =
etAx. Functional calculus theory allows one to make this formal intuition
precise and provides a convenient framework for studying the differential
operator A in (.1) as well as operators related to A.

In this thesis both the functional calculus for diagonalizable matrices and
the calculus for the operator A in (.1) are studied. Using transference princi-
ples and double operator integrals, we link the theory of functional calculus
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to the area of harmonic analysis. Then we use theorems from harmonic anal-
ysis to deduce new results in functional calculus theory.

We also apply functional calculus theory to a problem in the theory of
the numerical approximation of the solutions of (.1). Since the solution etAx
of (.1) is usually hard to deal with analytically, one tries to approximate it
by simpler expressions, for instance by rn(A)x for (rn)∞

n=1 a sequence of ra-
tional functions. One would then like to know whether this approximation
converges, and functional calculus theory is a useful tool with which one can
deal with this question.

A more detailed description of the contents of this thesis is as follows.
In Part I we treat some of the basic tools which will be used throughout

the thesis. These include: the basics of the theory of functional calculus, some
function space theory and preliminaries on vector-valued harmonic analysis,
as well as the transference principles which link these three topics together.

In Part II we study the functional calculus theory associated with (.1). We
obtain new links between harmonic analysis and the functional calculus for
the operator A in (.1). In Chapter 3 this allows us to deduce properties of
f (A) for a wide class of functions f . This class of functions depends heavily
on geometrical aspects of the underlying space, and therefore so do the re-
sults which we obtain. By contrast, in Chapter 4 we study f (A) for a class of
functions f which does not depend on geometrical properties of the under-
lying space. However, here the results are only valid when considering (.1)
for initial values in so-called interpolation spaces.

In Part III we study the functional calculus for diagonalizable matrices.
For diagonalizable matrices A and B we determine how properties of f (B)−
f (A) relate to properties of B− A. In particular, we study the inequality

‖ f (B)− f (A)‖ ≤ C ‖B− A‖

for various norms ‖·‖ and functions f , where the constant C is independent
of A and B. Again we relate a question in functional calculus theory to har-
monic analysis, this time using the technique of double operator integration.

In Part IV we apply functional calculus theory to the study of numerical
approximation methods for the solutions to (.1). In particular, we consider a
recently proposed numerical approximation method for (.1). We show that
this approximation method converges for a large set of initial values and de-
termine the corresponding rates of convergence. Then, using the theory from
earlier chapters, we improve these rates of convergence for specific classes of
operators.

Finally, two appendices contain results which are used in Chapters 3 and
6. These results are of a technical nature and have been placed in appendices
to improve the readability of the main text.



Samenvatting

Functional calculus via transference,
double operator integrals

and applications

Dit proefschrift is gewijd aan de studie van verscheidene aspecten van de
theorie van functionaalcalculus. Deze theorie behandelt de combinatie van
een operator A en een functie f (z) van een variabele z, met als resultaat een
operator f (A). Men probeert dan eigenschappen van de operator f (A) te
bestuderen in termen van eigenschappen van de operator A en de functie f .

Een klassiek voorbeeld van een functionaalcalculus is de calculus voor
diagonalizeerbare matrices. Deze calculus is gebaseerd op het idee dat, voor
een diagonaalmatrix D = (dij)

n
i,j=1 en een functie f , f (D) gedefinieerd dient

te worden door simpelweg f toe te passen op de coëfficienten van D. Of-
tewel, f (D) := ( f (dij))

n
i,j=1. Voor een matrix A en een inverteerbare matrix

U zodanig dat UAU−1 = D een diagonaalmatrix is, definieert men dan
f (A) := U−1 f (D)U. Ondanks de relatieve eenvoud van deze constructie
komen er veel niet-triviale vragen naar voren bij het bestuderen van deze
calculus.

Recentelijk heeft functionaalcalculus zich ook bewezen als een nuttig
gereedschap bij het bestuderen van partiële differentiaalvergelijkingen van-
uit een functionaalanalytisch perspectief. De functionaalanalytische aanpak
van een grote klasse partiële differentiaalvergelijkingen leidt tot een ver-
gelijking van de vorm

du
dt

= Au, u(0) = x (.2)

op een oneindig-dimensionale ruimte X. Formeel heeft (.2) als oplossing
u(t) = etAx. De theorie van functionaalcalculus stelt ons in staat om deze
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formele intuı̈tie precies te maken, en vormt ook een handig kader waarbin-
nen de operator A in (.2), alsmede operatoren gerelateerd aan A, bestudeerd
kan worden.

In dit proefschrift worden zowel de functionaalcalculus voor diagonali-
zeerbare matrices als de calculus voor de operator A in (.2) bestudeerd.
Met behulp van zogenaamde ‘transference principles’ en dubbele operator-
integralen koppelen we de theorie van functionaalcalculus aan de theorie
van harmonische analyse. Vervolgens gebruiken we stellingen uit de harmo-
nische analyse om nieuwe resultaten in de theorie van functionaalcalculus af
te leiden.

We passen functionaalcalculus ook toe op een probleem in de theorie van
de numerieke benadering van de oplossingen van (.2). Aangezien het over
het algemeen moeilijk is om de oplossing etAx van (.2) analytisch te behan-
delen probeert men deze oplossing vaak te benaderen met simpelere groot-
heden, bijvoorbeeld met rn(A)x voor (rn)∞

n=1 een rij van rationale functies.
Het is dan van belang om te weten of deze benadering convergeert, en de
theorie van functionaalcalculus is een nuttig gereedschap voor het beant-
woorden van deze vraag.

Een meer gedetailleerde beschrijving van de inhoud van dit proefschrift
is als volgt.

In Deel I behandelen we enkele van de basisbegrippen die in de rest van
het proefschrift voorkomen. Hieronder vallen: de basis van de theorie van
functionaalcalculus, aspecten van de theorie van functieruimtes en de begin-
selen van de theorie van vectorwaardige harmonische analyse, alsmede de
transference principles die deze drie gebieden met elkaar verbinden.

In Deel II bestuderen we de functionaalcalculus behorende bij (.2). We
leiden nieuwe connecties af tussen harmonische analyse en de functionaal-
calculus voor de operator A in (.2). In Hoofdstuk 3 stelt dit ons in staat om
eigenschappen van f (A) af te leiden voor een grote klasse functies f . Deze
klassie van functies is sterk afhankelijk van meetkundige aspecten van de on-
derliggende ruimte, en daarmee zijn de verkregen resultaten dat ook. Daar-
entegen bestuderen we in Hoofdstuk 4 f (A) voor een klasse functies f die
niet afhangt van de onderliggende ruimte. Maar de betreffende resultaten
zijn alleen van toepassing op beginwaarden van (.2) in zogenaamde interpo-
latieruimtes.

In Deel III bestuderen we de functionaalcalculus voor diagonalizeerbare
matrices. Voor diagonalizeerbare matrices A en B bepalen we hoe eigen-
schappen van f (B) − f (A) afhangen van eigenschappen van B − A. In het
bijzonder bestuderen we de ongelijkheid

‖ f (B)− f (A)‖ ≤ C ‖B− A‖

voor verscheidene normen ‖·‖ en functies f , waarbij de constante C on-
afhankelijk is van A en B. Wederom brengen we een probleem in de functio-
naalcalculus in verband met de harmonische analyse, ditmaal met behulp
van de techniek van dubbele operatorintegratie.
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In Deel IV passen we de theorie van functionaalcalculus toe op de studie
van numerieke benaderingsmethoden voor de oplossingen van (.2). In het
bijzonder beschouwen we een recentelijk voorgestelde numerieke benader-
ingsmethode voor (.2). We laten zien dat deze benaderingsmethode con-
vergeert voor een grote klasse beginvoorwaarden, en we bepalen de bijbe-
horende convergentiesnelheden. Dan verbeteren we deze convergentiesnel-
heden voor specifieke klasses operatoren, gebruikmakend van de theorie uit
eerdere hoofdstukken.

Tenslotte bevatten twee appendices resultaten die gebruikt worden in
Hoofdstukken 3 en 6. Deze resultaten zijn van een technische aard en zijn in
appendices geplaatst om de leesbaarheid van de hoofdtekst te bevorderen.
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