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Introduction

1.1. Background
Nowadays there is a great desire to design highly augmented rotorcraft with tight stabilisation of all com-
manded states using robust control systems to meet high performance criteria [36]. This can be regarded
as a tedious task, because of the higher-order rotor dynamics by which the rotorcraft is associated with [10–
12, 18, 55]. The aforementioned can be regarded as the main point of departure for this research. The ne-
cessity of conducting research regarding the effects of higher-order rotor dynamics on control design does
find its roots in linear control design. In [3, 9, 10, 40, 44] it was found that rotor dynamics is of great con-
cern when considering high-gain and high-bandwidth linear control systems as they yield a limitation on
the allowable design space. In [10] it was found that lead-lag dynamics did have a dominant effect on body
rate gain limitations, whereas flapping dynamics did affect body attitude feedback gains. In this research a
hingeless rotorcraft with a soft-in-plane rotor system will be considered. In [40] it was mentioned that soft-
in-plane rotors are susceptible to inadequate designed linear feedback controllers as they may can trigger the
air-resonance mode. This shows that higher-order rotor dynamics should not be overlooked when design-
ing linear control systems. Incorporating linear control strategies can be favourable, because of the ease by
which these controllers can be analysed and due to the well-developed linear control methods [53]. How-
ever, this does come at cost of depending on local linearisation of the system and being unable of adequately
capturing non-linearities in system dynamics or control action [57]. With the advance of control design, non-
linear control strategies have become available. The Lyapunov-based and feedback-linearisation method can
be regarded as the two most attractive non-linear control strategies available [1]. With the existence of such
control strategies it is a natural choice to investigate whether these are capable of circumventing some of the
shortcomings of linear controllers. Lyapunov-based controllers are of great interest as these are based upon
Lyapunov stability concepts such that stability can be easily proven [21, 28, 29].

In this research the main focus shall be on the rate-command/attitude-hold (RCAH) mode, for which
the stabilising control law is established by means of IBS, making it less reliant on model knowledge [18, 46,
47, 55]. Such a control strategy would require a first-order Taylor series of the angular accelerations and the
assumption of TSS to diminish dependency on system dynamics. In [55] it is actually found that the TSS con-
dition is violated, because system dynamics cannot be neglected. In particular the coupling between the an-
gular body dynamics and flapping dynamics is significant. In order to circumvent this problem, the method of
residualised dynamics [48] was incorporated by van der Goot [55] to diminish state-dependency and increase
control-dependency. This would yield a modified control effectiveness, which was substantially greater than
the control effectiveness without modification. However, a counter measure was required to account for the
difference by which the IBS control law was established, which shall be designated as the idealised model,
and the actual rotorcraft model. The problem lies therein that the feedback of the actuator measurements
does see the idealised rotorcraft model and the angular acceleration measurements come from the actual
rotorcraft model. Both are needed in the IBS control law, but do come from different rotorcraft models. This
is problematic, because adequate synchronisation of the actuator and angular acceleration measurement is
needed to assure adequate closed-loop stability [24, 53, 55, 57]. In [57] it was found that closed-loop sta-
bility cannot be assured when actuator and state derivative measurements are not well-synchronised with
each other. To be more specific, when the angular acceleration measurement is delayed with respect to the
actuator measurement, closed-loop stability will be significantly harmed [57]. This is the main point of con-
cern when establishing the IBS control law using the method of residualised dynamics, because it yields an
idealised rotorcraft model for which rotor dynamics is (partially) not present. This means that the angular
acceleration measurements lag behind the actuator measurements, which can harm closed-loop stability. A
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2 1. Introduction

rotor synchronisation filter would be required to assure that the difference between the idealised and actual
rotorcraft model is compensated for. This can be regarded as the adaptive nature of the controller, because
it changes the feedback of the actuator measurements. In this research "adaptive" does therefore refer to the
the synchronisation filter. This filter accounts for the delaying nature of rotor dynamics. The main purpose of
this filter is to delay the actuator measurements by the same amount by which the angular acceleration mea-
surements are being delayed with due to rotor dynamics and in particular lead-lag and flapping dynamics.

1.2. Research Objectives and Research Questions
In order to perform research, it is deemed necessary to present a main research question and a set of sub-
research questions related to the research topic. The research will be conducted on an existing hingeless
rotorcraft model from van der Goot [55], therefore the questions provided below are related to this model.

• (MRQ 1) What are the effects of rotor dynamics, and in particular lead-lag and flapping dynamics, on
(command-filtered) incremental adaptive backstepping regarding controller robustness, performance
and construction when using a hingeless rotorcraft model?

– (SRQ 1.1) How robust is (command-filtered) incremental adaptive backstepping with and without
the inclusion of lead-lag dynamics to the rotor synchronisation filter?

– (SRQ 1.2) What are the limitations and/or implications on the construction of a (command-filtered)
incremental adaptive backstepping controller due to the inclusion of lead-lag dynamics to the ro-
tor synchronisation filter?

– (SRQ 1.3) Does the inclusion of lead-lag dynamics affect the assumptions used to enable incre-
mental backstepping?

• (MRQ 2) What equivalent rotor blade model shall be incorporated for mimicking elastic rotor blade
behaviour of a hingeless rotor?

– (SRQ 2.2) Is it deemed necessary to account for body-lag coupling to adequately mimic the open-
loop frequency response of the angular body rates?

• (MRQ 3) What are the required rotorcraft performance criteria for aggressive agility given a hingeless
rotorcraft for near hover and forward flight?

The main research objective of this thesis is:

“ Determining the effects of rotor dynamics, and in particular lead-lag and flapping dynamics, on the robust-
ness, performance and construction of a (command-filtered) incremental adaptive backstepping controller by
analysing rotorcraft behaviour using predefined ADS-33E-PRF performance criteria.”.

Answer to MRQ 1 shall be provided in the conclusion of this thesis. Moreover, answer to MRQ 2 shall be
provided in Chapter 2 and answer to MRQ 3 shall be given in Chapter 5. It should also be noted that the
main focus shall not be on command-filtered incremental adaptive backstepping, but rather on incremental
adaptive backstepping. The main rotorcraft model that shall be analysed, incorporates the former control
strategy, therefore it is also necessary to account for the command-filters. On the other hand, the adaptive
nature by which signal synchronisation is achieved will be of prime concern.

1.3. Thesis outline
This report consists of two parts, in which Part I does present a scientific paper. Moreover, Part II provides
fundamental background information about the rotorcraft simulation models used as well as non-linear con-
trol design. This part does consists of a set of chapters, which shall be discussed below. In Chapter 2 the main
BO-105 helicopter simulation model is provided along with a set of simplified rotorcraft models. The theo-
retical basis for Lyapunov-based control design is provided in Chapter 3. Methods for establishing a modified
rotorcraft model from which the controller can be established will be considered in Chapter 4. In Chapter 5
IBS will be applied to the simplified rotorcraft models from Chapter 2. The control modes used by the main
rotorcraft model shall be introduced in Chapter 6, with a main focus on the angular rate controller of the
rotorcraft. Lastly, the conclusions and recommendations will be provided in chapter 7.
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Understanding the Effects of Rotor Dynamics on Incremental
Backstepping Control Design

M.D.C. Arons ∗

Delft University of Technology, 2629HS Delft, The Netherlands

This paper provides fundamental understanding on the effects of rotor dynamics, and in
particular flapping and lead-lag dynamics, on incremental backstepping (IBS) control design,
performance and robustness. This particular control strategy is being used by the angular rate
controller of a rotorcraft. Accounting for rotor dynamics in IBS control design is found to be
of great importance to assure that the fundamental assumption pertaining time-scale separa-
tion (TSS) is not being violated. This can be realised by making use of an idealised rotorcraft
model, which is being established bymeans of the method of residualised dynamics that assumes
steady-state condition of the rotor dynamics. However, this will yield a difference with respect
to the actual rotorcraft model, which needs to be accounted for in control design. This can be
achieved by means of a so-called rotor synchronisation filter, which assures synchronisation of
actuator and angular acceleration measurements. This is needed, because the former does see
the idealised rotorcraft model, whereas the latter is obtained from the actual rotorcraft model.
This paper will show that the method of residualised dynamics must be applied to flapping
dynamics in order to have a well-established IBS control law that is less likely of violating the
TSS condition. This is due to the fact that it sufficiently diminishes state-dependency, while
substantially increases control-dependency in the first-order Taylor series for the angular ac-
celerations. The aforementioned does not hold for lead-lag dynamics, which was also apparent
from the insufficient change in controller performance. This shows that the IBS controller with
synchronisation filter is robust to uncertainties in lead-lag dynamics.

Nomenclature
Subscripts
CL = closed-loop
com = commanded
CP and cp = control plane
des = desired
ideal = idealised
interm = intermediate
F = flap
filt = filter
FL = flap-lag
max = maximum
min = minimum
ref = reference
res = residualised
SP and sp = shaft plane
SS = steady-state
sync = synchronisation

I. Introduction

In this research the main focus shall be on the angular rate controller, for which the stabilising control law is established
by means of IBS, making it less reliant on model knowledge [1–4]. IBS requires a first-order Taylor series of the

∗Graduate student, Control and Simulation Division, Faculty of Aerospace Engineering, Kluyverweg 1, 2629HS Delft, the Netherlands
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angular accelerations and the assumption of TSS to diminish dependency on system dynamics. In [4] it is actually
found that the TSS condition is violated, because system dynamics cannot be neglected. In particular the coupling
between the angular body dynamics and flapping dynamics is significant. In order to account for this problem, the
method of residualised dynamics [5] was incorporated by van der Goot [3] to diminish state-dependency and increase
control-dependency. This would yield a modified control effectiveness matrix, which was substantially greater than the
control effectiveness matrix from the original rotorcraft model. However, a counter measure was required to account for
the difference by which the IBS control law was established, which shall be designated as the idealised model, and the
actual rotorcraft model. The problem lies therein that the feedback of the actuator measurements does see the idealised
rotorcraft model, whereas the angular acceleration measurements come from the actual rotorcraft model. Both are
needed in the IBS control law, but do come from different rotorcraft models. This is problematic, because adequate
synchronisation of the actuator and angular acceleration measurement is needed to assure closed-loop stability [3, 6–8].
In [8] it was found that closed-loop stability cannot be assured when actuator and state derivative measurements are not
well-synchronised with each other. To be more specific, when the angular acceleration measurement is delayed with
respect to the actuator measurement, closed-loop stability will be significantly harmed [8]. This is exactly the main
point of concern when establishing the IBS control law using the method of residualised dynamics, because it yields an
idealised rotorcraft model for which rotor dynamics is (partially) not present. This means that angular acceleration
measurements will be lagging behind actuator measurements, which can harm closed-loop stability.

In this paper the main focus shall be on understanding the effects of flapping and lead-lag dynamics on IBS control
design and robustness. Although, research from van der Goot [3] has shown that a modified control effectiveness and
rotor synchronisation filter are required to enable a well-defined IBS controller for controlling the angular rates of the
rotorcraft, it is still not yet clear how it affects closed-loop stability and controller robustness. On top of this, van der
Goot [3] did also not consider the effects of lead-lag dynamics on IBS control design and robustness. It was therefore a
natural choice to consider the effects of lead-lag and flapping dynamics on IBS control design and robustness in more
depth. First, in Section II the rotorcraft models used in the research will be provided. There after, in Section III the main
crux in control design for rotorcraft control is shortly discussed, where after information about the IBS controller with
synchronisation filter is provided. In Section IV the procedure for identifying the effects of rotor dynamics on IBS is
outlined. In Section V and VI the results of the analysis are provided for simplified rotorcraft models from Section II.
Next to this, in Section VII results of the analysis on the main simulation model are provided. Lastly, in Section VIII a
conclusion is given.

II. Rotorcraft models
To assess the effects of rotor dynamics on IBS control design and performance, it will be necessary to establish a

well-defined rotorcraft model. In this section a set of simplified first-order body-flap (BF) and body-flap-lag (BFL)
models shall be introduced. These models represent the first few instants during the transition from hover to forward flight
without building up horizontal speed. First, a first-order BF model shall be introduced, which considers longitudinal
flapping and angular body dynamics. There after, four first-order BFL models shall be introduced. These models are
established by combining the BFL model proposed by Pavel [9] with the BFL model from Tod et al. [10]. Lastly, the
main MBB Bo 105 simulation model from van der Goot [3] shall also be introduced. For a more in-depth explanation
of this model, the reader is referred to the work from van der Goot [3] and Simplício et al. [2].

A. First-order body-flap model in hover condition
The first model to be considered is the 2-DOF longitudinal BF model in hover condition with first-order flapping

dynamics. The model is associated with a dimensionless parameter that indicates disc-tilt quickness, namely gV (= 16
W ),

with W being the lock number. A large value of gV indicates slow disc-tilt motion. In Eq. 1 the first-order flap model is
provided, wherein V12 represents the longitudinal disc tilt angle [9]. The expression for ¤@ is provided in Eq. 2, which
depends on  lon that is equal to ( #2  V + )ℎ)/�HH ()=,) [9]. The numerator can be identified as the moment exerted
on the rotorcraft body per unit flapping angle "V , which depends on flap centre-spring rotor stiffness  V , number of
rotor blades # , weight, and height ℎ of rotorcraft hub above center of gravity [9]. Body and flapping dynamics can be
identified from Fig. 1, wherein the angle between the disc and shaft plane is V12 from Eq. 1 (this angle is not identical
to the one provided in Fig. 1, which shows that counterclockwise cyclic control input is associated with clockwise
disc-tilt motion). Moreover, Eq. 2 does also directly depend on \1B, which has been added to the original expression
given in [9]. The improtance of the artificial control effectiveness coefficient U�@ shall be considered later on.
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¤V12 = − Ω
gV
V12 + 16@

WgV
− Ω
gV
\1B (1)

¤@ = −
#
2  V + )ℎ
�HH

V12 + U�@ lon\1B

with 0 ≤ U�@ ≤ 1
(2)

Fig. 1 Rotorcraft transitioning from hover to forward flight [9].

B. First-order body-flap(-lag) rotorcraft models specified in hover condition
Next, a set of BF(L) models shall be introduced, which have been established by combining the BFL model from Tod

et al. [10] with the BFL model from Pavel [9]. To be more specific, the BFL model from Pavel [9] has been used with
corrections obtained from Tod et al. [10]. The BFL model from Pavel [9] does not account for the coupling between the
angular body dynamics and lead-lag dynamics. This means that the body-lag coupling from Tod et al. [10] has been
incorporated to account for this discrepancy. The following body-lag term was incorporated: L?,Z (=[�?,Z12 �?,Z1B ]).
Moreover, the control-depended term for lead-lag dynamics NZ (= [�Z12 �Z1B ]) ) was also taken from Tod et al. [10],
because it accounts for more main rotor and individual blade parameters, yielding a better estimate of this term. Only
lateral body dynamics shall be considered, because the model from Tod et al. [10] does not account for longitudinal body
dynamics. Moreover, lead-lag dynamics can also be easier identified from the roll-rate-to-lateral-cyclic transfer function
[11, 12]. Lastly, the first-order BFL model from Tod et al. [10] was not considered as main BFL model, because it did
not account for flap-roll LV,? and lag-roll LZ , ? coupling. The following BF(L) models will be considered:

I 5-DOF BFL model given in [9] with L?,Z and NZ given in [10].
II 3-DOF BF-model given in [9].
III 5-DOF BFL-model given in [9] with NZ given in [10].
IV 5-DOF BFL model given in [9] with L?,Z and NZ given in [10] (LV,Z , LZ ,V , L?,Z , NZ being enhanced).

The above mentioned numbering shall be used for identifying the models used in an analysis provided in Section VI.
Model III does not account for body-lag coupling (L?,Z = 01G2). Model IV was established by multiplying the original
value of coning angle V0 with 1.25 as it would also scale LV,Z , LZ ,V , L?,Z and NZ with that factor. Most importantly
L?,V does not change when doing the aforementioned, which implies that L?,Z becomes relatively greater than this
term. Models I,III and IV incorporate two regressive flapping states V12 and V1B , two regressive lead-lag states Z1B and
Z12 and lateral body states ? and q. The flapping states can be identified as the longitudinal and lateral disc-tilt motion
respectively. Moreover, Z1B and Z12 indicate lateral and longitudinal shift of the rotor center of gravity respectively.

The flap-lag (FL) EOM are provided in Eq. 3 with corresponding matrices in Eq. 4 [9]. After solving Eq. 3,
corrective terms will replace the original terms in the EOM. In other words, �?,Z12 , �?,Z1B , �Z12 and �Z1B obtained from
[10] shall replace the original coupling and control-depended terms. The expression for roll rate is provided in Eq. 5
[9], with  lat being equal to ( #2  V + )ℎ)/�GG ()=,). Roll angle can be obtained by integrating roll rate.

I#'

[ ¤#
¤'

]
= ΩQ#'

[
#

'

]
+ΩL#', with # = [V12 , V1B]) and ' = [Z12 , Z1B]) . (3)
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¤? = −
#
2  V + )ℎ
�GG

V1B (5)

Terms �?,Z12 , �?,Z1B , �Z12 and �Z1B given in [10] are a function of: number of blades # , rotor radius ', blade root
eccentricity 4bl, lock number W, rotor angular velocity Ω, coning angle V0 (=Vss), rotor blade static moment <B, rotor
blade inertia �bl, rotor blade mass <bl, lag damper stiffness  Z , lead-lag damping coefficient �Z , roll inertia �GG , vehicle
mass " and height ℎ of rotorcraft hub above center of gravity. More in-depth information regarding the corrective terms
can be found in [10]. Next to this, the matrices from Eq. 4 depend on lock number, coning angle, lead-lag damping
coefficient, non-dimensional lagging frequency _Z , non-dimensional flapping frequency _V , non-dimensional inflow
velocity _8 and drag coefficient ��1 (from �3 = �30 + �31U

2). Lastly, ?̄ and @̄ are equal to ?/Ω and @/Ω respectively.
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C. Main rotorcraft simulation model of the MBB Bo 105
The main rotorcraft simulation model is a 22-DOF non-linear simulation model including 6-DOF body motion,

6-DOF first and second order flapping dynamics, 6-DOF first and second order lead-lag dynamics, 3-DOF Pitt-Peters
inflow and 1-DOF quasi-dynamic tail rotor inflow. The 6-DOF lead-lag model was obtained from previous work from
Nguyen [13], whereas the remaining part of the simulation model originates from previous work from van der Goot [3].
The simulation model can be divided into a main rotor, tail rotor, fuselage and empennage. In this section, the main
focus shall be on the main rotor. For a more in-depth explanation of the simulation model, the reader is referred to the
work from van der Goot [3] and Simplício et al. [2].

The main rotor model includes a second-order flapping model, modelled up to the first harmonic of the rotor
frequency, with coning V0, regressive flap and advancing flap modes V1B and V12 . Flapping angles are defined as the
angle between shaft and disc plane. The second-order lead-lag model is associated with lead-lag coning Z0, regressive
lag and advancing lag states Z1B and Z12 . The inflow model is a first-order Pitt-Peters unsteady model, modelled up to
the first harmonic of the rotor frequency. Main rotor forces and moments can be calculated using the approach outlined
in [14]. Hub roll and pitch moments given in Eq. 6 and Eq. 7 are modelled as center-spring moments.

!ℎ = −#2  VV1B (6)

"ℎ = −#2  VV12 (7)

In this research, the main focus is on the angular accelerations of the vehicle, therefore it is of prime concern to have
fundamental understanding of the relation between the moments introduced at the hub, as given in Eq. 6 and Eq. 7,
and the angular accelerations. In Eq. 8 the expression for the rotational dynamics is provided, wherein the angular
accelerations are governed by the applied hub moments and gyroscopic precession [14]. The resistance in control action
of the rotorcraft is indicated by P, being the moment of inertia tensor.

¤8 = P−1 (S − 8 × P8) (8)
From Eq. 8 it can be observed that angular accelerations depend on the total moments S introduced. For roll and

pitch accelerations this would mean that dependency on cyclic flapping angles is significant. To be more specific, roll
and pitch accelerations would be more governed by cyclic flapping angles than by cyclic control inputs [3]. In the next
section, it will be explained that this is the main problem in control design for rotorcraft control. On the other hand,
lead-lag dynamics is not accounted for when establishing the forces and moments due to the main rotor, therefore the
coupling between angular body dynamics and lead-lag dynamics will be absent. The total state vector is given in Eq. 9.

^ = [D E F︸︷︷︸
\

G H I︸︷︷︸
V

? @ A︸︷︷︸
8

q \ k︸︷︷︸
)

_0,mr _1s _1c _0,tr︸                  ︷︷                  ︸
,

V0 V1s V1c︸       ︷︷       ︸
#

¤V0 ¤V1s ¤V1c︸       ︷︷       ︸
¤#

Z0 Z1c Z1s︸      ︷︷      ︸
'

¤Z0 ¤Z1c ¤Z1s︸      ︷︷      ︸
¤'

]) (9)

The body-fixed linear velocity and position in the North-East-Down (NED) reference frame are indicated by \ and
V respectively. Body angular rates and attitude angles are given by 8 and ) respectively. Next to this, , contains the
non-dimensional inflow components. Vectors # and ¤# contain the flapping angles and flapping derivatives respectively.
Lastly, ' and ¤' are the lead-lag angles and associated derivatives. When linearising the 22-DOF simulation model, the
state-space system given in Eq. 10 can be identified. It can be considered a Linear Time-Variant (LTV) system. The
BFL model from Nguyen [13] did incorporate a quasi-dynamic inflow model, therefore LZ _12 , LZ _1B , L ¤Z _12

and L ¤Z _1B
are equal to 03G1. Moreover, since the current implementation did not take into account the effect of lead-lag dynamics
on forces and moments, coupling terms Ll,Z and Ll, ¤Z must be equal to 03G3. On the other hand, the flap-lag and
lag-flap (LF) coupling terms are present in the model. The control vector of the rotorcraft is also given in Eq. 10, which
consists of main rotor collective \0,mr, longitudinal cyclic \1B , lateral cyclic \12 and tail rotor collective \0,tr.

¤̂ =



L+ ,+ L+ ,% L+ ,l L+ ,\ L+ ,_ L+ ,V L+ , ¤V L+ ,Z L+ , ¤Z
L%,+ L%,% L%,l L%,\ L%,_ L%,V L%, ¤V L%,Z L%, ¤Z
Ll,+ Ll,% Ll,l Ll,\ Ll,_ Ll,V Ll, ¤V Ll,Z Ll, ¤Z
L\,+ L\,% L\,l L\, \ L\,_ L\,V L\, ¤V L\,Z L\, ¤Z
L_,+ L_,% L_,l L_,\ L_,_ L_,V L_, ¤V L_,Z L_, ¤Z
LV,+ LV,% LV,l LV,\ LV,_ LV,V LV, ¤V LV,Z LV, ¤Z
L ¤V,+ L ¤V,% L ¤V,l L ¤V,\ L ¤V,_ L ¤V,V L ¤V, ¤V L ¤V,Z L ¤V, ¤Z
LZ ,+ LZ ,% LZ ,l LZ , \ LZ ,_ LZ ,V LZ , ¤V LZ ,Z LZ , ¤Z
L ¤Z ,+ L ¤Z ,% L ¤Z ,l L ¤Z , \ L ¤Z ,_ L ¤Z ,V L ¤Z , ¤V L ¤Z ,Z L ¤Z , ¤Z



^ +



N+
N%
Nl
N\
N_
NV
N ¤V
NZ
N ¤Z



[, with [ =


\0,mr
\1B
\12
\0,tr


(10)
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III. Controlling rotorcraft angular rates using incremental backstepping
In this research the focus shall be on establishing a well-defined angular rate controller using IBS. In order to realise

this, it is necessary to determine which methods are available to define a modified control effectiveness such that the
TSS condition is less likely violated. First, it will be necessary to shortly touch upon the main crux in control design for
rotorcraft control. Next, the methods available for obtaining a modified control effectiveness matrix will be considered.
Lastly, the IBS and command filtered IBS (CFIBS) control laws will be provided respectively.

A. Main crux in control design for rotorcraft control
First, the main crux in control design for rotorcraft control shall be considered, which does has its roots in establishing

the stabilising control law for the angular rate subsystem. Since the angular rate dynamics of a rotorcraft does depend
upon complex aerodynamics, it is a natural choice to consider IBS [1, 3, 4]. A condition to have a well-established IBS
control law that is robust to uncertainties in system dynamics, is TSS. This condition is violated when establishing the
IBS control law for ? and @ and shall be demonstrated below. The angular accelerations ¤? and ¤@ ( ¤8?@) can be written as

¤8?@ = Ll?@ (^)+Nl?@ (^,[), with Ll?@ (^) = P−1 [S (^) − 8 × P8] and Nl?@ (^,[) = P−1 [S (^,[)] , (11)

wherein Ll?@ (^) and Nl?@ (^,[) indicate state- and control-dependency of the angular accelerations respectively
[1]. A Taylor series expansion around a previous point C0 can be considered for ¤8?@ , which is provided in Eq. 12.

¤8?@ = ¤8?@,0 +
(
mFl?@ (^)

mX +
mHl?@ (X,U)

mX

)
︸                                    ︷︷                                    ︸

Fl?@ ,0

����� X=X0
U=U0

(X − X0) +
mHl?@ (X,U)

mU︸             ︷︷             ︸
Hl?@ ,0

����� X=X0
U=U0

(U − U0) + O
(
(X − X0)2 , (U − U0)2

)
(12)

The previous expression can be written into the following simplified form

¤8?@ = ¤l?@,0 + Ll?@ ,0ΔX + Nl?@ ,0ΔU + O
(
ΔX2,ΔU2

)
. (13)

The Taylor series expansion from Eq. 13 can be simplified by assuming TSS, wherein Δ^ is significantly smaller
than Δ[ and state derivative Δ ¤̂ [1, 15–17]. This would imply that Δ^ and higher-order terms can be omitted from Eq.
13 [1, 15–17], yielding the following first-order Taylor series expression

¤8?@ = ¤l?@,0 + Nl?@ ,0ΔU. (14)

Arriving at Eq. 14 is important when establishing the IBS control law. If the TSS condition does not hold, increments
in system dynamics cannot be neglected. Based on Eq. 11, Eq. 8, Eq. 6 and Eq. 7, it can be stated that there will be
large body-flap coupling terms �?,V1B and �@,V12 . From this it follows that Ll?@ ,0ΔX > Nl?@ ,0ΔU, yielding violation
of the TSS condition. This is the main crux in control design for rotorcraft control and was also pointed out in [4].

B. Control strategies for establishing a well-defined IBS control law for the angular rate subsystem
The method of residualised dynamics incorporated by van der Goot [3] and flapping angle equivalence method

are interesting methods for establishing the control effectiveness of the angular rate subsystem. Both methods opt
for defining a modified control effectiveness matrix, such that the TSS condition is less likely violated. The method
introduced by Howitt [4] and the method from Simplício [1] are less attractive, because they require measurements of
flapping angles and body moments respectively, which cannot be (accurately) measured.

First, the method of residualised dynamics will be considered, wherein the objective is to establish an idealised
model associated with a diminished system and enhanced input matrix. The method does set the derivatives related to
the fast modes equal to zero, which implies that these states are continuously at steady-state [5]. The method can be
considered for all rotor dynamics. For a BF model with second-order flapping dynamics, this means that ¤# and ¥# are
03G1, leaving only steady-state flapping angles #BB. The differential equation for flapping dynamics is

¥# = L ¤V,-res^res + L ¤V,V# + L ¤V, ¤V ¤# + N ¤V[, (15)
wherein ^res =

[
8)?@ , ...

]) is the residualised state vector, which contains all states except for the flapping states
and flapping state derivatives. Setting ¥# = ¤# = 0 and rewriting Eq. 15 yields

#BB = −L−1
¤V,VL ¤V,-res^res − L−1

¤V,VN ¤V[. (16)
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This means that the idealised model, using the previous expression, can be written as follows

¤̂ res =
{
L-res ,-res − L-res ,VL

−1
¤V,VL ¤V,-res︸                                 ︷︷                                 ︸

diminished system matrix

}
^res +

{
NXres − LXres ,VL

−1
¤V,VN ¤V︸                        ︷︷                        ︸

M'

}
[. (17)

It should be noted that M' can be identified as the residualised control effectiveness matrix. From this, the control
effectiveness matrix for ¤8?@ can be isolated, namely Ml?@ ,'. The method does diminish state-dependency and enhances
control-dependency [5]. The validity of the method of residualised dynamics greatly depends on whether the idealised
and actual rotorcraft model do have the same natural response (modes of motion/transfer function). A countermeasure
is needed to compensate for the difference in idealised and actual rotorcraft model, which shall be discussed later on.

Next, the flapping angle equivalence method shall be considered, which can be regarded a novel approach for
establishing Ml?@ ,'. The approach does purely account for the fact that ¤l?@ is primarily governed by cyclic flapping
angles, which is generally true [3, 4, 18]. Moreover, it includes a transformation, that transforms cyclic flapping angles
into an equivalent form wherein the cyclic control inputs explicitly appear. Rotorcraft models introduced in Section II
incorporate flapping models for which the flapping angles are defined between the disc plane and shaft plane. These
angles are provided in Fig. 2, wherein reference plane can be identified as the shaft plane and the tip-path plane (TPP) as
disc plane. The flapping angles with respect to the shaft plane (sp) can be transformed into flapping angles with respect
to the control plane (cp), also known as the no-feathering plane (NFP), and cyclic control inputs. The longitudinal and
lateral flapping angle equivalence are provided in Eq. 18 and Eq. 19 respectively [19].

V12,B? = V12,2? − \1B , (18)

V1B,B? = V1B,2? + \12 . (19)

This transformation holds for a positive Fourier series when transforming from the rotating to the non-rotating
frame of reference when establishing the flapping EOM (this is equivalent to the Multiblade Coordinate Transformation
(MCT)) [19]. The cyclic flapping angles and control inputs can be written into the compact form given below.

#(% = #�% + )�� , with )�� = [−\1B \12]) #�% = [V12 V1B])2> and #(% = [V12 V1B])B? . (20)

(a) Longitudinal flapping angle equivalence. (b) Lateral flapping angle equivalence.
Fig. 2 Equivalence between longitudinal and lateral flapping angles with respect to the shaft plane and control plane [19].

In the first expression of Eq. 21 the first-order Taylor series for the angular accelerations is provided, which holds
for a BF model for which the flapping angles are defined with respect to the shaft plane. In the first expression it can
be observed that ¤8?@ does depend on the flapping angles with respect to the shaft plane. In the second expression, it
has been transformed into an equivalent form, wherein the cyclic control inputs and flapping angles with respect to
the control plane explicitly appear. Moreover, the last term from Eq. 21 is neglected, because Ll?@ ,V(% >> Nl?@ .
Moreover, Ll?@ ,V(% does primarily depend on  V , as can be seen from Eq. 6 and Eq. 7, which is generally well-known.

¤8?@ = ¤8?@,0 + Ll?@ ,V(%Δ#(% + Nl?@Δ)�

= ¤8?@,0 + Ll?@ ,V(%Δ
[
)�� + #�%

]
= ¤8?@,0 + Ll?@ ,V(%Δ#�% + Ll?@ ,V(%Δ)��

(21)

When using Eq. 21 for establishing the IBS control law, it would depend on Δ#�% , which is rather small and can
therefore be neglected. This means that Ll?@ ,V(%Δ#�% could be obviated from Eq. 21. The approach does therefore
assume TSS between flapping and angular body dynamics, because cyclic control inputs have become identical to
the rotor disc-tilt angles, which can only happen when neglecting rotor disc-tilt dynamics [20]. Moreover, control
effectiveness has been enhanced, which means that the TSS condition will be less likely violated. Moreover, the flapping
angle equivalence method considers steady-state flapping dynamics, therefore a counter measure will be needed to
compensate for the difference in idealised and actual model.
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C. Adjustments to feedback-loop of actuator measurements
A technique called rotor synchronisation is required to compensate for the difference in idealised and actual rotorcraft

model. The IBS control law will depend on the feedback of the actuator measurements, which do see the idealised
model, and the angular acceleration measurements which do come from the actual model. The angular acceleration
measurements will be delayed with respect to the actuator measurements, because the latter measurements assume
steady-state condition of the residualised dynamics. This is problematic, because angular acceleration measurements
are used in a negative feedback in the IBS control law, which could yield quicker closed-loop instability [8].

In order to establish the rotor synchronisation filter, it is first necessary to determine the idealised and actual
expressions for ¤8?@ . For the derivation only first-order flapping dynamics shall be considered. For flap residualisation,
there will be a flap synchronisation filter. The actual expression for ¤8?@ is

¤8?@ = Ll?@ ,V#sync + Nl?@)�,meas, (22)

wherein )�,meas are the cyclic actuator measurements after being fed through a second-order washout filter by which
the angular accelerations are also being obtained with. This filter shall be discussed later on. Moreover, Ll?@ ,V and
Nl?@ are the body-flap coupling and control-depended term of the angular accelerations respectively. The idealised
rotorcraft model is purely governed by cyclic control inputs, therefore ¤8?@ can be written as

¤8?@ = Ml?@ ,')�,sync. (23)

It should be noted thatMl?@ ,' was established bymeans of themethod of residualised dynamics, wherein steady-state
flapping dynamics was considered. The synchronised control inputs can there after be obtained by inverting Eq. 23 and
substituting the expression from Eq. 22 into it. The synchronised cyclic control inputs are

)�,sync = M−1
l?@ ,'

[
Ll?@ ,V#sync + Nl?@)�,meas

]
. (24)

From Eq. 24 it can be observed that #sync is also required, which can be considered the synchronised flapping
angles. These synchronised flapping angles will differ from the actual flapping angles and can be determined using Eq.
25. It can be observed that ¤#sync is purely governed by measured cyclic control inputs.

¤#sync = LV,V#sync + NV)�,meas. (25)

The synchronisation filter defined in the Laplace-domain is provided in Eq. 26.

Nsync (B) =
)�,sync (B)
)�,meas (B) =

M−1
l?@ ,'

Ll?@ ,VNV + M−1
l?@ ,'

Nl?@ B − M−1
l?@ ,'

LV,VNl?@

BO2G2 − LV,V
. (26)

From Eq. 26 it can be observed that model knowledge is required for the synchronisation filter. This shows that when
establishing the control effectiveness by means of the method of residualised dynamics, there must also be sufficient
model knowledge. In Fig. 3 the flapping synchronisation filter is provided.

Fig. 3 Synchronisation filter placed in feedback-loop of cyclic actuator measurement.

D. Stabilising control law for angular rate subsystem using standard IBS procedure
Next, it will be of great interest to determine the stabilising control law for the angular rate subsystem. This shall be

considered for the main simulation model only, as the stabilising control laws for the simple first-order body-flap(-lag)
models shall be considered in the sections that follow here after, which incorporate IBS. On the other hand, the stabilising
control law of the angular rate subsystem for the main MBB Bo 105 simulation model was established by means of
CFIBS. First the IBS control law for the main simulation model shall be considered. The IBS procedure provided in
[15] was followed to derive the stabilising control law. The main objective is to let the angular rates follow a desired
angular rate signal. The actual angular rates, desired angular rates, and control input can be identified as

8 = [?, @, A]) , 8ref = [?, @, A])ref and [ = [\1B , \12 , \0,tr]) . (27)
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It should be noted from Eq. 27 that the vector containing the control inputs differs from the complete control vector
of the main rotorcraft model. The control effectiveness based upon the method of residualised dynamics shall be used for
this derivations and shall be designated as Ml,'. When Ml,' is associated with uncertainties, then it will be designated
as M̂l,'. In Section VII, the expression for M̂l,' will be provided. The stabilising control has been established by
making use of a quadratic CLF Vl (z8). The final stabilising control law was obtained by making ¤Vl become negative
definite along the trajectories of the error dynamics. The stabilising control law is found to be equal to

[ = [0 + M̂−1
l,' [− ¤80 − cl zl + ¤8ref] , (28)

wherein zl , ¤80 and cl are the tracking error, angular acceleration measurements and IBS gain respectively. The
stabilising control law would yield the following expression for ¤Vl

¤Vl = −z)lcl zl . (29)
Equilibrium zl = 03G1 is globally uniformly asymptotically stable when cl > 03G3, such that the desired angular

rates 8ref can be tracked for time going to infinity. This is in accordance with the theorem of LaSalle-Yoshizawa [21].

E. Command-filtered IBS approach for imposing limits on commanded signals
The CFIBS procedure provided in [15] was incorporated to derive the stabilising control law and to proof stability.

Instead of directly applying the previous stabilising control law, a new raw reference signal could be defined and led
through a command filter. This will enable to impose rate, magnitude and bandwidth limitations on a raw reference
signal [0, yielding command [ and command derivative ¤[. Since an incremental-based control strategy is being
adopted for the angular rate subsystem, it is necessary to apply the command filter to the total raw reference signal in
order to limit sensitivity to delays [15]. The effect of the command filter on zl is estimated by means of a stable linear
filter ¤6l given in Eq. 30 [15]. Moreover, the compensated tracking errors used for the derivation are also provided in
Eq. 30. The second-order command filter with initial condition from Eq. 31 will be incorporated.

¤6l = −cl 6l + M̂l,'
(
[ −[0) , with z̄l = zl − 6l (30)[ ¤[¥[

]
=

[ ¤[
2Zl=

(
Y'

{
l2
=

2Z l=

[
Y"

(
[0) −[]} − ¤[

) ]
, with [(0) = [ (zl (0))¤[(0) = 0 (31)

The filter is characterised with damping ratio Z= (= 1) and natural frequency l= (= 100 rad/s). Magnitude and rate
limitations are given in Eq. 32 and Eq. 33 respectively (see Table 8 for limits).

Y" ([0) =
{

[max if [0 ≥ [max
[0 if [min < [0 < [max

[min if [0 ≤ [min
(32)

Y'

[ (
l2
=

2Zl=

) (
Y"

(
[0

)
−[

) ]
=




¤[max if ¤[0 ≥ ¤[max¤[0 if ¤[min < ¤[0
< ¤[max¤[min if ¤[0 ≤ ¤[min

(33)

The stabilising control law will make the derivative of the quadratic CLF ¤Vl negative definite along the trajectories
of the compensated tracking errors. The final expression for ¤Vl is given in Eq. 34 when making use of Eq. 28.

¤Vl = −z̄)lcl z̄Ω (34)
In accordance with the theorem of LaSalle-Yoshizawa, equilibrium z̄Ω = 03G1 can be regarded uniformly asymptoti-

cally stable for time going to infinity [21]. In Fig. 4 the angular rate control mode is provided with synchronisation filter
and washout filter. For CFIBS, it should be augmented with command-filters in the appropriate place.

Fig. 4 Angular rate subsystem based on IBS with synchronisation and washout filter.
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F. Actuator and sensor dynamics
Having established the (CF)IBS control law, it is also necessary to define the dynamics of the actuators and sensors.

All models incorporate the same sensors and actuator dynamics. Moreover, sensor and actuator dynamics shall be the
same for all angular rates and control inputs of the main MBB Bo 105 simulation model. The expression for the actuator
dynamics is provided in Eq. 35, wherein gact is equal to 0.1 s [3]. Angular accelerations can be obtained using the
second-order washout filter provided in Eq. 36 [3]. This filter characterised with damping ratio Zfilt, natural frequency
ln,filt and zero-mean noise signal N (

0, f2
filt

)
, which were set equal to 1, 100 rad/s and 0.006◦/B respectively [3].

�act (B) = 1
gactB + 1

(35)

¤8meas = BNfilt (B)
(
8 + N(0, f2

filt)
)
=

82
=,filtB

B2 + 2Zfiltl=,filtB + l2
=,filt

(
8 + N(0, f2

filt)
)

(36)

IV. Procedure for identifying the effects of rotor dynamics on IBS
In order to understand the effects of rotor dynamics on IBS, and in particular the angular rate controller, it will be

necessary to outline the main procedure for determining this. The complete analysis shall be considered for all models
introduced in Section II with the exception of the main MBB Bo 105 simulation model. For the latter model, a separate
robustness analysis shall be considered, which is explained in more detail in Section VII.

The first step is to to identify the difference between the idealised and actual rotorcraft model, by considering the
modes of motion and open-loop frequency response without the controller for both models. The next step is to establish
the first-order Taylor series based upon the idealised and actual rotorcraft model. From this, the IBS control law and
TSS condition can be defined. Important to understand is that, when the idealised and actual modes of motion and
open-loop frequency significantly differ from each other, a counter measure must be considered. The counter measure
will come in the form of a rotor synchronisation filter, for which the frequency response must be analysed. Next, a
tracking task shall be executed, wherein tracking performance will be correlated with adequate synchronisation of
actuator and angular acceleration measurements. On top of this, the effects of having a modified control effectiveness
matrix, using the the idealised rotorcraft model, on tracking performance shall also be considered. The performance can
be determined using the Root Mean Square Error (RMSE), for which the expression is provided in Eq. 37. Herein, n 9
is the residual, which is the difference between the target value and actual value of an angular rate (e.g. ?ref and ?).
Moreover, = is the number of residuals.

'"(� =

√∑=
9=1

(
n 9

)2

=
(37)

There after, the closed-loop frequency response shall be considered, wherein actuator and sensor dynamics will be
accounted for. Important points of interest are the bandwidth and resonance peak of the closed-loop frequency response.
Below, the procedure is summarised, for which a closed-loop system is considered for steps IV, V and VI with (CF)IBS
controller, actuator and sensor dynamics.

I identifying the difference between idealised and actual rotorcraft model, by considering the modes of motion
and open-loop frequency response.

II determine the TSS condition and IBS control law for the idealised and actual rotorcraft model.
III assess the frequency response of the rotor synchronisation filter.
IV analyse controller performance by incorporating an ADS-33E-PRF tracking task for aggressive agility given

in [22] and using the performance criteria from Eq. 37. Reference signal is generated by means of three
hyperbolic tangent functions. Moreover, simulations are performed using fourth order Runge-Kutta (RK4)
integration at 100 Hz. Likewise, the (CF)IBS controller operates at 100 Hz.

V analyse closed-loop frequency behaviour, given it is stable, by considering bandwidth, resonance peak etc.
VI analyse closed-loop stability using the Routh-Hurwitz stability criterion. Closed-loop system is asymptotically

stable if and only when real parts of the closed-loop eigenvalues are situated in the left-half-plane (LHP) [23].

V. Analysing the effects of flapping dynamics on IBS using first-order BF model
In this section, the effects of flapping dynamics on IBS shall be considered. Use is made of the first-order BF model

described by Eq. 1 and Eq. 2. Moreover, the MBB Bo 105 rotorcraft is used for the analysis, for which data has been
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provided in the Appendix. First, the difference in idealised and actual rotorcraft model shall be determined by means of
the modes of motion and open-loop frequency response. There after, synchronisation filter frequency response shall be
touched upon. Lastly, tracking performance will be assessed along with closed-loop frequency response.

A. Modes of motion for varying  V and gV
First, the modes of motion of the gV-based model without controller will be considered for the idealised and actual

BF model, wherein the former was obtained by means of the method of residualised dynamics. The modes of motion for
the actual rotorcraft model are situated at

_1,2 = − Ω2gV ±
√

1
4

(
Ω
gV

)2
− 16 lon

WgV
(38)

and will couple for gV lon >
WΩ2

64 . The idealised pitch mode of motion is decoupled from flapping and situated at
− 16 lon

WΩ . In Fig. 5 the modes of motion for the idealised and the actual model are provided for two instances of gV and
 V ∈ [10, 30, ..., 150] kNm/rad. It can be observed that the modes of motion for the idealised and actual rotorcraft
model differ for large gV , therefore the dynamic response of @ will be different for both models.

(a) Actual for gV = 1.0. (b) Idealised. (c) Actual for gV = 5.0.
Fig. 5 Modes of motion of actual (coupled pitch-flap) and idealised (decoupled pitch) rotorcraft model.

B. Open-loop Frequency response of angular body dynamics
Before assessing the effects of rotor dynamics on control design, it is necessary to consider the angular body

dynamics without controller. The transfer function in standard Bode form for U�@ = 0 is provided in Eq. 39.

�@ (B) =

(
WΩ
16

)
(
WgV

16 lon
B2 + ΩW

16 lon
B + 1

) (39)

In Fig. 6 the frequency response of �@ (B) is provided for varying gV , three instances of  V and U�@ = 0. It can be
observed that for smaller gV the difference in frequency response between idealised (steady-state, gV = 0) and actual
model becomes less. This is in line with expectation as decreasing gV does yield quicker disc-tilt response. Moreover,
adjusting  V did not influence the difference between actual and idealised rotorcraft model.

Fig. 6 Bode frequency response of �@ (B) for gV ∈ [0.5, 0.6, ..., 5.5],  V ∈ [10, 60, 110] kNm/rad and U�@ = 0.
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C. Control effectiveness established using flapping angle equivalencemethod ormethod of residualised dynamics
The control effectiveness using the flapping angle equivalence method only requires knowledge of �@,V12 , which

is − lon, and the IBC to MBC transformation. Since a positive Fourier series was incorporated for establishing the
body-flap EOM (V12(% = V12�% − \1B), the control effectiveness �@ must be equal to  lon. Using the method of
residualised dynamics, the control effectiveness must be equal to the following

�@ = �@ − �@,V12�
−1
V12 ,V12

�V12 = U�@ lon − − lon · −
gV

Ω
· − Ω
gV
=  lon

(
1 + U�@

)
. (40)

It can be observed from Eq. 40 that �@ is approximately the same as the control effectiveness when using the
flapping angle equivalence method. For the proceeding analysis it will be assumed that there is inaccurate knowledge of
control effectiveness, which implies that �̂@ = W@�@ , wherein W@ is the control effectiveness mismatch factor.

D. Stabilising control law for angular rate subsystem using IBS
A Taylor series must be used for defining the control law. The first-order Taylor series for the idealised model based

upon the method of residualised dynamics and actual rotorcraft model are given in Eq. 41 and Eq. 42 respectively.

¤@ � ¤@0 + �@,V12ΔV12 +
(
�@,@ − �@,V12�

−1
V12 ,V12

�V12 ,@

)
Δ@ +

(
�@ − �@,V12�

−1
V12 ,V12

�V12

)
Δ\1B

� ¤@0 + 0 · ΔV12 +
(
0 − − lon · −

gV

Ω
· 16
WgV

)
Δ@ +

(
U�@ lon − − lon · −

gV

Ω
· − Ω
gV

)
Δ\1B

� ¤@0 − 16
WΩ

 lonΔ@ + (1 + U�@ ) lonΔ\1B

(41)

¤@ � ¤@0 + �@,V12ΔV12 + �@,@Δ@ + �@Δ\1B

� ¤@0 −  lonΔV12 + U�@ lonΔ\1B
(42)

Current pitch rate derivative and longitudinal cyclic control input are indicated by ¤@0 and \1B,0 respectively. Moreover,
Δ@, ΔV12 and Δ\1B are the incremental change in pitch rate, cyclic flapping angle and control input respectively. The
first-order Taylor can neglect state-depended terms by assuming TSS [1, 15–17], for which the necessary condition is

TSS condition for idealised Taylor series : (1 + U�@ ) lonΔ\1B >> − 16
WΩ

 lonΔ@, (43)

TSS condition for actual Taylor series : U�@ lonΔ\1B >> − lonΔV12 , (44)

which is equivalent by assuming instantaneous control action given that sampling rate 5B is sufficiently high [15].
When Eq. 43 and Eq. 44 hold, then it will be robust to uncertainties in system dynamics. It can be observed that the
TSS condition for the idealised Taylor series will hold, since WΩ >> 16. On the other hand, the TSS condition for the
actual Taylor series will be violated as U�@ << 1. The following stabilising control law shall be used

\1B = \1B,0 + �̂−1
@

[− ¤@0 + ¤@ref − 2@I@
]
. (45)

E. Flapping synchronisation filter for synchronising actuator and angular rate derivative measurements
The Flapping synchronisation shall first be introduced in the time-domain, there after in the Laplace-domain. The

expression for the synchronised control input and flapping angle are given in Eq. 46 and Eq. 47 respectively.

¤@ = �̂@\1B,sync

¤@ = �@,V12 V12,sync + �@\1B,meas

}
\1B,sync = �̂

−1
@ �@,V12 V12,sync + �̂−1

@ �@\1B,meas (46)

¤V12,sync = �V12 ,V12 V12,sync + �V12 \1B,meas (47)

The synchronisation filter can be written into the following state-space system
[ ¤V12,sync
\1B,sync

]
=

[ − Ω
gV

W@ ( lon + U�@ lon)−1 · − lon

]
V12,sync +

[ − Ω
gV

W@ ( lon + U�@ lon)−1 · U�@ lon

]
\1B,meas, (48)
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wherein \1B,meas and V12,sync are the measured control input (fed through a second-order washout filter) and
synchronised flapping angle respectively. Moreover, Eq. 48 does not depend on  V , which confirms that the difference
between idealised and actual models is not due to  V . The transfer function for the flapping synchronisation filter is
provided in Eq. 49 and Eq. 50 for U�@ ≠ 0 and U�@ = 0 respectively.

�sync (B) =
\1B,sync (B)
\1B,meas (B) = W

−1
@

(
1 + U�@

)
(
1 + U�@ gV

Ω

(
1 + U�@

)−1
B

)
(
gV
Ω B + 1

) (49)

�sync (B) =
\1B,sync (B)
\1B,meas (B) =

(
W−1
@

) 1(
gV
Ω B + 1

) (50)

Of great interest are the effects of changes in W@ , gV and U�@ on synchronisation filter frequency response. In Fig. 7
the results are provided for different variations in U�@ , W@ and gV .

(a) gV ∈ [0.5, 0.6, ..., 5.5], W@ = 1 and
U�@ = 0.

(b) W@ ∈ [0.75, 0.76, ..., 1.25], gV = 3 and
U�@ = 0.

(c) U�@ ∈ [0.0, 0.025, ..., 0.5], gV = 3 and
W@ = 1.

Fig. 7 Frequency response of flapping synchronisation filter of gV-based rotorcraft model for varying gV , W@ and U�@ .
Synchronisation filters from Eq. 49 and Eq. 50 are incorporated for assessing these changes.

Based on the results of the rotor synchronisation frequency analysis the following can be stated

• increasing gV will decrease rotor synchronisation filter bandwidth such that \1B,meas will be slowed down more.
This shows that when the difference between the idealised and actualmodel increases, the feedback of the actuator
measurement must be slowed down more to match the feedback of the angular acceleration measurement.

• W−1
@ does act as a pure gain and will therefore affect magnitude response. Control effectiveness under- or

overestimation will be associated with magnified and diminished control inputs respectively.
• greater U�@ will be associated with greater magnitude at higher frequencies, which implies that \1B,meas will be
less delayed. This is because ¤@ will be increasingly more directly governed by \1B, while the indirect channel
(\1B → V12 → ¤@) remains the same.

F. Longitudinal ADS-33E-PRF tracking task for varying gV
Previously, the design of the controller was already touched upon, therefore the next step is to assess controller

robustness. The necessity of incorporating an enhanced control effectiveness and adequate synchronisation of actuator
and angular acceleration measurement will be of prime concern. In order to assess the above mentioned, it will be
necessary to determine IBS controller performance with and without rotor synchronisation filter. A longitudinal tracking
task will be executed in accordance with the regulations stipulated by the ADS-33E-PRF for aggressive agility [22]. This
means that the rotorcraft shall reach a pitch rate of ±30◦/B. For all cases the following will hold: gV ∈ [0.5, 1.0, ..., 5.5]
and U�@ = 0. The cases of interest are:
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• case 1: without flapping synchronisation filter, �̂@ based on method of residualised dynamics with H@ = 1 and
2@ = 2.5. This is equivalent to the Reduced inverse of control effectiveness matrix INDI (RINDI) method
introduced in [24].

• case 2: with flapping synchronisation filter, �̂@ based on method of residualised dynamics with H@ = 1 for �̂@ of
IBS control law and synchronisation filter and 2@ = 15.

• case 3: with flapping synchronisation filter, �̂@ based on method of residualised dynamics, H@ = 0.75 for �̂@ of
synchronisation filter, W@ = 1 for �̂@ of IBS control law and 2@ = 10.

In Fig. 8 the results of case 1 are provided, from which it can be observed that the increments in system dynamics
(�@,@−�@,V12�

−1
V12 ,V12

�V12 ,@)Δ@ are less than the control-depended increments (�@−�@,V12�
−1
V12 ,V12

�V12 )Δ\1B . However,
tracking response is not desirable since it is quiet erratic. Moreover, '"(�@ increases when gV increases.

(a) Rotorcraft states @ and V12 along with cyclic control input \1B .

(b) (�@ − �@,V12�
−1
V12 ,V12

�V12 )Δ\1B (c) (�@,@ − �@,V12�
−1
V12 ,V12

�V12 ,@)Δ@ (d) '"(�@
Fig. 8 Results of longitudinal tracking task of case 1. Effects of gV on tracking performance is being analysed for U�@ = 0,
gV ∈ [0.5, 1.0, ..., 5.5], 2@ = 2.5 and W@ = 1 for �̂@ of IBS control law

The previous IBS controller did not yield the desired performance even though TSS condition was not violated. The
problem lies therein that ¤@0 was not well-synchronised with \1B,0, which can be accounted for by means of the flapping
synchronisation filter. From Fig. 9 it can be observed that for case 2 controller performance is significantly better, TSS
condition is not violated and response is not erratic. Lastly, based on the difference in synchronised and unsynchronised
actuator measurement, it can be stated that for increasing gV there will be more synchronisation effort required.

(a) Rotorcraft states @ and V12 along with cyclic control input \1B .

(b) |\1B,sync − \1B,meas| (c) (�@ − �@,V12�
−1
V12 ,V12

�V12 )Δ\1B (d) (�@,@ − �@,V12�
−1
V12 ,V12

�V12 ,@)Δ@

Fig. 9 Results of longitudinal tracking task of case 2. Effect of gV on tracking performance is analysed for gV ∈
[0.5, 1.0, ..., 5.5], 2@ = 15, U�@ = 0 and W@ = 1 for �̂@ of IBS control law and synchronisation filter
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A control effectiveness mismatch of W@ = 0.75 is considered for the control effectiveness in the rotor synchronisation
filter, while W@ = 1 will be considered for the control effectiveness of the IBS control law. In Fig. 10 the results are
provided for case 3, from which it can be observed that controller performance is severely affected as tracking response
has become more erratic. Moreover, @ has an offset with respect to @ref as a result of inadequate signal synchronisation.
It can be observed from Fig. 11 that '"(�@ significantly increases when there exists control effectiveness mismatch for
�̂@ in the synchronisation filter. The controller is therefore not robust to uncertainties in �̂@ of the synchronisation filter.

(a) Rotorcraft states @ and V12 along with cyclic control input \1B .

(b) |\1B,sync − \1B,meas| (c) (�@ − �@,V12�
−1
V12 ,V12

�V12 )Δ\1B (d) (�@,@ − �@,V12�
−1
V12 ,V12

�V12 ,@)Δ@
Fig. 10 Results of longitudinal tracking task of case 3. Effect of gV on tracking performance is analysed for gV ∈
[0.5, 1.0, ..., 5.0], 2@ = 10, U�@ = 0, W@ = 0.75 for �̂@ in synchronisation filter and W@ = 1.0 for �̂@ in IBS control law.

(a) Case 2. (b) Case 3.
Fig. 11 '"(�@ of longitudinal tracking task for case 2 and case 3.

The following conclusions can be drawn:

• incorporating the method of residualised dynamics for enhancing control-dependency and diminishing state-
dependency (see Eq. 41) did not violate the TSS condition from Eq. 44. However, it did not account for
the difference in actual and idealised rotorcraft model, yielding inadequate synchronisation of actuator and
state-derivative measurement. This resulted in erratic behaviour of the controlled and uncontrolled states.

• synchronisation of actuator and angular acceleration measurement by means of a flapping synchronisation filter
can be regarded a requisite for BF models with significant difference in actual and idealised rotorcraft model.
This especially holds for BF models with large, because synchronisation effort (|\1B,sync − \1B,meas|) is significant.

• control effectiveness mismatch for �̂@ in the rotor synchronisation filter can severely affect controller performance
as vehicle response is associated with steady-state error. It is therefore not robust to uncertainties in �̂@ .

• actuator limits do pose a problem regarding the TSS condition, as (�@,@ − �@,V12�
−1
V12 ,V12

�V12 )Δ\1B can only
reach maximum depending on actuator limits.

G. Closed-loop frequency response for IBS controller with or without rotor synchronisation filter
Next, it will be necessary to consider a closed-loop frequency analysis. It will be shown that a flapping synchronisation

filter is necessary to assure adequate closed-loop frequency response and to proof that the controller is not robust to
control effectiveness mismatch in the flapping synchronisation filter. The main parameters of interest for the analysis
are: W@ and gV . Below a set of cases will be outlined which are all considered with or without rotor synchronisation
filter, 2@ ∈ [3, 9] and U�@ = 0. Next to this, the maximum region of overreaction (with 1% margin) of closed-loop
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response is indicated. For the IBS controller with and without rotor synchronisation this is indicated in dark and light
grey respectively. The following cases will be considered:

• case 1: variation in gV with W@ = 1 (�̂@ =  lon) for IBS control law and synchronisation filter, U�@ = 0 and
gV ∈ [0.5, 0.575, ..., 4].

• case 2: variation in W@ (�̂@ = W@ lon) given that W@ ∈ [1.0, 1.05, ..., 3] for �̂@ in rotor synchronisation filter,
W@ = 1 for �̂@ of IBS control law, U�@ = 0 and gV = 3.

• case 3: variation in W@ (�̂@ = W@ lon) given that W@ ∈ [0.75, 0.775, .., 1.0] for �̂@ in rotor synchronisation filter,
W@ = 1 for �̂@ in IBS control law, U�@ = 0 and gV = 3.

In Fig. 12 the results of the three above cases are provided.

(a) Case 1 with 2@ = 9. (b) Case 1 with 2@ = 3. (c) Case 2 with 2@ = 9.

(d) Case 2 with 2@ = 3. (e) Case 3 with 2@ = 3. (f) Case 3 with 2@ = 9.
Fig. 12 Closed-loop frequency response for case 1-3.

Based on the closed-loop frequency analysis the following can be concluded:

• a flapping synchronisation filter is necessary to reduce the resonance peak in the closed-loop frequency response.
When such a filter is not included, closed-loop response will be erratic and characterised with significant
overestimation of the reference signal. This especially holds for large 2@ and/or large gV .

• increasing gV yields a greater resonance peak, which is due to having a greater difference in idealised and actual
rotorcraft model, which translates into a significant delay between actuator and angular acceleration measurement.
The former is based on the idealised BF model, whereas the latter comes from the actual BF model. Since ¤@0 is
used in a negative feedback loop, there will be magnified control inputs when delayed with respect to \1B,0.

• the IBS controller is not robust to uncertainties in �̂@ in the synchronisation filter. It can be observed that the
closed-loop frequency response is not desirable for control effectiveness mismatch. For W@ > 1 and W@ < 1, there
will be a significant region of under- and overestimation respectively. This shows that signal synchronisation can
be affected when there are uncertainties in �̂@ of the synchronisation filter. In other words, the desired reference
signal cannot be tracked well, when there exists control effectiveness mismatch for �̂@ in the synchronisation filter.
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H. Closed-loop stability analysed using Routh-Hurwitz stability criterion
Next, the analytical closed-loop stability shall be determined using the Routh-Hurwitz stability criterion. The

analysis shall be considered for the closed-loop system with and without flapping synchronisation filter, 2@ = 15,
gV ∈ [0.5, 1.0, . . . , 5.0],  V ∈ [10, 15, . . . , 150] kNm/rad and U�@ = 0. Full and accurate knowledge of system
dynamics is assumed when constructing the filters, with the exception of �̂@ . The objective is to show that without
flapping synchronisation filter, closed-loop stability will be affected for high 2@ and to proof that the controller is not
robust to control effectiveness mismatch for �̂@ in the flapping synchronisation filter. The cases of interest are:

• case 1: without flapping synchronisation filter and W@ ∈ [0.5, 1, 3] for �̂@ in IBS control law.
• case 2: with flapping synchronisation filter given that W@ = 1 for �̂@ in flapping synchronisation filter and
W@ ∈ [0.5, 1, 3] for �̂@ in IBS control law.

• case 3: with flapping synchronisation filter given that W@ ∈ [0.5, 1, 3] for �̂@ in flapping synchronisation filter
and W@ = 1 for �̂@ in IBS control law.

(a) Case 1 with W@ = 1, W@ = 0.5 and W@ = 3 for �̂@ in IBS control law from left to right respectively.

(b) Case 2 with W@ = 1, W@ = 0.5 and W@ = 3 for �̂@ in IBS control law from left to right respectively.

(c) Case 3 with W@ = 1, W@ = 0.5 and W@ = 3 for �̂@ in IBS control law and synchronisation filter from
left to right respectively.

Fig. 13 Results closed-loop stability analysis for case 1-3.

Based on the closed-loop stability analysis the following can be stated:

• without flapping synchronisation, ¤@0 will be lagging behind \1B,meas. Since ¤@0 is used in a negative feedback loop
(see Eq. 45) control inputs will be magnified, yielding quicker instability of the closed-loop system.

• decreasing W@ for �̂@ in IBS control law, will also yield quicker system instability, because the incremental change
in control input increases (see Eq. 45), which subsequently will yield magnified control inputs.

• for larger gV , there will be a greater time-delay between ¤@0 and \1B,meas, yielding quicker system instability.
• without synchronisation filter, system stability can be improved by increasing �̂@ (see top-right of Fig. 13).
• for control effectiveness mismatch of �̂@ in synchronisation filter, it can be stated that W@ < 1 is most concerning,
because it yields magnified control inputs (see Fig. 12 case 3), therefore quicker closed-loop system instability.

• stability can be assured for a greater range of gV for the hingeless MBB Bo 105 ( V = 113330 Nm/rad from [9])
than for the articulated Aérospatiale SA 330 Puma ( V = 48149 Nm/rad from [9]).
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VI. Analysing the effects of lead-lag dynamics on IBS using first-order BF(L) models
In this section the effects of lead-lag dynamics on IBS shall be considered. The BF(L) models introduced in Section

II shall be used and are described by Eq. 3 - 5. The analysis shall be conducted for the hingeless MBB Bo 105 and
articulated Aérospatiale SA 330 Puma rotorcraft for which data is provided in the Appendix. First, the stabilising control
law, control effectiveness and TSS condition shall be provided. Next, the difference in frequency response between the
actual and idealised model will be considered. There after, synchronisation filter frequency response will be touched
upon. Lastly, tracking performance and closed-loop frequency response shall be considered.

A. Stabilising control law for roll rate
The Taylor series can be established using the actual BFL model or the idealised BFL model, wherein the latter is

based upon flap or flap-lag residualisation. The following first-order idealised Taylor series could be used

Flap-lag residualisation : ¤? � ¤?0 +
(
�?,? − [L?,V L?,Z ]

[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
LV,?
LZ , ?

] )
Δ ?+(

�? − [L?,V L?,Z ]
[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
NV
NZ

] )
Δ\12

(51)

Flap residualisation : ¤? � ¤?0 +
(
L?,Z − L?,VL

−1
V,VLV,Z

)
ΔZ +

(
L?,? − L?,VL

−1
V,VLV,?

)
Δ ?+(

�? − L?,VL
−1
V,VNV

)
Δ\12

(52)

wherein ¤?0 is the current measured roll rate acceleration. Moreover Δ ?, ΔV, ΔZ and Δ\12 are the incremental
change in roll rate, cyclic flapping angle, lead-lag angle and control input respectively. Moreover, � ? can be identified
from the previous first-order Taylor series, which is the collection of terms in front of Δ\12 . Control effectiveness
mismatch shall be considered for � ? , which is indicated by mismatch factor W? (�̂ ? = W?� ?). The previous first-order
Taylor series can be simplified by neglecting system dynamics by assuming TSS [3, 15, 18]. The TSS conditions are:

TSS condition for flap-lag residualisation :
(
�? − [L?,V L?,Z ]

[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
NV
NZ

] )
Δ\12 >>(

�?,? − [L?,V L?,Z ]
[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
LV,?
LZ , ?

] )
Δ ?

(53)

TSS condition for flap residualisation :
(
�? − L?,VL

−1
V,VNV

)
Δ\12 >>(

L?,Z − L?,VL
−1
V,VLV,Z

)
ΔZ +

(
L?,? − L?,VL

−1
V,VLV,?

)
Δ ?

(54)

This is equivalent by assuming instantaneous control action given that sampling rate 5B is sufficiently high [15].
When Eq. 53 and Eq. 54 hold, then the controller can be regarded robust to uncertainties in system dynamics. When Eq.
54 is being violated, flap-lag residualisation must be considered in order to enhance control-dependency and diminish
state-dependency of ¤?. This is of prime concern when conducting the analysis as it will reveal whether inclusion of
lead-lag dynamics to rotor synchronisation will be necessary. The following control law shall be considered:

\12 = \12,0 + �̂−1
?

[− ¤?0 + ¤?ref − 2?I?
]
, (55)

wherein \12,0, 2? and I? are the actuator measurement, IBS control gain and tracking error respectively.

B. Actual and idealised modes of motion of BF(L) rotorcraft models
First, the modes of motion shall be considered for varying lead-lag damping coefficient �Z . In Fig. 14 and Fig. 15

the actual modes of motion of models I-IV are provided for a hingeless and articulated rotor configuration respectively.
It can be observed that the actual modes of motion do not differ significantly among the four models for the hingeless
and articulated rotorcraft. In Fig. 14 and Fig. 15 the idealised modes of motion based upon residualised flap-lag and
flap dynamics are provided as well for the hingeless and articulated rotor configuration respectively. Only models I,III
and IV are considered for flap-lag residualisation, as model II does not include lead-lag dynamics. The decoupled
flap-lag and flap modes of motion are provided as well for the flap-lag and flap residualised models respectively. These
decoupled modes of motion shall be used for the synchronisation filter.
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(a) Actual (b) Idealised flap-lag residualised. (c) Idealised flap residualised.
Fig. 14 Modes of motion of idealised and actual MBB Bo 105 BF(L) models I-IV for �Z ∈ [0.02, 0.06, ..., 0.58].

(a) Actual. (b) Idealised flap-lag residualised. (c) Idealised flap residualised.
Fig. 15 Modes ofmotion of idealised and actualAérospatiale SA 330PumaBF(L)models I-IV for�Z ∈ [0.02, 0.06, ..., 0.58].

Based on the modes of motion the following can be concluded:

• the difference in idealised modes of motion for flap or flap-lag residualised dynamics is not significant for both
rotorcraft, thus the largest discrepancy between idealised and actual modes of motion is due to flapping dynamics.

• the difference in idealised and actualmodes of motion is greater for the hingeless rotorcraft than for the articulated
rotorcraft. This is because the flap and body (roll) modes of motion of the actual articulated BF(L) model were
already well-separated (loosely coupled). This yields a small difference in coupled and uncoupled (idealised)
modes of motion. The hingeless rotorcraft is associated with stronger coupling between flap and body (roll) mode.
Decoupling these modes will therefore yield a greater difference with respect to the actual modes of motion.

C. Frequency response of roll rate to lateral cyclic control input
Next, it is necessary to determine the actual and idealised angular body frequency response for the four established

BF(L) models. The main objective is to determine the difference in frequency response for the idealised models
based upon flap (F) or flap-lag (FL) residualisation. The transfer function for the idealised BFL models based upon
residualisation of flap-lag and flap dynamics are provided in Eq. 56 and Eq. 57 respectively. The transfer function
for the actual BFL and BF model are given in Eq. 58 and Eq. 59 respectively (Roll angle was not considered in the
state-space system)

�? (B) =
(
B−

(
�?,?−[L?,V L?,Z ]

[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
L?,V
L?,Z

] ))−1 (
�?−[L?,V L?,Z ]

[
LV,V LV,Z
LZ ,V LZ ,Z

]−1 [
NV
NZ

] )
(56)

�? (B) = [0 0 1]
(
BO3G3 −

[
LZ ,Z − LZ ,VL

−1
V,VLV,Z �Z , ? − LZ ,VL

−1
V,VLV,?

L?,Z − L?,VL
−1
V,VLV,Z �?,? − L?,VL

−1
V,VLV,?

])−1 [
�Z − LZ ,VL

−1
V,VNV

�? − L?,VL
−1
V,VNV

]
(57)

�? (B) =
[
0 0 0 0 1

] (
BO5G5 −

[
LV,V LV,Z �V,?
LZ ,V LZ ,Z �Z , ?
L?,V L?,Z �?,?

])−1 [
NV
NZ
�?

]
(58)

�? (B) =
[
0 0 1

] (
BO3G3 −

[
LV,V �V,?
L?,V �?,?

] )−1 [
NV
�?

]
(59)

In Fig. 16 and Fig. 17 the Bode frequency response of the actual and idealised rotorcraft model is provided for the
hingeless MBB Bo 105 and articulated Aérospatiale SA 330 Puma rotorcraft respectively.
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(a) Model I with �Z = 0.4. (b) Model I with �Z = 0.02. (c) Model II.

(d) Model III with �Z = 0.4. (e) Model III with �Z = 0.02. (f) Model IV with �Z = 0.4.

(g) Model IV with �Z = 0.02.
Fig. 16 Frequency response of actual and idealised MBB Bo 105 BF(L) models I-IV for �Z ∈ [0.02, 0.4].

The following conclusions can be drawn from the open-loop frequency response analysis:

• based on the frequency response of model I with �Z = 0.02, it can be stated that the implementation of the
body-lag coupling, as discussed in Section II, is correct [11, 12].

• the difference in open-loop frequency response for the articulated rotorcraft using flap or flap-lag residualisation
is minor for models I-IV. This shows that lead-lag dynamics does have little effect on the open-loop frequency
response. Flap synchronisation would suffice for synchronising actuator and state derivative measurement.

• for the hingeless rotorcraft it can be observed that, for model III there is little difference in flap or flap-lag
residualised BFL model, therefore flap synchronisation would suffice. However, for models I and IV there exists
difference in idealised model based upon flap-lag or flap residualisation when �Z = 0.02. This subsequently
implies that the flap-lag and flap synchronisation filters will differ from each other. This can be best understood by
realising that if �actual (B) and �ideal (B) are the actual and idealised open-loop frequency response of the BF(L)
models, then �sync (B)�ideal (B) must equal to �actual (B).

Based on the above mentioned it was decided to continue the analysis with the hingeless MBB Bo 105 rotorcraft,
because of the greater difference in idealised and actual BF(L) models. On top of this, only model I shall be considered
for further research, because the difference with respect to model IV is not significant.

19



(a) Model I with �Z = 0.4. (b) Model I with �Z = 0.02. (c) Model II.

(d) Model III with �Z = 0.4. (e) Model III with �Z = 0.02. (f) Model IV with �Z = 0.4.

(g) Model IV with �Z = 0.02.
Fig. 17 Frequency response of actual and idealised BF(L) models for �Z ∈ [0.02, 0.4] for Aérospatiale SA 330 Puma.

D. Rotor synchronisation filter
Two rotor synchronisation filters shall be introduced and analysed in which one synchronisation filter accounts for

the time-delay introduced by flapping dynamics, whereas the other one accounts for the cumulative delay introduced
by flap-lag dynamics. First, a flap-lag synchronisation shall be established based upon flap-lag residualisation. The
expression for the synchronised control input and rotor states are given in Eq. 60 and Eq. 61 respectively.

¤? = �̂ ?\12,sync

¤? = [L?,V L?,Z ]
[
#sync
' sync

]
+ �?\12,meas




\12,sync = �̂
−1
? [L?,V L?,Z ]

[
#sync
' sync

]
+ �̂−1

? �?\12,meas (60)

[ ¤#sync¤' sync

]
=

[
LV,V LV,Z
LZ ,V LZ ,Z

] [
#sync
' sync

]
+

[
NV
NZ

]
\12,meas (61)

The above can be rewritten into the following state-space system


)12,sync¤#sync¤' sync


=

[
�̂−1
? L?,V �̂−1

? L?,Z
LV,V LV,Z
LZ ,V LZ ,Z

] [
#sync
' sync

]
+

[
�̂−1
? �?
NV
NZ

]
\12,meas. (62)
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From Eq. 62 the state-space system for flap synchronisation can be identified, which is namely equal to[
)12,sync¤#sync

]
=

[
�̂−1
? L?,V
LV,V

] [
#sync

] + [
�̂−1
? �?
NV

]
\12,meas. (63)

It should be noted that \12,meas, #sync and ' sync are the measured control input (after the second-order washout
filter), synchronised flapping angles and synchronised lead-lag angles respectively. Moreover, both filters do only have
\12,meas as input. The flap and flap-lag synchronisation filter in the Laplace-domain are respectively equal to

Nsync (B) = �̂−1
? [L?,V] (BO2G2 − [LV,V])−1 [NV] + �̂−1

? [�?] , (64)

Nsync (B) = �̂−1
? [L?,V L?,Z ]

(
BO4G4 −

[
LV,V LV,Z
LZ ,V LZ ,Z

] )−1 [
NV
NZ

]
+ �̂−1

? [�?] . (65)

It should be noted that �̂ ? in Eq. 64 and Eq. 65 is based upon flap and flap-lag residualisation respectively. It can
be observed from Eq. 65 that the flap-lag synchronisation filter requires more model knowledge.

Next, the objective is to determine whether lead-lag dynamics changes the frequency response of the rotor
synchronisation filter. It shall only be considered for the MBB Bo 105 model I, because of reasons given earlier. Full and
accurate knowledge of system dynamics is assumed for the flap and flap-lag synchronisation filter, with the exception of
�̂ ? , which may contains a mismatch. The following cases shall be considered

• case 1: W? = 1 for �̂ ? and �Z ∈ [0.02, 0.4].
• case 2: W? ∈ [0.5, 3] for �̂ ? and �Z = 0.4

(a) Case 1 with �Z = 0.02 and �Z = 0.4. (b) Case 2 with �Z = 0.4.
Fig. 18 Frequency response of rotor synchronisation filters for case 1 and case 2.

Next, it is necessary to summarise findings so far. It is namely found that:

• frequency response of flap and flap-lag synchronisation filters do not significantly differ for large �Z . This is in
line with results from Fig. 16 as there was minor difference in frequency response between both idealised models.

• when there is difference in frequency response between the idealised flap and flap-lag residualised model (e.g.
MBB Bo 105 model I with �Z = 0.02 given in Fig. 16), then there will also be a difference in frequency response
for the flap and flap-lag synchronisation filter. In this particular case the discrepancy is due to L?,Z and NZ .
Even though the frequency response may differ, both filters can still be considered suitable as long as the actual
frequency response can be reconstructed from the synchronisation filter and the idealised frequency response.
The TSS condition could for example determine which of the two filters would be needed.

• when W? ≠ 1 then magnitude response of the synchronisation does alter. It is being observed that W? < 1 and
W? > 1 are associated with upward and downward translation of magnitude response respectively. In other words
W−1
? does act as a pure gain. This shows that inadequate signal synchronisation can occur when W? ≠ 1 for �̂ ? in

the synchronisation filter, because control inputs will either be too large or too small.
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E. Lateral ADS-33E-PRF tracking task for aggressive agility
Next, it is necessary to consider a lateral tracking task. The rotorcraft shall track a predefined roll rate doublet

of ±50◦/B, which is in accordance with regulations stipulated by the ADS-33E-PRF for aggressive agility in hover
condition. The objective is to determine whether the IBS controller with control effectiveness based upon flap-lag
residualisation will yield an increase in controller performance. Accounting for lead-lag dynamics might be necessary
when Eq. 53 could be considered more favourable over Eq. 54. A set of cases will be considered for which it will be
assumed that there is full and accurate knowledge of system dynamics for establishing the synchronisation filters, with
the exception of �̂ ? in the syncrhonisaiton filter. The following cases shall be considered:

I case 1: W? = 1 for �̂ ? in IBS control law and synchronisation filter, using flap or flap-lag residualisation,
2? = 30 and �Z = 0.02.

II case 2: W? = 0.75 for �̂ ? in synchronisation filter, W? = 1 for �̂ ?in IBS control law, using flap or flap-lag
residualisation, 2? = 30 and �Z = 0.02.

Important to note is that when �̂ ? is established based upon a flap or flap-lag residualised model, it will be
complemented by means of a flap and flap-lag synchronisation filter respectively. Results provided in Fig. 19 and
Fig. 20 also include the increments due system dynamics and control-depended increments without actuator limits to
compare it with the real case, wherein actuator limits are used.

From Fig. 19 it can be observed that low �Z has little effect on tracking response, apart from flapping and lead-lag
dynamics, which are oscillatory. Moreover, there is significant synchronisation effort required and synchronisation is
done in a different manner for both filters. Next to this, residualisation of lead-lag dynamics does not significantly reduce
the increments due to system dynamics nor does it increase the control-depended increments. Flapping residualisation
is therefore of prime concern when establishing �̂ ? and the synchronisation filter.

(a) Rotorcraft body state ?, synchronisation effort |\12,sync − \12,meas| and cyclic control inputs \12 .

(b) Increments in system dynamics (L?,?Δ ?) and control-depended increments
(M̂ ?Δ\12) for flap-lag residualised model with/without actuator limits.

(c) Lead-lag states Z12 and Z1B .

(d) Increments in system dynamics (L?,?Δ ? + L?,ZΔZ) and control-depended
increments (M̂ ?Δ\12) for flap residualised model with/without actuator limits.

(e) Flapping states V12 and V1B .

Fig. 19 Tracking response for case 1.

Next, the effect of control effectiveness mismatch in synchronisation filter shall be discussed. From Fig. 20 it can be
observed that control effectiveness underestimation does yield inadequate controller performance. Synchronised control
inputs will be magnified for W? < 1, yielding too large control inputs and therefore overestimation of pref. Moreover,
there will be a steady-state error (I? ≠ 0) when ?ref ≠ 0. This shows that the IBS controller is not robust to uncertainties
in �̂ ? of the synchronisation filter.
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(a) Rotorcraft body state ?, synchronisation effort |\12,sync − \12,meas| and cyclic control inputs \12 .

(b) Increments in system dynamics (L?,?Δ ?) and control-depended increments
(M̂ ?Δ\12) for flap-lag residualised model with/without actuator limits.

(c) Lead-lag states Z12 and Z1B .

(d) Increments in system dynamics (L?,?Δ ? + L?,ZΔZ) and control-depended
increments (M̂ ?Δ\12) for flap residualised model with/without actuator limits.

(e) Flapping states V12 and V1B .

Fig. 20 Tracking response for case 2.

Based on the results of the lateral ADS-33E-PRF tracking task, the following conclusions can be drawn:

• the difference in �̂ ? based upon flap or flap-lag residualisation was minor (−146.74 and −149.88 for flap and
flap-lag residualisation respectively). Most importantly, flap-lag residualisation did not improve the ratio of
the control-depended increments to the increments due to system dynamics. Moreover, the improvement in
performance was minor, since '"(�? was found to be equal to 0.241 deg/s and 0.240 deg/s for flap and flap-lag
residualisation respectively. The IBS controller is therefore robust enough to uncertainties in lead-lag dynamics,
because it does not significantly improve controller performance.

• for model I it can be stated that it is not robust to uncertainties in control effectiveness in the synchronisation filter.
Control effectiveness mismatch for the rotor synchronisation filter did severely affect controller performance,
because '"(�? changed to 0.287 deg/s and 0.283 deg/s for flap and flap-lag residualisation respectively.

F. Closed-loop frequency analysis for IBS controller with synchronisation filter
Next, a closed-loop frequency analysis will be considered. The main objective is to show that adequate closed-loop

frequency response can be assured without accounting for lead-lag dynamics in the synchronisation filter and to proof
that the controller is not robust to uncertainties in control effectiveness mismatch for �̂ ? in the rotor synchronisation
filter. The former is equivalent to stating that residualisation of lead-lag dynamics is redundant for improving the ratio
of control-depended increments to increments due to system dynamics. The analysis shall be conducted for model I
with flap or flap-lag synchronisation filter, �Z ∈ [0.02 0.4] and with or without control effectiveness mismatch. The
cases of interest are:

• case 1: W? = 1 for �̂ ? in IBS control law and synchronisation filter and 2? ∈ [20, 40].
• case 2: W? = 0.75 for �̂ ? in synchronisation filter, W? = 1 for �̂ ? in IBS control law and 2? = 40.

In Fig. 21 the results of the closed-loop frequencies analysis are provided.
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(a) Case 1 with 2? = 20 (left) and 2? = 40 (right). (b) Case 2 with 2? = 40.
Fig. 21 Results of closed-loop frequency analysis for cases 1 and 2.

Based on the closed-loop frequency analysis the following can be concluded:

• increasing 2? does increase both bandwidth as well as the resonance peak. This shows that quicker controller
response does come at cost of overreaction of the closed-loop system.

• closed-loop frequency response has not significantly improved when accounting for lead-lag dynamics in
establishing the control effectiveness. The significant amount of additional model knowledge does outweigh the
benefits of using a control effectiveness based upon flap-lag residualisation, therefore the IBS controller is robust
to uncertainties in lead-lag dynamics. Modification of control effectiveness and synchronisation filter is therefore
not required when lead-lag dynamics is being added to a rotorcraft model.

• the IBS controller is not robust to control effectiveness mismatch in the synchronisation filter. For W? < 1 it was
found that ?ref was being overestimated and therefore a steady-state error was present in the tracking response.
It should be noted that for case 2 given in Fig. 21, |��! ( 9l) | > 1 for 0.1 rad/s to 23 rad/s, which implies a
significant region of overestimation. This is because the synchronisation filter magnifies measured control inputs.

G. Closed-loop stability analysed using Routh-Hurwitz stability criterion
Next, it will be necessary to consider the analytical closed-loop stability using the Routh-Hurwitz stability criterion.

The analysis shall be considered for a closed-loop system using model I, with IBS controller and flap or flap-lag
synchronisation filter, �Z ∈ [0.01, 0.015, ..., 0.03] and 2? ∈ [0, 2, ..., 50]. Full and accurate knowledge of system
dynamics is assumed when constructing the filters, with the exception of �̂ ? . The objective is to determine closed-loop
system stability for BFL model I under specified conditions. The following cases shall be considered:

• case 1: W? = 1 for �̂ ? in flap or flap-lag synchronisation filter and W? ∈ [1, 0.5, 3] for �̂ ? in IBS control law.
• case 2: W? = 1 for �̂ ? in IBS control law and W? ∈ [1, 0.5, 3] for �̂ ? in flap or flap-lag synchronisation filter.

The main variables that shall be changed during the analysis are: W? , 2? and �Z . In Fig. 22 and Fig. 23 the results
of the closed-loop stability analysis are provided for case 1 and 2 respectively. Moreover, a constant line of �Z = 0.02 is
provided, which represents the low structural damping of a hingeless MBB Bo 105 rotor (taken from [25]). Based on
obtained results the following can be stated:

• for case 1, W? < 1 does pose the most stringent restrictions on allowable 2? , because it will magnify the incremental
control part from Eq. 55, yielding magnified control inputs. Moreover, there is little difference in stability region
for the flap and flap-lag synchronisation filter. This shows that flap-lag synchronisation, or equivalently flap-lag
residualisation, does not yield a significant improvement in closed-loop stability.

• for case 2 and W? > 1 for �̂ ? in synchronisation filter there is little difference in closed-loop stability with
respect to the previous case. For W? < 1 there is a decrease in stability region, because the synchronisation filter
provides magnified control inputs, resulting in quicker system instability. There is also a difference in closed-loop
stability for the flap and flap-lag synchronisation filter. The region of stability for the flap-lag synchronisation filter
appears to be less. This is because the flap-lag synchronisation filter would be associated with a larger peak at the
regressive lead-lag frequency, which becomes greater for decreasing �Z (see Fig. 18). This subsequently would
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yield magnified control inputs at this frequency and therefore a greater likelihood of closed-loop system instability.

(a) IBS controller with flap synchronisation filter and W? = 1, W? = 0.5 and W? = 3 respectively.

(b) IBS controller with flap-lag synchronisation filter and W? = 1, W? = 0.5 and W? = 3 respectively.
Fig. 22 Results of closed-loop stability analysis for case 1.

(a) IBS controller with flap synchronisation filter and W? = 1, W? = 0.5 and W? = 3 respectively.

(b) IBS controller with flap-lag synchronisation filter and W? = 1, W? = 0.5 and W? = 3 respectively.
Fig. 23 Results of closed-loop stability analysis for case 2.

VII. Analysis on CFIBS controller using main MBB Bo 105 simulation model
In this section, robustness of the CFIBS controller with rotor synchronisation filter shall be considered for the main

MBB Bo 105 simulation model. It will be shown that, accounting for lead-lag dynamics when establishing Ml using
the method of residualised dynamics is redundant, since Ll,Z and Ll, ¤Z are not present in the current model. Moreover,
it will be proven that establishing Ml by means of first-order flap residualisation will suffice for a model associated with
second-order flapping dynamics. On top of this, inadequate synchronisation will be related to control effectiveness
mismatch in the rotor synchronisation filter. First, simulation conditions and tracking task for the angular rate control
mode will be provided. There after, actual and idealised modes of motion will be provided along with synchronisation
filter frequency response. Lastly, tracking response is given.

A. Simulation conditions and tracking task for angular rate control mode
The analysis will involve a tracking task in accordance with regulations stipulated by the ADS-33E-PRF for

aggressive agility [22]. The main objective is to reach level 1 rate response for ? and @, which implies that rates of
±50◦/B and ±30◦/B must be reached respectively. On the other hand, yaw rate will be considered 0◦/B. On top of this,
the tracking task shall be executed from a trim condition of 1000 m altitude, 10 m/s forward flight and fixed main rotor
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collective. Most importantly, �Z was set equal to 0.02, which represents the low structural damping of a hingeless MBB
Bo 105 rotor [25]. General conditions under which the simulations are being conducted, are provided in Section IV.
The CFIBS controller from Section III shall be used along with the magnitude and rate limitations from Table 8 given in
the Appendix. Control effectiveness and synchronisation filter design shall be considered in this section. The above
mentioned tracking task shall be considered for a set of cases. All cases will incorporate rotor synchronisation filters
that are established using the second-order flap(-lag) model from the main simulation model, except for the filter used in
the last case. Moreover, full and accurate model knowledge is assumed for the synchronisation filters, with the except of
M̂l , which may not be considered fully known. The following cases shall be analysed:

• case 1: �l = O3G3 for M̂l in CFIBS control law and synchronisation filter and M̂l is established based upon flap
residualisation, therefore a flap synchronisation filter shall be used.

• case 2: �l = O3G3 for M̂l in CFIBS control law and synchronisation filter and M̂l is established based upon
flap-lag residualisation, therefore a flap-lag synchronisation filter shall be used.

• case 3: �l = 0.75 · O3G3 for M̂l used in synchronisation filter, �l = O3G3 for M̂l used in the CFIBS control law
and M̂l is established based upon flap residualisation, therefore a flap synchronisation filter shall be used.

• case 4: �l = O3G3 for M̂l in CFIBS control law and synchronisation filter and M̂l is established based upon flap
residualisation, therefore a flap synchronisation filter shall be used. However, both M̂l and synchronisation filter
are based upon first-order flap dynamics.

The control effectiveness based upon flap residualisation given a first-order flapping model is provided in Eq. 66.
The first-order flapping model could be obtained from the second-order flapping model of the main MBB Bo 105
rotorcraft model by neglecting second-order derivatives and rewriting the equation. In Eq. 67 and Eq. 68. M̂l,' is
provided for flap or flap-lag residualisation given second-order flap and flap-lag dynamics respectively.

M̂l,' = Nl − Ll,VL
−1
V,VNV (66)

M̂l,' = Nl − Ll,VL
−1
¤V,VN ¤V (67)

M̂l,' = Nl − [Ll,V Ll,Z ]
[
L ¤V,V L ¤V,Z
L ¤Z ,V L ¤Z ,Z

]−1 [
N ¤V
N ¤Z

]
(68)

Case 1 and case 3 use M̂l,' from Eq. 67, case 2 incorporates M̂l,' from Eq. 68 and case 4 uses M̂l,' from Eq.
66. The synchronised control inputs for flap and flap-lag residualisation are provided in Eq. 69 and Eq. 70 respectively.
All cases incorporate Eq. 69 for obtaining synchronised control inputs, with the exception of case 2, which uses Eq. 70.

[sync = M̂
−1
l,'

[
Ll,V#sync + Nl[meas

]
, (69)

[sync = M̂
−1
l,'

[
[Ll,V Ll,Z ]

[
#sync
' sync

]
+ Nl[meas

]
. (70)

The measured control inputs, after being fed through the second-order washout filter, are required to obtain the
synchronised control inputs given Eq. 69 and Eq. 70. The synchronised flapping angles for the idealised model based
upon first-order flap residualisation (case 4) can be obtained from Eq. 71. The synchronised flapping angles for the
flapping synchronisation filter based upon second-order flap residualisation (case 1 and 3) can be determined using
Eq. 72. The synchronised flapping and lead-lag angles for the flap-lag synchronisation filter based upon second-order
flap-lag residualisation (case 2) can be determined using Eq. 73.

¤# = LV,V#sync + NV[meas (71)
[ ¤#sync¥#sync

]
=

[
LV,V LV, ¤V
L ¤V,V L ¤V, ¤V

] [
#sync¤#sync

]
+

[
NV
N ¤V

]
[meas (72)
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[meas (73)
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B. Actual and idealised modes of motion
First, the actual (full model described by Eq. 10) and idealised modes of motion shall be considered, which are

provided in Fig. 24. The modes of motion were obtained from the simulation model during the execution of the tracking
task at a sampling rate of 0.2 sec between C = 0 sec and C = 7 sec. The idealised modes of motion for case 1,3 and 4
are decoupled from flapping dynamics, whereas the idealised modes of motion for case 2 are decoupled from flap-lag
dynamics. The idealised and actual modes of motion differ for all cases analysed, however there is little difference
among the four cases. The difference in idealised modes of motion using flap or flap-lag residualisation is not significant,
which implies that the largest discrepancy between idealised and actual modes of motion is due to flapping dynamics.

(a) Actual coupled pitch mode of motion for case 1 - 4 from left to right respectively.

(b) Actual coupled roll mode of motion for case 1 - 4 from left to right respectively.

(c) idealised (decoupled) pitch mode of motion for case 1 - 4 from left to right respectively.

(d) idealised (decoupled) roll mode of motion for case 1 - 4 from left to right respectively.
Fig. 24 Actual and idealised modes of motion of open-loop system without controller during execution of tracking task.

C. Rotor synchronisation filter frequency response
Next, frequency response of the rotor synchronisation filters will be discussed. In Fig. 25 the frequency response of

the flap and flap-lag synchronisation filter is provided for case 1 and 2. It can be observed that there is little difference in
frequency response, with the exception at the regressive and advancing lead-lag frequencies. Lead-lag dynamics did not
significantly alter rotor synchronisation filter response, which is due to Ll,Z and Ll, ¤Z being absent in the current
model. In Fig. 26 the frequency response of the rotor synchronisation filter for case 3 is provided. It can be observed
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that for �l < �3G3, magnitude shifts upwards. This means that �−1
l acts as a pure gain, yielding magnified actuator

measurements. In Fig. 27 the frequency response for the rotor synchronisation filter from case 1 and 4 are provided. It
can be observed that the difference between both filters is neglectable, with the exception at higher frequencies.

Fig. 25 Frequency response of flap (F) and flap-lag (FL) synchronisation filter for case 1 and case 2 respectively.

Fig. 26 Frequency response of flapping synchronisation filter for case 3.

Fig. 27 Frequency response of flapping synchronisation filter for case 4.

D. Tracking response of combined lateral and longitudinal tracking task
Next, results of the tracking task shall be discussed. In Fig. 28 - 31 the results are provided for case 1 to 4

respectively. It should be noted that gains were chosen empirically and set equal to diag([15,14,10]) for all cases. First,
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the difference in tracking response for case 1 and case 2 will be considered. Based on results provided in Fig. 29, it can
be stated that accounting for lead-lag dynamics in rotor synchronisation is undesirable as it leads to oscillatory tracking
response. Synchronised actuator measurements are slightly erratic, which is most likely due to the small peak in the
synchronisation filter frequency response (see Fig. 25). Based on the results for case 1 given in Fig. 28, it can be stated
that adequate response can be achieved by residualisation of (second-order) flapping dynamics only. This is based on
the fact that control effectiveness based upon flap residualisation does not differ from the control effectiveness based
upon flap-lag residualisation. This shows that controller is robust to uncertainties in lead-lag dynamics.

Fig. 28 Results of tracking task for case 1, showing rotorcraft state variables, control inputs, absolute difference in
synchronised and unsynchronised actuator measurement and control effectiveness for IBS control law.

Fig. 29 Results of tracking task for case 2, showing rotorcraft state variables, control inputs, absolute difference in
synchronised and unsynchronised actuator measurement and control effectiveness for IBS control law.

It can be observed from Fig. 30 that tracking response is significantly affected when there is mismatch of the control
effectiveness in the flapping synchronisation filter. This is based upon the fact that the flapping synchronisation filter
does magnify the measured actuator measurements. This can be observed from the absolute difference in synchronised
and unsynchronised actuator measurement. This means that 8ref will always be overestimated, therefore there does
exist a steady-state error. The controller is therefore not robust to uncertainties in control effectiveness of the rotor
synchronisation filter. The difference in tracking response between case 1 from Fig. 28 and case 4 from Fig. 31 is
neglectable. This shows that the rotor synchronisation filter can be established using first-order flapping dynamics
only. This was also expected as the rotor synchronisation filters for both cases were almost identical. Moreover, the
control effectiveness is also similar for case 1 and case 4. This is an important result, because the control effectiveness
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can therefore be established by means of residualisation of first-order flapping dynamics, which requires less model
knowledge. Likewise, the synchronisation filter can also be established by only considering first-order flapping dynamics.

Fig. 30 Results of tracking task for case 3, showing rotorcraft state variables, control inputs, absolute difference in
synchronised and unsynchronised actuator measurement and control effectiveness for IBS control law.

Fig. 31 Results of tracking task for case 4, showing rotorcraft state variables, control inputs, absolute difference in
synchronised and unsynchronised actuator measurement and control effectiveness for IBS control law.

Table 1 Tracking RMSE for different cases.

Robustness case '"(�? [deg/sec] '"(�@ [deg/sec] '"(�A [deg/sec]
case 1 0.1193 0.1215 0.0109
case 2 0.1134 0.1202 0.011
case 3 0.2220 0.1533 0.1443
case 4 0.1186 0.1212 0.011

Based on previous results, it would suffice to establish control effectiveness by means of residualisation of first-order
flapping dynamics only. This does obviate the need of having full and accurate knowledge of the second-order flapping
model. This is in contrast by which the CFIBS controller with synchronisation filter was established in [3]. This shows
that with less model knowledge the control effectiveness, and hence the synchronisation filter, can be established. On
the other hand, control effectiveness must be well-known, otherwise control inputs can be magnified or diminished. In
Table 1 the RMSE is provided for the different cases, which confirms previous findings.

Another important aspect when considering IBS is the validity of the TSS condition. It will therefore be of great
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interest to assess the assumption of neglecting increments in system dynamics. The expression of the first-order Taylor
series expansion of the angular rate derivative around its current solution is provided in Eq. 74. Neglecting increments
due to system dynamics and higher-order terms will yield the expression provided in Eq. 75.

¤8 = ¤80 + Ll,0Δ^ + Nl,0Δ[ + O(Δ^2,Δ[2) (74)

¤8 � ¤80 + Nl,0Δ[ (75)

In Fig. 32 increments in system dynamics and control-depended increments are provided for the four cases, wherein
O(Δ^2,Δ[2) was not considered. It can be observed that increments due to system dynamics are not significantly
smaller than the control-depended increments. This shows that the TSS assumption is not completely valid. The
tracking error of the angular rates can be identified from the significant non-zero increments of the system dynamics.
Moreover, it does also suggest that residualisation of other internal dynamics such as inflow dynamics could diminish
the increments due to system dynamics and increase the control-depended increments. However, this would require
additional model knowledge, which is not desirable. Another solution would be by reducing the delay of the incremental
control loop, which can be achieved by means of faster actuator dynamics, smaller step size of the incremental-based
controller, smaller acceleration measurement delay and more [6].

(a) Case 1.

(b) Case 2.

(c) Case 3.

(d) Case 4.
Fig. 32 Increments in system dynamics and control-depended increments for flap-lag residualised case II and flap residu-
alised cases I,III and IV. It should be noted that ^res can be identified as the residualised state vector.

VIII. Conclusion
In this particular research the effects of flapping and lead-lag dynamics on IBS control design, performance and

robustness were considered. For BFL models it was found that residualisation of flapping dynamics was sufficient to
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establish an idealised rotorcraft model for which control-dependency was greater than state-dependency in the first-order
Taylor series. In other words, when executing a control task, it was found that increments in system dynamics were
already sufficiently diminished and control-depended increments were greatly enhanced. Residualisation of flapping
dynamics did therefore yield a sufficient modified control effectiveness matrix, which could be used in an IBS control
law. On the other hand, residualisation of flap-lag dynamics did not yield an idealised rotorcraft model that differed
from the idealised rotorcraft model based upon flap residualisation. This shows that, the IBS controller is robust
enough to uncertainties in lead-lag dynamics and adequate controller performance can be achieved by considering flap
residualisation only.

An idealised rotorcraft model based upon flap residualisation, would yield a flap synchronisation that requires
knowledge of the flapping dynamics. This can be regarded as one of the drawbacks when establishing an IBS controller
based upon an idealised rotorcraft model. When the control effectiveness matrix in the synchronisation filter is associated
with a control effectiveness mismatch, a steady-error would be apparent in the tracking response. This shows that the
synchronisation filter is not robust to uncertainties in the control effectiveness matrix. All in all, it can be stated that
sufficient model knowledge is required when incorporating an IBS controller with synchronisation filter. This is highly
undesirable, because even though IBS is being considered for establishing the stabilising control law, one does still rely
upon model knowledge to assure adequate controller performance.

Appendix

Helicopter data
This appendix provides helicopter data of the MBB Bo 105 used for simulations. Rotorcraft data was obtained from

[1, 3, 26–29]. Actuator magnitude and rate limits were taken from [1]. Moreover, helicopter data for the Aérospatiale SA
330 Puma are also provided. Actuator limits for this rotorcraft were set equal to the ones provided for the MBB Bo 105.

Table 2 Parameters of the MBB Bo 105.

description of parameter symbol value unit

Normalised flapping frequency _V = 1 + 3
2
nV

1−nV 1.12 -
Normalised lagging frequency _2

Z =
3
2
nZ

1−nZ 0.49 -
Lag center-spring stiffness  Z = _2

Z �blΩ
2 224 kNm · rad−1

Flap center-spring stiffness  V = (_2
V − 1)�VΩ2 113 kNm · rad−1

Main rotor Lock number W =
d�LU 2e'

4

�V
5.0692 rad−1

Main rotor solidity f = #2e
c' 0.007 -

Tail rotor solidity ftr =
#tr2etr
c'tr

0.1206 -

Table 3 Parameters main rotor of MBB Bo 105.

description of parameter symbol value unit
Rotational speed Ω 44.4 rad/s
Rotor radius R 4.91 m

Steady-state coning angle VBB = V0 2.5 deg
Number of blades b/N 4 -

Equivalent blade chord c4 0.27 m
Zero lift profile drag coefficient ��0 0.011 -
Profile drag coefficient ��,1 ��1 0.4 -

Non-dimensional inflow velocity hover _8 0.0495 -
Static blade moment (approximated) <B 50 mkg

Blade lift curve slope C!U 6.11 rad−1
Linear blade twist \tw -0.1396 rad

Blade mass mbl 27.3 kg
Blade moment of inertia about its flapping hinge I1; 231.7 kgm2

Equivalent hinge offset ratio nV 0.14 -
Rotor shaft tilt angle WB 0.0524 rad

Lateral position with respect to the helicopter c.g. ;1 0.02995 m
Longitudinal position with respect to the helicopter c.g. ; -0.00761 m

Vertical position with respect to the helicopter c.g. ℎ 0.94468 m
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Table 4 Tail rotor parameters of MBB Bo 105.

description of parameter symbol value unit
Rotational speed Ωtr 233.1 rad/s
Rotor radius Rtr 0.95 m

Number of blades Ntr 2 -
Equivalent blade chord c4CA 0.18 m
Blade lift curve slope C!U,tr 5.70 rad−1

Main rotor downwash factor at the tail rotor Ktr 1 -
Longitudinal position with respect to the helicopter c.g. ltr 6.00965 m

Vertical position with respect to the helicopter c.g. htr 1.05418 m

Table 5 Fuselage parameters of MBB Bo 105.

description of parameter symbol value unit

Parasite drag area F0 1.3 m2

Eq. volume in the horizontal plane with only circular sections VfusM 6.126 m3

Eq. volume in the lateral plane with only circular sections VfusN 25.525 m3

Incidence angle for zero pitch moment Ufus,"=0 0 rad
Correction coefficient for moment calculation Kfus 0.83 -

Table 6 Horizontal tail parameters of the MBB Bo 105.

description of parameter symbol value unit

Surface area Sht 0.803 m2

Surface lift curve slope C!U ,ht 4.0 rad−1

Built-in surface incidence Uhto 0.0698 rad
Correction coefficient in the pitch moment Kht 1.5 -

Longitudinal position with respect to the helicopter c.g. lht 4.548 m

Table 7 Vertical tail parameters of the MBB Bo 105.

description of parameter symbol value unit

Surface area Svt 0.805 m2

Surface lift curve slope C!U ,vt 4.0 rad−1
Built-in surface incidence Vvto -0.0812 rad

Longitudinal position with respect to the helicopter c.g. lvt 5.416 m
Vertical position with respect to the helicopter c.g. hvt 0.970 m

Table 8 Actuator limitations of the MBB Bo 105.

description of parameter symbol Min. saturation Max. saturation Rate limit
limit [deg] limit [deg] [deg/sec]

Collective pitch main rotor \0 -0.2 20.0 16.0
Longitudinal cyclic \1s -6.0 11.0 28.8

Lateral cyclic \1c -5.7 4.2 16.0
Collective pitch tail rotor \0,tr -8.0 20.0 32.0

Table 9 Mass and inertia properties of the MBB Bo 105.

description of parameter symbol value unit
Total mass M 2200 kg
Total weight W 21574 N

Inertia tensor J
[1433 0 −660

0 4973 0−660 0 4099

]
kg· m2
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Table 10 Parameters of Aérospatiale SA 330 Puma [9, 13].

description of parameter symbol value unit
Rotational speed Ω 28.3 rad/s
Rotor radius R 7.5 m

Steady-state coning angle VBB = V0 0.74 deg
Number of blades b/N 4 -

Equivalent blade chord c4 0.3 m
Zero lift profile drag coefficient ��,0 in (�� = ��,0 + ��,1U2) ��0 0.011 -

Profile drag coefficient ��,1 in (�� = ��,0 + ��,1U2) ��1 0.4 -
Non-dimensional inflow velocity in hover _8 0.0565 -

Static blade moment (approximated) <B 200 mkg
Blade mass mbl 68 kg

Blade moment of inertia about its flapping hinge I1; 1280 kgm2
Equivalent hinge offset ratio nV 0.3 -

Total mass M 5805 kg
Total weight W 56947 N

height main hub above centre of gravity h 1.875 m
Normalised flapping frequency _V = 1 + 3

2
nV

1−nV 1.02 -
Normalised lagging frequency _2

Z =
3
2
nZ

1−nZ 0.0625 -

Main rotor Lock number W =
d�LU 2e'

4

�bl
9.374 rad−1

Flap center-spring stiffness  V = (_2
V − 1)�blΩ2 48 kNm · rad−1

helicopter moment of inertia about roll axis �GG 9638 kg· m2

helicopter moment of inertia about pitch axis �HH 33240 kg· m2
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Part II
Main Report



2
Rotorcraft Simulation Models

In this chapter the main BO-105 rotorcraft simulation model is introduced along with a set of simplified BF(L)
rotorcraft models. The original BO-105 model originates from [46] and has been extended with a first-order
Pitt-Peters inflow model and second-order flapping model from [38] by van der Goot [55]. The main simula-
tion model has been extended by means of lead-lag dynamics from [34]. In Section 2.1 the coupled body-rotor
equations of motion are provided using the CSER model. In Section 2.2 the coupled nature between flap and
lag dynamics is provided. The coupled flap-lag EOM from [34] are provided in Section 2.3. The first-order
Pitt-Peters inflow model is introduced in Section 2.4. The forces and moments generated by the rotorcraft are
touched upon in Section 2.5. Body dynamics will be considered in Section 2.6. Numerical integration of the
EOM will be considered in Section 2.7. In Section 2.8 simplified rotorcraft models are provided.

2.1. Coupled Body-Rotor Equations of Motion
The main objective of this section is provide background information about the rotor model of the main sim-
ulation model. The current rotorcraft model does incorporate a quasi-steady second-order flapping model
from Padfield [37] modelled up to the first harmonic of the rotor speed. Below the derivation of the CSER
flapping model from Padfield [37] is provided. The reference frames used to derive the coupled body-rotor
EOM can be found in Appendix A.

2.1.1. Second-order flapping dynamics model defined using CSER model
In order to obtain the flapping EOM, it is first necessary to determine the moments around the center of
rotation of each ith blade. This is analogous to taking moments about the centre hinge spring, because of the
spring being situated at the the center of rotation with spring stiffness Kβ. The moment can be written as∫ R

0
rbl

(
fz (rbl )+mbl azb

)
drb +Kββi = 0, (2.1)

wherein fz (rbl ) is the aerodynamic normal force acting on the blade element, azb the acceleration of a blade
element with mass m and Kβ the centre-spring stiffness acting over radial distance β [37]. Blade weight force
was not taken into account, because the acceleration and mean lift forces are approximately one or two orders
of magnitude greater. The aerodynamic normal force is given in Eq. 2.2 [37].

fz =−cos(φ)l −d sin(φ) ≈−cos(φ)l −dφ. (2.2)

Figure 2.1: CSER model with model parameters [37]. Figure 2.2: Blade element with decomposed forces [37].
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4 2. Rotorcraft Simulation Models

It can be observed that l and d are the decomposed components of fz (rb). The magnitude of l and d depend
upon φ, being the incidence angle between rotor inflow and the plane normal to the rotor shaft. The blade
element acceleration azb does include the component of gyroscopic effect, which is due to the fuselage and
hub rotation. The approximate expression for azb is given in Eq. 2.3 [37].

azbl ≈ rbl

(
2Ω

(
phw cos

(
ψbw

i

)
−qhw sin

(
ψbw

i

))
+

(
q̇hw cos

(
ψbw

i

)
+ ṗhw sin

(
ψbw

i

))
−Ω2βi − β̈i

)
(2.3)

Angular accelerations and velocities have been defined with respect to the hub-wind (hw) reference frame.
This reference frame is analogous to the hub reference frame, but the xhw -axis aligned with the hub velocity in
the hub plane. The hub-wind frame of reference is found suitable for the derivation of the BF EOM. However,
later on the BF EOM needs to be transformed to the hub frame of reference to determine forces and moments.
The analytical expressions for lift l (ψbw

i ,rbl ) and drag d(ψbw
i ,rbl ) are respectively

l
(
ψbw

i ,rbl

)
= 1

2
ρca0

(
θ+ UT

UP

)(
U 2

T +U 2
P

)
, (2.4)

d
(
ψbw

i ,rbl

)
= 1

2
ρcδ

(
U 2

T +U 2
P

)
, (2.5)

wherein UT and Up are the in-plane and normal velocity components, ρ the air density, a0 the lift curve slop,
c the chord length, θ the blade pitch angle and δ the profile drag coefficient is written as a function of a mean
value and a thrust-depended term [37]. This is due to blade incidence alterations. The profile drag coefficient
is a linear combination of the constant coefficients δ0 and δ2C 2

T thus δ0+δ2C 2
T [37]. As mentioned previously,

l
(
ψbw

i ,rbl
)

and d
(
ψbw

i ,rbl
)

do depend on UT and UP , which can be expressed in normalised form as

ŪT

(
ψbw

i ,rbl

)
= UT

ΩR
= r̄bl

(
1+ ω̄xβi

)+µsin
(
ψbw

i

)
, (2.6)

ŪP

(
ψbw

i ,rbl

)
= UT

ΩR
=

(
µz −λ0 −βiµcos

(
ψbw

i

))
+ r̄bl

(
ω̄y − β̇i

Ω
−λ1

)
, (2.7)

wherein ŪT
(
ψbw

i ,rbl
)

and ŪP
(
ψbw

i ,rbl
)

depend on the non-dimensional advance ratios µ and µz respec-

tively [37]. These depend on local velocities in the hub-wind reference frame at a given azimuth angle ψbw
i .

The normalised velocity components do also depend on the non-dimensional angular velocity components
ω̄x and ω̄y respectively. ŪT

(
ψbw

i ,rbl
)

does not explicitly depend on the inflow dynamics, on the contrary

ŪP
(
ψbw

i ,rbl
)

does depend on λ0 and λ1, being a constant inflow component and an inflow component vary-

ing with ψbw
i and r̄bl respectively. The advance ratios µ and µz are provided in Eq. 2.8 [37].

µ= uhw

ΩR
=

(
u2

h + v2
h

(ΩR)2

)1/2

, µz = whw

ΩR
. (2.8)

The advance ratios depend on hub velocities in the hub-wind reference frame. The non-dimensional angular
velocity components about the xhw - and yhw -axis of the fuselage are given in Eq. 2.9 and Eq. 2.10 [37].

ω̄x = p̄hw cos
(
ψbw

i

)
− q̄hw sin

(
ψbw

i

)
(2.9)

ω̄y = p̄hw sin
(
ψbw

i

)
+ q̄hw cos

(
ψbw

i

)
(2.10)

Both ω̄x and ω̄y show dependency on the non-dimensional downwash velocity . The non-dimensional down-
wash velocity normal to the disc plane is a linearly varying with ψ and rbl . Additionally it also depends on a
constant inflow component, namely λ0. The expression for λ(ψhw

i ) is given in Eq. 2.11 [37].

λ(ψhw
i ) = vi

ΩR
=λ0 +λ1(ψhw

i )r̄bl (2.11)

The moment equation for each i th rotor blade around the center spring hinge from Eq. 2.1 can be rewritten
by using Eq. 2.3-2.9. The second-order differential equation of the flapping motion for each rotor blade is
given in the next equation [37].
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β′′
i +λ2

ββi =2

((
p̄hw + q̄ ′

hw

2

)
cosψi −

(
q̄hw + p̄ ′

hw

2

)
sinψi

)
+ γ

2

∫ 1

0

(
Ū 2

T θ+ŪT ŪP
)

i r̄bdr̄b (2.12)

The equation can be expanded into another form, which depends on λβ, γ and Iβ. The expanded form also
does require the rotor blade pitch angle θ to be rewritten as the summation of the local twist linear with radial
position r̄bθtr and the applied twist θp , thus θ is θp + r̄blθt w with r̄bl equal to drbl /dθt w [37]. The second-
order differential equation of the flapping motion can be expanded into the form given in Eq. 2.13 [37].

β′′
i + fβ′γβ′

i +
(
λ2
β
+γµcosψi fβ

)
βi =2

((
p̄w + q̄ ′

w
2

)
cosψi −

(
q̄w − p̄ ′

w
2

)
sinψi

)
+γ[

fθpθp + fθt wθt w + fλ
(
µz −λ0

)+ fω
(
ω̄y −λ1

)] (2.13)

The Aerodynamic coefficients in Eq. 2.13 have been expanded up to O(µ2), therefore higher order terms are
neglected. This affects flapping response for µ≤ 0.35. The aerodynamic coefficients are given in Eq. 2.14 [37].

f



fβ′ = 1+ 4
3µsinψi

8

fβ = fλ =
4
3 +2µsinψi

8

fω = 1+ 4
3µsinψi

8

fθp = 1+ 8
3µsinψi +2µ2 sin2ψi

8

fθt w =
4
5 +2µsinψi + 4

3µ
2 sin2ψi

8

(2.14)

The second-order differential equation of the flapping motion for each i th rotor blade defined in Eq. 2.13, can
be written into the following general form

β
′′
I +C I (ψhw )β

′
I +D I (ψhw )βI = H I (ψhw ), (2.15)

which is defined in the rotating hub-wind reference frame [37]. The individual blade coordinates (IBCs) shall
be converted to multi-blade coordinates (MBCs), which can be achieved by the following transformation

βI = LββM , with



β0 = 1

Nb

Nb∑
i=1

βi

β0d = 1

Nb

Nb∑
i=1

βi
[−1

]i

β j c = 2

Nb

Nb∑
i=1

βi cos( jψhw
i )

β j s = 2

Nb

Nb∑
i=1

βi sin( jψhw
i )

and βI = [β1, β2, β3, β4]T , (2.16)

wherein the MBCs can be obtained by considering the inverse transformation, thus L−1
β
βI [37]. Additionally

it should be noted that the individual blade azimuth angles are related with each other in accordance with

ψhw
i =ψhw − π

2
(i −1), for i = 1,2..n. (2.17)

The transformation from Eq. 2.16 can be written in matrix form, which is given in Eq. 2.18 [37]. The transfor-
mation to MBCs is associated with the inverse of Lβ(ψhw ), which is provided in Eq. 2.19 [37].

Lβ(ψhw ) =


1 −1 cos(ψhw ) sin(ψhw )
1 1 sin(ψhw ) −cos(ψhw )
1 −1 −cos(ψhw ) −sin(ψhw )
1 1 −sin(ψhw ) cos(ψhw

 (2.18)
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L−1
β (ψhw ) = 1

4


1 1 1 1
−1 1 −1 1

2cos(ψhw ) 2sin(ψhw ) −2cos(ψhw ) −2sin(ψhw )
2sin(ψhw ) −2cos(ψhw ) −2sin(ψhw ) 2cos(ψhw )

 (2.19)

The transformation matrix Lβ(ψhw ) enables to perform the transformation from rotating to the non-rating
hub-frame of reference. This also requires Eq. 2.15 to be rewritten in the non-rotating frame of reference

β′′
M +C M (ψhw )β′

M +D M (ψhw )βM = M M (ψhw ), (2.20)

wherein βM does consist of the vector with the MBC coordinates β0, β1c , β1s and βN /2 [37]. In order to
establish the MBC transformation it is deemed necessary to consider it with respect to the hub reference
frame. Transforming the IBCs in the rotating hub-wind reference frame to MBCs in the non-rotating frame
of reference is problematic, because the hub-wind reference frame is non-inertial around hover state. It is
therefore a natural choice to obtain MBCs from the IBCs using the hub reference frame. This can be achieved
by observing the following relation between the transformation matrices

Lβ(ψhw ) = Lβ(ψh +ψw ) = Lβ(ψh)T w (ψw ), thus Lβ(ψhw ) = Lβ(ψhw )T −1
w (ψhw ), (2.21)

wherein T w is of course the transformation from the hub to the hub-wind reference frame [37]. In order to
define Eq. 2.15 by means of Eq. 2.21, it is also necessary to have its first and second order derive with respect
to ψhw . In order to establish this, the derivative equivalence provided below must be considered [37].

dLβ(ψhw )

dψhw
= dLβ(ψh +ψw )

d(ψh +ψw )
= dLβ(ψh +ψw )

d(ψh +ψw )
= dLβ(dψb

dψh
= dLβ(dψhw )

dψh
. (2.22)

The transformation from Eq. 2.21 and derivative equivalence from Eq. 2.22 enables to define the first and
second order derivatives of Eq. 2.15 in the hub frame of reference with respect to ψh .

βI = Lβ(ψhw )T −1
w (ψw )βM

β′
I = L′

β(ψhw )T −1
w (ψw )βM +Lβ(ψhw )T −1

w (ψw )β′
M

β′′
I = L′′

β(ψhw )T −1
w (ψw )βM +2L′

β(ψhw )T −1
w (ψw )β′

M +Lβ(ψhw )T −1
w (ψw )β′′

M

(2.23)

Substituting the derivatives into 2.20 and isolating the terms associated with the inertia, damping, stiffness
and excitation of the system yields the following set of matrices

C N R = T w L−1
β (ψhw )

(
2L′

βT −1
w +C I Lβ(ψhw )T −1

w

)
,

D N R = T w L−1
β (ψhw )

(
L′′
β(ψhw )T −1

w +C I L′
β(ψhw )T −1

w +D I Lβ(ψbw )T −1
w

)
,

H N R = T w L(ψhw )−1H I .

(2.24)

The second-order differential equation for flapping dynamics with respect to time can be defined as

M N R β̈N R +ΩC N R β̇+Ω2D N Rβ=Ω2F N R . (2.25)

The matrices associated with this differential equation are provided in Eq. 2.26 [37].
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MN R = In×n , CN R = γ

8


1 0 0 2

3µ

0 1 0 0
0 0 1 16

γ
4
3µ 0 − 16

γ 1

 , DN R = γ

8



8λ2
β

γ 0 0 0

γ
0

8λ2
β

γ 0 0

4
3µ 0

8
(
λ2
β
−1

)
γ 1+ µ2

2

0 0 −
(
1− µ2

2

) 8
(
α2
β
−1

)
γ


and

FN R =


θ0

(
1+µ2

)+ 4
3λ+4θt w ( 1

5 +
µ2

6 )+ 2
3

8
3µθ0 +2µλ+2µλ+2µθt w + p̄ − 16

γ q + (
1+ 3

2µ
2
)
θ1s −λ1s

0(
1+ µ2

2

)
θ1c + 16

γ p̄ + q̄ −λ1c +
( 8
γKλ0

)


(2.26)

2.2. Coupled nature of flapping and lead-lag dynamics
With flapping dynamics being defined, it is necessary to introduce lead-lag dynamics. It is of great interest
to understand the coupled nature of the out-of-plane and in-plane motion of the rotor blade. The coupled
flap-lag motion in simplified form from Padfield [37] can be written as

β′′+λ2
ββ−2βζ̇= Mβ, (2.27)

ζ′′+Cζζ̇+λ2
ζζ+2ββ̇= Mζ, (2.28)

wherein M F and M L are the generalised flapping and lead-lag moments. From Eq. 2.27 and Eq. 2.28 it can
be observed that there is mutual influence between the flapping and lagging motion. Lead-lag and flapping
motion are coupled as a result of the Coriolis and aerodynamic forces [31]. The Coriolis effect can be regarded
as an additional inertial force, which was first described by Gustave-Gaspard Coriolis in 1835. When there
is radial lengthening or shortening of the rotor blade about the rotational axis, there will be Coriolis force.
The dominant coupling terms for the flapping and lagging motion are therefore −2βζ̇ and 2ββ̇ respectively.
Due to the low damping characteristics, the Coriolis effect will affect lead-lag motion more than flapping
motion [37, 40]. The lag dynamics can be described by means of a mass-spring system being excited by
means of in-plane aerodynamic forces (profile and induced drag) and Coriolis force due to blade flapping.
The aerodynamic forces do damping the lag motion, but less effectively than the out-of-plane motion. It is
important to note that all lag moments are small compared to the flap moments, thus the Coriolis force due to
the flapping velocity is an important factor in the lag dynamics. For hingeless rotors the structural damping
of the rotor blades should be included. Structural damping is low, but it can be considered important to lag
dynamics because of the in-plane forces being small.

2.3. Lagrange method for defining coupled flap-lag EOM
Rotorcraft model fidelity can be enhanced by including the in-plane motion of the rotor. Implementation
of flap dynamics could be achieved without taking lead-lag dynamics into account, because its effect on
flapping dynamics is minor when comparing the effect of flapping dynamics on lead-lag dynamics. The
aforementioned thus also implies that implementation of lead-lag dynamics also requires flapping dynamics
to be defined. The main objective is therefore to provide the coupled flap-lag model based upon Lagrange’s
method, which was introduced in [34]. A full derivation of the BFL model shall not be given, but a short
version will be considered here. The first step towards deriving the coupled flap-lag EOM is by defining a set
of reference frames as given in Appendix A and a set of assumptions as given in Appendix B. It is first deemed
necessary to determine the velocity vector of the shaft axis origin written in the body axis system, which is
provided in Eq. 2.29 [34].

~V s = ~V +~ω×~r = (u, v, w)
{
~Eb

}+h(0,0,−1)[ω]x
{
~Eb

}
with [ω]x =

 0 r −q
−r 0 p
q −p 0

 (2.29)
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The angular velocity of the rotor blade is the sum of the angular velocity of the centre of gravity of the heli-
copter, the anticlockwise rotor speed and the angular motion of the blade due to flapping. The expression for
the total angular velocity of the rotor blade is provided in Eq. 2.30 [34].

~ωbl = (p, q,r )
{
~Es

}+Ω(0,0,−1)
{
~Es

}+ ζ̇(0,0,−1)
{
~Eζ

}+ β̇(0,−1,0)
{
~Ebl

}
. (2.30)

The blade angular velocity expressed in blade plane of reference can be written as given in Eq. 2.31 [34].

{
~ωbl

}=


pbl

qbl

rbl

{
~Ebl

}
, thus


pbl

qbl

rbl

= {
~Ebl

}−1 {
~ωbl

}
(2.31)

The individual components pbl , qbl and rbl can be expressed respectively as

pbl =−p cosβcosζcosψ+q sinψcosζcosβ−p sinψcosβsinζ−q cosψcosβsinζ−ζ̇sinβ+Ωsinβ , (2.32)

qbl = p sinζcosψ−q sinψsinζcosβ+ β̇−p sinψcosζ−q cosψcosζ , (2.33)

rbl =−p sinβcosζcosψ+q sinψcosζsinβ−p sinψsinβsinζ−q cosψsinβsinζ+ζ̇cosβ−Ωcosβ . (2.34)

An arbitrary point on the blade situated at a distance r from the hub has a velocity ~V ω, with respect to the
blade system of reference, for which the expression is provided in Eq. 2.35 [34].

~Vω =~ωbl ×~rbl = rbl (−1,0,0)[ωbl ]x
{
~Ebl

}
, with [ωbl ]x =

 0 rbl −qbl

−rbl 0 pbl

qbl −pbl 0

 . (2.35)

An arbitrary point on the rotor blade does have total velocity ~V bl consisting of the velocity of the shaft origin
~V Os and the velocity with respect to this given origin ~V ω. Blade velocity

{
~E s

}
is given in Eq. 2.36 [34].

~Vbl = (u −hq, v +hp, w)
{
~Es

}+ rbl (−1,0,0)[β][ζ][ψ] [ωbl ]x
{
~Es

}
(2.36)

Transforming the blade velocity to the blade axis system yields Eq. 2.37 [34].

~Vbl = (u −hq, v +hp, w)[ψ]T [ζ]T [β]T
{
~Ebl

}+rbl (−1,0,0)[ωbl ]x
{
~Ebl

}
(2.37)

The expression for the tangential and perpendicular velocity components of a blade element are provided in
Eq. 2.38 and Eq. 2.39 respectively, wherein v0 is the local inflow velocity [34].

UT =((sinζ)cosψsinβ−cosζsinψsinβ)q + (sinζsinψsinβ+cosζcosψsinβ)p − r cosβ−
cosβ

(
ζ̇)+cosβω

)
rβ+ (cosψcosβ+ sinψsinζ)hp + (sinψcosζ−cosψsinζ)u+

(−sin(ψ)cosζ−cosψsinζ)qh + (cosψcosζ+ sinψsinζ)v

(2.38)

UP =((−sinψcosζ+cosψsinζ))p + (−cosψcosζ− sinψsinζ)q + β̇)
rbl+(sinζcosψsinβ

−cosζsinψsinβ)hp+(sinζsinψsinβ)hp+(−sinζsinψsinβ+cosζcosψsinβ)u−
cosζcosψsinβ−cosζcosψsinβ)qh + vo+(sinζcosψsinβ−cosζsinψsinβ)v−w cosβ

(2.39)

The Lagrangian equations for β and ζ are given in Eq. 2.40 and 2.41 respectively, wherein the total energy
consists of kinetic T and potential V energy [34]. Furthermore Qβ and Qζ are the generalised moments ap-
plied to the system in β- and z-direction respectively. Rayleigh damping is taken into account for lagging
motion.

d

d t

∂
(

1
2 Ibl

(
q2

bl + r 2
bl

))
∂β̇

−
∂
(

1
2 Ibl

(
q2

bl + r 2
bl

))
∂β

+
∂
(

1
2 Kββ

2 + 1
2 Kζζ

2
)

∂β
=

∫ R

0

(
dL cosϕ+dD sinϕ

)
rbl (2.40)

d

d t

∂
(

1
2 Ibl

(
q2

bl + r 2
bl

))
∂ζ̇

−
∂
(

1
2 Ibl

(
q2

bl + r 2
bl

))
∂ζ

+
∂
(

1
2 Kββ

2 + 1
2 Kζζ

2
)

∂ζ
+

1
2Cζζ̇

2

∂ζ̇
=

∫ R

0
(dL sinϕ+dD cosϕ)rbl (2.41)
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The generalised moments in β-and-z directions are due to the aerodynamic moments around the flapping
and lagging hinges respectively. Moreover, the moment due to gravity force being neglected . The expression
for Qβ and Qξ are provided in Eq. 2.42 and Eq. 2.43 respectively [34].

Qβ =
∫ R

0
(dL cosϕ+dD sinϕ)rbl ≈

∫ R

0

ρ

2

(
cdrbl

)
U 2

T C lα
(
α+θt w

rbl

R

)
rbl (2.42)

Qξ =
∫ R

0
(dL sinϕ+dD cosϕ)rbl ≈

∫ R

0
(
ρ

2

(
cdrbl

)
U 2

T C lα
(
α+θt w

rbl

R

)
ϕ+ ρ

2

(
cdrbl

)
U 2

T C d0 +C d2α
2)rbl (2.43)

It should be noted that dL and dD are the incremental lift and drag force on a blade element respectively.
Furthermore ϕ is the the local inflow angle of a blade element, which is approximately equal to UP /UT when
using small angle assumption [34]. The generalised moment equation Qβ can be simplified by realising that
cos(ϕ) > sin(ϕ) and dL > dD , the expression for Qβ can be simplified by neglecting dD sin(ϕ). Herein, the
small angle assumption was adopted. With the nonlinear coupled BFL EOM being defined in the rotating
frame of reference, a linearisation procedure is required before transforming the EOM to the non-rotating
frame of reference. The linearisation procedure from Appendix C is incorporated. Such a linearisation pro-
cedure is justified when the small angle assumption does hold, thus when the flapping and lead-lag angles
are small. Linearisation of the nonlinear system of EOM can be achieved by incorporating a first-order Taylor
series approximation about the steady state condition. The first-order Taylor series shall be taken around the
trim (tr) condition of the rotorcraft. The small angle assumption shall be applied after linearising the cou-
pled flap-lag equations of motion. This will assure that important terms will be retained, as being stressed in
[34]. Applying small angle approximation principle before conducting the linearisation procedure will yield
a loss in first order terms of the coupled nonlinear flap-lag EOM [34]. Therefore it is a natural choice of first
conducting the first order Taylor series expansion before incorporating the small angle approximation prin-
ciple. The linearised EOM for the lead-lag and flapping direction in the non-rotating frame of reference are
provided in Eq. 2.44 and Eq. 2.45 respectively [34].

IblΩ
2ζ

′′ +CζΩζ
′ + ((−2rΩ+2Ω2)βtr Ibl + (−2pζtrΩ+2qω)Ibl sin(ψ)+ (−2qζtrΩ−2pΩ)Ibl cos(ψ))β

′+
((−prζtr +qr )βtr Ibl sin(ψ)+ ((−2pq sin(2ψ)+p2 cos(2ψ)−q2 cos(2ψ))ζ2

tr +2pq sin(2ψ)+
(2q2 sin(2ψ)−4pq cos(2ψ)−2p2 sin(2ψ))ζtr +q2 cos(2ψ)−p2 cos(2ψ))Ibl + (−qrζtr −pr )βtr Ibl cos(ψ)

+Kζ)ζ+ ((qrζtr + (−qrζtr −pr )β2
tr +pr )Ibl sin(ψ)+ (−p2 sin(2ψ)+q2 sin(2ψ)+ (2p2 cos(2ψ)−

2q2 cos(2ψ)−4pq sin(2ψ))ζtr −2pq cos(2ψ))βtr Ibl + (−prζtr + (prζtr −qr )β2
tr +qr )Ibl /cos(ψ))β=

(−qrζtr −pr )βtr Ibl sin(ψ)+ (prζtr −qr )βtr Ibl cos(ψ)+ (−pq cos(2ψ)+ (−2pq sin(2ψ)+p2 cos(2ψ)

−q2 cos(2ψ))ζtr − 1

2
p2 sin(2ψ)+ 1

2
q2 sin(2ψ)Ibl −Kζζtr +Qζ

(2.44)

IblΩ
2β

′′ + ((2rΩ−2Ω2)βtr Ibl + (2pζtrΩ−2qΩ)Ibl sin(ψ)+ (2qζtrΩ+2pΩ)Ibl cos(ψ))ζ
′ + ((pr −2pΩ+

(qr −2qΩ)ζtr )Ibl sin(ψ)+ (qr −2qΩ+ (−pr +2pΩ)ζtr )Ibl cos(ψ)+ ((p2 sin(2ψ)+2pq cos(2ψ)−
q2 sin(2ψ))ζ2

tr +q2 sin(2ψ)−2pq cos(2ψ)+ (2p2 cos(2ψ)−2q2 cos(2ψ)−4pq sin(2ψ))ζtr −
p2 sin(2ψ))βtr Ibl )ζ+ ((4qr −4qΩ+ (−4pr +4pΩ)ζtr )βtr Ibl sin(ψ)+ (−4pr +4pΩ+ (−4qr+

4qΩ)ζtr )βtr Ibl cos(ψ)+ ((p2 sin(2ψ)+2pq cos(2ψ)−q2 sin(2ψ))ζtr +2rΩ−Ω2 − r 2 + (−1

2
cos(2ψ)+

1

2
)q2 + (

1

2
cos(2ψ)+ 1

2
)p2 −pq sin(2ψ))β2

tr + (
1

2
cos(2ψ)− 1

2
)q2 + (q2 sin(2ψ)−p2 sin(2ψ)−2pq

cos(2ψ))ζtr + r 2 +Ω2 −2rΩ+ (−1

2
− 1

2
cos(2ψ))p2 +pq sin(2ψ))Ibl +Kβ)β= (qr −2qΩ+ (−pr+

2pΩ)ζtr )Ibl sin(ψ)+ (−pr +2pΩ+ (−qr +2qΩ)ζtr )Ibl cos(ψ)+ ((p2 sin(2ψ)+2pq cos(2ψ)−

q2 sin(2ψ))ζtr +2rΩ−Ω2 − r 2 + (−1

2
cos(2ψ)+ 1

2
)q2 + (

1

2
cos(2ψ)+ 1

2
)p2 −pq sin(2ψ))βtr Ibl−

βtr Kβ+Qβ

(2.45)
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There after the IBC to MBC transformation must be incorporated. Below this transformation is provided and
it taken from [39]. For a four-bladed rotorcraft N = 4, thus the transformation matrix [LN R ] can be written as

[LN R ]N=4 =


1
4

1
4

1
4

1
4

2cos(ψ1) 2cos(ψ2) 2cos(ψ3) 2cos(ψ4)
2sin(ψ1) 2sin(ψ2) 2sin(ψ3) 2sin(ψ4)

− 1
4

1
4 − 1

4
1
4

 . (2.46)

It is a natural choice to convert the EOM from the rotating frame of reference to the non-rotating frame of
reference by means of such a general system. Thus the system of differential equations shall be presented in
the following matrix form

[M R ]{χR }
′′ + [C R ]{χR }

′ + [K R ]{χR } = [F R ], (2.47)

wherein [MR ], [CR ] and [KR ] are the mass, damping and spring stiffness matrix respectively [39]. In addition
to this FR is the externally applied force. In order to transform this general system from the rotating to the
non-rotating system, it is necessary to determine first and second order derivatives of ~χ, which are respec-
tively equal to

{χR }
′ = (

[LR ]{χN R }]
)′ = [LR ]{χN R }

′ + [LR ]{χN R }
′

(2.48)

{χR }
′′ = (

[LR ]{χN R }
′ + [LR ]{χN R }

′)′ = [LR ]{χN R }
′′ +2[LR ]

′
{χN R }

′ + [LR ]
′′

{χN R } (2.49)

Substituting these derivatives into the general form of the vibrating systems, does yield Eq. 2.50 [39].

[LR ]
′′

{χN R }+2[LR ]
′
{χN R }

′ + [LR ]{χN R }
′′ + [M−1

R C R ][LR ]
′
{χN R }+ [M−1

R C R ][LR ]{χN R }
′+

[K R ][LR ]{χN R } = {F R }
(2.50)

Multiplying Eq. 2.50 with [LR ]−1 and rewriting it as a function of {χN R }
′′

, does yield the following:

{χN R }
′′ + [Lnr ]

[
2[LR ]

′ + [M−1
R C R LR ]

]
︸ ︷︷ ︸

C N R

{χN R }
′ + [LN R ]

[
[LR ]

′′ + [M−1
R K R LR + [M−1

R C R L
′
R ]

]
︸ ︷︷ ︸

K N R

{χN R }

= [LN R M−1
R ]{F R }︸ ︷︷ ︸

F N R

,
(2.51)

from which it must be observed that [LR ]−1 was replaced by [LN R ] [39]. From the previous expression the
damping [CN R ], spring [KN R ] and external force [FN R ] matrices can be identified in the non-rotating frame
of reference [39]. The transformation matrix [LN R ]N=4 for the four-bladed BO-105 rotorcraft was previously
defined in Eq. 2.46. The matrices CN R , KN R and FN R can be identified from the coupled body-flap-lag EOM.
These matrices can thus be isolated from the linearised lead-lag or flapping EOM as being defined in Eq. 2.44
and 2.45 respectively.

2.4. Inflow model
With the coupled body-flap-lag EOM being defined, it is a natural choice to incorporate a compatible inflow
model. The original BF model did incorporate a first-order Pitt-Peters inflow model [37]. On the other hand
the BFL model from [34] did incorporate a quasi-dynamic inflow model. The former shall be touched upon
here. Information about how the quasi-dynamic inflow model is established can be found in [46]. Informa-
tion regarding reference frames can be found in Appendix A.

2.4.1. First-order Pitt-Peters inflow model
The first-order Pitt-Peters inflow model from Padfield [37] shall be incorporated. The inflow dynamics is
governed by the set of first-order differential equations given in Eq. 2.52 [37].
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M

 λ̇0

λ̇1sw

λ̇1cw

+L−1

 λ0

λ1sw

λ1cw

=
 CT d w

CLd w

CMd w

 ,

with M =
 128

75π 0 0
0 16

45π 0
0 0 16

45π

 and L = 1

ṽ


1
2 0 15π

64

√
1−sin(αr ot )
1+sin(αr ot )

0 −4
1+sin(αr ot ) 0

15π
64

√
1−sin(αr ot )
1+sin(αr ot ) 0 −4sin(αr ot )

1+sin(αr ot )

 .

(2.52)

The inflow model is defined in the disc-wind frame of reference. The azimuthal direction of this reference
frame is aligned with the wind vector allowing for coupling between the inflow states appearing in L. The
aforementioned can only occur by means of rotational asymmetry, which is characteristic for the wind vector.
The incidence angle at the rotor αrot and the mass flow parameter ṽ are given in Eq. 2.53 [37].

αr ot = tan−1
(
λ0 −µzd w

µd w

)
and ṽ = µ2

d w + (
λ0 −µzd w

)(
2λ0 −µzd w

)√
µ2

d w + (
λ0 −µzd w

)2
(2.53)

The main implication of the Pitt-Peters inflow model being defined in the disc-wind reference frame is that
it can be considered a non-inertial reference system as it is governed by the wind vector. In (near) hover
condition the wind vector will continuously alter direction, thus rendering the disc-wind reference system
non-inertial [37]. This discrepancy was also encountered when defining the coupled body-rotor EOM. The
Pitt-Peters inflow model from Eq. 2.52 can be defined in the inertial North-East-Down (NED) reference frame,
such that the above mentioned problem can be circumvented. The Pitt-Peters inflow model defined in the
disc-north reference system is given in Eq. 2.54 [37].

λ
(
ψdn , r̄b

)
= Lλ

(
ψdn , r̄b

) λ0

λ1sn

λ1cn

 with λ̇
(
ψdn , r̄b

)
= Lλ

(
ψdn , r̄b

) λ̇0

λ̇1sn

λ̇1cn

 (2.54)

The transformation matrix matrix Lλ(ψ), given be defined as follows

Lλ(ψ) = [1sin(ψ)cos(ψ)]. (2.55)

Azimuth angles in the disc-wind and disc-north reference frame are related via ψd w =ψdn −ψd w
d w , which is

equivalent to ψd w = ψdn −ψb −ψw . Furthermore this relation is associated with ψd w = −r d p − ψ̇d p
w as its

derivative, wherein ψdn is zero since the disc-north reference frame is inertial. Furthermore ψb and ψw are
the azimuth angles of the body with respect to the north and the wind vector azimuth angle with respect to
the body. The time derivative of the harmonic inflow components defined in the disc-wind can be written as
provided in Eq. 2.56 [37].

λ̇
(
ψd w , r̄b

)
= d

d t

[
Lλ

(
ψd w , r̄b

)] λ0

λ1sw

λ1sw

+Lλ
(
ψd w , r̄b

) λ̇0

λ̇1sw

λ̇1cw


= dLλ

(
ψd w , r̄b

)
dψd w

d t

 λ0

λ1sw

λ1cw

+Lλ
(
ψd w , r̄b

)[
λ1sw

λ̇1cw

]

=−dLλ
(
ψd w , r̄b

)
dψd w

(
r d p + ψ̇w

)[
λ1sw

λ1cw

]
+Lλ

(
ψd w , r̄b

)[
λ̇1sw

λ̇1cw

]
(2.56)

The harmonic transformation matrices defined in the disc-north and disc-wind reference frames are related
by means of the expression given in Eq. 2.57 [37].

Lλ
(
ψd w

)
= Lλ

(
ψdn −ψb −ψw

)
= Lλ

(
ψdn

)
T∆ψ

(−ψb −ψw
)

, (2.57)

wherein the azimuthal rotation matrix T∆ψ (∆ψ) for a given rotation angle ∆ψ can be defined as follows
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T∆ψ(∆ψ) =
 1 0 0

0 cos(∆ψ) sin(∆ψ)
0 −sin(∆ψ) cos(∆ψ)

 . (2.58)

The relation between the inflow harmonics in the disc-north and disc-wind reference is given in Eq. 2.59 [37].

 λ̇0

λ̇1sn

λ̇1cn

= T∆ψ
(−ψb −ψw

) λ̇0

λ̇1sw

λ̇1cw

 (2.59)

Rewriting Eq. 2.52 by taking the transformation from Eq. 2.59 into consideration does yield the following

MT∆ψ
(
ψb +ψb

) λ̇0

λ̇1sn

λ̇1cn

+L−1T∆ψ
(
ψb +ψb

) λ0

λ1sn

λ1cn

=
 CT d w

CLd w

CMd w

 , (2.60)

from which the explicit expression of the inflow time derivatives can be defined, namely

 λ̇0

λ̇1sn

λ̇1cn

= T∆ψ
(−ψb −ψb

)
M−1

 CT d w

CLd w

CMd w

−L−1T∆ψ
(
ψb +ψb

) λ0

λ1sn

λ1cn

 . (2.61)

This will eventually yield the first-order Pitt-Peters inflow model given in Eq. 2.62 [37]. λ̇0

λ̇1s

λ̇1c


d p

= T −1
w M−1

Tw

 −Czd p

CLdp

CMd p

−L−1Tw

 λ0

λ1s

λ1c


d p

 (2.62)

2.5. Forces and moments
With the complex rotor dynamics being considered, it is necessary to focus on the forces and moments that
act on the rotorcraft. The contribution of lead-lag dynamics to forces and moments was not yet considered.
First the in-plane and out-of-plane forces generated by the main rotor will be considered. There after the
moments generated by the main rotor will be touched upon. Lastly, the forces and moments generated by the
fuselage, tail rotor and empennage will be touched upon. The procedure from Padfield [38] was incorporated
for calculating the forces and moments.

2.5.1. In-plane and out-of-plane forces generated by the main rotor
The aerodynamic forces impinging on each i th rotor blade do consist of a perpendicular force component
F p and in-plane force component F t . The aforementioned force components do, which accounts for lift and
drag respectively, wherein the latter can be broken down into induced and profile drag. The expression for
F p and F t defined in the hub-wind reference frame are given in Eq. 2.63 and Eq. 2.64 respectively [37].

F p
(
ψbw

i

)
=−

∫ 1

0

(
Ū 2

T θi +Ū PŪT
)

dr̄bl (2.63)

F t
(
ψbw

i

)
=−

∫ 1

0

(
ŪPŪT θi +Ū 2

P − δiŪ 2
T

a0

)
dr̄bl (2.64)

Below the force coefficients in the hub-wind frame are provided [37].

Cxw = Xhw

ρΩ2πR4 = a0s

2Nb

Nb∑
i=1

F p
(
ψbw

i

)
βi cos

(
ψbw

i

)
+F t

(
ψbw

i

)
sin

(
ψbw

i

)
, (2.65)

Cy w = Yhw

ρΩ2πR4 = a0s

2Nb

Nb∑
i=1

−F p
(
ψbw

i

)
βi sin

(
ψbw

i

)
+F t

(
ψbw

i

)
cos

(
ψbw

i

)
, (2.66)
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Czw = Zhw

ρΩ2πR4 = a0s

2Nb

Nb∑
i=1

−F p
(
ψbw

i

)
. (2.67)

Force components ~F
p

and ~F
t

can be expanded by substituting Eq. 2.6 and Eq. 2.7 into Eq. 2.63 and Eq. 2.64.
The aforementioned does yield the following expressions for F p and F t respectively [37].

F p
(
ψbw

)
=

(
1

3
+µsin

(
ψbw

)
+µ2 sin2

(
ψbw

))
θp +

(
1

4
+ 2

3
µsin

(
ψbw

)
+ 1

2
µ2 sin2

(
ψbw

))
θt w

+
(

1

3
+ µsin

(
ψbw

)
2

)(
ω̄y −λ1 −β′)+(

1

2
+µsin

(
ψbw

))(
µz −λ0 −βµcos

(
ψbw

))
,

(2.68)

F t
(
ψbw

)
=

((
1

3
+ 1

2
µsin

(
ψbw

))(
ω̄y −λ1 −β′) +

(
1

2
+µsin

(
ψbw

))(
µz −λ0 −βµcos

(
ψbw

)))
θp

+
((

1

4
+ µsin

(
ψbw

)
3

)(
ω̄y −λ1 −β′) +

(
1

3
+ µsin

(
ψbw

)
2

)(
µz −λ0 −βbw

)))
θt w

+
(
µz −λ0 −βµcos

(
ψbw

))2 +
(
µz −λ0 −βµcos

(
ψbw

))(
ω̄y −λ1 −β′)+ (

ω̄y −λ1 −β′)2

3

− δ

a0

(
1

3
+µsin

(
ψbw

)
+µ2 sin2

(
ψbw

))
.

(2.69)

The normal and in-plane forces will provide quasi-steady loads and harmonic loads at the hub [37]. The
quasi-steady components can be considered of prime interest, which can be obtained by expanding the loads
in the rotating system of equations up to the second harmonic [37].

F p
(
ψbw

)
= F p

0 +F p
1c cos

(
ψbw

)
+F p

1s sin
(
ψbw

)
+F p

2c cos
(
2ψbw

)
+F p

2s sin
(
2ψbw

)
(2.70)

F t
(
ψbw

)
= F t

0 +F t
1c cos

(
ψbw

)
+F t

1s sin
(
ψbw

)
+F t

2c cos
(
2ψbw

)
+F t

2s sin
(
2ψbw

)
(2.71)

The hub force coefficients Cxw , Cy w and Czw from Eq. 2.65, 2.66 and 2.67 respectively can be rewritten into

Cxw = a0s

((
F p

0

4
+ F p

2c

8

)
β1cw + F p

1c

4
β0 +

F p
2s

8
β1sw + F t

1s

4

)
(2.72)

Cy w = a0s

((
−F p

0

4
+ F p

2c

8

)
β1sw − F p

1s

4
β0 −

F p
2s

8
β1cw + F t

1c

4

)
(2.73)

Czw =−a0s

2
F p

0 (2.74)

The hub force coefficients from Eq. 2.72, 2.73 and 2.74 depend on the harmonic coefficients given below [37].

F p
0 = θ0

(
1

3
+ µ2

2

)
+ µ

2

(
θ1sw + p̄hw

2

)
+ µz −λ0

2
+ 1

4

(
1+µ2)θt w (2.75)

F p
1s =

α1sw

3
+µ

(
θ0 +µz −λ0 + 2

3
θt w

)
(2.76)

F p
1c =

α1cw

3
−µβ0

2
(2.77)

F p
2s =

µ

2

(
α1cw

2
+ θ1cw −β1sw −µβ0

2

)
(2.78)

F p
2c =−µ

2

(
α1sw

2
+ θ1sw +β1cw

2
+µ

(
θ0 + θt w

2

))
(2.79)

F t
1s =

µ2

2
β0β1sw +

(
µz −λ0 − µ

4
β1cw

)
(α1sw −θ1sw )− µ

4
β1sw (α1cw −θ1cw )+θ0

(
α1sw −θ1sw

3
+

µ
(
µz −λ0

)− µ2

4
β1cw

)
+θt w

(
α1sw −θ1sw

4
+ µ

2

(
µz −λ0 − β1cwµ

4

))
+θ1sw

(
µz −λ0

2
+

µ

(
3

8

(
p̄hw −λ1sw

)+ β1cw

4

))
+ µ

4
θ1cw

(
q̄hw −λ1cw

2
−β1sw −µβ0

)
− δµ

a0

(2.80)
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F t
1c =

(
α1cw −θ1cw −2β0µ

)(
µz −λ0 − 3

4
µβ1cw

)
− µ

4
β1sw (α1sw −θ1sw )+θ0

(
α1cw −θ1cw

3
−

µ

2

(
β0 + µ

2
β1sw

))
+θt w

(
α1cw −θ1cw

4
−µ

(
β0

3
+ β1swµ

8

))
+θ1cw

(
µz −λ0

2
−

µ

4

(
p̄hw −λ1sw

2
−β1cw

))
+ µ

4
θ1sw

(
q̄hw −λ1cw

2
−β1sw −µβ0

) (2.81)

The coefficients show an explicit dependency on the effective blade incidence angles α1sw and α1cw , which
are given in Eq. 2.82 and Eq. 2.83 respectively [37].

α1sw = p̄hw −λ1sw +β1cw +θ1sw , (2.82)

α1cw = q̄hw −λ1cw −β1sw +θ1cw . (2.83)

The rotor forces are being defined in the non-rotating hub-wind axes system, therefore the transformation
T h

hw is required for transforming the forces F h to the non-rotating hub axes system [37].

F h = T h
hw F hw = ρΩ2πR4T h

hw C hw , with Fh = [Fx Fy Fz ]T and Chw = [Cxw Cy w Czw ]T . (2.84)

2.5.2. Moments generated by main rotor
A hingeless rotor can be idealised as a centrally hinged rigid blade with a spring restraint [37], wherein the
hub moments Lh and Mh can be respectively defined as

Lh =−Nb

2
Kββ1s , (2.85)

Mh =−Nb

2
Kββ1c . (2.86)

The moments generated by the main rotor are primarily governed by the cyclic flapping angles MBCs defined
with respect to the shaft plane. Aside from this Eq. 2.85 and 2.86 depend on hub stiffness Kβ, which sub-
sequently depends on the equivalent hinge spring offset eβ. The yawing moment, given in Eq. 2.87, can be
approximated by integrating the in-plane forces about the shaft axis [37].

Nh =
Nb∑
i=1

∫ R

0
rbl

(
fy −mayb

)
i drbl , (2.87)

It should be noted that fy −mayb is the force per unit blade element. Integration of the complete rotor blade
for all rotor blades yields the complete contribution to Nh . Eq. 2.87 can be reduced by neglecting all inertia
terms except for the torque acceleration, which is due to the angular acceleration of the rotor. This yields

Nh =
Nb∑
i=1

∫ R

0
rbl (d − lφ)drω+ IRΩ̇. (2.88)

The last term from Eq. 2.88 accounts for the inertia of the hub about the shaft axis and rotor blades. Normal-
isation of Nh is given in Eq 2.88 [37].

Nh = 1

2
ρ(ΩR)2πR3sa0

(
2CQ

a0s
+ 2

γ

(
IR

Nb Iβ

)
Ω̇

Ω2

)
. (2.89)

The expression for Nh from Eq. 2.89 shows dependency on the aerodynamic torque coefficient CQ , which
is provided in Eq. 2.90 [37]. The first expression in Eq. 2.90 can be rewritten into the second expression by
approximating r /R with ŪT −µsin(ψ). Expanding the second expression does yield the last expression.

CQ =−a0s

2

∫ R

0
rbl

(
ŪPŪT θ+Ū 2

P − δ

a0
Ū 2

T

)
drbl

=−a0s

2

(∫ R

0

(
ŪT −µsi n(ψ)

)Ūp

ŪT

(
Ū 2

T θ+ŪpŪT

)
rbl drbl +

∫ R

0

δ

a0
Ū 2

T rbl drbl

)
=−a0s

2

(
−

∫ R

0

(
ŪpŪ 2

T +Ū 2
pŪT

)
drbl +µsi n(ψ)

∫ R

0

(
ŪPŪT θ+Ū 2

p

)
drbl +

∫ R

0

δ

a0
Ū 2

T rbl drbl

) (2.90)
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The aerodynamic rotor torque coefficient CQ from Eq 2.90 can be simplified by neglecting small terms, which
does yield the simplified form for CQ given in Eq. 2.91 [37].

CQ =−(
µz −λ0

)
Czw +µCxw + δs

8

(
1+3µ2) . (2.91)

The yaw moment Nh in Eq. 2.89 can thus be solved using Eq. 2.91. The torque moment Nh does also con-
tribute to Lh and Mh , but are of significant less order than the center spring induced moments. The afore-
mentioned contributions are due to the plane normal to shaft axis being tilted with respect to the rotor disc.
The rotor also produces a torque moment about the shaft axis. The contribution of CQ to Lh and Mh is given
in Eq. 2.92 and Eq. 2.93 respectively [37].

LhQ =−ρΩ
2R5πCQ

2
β1c (2.92)

MhQ = ρΩ2R5πCQ

2
β1s (2.93)

2.5.3. Forces and moments generated by tail rotor
Rotorcraft fidelity can be improved by including the effects of the tail rotor. The tail rotor is characterised with
no cyclic pitch variation, thus only collective changes. Furthermore the untwisted rotor blades do not show
any flapping motion. The tail rotor does produce a small torque force, which can be neglected. The tail rotor
does only produce a lateral force Ytr at an offset from the body cg. Since the tail rotor is located at a vertical
and longitudinal offset from the body cg, there will also be a yawing and rolling moment. The ratio between
the free-stream fluid speed to the tail rotor tip speed must first be defined and is given in Eq. 2.94 [37].

µxtr =
√

u2 + (
w +KtrΩRλ0 +qltr

)2

Ωtr Rtr
, (2.94)

It should be noted that Ktr can be identified as the rotor downwash factor. Furthermore the inflow ratio λtr

is given in Eq. 2.95

λtr =−v − r ltr +phtr

ΩRtr
−λ0tr , (2.95)

wherein λ0,tr is the tail rotor induced inflow factor [37]. From Eq. 2.94 and Eq. 2.95 it can be observed that
these depend on a combination of body velocities and tail rotor specific properties. In Eq. 2.96 the thrust
coefficient CTtr of the tail rotor is provided [37].

CTtr =
σtr CLα,tr

2

[(
1

3
+ µ2

xtr

2

)
θ0tr +

λtr

2

]
(2.96)

The tail rotor thrust coefficient was based upon blade element theory. The longitudinal and vertical offset
of the tail rotor with respect to the body c.g. are indicated by the arms ltr and htr respectively. The thrust
force Ttr generated by the tail rotor can be used to determine the lateral side force Ytr . The expression for Ytr

defined in the body frame of reference is

Ytr =CTtrρπΩ
2
trR4

tr︸ ︷︷ ︸
=Ttr

[
1− 3Sv t

4πR2
tr

]
, (2.97)

wherein the explicit dependency on Ttr does appear [37]. The effect of tail rotor wake blockage by the vertical
stabiliser was also taken into account. With the tail rotor force established its global contribution can be
established. The tail rotor force defined in he body-fixed reference frame can be defined as

F tr = [0 Y tr 0]T . (2.98)

Since Y tr is located at an offset, there will also be moments about the cg. In the body-fixed reference frame
the moments due to the tail rotor can be expressed as follows
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M tr = [htr Y tr 0 − ltr Y tr ]T , (2.99)

wherein htr and ltr are the vertical and horizontal offset of the tail rotor center of rotation and body cg. The
tail rotor is associated with an uniform Pitt-Peters inflow model, which does depend on CTtr , µxtr and λ0tr .
The differential equation for the non-dimensional inflow ratio is provide in Eq. 2.100 [37].

λ̇0tr = 75π

128

[
CTtr −2

√
µ2

xtr
+λ2

0tr

]
(2.100)

2.5.4. Forces and moments introduced by fuselage
Model fidelity can be further enhancement by taking into account aerodynamic drag of the fuselage body.
The aerodynamic drag force is opposing the direction of the velocity vector and can be expressed as follows

Dfus,b = 1

2
ρV 2Seq, (2.101)

wherein Seq is the equivalent flat plate drag area of the fuselage [37]. Since the rotorcraft is capable of flying
in any direction, Seq would actually vary with the direction of V . It was decided to set Seq fixed to simplify the
contribution of Dfus. Since Dfus is aligned with V , a transformation is necessary to transform Dfus to the body
reference frame. Since the application point of the aerodynamic drag force does have an offset with respect
to the body cg, moments will also be introduced. The pitch and yaw moment coefficient are respectively

CM f us =
(

V

ΩR

)2 [
KfusVfusM

πR3

(
α f us −αfusM=0

)]
, (2.102)

CN f us =
(

V

ΩR

)2 [
KfusVfusN

πR3 βfus

]
, (2.103)

wherein Kfus is a shape-dependent correction factor [37]. Furthermore VfusM is the volume of a body rota-
tionally symmetric around the longitudinal axis with the same projection in the horizontal plane. In other
words the volume is equivalent, but the shape is idealised as a circular rod. Likewise, VfusN is analogues to
VfusM , but now the volume of the body that is rotationally symmetric around the vertical axis with the same
projection in the vertical fore-aft plane [37]. Next to this αfus and βfus are the fuselage incidence angle and
are equal to −arctan(w/u) and arctan(v/V ) respectively. With the forces and moments due to fuselage drag
being determined, its global contribution can be determined. The fuselage force defined in the body-fixed
reference frame requires two successive rotations and is provided below [37].

F fus = R y (αfus)R z
(−βfus

)
[−Rfus 0 0]T . (2.104)

The contribution of the fuselage moments needs to be expressed in the body-fixed reference frame and can
be expressed in accordance with Eq. 2.105 [37].

M fus = ρ
(
πR2) (πR)2 R[0 CMfus CNfus ]T (2.105)

2.5.5. Forces and moments introduced by vertical and horizontal stabiliser
The rotorcraft is equipped with a horizontal tail, which does as a wing in forward flight. Drag due to horizontal
stabiliser can be neglected, as its overall contribution to rotorcraft drag is neglectable [46] . On the other hand
the horizontal stabiliser does contribute to the lift force and is given in Eq. 2.106 [37].

Lht =
1

2
ρ

{
u2 + (

w +qlht
)2

}
︸ ︷︷ ︸

=V 2
ht

Sht CLα,ht

{
arctan

(
w +qlht

u

)
+αht0

}
︸ ︷︷ ︸

=αht

(2.106)

From Eq. 2.106 it can be observed that there is dependency on Vht and αht , which are the local relative air
velocity and angle of attack of the horizontal stabiliser. Additionally Lht depends on horizontal stabiliser
surface area Sht and lift curve slope αht . There is also a vertical velocity component introduced by qlht ,
wherein Lht is the longitudinal distance between body cg and point on the horizontal stabiliser where Lht
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acts. The moment introduced by Lht is then −lht Lht . The vertical stabiliser does also introduce a lift force
Lv t when there exist an angle of sideslip βv t . The expression for Lv t is given in Eq. 2.107 [46].

Lv t = 1

2
ρ

{
u2 + (

v +phv t − r lv t
)2

}
︸ ︷︷ ︸

=V 2
v t

Sv t CLα,v t

{
arcsin

(
v +phv t − r lv t

u

)
+βv t0

}
︸ ︷︷ ︸

=βv t

. (2.107)

From Eq. 2.107 it can be observed that Lv t does depend on the relative air velocity Vv t at the vertical stabiliser
and the lift curve slope CLα,v t . Lateral velocity components phv t and r lv t are also being introduced, which
are due to the vertical stabiliser being at an longitudinal and vertical offset with respect to the body cg.

2.6. Body dynamics
In the previous sections the main rotorcraft model has been established. The novelty introduced in the new
rotorcraft model is the inclusion of lead-lag dynamics. However, lead-lag dynamics was not considered for the
forces and moments. This implies that there will not be a body-lag coupling. Inclusion of lead-lag dynamics
to the hingeless rotorcraft model has introduced six additional states, which means that the total state vector
of the rotorcraft has become

X T = [u v w︸ ︷︷ ︸
V

x y z︸ ︷︷ ︸
P

p q r︸ ︷︷ ︸
ω

φ θ ψ︸ ︷︷ ︸
θ

λ0,mr λ1s λ1c λ0,tr︸ ︷︷ ︸
λ

β0 β1s β1c︸ ︷︷ ︸
β

β̇0 β̇1s β̇1c︸ ︷︷ ︸
β̇

ζ0 ζ1c ζ1s︸ ︷︷ ︸
ζ

ζ̇0 ζ̇1c ζ̇1s︸ ︷︷ ︸
ζ̇

]T , (2.108)

wherein the complete state vector can be divided into smaller parts. The body-fixed linear velocity and the
position of the rotorcraft in the NED reference frame are indicated by means of V and P respectively. Fur-
thermore the body angular rates and attitude angles are provided byω and θ respectively. Next to thisλ is the
vector containing the non-dimensional inflow components. It should be noted that the BF model depends
on all of the four inflow states, whereas lead-lag states ζ and ζ̇ only depend on λ0. Previously it has already
been outlined that the BFL model [34] did incorporate a simple quasi-steady inflow model, which could not
be modified. The vectors β and β̇ contain the flapping angles and derivatives respectively, which are defined
with respect to the shaft plane of reference. The six last states, ζ and ζ̇ have been added to the original model
from [55]. The inclusion of these in-plane rotor states can be considered the novelty of the introduced rotor-
craft model. The total force and moment of the rotorcraft defined in the body frame of reference are given in
Eq. 2.109 and 2.110 respectively.

F B,tot = F B,mr +F B,tr +F B,fus +F B,vt +F B,ht (2.109)

M B,tot = M B,mr +M B,tr +M B,fus +M B,vt +M B,ht (2.110)

Having defined the expressions for the total force and moment of the rotorcraft, it is necessary to consider
the rotational and translational dynamics and kinematics of the vehicle. In addition to this the assumptions
introduced in [46] should also be considered, namely that the rotorcraft can be considered a rigid body with
both constant inertia and mass. This can be considered valid since simulations shall be conducted for a short
amount time. Moreover, Earth can be considered flat and non-rotating, wherein the gravitational field can
be considered homogeneous, which subsequently implies that the center of mass and center of gravity do
coincidence with each other. In Eq. 2.111. the dynamics of the rotorcraft translational motion is provided

V̇ = m−1FB,tot +T O
B~g −Ω×V = m−1FB,tot +

 −sin(θ)
sin(φ)cos(θ)
cos(φ)cos(θ)

g −
 qw − r v

r u −pw
pv −qu

 . (2.111)

The expression describing the translational kinematics is given in Eq. 2.112.

ṗ = T B
OV (2.112)

In Eq. 2.113 the expression for the rotational dynamics is being provided, wherein the angular accelerations
are governed by the applied hub moments and gyroscopic precession. The resistance in control action of the
rotorcraft is indicated by means of J , being the moment of inertia tensor.

ω̇= J−1 (
M B,tot −ω× Jω

)
, (2.113)
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In Eq. 2.114 the kinematics of the rotational motion is provided.

θ̇ =

 1 sin(φ)sin(θ)
cos(θ)

cos(φ)sin(θ)
cos(θ)

0 cos(φ) −sin(φ)

0 sinφ
cos(θ)

cos(φ)
cos(θ)

ω (2.114)

2.7. Numerical integration
The coupled body-flap-lag model proposed in previous sections and the forces and moments it comes with
needs to be integrated such that it simulates the rotorcraft model. In the previous model the classical Runge-
Kutta (RK4) integration method was introduced and shall also be considered for the extended BFL model.
The integration method under consideration is an explicit method as it calculates the state of a system at a
later time instance based on the current system state. In [55] it has been outlined the poles of the system fall
with in ROC of the integration method. The inclusion of lead-lag dynamics has led to a set of additional poles
near the imaginary axis and will therefore not be problematic for the integration method under consideration.
The advantage of using this numerical integration method is that only function evaluations are required, thus
wherein not equations have to be solved. The idea is to solve the initial value problem given in Eq. 2.115 [19].

ẏ = f (t , t ), with y(t0) = y 0 (2.115)

The idea of the algorithm proposed is that it does find an approximate value for y at a given instance t .
Important to note is that the Runge-Kutta integration method can only solve first order differential equations.
However, the previous proposed BFL is second-order, thus this had to be accounted for. The estimated value
y i+1 can be determined by solving

y i+1 = y n + 1

6
(k1 +2k2 +2k3 +k4)



K 1 = h f
(
ti , y i

)
K 2 = h f

(
ti + h

2
, ti + h

2

)
K 3 = h f

(
ti + h

2
, ti + h

2

)
K 4 = h f (ti +h, ti +h)

(2.116)

wherein the individual coefficients K 1, K 2, K 3 and K 4 can be identified, which are the function evaluations
at a given time instant multiplied with step size h [19]. In [19] it was outlined that the classical Runge-Kutta
integration method can be considered absolutely convergent when the eigenvalues of the rotorcraft adhere
to the condition stipulated in Eq. 2.117.∣∣∣∣1+∆tλ+ (∆tλ)2

2!
+ (∆tλ)3

3!
+ (∆tλ)4

4!

∣∣∣∣≤ 1 (2.117)

Numerical divergence of the system can be considered unlikely as the eigenvalues fall within the ROC of RK4.
The ROC does scale with the time step of the integration [55]. Thus a smaller time step will yield a larger ROC,
therefore numerical stability can be assured even more.

2.8. Coupled body-rotor models for hover condition
To assess the effects of rotor dynamics on Lyapunov-based control design and performance, it will be nec-
essary to consider a set of simplified models. The models proposed here were derived in [41] and represent
the first few instants during the transition from hover to forward flight without building up horizontal speed.
Three models shall be introduced in total. The first model to be considered is a longitudinal steady-state
body-flap model. The flapping model is provided in Eq. 2.118, from it can be observed that it depends on
pitch rate q and longitudinal cyclic input θ1s .

β1c = 16

γΩ
q −θ1s (2.118)
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Moreover, the angular body dynamics is provided in Eq. 2.119. It can be observed that it depends on the hub
moment per unit flapping angle Mβ, which is a function of flap centre-spring rotor stiffness Kβ, moment of
inertia about pitch axis Iy y , number of blades N and height h of rotorcraft hub above center of gravity.

q̇ =−
N
2 Kβ+T h

Iy y
β1c (2.119)

The next model to be considered is a longitudinal body-flap model with flapping dynamics. It is a so-called
longitudinal τβ-based rotorcraft model, wherein τβ (= 16

γ ) is a dimensionless parameter that indicates disc-
tilt quickness. A large value for τβ is associated with slow disc-tilt motion. In Eq. 2.120 the first-order flapping
model is provided. The longitudinal body dynamics is represented by means of Eq. 2.119.

β̇1c =− Ω
τβ
β1c + 16q

γτβ
− Ω

τβ
θ1s (2.120)

The last model to be considered incorporates two flapping states (β1c and β1s ), two lead-lag states (ζ1s ,ζ1c )
and lateral body dynamics (p andφ). Moreover, it also includes four corrective terms, because the BFL model
in [40] does not account for body-lag coupling, whereas this is deemed necessary to conduct a particular
analysis later on. It was therefore decided to include the body-lag coupling terms from [52]. The exact ex-
pressions shall not be given, but can be found in the aforementioned paper. Moreover, the control-depended
terms for lead-lag are also taken from [52] as these account for more main rotor and individual blade param-
eters. This model shall be designated as the lateral body-flap-lag model for which the general expression for
the flap-lag EOM are provided in Eq. 2.121 and the corresponding matrices in Eq. 2.122. After solving Eq.
2.121 the corrective terms need to be added to the EOM. In other words Fp,ζ1c , Fp,ζ1s , Hζ1c and Hζ1s obtained
from [52] shall be replace the original values for these coupling and control-depended terms, because of rea-
sons given earlier. It should be noted that the above mentioned coupling terms are a function of Number of
blades N , rotor radius R, blade root eccentricity ebl, lock number γ, rotor angular velocity Ω, coning angle
β0 (=βss ), static moments ms , rotor blade inertia Ibl, rotor blade mass, lag damper stiffness Kζ, lag damper
damping C∗

ζ
, roll inertia Iy y , vehicle mass M and height h of rotorcraft hub above center of gravity. More-

over, the matrices from Eq. 2.122 also depend on non-dimensional lagging frequency λζ, non-dimensional
flapping frequency λβ, non-dimensional inflow velocity in hover condition λi and drag coefficient CD1 (from
Cd =Cd0 +Cd1α

2).

C N R

[
β̇

ζ̇

]
=ΩK N R

[
β

ζ

]
+ΩF N R , with β= [β1c , β1s ]T and ζ= [ζ1c , ζ1s ]T . (2.121)

CN R =


−2 γ/8 0 −2βss

γ/8 2 −2βss 0
0 2βss −2 C∗

ζ

2βss 0 C∗
ζ

2

 , KN R =


γ/8 1−λ2

β
−2βss 0

1−λ2
β

−γ/8 0 2βss

2βss 0 C∗
ζ

1−λ2
ζ

0 −2βss 1−λ2
ζ

−C∗
ζ

 and

FN R =


γ
8 p̄ −2q̄ + γ

8θ1s

2p̄ + γ
8 q̄ + γ

8θ1c
γ
6λi

(
1−2CD1

)
θ1s

γ
6λi

(
1−2CD1

)
θ1c


(2.122)

Having considered the flap-lag dynamics of the lateral body-flap-lag model it will be deemed necessary to
provide information about the lateral body dynamics of the vehicle. Only roll rate (and roll angle) shall be
considered in this model for which the expression is provided in Eq. 2.123. Roll angle can be obtained using
integration of roll rate.

ṗ =−
N
2 Kβ+T h

Ixx
β1s (2.123)
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In this chapter the main focus will be on non-linear flight control and in particular Lyapunov-based flight
control. Various Lyapunov-based controllers exists, however the main focus in this thesis will be on four
types, namely recursive backstepping (BS), incremental backstepping (IBS), command-filtered backstepping
(CFBS) and command-filtered incremental backstepping (CFIBS). First in Section 3.1 the derivation of BS
shall be provided. There after in Section 3.2 the same shall be considered for incremental backstepping.
Lastly, in Sections 3.3 and 3.4 the derivation of CFBS and CFIBS shall be provided respectively.

3.1. Recursive Backstepping Controller
Fundamental theory related to recursive BS has been provided in [25, 26, 29]. In addition to this, extensive re-
search about recursive BS has been carried out by Sonneveldt [49] from which information about the deriva-
tion of conventional BS controller has been retrieved. Additional information regarding BS was retrieved from
[1, 8, 27, 33, 53–55]. Due to the recursive nature of BS, it is deemed necessary to start at the subsystem with the
highest amount of integrations removed from the physical control input [8]. It can therefore be stated main
concept of BS is to design a controller in a recursive manner in which some of the state variables of the system
must be considered as virtual controls for which intermediate control laws are being designed for, starting at
the scalar equation separated by the largest number of integrations from the direct control input [49, 54, 56].
The procedure does end when reaching the actual control input. In general strict-feedback systems will be
considered. These are the type of system were the state variables are fed back. In order to limit the scope of
the analysis it is deemed necessary to only consider strict-feedback systems. Additional material related to
more general types of systems, such as feed-forward systems, pure-feedback systems or block-strict-feedback
systems when should consult the work from Krstic [30].

3.1.1. Recursive backstepping main advantages and disadvantages
Before providing detailed information it is of great importance to consider the main advantages and disad-
vantages of this controller. The aforementioned will be of great importance when selecting a particular type
of Lyapunov-based controller. Below the main advantages and disadvantages of the controller are provided.

I It is a flexible control technique, which is capable of either including or excluding non-linearities based
on required properties of the systems [50]. Some non-linearities may exhibit stabilising properties and
can therefore be regarded as desirable and should therefore not be excluded [14]. On the other hand,
NDI is a feedback linearisation type of technique which removes all non-linearities, hence also the ones
that may have a stabilising effect on the system.

II It is based on Lyapunov stability, and therefore It guarantees stability of the system, or more accurately,
it guarantees of global asymptotic stabilisation and tracking [13, 54].

III Design is of recursive nature, in which each subsystem is stabilised by following the same procedure,
except for the first and last subsystem [8, 50]. Due to the nature of the structure, one can focus on each
subsystem individually.

IV BS control allows for coupling between the inner and outer loops, unlike NDI control ,which requires
time-scale separation between inner and outer loops [54, 55].

20
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Having considered the main advantages of recursive BS, it is also necessary to consider it disadvantages,
which have been briefly summarised below.

I Asymptotic stability can be achieved, but this does not imply that the transient behaviour of the system
can be regarded as adequate [8, 27].

II Tuning of backstepping gains can be regarded as a nontrivial assignment as adequately tuning gains
can improve the system response [8, 50]. It is very common to select backstepping by means of trial
and error. On the other hand there are also nonlinear optimisation techniques which can determine
the optimal backstepping gain values [6, 22]

III BS control is a model based control technique, which implies that small model error may can desta-
bilise the system [50]. The aforementioned is especially of great concern for complex systems which
exhibit unknown dynamics. Accurate model knowledge should then be obtained by means of adequate
system identification techniques [8, 27].

IV Application of BS is limited to systems being of lower triangular form and affine-in-control [50, 55].

3.1.2. Derivation of recursive Backstepping
With the advantages and disadvantages of recursive BS being defined, the derivation shall be touched upon.
The derivation provided by Gils [54] shall be considered. The main procedure for recursive BS was obtained
from Sonneveldt [49], which can be divided into three parts:

I Introducing a virtual control input, state error and current state equation rewritten in terms of these

II Adequately choosing a CLF for the (sub-)system and treating it as a final stage

III Choosing a stabilising feedback function for the virtual control such that the CLF is stabilised.

In order to provide the derivation of recursive BS it is deemed necessary to make use of a strict-feedback
system of lower triangular form, which can be defined as follows [50]:

ẋ j = f j (x̄ j )+g j (x̄ j )x j+1, for j = 1, ..,n −1 (3.1)

ẋn = f n(x)+g n(x)u, (3.2)

wherein x̄ j and x are state vectors [x1, x2, .., x j ]T and [x1, x2, .., xn]T respectively with x j ∈ Rn [54]. Further-
more u ∈ Rm is the control vector of the system. Furthermore f j (x̄ j ) and g j (x̄ j ) are assumed to be fully

known and do have n − j continuous derivatives, thus wherein f j (x̄ j ) and g j (x̄ j ) ∈ C n− j for j = 1, ..,n − 1.
The control objective considered for the derivations consists of tracking a smooth reference signal x1,ref for
which the nth-order time derivatives are known and bounded [51, 56]. States x j for j = 1, ..,n must remain
bounded when executing the tracking task [49, 56]. The complete system can be divided into three parts:
the subsystem furthest away from the physical control input u, intermediate subsystems and the subsystem
governed by physical control input u [50]. Below the derivation of recursive BS is provided.

Subsystem j=1 (furthest away from the physical control input)
For the derivation it is deemed necessary to start with the subsystem furthest away from the physical control
input. The differential equation describing this subsystem can written as

ẋ1 = f 1(x1)+g 1(x1)x2, (3.3)

wherein x2 can be regarded as the control input to this subsystem [54]. Since x2 is a system state, it must
be regarded as a "virtual" control input. Furthermore the tracking error for the first subsystem and for the
subsystem being hierarchical one higher can be respectively defined as

z1 = x1 −x1,ref, (3.4)

z2 = x2 −α1, (3.5)



22 3. Advanced Non-linear Flight Control

withα1 (=x2,ref) being the stabilising function for the first subsystem [54]. The derivative of z1 must be defined
when taking the first order time derivative of the CLF. The expression for ż1 shall be obtained in terms of the
system dynamics from Eq. 3.3 and can be defined as follows

ż1 = ẋ1 − ẋ1,ref

= f 1(x1)+g 1(x1)x2 − ẋ1,ref

= f 1(x1)+g 1(x1)(z2 +α1)− ẋ1,ref,

(3.6)

wherein the last expression x2 was replaced by the expression given in Eq. 3.5 [54]. To proceed further it is
deemed necessary to define a CLF. A quadratic CLF is being incorporated, which is favourable because of its
sign check capabilities. The quadratic CLF and its derivative are given in Eq. 3.7 and Eq. 3.8 respectively [54].

V1(z1) = 0.5zT
1 z1 (3.7)

V̇1 = zT
1 ż1 (3.8)

Substituting the expression of ż1 from Eq. 3.6 into V̇1, will enable to determine the stabilising control law for
the first subsystem. The aforementioned will yield the following expression for V̇1

V̇1 = zT
1

[
f 1(x1)+g 1(x1)(z2 +α1)− ẋ1,ref

]
(3.9)

The stabilising control law can be determined by making V̇1 negative definite, thusα1 must be equal to

α1 = g 1(x1)−1[− f 1(x1)+ ẋ1,ref −c 1z1
]

with c 1 > 0. (3.10)

With α1 being obtained, the final expression for V̇1 can be obtained. Substituting the stabilising function
from Eq. 3.10 into the derivative expression of the CLF yields:

V̇1 = zT
1 g 1(x1)z2 − zT

1 c 1z1 with c 1 > 0. (3.11)

From the previous expression it can be observed that V̇1 is not negative definite, due to the cross term
zT

1 g 1(x1)z2. For certain combinations of z1 and z2 the expression might not be negative definite [54]. The
cross-term shall therefore be removed in the next steps. All of the natural dynamics have been removed.
Additional non-linear dynamics can still be retained when it provides adequate stabilisation [15].

Subsystem j with j = 2, ... , n - 1 (intermediate subsystems)
The intermediate subsystem do consist of all subsystems between the subsystem furthest away from the
physical control input u and the subsystem governed by u [54]. The derivation for the intermediate subsystem
will be presented below. The dynamics of the intermediate subsystems can be written as follows

ẋ j = f j (x̄ j )+g j (x̄ j )x j+1, with j = 2, ...,n −1, (3.12)

wherein x j+1 can be regarded the virtual control input for subsystem j [54]. Tracking error for subsystem j
can be defined as follows

z j = x j −α j−1, with j = 3, ...,n, (3.13)

with α j−1(=x j ,ref) being the stabilising function for subsystem j [54]. The derivative of z j is equal to the
following

ż j = f j (x̄ j )+g j (x̄ j )x j+1 − α̇ j−1, with j = 2, ...,n −1,

= f j (x̄ j )+g j (x̄ j )(z j+1 +α j )− α̇ j−1,
(3.14)

in which x j+1 has been replaced with the expression given in Eq. 3.13. For all intermediate subsystem a
quadratic CLF is chosen, due to its attractive properties and because of staying consistent with the other
subsystems. The CLF of subsystem j −1 will be augmented with the CLF from subsystem j , which yields the
expression given in Eq. 3.15 [54].
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V j (z̄ j ) =V1(z1)+
j∑

k=2
0.5zT

k zk with j = 2, ...,n −1. (3.15)

In order to obtain an expression for the stabilising control function, it is first necessary to take the derivative
of V j (z j ) along the trajectories of ż j and ż1. In Eq. 3.16 the expression for V̇ j has been provided [54]. Substi-
tuting the derivative for tracking error z j into this equation expression does yield the second expression.

V̇ j = V̇1 +
j∑

k=2
zT

k żk , with j = 2, ...,n −1.

= zT
1 g 1(x1)z2 − zT

1 c 1z1 +
j∑

k=2
zT

k

[
f k (x̄k )+g k (x̄k )(zk+1 +αk )− α̇k−1

]
.

(3.16)

The stabilising control function can be obtained by making V̇ j negative definite. In order to achieve the
aforementioned, the stabilising function must be equal to the one given in Eq. 3.17 [54].

αk = g k (x̄k )−1[− f k (x̄k )+ α̇k−1 −c k zk −g k−1(x̄k−1)zk−1
]

with c k > 0 with k = 2, ..., j . (3.17)

Based on the expression for the stabilising function, one does obtain the following CLF

V̇ j =
j∑

k=1
zT

j g j (x̄ j )z j+1 − zT
k c k zk with j = 2, ...,n −1. (3.18)

Based on the obtained stabilising function ak , one can state that the CLF for a given j th subsystem is not
negative definite for all values of z j+1 and z j , given a g j (x̄ j ) [54]. The cross-term zT

j g j (x̄ j )z j+1 shall be

removed in the last step of the recursive BS procedure. Likewise, for the first subsystem, all of the natural
dynamics has been removed. Additional non-linear dynamics can be retained when it provides adequate
stabilisation [15].

Subsystem j=n (subsystems with physical control input u)
To complete the derivation of conventional recursive BS, it is necessary to end with the subsystem, which is
governed by the physical control input u. The recursive BS procedure will be similar as for the previous sub-
systems except for the fact that all cross-terms will be removed. The system dynamics of the last subsystem
can be written into the following form

ẋn = f n(x)+g n(x)u, (3.19)

wherein u can be regarded as the physical control input for subsystem n [54]. Tracking error for subsystem n
is given in Eq. 3.20 [54].

zn = xn −αn−1. (3.20)

For establishing V̇n , the derivative of zn from Eq. 3.20 is necessary, which is found to be equal to the following

żn = ẋn − α̇n−1

= f n(x)+g n(x)u − α̇n−1,
(3.21)

from which it can be observed that the error dynamics was written in terms of system dynamics from Eq.
3.19. The CLF’s of the previous subsystems will be augmented with the CLF from subsystem n, which yields
the expression provided in Eq. 3.22 [54].

Vn(zn) =
n∑

k=1
0.5zT

k zk

=Vn−1(z̄n−1)+0.5zT
n zn .

(3.22)

Taking the derivative of the augmented CLF along the trajectories of the error dynamics does yield

V̇n = V̇n−1 + zn żn

=
n−1∑
k=1

−zT
k c k zk + zT

n−1g n−1(x̄n−1)zn−1 + zT
n

[
f n(x)+g n(x)u − α̇n−1

]
.

(3.23)
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To render the CLF derivative from Eq. 3.23 negative definite, the following control law u must be selected

u = g n(x)−1[− f n(x)+ α̇n−1 −c n zn −g n−1(x̄n−1)zn−1
]
, (3.24)

from which it can be observed that u depends on the analytical derivative of αn−1, which can be rather te-
dious to obtain [54]. Based on the expression for u, the CLF derivative V̇n can be rewritten into

V̇n =
n∑

k=1
−zT

k c k zk . (3.25)

In accordance with the theorem of LaSalle-Yoshizawa z can be regarded as uniformly asymptotically stable
when given that c k > 0 for all k = 1, ..,n [54]. The aforementioned subsequently means that the desired ref-
erence signals as defined earlier can be tracked by the Lyapunov-based controller. To put this into a more
mathematical form, the following would hold

lim
t→∞

[
x1 −x1,ref

]= 0. (3.26)

Recursive backstepping is suitable for defining stabilising control laws for which the system dynamics is well-
known (e.g. kinematic relation). Considering the fact that Lyapunov-based control design will also be exposed
to uncertainties, it is deemed necessary to consider other Lyapunov-based control techniques which enable
to cope with these uncertainties. Of prime concern is the analytical derivative for α which is required for
establishing u, which is difficult to obtain analytically. In the next section incremental backstepping will be
considered, which can deal with uncertainties to some extent.

3.2. Incremental Backstepping
The next Lyapunov-based controller that will be considered is incremental backstepping. IBS is an effective
control design methodology for which stability can be guaranteed given a set of assumptions [27]. With IBS a
sensor-based approach is pursued, in which less model knowledge is required as complex system dynamics
can be linearised by means of a first-order Taylor series [23, 27, 54]. Conventional BS however, is a model-
based control strategy, hence sensitive to model uncertainties [27, 54]. IBS has been used in various types
of applications in which there is unknown dynamics in one or more loops of the controller [8, 13, 54]. This
deficiency must be circumvented in order to assure fault tolerant BS control, which can be realised by means
of IBS as it reduces model dependency, thus improving model robustness [27, 54]. The design procedure for
IBS using a strict feedback system is similar to BS, except for a first-order Taylor Series being used for ap-
proximating complex system dynamics [8, 54]. Recursive BS is limited to systems which are affine in control,
which is in contrast to IBS, for which systems do not necessarily need to be affine in control [27, 55].

With IBS the system states and its derivative must be measured to obtain model information, rather than
using model knowledge. In [27] it is explained that this approach is desirable as it reduces the effect of model
mismatch. In case of model mismatch, performance is likely to degrade performance of the system and
stability cannot be guaranteed [55]. The effectiveness of incorporating an IBS design in terms of system ro-
bustness was already proven in [1]. IBS also overcome the need for model identification or conservatism
[13]. This is desirable for certifiability for aerospace vehicles [27]. In general controllers can be modelled by
means of slow outer loop kinematic and fast inner loop dynamic equations [8]. The former equations can
be regarded well-known and can be adequately modelled [8]. The inner loop dynamics do consists of less
well-known functions difficult to model, which means that there are uncertainties present in this loop [8, 55].
The kinematic outer loop and inner loop must be controlled by means of BS and IBS respectively [8].

3.2.1. Incremental backstepping main advantages and disadvantages
In order to compare various types of Lyapunov-based controllers it is deemed necessary to consider both the
advantages and disadvantages of IBS. The main advantages of IBS are:

I IBS was found to be robust against mismatches in control effectiveness as it enables adequate con-
troller performance even when the control effectiveness mismatch is 50% [8, 27, 53]. This holds when
the controller update rate is sufficiently high [27, 55]. High update rates increase the allowed control
effectiveness mismatch, thus underlining the importance of time-scale separation [8],
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II The restriction of affine-in-control system requirement is not deemed necessary as a first-order Taylor
series is incorporated for representing the system dynamics [49, 55].

Furthermore the main disadvantage of IBS are:

I It is assumed that there is complete and accurate knowledge of the system states and sufficiently high
sampling rate, hence instantaneous control actions [1, 54]. This requires adequate and complete infor-
mation of state derivatives from the system, such as angular accelerations for which there in general no
sensors for which can adequately measure this as only prototypes exist. The drawback is that angular
accelerations shall therefore be estimated based on angular rate measurements, which contain noise.

II IBS requires control deflections, which cannot always be provided, hence therefore must be estimated
on the basis of high-fidelity model of the actuator dynamics [1, 54]. The latter implies the negligence
of Taylor series terms. In terms of robustness this can also be considered of importance because when
this assumption holds, the IBS control law can be considered robust to system uncertainties [50].

3.2.2. Assumptions incremental backstepping
For providing the derivation of IBS it is deemed necessary to consider the following set of assumptions.

I There must be accurate, reliable and complete knowledge of the system states and their derivatives [1, 8,
54]. Former is obtained by means of system measurements. The IBS controller must be robust against
measurement biases and noise for sufficiently high update rate of the controller.

II There is time-scale separation between the controlled states (slow time-scale) and the states on which
control action has direct effect (fast time-scale) [1, 8, 54]. For small time increments and quick actu-
ators, large control inputs will cause the controlled states too change slower than the direct affected
states.

III Instantaneous control action will be assumed, wherein system response is instantaneous to commanded
signals [1, 54]. It does not account for actuator dynamics and additional internal system delays.

IV Fast evaluation rate is considered, wherein the controller does send continuous input commands to
the system [1, 54]. Due to the digital nature of the controller, this is unlikely, thus a high update rate is
assumed.

3.2.3. Derivation of incremental backstepping for two-cascaded system
The derivation of IBS from [54] shall be used. In order to provide a derivation of IBS, it is first necessary to
define the dynamics of the system. In this particular case a cascaded system with two subsystems is being
considered in which one subsystem contains the kinematic equations of motion and the other subsystem the
unknown or uncertain dynamics [55]. The aforementioned represents the natural division of the rotational
dynamics of the rotorcraft into attitude kinematics and angular rates. Herein, the former can be regarded
as slow and known, whereas the latter is fast and partially known (unknown). Based on this, the cascaded
system can be described with the following equations

ẋ1 = f k(x1)+g k(x1)x2 (3.27)

ẋ2 = f d(x1, x2)+g d (x1, x2)u, (3.28)

wherein subscript "k" and "d" are referring to the kinematics and dynamics of the system [54, 55]. Further-
more x1 and x2 can be as the state vectors, hence x1 ∈Rn and x2 ∈Rn [54]. Furthermore u ∈Rm is the physical
control input of the two-cascaded system. In the derivation below use is made of the time-scale separation
principle.

Subsystem j=1 (furthest away from the physical control input)
For the derivation it is deemed necessary to start with the subsystem furthest away from the physical control
input u [54]. The dynamics of the first subsystem is provided in Eq. 3.27, wherein x2 is a state of the sys-
tem and shall therefore be regarded as a virtual control input to this subsystem. Tracking error for the first
subsystem and one hierarchical higher can be expressed respectively as
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z1 = x1 −x1,ref (3.29)

z2 = x2 −x2,ref, (3.30)
with α1 (=α1) being the stabilising function for the first subsystem [54]. The derivative of z1 will be needed
when computing the derivative of the CLF. The next step is to determine ż1, which is found to be equal to

ż1 = ẋ1 − ẋ1,ref = f k (x1)+g k (x1)x2 − ẋ1,ref

= f k (x1)+g k (x1)(z2 +α1)− ẋ1,ref,
(3.31)

wherein x2 has been replaced by the expression given in Eq. 3.30. A quadratic CLF is incorporated, which is
favourable because of its sign check definiteness. The quadratic CLF and its time derivative are given in Eq.
3.32 and Eq. 3.33 respectively [54].

V1(z1) = 0.5zT
1 z (3.32)

V̇1(z1) = zT
1 ż1 (3.33)

Substituting the derivative of z1 into the first order time derivative expression for the CLF does yield

V̇1 = zT
1

[
f k (x1)+g k (x1)(z2 +α1)− ẋ1,ref

]
(3.34)

In order to make CLF derivative negative definite, the stabilising function must be equal to the following

α1 = g k (x1)−1[− fk (x1)+ ẋ1,ref −c 1z1
]
, with c 1 > 0 (3.35)

Substituting the stabilising function into the derivative expression of the CLF yields:

V̇1(z1) = zT
1 g k(x1)z2 − zT

1 c 1z1, with c 1 > 0 (3.36)

From the previous expression it can be observed that V̇1(z1) is not negative definite for all c 1, which is due
to the cross term zT

1 g (x1)z2. For certain combinations of z1 and z2 the expression might not be negative
definite, and shall therefore be removed when constructing the incremental-based control law for the last
subsystem [54]. In addition to this all natural dynamics has been removed when defining the stabilising con-
trol law for the first subsystem. Additional non-linear dynamics can be retained when it provides adequate
stabilisation [15]. The stabilising control law of the first subsystem was established by means of recursive BS,
as there are no uncertainties present in the differential equation given in Eq. 3.27.

Subsystem j=n=2 (subsystems with physical control input u)
Since a two-cascaded system is being considered, there will be no intermediate subsystems considered for
the derivation. The last subsystem is governed by the physical control input u. The main objective is derive
a control law in terms of u. The dynamics of the last subsystem was provided in Eq. 3.28. For deriving an
IBS control law, Eq. 3.28 could also be written in non-affine form. In the proceeding analysis the affine form
will be considered. This subsystem is characterised with (partially) unknown dynamics, hence the first-order
Taylor series expansion shall be considered around the current solution (x0,u0). at t0. of Eq. 3.28 [54, 55].
The first order Taylor series expansion about the current solution is can be written as

ẋ2 ≈ f d (x0)+g d (x0u0)︸ ︷︷ ︸
ẋ2,0

+ ∂

∂x

[
f d (x)+g d (x)

]
︸ ︷︷ ︸

f d(x)

∣∣∣x=x0
u=u0

(
x −x0

)
︸ ︷︷ ︸

∆x

+ ∂

∂u

[
f d (x)+g d (x)

]
︸ ︷︷ ︸

g d (x)

∣∣∣x=x0
u=u0

(
u −u0

)
︸ ︷︷ ︸

∆u

, (3.37)

wherein ∆x and ∆u are the incremental state and control vector respectively [54, 55]. Higher-order terms
are neglected as these do not contribute significantly to the dynamics for small ts . The error of the first-
order Taylor series approximation is approximately O (ts ), which is acceptable for small ts [8, 46]. The first-
order Taylor series shall be further simplified by considering the time-scale separation principle. This means
that ∆u and ∆ẋ are significantly greater than ∆x , therefore the latter can be neglected [1, 8, 45, 46, 54]. The
incremental change in state vector (∆x) can therefore be regarded small, and thus neglected. The system
dynamics from Eq. 3.28 is written in simplified form in Eq. 3.38.

ẋ2 ≈ ẋ2,0 +g d(x0)∆u. (3.38)
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The rewritten system dynamics can subsequently be used for defining an adequate control law without hav-
ing knowledge of the state dynamics of this subsystem. On the other hand, the control-depended dynamics
is still required for defining the control law [54]. The derivative of the tracking error in Eq. 3.30 is equal to

ż2 = ẋ2 − ẋ2,ref

= ẋ2,0 +g d (x0)∆u − ẋ2,ref
(3.39)

The CLF of the previous subsystem will be augmented with the CLF for this subsystem, such that The CLF
and its first-order derivative are provided in Eq. 3.40 and 3.41 respectively [54].

V2(z1, z2) =V1(z1)+0.5zT
2 z2 (3.40)

V̇2 = V̇1 + zT
2 ż2 (3.41)

Furthermore the derivative of this augmented CLF for subsystem j is. Substituting the derivative for tracking
error z1 into the derivative expression for the CLF, yields

V̇2 = V̇1 + zT
2

[
ẋ2,0 +g d(x0)∆u − ẋ2,ref

]
= zT

1 g2(x1)z2 − zT
1 c 1z2

1 + zT
2

[
ẋ2,0 +g d (x0)∆u − ẋ2,ref

] (3.42)

In order to make V̇2 negative definite, the incremental control law ∆u and total control law u must be:

∆u = g−1
d (x0)

[− ẋ2,0 + ẋ2,ref − z1g 1 −c 2z2
]
, with c 2 > 0 (3.43)

u = u0 +∆u (3.44)

Based on the expression for the stabilising function, one does obtain the following CLF

V̇2 =−zT
1 c 1z1 − zT

2 c 2z2, with c1 > 0 and c 2 > 0 (3.45)

It can be observed that the cross-term from the first subsystem has been cancelled. In addition to this V̇2(z2) is
negative definite when both c1 and c2 are strictly greater than zero. In the derivation of the incremental-based
control law a two-cascaded system was considered, which resembles the angular kinematics and dynamics
of a rotorcraft [55].

3.3. Command-Filtered Backstepping
In this section command-filter backstepping (CFBS) will be considered. In accordance with previous studies
CFBS can be regarded as an attractive extension with respect to conventional recursive BS [49]. It is also
very common that the CFBS approach is referred to as dynamic surface control [49, 54]. CFBS incorporates
command-filters which enable to impose bandwidth, magnitude and rate limitations of the virtual controls
[54]. In addition to this, it also obviates the need to have the systems dynamics in lower triangular form, which
means that a broader ranch of system dynamics can be considered by constructing a Lyapunov-based control
law [50, 54]. Next to this, it also does not require the analytical determination of the virtual control derivatives,
which can be regarded as beneficial when considered large cascaded systems [50, 54]. The aforementioned is
especially the case when considering adaptive BS. Below the main advantages of CFBS, as mentioned by van
Gils [54], have been summarised:

I Imposing bandwidth, magnitude and rate limitations on the raw reference signal.

II Nonlinear systems do not have to be of lower triangular form.

III Analytical determination of the virtual control derivatives is not required.
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3.3.1. Derivation Command-Filtered Backstepping
In contrast to recursive backstepping, command-filtered backstepping enables to derive a stabilising control
law for a non-triangular system. This system shall therefore be considered for the derivation. The derivation
from [54] was used. For the derivation of command-filtered backstepping a non-triangular feedback passive
system, which can be described as follows

ẋ j = f j (x)+g j (x)x j+1, with j = 1,2,3, ...,n −1 (3.46)

ẋn = f n(x)+ gn(x)u, (3.47)

wherein x ∈ Rn and x j ∈ R j for 1 ≤ j ≤ n −1 and can be considered the state vectors of the (sub)-system [54].
Furthermore u ∈ Rm is the control vector of the system. The main control objective is to let x1 track a smooth
reference signal x1,ref for which its derivative is both known and bounded [54]. The other system states x j (for
2 ≤ j ≤ n−1), which are the virtual control signals, are bounded as well [54]. Next to this f j (x) and g j (x) shall
be regarded as smooth vector fields being a function of all system state variables. The latter is in contrast with
the "traditional" lower triangular form. In addition to this fi (x) ∈ C 1 and gi (x) ∈ C 1, implying that the first
order derivatives of these vector fields are continuous.

Subsystem j=1 (furthest away from the physical control input)
For the derivation it is deemed necessary to start with the subsystem furthest away from the physical control
input u. This subsystem is associated with the following differential equation

ẋ1 = f 1(x)+g 1(x)x2, (3.48)

wherein x2 is the control input to this subsystem [54]. Since x2 is a state of the system, it must be a virtual
control input. The tracking for this subsystem and one hierarchical higher can be respectively defined as

z1 = x1 −x1,ref (3.49)

z2 = x2 −α1, (3.50)

with α1(= x2,ref) being the stabilising function for the first subsystem [54]. Next to this, it is necessary to
determine the derivative of z1, as this will be used in the CLF derivative. The following expression for ż1 can
be derived, in which the virtual control input x2 has been replaced by the tracking error z2 and stabilising
functionα1.

ż1 = ẋ1 − ẋ1,ref

= f 1(x)+g 1(x)x2 − ẋ1,ref

= f 1(x)+g 1(x)(z2 +α1)− ẋ1,ref

(3.51)

A quadratic CLF is being incorporated for the first subsystem. As mentioned in previous derivation, the
quadratic CLF is chosen because of its ease in determining sign definiteness. In order to obtain the expression
for the stabilising functionα1, it is necessary to take the first time derivative of the CLF along the trajectories
of the error dynamics. The quadratic CLF and its first order time derivative are provided below [54].

V1(z1) = 0.5zT
1 z1 (3.52)

V̇1 = zT
1 ż1 = zT

1

{
f 1(x)+g 1(x)(z2 +α1)− ẋ1,ref

}
(3.53)

In order to make the derivative of the CLF negative definite, the stabilising function shall be defined as

α1 = g−1
1 (x)

{
− f 1(x)+ ẋ1,ref −c 1z1

}
, for c 1 > 0 (3.54)

The previous steps are in accordance with the standard BS procedure. Here a command filtering approach is
being considered, thusα1 shall not be used directly, but used to define a new raw reference signal, namely

x0
2,ref =α1 −χ2. (3.55)
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which shall be led through a command filter, yielding corresponding reference signals x2,ref and ẋ2,ref [54]. A
stable linear filter shall be used to estimate the effect that the command filter has on the tracking error z1.
The stable linear filter is defined below [54].

χ̇1 = g 1(x)
[

x2,ref −x0
2,ref

]−c 1χ1, with χ1(0) = 0 (3.56)

Magnitude, rate and bandwidth constraints can be imposed on this filter, thus making intermediate control
laws not unbounded. Next, it is necessary to introduce the compensated tracking error for this subsystem
and one hierarchical higher. The compensated tracking errors are given below [54].

z̄1 = z1 −χ1 (3.57)

z̄2 = z2 −χ2 (3.58)

In order to proceed further it is necessary to take the first order time derivative of z̄1, which is equal to

˙̄z1 = ż1 − χ̇1 = f 1(x)+g 1(x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g 1(x)(x2,ref −x0
2,ref) (3.59)

The quadratic CLF for z̄1 and its associated derivative are provided below [50].

V1(z̄1) = 0.5z̄T
1 z̄1 (3.60)

V̇1 = z̄T
1

˙̄z1 (3.61)

In order to obtain the expression for the stabilising function α1, it is necessary to take the first order time
derivative of the CLF V1(z̄1) along the trajectories of the compensated error dynamics [50, 54]. The first
expression in Eq. 3.62 can be simply obtained by substituting Eq. 3.59 into Eq. 3.61. The second expression

is rewritten in such a way that g 1(x)x0
2,ref is both added and subtracted from ˙̄V1. The third expression alters

+g 1(x)x0
2,ref, by substituting the equation for x0

2,ref, as given in Eq. 3.55, into it. This yields the cancellation

of the following terms: g 1(x)x0
2,ref and g 1(x)α1 (=g 1(x)x2,ref). In the fourth expression the cancellation of

the aforementioned terms was taken into account. Next to this the stabilising control law α1 from Eq. 3.54
is being substituted, where after terms are being cancelled out as well. In particular the following terms did
cancel out: f 1(x) and ẋ1,ref. In the fifth expression terms are being grouped with each other, such that the
compensated tracking errors, as defined in Eq. 3.57 and Eq. 3.58, can be substituted.

˙̄V1 = z̄T
1

[
f 1(x)+g 1(x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g 1(x)(x2,ref −x0

2,ref)
]

= z̄T
1

[
f 1(x)+g 1(x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g 1(x)(x2,ref −x0

2,ref)+g 1(x)x0
2,ref −g 1(x)x0

2,ref

]
= z̄T

1

[
f 1(x)+g 1(x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g 1(x)(x2,ref −x0

2,ref)+g 1(x)(α1 −χ2)−g 1(x)x0
2,ref

]
= z̄T

1

[
g 1(x)(x2,ref + z2)+c 1χ1 −g 1(x)(x2,ref −x0

2,ref)−g 1(x)χ2 −c 1z1 −g 1(x)x0
2,ref

]
= z̄T

1

[−c 1
(
z1 −χ1

)+g 1(x)
(
z2 −χ2

)]
=−z̄T

1 c 1 z̄1 + z̄T
1 g 1(x)z̄2, with c 1 > 0

(3.62)

In the last expression the cross-term z̄T
1 g 1(x)z̄2 is observed, which implies that V̇1(z̄1) is not negative definite

for all combinations z̄1 and z̄2. The cross-term which will be removed when constructing a stabilising control
law for the subsystem being heroically one higher [54]. The first term is negative definite only when c 1 > 0.

Subsystem j = 2, ... ,n - 1 (intermediate subsystems)
For the intermediate subsystems a similar procedure will be followed as for the first subsystem. The interme-
diate subsystems can be written into the following general form

ẋ j = f j (x)+g j (x)x j+1, with j = 2, ...,n −1, (3.63)

wherein x j+1 can be regarded as the virtual control input for subsystem j [54]. Furthermore the tracking error
z j for subsystem j can be defined as follows

z j = x j −α j−1, with j = 3, ..,n, (3.64)
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withα j−1 (= x j ,ref) being the stabilising function for subsystem j [54]. The derivative of z j is equal to

ż j = ẋ j − ẋ j ,ref = f j(x)+g j(x)x j+1 − ẋ j ,ref, with j = 3, ..,n

= f j (x)+g j (x)(z j+1 +α j )− ẋ j ,ref,
(3.65)

A command-filtered BS control strategy is being pursued, which requires the use of a new raw reference
signal, namely x0

j+1,ref, which is defined in Eq. 3.66 [54].

x0
j+1,ref =α j−1 −χ j , with j = 3, ...,n. (3.66)

This signal shall be led through a command filter, which will provide the corresponding reference signals
x j+1,ref and the associated derivative ẋ j+1,ref [54] . A stable linear filter shall be used to estimate the effect that
the command filter has on the tracking error z j . The stable linear filter is provided in Eq. 3.67 [54].

χ̇ j = g j (x)
[

x j+1,ref −x0
j+1,ref

]−c jχ j , with j = 2, ...,n −1 (3.67)

The compensated tracking error z̄ j is the difference between z j and χ j and is given in Eq. 3.68 [54].

z̄ j = z j −χ j , with j = 3, ...,n (3.68)

The derivative of z̄ j is given below in which ż j and χ̇ j from Eq. 3.65 and Eq. 3.67 have been used.

˙̄z j = ż j − χ̇ j , with j = 2, ..,n −1

= f j(x)+g j (x)
(
x j+1,ref + z j+1

)− ẋ j ,ref +c jχ j −g j (x)
(
x j+1,ref −x0

j+1,ref

) (3.69)

The CLF from subsystem j will be augmented with the quadratic CLF from subsystem j −1, yielding the
expression provided below [54] .

V j (z1, z̄ j ) =V1(z̄1)+
j∑

k=1
0.5z̄T

k z̄k , with j = 2, ...,n −1. (3.70)

Next to this, it is deemed necessary to determine CLF derivative, which was found to be equal to the following

V̇ j = V̇1 +
j∑

k=1

˙̄z
T
k

˙̄zk , with j = 2, ...,n −1. (3.71)

In order to obtain the expression for the stabilising functionα j , it is necessary to take the first order derivative
of the CLF V j (z̄ j ) along the trajectories of the compensated tracking errors of subsystem j given in Eq. 3.69.
The expression for the CLF derivative V̇ j is provided in Eq. 3.72 [54].

V̇ j =V1(z̄1)+
j∑

k=2
z̄k

[
f k (x)+g k (x)(xk+1,ref + zk+1)− ẋk,ref +c kχk −g k (x)(x)(xk+1,ref −x0

k+1,ref)
]

with j = 2, ..,n −1

(3.72)

The expression from Eq. 3.72 shall be extended in such a way that g k (x)x0
k+1,ref is both added and subtracted

from it, which is provided in Eq. 3.73. The second expression from Eq. 3.73 alters +g k (x)x0
k+1,ref, by substitut-

ing the equation for x0
k+1,ref, as given in Eq. 3.66, into it. This yields cancellation of g k (x)x0

k+1,ref and g k (x)αk

(=g k (x)k+1,ref), which can be observed in the fourth expression. The stabilising control law can be identified
from the fifth expression
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V̇ j =V1(z̄1)+
j∑

k=2
z̄k

[
f k (x)+g k(x)(xk+1,ref + zk+1)− ẋk,ref +c kχk −g k (x)(xk+1,ref −x0

k+1,ref)

+g k(x)x0
k+1,ref −g k (x)x0

k+1,ref

]
=V1(z̄1)+

j∑
k=2

z̄k

[
f k (x)+g k (x)(xk+1,ref + zk+1)− ẋk,ref +c kχk −g k (x)(xk+1,ref −x0

k+1,ref)

+g k (x)(αk −χk+1)−g k x0
k+1,ref

]
=V1(z̄1)+

j∑
k=2

z̄k

[
f k (x)+g k (x)(xk+1,ref + zk+1)− ẋk,ref +c kχk −g k (x)χk+1

]
, with j = 2, ..,n −1

(3.73)

In order to render Eq. 3.73 negative definite along the compensated error dynamics the following stabilising
control lawα j needs to be incorporated

α j = g−1
j (x)

[− f j (x)+ ẋ j ,ref −c j z j − z̄T
j−1g j−1

]
, for c j > 0 with j = 2, ...,n −1. (3.74)

Substitution of Eq. 3.74 into the last expression of Eq. 3.73 does yield the first expression of Eq. 3.75 [54].
Inclusion of the stabilising control law does cancel out f k (x) and ẋk,ref, which can be observed from the
second expression of Eq. 3.75. In the second expression terms are also being grouped with each other, such
that the compensated tracking errors, as defined in Eq. 3.68 can be substituted. In the third expression,

substitution of the compensated tracking errors is shown. From the last expression it can be seen that ˙̄V j

includes a cross-term, namely z̄T
n−1g n−1(x)z̄n−1, therefore V̇ j is not negative definite for all values of z̄k and

z̄k-1 [54] .

V̇ j =V1(z̄1)+
j∑

k=2
z̄k

[
f k (x)+g k (x)(g−1

k (x)
[− f k (x)+ ẋk,ref −c k zk − z̄k−1g k−1(x)

]+ zk+1)

− ẋk,ref +c kχk −g k (x)χk+1

]
=V1(z̄1)+

j∑
k=2

z̄k

[
g k (x)(zk+1 −χk+1)−c k (zk −χk )− z̄k−1g k−1

]
=V1(z̄1)+

j∑
k=2

z̄k

[
g k (x)z̄k+1 −c k z̄k − z̄k−1g k−1

]
=

j∑
k=1

−c k z̄2
k − z̄k gk−1 z̄k+1, with j = 2, ..,n −1

(3.75)

The cross-term z̄T
n−1g n−1(x)z̄n−1 shall be removed during the derivation of the last stabilising control law.

Derivation of the final stabilising control law shall be considered here after.

Subsystem j = n (last subsystems)
To complete the derivation of CFBS it is deemed necessary to end with the subsystem which is governed by
the physical control input u. For the last subsystems a similar procedure will be followed as for the previous
subsystem. The last subsystem can be written as

ẋn = f n(x)+g n(x)u, (3.76)

where u can be regarded as the physical control input [54] . The tracking error for this subsystem is equal to

zn = xn −xn,ref, (3.77)

with xn,ref being the reference signal [54]. The tracking error derivative zn has been defined in Eq. 3.78.

żn = ẋn − ẋn,ref

= f n(x)+g n(x)u − ẋn,ref
(3.78)
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A command-filtered BS control strategy is being pursued, which requires the use of a new raw reference
signal, namely u0, which is defined in Eq. 3.79 [54].

u0 = u −χn . (3.79)

This signal shall be led through a command filter, which will provide the corresponding reference signals u
and the associated derivative u̇. A stable linear filter shall be used to estimate the effect that the command
filter has on the tracking error zn . The stable linear is given below [54].

χ̇n = g n(x)
[
u −u0]−c nχn (3.80)

In addition to this the compensated tracking error z̄n can be defined as

z̄n = zn −χn . (3.81)

The derivative of z̄n is given below in which żn and χ̇n from Eq. 3.78 and 3.81 respectively have been used.

˙̄zn = żn − χ̇n

= f n(x)+g n(x)u − ẋn,ref +c nχn −g n(x)
(
u −u0) (3.82)

The CLF from subsystems n −1 will be augmented with the quadratic CLF from subsystem n, yielding Eq.
3.83 [54].

V̄n(z) =
n∑

k=1
0.5z̄T

k z̄k =Vn−1(z̄n−1)+0.5z̄T
n z̄n (3.83)

Next to this it is deemed necessary to determine CLF derivative, which was found to be equal to the expression
given below.

V̇n = V̇n−1 + z̄T
n

˙̄zn (3.84)

Substituting the derivative for tracking error zn into the derivative expression for the CLF does yield the first
expression from Eq. 3.85. The second expression was obtained by cancelling out the u-term.

V̇n =
n−1∑
k=1

−z̄T
k c k z̄k + z̄T

n−1ḡ n−1(x)z̄n + z̄T
n

[
f n(x)+g n(x)u − ẋn,ref +c nχn −g n(x)

(
u −u0)]

=
n−1∑
k=1

−z̄T
k c k z̄k + z̄T

n−1ḡ n−1(x)z̄n + z̄T
n

[
f n(x)+g n(x)u0 − ẋn,ref +c nχn

] (3.85)

In order to render the CLF derivative of negative definite from Eq. 3.85, the stabilising control law must be
equal to the expression in Eq. 3.86 [54].

u0 = g−1
n (x)

[
ẋn,ref −c n zn − f n(x)−g n−1(x)z̄n−1

]
(3.86)

Substitution of the stabilising control law from Eq. 3.86 into the CLF derivative from Eq. 3.85 does yield the
first expression in Eq. 3.87. The second expression is obtained by cancellation of z̄T

n−1ḡ n−1(x)z̄n . The last
expression is obtained by realising that z̄n from Eq. 3.81 explicitly appears in it.

V̇n =
n−1∑
k=1

−z̄T
k c k z̄k + z̄T

n−1ḡ n−1(x)z̄n + z̄T
n

[−c n zn +c nχn −g n−1(x)z̄n−1
]

=
n−1∑
k=1

−z̄T
k c k z̄k + z̄T

n

[−c n zn +c nχn

]
=

n∑
k=1

−z̄T
k c k z̄k

(3.87)

In accordance with the theorem of LaSalle-Yoshizawa the equilibrium z̄ = 0 can be considered globally uni-
formly asymptotically stable [50, 54]. CFBS can assure desirable properties for z̄ , but not for z [54]. In [54] it
was addressed that convergence of z can still be assured in the absence of physical limitations, that is with-
out limitations on the commanded states and control inputs. CF limits will come into effect when aggressive
manoeuvres are being executed. Without command filters, CFBS is still an attractive control strategy because
the analytical determination of virtual control derivatives is not required.
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3.3.2. Command filters for imposing physical limitations
Augmenting recursive BS with command filters enables to put bandwidth, magnitude and rate constrains on
(virtual) control inputs [54]. CFBS incorporates a transformation wherein the raw reference signal x0

j ,ref is

transformed to x j ,ref and its time derivative ẋ j ,ref in which magnitude, rate and bandwidth limitations are
taken into account [54]. Various types of filters can be used to impose the limitations on x0

j ,ref. The most

commonly used filters are first or second order. Information about other types of filters can be found in [15].
The first filter to be considered is the first-order low-pass filter. This particular type of filter is associated

with bandwidth ωn and unity low-frequency gain ζn . The filter is provided in Eq. 3.88 [54].

ẋ j , ref = SRat

({
SMag

[
x0

j , ref

]
−x j , ref

}
ωn

)
, with initial condition x j , ref(0) =α1

(
z j−1(0), x j−1, ref(0)

)
. (3.88)

The magnitude and rate limitations for the first order filter are defined in Eq. 3.89 [54].

SMag

[
x0

j ,ref

]
=


M if x0

j ,ref ≥ M

x0
j ,ref if |x0

j ,ref| < M

−M if x0
j ,ref ≤ M

and SRat

[
ẋ0

j ,ref

]
=


R if ẋ0

j ,ref ≥ R

ẋ0
j ,ref if |ẋ0

j ,ref| < R

−R if ẋ0
j ,ref ≤ R

(3.89)

The first-order wash-out filter is desirable, because of its simplicity. Combining two first-order filters enables
to create a second-order filter. A second-order filter does suppress the noise more than a first-order filter,
however there will be an increase in time-delay between input and output of the command-filter [54]. The
expression of the second-order filter is given in Eq. 3.90 [54].

[
ẋ j ,ref

ẍ j ,ref

]
=

[
ẋj,ref

2ζωn

(
SRat

{
ω2

n
2ζωn

[
SMag

(
x0

j ,ref

)
−x j ,ref

]}
− ẋ j ,ref

) ]
,

with initial conditions
x j ,ref(0) =α j

(
z j−1(0), x j−1,ref(0)

)
ẋ j ,ref(0) = 0

(3.90)

The second-order CF is illustrated in Fig. 3.1, wherein the magnitude, rate and bandwidth can be observed.

Figure 3.1: Second-order command filter capable of generating command signals xj,ref and ẋj,ref while imposing

bandwidth, magnitude and rate limitations on reference signal x0
j,ref [54].

Command filters can be incorporated without taking any magnitude or rate limitations into consideration,
thus enabling computation of the command signal and its derivative only, which can be achieved by setting
both SMag and SRat equal to one [54]. When it is desirable to have magnitude limitations, then ζ must be
greater or equal to 1 in order to prevent x j ,ref from overshooting the magnitude limitations (±M) [54]. The
sampling rate ts must be sufficiently large enough in order to capture the high frequency dynamics of a sys-
tem [50, 54]. In other words ts and ωn need to be consistent with each other in order to avoid instability
of the system [54]. When ωn has been increased sufficiently large enough, then CFBS and BS will yield ap-
proximately similar results for the same tracking problem [15]. Command filters impose magnitude, rate and
bandwidth limitations on the commanded states and not on the actual states of the system.

3.4. Command-Filtered incremental Backstepping
In this section IBS will be augmented by means of command-filters, thus making it command-filtered incre-
mental backstepping (CFIBS). A sensor-based control approach will be pursued, wherein command-filters
enable to provide magnitude, rate and bandwidth limitations on signals [54]. In addition to this, it also ob-
viates the need to have the systems dynamics in lower triangular form. This means that a broader ranch of
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system dynamics can be considered by constructing a Lyapunov-based control law [50, 54]. Next to this, it
also does not require the analytical determination of the virtual control derivatives, which can be regarded as
beneficial when considered large cascaded systems [54]. The cascaded system provided in Eq. 3.91 shall be
considered for the derivation [55].

ẋ1 = f k (x)+g k (x) x2 (3.91)

ẋ2 = f d (x)+g d (x)u, (3.92)

wherein x1,ref ∈ Rn and x2 ∈ Rn are the state vectors of the system and u ∈ Rm the input vector [54].

Subsystem j=1 (furthest away from the physical control input)
For the derivation it is necessary to start at the subsystem furthest away from the physical control input u.
This subsystem is described with the differential equation from Eq. 3.91, wherein x2 is the virtual control
input of this subsystem. The tracking of the first and second subsystem can be defined respectively as

z1 = x1 −x1,ref (3.93)

z2 = x2 −α1 (3.94)

with α1 (= x2,ref) being the stabilising function for the first subsystem [54]. The derivative of Eq. 3.93 can be
written in terms of the system dynamics from Eq. 3.91 and the tracking error given in Eq. 3.94 the second
subsystem. This does yield expression for ż1 given in Eq. 3.95 [54].

ż1 = ẋ1 − ẋ1,ref

= f k (x)+g k (x)
(
z2 +α1

)− ẋ1,ref.
(3.95)

The expression from Eq. 3.95 shall be used for the CLF derivative. A quadratic CLF shall be used because of
its ease in determining sign definiteness. In order to obtain the expression for the stabilising control lawα1 ,
it is necessary to take the first time derivative of the CLF along the trajectories of the error dynamics from Eq.
3.95. The quadratic CLF and its first order time derivative are given in Eq. 3.96 and Eq. 3.97 respectively [54].

V1(z1) = 0.5zT
1 z1 (3.96)

V̇1 = zT
1 ż1 = zT

1

{
f k (x)+ gk (x)

(
z2 +α1

)− ẋ1,ref

}
(3.97)

To make the derivative of the CLF from Eq. 3.97 negative definite, the stabilising function must be

α1 = g−1
k (x)

{− f k (x)+ ẋ1, ref −c 1z1
}

, for c 1 > 0 (3.98)

The previous derivation is in accordance with the standard BS procedure. A command filtered approach is
considered, whereinα1 will not be used directly, but rather to define the following raw reference signal

x0
2, ref =α1 −χ2, (3.99)

which shall be led through a command filter, providing reference signals x2,ref and ẋ2,ref [54]. A stable linear
filter shall be used to estimate the effect the command filter has on tracking error z1. The stable filter is
defined in Eq. 3.100 [54].

χ̇1 =−c 1χ1 +g k (x)
[

x2,ref −x0
2,ref

]
, with χ1(0) = 0. (3.100)

Magnitude, rate and bandwidth constraints can be imposed on this filter, thus making intermediate control
laws not unbounded [54]. It is necessary to introduce the compensated tracking error for the first and second
subsystem, which are provided in Eq. 3.101 and Eq. 3.102 respectively [54].

z̄1 = z1 −χ1 (3.101)

z̄2 = z2 −χ2 (3.102)

In order to proceed further it is necessary to take the first order time derivative of z̄1, which is defined below

˙̄z1 = ż1 − χ̇1 = f k (x)+g k (x)
(
x2,ref + z2

)− ẋ1,ref +c 1χ1 −g k (x)
(

x2,ref −x0
2,ref

)
(3.103)
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The quadratic CLF for z̄1 and its associated derivative are given in Eq. 3.104 and Eq. 3.105 respectively [54].

V1 (z̄1) = 1

2
z̄T

1 z̄1 (3.104)

V1 = z̄T
1

˙̄z1 (3.105)

In order to obtain the expression for the stabilising function α1, it is necessary to take the first order time
derivative of the CLF V1(z̄1) along the trajectories of the compensated error dynamics from Eq. 3.103. The
first expression in Eq. 3.106 can be simply obtained by substituting Eq. 3.103 into Eq. 3.105. The second

expression is rewritten in such a way that g k (x)x0
2,ref is both added and subtracted from ˙̄V1. The third expres-

sion alters +g k (x)x0
2,ref, by substituting the equation for x0

2,ref, as given in Eq. 3.99, into it. This cancels out the

following terms: g k (x)x0
2,ref and g k (x)α1 (=g k (x)x2,ref), which can be observed from the fourth expression.

The stabilising control lawα1 from Eq. 3.98 is being substituted in the fifth expression where after terms can-
cel out as well, namely f k (x) and ẋ1,ref. In the sixth expression terms are being grouped together such that
the compensated tracking errors, as defined in Eq. 3.101 and Eq. 3.102, can be substituted into it, yielding the
last expression [54].

˙̄V1 = z̄T
1

[
f k (x)+g k (x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g k (x)(x2,ref −x0

2,ref)
]

= z̄T
1

[
f k (x)+g k (x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g k (x)(x2,ref −x0

2,ref)+g k (x)x0
2,ref −g k (x)x0

2,ref

]
= z̄T

1

[
f k (x)+g k (x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g k (x)(x2,ref −x0

2,ref)+g k (x)(α1 −χ2)−g k (x)x0
2,ref

]
= z̄T

1

[
f k (x)+g k (x)(x2,ref + z2)− ẋ1,ref +c 1χ1 −g k (x)χ2

]
= z̄T

1

[
g k (x)(x2,ref + z2)+c 1χ1 −g k (x)(x2,ref −x0

2,ref)−g k (x)χ2 −c 1z1 −g k (x)x0
2,ref

]
= z̄T

1

[−c 1
(
z1 −χ1

)+g k (x)
(
z2 −χ2

)]
=−z̄T

1 c 1 z̄1 + z̄T
1 g k (x)z̄2, with c 1 > 0

(3.106)

In the last expression the cross-term z̄T
1 g k (x)z̄2 is observed, which implies that V̇1(z̄1) is not negative definite

for all combinations z̄1 and z̄2. The cross-term which will be removed when constructing a stabilising control
law for the subsystem being hierarchically one higher [54]. The first term is negative definite only when c 1 > 0.

Subsystem j = n (last subsystems))
With the stabilising control law for the first subsystem being defined, it is deemed necessary to continue
with the subsystem which is directly governed by the physical control input u. This subsystem is described
with the differential equation from Eq. 3.92. Furthermore the tracking error for the last subsystem was also
provided in Eq. 3.94. This subsystem is characterised with (partially) unknown dynamics, hence the first-
order Taylor series expansion shall be considered around the current solution (x0,u0) at t0 given below [55].

ẋ2 ≈ f d (x0)+g d (x0u0)︸ ︷︷ ︸
ẋ2,0

+ ∂

∂x

[
f d (x)+g d (x)

]
︸ ︷︷ ︸

f d(x)

∣∣∣x=x0
u=u0

(
x −x0

)
︸ ︷︷ ︸

∆x

+ ∂

∂u

[
f d (x)+g d (x)

]
︸ ︷︷ ︸

g d (x)

∣∣∣x=x0
u=u0

(
u −u0

)
︸ ︷︷ ︸

∆u

, (3.107)

wherein ∆x and ∆u are the incremental state and control vector respectively. Neglecting higher-order terms
of the Taylor series expansion can be regarded as justified as these do not contribute significant to dynamics.
This implies that the error of the first-order Taylor series approximation is in the order of O (ts ), which is
acceptable for small time samples (ts ) [8, 47]. In order to make the control law less model-depended, the
first-order Taylor series shall be further simplified by incorporating time-scale separation principle, which
assumes that there is a natural time-scale separation between the controlled state and the state on which the
control input has a direct effect [50, 54]. This implies that the increments ∆u and ∆ẋ are significantly greater
than the state increment∆x , therefore the latter can be neglected [1, 8, 45, 46, 54]. Based on this assumption,
the incremental change in state vector (∆x) can be regarded small, and can therefore be neglected. The
system dynamics of the second subsystem can be rewritten into the expression given in Eq. 3.108 [54].

ẋ2
∼= ẋ2,0 +g d (x0)∆u (3.108)
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Next to this it is necessary to determine of derivative of z2, as this will be used in the CLF derivative. The
expression for ż2 is equal to the following

ż2 = ẋ2 − ẋ2,ref

= ẋ2,0 +g d (x0)∆u − ẋ2,ref.
(3.109)

A command-filtered BS control strategy is being pursued, which requires the use of a new raw reference
signal, namely u0, which is defined in Eq. 3.110 [54].

u0 = u −χ2 (3.110)

This signal shall be led through a command filter, which will provide the corresponding reference signals u
and u̇. A stable linear filter shall be used to estimate the effect that the command filter has on the tracking
error z2. This stable linear filter is defined in Eq. 3.111 [54].

χ̇2 = g d (x0)
[
u −u0]−c 2χ2, with χ2(0) = 0. (3.111)

Magnitude, rate and bandwidth constraints can be imposed on this filter, thus making intermediate control
laws not unbounded [50]. The compensated tracking errors were previously defined in Eq. 3.101 and 3.102.
Taking the first order time derivative of z̄2 does yield

˙̄z2 = ż2 − χ̇2 = ẋ2,0 +g d (x)0∆u − ẋ2,ref +c 2χ2 −g d (x)
(
u −u0) (3.112)

The quadratic CLF shall be augmented to penalise the error dynamics of the second subsystem. The expres-

sion for V̄2 (z̄1, z̄2) and ˙̄V2 are given in Eq. 3.113 and Eq. 3.114 respectively [54].

V̄2 (z̄1, z̄2) = V̄1 (z̄1)+ 1

2
z̄T

1 z̄1 (3.113)

˙̄V2 = ˙̄V1 + z̄T
2

˙̄z2 (3.114)

In order to obtain the expression for the stabilising function u, it is necessary to take the first order derivative
of the CLF V̄2 along the trajectories of the compensated error dynamics from Eq. 3.112. The first expression in
Eq. 3.115 can be simply obtained by substituting Eq. 3.112 into Eq. 3.114. The second expression is obtained
by substituting u −u0 for ∆u, which yields cancellation of u.

˙̄V2 = ˙̄V1 + z̄T
2

[
ẋ2,0 +g d (x0)∆u − ẋ2,ref +c 2χ2 −g d (x)

(
u −u0)]

= ˙̄V1 + z̄T
2

[
ẋ2,0 +g d (x0)

(
u0 −u0

)− ẋ2,ref +c 2χ2

] (3.115)

In order to render Eq. 3.62 negative definite, the following stabilising control law needs to be selected

u0 = u0 +g d (x0)−1 [−ẋ2,0 + ẋ2,ref −c 2z2 −g k (x)z̄1
]

. (3.116)

Incorporating the stabilising control law form Eq. 3.116 does yield the first expression in Eq. 3.117, from
which it can be observed that ẋ2,0 and ẋ2,ref have cancelled out. From the second expression it can be ob-
served that the cross-term z̄T

1 g k (x)z̄2 has been cancelled out as well. In the third expression the grouped
terms from the second expression were replaced by the compensated tracking error given in Eq. 3.102.

˙̄V2 =−z̄T
1 c 1 z̄1 + z̄T

1 g k (x)z̄2 + z̄T
1

[−c 2
(
z2 −χ2

)−g k (x)z̄1
]

=−z̄T
1 c 1 z̄1 + z̄T

1

[−c 2
(
z2 −χ1

)]
=−z̄T

1 c 1 z̄1 − z̄T
2 c 2 z̄2, with c 1 > 0 and c 2 > 0.

(3.117)

From Eq. 3.117 it can be observed that Eq. 3.116 does not depend on the analytical derivative of α̇1, but
rather on x2,ref and ẋ2,ref, which are the CF outputs. For sufficiently high update rate of the controller z̄ will
go to 0 for sufficiently large amount of time [54]. Closed-loop stability can be assured without the inclusion
of physical limitations, that is without constraints on intermediate signals, given that the controller update
rate is sufficiently high enough [54]. The aforementioned even holds when there are uncertainties present in
the control effectiveness matrix and/or system dynamics [54].



4
Control strategies for rotorcraft control

This chapter describes the various control strategies available for rotorcraft control with a main focus on the
angular rate subsystem. This subsystem dictates to a large extent which control strategy should be used.
In section 4.1 the main crux in control design of rotorcraft control will be outlined. There after, different
control strategies will be considered, which could be used for establishing the stabilising control law for the
angular rate subsystem. In section 4.2 the main discrepancies of the control strategies from section 4.1 will
be considered. In section 4.3 a particular control strategy from section 4.1 will be considered in more detail.

4.1. Background information on rotorcraft control design
In this section background information is provided on rotorcraft control. The main focus will be on the an-
gular rate subsystem, as it can be considered the main crux in control design for rotorcraft. It will be outlined
that it is difficult to define a well-established IBS control law due to the violation of the IBS TSS condition.
Moreover, information shall also be provided on the various control strategies that can be used for designing
the angular rate subsystem.

4.1.1. Angular rate subsystem: crux in rotorcraft control design
The main crux in control design for rotorcraft control does find its roots in the angular rate subsystem. The
angular rate dynamics of the rotorcraft does depend upon complex aerodynamics, therefore it is a natural
choice to incorporate an IBS controller in which there is less model dependency required [8, 55]. This espe-
cially holds for the main rotor and therefore has primarily affect on the design of the stabilising control law
for the cyclic control inputs. On the other hand, providing a stabilising control law for the yaw rate is less
complicated, because the negligence of flapping and because it is mainly governed by tail rotor collective.
When trying to establish an stabilising control law for the angular rate subsystem it is found that control-
dependency is significantly less than state-dependency [55]. This can be considered a major problem when
considering IBS (or INDI), because the TSS condition will be violated. In order to counteract this problem
it would be deemed necessary to account for state-dependency, but that would make the IBS controller less
robust to uncertainties in the model. The aforementioned specially holds for the main rotor, therefore es-
tablishing a stabilising control law for pitch rate, roll rate can be considered problematic. For example the
expression for the angular accelerations ṗ and q̇ it is found that there is great dependency on the cyclic flap-
ping angles (see Eq. 2.85, 2.86 and 2.113). Based on this it can be stated that flapping dynamics obstruct the
design of an IBS controller, because of the TSS condition mentioned previously. On the other hand, when
designing an attitude subsystem, the above mentioned issues will not occur. This because the expression
from Eq. 2.114 could be used for establishing the attitude controller. Recursive BS could be sued for estab-
lishing the stabilising cantor law for the attitude subsystem. This shows that the main issue in control design
is primarily due to the angular rate subsystem.

4.1.2. Advanced non-linear control methods for angular rate control
In order to design a Lyapunov-based controller for the rotorcraft under consideration, it is necessary to deter-
mine which control methods are available. This section does focus on various control methods and shortly
touches upon the validity of these techniques. The methods discussed will primarily focus on the angular
rate subsystem, which is of main concern for rotorcraft control design. Some of these control methods will
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be elaborated on in sections here after. First, the method of residualised dynamics shall be considered, where
after the flapping angle equivalence method will be touched upon. There after the central finite difference
method will be introduced. Lastly, the active flapping control method will be outlined.

I The first method to be considered is the method of residualised dynamics, which was found to be a
suitable method for establishing the stabilising control law for the angular rate subsystem [55]. The
main objective using this control strategy is to establish an enhanced control effectiveness matrix for
the angular rates p and q (ωpq ). The aforementioned angular rates shall be considered for the dis-
cussion. The method consists of setting the derivatives related to the fast modes equal to zero, which
implies that these states are continuously at steady state [48]. This could be considered for all rotor
dynamics, but for the sake of brevity only flapping dynamics shall be considered. When considering a
BF rotorcraft model with second-order flapping dynamics defined with respect to the shaft plane (SP )
(e.g. Eq. 2.26), this would mean that β̇SP and β̈SP are set to 0, leaving only steady-state flapping βSP,ss .
The second-order differential equation for flapping in matrix form can be written as

β̈SP = F β̇SP ,Xres
X res +F β̇SP ,βSP

βSP +F β̇SP ,β̇SP
β̇SP +H β̇SP

U , (4.1)

wherein X res =
[
ωT , ...

]T is the residualised state vector, which contains all states except for the flapping
states. Setting β̈SP = β̇SP = 0 and rewriting Eq. 4.1 yields

βSP,ss =−F−1
β̇SP ,βSP

F β̇SP ,Xres
X res −F−1

β̇SP ,βSP
H β̇SP

U . (4.2)

This means that the residualised dynamics using the previous expression can be written as follows

Ẋ res =
{

F Xres,Xres −F Xres,βSP F−1
β̇SP ,βSP

F β̇SP ,Xres︸ ︷︷ ︸
Adjusted system matrix

}
X res +

{
H Xres −F Xres,βSP F−1

β̇SP ,βSP
H β̇SP︸ ︷︷ ︸

=GR

}
U . (4.3)

Using the residualised rotorcraft dynamics from Eq. 4.3 it is possible to have an enhanced control
effectiveness. This solves the problem of having a too large body-flag coupling and too small control-
depended term for the angular rates (Fωpq ,βSP >> Hωpq ). The aforementioned would not allow for IBS
as state-dependency was simply greater than control-dependency and thus violating the TSS condition
[54]. The IBS TSS condition for the original and residualised model are provided in Eq. 4.4 and Eq. 4.5
respectively. The condition from Eq. 4.4 would be violated, whereas the condition from Eq. 4.5 would
be less violated or not violated at all.

Gωpq∆U >> Fωpq ,βSP∆βSP +Fωpq ,ωpq∆ωpq + ... (4.4)

Gωpq,R∆U >> 0 ·∆βSP +
(
Fωpq ,ωpq −Fωpq ,βSP F−1

β̇SP ,βSP
F β̇SP ,Xres

)
∆ωpq + ... (4.5)

It should be noted that Gωpq,R can be identified as the residualised control effectiveness for pitch and
roll rate only. The validity of the method of residualised dynamics greatly depends on whether the ide-
alised rotorcraft model (= residualised model) and actual rotorcraft model are approximately the same.
This can be assessed by considering the modes of motion or open-loop frequency response of both
models. When the difference between the idealised and actual rotorcraft model is large then a counter-
measure is required to compensate for this discrepancy. It is still possible to incorporate this method
to rotorcraft models for which the idealised and actual rotorcraft model differ, but require adjustments
to the feedback-loop of the actuator measurements. To be more specific a technique called rotor syn-
chronisation must be considered to account for the fact that a steady-state flapping model has been
used for establishing the stabilising control law, whereas the actual rotorcraft model is associated with
non-instantaneous disc-tilt motion. This technique incorporates a lag filter to slow down the feedback
loop of the actuator measurements. The aforementioned synchronisation technique shall be touched
upon later. The main advantage of this approach is that it obviates the need for any state estimation
technique for determining the flapping angles, making it more robust to such uncertainties.

II Next, the flapping angle equivalence method shall be considered, which can be regarded a novel method.
This method does make use of a geometric transformation of the flapping angles from one plane of ref-
erence to another. To be more specific, the first-order Taylor series for the angular rates does consider
the flapping angles with respect to the shaft plane first as inputs, where after a geometric transforma-
tion is being applied. This geometric transformation does transform the shaft plane flapping angles
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into an equivalent form wherein the cyclic control inputs and flapping angles with respect to the con-
trol plane explicitly appear. This transformation shall be considered in more detail in section 4.3. The
first-order Taylor series for ṗ and q̇ (denoted as ω̇pq = [ṗ, q̇]T ) can be written as follows

ω̇pq = ω̇pq,0 +Fωpq ,βSP∆βSP

= ω̇pq,0 +Fωpq ,βSP∆(θCF +βC P )
with θCF = [−θ1s , θ1c ]T and βC P = [β1c , β1s ]T

C P (4.6)

wherein θCF can be measured, but βC P cannot. This therefore requires an additional state estimation
technique to determine the flapping states with respect to the control plane. However, it will be shown
that this is actually not necessary as the final control law will depend on the incremental change in
flapping angle, that is ∆βC P . The incremental change in flapping angle is rather small and can there-
fore be neglected. It should be noted that this approach does assume time-scale separation between
the flapping modes and angular body modes of motion. This is because βC P will be ignored in the fi-
nal control law, therefore the cyclic control inputs have become identical to the rotor disc tilt angles,
which can only happen when neglecting rotor disc-tilt dynamics [16]. Most importantly is that control
effectiveness has been enhanced using this control strategy. This means that the IBS TSS condition will
be less likely violated. This shows that this particular strategy is fairly similar to the previous strategy.
However, the main difference between both methods is that the method of residualised dynamics can
consider residualisation of more internal dynamics (e.g. flap-lag-inflow), whereas the flapping angle
equivalence method only considers residualisation of flapping dynamics. It will be shown in the next
chapter that the control effectiveness obtained by means of the flapping angle equivalence method is
approximately the same as considering flap residualisation using the method of residualised dynamics.
Moreover it should be noted that the flapping angle equivalence method considers steady-state flapping
dynamics, therefore rotor synchronisation must also be considered.

III Another option would be to incorporate a central finite difference method, wherein the derivatives of
the moments with respect to the control inputs are being determined [46, 47]. This method will there-
fore rely on measurements of moments generated by the main rotor of the rotorcraft, which cannot
be obtained. In Eq. 4.7 the expression for the central finite difference is provided [46, 47]. It can be
observed that it depends on the moments generated by the main rotor mmr, current control inputs u0,
current state x0 and three perturbations, namely τθ0 , τθ1s and τθ1c . In [46] additional information is
provided about this method.

∂mmr (x,u)

∂u

∣∣∣∣
x0,u0

=



mT
mr

(
x0,u0+

[
τθ0 0 0 0

]T
)
−mT

mr

(
x0,u0−

[
τθ0 0 0 0

]T
)

2τθ0

T

mT
mr

(
x0,u0+

[
0 τθ1s 0 0

]T
)
−mT

mr

(
x0,u0−

[
0τθ1s 0 0

]T
)

2τθ1s

mT
mr

(
x0,u0+

[
0 0 τθ1c 0

]T
)
−mT

mr

(
x0,u0−

[
0 0 τθ1c 0

]T
)

2τθ1c

01×3


(4.7)

It should be noted that this method is not feasible, because it requires measurements of main rotor
moments. The strategy may work for simulation models, but not for actual implementation.

IV The last method that will be touched upon is the active flapping control method [18]. This control
strategy differs from the previous ones as it does incorporate two subsystems for controlling the angular
rates, rather than one. It includes an inner flapping subsystem and an outer angular rate subsystem [8].
The discussion shall focus on pitch and roll rates, cyclic flapping angles and cyclic control inputs. The
virtual control inputs for the angular subsystem are the cyclic flapping angles with respect to the shaft
plane (βSP ), whereas the inputs to the flapping subsystem are the cyclic control inputs θC . This method
requires IBS for both the angular rate subsystem as well as for the flapping subsystem. The time-scale
separation principle must be incorporated in order to apply this approach [54]. This means that for
the angular rate subsystem the angular body modes and flapping (regressive) modes should be well-
separated in the complex plane to adhere to the IBS TSS condition. The first step towards designing the
controller is by defining the first-order Taylor of the angular rates, which is found to be equal to
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ω̇pq = ω̇pq,0 +Fωpq ,βSP∆βSP , with ωpq = [p, q]T and βSP = [β1c , β1s ]T
SP . (4.8)

The control effectiveness matrix is the state-depended term Fωpq ,βSP , which is usually determined by
hub stiffness Kβ. It can be observed that this is actually fairly similar to the flapping angle equivalence
method. As mentioned previously, the validity of the first-order Taylor series of Eq. 4.9 depends on
whether the virtual control input can be reached instanteneous. As outlined in the first two methods,
this does primarily hold for rotorcraft models which are associated with well-separated body and flap-
ping modes of motion. It does therefore run into the same problem as the first two methods. Next to
this the first-order Taylor series for the flapping subsystem can be written as

β̇SP = β̇SP,0 +GβSP∆θC , with θc = [θ1s , θ1c ]T . (4.9)

This first-order Taylor series does rely on time-scale separation between cyclic control inputs and flap-
ping states, which generally holds [18]. The problem with this control strategy is the need of having
accurate and reliable knowledge of the flapping states and its derivatives. Moreover, Eq. 4.8 assumes
TSS between the angular body dynamics and flapping dynamics, but this does not necessarily hold.

4.2. Main discrepancies control strategies
Previously the various control strategies have been outlined for which the main discrepancies shall be out-
lined in this section. This shall be done for all methods except for the central finite difference method, because
it was previously already mentioned that this particular method is not feasible.

4.2.1. Discrepancies of method of residualised dynamics
First the discrepancies for the method of residualised dynamics shall be considered. The main discrepancies
that do arise are: control effectiveness mismatch, angular acceleration measurement induced delay and rotor
dynamics induced delay. Below the aforementioned discrepancies shall be touched upon in a bit more detail.

I The actuator measurement must be synchronised with the feedback signal of the angular acceleration
measurement. Since angular accelerations need to be estimated by means of a washout filter, a similar
filter must be placed in the feedback loop to enable synchronisation of both signals [53, 55]. Numerical
differentiation of angular rates would amplify noise, which is not desirable [57].

II The difference between idealised and actual rotorcraft model requires adjustment of the feedback-loop
of the actuator measurement. A rotor synchronisation filter is required, which is a lag filter that will slow
down the feedback of the actuator measurement to synchronise it with the angular rate derivative mea-
surement. Since steady-state flapping dynamics is considered, a flap synchronisation is required. This
shows that this method requires additional effort for establishing a well-synchronised IBS controller.

III The control effectiveness matrix Gωpq,R which appears in the first-order Taylor series expression for
the angular accelerations cannot be considered fully known. This implies that additional estimation
techniques are required for determining the control effectiveness. Estimation techniques cannot assure
that the estimated control effectiveness is equal to the true control effectiveness ( Ĝωpq,R 6=Gωpq,R ). This
may can affect controller performance, however a small mismatch is allowed [53].

IV For establishing the stabilising control law it was assumed that sampling rate is sufficiently high such
that control action is instantaneous. This would imply that all other state-depended terms can be ne-
glected, with the exception of the body-flap coupling. This is a necessary condition for the incremental-
based control law to be robust to uncertainties in system dynamics [54].

4.2.2. Discrepancies of flapping angle equivalence method
Next the discrepancies of the flapping angle equivalence method shall be considered.

I The feedback of the actuator measurements must be synchronised with the angular acceleration mea-
surements. Since angular accelerations need to be estimated by means of a washout filter, a similar
filter must be placed in the feedback loop to enable synchronisation of both signals [53, 55]. Numerical
differentiation of angular rates would amplify noise, which is highly undesirable [57].
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II The difference between idealised and actual rotorcraft model requires adjustment of the feedback-loop
of the actuator measurement. A rotor synchronisation filter is required, which is a lag filter that will slow
down the feedback of the actuator measurement to synchronise it with the angular rate derivative mea-
surement. Since steady-state flapping dynamics is considered, a flap synchronisation is required. This
shows that this method requires additional effort for establishing a well-synchronised IBS controller.

III The control effectiveness matrix Fωpq ,βSP which appears in the first-order Taylor series expression for
the angular accelerations cannot be considered fully known. This implies that additional estimation
techniques are required for determining the control effectiveness. Estimation techniques cannot assure
that the estimated control effectiveness is equal to the true control effectiveness ( F̂ωpq ,βSP 6= Fωpq ,βSP ).
This may can affect controller performance, however a small mismatch is allowed [53].

IV For establishing the stabilising control law it was assumed that sampling rate is sufficiently high such
that control action is instantaneous. This would imply that all other state-depended terms can be ne-
glected, with the exception of the body-flap coupling. This is a necessary condition for the incremental-
based control law to be robust to uncertainties in system dynamics [54].

4.2.3. Discrepancies of active flapping control method
Lastly, the discrepancies of the active flapping control method will be considered.

I State-dependency in the first-order Taylor series for the angular rate and flapping rate dynamics are be-
ing ignored, which is because high sampling rate and instantaneous control action are being assumed.
When such an assumption holds then the incremental control law also can be considered robust to un-
certainties in system dynamics. On the other hand when state-depended terms are large, the assump-
tion would not hold, therefore adversely affecting controller performance [53]. This would require to
redefine the first-order Taylor series such that it would not violate this condition.

II For establishing the first-order Taylor series for the angular rates, it must be assumed that the flapping
anglesβSP are the virtual control inputs. Since it will be used to establish an IBS control law, a necessary
condition would be that the desired flapping angles are reached instantaneous (steady-state flapping
dynamics). This may hold for rotorcraft associated for which the angular body and flapping modes of
motion are well-separated in the complex plane. If steady-state flapping dynamics cannot be assumed
then state-dependency will very likely be large. This could harm the IBS TSS condition. It is therefore
very likely that rotor synchronisation is also required for this control strategy.

III The stabilising control law for the angular rate and flapping subsystem requires the measurement of
the angular rate and flapping derivative respectively. These are obtained making use of a second-order
washout filter in the feedback of the corresponding state-derivatives. However, such a filter does intro-
duce a delay, which could pose synchronisation issues [24, 57], therefore counter measures need to be
taken. For the angular rate subsystem this would mean that the feedback of the flapping measurement
(virtual control input) would also be fed through the exact same washout filter by which the angular
accelerations are being obtained with. In a similar fashion of the flapping subsystem the feedback of
the actuator measurement would also be fed through the exact same washout filter by which the flap-
ping rate estimates are being obtained with. Normally delay compensation is only performed for the
angular rate subsystem, because the flapping rates are directly governed by the control inputs.

IV The control effectiveness matrices GβSP and Fωpq ,βSP cannot be considered fully known. This implies
that additional parameter estimation techniques are required for determining the control derivatives.
Estimation techniques cannot assure that the estimated control effectiveness is equal to the true con-
trol effectiveness. This means that it may can also affect controller performance. However, a small
mismatch will not significantly affect controller performance [53].

V Inclusion of an additional flapping loop increases the complexity of the control design. This makes it
more prone to mistakes in established a well-defined controller.



42 4. Control strategies for rotorcraft control

4.3. Advanced flight control by means of flapping angle equivalence
The previous control strategy did require two subsystems to control the angular rates p and q of the rotorcraft.
This strategy would enable active flapping control when command-filtered IBS was considered. On the other
hand it did come at cost of requiring accurate knowledge of the flapping states and its derivatives, flapping
synchronisation, mismatch of control effectiveness of inner and outer loop subsystems and the adverse effect
of excluding state-dependency in the first-order Taylor series of the flapping rates. It is therefore a natural
choice to seek for other strategies for controlling the angular rates such that some of the discrepancies can
be obviated. In this section the flapping angle equivalence method shall be considered for establishing a
stabilising control law for the angular rate subsystem. The method shall only be considered for pitch and roll
rate (ωpq ) because of reasons given earlier.

4.3.1. Establishing first-order Taylor series by means of flapping angle equivalence
Since the angular rate dynamics of the rotorcraft does depend upon complex aerodynamics, it is a natural
choice to consider an incremental-based control strategy [18, 55]. The first-order Taylor series is established
by only considering the body-flap coupling, where after a geometric transformation is applied. The approach
thus purely accounts for the fact that the angular accelerations ṗ and q̇ are primarily governed by flapping
dynamics, which is generally true [8, 18, 55]. In Eq. 4.10 the first-order Taylor series for the angular accelera-
tions is provided. In the first expression it can be observed that ω̇pq does depend on the the flapping angles
with respect to the shaft plane. In the second expression βSP (= βC P +θCF ) has been transformed into an
equivalent form, wherein the cyclic control inputs θCF (= [−θ1s , θ1c ]T ) and flapping angles with respect to
the control plane βC P (= [β1c , β1s ]T

C P ) explicitly appear. Moreover, the last term from Eq. 4.10 is neglected,
because Fωpq ,βSP >> Hωpq . Moreover Fωpq ,βSP primarily depends on Kβ, which is generally well-known.

ω̇pq = ω̇pq,0 +Fωpq ,βSP∆βSP +Hωpq∆θC

= ω̇pq,0 +Fωpq ,βSP∆
[
θCF +βC P

]
= ω̇pq,0 +Fωpq ,βSP∆βC P +Fωpq ,βSP∆θCF

(4.10)

The flapping angle equivalence is given in Fig. 4.1 from which it can be observed that the flapping angles with
respect to the shaft plane are related to flapping angles with respect to the control plane and cyclic control
inputs. The control plane (CP) and no-feathering plane (NFP) are assumed to coincidence with each other.

(a) Longitudinal flapping angle equivalence. (b) Lateral flapping angle equivalence.

Figure 4.1: Equivalence between longitudinal and lateral flapping angles with respect to the SP and CP (NFP) [20].

The flapping equivalence given in Fig. 4.1 holds for a positive Fourier series when transforming from the
rotating frame of reference to the non-rotating frame of reference [20]. The longitudinal and lateral flapping
equivalence can be written respectively as

β1c,cp =β1c,sp +θ1s , (4.11)

β1s,cp =β1s,sp −θ1c . (4.12)

The cyclic flapping angles and cyclic control inputs can be written into a more compact form. The aforemen-
tioned was already considered in Eq. 4.10 for writing the first-order Taylor series of the angular acceleration.
The two above mentioned expressions can be written into the following form

βSP =βC P +θCF , with θCF = [−θ1s , θ1c ]T , βC P = [β1c , β1s ]T
C P and βSP = [β1c , β1s ]T

SP . (4.13)
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4.3.2. Lyapunov-based control law for angular rate subsystem (p & q)
The main objective is to establish a stabilising control law for the angular rate subsystem, wherein the rotor-
craft shall track a predefined angular rate trajectory. The previously defined first-order Taylor series shall be
incorporated for deriving the IBS control law. The stabilising control law shall be derived for roll and pitch
rates only. The first step towards deriving a stabilising control law for the angular rate subsystem is by defining
the angular rate tracking error, which is found to be equal to the following

zωpq =ωpq −ωpq,ref, (4.14)

whereinωpq,ref is the desired trajectory that needs to be followed by the vehicle. The expression for żωpq is

żωpq = ω̇pq − ω̇pq,ref = ω̇pq,0 +Fωpq ,βSP∆
(
θCF +βC P

)− ω̇pq,ref, (4.15)

wherein (θCF +βC P ) is equivalent to βSP . However, the former expression is more desirable, because of the
cyclic control inputs explicitly showing up. A quadratic CLF shall be incorporated for deriving the stabilising
control law for the angular rate subsystem. The expression for Vωpq (zωpq ) and V̇ωpq (żωpq ) are respectively

Vωpq (zωpq ) = 0.5zT
ωpq

zωpq , (4.16)

V̇ωpq (żωpq ) = zT
ωpq

{
ω̇pq,0 +Fωpq ,βSP∆

(
θCF +βC P

)− ω̇pq,ref

}
. (4.17)

In order to obtain the stabilising control law for the angular rate subsystem, it is necessary to let V̇ωpq (żωpq )
become negative definite along the trajectories of the error dynamics. The expressions for the stabilising
control law in accordance with the standard IBS procedure is

θCF +βC P = θCF ,0 +βC P,0 +F−1
ωpq ,βSP

{
− ω̇pq,0 −cωpq zωpq + ω̇pq,ref

}
, (4.18)

from which it can be observed that the incremental control vector F−1
ωpq ,βSP

{
−ω̇pq,0−cωpq zωpq +ω̇pq,ref

}
has

been added to the previous inputs θCF ,0 +βC P ,0. It should however be noted that this is not something that
can be fed back to the actuator, as it still contains the explicit dependency on the flapping angles with respect
to the control plane on the left hand side. This can be accounted for by putting this to the right hand side. It
can thus be rewritten into an equivalent form, wherein the cyclic control inputs are isolated. The rewritten
form is given in Eq. 4.19.

θCF = θCF ,0 −βC P +βC P ,0 +F−1
ωpq ,βSP

{
− ω̇pq,0 −cωpq zωpq + ω̇pq,ref

}
(4.19)

From Eq. 4.19 it can be observed that the stabilising control law depends on the incremental change in βC P .
This incremental change is small and can be neglected, yielding the following stabilising control law

θCF = θCF ,0 +F−1
ωpq ,βSP

{
− ω̇pq,0 −cωpq zωpq + ω̇pq,ref

}
. (4.20)

Lastly, it should be noted that θCF = [−θ1s θ1c ]T , therefore a small correction is required to transform it into
θC = [θ1s θ1c ]T . This shall be achieved by means of I cor, which is 2x2 matrix with −1 in it is first entry. This
does yield the following stabilising control law.

θC = θC ,0 + I corF−1
ωpq ,βSP

{
− ω̇pq,0 −cωpq zωpq + ω̇pq,ref

}
. (4.21)

It can be observed from Eq. 4.21 that there is no need for incorporating state estimation techniques for deter-
mining the flapping angles, which is thus favourable. The CLF derivative using Eq. 4.21 in accordance with
the standard IBS procedure is equal to the following

V̇ωpq (żωpq ) =−zT
ωpq

cωpq zωpq . (4.22)

In accordance with the theorem of LaSalle-Yoshizawa, the equilibrium zωpq = 0 can be considered globally
uniformly asymptotically stable when cωpq > 0 given that the sampling frequency fs is sufficiently high. This
would imply that the tracking error from Eq. 4.14 would go towards zero for t →∞.
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4.3.3. Equivalent PI stabilising control law for angular rate subsystem (p & q)
The stabling control law from Eq. 4.21 can be written as classical proportional-integral (PI) control law. This
can only be considered for systems of relative degree one. This means that it can only be applied to single
subsystems. The two-cascaded system considered in section ?? is of relative degree two, therefore it cannot be
rewritten as classical PI-controller. For analysis purposes the control strategy being proposed in this section
is therefore more favourable than the previous one, because it can relate non-linear control design with linear
control design. The classical PI-controller without actuator dynamics shall be considered. The derivation of
the PI-controller is given in Eq. 4.24, wherein fs and ts are the sampling frequency and time respectively.
The former must be chosen sufficiently high enough to assume the incremental law acts as a continuous
integrator of the form given in 4.23.

θC (t ) = fs

∫ t

0
∆θC dτ. (4.23)

Substitution of the stabilising control law from Eq. 4.21 into Eq. 4.23 does yield the first expression of Eq.
4.24. To arrive at the final form of Eq. 4.24 it is necessary to assume that ωpq does change slow compared to
ts such thatωpq (t − ts )−ωpq,ref(t ) can be set equal to zωpq (t ).

θC (t ) =
∫ t

0
fs I corF−1

ωpq ,βSP

[
−cωpq zωpq (τ)− ω̇pq (τ− ts )+ ω̇pq,ref(τ)

]
dτ

= fs I corF−1
ωpq ,βSP

[
−cωpq

∫ t

0
zωpq (τ)dτ−ωpq (t − ts )+ωpq,ref(t )

]
= fs I corF−1

ωpq ,βSP

[
−cωpq

∫ t

0
zωpq (τ)dτ− zωpq (t )

] (4.24)

The proportional and integral gains can be identified as fs I corF−1
ωpqβSP

and cωpq fs I corF−1
ωpqβSP

respectively.

The main difference between the stabilising control law from Eq. 4.24 and 4.21 is that the former does not
depend on the feedback of the angular acceleration measurements ω̇0. By means of the above transformation
it is possible to correlate findings from previous research, wherein linear controllers were used with the non-
linear control strategy proposed here. The derivation can be extended by also considering actuator dynamics,
which is explained in great detail in [53].

4.3.4. Closed-loop system of nominal controller defined in Laplace-domain
In order to establish the closed-loop system it is necessary to define the incremental control law and first-
order Taylor series in the Laplace-domain. The closed-loop system that is being established without actua-
tors, sensors or filters will be designated as the nominal controller. The stabilising control law from Eq. 4.21
in the Laplace-domain is

θC (s) = θC (s)e−∆t s + I corF−1
ωpq ,βSP

{−sωpq (s)e−∆t s +νpq (s)
}

[
I 2x2 −e−∆t s I 2x2

]
θC (s) = I corF−1

ωpq ,βSP

{−sωpq (s)e−∆t s +νpq (s)
}

with νpq (s) =−cωpq zωpq (s)+ sωpq,ref(s).

(4.25)

The first-order Taylor series of the angular accelerations from Eq. 4.10 can written in the Laplace-domain as

sωpq (s) = sωpq (s)e−∆t s +Fωpq ,βSP I−1
cor

[
I 2x2 −e−∆t s I 2x2

]
θC (s), (4.26)

wherein βC P was ignored and the correction factor was applied. The aforementioned would yield the same
stabilising control law as given in Eq. 4.21. In order to determine the closed-loop response it is deemed nec-
essary to rewrite Eq. 4.25 by isolating θC (s) on the left hand side, where after it is being substituted into the
first-order Taylor series from Eq. 4.26. Doing the aforementioned yields Eq. 4.27. It can be observed that
I 2x2 − e−∆t s I 2x2, I cor, Fωpq ,βSP and sωpq (s)e−∆t s cancel out, which eventually yields the closed-loop expres-
sion for the nominal controller. It can be observed that for the nominal case sωpq (s) is equal to νpq (s).
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sωpq (s) = sωpq (s)e−∆t s +Fωpq ,βSP I−1
cor

[
I 2x2 −e−∆t s I 2x2

]
θC (s)

= Fωpq ,βSP I−1
cor

[
I 2x2 −e−∆t s I 2x2

]−1 [
I 2x2 −e−∆t s I 2x2

]
I corF−1

ωpq ,βSP

{−sωpq (s)e−∆t s +νpq (s)
}

+ sωpq (s)e−∆t s

= sωpq (s)e−∆t s +Fωpq ,βSP F−1
ωpq ,βSP

{−sωpq (s)e−∆t s +νpq (s)
}

=νpq (s)

(4.27)

4.3.5. Angular acceleration measurement compensation
From the stabilising control law for the angular rate subsystem it can be observed that ω̇pq,0 is required.
Currently reliable and accurate angular accelerometers do not yet exist, therefore the angular accelerations
could be obtained by numerical differentiation of the angular rates. Since numerical differentiation would
yield amplification of noise and delay of the angular accelerations of one time-step, this approach is not
desirable [24, 55, 57]. Another choice would be by letting the angular rate measurements pass through a
second-order washout filter , which is characterised with damping ratio ζfilt and natural frequency ωn,filt [24,
55, 57]. In addition to this there will also be an added zero-mean noise signal (indicated by N

(
0,σ2

filt

)
with

σfilt = 0.006◦/s), which accounts for sensor noise. The angular accelerations can be obtained by

sωpq,meas(s) = sH filt(s)
(
ωpq (s)+N

(
0,σ2

filt

))= ω2
n,filts

s2 +2ζfiltωn,filts +ω2
n,filt

(
ωpq (s)+N

(
0,σ2

filt

))
= sH filt(s)ωpq (s) = s

s
H filt(s)sωpq (s) = H filt(s)sωpq (s),

(4.28)

where ωn,filt and ζfilt are set equal to 100 rad/s and 1 respectively. It can be observed that sωpq,meas(s) is
equivalent to sωpq (s) being multiplied Hfilt(s). It should be noted that Hfilt(s) is a 2x2 matrix with the sensor
dynamics on its diagonal. With the sensor dynamics being defined, the IBS control law shall be rewritten in
order to take the sensor dynamics into account and is found to be equal to[

I 2x2 −e−∆t s I 2x2
]
θC (s) = I corF−1

ωpq ,βSP

{−sH filt(s)ωpq (s)e−∆t s +νpq (s)
}

. (4.29)

In order to obtain the closed-loop response it is necessary to substitute Eq. 4.29 into Eq. 4.26, which yields

sωpq (s) = Fωpq ,βSP I−1
cor

[
I 2x2 −e−∆t s I 2x2

]−1 [
I 2x2 −e−∆t s I 2x2

]
I corF−1

ωpq ,βSP

{−sH filt(s)ωpq (s)e−∆t s +νpq (s)
}

+ sωpq (s)e−∆t s

= sωpq (s)e−∆t s − sH filt(s)ωpq (s)e−∆t s +νpq (s),
(4.30)

which after rearranging does yield the following closed loop response

sωpq (s) = νpq (s)

I 2x2 +H filt(s)e−∆t s −e−∆t s I 2x2
. (4.31)

It can be observed that the closed-loop system From Eq. 4.31 differs from the nominal case. Inadequate
closed-loop behaviour can be achieved for frequencies at which |sωpq (s)/νpq (s)| > 1 (oscillating behaviour).
In addition to this, delays have also been introduced. The main terms responsible for affecting phase are:
e−∆t s and H filt(s). In order to counteract the adverse effects introduced by the second-order washout filter,
it is deemed necessary to also introduce the filter in the feedback loop [53, 55]. This means that θC (s)e−∆t s

shall be multiplied by H filt(s). It will be shown that by doing this, sensor dynamics will not adversely affect
closed-loop response. The stabilising control law for the angular rate subsystem can be written as

θC (s) = H filt(s)θC (s)e−∆t s + I corF−1
ωpq ,βSP

{−sH filt(s)ωpq (s)e−∆t s +νpq (s)
}

(4.32)

The closed-loop transfer function can be determined by substituting the previously defined control law into
the first-order Taylor series expression from Eq. 4.26. This does yield the first expression given in Eq. 4.33.
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There after sH filt(s)ωpq (s)e−∆t s is brought to the left hand side in the second expression. In the third ex-
pression, all the terms containing Fωpq ,βSP (s)I−1

corθC (s) on the right hand side have been isolated. The last

expression is obtained by noting that Fωpq ,βSP I−1
corθC (s) is equal to sωpq (s), which causes terms sωpq (s)e−∆t s

and sH filt(s)ωpq (s)e−∆t s to cancel. It can be observed from the last expression of Eq. 4.33 that the closed-loop
system is equal to the nominal case. The adjustment will improve closed-loop behaviour.

sωpq (s)
[

I 2x2 −e−∆t s I 2x2
]= Fωpq ,βSP I−1

cor

[
H filt(s)θC (s)e−∆t s + I corF−1

ωpq ,βSP

{−sH filt(s)ωpq (s)e−∆t s +νpq (s)
}]

−Fωpq ,βSP I−1
corθc (s)e−∆t s

sωpq (s)
[

I 2x2 −e−∆t s I 2x2 +e−∆t s H filt(s)
]= Fωpq ,βSP I−1

corθC (s)
[

H filt(s)e−∆t s −e−∆t s I 2x2
]+νpq (s)

sωpq (s)
[

I 2x2 −e−∆t s I 2x2 +e−∆t s H filt(s)
]= sωpq (s)

[
H filt(s)e−∆t s −e−∆t s I 2x2

]+νpq (s)

sωpq (s) =νpq (s)
(4.33)

From this it follows that when angular accelerations are being obtained by means of a second-order washout
filter, a similar filter needs to be placed in the feedback-loop of the actuator measurements. From Eq. 4.33 it
can be observed that closed-loop response is similar to the one given in Eq. 4.27. This will improve system
stability and controller performance. In Fig. 4.2 the feedback loop of the angular rate subsystem is provided,
wherein the feedback-loop of the actuator measurement has been adapted.

Figure 4.2: Second-order washout filter placed in feedback-loop of actuator measurement.

4.3.6. Control effectiveness mismatch in IBS control law
For establishing the stabilising control law from Eq. 4.21 it is necessary to have a well-defined control ef-
fectiveness matrix. In the derivation of the control law it was assumed that the control derivatives are fully
known. In other words Fωpq ,βSP is assumed to be the actual control effectiveness matrix of the angular rate
subsystem. In reality it is very unlikely that the exact control derivatives are fully known. This naturally im-
plies that the control effectiveness matrix needs to be estimated and will exhibit an estimation error. In order
to understand how the estimated control effectiveness matrix affects controller performance, it will be of
great interest to redefine the tracking error of the angular rate subsystem in terms of the estimated control
effectiveness matrix. This strategy was proposed by [32, 53].

The control effectiveness matrix in the stabilising control law for the angular rate subsystem differs from
the true control effectiveness matrix, thus F̂ωpq ,βSP 6= Fωpq ,β. In Eq. 4.34 the relation between the estimated
and true control effectiveness of the angular rate subsystem is shown. It can be observed that the difference is
indicated by means of F̃ωpq ,βSP . The relation between the estimated and true control effectiveness is provided
in Eq. 4.35, in which Γωpq is the control effectiveness scaling factor.

Fωpq ,βSP = F̃ωpq ,βSP + F̂ωpq ,βSP (4.34)

F̂ωpq ,βSP =Γωpq Fωpq ,βSP (4.35)

The tracking error derivative of the angular rate subsystem is given in Eq. 4.36. It should be noted that the
first-order Taylor series with cyclic flapping angles with respect to the shaft plane are being considered, be-
cause it simplifies the derivation. In the first expression Fωpq ,βSP has been replaced with Eq. 4.34. In the
second expression the stabilising control law for the angular rate subsystem from Eq. 4.18 is being substi-
tuted. It should be noted that βSP is equal to θC +βC P when incorporating this stabilising control law. In the
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third expression the terms ω̇0 and ω̇ref have cancelled. In the fourth expression F̃ωpq ,βSP F̂
−1
ωpq ,βSP

has been

replaced by
(

I 2x2 −Γωpq

)
Γ−1
ωpq

. The last expression is obtained by cancellation of cωpq zωpq .

żωpq = ω̇pq,0 +
(
F̃ωpq ,βSP + F̂ωpq ,βSP

)
∆βSP − ω̇pq,ref

= ω̇pq,0 + F̃ωpq ,βSP F̂
−1
ωpq ,βSP

[
−ω̇pq,0 + ω̇pq,ref −cωpq zωpq

]
+

F̂ωpq ,βSP F̂
−1
ωpq ,βSP

[
− ω̇pq,0 + ω̇pq,ref −cωpq zωpq

]
− ω̇pq,ref

= F̃ωpq F̂
−1
ωpq

[
−ω̇pq,0 + ω̇pq,ref −cωpq zωpq

]
−cωpq zωpq

=
(

I 2x2 −Γωpq

)
Γ−1
ωpq

[
−ω̇pq,0 + ω̇pq,ref −cωpq zωpq

]
−cωpq zωpq

=
(

I 2x2 −Γωpq

)
Γ−1
ωpq

[−ω̇pq,0 + ω̇pq,ref
]−Γ−1

ωpq
cωpq zωpq

(4.36)

From Eq. 4.36 it can be observed that the scaling factor Γωpq does affect the tracking error żωpq of the angular
rate subsystem. The analysis can be simplified by assuming that the control effectiveness scaling matrix Γωpq

is a diagonal matrix with constant γ−1
ωpq

on its diagonal. When multiplying Eq. 4.36 with the aforementioned
scalar and only considering roll acceleration, the following expression can be obtained

żp =
(
γ−1

p −1
)
γp

[
ṗ0 − ṗref

]−γp cp zp

= (
1−γp

)[
ṗ0 − ṗref

]−γp cp zp

(4.37)

It must be noted that γp > 1 represents underestimation of the control effectiveness. From Eq. 4.37 two
distinct terms can be identified, which shall be discussed.

I
(
1−γp

)[
ṗ0 − ṗref

]
: is the difference between the actual and desired angular acceleration scaled by(

1−γp
)
. For γp > 1 it does represent the overcompensated accelerations, whereas for γp < 1 it does

represent the untracked accelerations.

II −γp cp zp : indication for the rate at which the angular rate tracking error decays. Since the term is being
multiplied by the control effectiveness scaling factor it can either be beneficial or disadvantageous.
When γp > 0 (control effectiveness underestimation) the term becomes greater in magnitude and is
therefore associated with a quicker convergence of the tracking error.

In [53, 55] it was pointed out that online parameter estimation techniques could be incorporated in order to
adapt the control effectiveness matrix Fωpq ,βSP . Adaption of Fωpq ,βSP could be achieved by means of inte-
grated or modular adaptive techniques. This is however beyond the scope of the analysis and shall therefore
not considered here. The main purpose was to illustrate that the proposed control strategy is more favourable
over the previous one as it relies upon a single control effectiveness matrix for controlling the angular rates
of the rotorcraft, rather than two. Moreover the control effectiveness Fωpq ,βSP is easier to establish than GβSP .
On top of this the control laws established for the final controller will be based upon the best off-line estimate
of the control effectiveness matrix.

4.3.7. Rotor synchronisation filter - lag filter to compensate for difference between ide-
alised and actual rotorcraft model

Previously the feedback signal of the actuator measurements had to be adjusted such that it was synchronised
with the measurements of the angular accelerations. This was achieved by placing a second-order washout
filter in the feedback-loop of the actuator measurement. However, it did not yet take into account the dif-
ference between the actual and idealised rotorcraft model. An additional modification needs to be applied
to this feedback signal to compensate for this difference. The latter model is the one that is being used for
establishing the IBS control law, because it is associated with an enhanced control- to state-dependency ra-
tio. The idealised model is based upon residualisation of internal dynamics, especially flapping dynamics.
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This is because the body-flap coupling is large and residualisation of flapping dynamics would diminish this
coupling term and use it to enhance the control-dependency. The aforementioned especially holds for the
angular accelerations (ṗ and q̇) as these are primarily governed by the cyclic flapping angles (β1s and β1c ).
The difference between the idealised model based upon flap residualisation (steady-state flapping dynamics)
and the actual rotorcraft model can be accounted for by means of a synchronisation filter. This filter does
essentially reconstruct the actual open-loop frequency response, because Hacutal(s) should be approximately
equal to Hsync(s) multiplied with Hideal(s). The synchronisation filter will assure that θC ,meas is effectively
delayed by the same amount as by which angular accelerations are being delayed due to the actual rotorcraft
dynamics.

In order to establish the rotor synchronisation filter it is first necessary to determine the idealised and ac-
tual expressions for the angular accelerations. For the derivation only flapping dynamics shall be considered
as internal dynamics. The actual expression for the angular accelerations can be written as follows

ω̇pq = Fωpq ,βSPβSP +HωpqθC ,meas, (4.38)

wherein θC ,meas are the delayed actuator measurements after being fed through the second-order washout
filter. Moreover, βSP are the cyclic flapping angles with respect to the shaft plane. On top of this, Fωpq ,βSP

and Hωpq are the body-flap coupling and control-depended term of the angular accelerations respectively.
It should be noted that it was assumed that the body-flap coupling is significantly greater than other cou-
pling terms. When the body-lag or body-inflow coupling terms are large, then Eq. 4.38 should actually be
augmented by taking these state-dependencies into account. The idealised rotorcraft model is assumed to be
purely governed by cyclic control inputs only, therefore the angular accelerations can be written as

ω̇pq = ĜωpqθC ,sync. (4.39)

It should be noted from the previous equation that Ĝωpq needs to be established by means of the method of
residualised dynamics, since it would yield the most direct relation between the angular accelerations and
cyclic control inputs. The synchronised control inputs can there after be obtained by inverting Eq. 4.39 and
substituting the expression from Eq. 4.38 into it. The synchronised control inputs are

θC ,sync = Ĝ
−1
ωpq

[
Fωpq ,βSPβSP +HωpqθC ,meas

]
. (4.40)

From Eq. 4.40 it can be observed thatβSP is also required, which can be considered the synchronised flapping
angles. These synchronised flapping angles will differ from the actual flapping angles. The aforementioned
synchronised flapping angles can be determined using the expression given in Eq. 4.41. It can be observed
that β̇SP is purely governed by the measured cyclic control inputs.

β̇SP = FβSP ,βSPβSP +HβSPθC ,meas. (4.41)

The synchronisation filter can be defined in the Laplace-domain. This requires Eq. 4.40 and Eq. 4.41 to be
rewritten into Laplace-domain as well. The synchronisation filter defined in the Laplace-domain is

H sync(s) = θC ,sync(s)

θC ,meas(s)
=

Ĝ
−1
ωpq

Fωpq ,βSP HβSP +Ĝ
−1
ωpq

Hωpq s −Ĝ
−1
ωpq

FβSP ,βSP Hωpq

sI 2x2 −FβSP ,βSP

. (4.42)

From Eq. 4.42 it can be observed that accurate knowledge of the control effectiveness matrix Ĝωpq is re-
quired. It also depends on the synchronised flapping angles βSP , which require an accurate model of the
flapping dynamics. This means that FβSP ,βSP and HβSP must be well-known as well. Moreover there must
also be accurate and reliable knowledge of Hωpq and Fωpq ,βSP for establishing the synchronisation filter. This
would require parameter estimation techniques for determining the control- and state-depended terms of
interest. For the purpose of the analysis it does suffice to opt for a model-based strategy. Next to this, θC ,meas

can be measured and is therefore not of prime concern.

In Fig. 4.3 the flapping synchronisation filter is provided in the feedback-loop of the actuator measure-
ment. It should be noted that only flapping dynamics was considered for the synchronisation filter design.
However, as outlined earlier, the filter is incorporated to account for the difference in frequency response
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between the idealised and actual rotorcraft model. When other internal dynamics such as inflow or lead-lag
dynamics needs to be residualised as well to enhance the control- to state-dependency ratio for improving
the TSS condition, then it shall also be accounted for in synchronisation filter design.

Figure 4.3: Synchronisation filter placed in feedback-loop of actuator measurement.

4.3.8. Closed-loop system with synchronisation filter defined in Laplace-domain
Previously it has been outlined that rotor synchronisation is required to synchronise actuator measurements
with angular acceleration measurements, because of rotor dynamics. Moreover it was also necessary to put
a second-order washout filter in the feedback-loop of the actuator measurement. This subsequently means
that the closed-loop system will be adjusted with respect to the nominal case. Not including the synchronisa-
tion filter will most likely affect closed-loop system response/stability. In previous research it was found that
delaying the state derivative measurements with respect to the actuator measurements will yield magnified
control inputs, which subsequently could yield inadequate system response or even fast system instability
[57]. Moreover delaying the actuator measurements with respect to state derivative measurements will yield
damped control inputs, which results in slow system response and therefore also slow system instability [57].

The closed-loop system shall be considered for the angular rate controller using the stabilising control
law from Eq. 4.21 for which the Laplace transform is provided in the first expression of Eq. 4.43. It should
be noted that the continuous Laplace transformation is being incorporated for representing the closed-loop
system. Since the controller is actually a discrete system it would be more appropriate to incorporate the
discrete-time equivalent of the Laplace transformation, namely the Z-transform [57]. For this particular re-
search the continuous-time variant shall be used as discrete effects are not of prime interest. The second
expression of Eq. 4.43 is obtained by substituting the expression for νpq (s) into it. Next to this, the third
expression is obtained by substituting the expression for zωpq (s) into it. The last expression does isolate the
termsωpq (s) andωpq,ref(s).

θC (s) = θC (s)e−∆t s + I corF̂
−1
ωpq ,βSP

[
ν(s)− sωpq (s)e−∆t s]

= θC (s)e−∆t s + I corF̂
−1
ωpq ,βSP

[
−cωpq zωpq (s)+ sωpq,ref(s)− sωpq (s)e−∆t s

]
= θC (s)e−∆t s + I corF̂

−1
ωpq ,βSP

[
−cωpqωpq (s)+cωpqωpq,ref(s)+ sωpq,ref(s)− sωpq (s)e−∆t s

]
= [

I 2x2 −e−∆t s I 2x2
]−1

I corF̂
−1
ωpq ,βSP

[
−cωpqωpq (s)− sωpq (s)e−∆t s

]
+[

I 2x2 −e−∆t s I 2x2
]−1

I corF̂
−1
ωpq ,βSP

[
cωpqωpq,ref(s)+ sωpq,ref(s)

]
(4.43)

In Eq. 4.44 the closed-loop system is augmented by accounting for sensor (H filt(s)) and actuator (H act(s))
dynamics. These are both diagonal matrices with the sensor and actuator dynamics on their diagonal.

θC (s) = [
I 2x2 −H act(s)H filt(s)e−∆t s]−1

(
I corF̂

−1
ωpq ,βSP

[
−H act(s)cωpqωpq (s)− sH act(s)H filt(s)ωpq (s)e−∆t s

]
+

I corF̂
−1
ωpq ,βSP

[
H act(s)cωpqωpq,ref(s)+ sH act(s)ωpq,ref(s)

])
(4.44)

In addition to actuator and sensor dynamics, system dynamics Hωpq (s) (ωpq (s) = Hωpq (s)θC (s)) must also be
accounted for, thus Eq. 4.44 needs to be rewritten into the following form
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ωpq (s) = [
I 2x2 −H act(s)H filt(s)e−∆t s]−1

(
I corF̂

−1
ωpq ,βSP

[
−H act(s)cωpqωpq (s)− sH act(s)H filt(s)ωpq (s)e−∆t s

]
+

I corF̂
−1
ωpq ,βSP

[
H act(s)cωpqωpq,ref(s)+ sH act(s)ωpq,ref(s)

])
Hωpq (s).

(4.45)

To account for the difference in idealised and actual rotorcraft model it is necessary to include the rotor
synchronisation filter H sync(s) in the feedback loop of the actuator measurements. Inclusion of H sync(s) does
require Eq. 4.45 to be rewritten into

ωpq (s) = [
I 2x2 −H sync(s)H act(s)H filt(s)e−∆t s]−1

(
I corF̂

−1
ωpq ,βSP

[
−H act(s)cωpqωpq (s)− sH act(s)H filt(s)ωpq (s)e−∆t s

]
+

I corF̂
−1
ωpq ,βSP

[
H act(s)cωpqωpq,ref(s)+ sH act(s)ωpq,ref(s)

])
Hωpq (s).

(4.46)

Isolating all ωpq (s)-terms on the left hand side and all ωpq,ref(s)-terms on the right hand side enables to
rewrite Eq. 4.46 as follows

ωpq (s)− [
I 2x2 −H sync(s)H act(s)H filt(s)e−∆t s]−1

I corF̂
−1
ωpq ,βSP

[
−cωpq H act(s)− se−∆t s H sens(s)H act(s)

]
Hωpq (s)ωpq (s) =[

I 2x2 −H sync(s)H act(s)H filt(s)e−∆t s]−1
I corF̂

−1
ωpq ,βSP

[
H act(s)cωpq + sH act(s)

])
Hωpq (s)ωpq,ref(s).

(4.47)

The closed loop response
ωpq (s)
ωpq,ref(s) can thus be written as follows

ωpq (s)

ωpq,ref(s)
=

[
I 2x2 −H sync(s)H act(s)H filt(s)e−∆t s

]−1
I corF̂

−1
ωpq ,βSP

[
H act(s)cωpq + sH act(s)

])
Hωpq (s)

I 2x2 −
[

I 2x2 −H sync(s)H act(s)H filt(s)e−∆t s
]−1 I corF̂

−1
ωpq ,βSP

[
−cωpq H act(s)− se−∆t s H sens(s)H act(s)

]
Hωpq (s)

,

(4.48)

Important to note is that the flapping angle equivalence method was incorporated for establishing the stabil-
ising control law, therefore the control effectiveness used in the closed-loop frequency response from Eq. 4.48
is in accordance with that method. The method of residualised dynamics could also be used for defining the
control effectiveness of the IBS control law. However, the synchronisation filter must be established by means
of the method of residualised dynamics, because it would yield the most direct relationship between the an-
gular accelerations and the cyclic control inputs. The flapping angle equivalence method only accounts for
the body-flap coupling for establishing the control effectiveness, whereas the method of residualised dynam-
ics can account for other body-rotor couplings for enhancing the control- to state-dependency ratio. This
implies that when the synchronisation filter is established by means of flap residualisation only, the con-
trol effectiveness based upon the flapping angle equivalence method and method of residualised dynamics
should be approximately the same. However, when the control effectiveness is found to be insufficient by
only considering steady-state flapping dynamics, it is deemed necessary to consider residualisation of addi-
tional internal dynamics such as inflow or lead-lag to enhance the control- to state-dependency ratio. This
would subsequently yield a synchronisation filter based upon residualisation of all the aforementioned rotor
dynamics (flap, lag and/or inflow) for which the control effectiveness would be different from the one ob-
tained by flapping angle equivalence method. This shows that there are some restrictions for this method. In
the end it must be realised that the main objective is to assure a well-established controller for which TSS
holds, otherwise the controller cannot be considered robust to uncertainties in system dynamics.



5
Rotor Synchronisation applied to varying

DOF rotorcraft Models

In previous chapters the theoretical framework was established, therefore the next step is to apply a Lya-
punov-based controller to a set of simplified rotorcraft models established earlier. As outlined in the previ-
ous chapter the main crux in control design does finds its roots in the design of the angular rate controller,
therefore the analysis to be conducted in this chapter shall focus on this controller. The main objective of
this chapter can be formulated as follows: analysing the necessity of feedback synchronisation for rotorcraft
models associated with rotor dynamics and in particular flapping dynamics. The analysis will involve deter-
mining the natural modes of motion and open-loop Bode frequency response, executing an ADS-33E-PRF
tracking task, determining closed-loop stability and closed-loop frequency response.

With the general procedure being outlined and the motivation for performing being explained, it is
deemed necessary to briefly mention the rotorcraft models that will be analysed. In section 5.1 a 2-DOF
steady-state flapping model will be considered in hover condition. It will be shown that rotorcraft models as-
sociated with steady-state flapping dynamics do not require flapping synchronisation. Steady-state flapping
dynamics may suffice for some rotorcraft models, but for others it will not adequately mimic disc tilt motion.
This naturally requires the need to analyse the effect of flapping dynamics on Lyapunov-based control de-
sign and in particular IBS. In section 5.2 a 2-DOF τβ-based rotorcraft model with flapping dynamics will be
considered, wherein τβ is an indication of disc-tilt quickness. It will be shown that the problem lies therein
that Lyapunov-based controllers are based upon steady-state flapping dynamics (residualisation of flapping
dynamics), whereas the actual rotorcraft model is associated with non-instantaneous disc-tilt motion. Ac-
counting for this discrepancy can be achieved by adjusting the feedback loop of the actuator measurements.
Residualisation of the internal dynamics is necessary to diminish state-dependency in a first-order Taylor se-
ries and to increase state-dependency such that the time-scale separation condition of IBS is not or less likely
violated. If the aforementioned condition would be violated, the stabilising control law should take into ac-
count system dynamics, which might not be favourable. It will be shown that for some rotorcraft models
flapping synchronisation is a requisite to assure adequate controller performance.

From the obtained results obtained from the simple rotorcraft models a conclusion can be drawn of the
necessity of accounting for flapping when designing the rotor synchronisation filter. This will provide ade-
quate priori knowledge to build a Lyapunov-based controller for rotorcraft consisting of more DOF. Inclusion
of lead-lag dynamics might affect the design of an IBS controller as well, therefore the knowledge obtained
from the simple rotorcraft models will yield a prediction whether that indeed will be the case.

51
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5.1. First order steady-state flapping model specified for hover condition
In this section a 2-DOF BF model with steady-state flapping dynamics will be considered. This model does
consists of body state q and flapping state β1c . Moreover hub stiffness Kβ can be varied, whereas γ andΩ are
set equal to 6 and 30 rad/s respectively. When rotor disc-tilt dynamics is being neglected then cyclic control
inputs will become identical to rotor disc-tilt angles yielding instantaneous tilting of the rotor disc [16]. This
is favourable in control design as it yields a direct relation between angular rates and cyclic control inputs.
Most importantly the BF model on which the controller is based upon (idealised model) will be identical
to the actual rotorcraft model. Compensating for differences in idealised and actual BF rotorcraft model
(e.g.flapping dynamics) will not be necessary.

5.1.1. Natural modes of motion for varying Kβ

First the natural modes of motion of the rotorcraft for varying hub stiffness Kβ will be considered. For each

Kβ there will only be one mode of motion which is situated at − 16Klon
γΩ . In Fig. 5.1 the pitch subsidence mode

is shown for varying Kβ. All modes are situated on the real axis and can be regarded as an exponentially
decaying component. The rate of decay is entirely determined by pole location [35]. The pitch subsidence
mode moves closer to the origin for smaller Kβ and will therefore be associated with slower response.

Figure 5.1: Natural modes of motion of 2-DOF steady-state flapping model for Kβ ∈ [10,20, ...,150] kNm/rad.

5.1.2. Control effectiveness established by means of method of residualised dynamics or
flapping angle equivalence principle

In order to establish an IBS control law it is necessary to determine the control effectiveness of q̇ with re-
spect to θ1c . In order to determine Ĝq the method of residualised dynamics or flapping angle equivalence
principle could be used. The former method requires the use of steady-state flapping dynamics for which
the expression is provided in Eq. 5.1. It can be observed that Ĝq must be equal to Klon, which is because
Fq,β1c F−1

β1c ,β1c
Gβ1c is equal to 0. The estimated control effectiveness must therefore be equal to the control-

depended term of q̇ .

Ĝq =Gq −Fq,β1c F−1
β1c ,β1c

Gβ1c = Klon (5.1)

The flapping angle equivalence principle can also be incorporated for determining Ĝq , which requires knowl-
edge of Fq,β1c and transformation from IBCs to MBCs. This transformation is given in Eq. 4.11 and is neces-
sary to obtain the correct sign for the control effectiveness. It should be noted that a positive Fourier series
was used for this transformation. From this method it also would follow that Ĝq must be equal to Klon, as
β1cSP = β1cC P −θ1s . From both methods it can be observed that Ĝq ∝ Klon. It is important to note that the
control effectiveness of the steady-state BF model was established based upon the actual model, rather than
an idealised model. Control effectiveness mismatch is indicated as Ĝq = γqGq , wherein γq > 1 and γq < 1
imply over- and underestimation respectively.

5.1.3. Stabilising control law for angular rate subsystem using IBS
To control the pitch rate of the rotorcraft it is necessary to establish a stabilising control law. Here an incremental-
based control strategy is being pursued as such a strategy will also be considered for the full rotorcraft model.
A Taylor series of the following form shall be used
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q̇ ∼= q̇0 +Fq,q∆q +Ĝq∆θ1s , with ∆q = q −q0 and ∆θ1s = θ1s −θ1s,0, (5.2)

wherein q̇0 and θ1s,0 are the current pitch rate derivative and longitudinal cyclic control input measurement
respectively. Moreover, ∆q and ∆θ1s are the incremental state and control input respectively. The Taylor
series from Eq. 5.2 can be simplified by assuming time-scale separation. This implies that Fq,q∆q can be
neglected with respect to ∆q̇ and Ĝq∆θ1s [1, 45, 46, 54]. The time-scale separation condition is

Ĝq∆θ1s >> Fq,q∆q, with Fq,q =−16Klon

γΩ
and Ĝq = γq Klon. (5.3)

This is equivalent by stating that control action is instantaneous given that sampling rate fs is sufficiently
high [54]. When Eq. 5.3 does not hold then it will not be robust to system dynamics. The above TSS condition
will very likely hold as Ĝq >> Fq,q . However, actuator limitations may affect the condition. The control law is

θ1s = θ1s,0 +Ĝ−1
q

[−q̇0 + q̇ref − cq zq
]

. (5.4)

Validation of Eq. 5.3 shall be considered when performing the longitudinal ADS-33E-PRF tracking task.

5.1.4. Open-loop frequency response for varying Kβ,Ω and γq

It is also of great interest to get insight in the Bode frequency response of the rotorcraft model with steady-
state flapping dynamics. The pitch rate to longitidinal cyclic transfer function is

Hq (s) = q(s)

θ1s (s)
=

(
γΩ

16

)
1

γΩ
16Klon

s +1
, (5.5)

which is written in standard Bode form. It does consists of a gain and first-order lag term.
In Fig. 5.2 Bode frequency response is provided for different combinations of Kβ, Ω and γ. It can be ob-

served that magnitude bandwidth reduces when Kβ is being reduced and is therefore associated with slower
response. Reducing Kβ is also apparent from the phase response as it drops quicker towards −90◦. From Fig.
5.2 it can also be observed that increasing γ does yield an increase in magnitude at low frequencies, but on
the other hand it also reduces magnitude bandwidth. Moreover phase angle did drop quicker towards −90◦
for smaller γ. Furthermore increasing Ω did have the same effect on magnitude and phase response when
increasingΩ, which can be observed from Eq. 5.5.

Figure 5.2: Bode frequency response of steady-flapping model showing the effect of variations in Kβ,Ω and γ (from left
to right). Variation in Kβ is considered for Kβ ∈ [10,20, ...,150] kNm/rad, γ= 6 andΩ= 30rad/s. Moreover variation inΩ

is provided forΩ ∈ [25,26, ...,45] rad/s, γ= 6 and Kβ = 110kNm/rad. Lastly variation in γ is given for γ ∈ [3,3.5, ...,12],
Ω= 30 rad/s and kβ = 110 kNm/rad.
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5.1.5. Longitudinal ADS-33E-PRF tracking task for varying Kβ and γq

Lyapunov-based control performance shall be assessed by means of a longitudinal tracking task wherein the
main objective is to let the rotorcraft track a predefined pitch rate of ±30◦. This is in accordance with regu-
lations stipulated by the ADS-33E-PRF [5]. The main objective is to determine whether the Lyapunov-based
controller is robust to uncertainties in control effectiveness and to assess whether the IBS condition from Eq.
5.3 will be violated. It is very unlikely that this condition will be violated asΩγ>> 16. The longitudinal track-
ing task shall be executed using either full and accurate knowledge of Ĝq or partial and inaccurate knowledge
of Ĝq . Moreover an aggressive controller is considered for which cq = 15. On top of this hub stiffness will be
varied between 10 kNm/rad and 150 kNm/rad in steps of 10 kNm/rad. The following cases will be considered

• γq = 1 (no control effectiveness mismatch).

• γq = 0.5 (control effectiveness underestimation).

• γq = 3 (control effectiveness overestimation).

In Fig. 5.3-5.4 the results of the above mentioned cases are provided respectively.

Figure 5.3: Results of longitudinal tracking tasks for steady-state BF model with γq = 1, Kβ ∈ [10,20..,150]kNm/rad and
cq = 15. Rotorcraft states q and β1c , control input θ1s and tracking error zq are provided.

Figure 5.4: Results of longitudinal tracking tasks for steady-state BF model with γq = 3, Kβ ∈ [10,20..,150]kNm/rad and
cq = 15. Rotorcraft states q and β1c , control input θ1s and tracking error zq are provided.
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Figure 5.5: Results of longitudinal tracking tasks for steady-state BF model with γq = 0.5, Kβ ∈ [10,20..,150]kNm/rad
and cq = 15. Rotorcraft states q and β1c , control input θ1s and tracking error zq are provided.

It can be observed from the results that for all Kβ the longitudinal tracking task can be executed. Moreover, for
larger Kβ it is easier to execute the aggressive manoeuvre. This is in line with observations from the frequency
analysis as larger Kβ is associated with quicker response. Decreasing Kβ does yield more overreaction and
difficulty in following qref. Most importantly the controller is robust to uncertainties in control effectiveness
as the longitudinal tracking task could still be executed with adequate performance. In Fig. 5.6 control and
state-dependency are provided of the previous conducted longitudinal tracking task.

(a) Control- and state-dependency for γq = 1 respectively.

(b) Control- and state-dependency for γq = 3 respectively.

(c) Control- and state-dependency for γq = 0.5 respectively.

Figure 5.6: Control- and state-dependency are provided for longitudinal tracking tasks using steady-state BF model
with Kβ ∈ [10,20..,150] kNm/rad, γq ∈ [0.5,1,3] and cq = 15.
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It can be observed that control dependency is greater than state-dependency, thus not violating the IBS con-
dition from Eq. 5.3. The aforementioned even holds for γq < 1. This shows that incremental-based control
design such as IBS can be incorporated for rotorcraft models with steady-state flapping dynamics. It should
also be noted that control-dependency is limited due to actuator limitations. This shows that physical limita-
tions of rotorcraft can be problematic regarding the TSS condition. In this example large actuator deflections
were considered, namely θ1s,max = 11◦, θ1s,min =−11◦ and θ̇1s,max =±28◦/s

Previously it has been mentioned that decreasing Kβ will yield performance degradation. This is apparent
from the RMSEq given in Fig. 5.7 as it indeed increases for decreasing Kβ. Moreover, it can also be observed
that the controller is robust to uncertainties in control effectiveness as performance is fairly similar among
the three control effectiveness mismatch factors.

Figure 5.7: RMSEq of longitudinal tracking task using steady-state BF model with γq ∈ [0.5,1,3], Kβ ∈ [10,20, ...,150]
kNm/rad and cq = 15.

Based on the results of the ADS-33E-PRF tracking task the following conclusions can be drawn

• The IBS controller is robust to uncertainties in control effectiveness as performance is not severely
affected for control effectiveness mismatch. This can be observed from the tracking response given in
Fig. 5.3 - 5.6 as well as from the RMSEq in Fig. 5.7.

• Actuator limitations do limit BF models with low Kβ of achieving high desired pitch rates. Moreover
the slow and overreacting response is characteristic for these type of rotorcraft when conducting an
aggressive manoeuvre.

• The time-scale separation condition from Eq. 5.3 is not violated for the cases considered. This shows
that incremental-based control design can be pursued for these type of rotorcraft models. However,
actuator limitations can be regarded problematic for the TSS condition, because it limits the product
Ĝq∆θ1s . This shows that the TSS condition could be violated when an aggressive manoeuvre is being
executed as actuator limitations will be very likely reached.

5.1.6. Closed-loop frequency response for varying Kβ, γq and cq

Next it is necessary to determine closed-loop frequency response (without actuator limitations). The closed-
loop system consists of the IBS controller, actuator dynamics, sensors dynamics and steady-state BF model.
The main objective is to determine the effect of uncertainties in control effectiveness on closed-loop fre-
quency response. It was previously shown that varying Ĝq still enabled adequate controller performance,
which should therefore also be apparent from the closed-loop frequency response. Based on the above men-
tioned it will be deemed necessary to consider closed-loop frequency response for different combinations of
Kβ, cq and γq . The following cases shall be analysed

• γq = 1, cq ∈ [5,10,15] and Kβ ∈ [10,20, ...,150] kNm/rad.

• γq = 3, cq ∈ [5,10,15] and Kβ ∈ [10,20, ...,150] kNm/rad.

• γq = 0.5, cq ∈ [5,10,15] and Kβ ∈ [10,20, ...,150] kNm/rad.

In Fig. 5.8 - 5.10 the Bode frequency results are provided for γq = 1, γq = 0.5 and γq = 3 respectively. Moreover
the region f overreaction (|HC L( jω)| > 1.01) is provided as well given a tolerance of 1%.
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Figure 5.8: Results of closed-loop frequency response of 2-DOF steady-state BF model for γq = 1.0, Kβ ∈ [10,20, ...,150]
kNm/rad, cq ∈ [5,10,15], γ= 6 andΩ= 30 rad/s. Moreover the region of overreaction is also indicated.

Figure 5.9: Results of closed-loop frequency response of 2-DOF steady-state BF model for γq = 3.0, Kβ ∈ [10,20, ...,150]
kNm/rad, cq ∈ [5,10,15], γ= 6 andΩ= 30 rad/s. Moreover the region of overreaction is also indicated.
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Figure 5.10: Results of closed-loop frequency response of 2-DOF steady-state BF model for γq = 0.5, Kβ ∈ [10,20, ...,150]
kNm/rad, cq ∈ [5,10,15], γ= 6 andΩ= 30 rad/s. Moreover the region of overreaction is also indicated.

From the closed-loop frequency analysis it can be observed that increasing IBS gain cq and/or decreasing hub
stiffness Kβ does increase the resonance peak. This is also apparent from phase response as the drop in phase
is greater for larger cq and/or smaller Kβ. The above observation does hold for all γq , but is more apparent
for larger γq . Next to this increasing cq does also increase the region of overreaction, which is not favourable.
It should be noted that only the maximum region of overreaction is provided, which is determined by the
minimum value of Kβ. Increasing cq does not only adversely affect closed-loop frequency response. From
the results obtained it can be seen that when cq is increased, bandwidth will also increase. In other words the
frequency range for which |HCL( jω)| ≈ 1 will increase for increasing cq (grey area shifts to the right).

From Fig. 5.8 - 5.10 it can be observed that adjusting γq results in a change in closed-loop frequency
response. The first and most important observation is that the IBS controller is robust to changes in control
effectiveness as bandwidth of the closed-loop frequency response does only change slightly for γq 6= 1. Next
to this decreasing γq does yield a greater frequency range for which |HCL( jω)| ≈ 1, whereas increasing γq does
yield a smaller frequency range for which HCL( jω)| ≈ 1. This is in line with observations from the longitudinal
ADS-33E-PRF tracking task as performance increased slightly when γq decreased. The above observation can
be best understood by realising that decreasing γq does also yield a decrease in Ĝq (thus Ĝ−1

q increases). This
means that larger incremental changes in control input (given in the stabilising control law from Eq. 5.4) can
be realised within shorter amount of time. Quick changes in θ1s will be demanded when the manoeuvre is
aggressive (e.g. sudden changes in qref). From this it follows that a demanding control task can be easier
achieved when Ĝq is small (γq is small). However, this will come at the cost of overreaction and/or violation
of the TSS condition as Ĝq∆θ1s decreases, which is not favourable. This means that there will be only a small
region of control effectiveness underestimation for which the above holds [53]. It can be concluded that:

• the IBS controller is robust to uncertainties in control effectiveness as bandwidth of the closed-loop
frequency response only changes slightly. For γq 6= 1 there will still be a significant large frequency
range for which |HCL( jω)| ≈ 1.

• Increasing IBS gain cq and/or decreasing hub stiffness Kβ does increase the resonance peak and region
of overreaction. This should be avoided as this is undesirable when performing a tracking task.

• Decreasing γq does increase the frequency region for which |HCL( jω)| ≈ 1 and region of overreaction.
This means that better performance may can be achieved for lower γq but at the cost of overreaction.
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5.1.7. Closed-loop stability analysed using Routh-Hurwitz stability criterion
Next it will be of great interest to determine the analytical closed-loop stability when using the incremental-
based controller. From the closed-loop frequency analysis it has become clear that the Lyapunov-based con-
troller is capable of adequately tracking the reference signal even for control effectiveness mismatch.

Stability will be considered for a continuous Laplace transfer function. This subsequently means that the
Routh-Hurwitz stability criterion shall be considered for assessing closed-loop stability. This criterion deter-
mines stability using the characteristic polynomial of the closed-loop transfer function. The system is found
to be asymptotically stable if and only when the real parts of the closed-loop eigenvalues are situated in the
LHP. Actuator dynamics (first-order lag filter with τact = 0.1 s) and sensor dynamics (second-order washout
filter with ζsens = 1 and ωn = 100 rad/s) are incorporated in the closed-loop system. Moreover fs was set suf-
ficiently high to not violate Eq. 5.3 such that the stabilising control law from Eq. 5.4 could be used. The effect
of actuator saturation will not be considered. In Fig. 5.11 stability regions are provided for different combina-
tions of Kβ, γq and cq . These regions of stability are established using the cases outlined previously with the
except of cq , which does range from 1 to 20. It can be observed that all regions are found to be stable. In the
rotorcraft models that follow here after, similar stability regions will be provided, from which it will become
obvious that adjustments will be required to assure adequate closed-loop stability.

(a) Closed-loop stability with γq = 1, γq = 0.5 and γq = 3 respectively.

Figure 5.11: Results of closed-loop stability analysis using controller with γq ∈ [0.5,1,3], cq ∈ [1,2, ...,20] and
Kβ ∈ [10,15, ...,150] kNm/rad. Lines of constant hub stiffness are provided for articulated and hingeless rotorcraft.

5.2. First order τβ-based body-flap model
With a steady-state BF model considered previously, it is necessary to consider a model with flapping dynam-
ics. Neglecting rotor dynamics can be justified when there is large separation of the characteristic rotor and
fuselage rigid body frequencies [10]. In [10] it was mentioned that for articulated rotorcraft the body modes
and flapping modes are weakly coupled to each other, as the later is associated with a much faster time scale
than the former. This implies that the uncoupled modes are close to the coupled modes, therefore steady-
state flapping dynamics would suffice for these models (small τβ and small Kβ). When the uncoupled modes
differ significantly from the coupled modes (e.g. hingeless rotor configurations), flapping dynamics must be
included in the rotorcraft model [10]. This will be of prime concern in this section. Here a rotorcraft model
will be considered, wherein disc tilt constant τβ(= 16

γ ) and hub stiffness Kβ can be adjusted. It will be shown
that flapping synchronisation will be important for rotorcraft models with slow disc-tilt response (large τβ).
In other words synchronisation must be considered for rotorcraft models for which the idealised (based upon
steady-state flapping dynamics) and actual rotorcraft model differ significantly. This can be determined by
means of the modes of motion and open-loop frequency response of both models. When the difference be-
tween the idealised and actual modes of motion and open-loop frequency is large, flapping synchronisation
is necessary to assure adequate synchronisation of the actuator and angular acceleration measurement.

5.2.1. Natural modes of motion for varying Kβ and τβ
First, the modes of motion of the τβ-based model without controller will be considered for the idealised
and actual BF model, wherein the former was obtained by means of the method of residualised dynam-
ics. This method does set β̇1c equal to 0 (=steady-state flapping dynamics) and substitutes the expression
for β1c into the expression of q̇ . This does yield an expression, wherein Fq,β1c = 0 and Fq,q equal to Fq,q −
Fq,β1c F−1

β1c ,β1c
Fβ1c ,q . The idealised body mode will be decoupled from flapping. In Fig. 5.12 the modes of



60 5. Rotor Synchronisation applied to varying DOF rotorcraft Models

motion for the idealised and the actual model are provided.

(a) Actual modes of motion (coupled pitch-flap) for τβ = 1.0 (left) and τβ = 5.0 (right).

(b) idealised modes of motion (decoupled pitch) for τβ = 1.0 (left) and τβ = 5.0 (right).

Figure 5.12: Modes of motion of actual (coupled pitch-flap) and idealised (decoupled pitch) rotorcraft model for two
instances of τβ and Kβ ∈ [10,30, ...,150] kNm/rad.

It can be observed from Fig. 5.12 that the modes of motion for the idealised and actual rotorcraft model differ
for large τβ and Kβ. The modes of motion for the actual rotorcraft model are situated at

λ1,2 =− Ω

2τβ
±

√√√√1

4

(
Ω

τβ

)2

− 16Klon

γτβ
(5.6)

and will couple for τβKlon > γΩ2

64 . The idealised pitch mode of motion is decoupled from flapping and situated

at − 16Klon
γΩ . For large τβ, the dynamic response of q will be different for actual and idealised rotorcraft model.

5.2.2. Open-loop Frequency response of angular body dynamics
Next, it is necessary to consider the open-loop frequency response without controller. The Bode frequency
response shall be considered as it enables to determine the natural response for a wide range of frequencies
given a control input [35]. The transfer function in standard Bode form with and without artificial control
effectiveness coefficient are given in Eq. 5.7 and Eq. 5.8 respectively.

for αGq 6= 0 : Hq (s) =
(
γΩ

16

(
1+αGq

)) (
1+ αGq τβ

Ω (1+αGq )−1s
)

(
γτβ

16Klon
s2 + Ωγ

16Klon
s +1

) (5.7)

for αGq = 0 : Hq (s) =
(
γΩ
16

)
(

γτβ
16Klon

s2 + Ωγ
16Klon

s +1
) (5.8)

For αGq 6= 0 it can be stated that Hq (s) does consist of a first-order lead, second-order lag and gain term.
However, forαGq = 0 it can be observed that Hq (s) does consist of a second-order lag and gain term only. The
second-order lag term for αGq 6= 0 and αGq = 0 is exactly the same. In Fig. 5.13 and Fig. 5.14 the frequency
response of Hq (s) is provided for varying τβ and αGq respectively. Moreover, the frequency response of Hq (s)
with steady-state flapping dynamics (idealised model) is provided as well. The difference in frequency re-
sponse between the actual and idealised rotorcraft model will be of great interest.
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Figure 5.13: Bode frequency response of Hq (s) for τβ ∈ [0.5,0.6, ...,5.5], Kβ ∈ [10,60,110] kNm/rad and αGq = 0.

Figure 5.14: Bode frequency response of Hq (s) for τβ ∈ [1.0,3.0,5.0], Kβ = 110 kNm/rad and αGq ∈ [0.05,0.06, ...,0.5].

In Fig. 5.13 the frequency response of Hq (s) is provided for varying τβ, three instances of Kβ and αGq = 0. It
can be observed that for smaller τβ the difference in frequency response between idealised (steady-state) and
actual (τβ-based) model becomes less. This is in line with expectation as decreasing τβ does yield quicker
disc-tilt response. It should also be noted that adjusting Kβ did not influence the difference between actual
and idealised rotorcraft model. This shows that τβ is primarily responsible for the difference in frequency
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response between both models. Lastly, the influence of αGq on angular body frequency response is provided
in Fig. 5.14 for three instances of τβ and one value for Kβ. Increasing αGq does make the difference in fre-
quency response between idealised and actual rotorcraft response to become greater at lower frequencies,
but smaller are larger frequencies. This shows that adjusting the artificial control effectiveness coefficient
can affect the angular body frequency response. The importance of the artificial control effectiveness coeffi-
cient will be considered later on.

5.2.3. Control effectiveness established using idealised rotorcraft model
For establishing the IBS controller it is necessary to determine the control effectiveness of q̇ with respect to
θ1s . Two methods were incorporated for establishing the control effectiveness. The flapping angle equiva-
lence method is the least complicated method as it only requires knowledge of Fq,β1c , which is −Klon, and the
IBC to MBC transformation. Since a positive Fourier series was incorporated for establishing the body-flap
EOM (β1cSP =β1cC P −θ1s ), the control effectiveness Gq must be equal to Klon. Another technique that can be
incorporated is the method of residualised dynamics. This method requires more and accurate knowledge of
the actual model. Using the previously mentioned method, the control effectiveness must be equal to

Gq = Hq −Fq,β1c F−1
β1c ,β1c

Hβ1c =αGq Klon −−Klon ·−
τβ

Ω
·− Ω
τβ

= Klon

(
1+αGq

)
. (5.9)

It can be observed from Eq. 5.9 that Gq is approximately the same as the control effectiveness when using the
flapping angle equivalence method. The only difference lies therein that the method of residualised dynamics
also accounts for the control-depended term of the original BF model. The aforementioned would only hold
when αGq 6= 0. Important to note is that both methods are incorporated to establish an enhanced control
effectiveness. It will be shown that this is required to not violate the IBS TSS condition. For the proceeding
analysis it will be assumed that one does not always have full and accurate knowledge of control effectiveness.
This implies that Ĝq = γqGq , wherein γq is the control effectiveness mismatch factor.

5.2.4. Stabilising control law for angular rate subsystem using IBS
With the control effectiveness determined it is necessary to establish an IBS control law for q . A Taylor series
must be used for defining the control law. Two first-order Taylor series will be introduced, namely one that
is based upon the actual rotorcraft model and another one that is based upon the idealised rotorcraft model.
The idealised Taylor series will be established using the method of residualised dynamics. The first-order
Taylor series using the idealised and actual rotorcraft model is given in Eq. 5.10 and Eq. 5.11 respectively.

idealised : q̇ ∼= q̇0 +Fq,β1c∆β1c +
(
Fq,q −Fq,β1c F−1

β1c ,β1c
Fβ1c ,q

)
∆q +

(
Hq −Fq,β1c F−1

β1c ,β1c
Hβ1c

)
∆θ1s

∼= q̇0 +0 ·∆β1c +
(
0−−Klon ·−

τβ

Ω
· 16

γτβ

)
∆q +

(
αGq Klon −−Klon ·−

τβ

Ω
·− Ω
τβ

)
∆θ1s

∼= q̇0 − 16

γΩ
Klon∆q + (1+αGq )Klon∆θ1s

(5.10)

Actual : q̇ ∼= q̇0 +Fq,β1c∆β1c +Fq,q∆q +Hq∆θ1s

∼= q̇0 −Klon∆β1c +αGq Klon∆θ1s
(5.11)

It should be noted that q̇0 and θ1s,0 are the current pitch rate derivative and longitudinal cyclic control input
respectively. Moreover, ∆q , ∆β1c and ∆θ1s are the incremental change in pitch rate, cyclic flapping angle and
longitudinal control input respectively. The main difference between the idealised and actual Taylor series
can be clearly identified from Eq. 5.10 and Eq. 5.11. Most importantly, is that state-dependency has dimin-
ished and control-dependency has been increased for the idealised first-order Taylor series. The previous
first-order Taylor series can be simplified by neglecting the state-depended terms by assuming time-scale
separation [1, 45, 46, 54]. This condition does reduce dependency on system dynamics. A necessary condi-
tion for a time-scale separated system is

TSS condition for idealised Taylor series : (1+αGq )Klon∆θ1s >>− 16

γΩ
Klon∆q, (5.12)
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TSS condition for actual Taylor series : αGq Klon∆θ1s >>−Klon∆β1c , (5.13)

which is equivalent by assuming instantaneous control action given that sampling rate fs is sufficiently high
[54]. When Eq. 5.12 and Eq. 5.13 hold, then it will be robust to uncertainties in system dynamics. It can be
observed that the TSS condition for the idealised Taylor series will hold since γΩ >> 16. On the other hand
the TSS condition for the actual Taylor series will be violated as αGq << 1. This can be regarded the crux in
control design for rotorcraft control (this was also observed for the main rotorcraft model [55]). Establishing
a stabilising control law using Eq. 5.11 can be achieved by including system dynamics, here flapping dynam-
ics. This is not desirable as this requires accurate and reliable knowledge of flapping dynamics and flapping
angles. The following stabilising control law will be used

θ1s = θ1s,0 +Ĝ−1
q

[−q̇0 + q̇ref − cq zq
]

. (5.14)

5.2.5. Flapping synchronisation filter for synchronising actuator and angular rate deriva-
tive measurements

A flapping synchronisation filter shall be introduced to account for the fact that the controller is based upon
an idealised model using steady-state flapping dynamics, whereas the actual BF model is associated with
disc-tilt dynamics. The flapping synchronisation filter can be established by looking at the difference in IO
response of the idealised and actual BF model. The difference can be identified as the synchronisation filter
(Hactual(s) = Hsync(s)Hideal(s)). It is important to note that the control effectiveness Ĝq used in the synchro-
nisation filter must be based upon the method of residualised dynamics since it establishes the control effec-
tiveness using the exact expression for steady-state flapping dynamics. Flapping synchronisation shall first
be introduced in the time-domain, there after in the Laplace-domain. The expression for the synchronised
control input and flapping angle are given in Eq. 5.15 and Eq. 5.16 respectively.

q̇ = Ĝqθ1s,sync

q̇ = Fq,β1cβ1c,sync +Hqθ1s,meas

}
θ1s,sync = Ĝ−1

q Fq,β1cβ1c,sync +Ĝ−1
q Hqθ1s,meas (5.15)

β̇1c,sync = Fβ1c ,β1cβ1c,sync +Hβ1cθ1s,meas (5.16)

The synchronisation filter can be written into the following state-space system

[
β̇1c,sync

θ1s,sync

]
=

[
− Ω
τβ

γq (Klon +αGq Klon)−1 ·−Klon

]
β1c,sync +

[
− Ω
τβ

γq (Klon +αGq Klon)−1 ·αGq Klon

]
θ1s,meas, (5.17)

wherein θ1s,meas and β1c,sync are the measured control input (fed through a second-order washout filter) and
synchronised flapping angle respectively. It can be observed from Eq. 5.17 that it purely depends on θ1s,meas

as input. Next to this, it should be noted that Eq. 5.17 is not a function of Kβ. This confirms the fact that the
difference between the idealised and actual rotorcraft model is not created due to Kβ. From Eq. 5.17 it can be
observed that τβ, γq and αGq will be of prime concern regarding rotor synchronisation. Next, it is necessary
to consider the flapping synchronisation filter in the Laplace-domain. The transfer function for the flapping
synchronisation is provided in Eq. 5.18 and Eq. 5.19 for αGq 6= 0 and αGq = 0 respectively.

for αGq 6= 0 : Hsync(s) = θ1s,sync(s)

θ1s,meas(s)
= γ−1

q

(
1+αGq

) (
1+ αGq τβ

Ω

(
1+αGq

)−1
s

)
(
τβ
Ω s +1

) (5.18)

for αGq = 0 : Hsync(s) = θ1s,sync(s)

θ1s,meas(s)
=

(
γ−1

q

) 1(
τβ
Ω s +1

) (5.19)

The synchronisation filter from Eq. 5.18 is characterised by a gain, first-order lag and first-order lead term.
On the other hand, for αGq = 0 the synchronisation filter can be written into the form given in Eq. 5.19,
consisting of a gain and first-order lag term. Of great interest are the effects of changes in γq , τβ and αGq on
synchronisation filter frequency response. In Fig. 5.15 the results are provided.
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(a) Magnitude and phase response for τβ ∈ [0.5,0.6, ...,5.5], γq = 1 and αGq = 0.

(b) Magnitude and phase response for γq ∈ [0.75,0.76, ...,1.25], τβ = 3 and αGq = 0.

(c) Magnitude and phase response for αGq ∈ [0.0,0.025, ...,0.5], τβ = 3 and γq = 1.

Figure 5.15: Frequency response of flapping synchronisation filter of τβ-based rotorcraft model for varying τβ, γq and
αGq . Synchronisation filters from Eq. 5.18 and Eq. 5.19 are incorporated for assessing these changes.

Based on the results of the rotor synchronisation frequency analysis the following can be stated

• increasing τβ will decrease rotor synchronisation filter bandwidth such that θ1s,meas will be slowed
down more. This shows that when the difference between the idealised and actual model increases,
the feedback of the actuator measurement must be slowed down more to match the feedback of the
angular acceleration measurement.

• Kβ will not affect the frequency response of the rotor synchronisation filter (see Eq. 5.18 and Eq. 5.19).

• frequency response of the synchronisation filter depends on control effectiveness mismatch factor. To
be more specific γ−1

q does act as a pure gain and will therefore affect magnitude response. Control
effectiveness under- or overestimation will yield magnified and diminished control inputs respectively.

• It can be observed from Fig. 5.15 that greater αGq will be associated with greater magnitude at higher
frequencies. This implies that for larger αGq the synchronisation will delay θ1s,meas less. This is in
line with expectation as control-dependency increases thus relatively there will be less attenuation of
flapping dynamics. In other words, q̇ will be increasingly more directly governed by θ1s , while the
indirect channel (θ1s →β1c → q̇) remains the same.

5.2.6. Longitudinal ADS-33E-PRF tracking task for varying τβ
The main point of interest of the analysis is to understand the effect of rotor dynamics on IBS. The next
step is to assess controller robustness. The necessity of incorporating an enhanced control effectiveness
and adequate synchronisation of actuator and angular acceleration measurement will be of prime concern.
In order to assess the above mentioned it will be necessary to determine IBS controller performance with
and without rotor synchronisation filter. A longitudinal tracking task will be executed in accordance with the
regulations stipulated by the ADS-33E-PRF for aggressive agility [4]. This means that the rotorcraft shall reach
a pitch rate of ±30◦/s. The following cases will be considered
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• without flapping synchronisation filter (Hsync(s) = 1), yq = 1, Ĝq =αGq Klon withαGq ∈ [0.150,0.175, ...,0.4]
as control effectiveness coefficient, τβ = 5.0, cq = 5 and Kβ = 110 kNm/rad. This illustrates the main
crux in control design for rotorcraft control.

• without flapping synchronisation filter, enhanced control effectiveness established using the method
of residualised dynamics with yq = 1, τβ ∈ [0.5,1.0, ...,5.5], αGq = 0, cq = 2.5 and Kβ = 110 kNm/rad. This
is the Reduced inverse of control effectiveness matrix INDI (RINDI) method mentioned in [42].

• with flapping synchronisation filter, enhanced control effectiveness using the method of residualised
dynamics with yq = 1 for control effectiveness of IBS control law and synchronisation filter, τβ ∈ [0.5,1.0, ...,5.5],
cq = 15, Kβ = 110 kNm/rad and αGq = 0.

• with flapping synchronisation filter, enhanced control effectiveness established using the method of
residualised dynamics, yq = 0.75 for control effectiveness of synchronisation filter, γq = 1 for control
effectiveness of IBS control law, τβ ∈ [0.5,1.0, ...,5.5], cq = 10, Kβ = 110 kNm/rad and αGq = 0.

In Fig. 5.16 - 5.18 the results of the first case are provided. It can be observed that tracking response is erratic
for decreasing control effectiveness. Moreover, it can also be observed that control-dependency is signif-
icantly less than state-dependency, thus violating the IBS TSS condition. System dynamics should be ac-
counted for to not violate the condition, which would require the need for accurate and reliable knowledge of
flapping dynamics and cyclic flapping angles. This is exactly what is trying to be avoided when using the IBS
control strategy. From Fig. 5.18 it can be observed that controller performance is affected the most when con-
trol effectiveness decreases. This does well illustrate the crux in control design for rotorcraft control as control
effectiveness based upon the control-depended term of the angular accelerations is simply insufficient. Most
importantly, it would not enable IBS.

Figure 5.16: Results of longitudinal tracking task of τβ-based rotorcraft model without synchronisation filter.
Rotorcraft states q and β1c are provided along with cyclic control input θ1s . Also tracking error zq is provided. Effect of
varying αGq on tracking performance is analysed for αGq ∈ [0.15,0.175, ...,0.4], τβ = 5.0, cq = 5 and Kβ = 110 kNm/rad.

(a) Fq,q∆q +Fq,β1c
∆β1c (b) Hq∆θ1s

Figure 5.17: Control- and state-dependency of longitudinal tracking task of τβ-based rotor model for which controller
performance was assessed for varying αGq given that αGq ∈ [0.15,0.175, ...,0.4], τβ = 5.0, cq = 5 and Kβ = 110 kNm/rad.
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Figure 5.18: RMSEq of longitudinal tracking task of τβ-based rotor model for which controller performance was
assessed for varying αGq given that αGq ∈ [0.15,0.175, ...,0.4], τβ = 5.0, cq = 5 and Kβ = 110 kNm/rad.

Previously, it was mentioned that the TSS condition was violated when using the control-depended term
as control effectiveness for the stabilising control law. This problem can be accounted for by means of the
method of residualised dynamics, wherein steady-state flapping dynamics is assumed. This does enhance
control-dependency and reduces state-dependency. In previous research from Pavel et al. [42] it was also
found that enhancing control effectiveness (reduction of control effectiveness inverse) was necessary to as-
sure adequate controller performance. In Fig. 5.19 - 5.21 the results are provided. It can be observed from
Fig. 5.20 that control-dependency is indeed greater than state-dependency. However, from Fig. 5.19 it can
be observed that tracking response is not desirable since it is quiet erratic. Moreover, in Fig. 5.21 it can be
observed that RMSEq increases when disc-tilt response becomes slower.

Figure 5.19: Results of longitudinal tracking task of τβ-based rotorcraft model without synchronisation filter. Rotorcraft
states q and β1c are provided along with cyclic control input θ1s . Moreover tracking error zq is provided as well. Effects

of varying τβ on tracking performance is analysed for αGq = 0, τβ ∈ [0.5,1.0, ...,5.5], cq = 2.5 and Kβ = 110 kNm/rad.

(a) (Hq −Fq,β1c
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Figure 5.20: Control- and state-dependency of longitudinal tracking task of τβ-based rotor model for which controller
performance was assessed for varying τβ given that αGq = 0, τβ ∈ [0.5,1.0, ...,5.5], cq = 2.5 and Kβ = 110 kNm/rad.
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Figure 5.21: RMSEq of longitudinal tracking task of τβ-based rotor model for which controller performance was
assessed for varying τβ given that αGq = 0, τβ ∈ [0.5,1.0, ...,5.5], cq = 2.5 and Kβ = 110 kNm/rad.

The previous IBS controller did not yield the desired performance even though TSS condition was not vio-
lated. The problem lies therein that q̇0 was not well-synchronised with θ1s,0, which can be accounted for by
means of the flapping synchronisation filter. From Fig. 5.22 - 5.24 it can be observed that controller perfor-
mance has improved and TSS condition is not violated. On top of this, the response is not erratic. Based on
the difference in synchronised and unsynchronised actuator measurement it can be stated that for increasing
τβ there will be more synchronisation effort required.

Figure 5.22: Results of longitudinal tracking task of τβ-based rotorcraft model with rotor synchronisation. Rotorcraft
states q and β1c are provided along with control input θ1s . In addition to this tracking zq and absolute difference in

synchronised and unsynchronised actuator measurement are provided. Effects of varying τβ on tracking performance is
analysed for τβ ∈ [0.5,1.0, ...,5.5], cq = 15, αGq = 0, γq = 1 and Kβ equal to 110 kNm/rad.

(a) (Hq −Fq,β1c
F−1
β1c ,β1c
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Figure 5.23: Control- and state-dependency of longitudinal tracking task of τβ-based rotorcraft model with rotor
synchronisation controller, wherein αGq = 0, τβ ∈ [0.5,1.0, ...,5.5], γq = 1, cq = 15 and Kβ equal to 110 kNm/rad.
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Figure 5.24: RMSEq of longitudinal tracking task of τβ-based rotorcraft model with rotor synchronisation filter,
wherein αGq = 0, τβ ∈ [0.5,1.0, ...,5.5], γq = 1, cq = 15 and Kβ equal to 110 kNm/rad.

A control effectiveness mismatch of γq = 0.75 is considered for the control effectiveness in the rotor synchro-
nisation filter, while γq = 1 will be considered for the control effectiveness of the IBS control law. In Fig. 5.25
- 5.27 the results are provided. It can be observed that controller performance is severely affected as tracking
response has become more erratic. Moreover, q has an offset with respect to qref as a result of inadequate
signal synchronisation. This shows that the controller is not robust to uncertainties in control effectiveness
of the synchronisation filter.

Figure 5.25: Results of longitudinal tracking task of τβ-based rotorcraft model with rotor synchronisation. Rotorcraft
states q and β1c are provided along with control input θ1s . In addition to this tracking zq and absolute difference in

synchronised and unsynchronised actuator measurement are provided. Effects of varying τβ on tracking performance is
analysed for τβ ∈ [0.5,1.0, ...,5.0], cq = 10, αGq = 0, γq = 0.75 for synchronisation filter and Kβ equal to 110 kNm/rad.

(a) (Hq −Fq,β1c
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Figure 5.26: Control- and state-dependency of longitudinal tracking task of τβ-based rotorcraft model with rotor
synchronisation, τβ ∈ [0.5,1.0, ...,5.0], γq = 0.75 for synchronisation filter, cq = 10 and Kβ = 110 kNm/rad.
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Figure 5.27: RMSEq of longitudinal tracking task of τβ-based rotorcraft model with rotor synchronisation filter,
wherein τβ ∈ [0.5,1.0, ...,5.0], γq = 0.75 rotor synchronisation filter, cq = 10 and Kβ equal to 110 kNm/rad.

It can be stated that violation of the TSS condition did require modification of the original BF model to enable
enhanced control effectiveness and diminished state-dependency. This was realised by means of the method
of residualised dynamics. This did yield a difference in idealised and actual rotorcraft model and especially
for those models with large τβ (see Fig. 5.12 and Fig. 5.13). This discrepancy was overlooked in the second
case (see Fig. 5.19 - Fig. 5.21), which resulted in unsynchronised actuator and state derivative measurement.
The following conclusions can be drawn:

• a stabilising control law using the (artificial) control-depended term of q̇ as control effectiveness will
yield violation of the TSS condition from Eq. 5.12.

• incorporating the method of residualised dynamics for enhancing control-dependency and diminishing
state-dependency did not violate the TSS condition from Eq. 5.13. However, it did not account for the
difference in actual and idealised rotorcraft model, yielding poor synchronisation of actuator and state-
derivative measurement. This resulted in erratic behaviour of the controlled and uncontrolled states.

• synchronisation of actuator and angular acceleration measurement by means of a synchronisation fil-
ter can be regarded a requisite for BF models with significant difference in actual and idealised model.

• control effectiveness mismatch for the control effectiveness in the rotor synchronisation filter can severely
affect controller performance as vehicle response is associated with steady-state error. It is therefore
not robust to uncertainties in control effectiveness.

• actuator limits do pose a problem regarding the TSS condition, as the product (Hq,q−Fq,β1c F−1
β1c ,β1c

Hβ1c )∆θ1s

or Hq∆θ1s can only reach a certain maximum depending on the actuator limits.

5.2.7. Closed-loop frequency response of IBS controller with or without synchronisation
Having performed a time-domain analysis, it will be necessary to consider a closed-loop frequency analysis.
Findings from the time-domain analysis should also be apparent from the closed-loop frequency analysis.
The main objective is to show that a flapping synchronisation filter is necessary to assure adequate closed-
loop frequency response and to proof that the controller is more robust to uncertainties in control effective-
ness mismatch for the IBS control law than for the flapping synchronisation filter. The main parameters of
interest for the analysis are: γq , αGq and τβ. Below a set of cases will be outlined which are all considered
with or without rotor synchronisation filter, cq ∈ [3,9] and Kβ = 110 kNm/rad. Moreover, control effective-
ness is established using the method of residualised dynamics such that it will be equal to Klon for αGq = 0 or
Klon(1+αGq ) when αGq 6= 0. The following cases will be considered:

• variation in τβ with γq = 1 (Ĝq = Klon) for IBS control law and synchronisation filter and αGq = 0.

• variation in αGq with γq = 1 (Ĝq = (1+αGq )Klon) for IBS control law and synchronisation filter, αGq ∈
[0.1,0.11, ...,0.5] and τβ = 3.5.

• variation in γq (Ĝq = γq Klon) with γq ∈ [0.75,0.775, ..,1.0] or γq ∈ [1.0,1.05, ...,3] for the stabilising con-
trol law, γq = 1 for the synchronisation filter, αGq = 0 and τβ = 3.

• variation in γq (Ĝq = γq Klon) given that γq ∈ [0.75,0.775, ..,1.0] or γq ∈ [1.0,1.05, ...,3] for the rotor syn-
chronisation filter, γq = 1 for the IBS control law, αGq = 0 and τβ = 3.

• variation in γq (Ĝq = γq Klon) given that γq ∈ [0.75,0.775, ..,1.0] or γq ∈ [1.0,1.05, ...,3] for the rotor syn-
chronisation filter and IBS control law, αGq = 0 and τβ = 3.
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Below the above mentioned cases are provided respectively. The maximum region of overreaction (with 1%
margin) of closed-loop response is indicated. For the IBS controller with and without rotor synchronisation
this is indicated in dark and light grey respectively. In Fig. 5.28 the closed-loop frequency response is provided
for varying τβ. It can be observed that the IBS controller without rotor synchronisation does yield undesirable
closed-loop frequency response, because of the resonance peak. This peak is more apparent when τβ and/or
IBS gain cq are being increased. This shows that inclusion of the rotor synchronisation filter is of paramount
importance to assure adequate closed-loop frequency response. This especially holds for aggressive manoeu-
vres for which large gains are required and/or when the rotorcraft is associated with slow disc-tilt response.
In Fig. 5.29 the closed-loop frequency response is provided for varying αGq . Increasing αGq is beneficial for
the closed-loop response of the IBS controller without synchronisation filter as the resonance peak decreases.
This shows that when the control-dependency increases more desirable response can be achieved.

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.28: Closed-loop frequency response for IBS controller with and without flapping synchronisation filter, γq = 1
for IBS control law and synchronisation filter, τβ ∈ [0.5,0.575, ...,4], Kβ = 110 kNm/rad and αGq = 0.

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.29: Closed-loop frequency response for IBS controller with and without flapping synchronisation filter, γq = 1
for IBS control law and synchronisation filter, τβ = 3.5, Kβ = 110 kNm/rad and αGq ∈ [0.1,0.11, ...,0.5].
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In Fig. 5.30 and Fig. 5.31 the closed-loop frequency response is provided for control effectiveness over- and
underestimation in the IBS control law respectively. The first and foremost observation is that the resonance
peak is smaller when control effectiveness is being overestimated. However, bandwidth is greater for control
effectiveness underestimation, thus associated with quicker response. Most importantly, adequate closed-
loop response could still be achieved when control effectiveness was over- or underestimated. This is because
the closed-loop bandwidth has only changed slightly (magnitude is 1 for low and mid frequencies). This
shows that the IBS controller is robust enough to uncertainties in control effectiveness in the IBS control
law. Moreover, it can also be observed that when γq is overestimated and IBS gain is sufficiently high then
adequate closed-loop response can be achieved for the IBS controller without synchronisation filter. This
similar to the RINDI method from Pavel et al. [42].

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.30: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [1,1.05, ...,3] for IBS control law, γq = 1 for rotor synchronisation filter, τβ = 3, Kβ = 110kNm/rad and αGq = 0..

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.31: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [0.75,0.775, ...,1] for IBS control law, γq = 1 for synchronisation filter, τβ = 3, Kβ = 110 kNm/rad and αGq = 0.
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Aside from considering control effectiveness mismatch for the IBS control it was also found necessary to
consider it for the synchronisation filter. In Fig. 5.32 and Fig. 5.33 the results are provided of the robustness
analysis on the synchronisation filter. Only the results of the IBS controller with synchronisation shall be
considered for the discussion. It can be observed that the closed-loop frequency response is not desirable
when control effectiveness is over- or under-estimated. When control effectiveness is over- or underesti-
mated, there will be a significant region of under- and overestimation respectively. This is also in line with
observations from the ADS-33E-PRF tracking from which it was found that controller performance was in-
adequate when control effectiveness was not well estimated. This shows that the controller is not robust to
uncertainties in control effectiveness in the synchronisation filter.

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.32: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [1,1.05, ...,3] for rotor synchronisation filter, γq = 1 for IBS control law, τβ = 3, Kβ = 110kNm/rad and αGq = 0.

(a) Closed-loop frequency response for cq = 9.

(b) Closed-loop frequency response for cq = 3.

Figure 5.33: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [0.75,0.775, ...,1] for synchronisation filter, γq = 1 for IBS control law, τβ = 3, Kβ = 110kNm/rad and αGq = 0.
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Previously, only control effectiveness mismatch was considered for either the IBS control law or synchroni-
sation filter. In the next case, control effectiveness mismatch shall be considered for both the IBS control
law and synchronisation filter. In Fig. 5.34 and Fig. 5.35 the closed-loop frequency response is provided for
control effectiveness over- and underestimation respectively. It can be observed that closed-loop frequency
response is not desirable as magnitude significantly deviates from 1. For control effectiveness over- and un-
derestimation it can be observed that the region of under- and overestimation for low and mid frequencies
is significant. Moreover, there is also a resonance peak for both cases. This is especially apparent for control
effectiveness underestimation. This shows that controller performance can be severely affected when control
effectiveness mismatch exists for both synchronisation filter and IBS control law.

(a) Closed-loop frequency response for cq = 9

(b) Closed-loop frequency response for cq = 3

Figure 5.34: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [1,1.05, ...,3] for rotor synchronisation filter and IBS control law, τβ = 3, Kβ = 110kNm/rad and αGq = 0..

(a) Closed-loop frequency response for cq = 9

(b) Closed-loop frequency response for cq = 3

Figure 5.35: Closed-loop frequency response for IBS controller with and without rotor synchronisation filter,
γq ∈ [0.75,0.775, ...,1] for rotor synchronisation filter and IBS control law, τβ = 3, Kβ = 110kNm/rad and αGq = 0.
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Based on the closed-loop frequency analysis the following can be concluded:

• inclusion of a flapping synchronisation filter is necessary to avoid or reduce the resonance peak in the
closed-loop frequency response. This subsequently means that when a flapping synchronisation filter
is not included, closed-loop response will be erratic and characterised with significant overestimation
of the reference signal. The above especially holds for an aggressive controller for which IBS gain is
large and/or when disc-tilt response is slow. This can be observed from Fig. 5.28.

• increasing τβ will yield a greater resonance peak. This is due to a greater difference in idealised and
actual model, which translates into a significant delay between actuator and angular acceleration mea-
surement. The former is based upon the idealised BF model, whereas the latter comes for the actual BF
model. Since the angular acceleration measurements are used in a negative feedback loop, there will
be magnified control inputs when it is delayed with respect to the actuator measurement [57].

• increasing IBS gain cq will increase the resonance peak, yielding overreaction of the closed-loop system.
For an aggressive tracking tasks (fast changing signal with large amplitude) this can be troublesome.

• the IBS controller is robust to uncertainties in control effectiveness of the IBS control law. This is based
upon observations from Fig. 5.30 and Fig. 5.31. For γq > 1 or γq < 1, adequate closed-loop response
was still achieved as closed-loop bandwidth was still sufficient. For control effectiveness over- or un-
derestimation bandwidth would be reduced and increased respectively. From this it follows that, un-
derestimation of control effectiveness could be favourable when performing a tracking task. However,
this would be at cost of significant overreaction because of the large resonance peak. On the other
hand, control effectiveness overestimation is characterised with a diminished resonance peak yielding
less overreaction, but at the cost of slower closed-loop response.

• the IBS controller is not robust to uncertainties in control effectiveness in the synchronisation filter.
This is apparent from Fig. 5.32 and Fig. 5.33, wherein control effectiveness over- and underestimation
are considered. It can be clearly observed that the closed-loop frequency response is highly undesir-
able, because magnitude significantly deviates from 1 for a large frequency range.

• when the ratio
Hq

F q,β1c
increases then q̇ will be increasingly more directly governed by the cyclic control

inputs, which subsequently decreases the resonance peak.

5.2.8. Closed-loop stability analysed using Routh-Hurwitz stability criterion
Next, it will be of interest to determine the analytical closed-loop stability. A continuous Laplace transfer
function (HC L(s)) is being used to represent the closed-loop system, therefore the Routh-Hurwitz stability
criterion shall be incorporated. This criterion does assess closed-loop stability by means of the characteristic
polynomial of the closed-loop transfer function [35]. The system is asymptotically stable when the real parts
of the closed-loop eigenvalues are situated in the LHP. Actuator (first-order lag filter with τact = 0.1 s) and sen-
sor dynamics (second-order washout filter with ζfilt = 1 and ωn,filt = 100 rad/s) are taken into account when
performing the analysis. Moreover, sampling time was set sufficiently low (dt = 0.01 s) and control saturation
was not accounted for. The analysis shall be considered for the closed-loop system with and without flap-
ping synchronisation filter. Full and accurate knowledge of system dynamics is assumed when constructing
the filters. However, control effectiveness shall be changed for the IBS control law and/or synchronisation
filter and are established by means of the method of residualised dynamics. The analysis shall be considered
for cq ∈ [15,20], τβ ∈ [0.5,1.0, . . . ,5.0], Kβ ∈ [10,15, . . . ,150] kNm/rad and αGq = 0. The objective is to show
that without flapping synchronisation filter, closed-loop stability will be affected for high gains and to proof
that the controller is more robust to uncertainties in control effectiveness for the IBS control law than for the
synchronisation filter. All cases to be analysed will consider variation in τβ and Kβ. The cases of interest are:

• without flapping synchronisation filter and γq ∈ [0.5,1,3] for control effectiveness in IBS control law.

• with flapping synchronisation filter given that γq = 1 for control effectiveness in flapping synchronisa-
tion filter and γq ∈ [0.5,1,3] for control effectiveness in IBS control law.

• with flapping synchronisation filter given that γq ∈ [0.5,1,3] for control effectiveness in flapping syn-
chronisation filter and γq = 1 for control effectiveness in IBS control law.

• with flapping synchronisation filter given thatγq ∈ [0.5,1,3] for control effectiveness in synchronisation
filter and IBS control law.
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In Fig. 5.36 and Fig. 5.37 the results of the closed-loop stability analysis are provided for the closed-loop
system without and with flapping synchronisation filter respectively. It can be observed that the closed-loop
system without flapping synchronisation filter is less stable than the closed-loop system with flapping syn-
chronisation filter. Moreover, the closed-loop system without rotor synchronisation and γq > 1 does have a
greater region of stability than for γq ≤ 1. This means that for specific combinations of Kβ and τβ it is still
possible to have closed-loop stability even though rotor synchronisation is not considered. Control effec-
tiveness overestimation is therefore favourable regarding closed-loop system response, which is in line with
observations from [42]. From Fig. 5.37 it can be observed that rotor synchronisation significantly improves
system stability, which shows the importance of signal synchronisation.

(a) Closed-loop stability with cq = 15 and for γq = 1, γq = 0.5 and γq = 3 respectively.

(b) Closed-loop stability with cq = 20 and for γq = 1, γq = 0.5 and γq = 3 respectively.

Figure 5.36: Results closed-loop stability analysis using IBS controller without flapping synchronisation filter given that
γq ∈ [0.5,1,3] for control effectiveness in IBS control law, cq ∈ [15,20], τβ ∈ [0.5,1, ..,5] and Kβ ∈ [10,15, ...,150] kNm/rad.

(a) Closed-loop stability with cq = 15 and for γq = 1, γq = 0.5 and γq = 3 respectively.

(b) Closed-loop stability with cq = 20 and for γq = 1, γq = 0.5 and γq = 3 respectively.

Figure 5.37: Results closed-loop stability analysis for IBS controller with flapping synchronisation filter given that
γq ∈ [0.5,1,3] for control effectiveness in IBS control law, γq = 1 for control effectiveness in synchronisation filter,

cq ∈ [15,20], τβ ∈ [0.5,1, ..,5] and Kβ ∈ [10,15, ...,150] kNm/rad.
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In Fig. 5.38 the results of the closed-loop stability analysis are provided for the IBS controller with control
effectiveness mismatch in the flapping synchronisation filter only. It can be observed that closed-loop sta-
bility is affected when γq < 1, since the region of instability is significant. Moreover, the region of instability
increases when cq increases. On the other hand, closed-loop stability is not affected for large γq . In Fig. 5.39
the results of the closed-loop stability analysis are provided for the IBS controller with control effectiveness
mismatch for the control effectiveness in the IBS control law and synchronisation filter. It can be observed
that stability is affected when the control effectiveness is underestimated. The region of stability differs from
the previous case, since it has been rotated clockwise.

(a) Closed-loop stability with cq = 15 and for γq = 1, γq = 0.5 and γq = 3 respectively.

(b) Closed-loop stability with cq = 20 and for γq = 1, γq = 0.5 and γq = 3 respectively.

Figure 5.38: Results closed-loop stability analysis for IBS controller with flapping synchronisation filter given that
γq ∈ [0.5,1,3] for control effectiveness in synchronisation filter, γq = 1 for control effectiveness in IBS control law,

cq ∈ [15,20], τβ ∈ [0.5,1, ..,5] and Kβ ∈ [10,15, ...,150] kNm/rad.

(a) Closed-loop stability with cq = 15 and for γq = 1, γq = 0.5 and γq = 3 respectively.

(b) Closed-loop stability with cq = 20 and for γq = 1, γq = 0.5 and γq = 3 respectively.

Figure 5.39: Results closed-loop stability analysis for IBS controller with flapping synchronisation filter given that
γq ∈ [0.5,1,3] for control effectiveness in IBS control law and synchronisation filter, cq ∈ [15,20], τβ ∈ [0.5,1, ..,5] and

Kβ ∈ [10,15, ...,150] kNm/rad.
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Based on the closed-loop stability analysis the following can be stated:

• Closed-loop stability is significantly affected when q̇0 and θ1s,meas are not well-synchronised with each
other. This can be observed from Fig. 5.36 as the region of instability is significantly greater than for
the synchronised case from Fig. 5.37. Without flapping synchronisation, angular acceleration mea-
surements will be lagging behind the actuator measurements. Since the angular acceleration measure-
ments are used in a negative feedback loop, see Eq. 5.14, control inputs will be magnified, yielding
quicker instability of the closed-loop system. For slower disc tilt response (large τβ), there will be a
greater time-delay between the angular acceleration and actuator measurements, yielding even quicker
system instability. Without rotor synchronisation it is still possible to improve system stability, namely
by increasing the control effectiveness. Rotor synchronisation will improve closed-loop stability as q̇0

and θ1s,meas will be synchronised with each other. This can be observed from Fig. 5.37 as the region
of stability has significantly improved. Only when control effectiveness is highly underestimated and
control gain is high, there will be a significant region of instability for the synchronised case.

• For the IBS controller with control effectiveness mismatch of the synchronisation filter control effec-
tiveness, it can be stated that control effectiveness underestimation is most concerning. This is based
on the significant region of instability, which can be observed from Fig. 5.38. This can be related to find-
ings from Fig. 5.15, wherein control effectiveness underestimation did yield magnified control inputs.
This could yield quicker instability of the closed-loop system. The aforementioned also holds when
both the control effectiveness of the IBS control law and synchronisation filter are underestimated.
However, the regions of stability/instability differ for both cases. It must be stated that the controller
is more affected by control effectiveness mismatch of the synchronisation filter control effectiveness
than by control effectiveness mismatch of the IBS control effectiveness.

• Another general observation that can be made is that stability can be assured for a greater range of τβ
for the hingeless MBB Bo 105 (Kβ = 113330 Nm/rad from [40]) than for the articulated Aérospatiale SA
330 Puma (Kβ = 48149 Nm/rad from [40]). This is because the former is associated with greater Kβ.

5.2.9. Conclusion on Lyapunov-based control design for τβ-based rotorcraft model
With the analysis performed on the τβ-based rotorcraft model it is necessary to sum up findings. These find-
ings can be of great importance when considering the inclusion of lead-lag dynamics to a BF model in terms
of Lyapunov-based control design. A special focus will be on IBS for which certain assumptions, such as TSS,
shall not be violated. Angular accelerations are primarily governed by cyclic flapping angles, rather than by
cyclic control inputs, thus F q,β1c > HΩ. This can be regarded problematic as this does violate a necessary
condition for establishing an incremental-based stabilising control law, namely the TSS condition [54]. This
could be circumvented by means of the method of residualised dynamics, which assumes residualisation of
the internal dynamics. In this specific case, this would mean residualisation of flapping dynamics. The ide-
alised rotorcraft model would therefore be based upon steady-state flapping dynamics. The actual rotorcraft
model is actually associated with flapping dynamics, which implies that there is some discrepancy between
both models. This discrepancy can be accounted for by means of the so-called synchronisation filter. Which
is a lag filter that delays the actuator measurement effectively by the same amount as by which the actual
angular body response is delayed with. This will assure that both the actuator and pitch acceleration mea-
surements are synchronised with each other. Synchronisation can be of prime concern for those rotorcraft
models which are associated with slow discs-tilt response (large τβ), because body and flap are heavily cou-
pled with each other. When the controller is based upon a decoupled model, then there will also be a large
difference between the actual and idealised model. This implies that rotor synchronisation can be consid-
ered a requisite for those rotorcraft models which are associated with large τβ. Moreover, another important
conclusion form the analysis is that residualisation of rotor dynamics will be of prime concern when the
body-rotor coupling and control-depended term of that specific rotor dynamics (e.g. lead-lag/inflow etc.)
is significant. This is based on the fact that residualisation will remove the body-rotor coupling term and
enhance the control-dependency using that coupling term. The aforementioned will yield an improvement
in the TSS condition. On the other hand actuator limitations were found to be problematic regarding the
aforementioned, because it did limit Ĝ q∆θ1c , therefore making it more prone to violating the TSS condition.
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Rotorcraft Control Modes

In this chapter the control modes of the main MBB Bo 105 rotorcraft model from chapter 2 are being pro-
vided. The Rate Command/Attitude Hold (RCAH) and Attitude Command/Attitude Hold (ACAH) mode are
the control modes that will be discussed. The rotorcraft model is actually also equipped with the Transla-
tional Rate Command/Position Hold mode, but shall not be considered in this research and therefore also
not discussed in this chapter. In Section 6.1 the control structure of the rotorcraft is shortly touched upon. In
Section 6.2 the RCAH shall be discussed, wherein the derivation of this control mode is provided and addi-
tional modifications to assure adequate actuator and state measurement synchronisation. A CFIBS control
strategy is realised for this control mode. In addition to this, it will also be shown that the RCAH control mode
can be equivalent to a PI controller when considering standard IBS. In Section 6.3 the derivation of the ACAH
control is being discussed. This control mode incorporates a CFBS control strategy for defining its control
law.

6.1. Rotorcraft control architecture
Before considering the control modes individually it is first necessary to understand the general architecture
of the flight control system, which can be observed in Fig. 6.1. It does consist of three subsystems, which are
naturally separated because of time-scale separation between their dynamics [46]. The most inner subsystem
is associated with the fastest dynamics, whereas the outer subsystems are associated with slower dynamics.
The angular rate subsystem can be identified as the most inner subsystem of the flight control system. This
subsystem provides the required cyclic and tail rotor control inputs for achieving a desired tracking task.
The attitude subsystem can be considered an outer loop of the angular rate subsystem. This means that
the angular rate subsystem provides the virtual control inputs for the attitude subsystem. The navigational
subsystem can be considered an outer loop with respect to the attitude subsystem, which means that the
attitude subsystem provides the virtual control inputs to the navigational subsystem. Based on the previous
discussion it is obvious that inadequate synchronisation in the most inner subsystem can be problematic,
because it will propagate through all the other subsystems yielding poor controller performance.

Figure 6.1: Flight control system of rotorcraft [47].

6.2. Rate Command/Attitude Hold (RCAH) mode
The first control mode to be considered is the RCAH mode. The main objective of this mode is to let the
rotorcraft track a desired angular rate while achieving bounded response of the remaining body states. The
desired angular rates are commanded by the system and set by the human operator. The RCAH control mode
is integral part of the on-board flight computers which receive inputs from the human operator and subse-
quently translate these electrical signals into control inputs such that the desired actions can be executed

78
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[46]. Execution of these commands must be within the space of possibilities of the controller, which e.g.
implies that natural limitations of the actuators must be respected. The RCAH mode does consist of a sin-
gle subsystem, namely the angular rate subsystem. The angular rate subsystem is directly connected to the
cyclic control inputs, therefore constructing a RCAH controller is more convenient than an ACAH controller.
The aforementioned is actually not completely true as flapping dynamics forms a delaying channel between
the angular accelerations and the control inputs. This is especially true for the pitch and roll accelerations,
which are primarily governed by the cyclic flapping angles. The control strategy adopted for the ACAH is
(CF)IBS, because its obviates the need of having accurate model, which implies that it can be more robust to
uncertainties in system dynamics [53].

6.2.1. First-order Taylor series for angular accelerations
The RCAH mode does require a stabilising control law for the angular rate subsystem, which can be estab-
lished by means of the method of residualised dynamics or the flapping angle equivalence method. The flap-
ping angle equivalence method is a geometric transformation wherein the flapping angles with respect to
the shaft plane are transformed to a combination of flapping angles with respect to the control plane and
cyclic control inputs (it assumes instantaneous disc-tilt). The other method considers residualisation of in-
ternal dynamics (e.g. steady-state flap-lag dynamics) for increasing control-dependency and diminishing
state-dependency. Both strategies will yield an expression for the angular accelerations wherein control-
dependency has been enhanced to enable an IBS control law for which TSS holds. This can be considered of
prime concern when considering incremental-based control design. The main difference between the two
above mentioned methods, is that the flapping angle equivalence method only considers steady-state flapping
dynamics (flapping residualisation), whereas the method of residualised dynamics can consider residualisa-
tion of more internal dynamics (e.g. flap-lag-inflow) to enhance the control- to state-dependency more. On
the other hand, the former method requires more model knowledge, which is not favourable. However, the
strategies do not yet account for the delay introduced by rotor dynamics. Accounting for the delay introduced
by rotor dynamics shall be considered in the feedback of the actuator measurements by means of a synchro-
nisation filter and shall be considered later on.

Both above mentioned strategies will be considered for the derivation of the stabilising control law for
the angular rate subsystem. These shall be considered in parallel with each other. The first step towards de-
riving the stabilising control law for the angular rate subsystem, starts by defining the first-order Taylor series.
For the flapping angle equivalence method and method of residualised dynamics these can be identified as

ω̇= ω̇0 +Ĝω,F∆

[
βSP
θ0,tr

]
, (6.1)

ω̇= ω̇0 +Ĝω,RU , (6.2)

wherein ω̇ is the vector containing the angular accelerations, namely [ṗ q̇ ṙ ]T . Moreover ω̇0 is the time-
delayed measurement of the angular accelerations. The control vector of the first-order Taylor series from
Eq. 6.1 is [β1c β1s θ0,tr ]T , which shows explicit dependency on the flapping angles with respect to the shaft
plane. This differs from the control vector U from Eq. 6.2, which is [θ1s θ1c θ0,tr ]T . In order for the flapping
angle equivalence method to have an function explicitly depending on the cyclic control inputs, it is necessary
to incorporate a transformation. This transformation converts βSP to βC P +θCF , with βC P being the flapping
angles with respect to the control plane ([β1c β1s ]T

C P ) and θCF being a vector containing the cyclic control
inputs ([−θ1s θ1c ]T ). Moreover, is should be noted that the θC will be considered the vector containing the
cyclic control inputs of the following form [θ1s θ1c ]T . From this it follows that θCF 6= θC , which means that a
transformation is required to arrive from one to another, which shall be touched upon later on. This means
that [βSP θ0,tr ] from Eq. 6.1 can be written as [β1c −θ1s β1s +θ1c θ0,tr ]T , wherein the flapping angles are now
with respect to the control plane.

6.2.2. Control effectiveness matrix
Next, it is deemed necessary to consider the control effectiveness of the first-order Taylor series from Eq. 6.1
and Eq. 6.2. The control effectiveness of the first-order Taylor series using the flapping angle equivalence
method is partially based on the state-depended relationship between the angular accelerations ṗ and q̇ and
the cyclic flapping angles β1s and β1c with respect to the shaft plane. The aforementioned does account
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for the fact that these angular accelerations are more governed by cyclic flapping angles than cyclic control
inputs. The relation between ṗ and q̇ and the cyclic flapping angles β1s and β1c can be obtained using the
expression for the dynamics of the rotational motion given in Eq. 2.113 and the the expressions for the hub
moments given in Eq. 2.85 and Eq. 2.86. Substitution of the latter two expression into Eq. 2.113 will yield
an expression explicitly depending on the cyclic flapping angles with respect to the shaft plane and therefore
provide the state-depended terms F p,β1s , F p,β1c , F q,β1s and F q,β1c . Furthermore the control effectiveness of ṙ
can be established using the expression for the dynamics of the rotational motion given in Eq. 2.113 and the
global moment contribution of the tail rotor as given in Eq. 2.98. The aforementioned will yield an expression
for ṙ , which depends explicitly on the tail rotor collective θ0,tr, which shall be denoted as H r,θ0tr . Using Eq.
2.113, it is possible to account for the entries indicated by ä. Based on the above mentioned the following
control effectiveness matrix Ĝω,F using the method of flapping angle equivalence method can be established

Ĝω,F =
 ∗ F p,β1s ä
−F q,β1c ∗ ∗

∗ ä H r,θ0tr

 , (6.3)

wherein the empty entries (∗) can be neglected. On the other hand, the control effectiveness using the method
of residualised dynamics is determined by means of residualisation of internal dynamics. This implies that
ĜR can be established by considering flap/flap-lag/flap-lag-inflow residualisation. For obtaining Ĝω,R it will
therefore be deemed necessary to consider steady-state condition for the internal dynamics. For this partic-
ular research it will be of prime interest to consider residualisation of flap or flap-lag dynamics. In Eq. 6.4 and
Eq. 6.5 the control effectiveness is provided when considering flap or flap-lag residualisation given that the
model is associated with second-order flap-lag dynamics respectively.

Ĝω,R = Hω−Fω,βSP F−1
β̇SP ,βSP

H β̇SP
(6.4)

Ĝω,R = Hω−
[
Fω,βSP Fω,ζ

][
F β̇SP ,βSP

F β̇SP ,ζ

F ζ̇,βSP
F ζ̇,ζ

]−1 [
H β̇SP

H ζ̇

]
(6.5)

From Eq. 6.4 and Eq. 6.5 it can be observed that these do depended on a couple of state- and control-
depended terms. The following control-depended terms were considered

Hω =
Hp

Hq

Hr

 , H β̇SP
=

 Hβ̇0

Hβ̇1s

Hβ̇1c

 and H ζ̇ =

 Hζ̇0

Hζ̇1s

Hζ̇1c

 . (6.6)

Moreover the body-flap and body-lag matrices can be identified respectively as

Fω,βSP =
Fp,β0 Fp,β1s Fp,β1c

Fq,β0 Fq,β1s Fq,β1c

Fr,β0 Fr,β1s Fr,β1c

 and Fω,ζ =
Fp,ζ0 Fp,ζ1s Fp,ζ1c

Fq,ζ0 Fq,ζ1s Fq,ζ1c

Fr,ζ0 Fr,ζ1s Fr,ζ1c

 . (6.7)

Lastly, the following state-depended terms can also be identified as

F β̇,βSP
=

 Fβ̇0,β0
Fβ̇0,β1s

Fβ̇0,β1c

Fβ̇1s ,β0
Fβ̇1s ,β1s

Fβ̇1s ,β1c

Fβ̇1c ,β0
Fβ̇1c ,β1s

Fβ̇1c ,β1c

 F ζ̇,ζ =

 Fζ̇0,ζ0
Fζ̇0,ζ1s

Fζ̇0,ζ1c

Fζ̇1s ,ζ0
Fζ̇1s ,ζ1s

Fζ̇1s ,ζ1c

Fζ̇1c ,ζ0
Fζ̇1c ,ζ1s

Fζ̇1c ,ζ1c


F β̇SP ,ζ =

 Fβ̇0,ζ0
Fβ̇0,ζ1s

Fβ̇0,ζ1c

Fβ̇1s ,ζ0
Fβ̇1s ,ζ1s

Fβ̇1s ,ζ1c

Fβ̇1c ,ζ0
Fβ̇1c ,ζ1s

Fβ̇1c ,ζ1c

 F ζ̇,βSP
=

 Fζ̇0,β0
Fζ̇0,β1s

Fζ̇0,β1c

Fζ̇1s ,β0
Fζ̇1s ,β1s

Fζ̇1s ,β1c

Fζ̇1c ,β0
Fζ̇1c ,β1s

Fζ̇1c ,β1c


(6.8)

From Eq. 6.4 and Eq. 6.5 it can be observed that residualisation of flap is more favourable, because it does
depend less on system dynamics. On the other hand, flap-lag residualisation can be more favourable when it
enhances control effectiveness even more such that the TSS is less likely of being violated.
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6.2.3. Stabilising control law for angular rate subsystem using standard IBS procedure
For establishing a stabilising control law for the angular rate subsystem it is first necessary to determine the
tracking error zω. The expression for zω is equal to

zω =ω−ωref, (6.9)

wherein ω and ωref are the actual and desired angular rates respectively. The next design step is to take the
derivative of Eq. 6.9 and substituting the expression for the first-order Taylor series from either Eq. 6.1 or Eq.
6.2 into it. The expression for żω using the first-order Taylor series from Eq. 6.1 or Eq. 6.2 is respectively

żω = ω̇− ω̇ref = ω̇0 +Ĝω,F∆

[
θCF +βC P

θtr

]
− ω̇ref, (6.10)

żω = ω̇− ω̇ref = ω̇0 +Ĝω,R∆U − ω̇ref. (6.11)

A quadratic CLF Vω(zω) shall be used for the angular rate subsystem, which can be written as follows

Vω(zω) = 0.5zT
ωzω. (6.12)

Taking the derivative of Vω(zω) and substituting Eq. 6.10 or 6.11 into it, respectively yields

V̇ω(żω) = zT
ω

{
ω̇0 +Ĝω,F∆

[
θCF +βC P

θtr

]
− ω̇ref

}
, (6.13)

V̇ω(żω) = zT
ω

{
ω̇0 +Ĝω,R∆U − ω̇ref

}
. (6.14)

In order to obtain the stabilising control law for the angular rate subsystem, it is necessary to let V̇ω(żω)
become negative definite along the trajectories of the error dynamics. The stabilising control law for the
angular rate subsystem in accordance with the standard IBS strategy using Eq. 6.13 is

[
βSP
θtr

]
=

[
βSP,0
θtr,0

]
+Ĝ

−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
[
θCF +βC P

θtr

]
=

[
θCF ,0 +βC P,0

θtr,0

]
+Ĝ

−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
[
θCF

θtr

]
=

[−βC P +θCF ,0 +βC P,0
θtr,0

]
+Ĝ

−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
.

(6.15)

The stabilising control law from Eq. 6.15 can be written into a form, wherein the incremental change of the
flapping angles with respect to the control plane (∆βC P ) explicitly appear, namely[

θCF

θtr

]
=

[−∆βC P +θCF ,0

θtr,0

]
+Ĝ

−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
. (6.16)

It can be assumed that the contribution of ∆βCC P
is neglectable, thus Eq. 6.16 can be rewritten into[

θCF

θtr

]
=

[
θCF ,0

θtr,0

]
+Ĝ

−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
. (6.17)

The previous control law must be corrected, since θCF = [−θ1s θ1c ]T . A transformation is required, which
transforms θCF = [−θ1s θ1c ]T to θC = [θ1s θ1c ]T . This can be achieved by means of a correction matrix I cor,
which is a 3 by 3 identity matrix with −1 in the first entry of the diagonal. Incorporating the aforementioned
correction matrix does yield the following stabilising control law

U =U 0 + I corĜ
−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref

}
, (6.18)

wherein U = [θ1s θ1c θ0,tr]T and U = Icor[θCF θ0,tr]T . It can now be observed that the stabilising control vec-
tor is written as U , which is more convenient. Next to this the stabilising control law for the angular rate
subsystem based upon the method of residualised dynamics using Eq. 6.14 is
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U =U 0 +Ĝ
−1
ω,R {−ω̇0 −cωzω+ ω̇ref} . (6.19)

It can be observed that the stabilising control laws from Eq. 6.18 and 6.19 are almost exactly the same, except
for the difference in control effectiveness and correction factor for the former stabilising control law. The
stabilising control law from Eq. 6.18 and 6.19 enable to rewrite the CLF derivative from Eq. 6.12 into

V̇ω(żω) =−zT
ωcωzω. (6.20)

The equilibrium zω = 0 can be regarded globally uniformly asymptotically stable when given that cω > 0 such
that that the desired angular ratesωref can be tracked for t →∞. The above mentioned is in accordance with
the theorem of LaSalle-Yoshizawa [50].

6.2.4. Command-filtered IBS approach for imposing limits on commanded signals
Instead of directly applying one of the previous stabilising control laws a new raw reference signal could
be defined and led through a command filter. This will enable to impose rate, magnitude and bandwidth
limitations on this raw reference signal U 0 yielding the command U and command derivative U̇ signal. Since
an incremental-based control strategy is adopted for the angular rate subsystem, the command filter shall
be applied to the total raw reference signal in order to limit sensitivity to delays [54]. This means that the
raw reference signal U 0 shall be led through a command filter, yielding U and U̇ . The effect of the command
filter on zω is being estimated by means of a stable linear filter. The expressions for χ̇ω using the flapping
equivalence principle or method of residualised dynamics is respectively equal to

χ̇ω =−cωχω+ I corĜω,F

(
U −U 0

)
, (6.21)

χ̇ω =−cωχω+Ĝω,R

(
U −U 0

)
, (6.22)

wherein χω = 0. Moreover the correction factor was also applied for defining the first stable linear filter. The
auxiliary system compensates for the constraint effects of the command filter. The compensated tracking
error of the angular rate subsystem can be defined as

z̄ω = zω−χω. (6.23)

The following second-order command filter with initial condition will be incorporated

[
U̇
Ü

]
=

[
U̇

2ζωn

(
SR

{
ω2

n
2ζωn

[
SM

(
U 0

)−U
]}−U̇

) ]
, with

U (0) =U (zω(0))
U̇ (0) = 0

(6.24)

A second-order filter could be obtained by combining two first-order filters. Such a filter is characterised with
increased noise suppression at the cost of an increased time-delay between U and U 0. Imposing magnitude
and rate limitations on the raw reference signal is desirable as it mimics the properties of the actuators well.
However, these limitations can be ignored by setting SR and SM equal to 1 such that only the commanded sig-
nal and its derivative are generated. This filter is characterised with damping ratio ζn and natural frequency
ωn . The magnitude limitations SM define the allowable actuator deflections of the rotorcraft, whereas the
rate limitations SR define the actuator rate deflections of the rotorcraft. The magnitude and rate limitations
can be defined respectively as

SM (U 0) =


U max if U 0 ≥U max

U 0 if U min <U 0 <U max

U min if U 0 ≤U min

(6.25)

SR

[(
ω2

n

2ζωn

)(
SM

(
U 0)−U

)]=


U̇ max if U̇

0 ≥ U̇ max

U̇
0

if U̇ min < U̇
0 < U̇ max

U̇ min if U̇
0 ≤ U̇ min

(6.26)
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The actuator magnitude and rate limitations are provided in Table E.6. In Fig. 6.2 the second-order command-
filter of the RCAH control mode is provided.

Figure 6.2: Second-order command-filter used in the angular rate subsystem.

With the stable linear filter being defined, it is necessary to determine the derivative of the compensated
tracking error given in Eq. 6.23. The aforementioned shall first be considered for the equivalent flapping
angle method, which requires the use of the stabilising control law from Eq. 6.18. In addition to this the first
order Taylor series from Eq. 6.1 shall be used as well, but must be corrected. To be more specific ĜF shall
be multiplied with I cor, because of reasons given earlier. Secondly, the flapping angles with respect to the
control plane are neglected as these are being discarded in the stabilising control law from Eq. 6.17. This
enables the control vector U to explicitly appear in the first-order Taylor series when using this method (see
first expression from Eq. 6.27). The second expression from Eq. 6.27 is obtained by substituting Eq. 6.21 into
it. The third expression is obtained by noticing that ∆U can be written as U −U 0.

˙̄zω = żω− χ̇ω = ω̇0 + I corĜω,F∆U − ω̇ref − χ̇ω
= ω̇0 + I corĜω,F∆U − ω̇ref +cωχω− I corĜω,F

(
U −U 0

)
= ω̇0 + I corĜω,F

(
U 0 −U 0

)− ω̇ref +cωχω

(6.27)

The expression for ˙̄zω using the method of residualised dynamics can be obtained using the stable linear filter
from Eq. 6.21 and first-order Taylor series from Eq. 6.2. The expression for ˙̄zω using this method is

˙̄zω = żω− χ̇ω = ω̇0 +Ĝω,R∆U − ω̇ref − χ̇ω
= ω̇0 +Ĝω,R∆U − ω̇ref +cωχω−Ĝω,R

(
U −U 0

)
= ω̇0 +Ĝω,R

(
U 0 −U 0

)− ω̇ref +cωχω.

(6.28)

The expression of the CLF using compensated tracking errors can be identified as

Vω(z̄ω) = 1

2
z̄T
ω z̄ω. (6.29)

Next, it is deemed necessary to define the CLF derivative using the compensated tracking errors from Eq.
6.27 and Eq. 6.28. This shall first be considered for the flapping angle equivalence method, where after the
method of residualised dynamics will be considered. The derivative of the compensated tracking error from
Eq. 6.27 enables to define the first expression of the CLF derivative given in Eq. 6.30. The second expression
is obtained by substitution of the stabilising control law for the angular rate subsystem from Eq. 6.18 into it.
This enables simplification of V̇ω( ˙̄zω), eventually yielding the last expression.

V̇ω( ˙̄zω) = z̄T
ω

[
ω̇0 + I corĜω,F

(
U 0 −U 0

)− ω̇ref +cωχω
]

= z̄T
ω

[
ω̇0 + I corĜω,F

(
U 0 + I corĜ

−1
ω,F

[
−cωzω− ω̇0 + ω̇ref

]
−U 0

)
− ω̇ref +cωχω

]
= z̄T

ω

[−cωzω+cωχω
]

=−z̄T
ωcω z̄ω

(6.30)

Next the CLF derivative shall be defined using the method of residualised dynamics. Using the derivative of
the compensated tracking error from Eq. 6.28 yields the first expression of Eq. 6.31. The second expression
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is obtained by substitution of the stabilising control law from Eq. 6.19 into it. This enables simplification of
V̇ω( ˙̄zω), eventually yielding the last expression.

V̇ω( ˙̄zω) = z̄T
ω

[
ω̇0 +Ĝω,R

(
U 0 −U 0

)− ω̇ref +cωχω
]

= z̄T
ω

[
ω̇0 +Ĝω,R

(
U 0 +Ĝ

−1
ω,R

[
−cωzω− ω̇0 + ω̇ref

]
−U 0

)
− ω̇ref +cωχω

]
= z̄T

ω

[−cωzω+cωχω
]

=−z̄T
ωcω z̄ω

(6.31)

In accordance with the theorem of LaSalle-Yoshizawa the equilibrium z̄ω = 0 can be regarded uniformly
asymptotically stable [54]. The CFIBS approach assures desirable properties for z̄ω and not for zω [54]. With-
out inclusion of magnitude, rate and bandwidth limitations the control strategy falls back on the IBS control
strategy for which convergence of zω can be assured. For aggressive rotorcraft manoeuvring there will be
magnitude and rate limitations for which χω and zω will be non-zero and remain bounded [54]. In Fig. 6.3
the RCAH control mode with command-filters is provided.

Figure 6.3: RCAH control mode structure.

6.2.5. Synchronising actuator and state derivative measurement by accounting for the
second-order washout filter

The angular accelerations need to be obtained by means of a second order washout filter [53]. It has already
been outlined that inclusion of such filters does yield delays to the signal, which may can harm controller
performance [53, 55]. In order to account for the washout filter, it is deemed necessary to adjust the feedback
loop of the actuator measurements by placing the exact same washout filter in this loop. This means that U 0

is effectively being delayed by the same amount by which the angular accelerations are being delayed with.
This will assure that both signals are equally delayed and therefore synchronised with each other. This will
be apparent from the tracking response as steady-state errors will vanish when the aforementioned counter
measure is included [53].

Figure 6.4: Second-order washout filter placed in feedback-loop of actuator measurement.
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6.2.6. Rotor synchronisation filter: time-delayed auxiliary system
Previously the feedback signal of the actuator measurements had to be adjusted by placing a second-order
washout filter inside this loop. However, it did not yet take into account the difference between the actual and
idealised rotorcraft model. An additional modification needs to be applied to the actuator feedback signal to
compensate for this difference. The latter model is the one that is being used for establishing the IBS con-
trol law, because it is associated with an enhanced control- to state-dependency ratio. The idealised model
is based upon residualisation of internal dynamics, especially flapping dynamics. This is because the body-
flap coupling is large and residualisation of flapping dynamics would diminish this coupling term and use it
to enhance the control-dependency. Previously it has already been outlined that the flapping angle equiva-
lence method and method of residualised dynamics are attractive control strategies for controlling the angular
rates of the rotorcraft. The former method incorporates steady-state flapping dynamics for establishing its
control effectiveness, therefore flap synchronisation is required. On the other hand, the method of residu-
alised dynamics enables residualisation of more internal dynamics such as lead-lag and/or inflow to further
enhancing control effectiveness and reducing state-dependency. This implies that e.g. residualisation of flap-
lag dynamics would require a flap-lag synchronisation filter.

To close the gap between the model on which controller has been based (idealised model) and the actual
rotorcraft model, one needs to account for the delaying nature of rotor dynamics. Based on the previous dis-
cussion it can be stated that signal synchronisation due to internal dynamics can be realised by adjusting the
feedback loop of the actuator measurements by means of the rotor synchronisation filter. In order to estab-
lish the rotor synchronisation filter it is first necessary to determine the idealised and actual expressions for
the angular accelerations. For a flap or flap-lag synchronisation filter, it is necessary to define the actual ex-
pressions of the angular accelerations such that these do account for flap and flap-lag dynamics respectively.
In Eq. 6.32 and Eq. 6.33 the aforementioned expressions are provided respectively

ω̇= Fω,βSPβSP +HωU meas, (6.32)

ω̇= [
Fω,βSP Fω,ζ

][
βSP
ζ

]
+HωU meas, (6.33)

wherein U meas are the delayed actuator measurements after being fed through the second-order washout
filter. Moreover, βSP and ζ are the synchronised cyclic flapping angles with respect to the shaft plane and
synchronised lead-lag angles respectively. Next to this, it can be observed that Eq. 6.33 requires more model
knowledge than Eq. 6.32. Based on the above mentioned it can be stated that a model-based strategy is
inevitable and shall therefore pursued. For the sake of the analysis this is not disturbing as the main objective
is not to have the most optimal controller, but rather one that can be manipulated such that the effect of
the internal dynamics on the controller can be analysed. The angular accelerations can be written into a
form wherein it is directly affected by the physical control inputs, namely Eq. 6.34. The synchronised control
inputs are denoted as U sync. The equation assumes that that the delay introduced by the flapping dynamics
is not there. This is exactly on which the controller is based upon.

ω̇= ĜωU sync (6.34)

The control effectiveness matrix from Eq. 6.34 must be derived using the method of residualised dynamics.
This method relates the control inputs to the steady-state angular accelerations by considering steady-state
internal dynamics. For a flap synchronisation filter this would require a control effectiveness based upon
flap residualisation, which is provided in Eq. 6.4. On the other hand the control effectiveness for flap-lag
residualisation is provided in Eq. 6.5. The synchronised control input U sync can be obtained by substitution
of Eq. 6.32 into Eq. 6.34 and the isolating U sync. Performing the aforementioned does yield

U sync = Ĝ
−1
ω

[
Fω,βSPβSP +HωU meas

]
, (6.35)

U sync = Ĝ
−1
ω

[[
Fω,βSP Fω,ζ

][
βSP
ζ

]
+HωU meas

]
, (6.36)

from which it can be observed that the synchronised flapping angles βSP are required for the both synchro-
nisation filters. These synchronised flapping angles will differ from the actual flapping angles. On the other
hand, the synchronised lead-lag angles are required for the flap-lag synchronisation filter from Eq. 6.36. The
synchronised flapping angles for the flapping syncrhonisaiton filter can be determined using Eq. 6.37. On
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the other hand, the synchronised flapping and lead-lag angles for the flap-lag syncrhonisaiton filter can be
determined using Eq. 6.38.

[
β̇SP

β̈SP

]
=

[
FβSP ,βSP FβSP ,β̇SP

F β̇SP ,βSP
F β̇SP ,β̇SP

][
βSP

β̇SP

]
+

[
Hβ

H β̇

]
U meas (6.37)


β̇SP

β̈SP

ζ̇

ζ̈

=


FβSP ,βSP FβSP ,β̇SP

FβSP ,ζ FβSP ,ζ̇

F β̇SP ,βSP
F β̇SP ,β̇SP

F β̇SP ,ζ F β̇SP ,ζ̇

F ζ,βSP F ζ,β̇SP
F ζ,ζ F ζ,ζ̇

F ζ̇,βSP
F ζ̇,β̇SP

F ζ̇,ζ F ζ̇,ζ̇



βSP

β̇SP
ζ

ζ̇

+


Hβ

H β̇

Hζ

H ζ̇

U meas. (6.38)

In Fig. 6.5 the synchronisation filter inside the feedback loop of the angular rate subsystem is provided.

Figure 6.5: Synchronisation filter placed inside feedback-loop of actuator measurement.

6.2.7. RCAH IBS stabilising control law written into equivalent PI control law form
The stabilising control law of the RCAH control mode was established by means of a (CF)IBS control strategy,
wherein two different methods were considered. For the sake of the analysis it will be of great interest to
determine the equivalent linear controller. The IBS control laws from Eq. 6.18 and 6.19 can be written as
a classical proportional-integral (PI) control law (relative degree one). The classical PI controller without
actuator dynamics shall be considered. In order to perform the derivation it is deemed necessary to consider
the incremental stabilising control law in discrete form, wherein the delay of the feedback loop is equal to
the sampling time. For low sampling times the stabilising control laws from 6.18 and 6.19 can be considered
a continuous integrator [53]. The derivation of the PI-controller is given in Eq. 6.39 for the flapping angle
equivalence method. It should be noted that fs and ts are the sampling frequency and time respectively.

U (t ) =
∫ t

0
fs I cor

(
Ĝω,F

)−1
[−cωzω(τ)− ω̇(τ− ts )+ ω̇ref(τ)]dτ

= fs I cor
(
Ĝω,F

)−1
[
−cω

∫ t

0
zω(τ)dτ−ω(t − ts )+ωref(t )

]
= fs I cor

(
Ĝω,F

)−1
[
−cω

∫ t

0
zω(τ)dτ− zω(t )

] (6.39)

For arriving at the final expression of Eq. 6.39 it was assumed that the angular rates change slow with respect
to the the sampling time such that the tracking error zω(t ) could be approximated byω(t − ts )−ωref(t ). From

Eq. 6.39 it can be observed that the proportional and integral gains are fs I cor
(
Ĝω,F

)−1
and cω fs I cor

(
Ĝω,F

)−1

respectively. This means that the gains are primarily determined by the sampling frequency and control
effectiveness. Furthermore the control law does not incorporate any feedback delays as it does not depend on
the feedback of the angular accelerations. The classical PI control law when using the method of residualised
dynamics shall be considered next. This requires the use of the stabilising control law from Eq. 6.19. In Eq.
6.40 the PI-controller is provided when using the above mentioned method.
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U (t ) =
∫ t

0
fsĜ

−1
ω,R [−cωzω(τ)− ω̇(τ− ts )+ ω̇ref(τ)]dτ

= fs
(
Ĝω,R

)−1
[
−cω

∫ t

0
zω(τ)dτ−ω(t − ts )+ωref(t )

]
= fs

(
Ĝω,R

)−1
[
−cω

∫ t

0
zω(τ)dτ− zω(t )

]
,

(6.40)

from which it can be observed that fs
(
Ĝω,R

)−1
and cω fs

(
Ĝω,R

)−1
are the proportional and integral gains re-

spectively. Similar to the previous PI-controller it can be observed that the control law does not require the
feedback of the angular acceleration. This implies that synchronising actuator and state derivative measure-
ments are not of prime concern for such a controller. Most importantly it shows that when shifting from a
linear to a non-linear controller other type of issues will arise. It must also be mentioned that for establishing
the linear control laws given in Eq. 6.39 and Eq. 6.40 high sample rates had to be assumed such that the
incremental control law (U =U0 +∆U ) can be written in an equivalent discrete form (Uk+1 =Uk +∆Uk ) [53].

6.3. Attitude Command/Attitude Hold (ACAH) mode
The next type of control mode that will be considered is the Attitude Command/Attitude Hold (ACAH) mode,
which enables to control the attitude angles of the vehicle with respect to the body frame of reference [46].
Since the attitude angles are governed by angular rates, an additional outer loop around the angular rate
subsystem would enable control of the attitude angles by means of the control inputs. The ACAH control
mode can therefore be considered a two-cascaded system as it consist of an outer attitude loop and an inner
angular rate loop, whereby the angular rates can be considered the virtual inputs to the attitude subsystem.
For establishing the stabilising control law for the attitude subsystem a CFBS control approach will suffice
as the relation between the attitude angles and angular rates is well-known. The ACAH controller is based
upon the time-scale separation principle, wherein the evolution of angular rates can be regarded significantly
faster than the corresponding change in attitude angles [46]. In other words the slow inner loop provides the
commanded angular rates ωref to be tracked by the fast inner loop such thatΘref can be achieved. Below the
derivation of the ACAH control mode is provided.

6.3.1. Standard BS control law for Attitude subsystem of ACAH mode
The derivation of the ACAH mode starts with the attitude subsystem, since this is the subsystem furthest away
from the physical control inputs. The main objective is to let the rotorcraft track a smooth attitude reference
signalΘref. In order to establish the stabilising control law for the attitude subsystem, it is necessary to define
the attitude and angular rate tracking errors, which are equal to

zΘ =Θ−Θref, (6.41)

zω =ω−ωref. (6.42)

Next, it is necessary to determine the derivative of zΘ. After taking the derivative of zΘ, ω is rewritten as a
function of zω andωref(=αω), where after it is being substituted into żΘ. This yields

żΘ = Θ̇− Θ̇ref =GΘ

(
zω+αω

)− Θ̇ref. (6.43)

The well-known kinematic relation was used in Eq. 6.43 (see Eq. 2.114 for the kinematic relation). A quadratic
CLF VΘ(zΘ) is incorporated for acquiring the stabilising control law αω for the attitude subsystem. The ex-
pression for VΘ(zΘ) and V̇Θ(żΘ) are respectively

VΘ(zΘ) = 0.5zT
ΘzΘ, (6.44)

V̇Θ(żΘ) = zT
Θ

{
GΘ

(
zω+αω

)− Θ̇ref

}
. (6.45)

In order to obtain the stabilising control law αω it is necessary to let VΘ(żΘ) become negative definite along
the trajectories of the error dynamics. The stabilising control law using the standard BS procedure is
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αω =G−1
Θ

[
Θ̇ref −cΘzΘ

]
, with cΘ > 0. (6.46)

Substitution of the stabilising control law from Eq. 6.46 into the quadratic CLF derivative from Eq. 6.45 yields

V̇Θ(żΘ) =−zT
ΘcΘzΘ+ zT

ΘGΘzω. (6.47)

It can be observed that V̇Θ(żΘ) incorporates a cross-term, which shall be removed in the next design step.
When incorporating the standard BS procedure then Eq. 6.46 must be used as stabilising control law for the
attitude subsystem.

6.3.2. Command-filtered BS approach for imposing limits on commanded signals
Instead of directly applying the stabilising control law from Eq. 6.46 a new signal could defined, namelyω0

ref.
This raw reference signal could be led through a command filter yielding ωref and ω̇ref. The effect of the
command filter on zω is estimated by means of a stable linear filter. The expressions for ω0

ref and χ̇Θ are
respectively equal to

ω0
ref =αω−χω, (6.48)

χ̇Θ =−cΘχΘ+GΘ

(
ωref −ω0

ref

)
, (6.49)

whereinχΘ = 0. Magnitude, rate and bandwidth limitations for attitude control are taken into account by the
command filter. The following second-order command filter with initial condition will be incorporated:[

ω̇ref

ω̈ref

]
=

[
ω̇ref

2ζωn

(
SR

{
ω2

n
2ζωn

[
SM

(
ω0

ref

)−ωref
]}− ω̇ref

) ]
, with

ωref(0) =αω (zΘ(0),Θref(0))
ω̇ref(0) = 0

(6.50)

The magnitude limitations SM defines the allowable angular rates of the rotorcraft. Since there are no limita-
tions on angular accelerations, SR = 1. Magnitude and rate limitations can be defined respectively as

SM (ω0
ref) =


ωmax if ω0

ref ≥ωmax

ω0
ref if ωmin <ω0

ref <ωmax

ωmin if ω0
ref ≤ωmin

(6.51)

SR

([(
ω2

n

2ζωn

)(
SM

(
ω0

ref

)−ωref
)])= 1 (6.52)

The maximum allowable angular rates for the main simulation model could be set equal to ±50◦/s, ±30◦/s
and ±60◦/s for p0

ref, q0
ref and r 0

ref respectively. These are the maximum angular rates as demanded by the
ADS-33E-PRF. Similar magnitude limitations were used by [55]. Moreover ζ ≥ 1 to assure that ωref will not
overshoot SM [54]. In this particular case ζ and ωn could be set equal to 1 and 100 rad/s for all channels. In
order to proceed further with the CFBS control strategy it is necessary to define the compensated tracking
errors, which account for the stable linear filter. The compensated tracking errors z̄Θ and z̄ω are equal to

z̄Θ = zΘ−χΘ, (6.53)

z̄ω = zω−χω. (6.54)

The derivative of the compensated tracking error zΘ can be written as follows

˙̄zΘ = żΘ− χ̇Θ =GΘ

(
zω+αω

)− Θ̇ref +cΘχΘ−GΘ

(
ωref −ω0

ref

)
. (6.55)

The objective is to let V̇Θ( ˙̄zΘ) become negative definite along the trajectories of the compensated error dy-
namics. The aforementioned can be observed in Eq. 6.56. In order to simplify the first expression it is deemed
necessary to add and subtract GΘω

0
ref from it. The positive term GΘω

0
ref is transformed such that ω0

ref is re-
placed by

(
αω−χω

)
. This does cancel out both GΘωref and GΘω

0
ref. It should be noted thatωref is equivalent

toαω. After cancelling the aforementioned terms, the stabilising control lawαω is being substituted into the
expressions. This enables cancellation of the term Θ̇ref. There after the compensated tracking errors z̄ω and
z̄θ can be substituted into it. This eventually does yield the last expression.
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V̇Θ( ˙̄zΘ) = z̄T
Θ

{
GΘ

(
zω+αω

)− Θ̇ref +cΘχΘ−GΘ

(
ωref −ω0

ref

)}
= z̄T

Θ

{
GΘ

(
zω+αω

)−GΘω
0
ref +GΘω

0
ref − Θ̇ref +cΘχΘ−GΘ

(
ωref −ω0

ref

)}
= z̄T

Θ

{
GΘ

(
zω+αω

)−GΘω
0
ref +GΘ

(
αω−χω

)
− Θ̇ref +cΘχΘ−GΘ

(
ωref −ω0

ref

)}
= z̄T

Θ

{
GΘ

(
zω+G−1

Θ

[
Θ̇ref −cΘzΘ

])−GΘχω− Θ̇ref +cΘχΘ
}

= z̄T
Θ

{
GΘ

(
zω−χω

)−cΘ
(
zΘ−χΘ

)}
= z̄T

Θ

{
GΘ z̄ω−cΘ z̄Θ

}
= z̄T

ΘGΘ z̄ω− z̄T
ΘcΘ z̄Θ, with cΘ > 0.

(6.56)

It can be observed that Eq. 6.56 is not completely negative definite because of the cross-term z̄T
ΘGΘ z̄ω which

shall be removed in the next design step. The control effectiveness matrix GΘ is a square matrix, thus virtual
control allocation is not deemed necessary. It should be noted that the stabilising control law was established
by means of regular CFBS, because of the well-known kinematic relationship between attitude derivatives and
angular rates. Since the attitude subsystem is not directly governed by the control inputs, it must be linked to
the angular rate subsystem.

6.3.3. Stabilising control law for angular rate subsystem of ACAH mode
In section 6.2 the stabilising control law for the angular rate subsystem was already derived, however it did
not yet account for the additional additional cross-term z̄T

ΘGΘ z̄ω. With the tracking error for the angular
rate subsystem being defined, it is necessary to take the derivative of it and substitute the expression for the
first-order Taylor series into it. Both the the flapping angle equivalence method and method of residualised
dynamics will be considered for the derivation. The first-order Taylor series of both aforementioned methods
are given in Eq. 6.1 and Eq. 6.2 respectively. The expression for żω using the first-order Taylor series for the
flapping angle equivalence method and method of residualised dynamics are respectively equal to

żω = ω̇− ω̇ref = ω̇0 +Ĝω,F∆

[
θCF +βC P

θ0,tr

]
− ω̇ref, (6.57)

żω = ω̇− ω̇ref = ω̇0 +Ĝω,R∆U − ω̇ref. (6.58)

The quadratic CLFVΘ(z̄Θ) from the attitude subsystem shall be augmented to penalise the angular rate track-
ing error. The expression for Vω(z̄Θ, zω) is

Vω(z̄Θ, zω) =VΘ(z̄Θ)+0.5zT
ωzω, (6.59)

from which it can be observed that the command-filters from the previous subsystem are taken into account.
When the standard IBS control law from Eq. 6.46 would have been considered, that is without the command-
filters, then Vω(zΘ, zω) should have been used. The derivation wherein the attitude subsystem is augmented
with command filters shall be provided. Taking the derivative of Vω(z̄Θ, zω) and substituting the tracking
error derivatives from Eq. 6.57 or Eq. 6.58 into it, yields the following expression for V̇ω( ˙̄zΘ, żω) using the
flapping angle equivalence method and method of residualised dynamics respectively

V̇ω( ˙̄zΘ, żω) = V̇Θ+ zT
ω

{
ω̇0 +Ĝω,F∆

[
θCF +βC P

θ0,tr

]
− ω̇ref

}
, (6.60)

V̇ω( ˙̄zΘ, żω) = V̇Θ+ zT
ω

{
ω̇0 +Ĝω,R∆U − ω̇ref

}
. (6.61)

In order to obtain the stabilising control law for the angular rate subsystem, it is necessary to let V̇ω( ˙̄zΘ, żω)
from Eq. 6.60 or Eq. 6.61 to become negative definite along the trajectories of the error dynamics. The
expression for the stabilising control law using the flapping angle equivalence method requires the use of Eq.
6.60 and is found to be equal to
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U =U 0 + I corĜ
−1
ω,F

{
− ω̇0 −cωzω+ ω̇ref −GΘ z̄Θ

}
, (6.62)

wherein I cor is the correction matrix. The stabilising control law in accordance with the method of residu-
alised dynamics requires the use of Eq. 6.61 and is found to be equal to

U =U 0 +Ĝ
−1
ω,R {−ω̇0 −cωzω+ ω̇ref −GΘ z̄Θ} . (6.63)

Using the stabilising control law from Eq. 6.62 or Eq. 6.63 enables the CLF derivative from Eq. 6.60 and Eq.
6.61 to be rewritten into

V̇ω( ˙̄zΘ, żω) =−z̄T
ΘcΘ z̄Θ− zT

ωcωzω− z̄T
ΘGΘ (zω− z̄ω) . (6.64)

It must be noted that z̄T
ΘGΘ z̄ω 6= z̄T

ΘGΘzω, because command filters were not considered yet for the angular
rate subsystem, therefore zω can be greater than z̄ω. In other words the terms do not always fully cancel out.
The equilibrium zω = 0 can be regarded as globally uniformly asymptotically stable when given that cω > 0
and cΘ > 0 such that that the desired attitude angles Θref can be tracked for t → ∞. The above mentioned
is in accordance with the theorem of LaSalle-Yoshizawa [50]. The ACAH control mode shall incorporate a
CFIBS control strategy for the angular rate subsystem, which shall be considered here after as it will enables
completely removal of cross-term z̄T

ΘGΘ z̄ω.

6.3.4. Command-filtered IBS approach for imposing limits on commanded signals
Instead of directly applying one of the stabilising control laws from Eq. 6.62 or Eq. 6.63, a new raw refer-
ence could be defined and led through a command filter. This would enable to impose rate, magnitude and
bandwidth limitations on the commanded cyclic and tail rotor collective inputs. In addition to this, since an
incremental-based control strategy is adopted for the angular rate subsystem, it is a natural choice to apply
the command filter to the total raw reference signal in order to limit sensitivity to delays [54]. This means
that the raw reference signal U 0 will be led through a command filter, yielding U and U̇ . The effect of the
command filter on zω is being estimated by means of a stable linear filter. The expressions for χ̇ω using the
flapping angle equivalence method and method of residualised dynamics were already provided in Eq. 6.21
and Eq. 6.22 respectively. In addition to this the compensated tracking error z̄ω was provided in in Eq. 6.23.
Magnitude, rate and bandwidth limitations are taken into account by the command filter. A second-order
command filter with initial conditions was provided in Eq. 6.24 for the angular rate subsystem. The magni-
tude and rate limitations of the cyclic deflections of the main rotor and tail rotor collective were provided in
Eq. 6.25 and 6.26 respectively. In Fig. 6.2 the command filter of the angular subsystem was provided. With
the stable linear filters being defined, it is necessary to define the derivative of the compensated tracking er-
ror given in Eq. 6.23. The expression for ˙̄zω in accordance with the flapping angle equivalence method and
method of residualised dynamics are provided in Eq. 6.65 and Eq. 6.66 respectively.

˙̄zω = ω̇0 + I corĜω,F
(
U 0 −U 0

)− ω̇ref +cωχω (6.65)

˙̄zω = ω̇0 +Ĝω,R
(
U 0 −U 0

)− ω̇ref +cωχω (6.66)

It should be noted that the first-order Taylor series of the flapping angle equivalence method was adjusted
slightly to arrive at the form given in Eq. 6.65. Normally it should be I−1

corĜω,F
(
U 0 −U 0

)
, but since Icor is a

diagonal matrix the following will hold: I−1
cor = I cor. The CLF derivative using the compensated tracking errors

from Eq. 6.65 and Eq. 6.66 shall be determined. The expression for Vω(z̄Θ, z̄ω) and its derivative are

Vω(z̄Θ, z̄ω) =VΘ(z̄Θ)+0.5z̄T
ω z̄ω, (6.67)

V̇ω(˙̄zΘ, ˙̄zω) = V̇Θ( ˙̄zΘ)+ z̄ω ˙̄zω. (6.68)

The CLF derivative shall first be determined for the flapping angle equivalence method where after the it will
be considered for the method of residualised dynamics. Substitution of Eq. 6.65 into the CLF derivative yields
the first expression from Eq. 6.69. The second expression is obtained by substitution of the stabilising control
law from Eq. 6.62 into it. This enables simplification of V̇ω( ˙̄zΘ, ˙̄zω), eventually yielding the last expression.
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V̇ω( ˙̄zΘ, ˙̄zω) =−z̄T
ΘcΘ z̄Θ+ z̄T

ΘGΘ z̄ω+ z̄T
ω

[
ω̇0 + I corĜω,F

(
U 0 −U 0

)− ω̇ref +cωχω
]

=−z̄T
ΘcΘ z̄Θ+ z̄T

ΘGΘ z̄ω+ z̄T
ω

[
ω̇0 + I corĜω,F

(
U 0 + I corĜ

−1
ω,F

[
−cωzω− ω̇0 + ω̇ref −GΘ z̄Θ

]
−U 0

)
− ω̇ref +cωχω

]
=−z̄T

ΘcΘ z̄Θ+ z̄T
ΘGΘ z̄ω+ z̄T

ω

[−cωzω+cωχω−GΘ z̄Θ
]

=−z̄T
ΘcΘ z̄Θ− z̄T

ωcω z̄ω
(6.69)

Next the CLF derivative shall be determined using for the method of residualised dynamics. Substituting the
stabilising control law of Eq. 6.63 into the CLF derivative does yield the second expression of Eq. 6.70. This
enables simplification of V̇ω( ˙̄zΘ, ˙̄zω), eventually yielding the last expression.

V̇ω( ˙̄zΘ, ˙̄zω) =−z̄T
ΘcΘ z̄Θ+ z̄T

ΘGΘ z̄ω+ z̄T
ω

[
ω̇0 +Ĝω,R

(
U 0 −U 0

)− ω̇ref +cωχω
]

=−z̄T
ΘcΘ z̄Θ+ z̄T

ΘGΘ z̄ω+ z̄T
ω

[
ω̇0 +Ĝω,R

(
U 0 +Ĝ

−1
ω,R

[
−cωzω− ω̇0 + ω̇ref −GΘ z̄Θ

]
−U 0

)
− ω̇ref +cωχω

]
=−z̄T

ΘcΘ z̄Θ+ z̄T
ΘGΘ z̄ω+ z̄T

ω

[−cωzω+cωχω−GΘ z̄Θ
]

=−z̄T
ΘcΘ z̄Θ− z̄T

ωcω z̄ω

(6.70)

In accordance with the theorem of LaSalle-Yoshizawa the equilibrium z̄ = 0 can be regarded globally uni-
formly asymptotically stable when cΘ > 0, cω > 0 and when sampling rate is sufficiently high [50, 54]. The
aforementioned therefore implies thatΘref can be tracked for t →∞.



7
Conclusions and Recommendations

7.1. Conclusions
First the effect of flapping dynamics on IBS control design, performance and robustness shall be considered.
Rotor dynamics are found to be fundamental when establishing an angular rate controller of a rotorcraft.
This is based on the fact that control effectiveness of the angular accelerations was found to be insufficient,
but could be enhanced by considering a modified rotorcraft model, which was designated as the idealised
rotorcraft model. This particular rotorcraft model was established by means of residualisation of rotor dy-
namics. The first and foremost way of enhancing control effectiveness for BF(L) models was by considering
steady-state flapping dynamics, because flapping dynamics is significantly excited by main rotor cyclic con-
trol inputs and because the coupling between angular accelerations and flapping angles is significant as well.
Residualisation would remove the aforementioned coupling term and enhance the control effectiveness. This
would subsequently yield an idealised rotorcraft model, for which control-dependency had been increased,
whereas state-dependency decreased. However, this rotorcraft model did differ from the actual rotorcraft
model. The extent by which these differ, depends on whether the actual rotorcraft model could incorporate
steady-state flapping dynamics for mimicking flapping motion. The aforementioned appeared not to be the
case for the hingeless MBB Bo 105 model, because of the strong coupling between the angular body modes,
such as pitch and roll subsidence, and the regressive flapping modes. This discrepancy had to be accounted
for by means of a flapping synchronisation filter in the feedback-loop of the actuator measurements. This
would enable to effectively delay the actuator measurement by the same amount as by which the angular
acceleration measurements are being delayed with due to flapping dynamics. Not accounting for flapping
synchronisation would yield magnified control inputs and thus overreaction of the closed-loop system. This
implies that closed-loop stability could not be assured when flapping synchronisation was left out of the
control design. The above mentioned was of prime concern for rotorcraft models with slow disc-tilt motion,
because the idealised and actual rotorcraft model would significantly differ from each other. Performance
was significantly affected when the flapping synchronisation filter was not accounted for in control design.
This could be observed when conducting a tracking tasks, because RMSE significantly increased for the case
wherein flapping synchronisation was not considered. Based on the above mentioned it can be stated that
when the IBS controller is based upon an idealised rotorcraft model, modifications are required to account
for the difference between actual and idealised rotorcraft model. In other words, it will affect the control de-
sign of the IBS controller. Moreover, controller performance was also affected when the IBS controller based
upon the idealised rotorcraft model did not account for the flapping synchronisation filter. Next to this, it was
also found that control effectiveness mismatch of the control effectiveness in the synchronisation filter can
affect controller performance as well. This is because it adversely affects the synchronisation between the
actuator and angular acceleration measurement. For over- and underestimation of the control effectiveness
in the synchronisation filter, it was found that a steady-state tracking error would be present when executing
a tracking task. This shows that there is also a lack of robustness for the flapping synchronisation filter.

Having considered the effects of flapping dynamics on IBS control design, performance and robustness,
it will also be necessary to consider it for lead-lag dynamics. Based on findings, it can be stated that estab-
lishing a modified rotorcraft model for BFL models based upon residualisation of flap-lag dynamics is redun-
dant. The aforementioned does hold for all BFL models analysed (with and without body-lag coupling). First,
it must be acknowledged that accounting for the coupling between the angular body dynamics and lead-lag
dynamics is deemed necessary to improve the open-loop frequency response. The aforementioned especially
holds for the roll-rate-to-lateral-cyclic transfer function, which showed better correlation with frequency re-
sponses found in other research. The idealised rotorcraft model based upon flap-lag or flap residualisation
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did not significantly differ from each other. This shows that the greatest discrepancy between both rotorcraft
models is due to flapping dynamics. The control and state-dependency of the idealised rotorcraft model, did
not significantly change with the residualisation of flap-lag dynamics. This shows that accounting for lead-lag
dynamics in IBS control design is redundant. When comparing the performance of an IBS controller based
upon an idealised flap-lag or flap residualised rotorcraft model, it can be stated that the improvement in per-
formance was neglectable. The RMSE did not significantly differ for both controllers. On top of this, flap-lag
residualisation did not significantly affect the TSS assumption. This is because the increments in system dy-
namics and control-depended increments were not significantly different between the IBS controller based
upon flap and flap-lag residualisation. Based on the above mentioned it must be concluded that accounting
for lead-lag dynamics in control design is not deemed necessary. This is favourable, because it obviates the
need of having accurate and reliable knowledge of lead-lag dynamics. This subsequently also implies that the
rotor synchronisation filter shall be established by not considering lead-lag dynamics. Likewise, the control
effectiveness shall be established by only considering residualisation of flapping dynamics. It can therefore
be stated that the IBS controller is robust to uncertainties in lead-lag dynamics.

It can therefore be concluded that accounting for flapping dynamics is still necessary to assure a well-
established control effectiveness such that the IBS TSS is not violated or less violated. The controller was
not robust to uncertainties in control effectiveness of the synchronisation filter, because it would yield in-
adequate synchronisation of actuator and angular acceleration measurement. To be more specific, control
effectiveness over- or underestimation would yield diminished or magnified control inputs and therefore
affecting closed-loop response. This shows that rotor synchronisation is a good way to deal with the dis-
crepancy between idealised and actual rotorcraft model, but it still requires accurate model knowledge for
establishing it. A well-established synchronisation filter is therefore of prime concern to assure adequate
controller performance.

7.2. Recommendations for future work
Next, it is will be of great importance to consider recommendations for future work. Based on the conclusion
it can be stated that the results of the analysis are satisfying and did answer the research questions. On the
other hand, there is still room for improvement. Below recommendations are provided.

1. Currently, only the effect of flapping and lead-lag dynamics on control design is being analysed. How-
ever, it will also be interesting to see whether other internal dynamics, such as inflow dynamics will
influence control design. Of particular interest would be its effect on the idealised rotorcraft model.
Residualisation of for example flap-inflow dynamics could may yield an idealised rotorcraft model that
would improve the control effectiveness. When found that inflow dynamics does play an important fac-
tor to assure a well-established control effectiveness for the IBS control law, then the synchronisation
filter needs to be adapted as well. This would require more model knowledge, which is not favourable.
It will therefore be of great interest to determine whether accounting for inflow dynamics in IBS control
design could improve controller performance, while maintaining good controller robustness as well.

2. It is recommended to have a better established BFL model, wherein all coupling terms are accounted
for. The main rotorcraft model has been established based on different models, which makes it difficult
to integrate these into one good simulation model. Currently, the main rotorcraft model introduced
in Chapter 2 incorporates a second-order flapping model and first-order Pitt-Peters inflow model [37].
On the other hand, lead-lag dynamics was obtained from Nguyen [34]. The flap-lag EOM from Nguyen
[34] did lack traceability, because it had not been simplified yet. It is therefore highly recommended
to reduce the flap-lag EOM from Nguyen [34], such that the traceability of the independent variables
does increase. On top of this, lead-lag dynamics was not accounted for when establishing the force
and moment equations for the main rotor. This can be regarded as a major drawback of the current
MBB Bo 105 simulation model, because the coupling between the angular body dynamics and lead-lag
dynamics is not present. This implies that when assessing the TSS condition for the first-order Taylor
series of the angular accelerations, little can be said about the increments due to lead-lag dynamics. It
is therefore highly recommenced to account for lead-lag dynamics in force and moment calculation of
the main rotor.

3. The robustness analysis on the synchronisation filter could be more extensive. In this research only
control effectiveness mismatch of the synchronisation filter was considered. It was namely found that
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controller is not robust to uncertainties in control effectiveness of the rotor synchronisation filter. This
showed that accurate and reliable knowledge of control effectiveness was needed for the synchronisa-
tion filter. Other model mismatches can be considered for the synchronisation filter. The main objec-
tive is to assure that actuator measurement and state derivative measurement are synchronised with
each other, which is more difficult to assure when there are other deficiencies in the synchronisation
filter.
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A
Reference Frames and Transformations

For establishing the rotorcraft simulation model a set of reference frames was required. Moreover, transfor-
mations between these frames was deemed necessary as well. In this Appendix the reference frames and
intermediate transformations shall be provided. These were obtained from [55] and [46].

A.1. Body-fixed Reference Frame FB

The first reference frame to be introduced is the body-fixed reference frame. This reference frame is fixed to
the rotorcraft in which the origin is situated at the center of gravity. The rotorcraft can be associated with a
plane of symmetry in which the xB - and zB -axis lie. The x-axis does point forward and is aligned with the
centerline of the fuselage, whereas the zB -axis does point downward and is perpendicular to the other axis.
The yB -axis is perpendicular to the two aforementioned axis and is oriented such that it yields a right-handed
orthogonal axis system. In Fig. A.1 the body-fixed reference frame is provided along with the Earth reference
frame. Angular and linear body velocities are commonly expressed in this reference frame [46].

Figure A.1: Body-fixed reference frame [2].

A.2. North-East-Down Reference Frame FNED
The next reference frame to be considered is the North-East-Down (NED) reference frame. This reference
frame is also attached to the rotorcraft, wherein the origin is situated at the center of gravity. The orientation
of this reference frame is such that the zNED-axis does points downwards towards the local gravity vector.
Moreover the xNED-axis does point to the north and yNED-axis points to the east such that a right-hand coor-
dinate system is completed. In [46] was outlined that the orientation of this specific reference system does
not significantly change for small distances. For defining this reference system it was assumed that Earth’s
curvature can be neglected such that flat Earth surface can be assumed. Moreover it is also assumed that
Earth is non-rotating. Based on the aforementioned it can be stated that FNED is an inertial reference frame.
All of the above assumptions do hold when short simulations are performed as the change in orientation of
the reference system is negligible.

A.3. Transformation from FNED to FB
The first transformation to be considered is the one from the FNED to FB. Since both axis-systems are situ-
ated at the center of gravity of the rotorcraft, rotations suffice to go from one frame of reference to the other.
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Figure A.2: NED-reference frame (without vehicle) [7].

Transformation from FNED to FB can be achieved by three successive rotations, which will involve two inter-
mediate axis system which are denoted as FNED

′ and FNED
′′ . These intermediate axis-systems are reached

after performing the first and second rotation respectively. The rotation can be written as

FNED −→ FNED
′ −→ FNED

′′ −→ FB. (A.1)

Transformation from FNED to FB requires the following transformations:

• yaw angle (ψ) rotation about the zNED-axis

• pitch angle (θ) rotation about the yNED
′ -axis

• roll angle (φ) rotation about the xNED
′′ -axis

Doing the aforementioned will yield the transformation given in Eq. A.2 [46]. It should be noted that c and s
are abbreviations for cos and sin respectively.

T B
NED = Rx (φ)Ry (θ)Rz (ψ) =

 cψcφ sψcθ −sθ
cψsθsφ− sψcφ sψsθsφ+ cψcφ cθcφ
cψsθcφ+ sψsφ sψsθcφ− cψsφ cθcφ

 (A.2)

Important to note is that TB−1

NED=TBT

NED because of preserved orthogonality. Moreover it can also be stated that

TNED
B =TB−1

NED, which means that the transformation from FB to FNED can also easily be executed using the
transformation matrix from Eq. A.2.

Figure A.3: Rotation between the FNED and FB from [46].(subscript o does represent that NED reference frame)

A.4. Velocity reference frame FV
The next reference frame to be considered is the velocity reference frame. The velocity reference frame does
have its origin also located at the center of gravity of the rotorcraft. The reference system is oriented in such a
way that the xV-axis is aligned with the velocity vector of the rotorcraft. Moreover, the yV-axis is perpendicular
to local gravity vector and xV-axis. In order to complete the right-handed axis system it is necessary for the
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zV-axis to be perpendicular to the two aforementioned axis. The velocity vector in FV is thus solely given by
the x-coordinate.

A.5. Transformation from FNED to FV
The next transformation to be considered is the one from FNED to FV. Similar to the previous transformation
it does not involve any translations as FNED and FV are both situated at the center of gravity. Transformation
FNED to FV involves two rotations, which implies that the transformation can be written as

FNED −→ FNED
′ −→ FV. (A.3)

The transformation from one frame of reference to another can be achieved by incorporating the following
successive rotations

• flight path angle (γ) rotation about the yV -axis

• heading angle (θ) rotation about the xV
′ -axis

The flight path angle can be defined as the angle between the velocity vector and the local horizon. This local
horizon is perpendicular to the local gravity field. Moreover, the heading angle can be defined as the angle
between velocity vector and the vector pointing northwards. The above transformation is given in Eq. A.4
[46].

T V
NED = Ry (γ)Rz (χ) =

 cψcγ sψcγ −sγ
−sψ cψ 0
cψsγ sψsγ cγ

 (A.4)

From this transformation it also follows that the following will be equivalent: TV
NED=TNED−1

V =TNEDT

V . It should
be noted that when the velocity vector is aligned with rotorcraft centerline then flight path angle and yaw
angle will be equal to each other. Moreover pitch angle and flight path angle will also be equal to each other.
In Fig. A.4 the relation between different reference systems can be observed. From this figure the angle of
attack (α = θ - γ) and sideslip (β = χ - ψ) angle can be identified.

(a) Vertical plane. (b) Horizontal plane.

Figure A.4: Relation between coordinate system [46].

A.6. Hub Reference Frame Fh

The hub reference frame does have its origin located at the rotor shaft. This is the location where the rotor
hinges do attach. The orientation of this reference frame is such that the the zh-axis does point downward
along the shaft. Next to this the xh-axis is perpendicular to the zh-axis and is situated in the plane of symmetry
of the rotorcraft. To complete the right-handed axis system, the yh-axis must be perpendicular to the two
aforementioned axis. Important to note is that the plane perpendicular to the zh-axis is the shaft/hub plane.



A.7. Transformation from FB to Fh 101

A.7. Transformation from FB to Fh

Transforming coordinates from FB to Fh does require a single rotation and two translations. This implies that
there will not be an intermediate reference system, thus the transformation can be simply written as

FB −→ Fh, (A.5)

wherein the following rotation is required

• disc-tilt angle (γs) rotation about yB-axis

The above mentioned transformation is given in Eq. A.6 [46].

T h
B = Ry

(−γs
)=

 cγs 0 sγs

0 1 0
−sγα 0 cγ∗

 (A.6)

Furthermore it is also necessary to account for the offset of FB with respect to Fh . A translation is required to
let FB and Fh coincidence with each other. The following translations are required

• -xcg along xB-axis

• hR along negative zB-axis

The above mentioned rotation and translations enable to rewrite any vector from FB to Fh . The translations
and rotation can be written into the compact form given in Eq. A.7 [46].

rh = T h
B

rb +
 −xcg

0
hR

 (A.7)

The BF model from [37] and incorporated by [55] require the body velocities to be defined in the hub reference
frame. This can be achieved by incorporating the transformation given in Eq. A.8 [46]. uh

vh

wh

= T h
B

 uB

vB

wB

+
 −xcg

0
hR

×
 p

q
r

 (A.8)

A.8. Hub-wind Reference Frame
Another hub reference frame that needs to be considered is the hub-wind reference frame [55]. This reference
frame is similar to the hub reference frame except for the xhw-axis being aligned with the local hub velocity
vector in the hub plane.

A.9. Transformation from Fh to Fhw

Transformation from Fh to Fhw can be achieved by means of a single rotation. The transformation is therefore
simple and can be written as

Fh −→ Fhw, (A.9)

wherein the following rotation must be considered

• rotor sideslip angle ψw rotation about zh-axis.

The rotor sideslip angles are provided in Eq. A.10 and Eq. A.11 [55].

cos(ψw) = uh

u2
h + v2

h

, (A.10)
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sin(ψw) = vh

u2
h + v2

h

. (A.11)

The transformation matrix from Fh to Fhw is provided in Eq. A.12 [55].

T hw
h = 1√

u2
h + v2

h

 uh vh 0
−vh uh 0

0 0
√

u2
h + v2

h

 . (A.12)

A.10. Blade Reference Frame
The next reference system that needs to be considered is the blade reference system, which is explained in
detail in [55]. The origin of this axis system is variable as it can vary along the blade leading edge. The orien-
tation of this reference frame is such that ybl is parallel to the leading edge of the rotor blade. Moreover xbl is
orthogonal to ybl in the hub plane. The right-handed reference frame is completed with zbl being orthogonal
to the two aforementioned axis.

A.11. Transformation from Fhw and Fbl

Next, it will be deemed necessary to consider the transformation from the hub-wind frame of reference to the
blade frame of reference. This transformation is provided in Eq. A.13 [55].

T bl
hw = Rz (−ψ)Ry (−β) =

 −cψcβ −sψ −cψsβ
sψcβ −cψ sψsβ
−sβ 0 cβ

 (A.13)

Next to this, the angular velocities in the rotating reference system are given in Eq. A.14 [55].[
ωx

ωy

]
=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

][
phw

qhw

]
(A.14)

The velocities in Fbl at rbl using small angle approximation for β can be written as follows

ubl =−uhw cos(ψ)−whwβ

vbl =−uhw sin(ψ)− rbl
(
Ω− rhw +βωx

)
wbl =−uhwβcos(ψ)+whw + rbl

(
ωy − β̇

) (A.15)

Next, it is deemed necessary to neglect hub translational accelerations and hub-blade velocity products. This
will eventually yield the expression of the acceleration in Fbl at rbl given below [55].

axbl = rb
(− (Ω− rhw )2 +2β̇ωy −2(Ω− rhw )βωx

)
aybl = rb

(−Ω̇+ ṙhw −β(
q̇hw sin(ψ)− ṗhw cos(ψ)

)+ rhwβωy
)

azbl = rb
(
2Ωωx +

(
q̇hw cos(ψ)+ ṗhw sin(ψ)

)− rhwωx − (Ω− rhw )2β− β̈2) (A.16)

Moreover, the assumption given below was also required [55].

(Ω− rhw ) ≈Ω (A.17)(
Ω̇− ṙhw

)≈−ṙhw (A.18)

A.12. Disc-wind Reference Frame
The last reference frame that shall be considered is the disc-wind reference frame, for which a more detailed
explanation is provided in [55]. This reference frame is defined as the plane that is being spanned by the
vectors yh-axis and xh-axis, which are tilted with respect to −β1s and β1c . Moreover, the zd w -axis is perpen-
dicular to the aforementioned plane. On top of this the zd w -axis does point downward at originates at the
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hub. In addition to this the xd p -axis is oriented in such a way that it is defined by the hub velocity vector in
the disc plane. Lastly, the yd w is perpendicular to the two aforementioned axes, completing a right-handed
orthogonal axis system. In order to find the orientation of the zd w -axis in the hub plane, one can make use of
Eq. A.19 [55].

zh−d w =
 cβ1c

0
sβ1c

×
 0

cβ1s

−sβ1s

=
 −sβ1c cβ1s

cβ1c sβ1s

cβ1c cβ1s

 (A.19)

It should be noted that the vector norm is provided in Eq. A.20 [55].

|zh−d w | =
√

s2
β1c

c2
β1s

+ c2
β1c

s2
β1s

+ c2
β1c

c2
β1s

=
√

s2
β1c

c2
β1s

+ c2
β1c

(A.20)

Next to this, the expression for the xd w-axis is provided in Eq. A.21, which is found to be the projection of a
wind vector on the disc plane.

xh−d w = vh − vh ·zh−d w

|zh−d w |2 zh−d w

=
 uh

vh

wh

+ sβ1c cβ1s uh − cβ1c sβ1 vh − cβ1c cβ1s wh

s2
β1c

c2
β1s

+ c2
β1c

 −sβ1c cβ1s

cβ1c sβ1s

cβ1c cβ1s

 (A.21)

The orientation vectors can be normalised yielding the unit vectors from Eq. A.22 [55].

kh−d w = Zh−d w

|zh−d w |
ih−d w = Xh−d w

|xh−d w |
jh−d w = kh−d w × ih−d w

(A.22)

From this follows the transformation matrix

Th−d w = [
ih−d w jh−d w kh−d w

]
(A.23)

A.13. Reference Systems for establishing flap-lag EOM
In order to derive the coupled flap-lag EOM, it is found deemed necessary to define a set of rotating (3) and
non-rotating (5) axis systems. These reference systems are provided and are obtained from [34, 40]. The
reference systems being considered are:

I Body fixed axis system {~Eb }: the origin is located at the rotorcraft CG, in which The body axes are fixed
to the fuselage and x-axis points forward towards the nose of the rotorcraft, the z-axis points downward
being perpendicular to the x-axis and the y-axis is perpendicular to the two other axes and thus points
starboard. In hover the x-axis and y-axis will be situated in the horizontal plane and the z-axis will point
downward in vertical direction, which implies that the rotorcraft will have zero cyclic pitch.

II Shaft axis system {~Es }: which is situated at a negative distance h in Zb direction from the the centre of
gravity, with the orientation of the shaft (or hub) being aligned with the body system of reference.

III Rotating shaft axis system {~E ′
s }: which is situated at the same position as {~Es }, but is now rotating with

blade azimuth angle ψ in the negative direction.

IV Blade axis system {~Eb }: is the reference for an arbitrary point on the rotor blade situated at a distance
from the flapping hinge.

V Lead-lag axis system{~Eζ}: local reference system at the lead-lag hinge of the rotor blade.

VI Rotating Lead-lag axis system{~E
′
ζ

}: local reference system at the lead-lag hinge capable of rotating
around the lead-lag hinge.

VII Flapping axis system{~Eβ}: local reference system at the flapping hinge of the rotor blade.
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VIII Rotating Flapping axis system{~E
′
β

}: local reference system at the flapping hinge capable of rotating

around the flapping hinge.

The different system of references can be reached when incorporating an appropriate set of transformations.
For executing the derivation, the transformation given below will suffice [34, 40].

{
~Es

}= {
~Eb

}
,{

~E ′
s

}= [ψ]
{
~Es

}
,{

~E ′
s

}= {
~E ′
ζ

}
;
{
~Eζ

}= [ζ]
{
~E ′
ζ

}
,

{
~E ′
β

}
= {
~Eζ

}
;
{
~Eβ

}= [β]
{
~E ′
β

}
= [β][ζ][ψ]

{
~Es

}
,{

~Ebl
}= {

~Eβ
}
.

(A.24)

The transformations are achieved by means of the transformation matrices [ζ], [β] and [ψ]. These matrices
are given in Eq. A.25 [34, 40].

[ψ] =
 cos

(
ψ

) −sinψ 0
sinψ cosψ 0

0 0 1

 , [ζ] =
 cosζ −sinζ 0

sinζ cosζ 0
0 0 1

and [β] =
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 (A.25)



B
Assumptions Derivation of Flap-Lag model

Below a set of assumptions are provided, which were deemed necessary for deriving the Body-Flap-Lag Model
in [34]. Similar assumptions are also provided in [40].

I the rotor blade can be regarded as being rigid both in torsion and bending, containing a lagging and
flapping with a spring hinge of strength Kζ and Kβ respectively located at an offset eζ and eβ respectively

II the rotor blades rotate at a constant angular speed (Ω= const.) in counter clockwise (CCW) direction.

III the inflow, lagging and flapping angles can be regarded as sufficiently small (Taylor Series truncation)

IV the shaft axis goes through the centre of gravity of the rotorcraft and is located at distance h from the
CG

V the force due to the gravitational acceleration (dm~g ) shall not be taken into consideration.

VI reversed flow region is not being considered, thus stall and compressibility effects are ignored

VII the rotor blade is assumed to have a constant chord distribution, thus being of rectangular nature

VIII the rectangular blade is assumed to have no root cut-out

IX the control axis, aerodynamic axis, blade elastic axis and centre of mass do coincide with each other.

X couplings such as pitch-lag and pitch-flap are not taken into consideration, thus this implies that the
no-feathering plane and the disc plane do coincidence with each other

XI tip losses of the the rotor blade are being neglected

XII incorporating an inflow model mimicking constant inflow over the rotor disc, hence uniform inflow

XIII the hinge order is lag-flap-pitch (Sikorsky), which commonly holds for articulated rotorcraft and is also
generally accepted for the hingeless BO-105 rotorcraft
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C
Linearisation Procedure Flap-Lag Model

With the nonlinear coupled FL EOM being defined in the rotating frame of reference, a linearisation proce-
dure is required to transform the EOM from the rotating to the non-rotating frame of reference. This proce-
dure was provided in [34]. Such a linearisation procedure is justified when the small angle assumption does
hold, thus when the flapping and lead-lag angles are small. Linearisation of the nonlinear system of EOM can
be achieved by incorporating a first-order Taylor series approximation about the steady state condition. The
first order Taylor series shall be taken around the trim condition of the rotorcraft. The Taylor series approxi-
mation for flapping and lead-lag are given in Eq. C.1 [34].

F (β) =
∞∑

n=0

F n(βtr )

n!

(
β−βtr

)n and F (ζ) =
∞∑

n=0

F n(ζtr )

n!

(
ζ−ζtr

)n (C.1)

The first-order Taylor series expression can be obtained by only retaining the terms up till n=1. The higher-
order terms are therefore neglected. The first order Taylor series expression for β and ζ are provided in Eq.
C.2 [34].

F (β) = F (βtr )+F (βtr )
(
β−βtr

)
for n = 1 and F (ζ) = F (ζtr )+F (ζtr )

(
ζ−ζtr

)
for n = 1 (C.2)

The first order Taylor series expressions do depend on the incremental changes, namely (β−βtr ) or (ζ−
ζtr ). These incremental changes can be denoted as ∆β or ∆ζ respectively, and are small deviations from
their corresponding trim conditions. In addition to this it should be noted that βtr and ζtr do not vary over
time, hence β

′
tr and ζ

′
tr (and higher order derivatives) are set equal to zero. As mentioned previously, the

linearisation procedure can be regarded as valid when the small angle approximation does hold, thus

cos(β) = 1, sin(β) =β, cos(ζ) = 0 and sin(ζ) = ζ (C.3)

The small angle assumption shall be applied after linearising the coupled flap-lag equations of motion. This
will assure that important terms will be retained, as being stressed in [34]. Applying small angle approxima-
tion principle before conducting the linearisation procedure will yield a loss in first order terms of the coupled
nonlinear flap-lag EOM. Therefore it is a natural choice of first conducting the first order Taylor series expan-
sion before incorporating the small angle approximation principle.
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D
Dynamic Behaviour Rotorcraft

With the inclusion of lead-lag dynamics, it will be of great interest to determine whether the implementation
is correct. Therefore, it is a natural choice to consider the dynamic behaviour of the model. In Fig. D.1 the
modes of motion of the main simulation model are provided. It can be observed that for Cζ = 0.02, the modes
of motion for lead-lag dynamics are located at the expected poistion in the complex plane. This is based upon
reference data from [17, 34, 40]. Even though Cζ = 0.02 will be considered a variable throughout the analysis,
it is still of great importance to assure that the modes of motion related of lead-lag are correct.]

Figure D.1: Modes of motion of the MBB Bo 105 rotorcraft model trimmed at 10 m/s forward flight and 1000 m altitude.
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E
Helicopter Data of MBB Bo 105

This appendix provides helicopter data of the MBB Bo 105 used for simulations. Rotorcraft data was obtained
from [38, 39, 43, 44, 46, 55]. It should be noted that for the actuator limitations rate limit was used from [46],
which did incorporate the rate limit of the Bell 412 helicopter.

Table E.1: Main rotor parameters of MBB Bo 105.

description of parameter symbol value unit

Rotational speed Ω 44.4 rad/s
Rotor radius R 4.91 m

Steady-state coning angle βss =β0 2.5 deg
Number of blades b/N 4 -

Equivalent blade chord ce 0.27 m
Zero lift profile drag coefficient CD,0 in (CD =CD,0 +CD,1α

2) CD0 0.011 -
Profile drag coefficient CD,1 in (CD =CD,0 +CD,1α

2) CD1 0.4 -
Non-dimensional inflow velocity for hover λi 0.0495 -

Static blade moment (approximated mblR/2) ms 50 mkg
Blade lift curve slope CLα 6.11 rad−1

Linear blade twist θtw -0.1396 rad
Blade mass mbl 27.3 kg

Blade moment of inertia about its flapping hinge Ibl 231.7 kgm2

Equivalent hinge offset ratio εβ/eβ 0.14 -
Rotor shaft tilt angle γs 0.0524 rad

Longitudinal position with respect to the helicopter c.g. l -0.00761 m
Lateral position with respect to the helicopter c.g. l1 0.02995 m
Vertical position with respect to the helicopter c.g. h 0.94468 m

Table E.2: Tail rotor parameters of MBB Bo 105.

description of parameter symbol Value unit

Rotational speed Ωtr 233.1 rad/s
Rotor radius Rtr 0.95 m

Number of blades Ntr 2 -
Equivalent blade chord cetr 0.18 m

Blade lift curve slope CLα,tr 5.70 rad−1

Main rotor downwash factor at the tail rotor Ktr 1 -
Time constant of the induced inflow τλ0,tr 0.1 s

Longitudinal position with respect to the helicopter c.g. ltr 6.00965 m
Vertical position with respect to the helicopter c.g. htr 1.05418 m
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Table E.3: Fuselage parameters of MBB Bo 105.

description of parameter symbol value unit

Parasite drag area F0 1.3 m2

Eq. volume in the horizontal plane with only circular sections VfusM 6.126 m3

Eq. volume in the lateral plane with only circular sections VfusN 25.525 m3

Incidence angle for zero pitch moment αfus,M=0 0 rad
Correction coefficient for moment calculation Kfus 0.83 -

Table E.4: Horizontal tail parameters of the MBB Bo 105.

description of parameter symbol value unit

Surface area Sht 0.803 m2

Surface lift curve slope CLα,ht 4.0 rad−1

Built-in surface incidence αhto 0.0698 rad
Correction coefficient in the pitch moment Kht 1.5 -

Longitudinal position with respect to the helicopter c.g. lht 4.548 m

Table E.5: Vertical tail parameters of the MBB Bo 105.

description of parameter symbol value unit

Surface area Svt 0.805 m2

Surface lift curve slope CLα,vt 4.0 rad−1

Built-in surface incidence βvto -0.0812 rad
Correction coefficient in the pitch moment lvt 5.416 m

Longitudinal position with respect to the helicopter c.g. hvt 0.970 m

Table E.6: Actuator limitations of the MBB Bo 105.

description of parameter symbol Min. saturation Max. saturation Rate limit
limit [deg] limit [deg] [deg/sec]

Collective pitch main rotor θ0 -0.2 20.0 16.0
Longitudinal cyclic θ1s -6.0 11.0 28.8

Lateral cyclic θ1c -5.7 4.2 16.0
Collective pitch tail rotor θ0,tr -8.0 20.0 32.0

Table E.7: Additional parameters of the MBB Bo 105.

description of parameter symbol value unit

Normalised flapping frequency λβ = 1+ 3
2

εβ
1−εβ 1.12 -

Center-spring stiffnes Kβ = (λ2
β
−1)IβΩ

2 113 kNm · rad−1

Main rotor Lock number γ= ρCLα ceR4

Iβ
5.0692 rad−1

Main rotor solidity σ= N ce
πR 0.007 -

Tail rotor solidity σtr = Ntrcetr
πRtr

0.1206 -
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Table E.8: Mass and inertia of the MBB Bo 105.

description of parameter symbol value unit

Total mass m 2200 kg
Total weight W 21574 N

Inertia tensor J

1433 0 −660
0 4973 0

−660 0 4099

 kg· m2
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