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Abstract

A complex marine project consist of series of operations, with each operation subject
to a predefined operational limit and duration, depending on the equipment being used.
If actual weather conditions exceed the operational limit, then the operation cannot be
executed and hence downtime occurs. It is up to contractors, such as Boskalis, to accurately
estimate the expected downtime in order to determine the project costs. Recently, anew
tool has been developed to make downtime assessments by using the Markov theory: the so-
called ‘Downtime-Modular-Markov model’ (DMM-model). It abstracts the actual metocean
conditions by stochastically producing binary ‘workability sequences’ for each operation,
where a distinction has been made between workable and non-workable states given an
operational limit. The Markov statistics of the model are based on the characteristics of
the observed metocean conditions. Complex marine project simulations are realizable based
on these statistics. The purpose of this thesis is to develop the DMM-model for which a
software-testing process is applied. In the verification phase the concept and the code of
the model are checked on correctness, consistency and completeness. Subsequently, the
validation phase addresses to the quality of the model. Three different metocean datasets
are used to test the model and its individual modules whether they perform sufficiently
accurate. The most important findings of both phases are tackled in the improvement &
extension phase. Adjustments made during this last phase bring the DMM-model to a new
state-of-the-art. It is recommended for further study to conduct an uncertainty analysis
(quantify the model and parametric uncertainty).

Keywords: Complex marine project, operation, operational limit, downtime, Markov

theory, Downtime-Modular-Markov model, workability sequences, simulation, software-
testing, verification, validation, improvement, extension
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Nomenclature

Terminology

Actual duration
Boundary states

Code uncertainty
Complex project

Continuous operation

Coupled operation

Cross-transition proba-
bility

Downtime

HADDOCK

The duration to execute an operation, with delays.

The last state in workability sequence A, and the first state in
workability sequence B.

Numerical errors and algorithmic mistakes in the source code.
A project consisting of multiple operations (and multiple weather
windows).

An operation without a fixed net duration and no weather
window is required, and that can be suspended if the operational
limits are exceeded.

If operation B must start directly when operation A has com-
pleted, then operation A is referred to as a coupled operation.
If operation C must start directly after operation B has been
completed, then operation A and B are coupled operations.
This process can continue itself. This applies for example on
the sequence of decommissioning a topside. Then operation
A is cutting the legs of the jacket, followed by operation B is
hoisting the topside. The topside will then be placed on a barge
(operation C), followed by sea fastening the topside on the barge
(operation D). For each operation a different operational limit
(see below) is used and no downtime is allowed in between the
operations. In this example operation A, B and C are coupled
operation.

If no influence period is scheduled, the cross transition proba-
bility determines the start state of the next operation, this is
defined as the probability of having downtime at the start of a
new operation.

This can be calculated as follows: Actual duration minus net
duration. Downtime can be a result of bad weather.

The software program used by Boskalis to make risk assessments
based on metocean data.
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Influence period
Marine operation

Model uncertainty
Net duration

Observational errors

Operation
Operational limit

Parallel operation
Parametric uncertainty

Percentile value

Persistency

Project

Simulation uncertainty

Uncoupled operation

Undoubted periods

Warranty window

Weather window

Workability

See D(p, q).

Operation of a limited defined duration related to handling of
object(s) and/or vessel(s) in the marine environment.
Non-statistical errors in a simulations due to abstraction.

The duration to execute an operation, without delays.
Mistakes in a data collection, which are induced by human/de-
vices.

Similar to marine operation.

Some operations have an operational limit, which means they
cannot be performed if this limit is exceeded. In marine opera-
tions these limits are mostly metocean parameter related, the
most common limits are wave height, wave period and wind
speed.

If two operations are performed simultaneously.

The uncertainty related to the estimation of the input parame-
ter(s) of a stochastic model.

The Pxx percentile duration indicates a chance of xx%, that
the duration will less or equal to the Pxx value.

Persistency refers to the time period a parameter remains below
the operational limit. Several operations require a long-lasting
weather window to be performed.

A single operation or a series of operations which include all
the operations to be executed.

The uncertainty related to the number of replications.

If operation B must not necessarily start directly when operation
A is completed, then operation A is referred as an uncoupled
operation.

Specific states which must be workable or non-workable at time
step t, because a state of a preceding operation was workable
or non-workable.

A certain weather window, before permission is granted to start
the operation, mainly used for requirements by the Marine
Warranty Surveyor (MWS).

The duration of how long a metocean parameter will remain
below a critical value.

The amount of workable time steps in a time-series.
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Symbols

Symbol
BS

D(p, q)
D(p,q)

H

m
N*

(2

Pq
Ni;

X

Unit

Description

The states of the first time step in the workability sequence of
operation ¢ and the last time step in the workability sequence
of operation p.

Influence period: the minimum number of workable time steps
(hours) in operation ¢ after a 1/0 crossing in operation p that
preceded [45], also denoted as D!(p, q).

The non-workable influence period is equal to the minimum
number of non-workable time steps (hours) in operation g after
a 0/1 crossing in operation p that preceded.

Significant wave height.

The month in the workability sequence m =1, ..., 12.

The number of observed transitions starting from state i € .S
to state j € S.

The number of observed transitions starting from state ¢ € S in
operation p to state j € S in operation gq.

Due the implementation of the undoubted periods and influence
periods, the number of transitions are defined as this parameter
where X can be: C denoting the counted transitions starting
from state 7, E the expected number of transitions starting from
state i and P the to be place number of transitions start from
state 1.

The number of states in S.

The transition probability of moving from state i € S* to state
jeSs.

The cross transition probability of moving from state ¢ in oper-
ation p to state j in operation ¢ [45].

The transition probability matrix of the Markov Dependency
method.

State space of the Markov chain.

The time step in the workability sequence t =1, ..., T.

The peak wave period.

The order of the Markov chain.

The wind speed.

Undoubted period: The number of time steps (hours) that are
implemented for a succeeding operation, because specific time
steps cannot be any other state.

Surface current velocity.

The state of workability sequence of the discrete random variable
X at time step t.
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Abbreviations

ARMA
DWK inequality
DMM-model
ECDF

HED
MetOcean
MD

MP

MLE

MWS

NTH

PWTH
RMSE

TP
UCMP
V&V
WoDS

The significance value; 0.05 assumed in this thesis.

Limiting probability of state j € S: the probability that work-
ability sequence is in state j € S independent of a previous
state.

The Chi-squared statistic used for hypothesis tests.

Autoregressive moving-average

Dvoretzky-Kiefer-Wolfowitz inequality

Downtime Modular Markov model

Empirical cumulative distribution function

Hydronamic Engineering Department (of Boskalis)
Meteorology & Oceanography

Markov Dependency

A monopile for the foundation an offshore wind turbine
Maximum likelihood estimate of the transition probabilities 2y
Marine Warranty Surveyor

Non-time homogeneous

Order of the Markov chain

Piece-wise time homogeneous

Root mean square error: measure for the difference between
values in the observed and predicted by the model or estimator.
A transition piece for the foundation an offshore wind turbine
Updated Conditional Markov Probability

Verification & Validation

West of Duddon Sands (project)
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Executive summary

A complex marine project consist of series of operations, for instance the installation of an
offshore windmill foundation: sailing to project site, installing the monopile, placing the
transition piece, sailing to harbor. Each operation is subject to a predefined operational
limit and duration, depending on the equipment being used. An operational limit is for
example Hy; < 1.5 m, which means the operation can only be executed if the significant
wave height is below 1.5 meters. If actual weather conditions exceed the operational limit,
then the operation cannot be executed and hence downtime occurs. It is up to contractors,
such as Boskalis, to accurately estimate the expected downtime in order to determine the
project costs. Boskalis’ current method to make these downtime assessments is by means of
an in-house software tool: HADDOCK. HADDOCK is a simulation tool performed directly
upon observed/hindcast data. In other words, it simulates projects on the past and no
information is provided about the future, which means the number of project realizations
is equal to the number of available years in data. Recently anew tool has been developed,
which is called the ‘Downtime-Modular-Markov model’ (DMM-model) to make downtime
assessments. It is a stochastic model that produces synthetic time-series with the same
characteristics of the observed /hindcast metocean conditions. With the DMM-model more
project simulations are possible, which reduces the simulation uncertainty. However, by
using a stochastic simulation model other uncertainties are introduced (Chapter 3):

e Simulation uncertainty: the uncertainty related to the number of project simulation
replications. The more project replications, the lower simulation uncertainty.

o Parametric uncertainty: the uncertainty related to the estimation of the input parame-
ter(s) of the stochastic model [20]. The more input parameters and/or the less data
on which the parameters are estimated, the higher the parametric uncertainty.

e Model uncertainty: the uncertainty described by non-statistical errors in abstraction
[61]. The more complex the model, the higher the uncertainty.

¢ Observational errors: mistakes in data collection.

e Code uncertainty: the numerical uncertainty related to errors and algorithmic mistakes.
The less errors, the lower the uncertainty.



The first three uncertainties describe the main uncertainties, which are recommended to
quantify. Observational errors are not considered to influence downtime estimations and
code errors should rather be rectified instead of quantified. However, the model-user should
be aware of these uncertainties. The purpose of this thesis is to develop the DMM-model
for which a software-testing process consisting of 3 phases is applied. In the verification
phase the concept and the code of the model are checked on correctness, consistency and
completeness. Subsequently, the validation phase addresses to the quality of the model.
Three different metocean datasets are used to test the model and the individual modules
its based on whether they perform sufficiently accurate. The most important findings of
both phases are tackled in the improvement & extension phase. Adjusting the DMM-model
during this last phase brings the model to a new state-of-the-art.

The DMM-model is a discrete-time 2-state-Markov model, which abstracts the actual
metocean conditions into workable states ‘1’ and non-workable states ‘0’ depending on
the operational limit. A so-called ‘workability-array’ is created from the hindcast data
and the operational limit, which consists only of binary data. Hence, the information
about the actual metocean parameter is lost. Based on the statistics within the 2-state
workability-array, the model is able to produce stochastically binary ‘workability sequences’
for each operation. Even when an operation is limited to two or more parameters, the model
is still able to produce binary time-series for the specific operation and no dependencies
need to be modelled.

Figure 1 represents how the ‘transi-
tion probabilities’ P;; are defined for a
1st-order Markov chain with the workabil-
ity states {0,1}. It shows that the next
state j at time step ¢t + 1 is depended on
the current state ¢ at time step t. These
transition probabilities can be estimated
on the created workability-array. Addi- Figure 1: A Ist-order Markov chain example with
tional to the transition probabilities, there 2 states and the transition probabilities P;;
are some modules created which form the
complete DMM-model. When a module is being used, depends on the operations in the
project and the metocean dataset. In the following, the use of each module will be explained
with some important findings of the verification and validation phase.

e Module A: Seasonality. In order to take seasonality into account, probabilities are
varied over the year. This happens either ‘piece-wise time homogeneous’, where the
probabilities are constant per month or this happens ‘non-time homogeneous’, where
the probabilities are constant per day. Despite some small coding errors this module
works sufficiently accurate, however it can be extended by including weekly or seasonal
homogeneous probabilities.

e Module B: Time-dependency. The next state X;;1 could also be dependent on the
current state X; and even more previous states X; 1, X;_9,..., Xg. The Markov



chain order determines on how many states the next state is based. It captures the
autocorrelation of the metocean parameter and in the validation phase it is found
that the ‘persistency’ is also more accurately preserved by increasing the Markov
chain order. Increasing the Markov chain order is only possible in the piece-wise time
homogeneous function, since the non-time homogeneous function is limited to the
1st-order.

Module C: Physical feasibility in linked chains. If an operation is finished, a link
must be formed between the finished operation and the succeeding operation in order
to continue the project evolution. For that purpose the ‘influence period’ D(p,q) is
applied, which is defined as the time period between the 1/0 crossing of operation
p till the 1/0 crossing of operation ¢q. From all the observed influence periods in
hindcast data, the ‘reasonably’ smallest (where the exceedance probability equals
0.98) is implemented. It denotes the minimum amount of workable states for the next
operation. This happens for example in case the first operation has a limit of Hy < 1
m and the succeeding operation has a limit of Hy; < 3 m. The influence period avoids
that the next time step ¢ + 1 of the succeeding operation can be a non-workable state,
when the current time step ¢ of the current operation was a workable state. That would
mean that the sea conditions change within an hour from below a significant wave
height of 1 meter, to above a significant wave height of 3 meters, which is unrealistic.
In case the influence period is zero, the ‘cross-transition probability’ qu is being used,
which is estimated similar as the ‘regular’ transition probabilities on hindcast data.

Module D: Coupled operations. Between the coupled operation and the succeeding
operation no downtime is allowed, i.e. the succeeding operation must start directly
when the current operation has finished. It is validated that this module does not
work at all. In advance it needs to be determined how many (sequentially) coupled
operations are present in the project. These (sequentially) coupled operations need to
be simulated simultaneously, so that a calm weather window can be found where no
downtime occurs in between the operations.

Module E: Parallel operations. This module has been disregarded as Boskalis does not
perform parallel operations.

Next to the DMM-model two other approaches have been studied, which segregate the

generation of time-series and the project simulation: the ‘Updated Conditional Markov
Probabilities’ (UCMP) and the ‘Markov Dependency’ (MD). The main advantage of these
methods is that coupled operations can be simulated and any start date can be chosen;
the DMM-model is bounded to a specific start date. Based on a small validation with 5
operational limits (H,, T}, and U, and combinations of these) on an offshore location, it
can be concluded that the UCMP method did not show any promising results. This in
contrast to the MD method, which yielded in promising results in terms of persistency
preservation. However, here, the workability percentage is less accurate preserved. Therefore



it is recommended to continue studying the MD method and to improve the workability
percentage preservation.
The conclusions and recommendation considered to be most important are:

e Section 5.1.3 explains the mistakes of the influence period in the old model. Therefore
it is redefined in Section 7.2, which explains that in the improved model the ‘reasonably’
smallest influence period is implemented instead of a randomly chosen influence period
from the exceedance probability curve.

o A higher Markov chain order resulted in a better preservation of persistency (Section
7.1.2), while the old model was limited to a 2nd-order.

e The coupled operation module did not work at all, and the theory of solving this
is provided in Section 7.1.3. It is recommended to recode this module to make it
workable.

e It is recommended to quantify the model and parametric uncertainty; Section 3.2.3
creates a basis for this purpose.

The added value of the DMM-model regarding downtime analysis in general, is that
there was no stochastic model in current literature to simulate complex marine projects. It
is still believed that the reduced simulation uncertainty has more value than the increased
parametric and model uncertainty in the DMM-model. These other 2 uncertainties can be
controlled by means of the model settings.
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1 Introduction

1.1 Problem description

Section 1.1.1 will start with the background of this thesis. Section 1.1.2 describes how
Boskalis is currently conducting risk assessments. Section 1.1.3 introduces a new model

which makes risk assessments.

1.1.1  Background

Marine projects are usually acquired by means of tenders which include the project cost.
The project cost is related to the project duration. The longer the project takes, the more it
costs logically. The project duration is in turn dependent on, amongst others, the intended
equipment, the project location and the sequence of operations. For example, it can be
imagined that heavier equipment speeds up the project, but at the same time the costs go
up because heavier equipment is more expensive. Also, a far distant location results in more
sailing hours and critical operations, such as lifting a topside which must be executed with
caution, can influence the project duration.

Figure 1.1 depicts a project flowchart, from the project planning to execution. In the
beginning of a project a deterministic planning is made, which is only dependent of the
sequence of operations, the equipment that is intended and the project location. The
deterministic planning does not contain weather risks. Bad weather may influence certain
operations (e.g. if the wind blows too hard, hoisting activities cannot be executed). To
incorporate the risks, a probabilistic project planning is made. Within the risk model a
distinction is made between external (e.g. bad weather) and inherent (e.g. engineering
complexity) uncertainties of activities. As a project manager strives to reduce weather
risks, based on the risk model the sequence of operations or the intended equipment can
be adapted in order to optimize the probabilistic project planning. He could hire more
advanced equipment or start the project earlier, so that the specific operations could be
performed in calmer periods. After the project is executed the actual duration and actual
cost are known. The aim of the project planning is to estimate these as accurate as possible.
The result of the probabilistic project planning is not a single project duration, in contrast
to the deterministic project planning, but the result is rather a probability distribution of
possible durations.
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In the weather risk assessments ‘downtime’ is estimated. Downtime is expressed as the
time an operation cannot be executed due to unfavorable weather conditions. By estimating
an accurate project downtime (consult Section 1.1.2 for more information about downtime),
a better cost estimate can be made. For example, if less downtime occurs than expected,
the project duration in the tender is too long and the tender price too high. This could lead
to a ‘lost’ tender. On the flip side, if this leads to an acquired tender, more costs are saved.
And the other way around, if more downtime occurs than expected, the project duration in
the tender is too short and the tender price too low. Either way, an inaccurate downtime
estimation can result in a bad outcome and therefore downtime assessments are important
for any marine contractor.

Intended
Equipment
Operational limit

Project
Location
Environmental data

I
I
| Sequence of
- operations
I
I
I

|
|
|
|
|
|
|
I Project planning
} (deterministic)
|
|
|
|
|
|
|
|
|

Planning optimization

\ 4

[ A
P -+ Riskmodel €& Possible risks
AN _

\ 4

[ Duration |
exceedance | Project planning
curve | (probabilistic)
-

Cost estimate

—

Actual
duration

.

Validation

Project execution Actual weather

Actual cost I:I Scope of this thesis

Figure 1.1: From deterministic to probabilistic project planning to project execution [45]

1.1.2  Current approach of Boskalis

Royal Boskalis Westminster (hereinafter referred to as ‘Boskalis’) is a global maritime
services company, executing projects relating to the construction and maintenance of
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maritime infrastructure. The expansion of the Suez Canal or the installation of the Veja
Mate offshore wind farm are two examples of projects executed by Boskalis. Boskalis uses
the Design-Bid-Build' method for projects, also known as Design-Tender method. The in-
house engineering department Hydronamic Engineering Department (HED), has a dedicated
Metocean (Meteorology & Oceanography) & Data Engineering team to perform weather
risk assessments, which are instructed by the Tender Department.

The software package HADDOCK is used to perform the weather risk assessments for
Boskalis. It simulates a sequence of operations and their operational limits using historical
weather data (hindcast data). This is explained with Figure 1.2. In this example there is
an ‘operational limit’ of Hy; = 2 m. Whenever a significant wave height is larger than
2 meters, the operation cannot be (safely) executed with the intended equipment. For a
lower significant wave height, vice versa. For the given time steps the binary ‘workability
sequences’ are given. The dataset is dichotomized by denoting a ‘1’ for the workable time
steps, and a ‘0’ for non workable time steps. In HADDOCK the workability percentage is
calculated as follows:

no. of workable time steps (green)

Workability = % 100% = % =45% (1.1)

total length of time series

In this example 120 hours of 6-hourly data is evaluated for only one metocean parameter
(Hy). In real projects datasets consisting of more metocean parameters of approximately
20 years are used. Depending on the project that needs to be performed, more operational
limits can be set (e.g. wind speed, wave direction, current velocity, etc.); even combinations
of metocean parameters are possible for a single operation. In this thesis the operational
limits are given by Boskalis. The determination of these limits is not within the scope.

e

o

Not workable

]
[ T

¢
/

Hs [m]

0 20 40 60 80 100 120
Time [Hr]
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Figure 1.2: An example of how to get from an operational limit to a workability sequence

!Design-Bid-Build method is a traditional method to deliver a project and consist of three sequential
phases: designing phase, bidding (tender) phas and the construction phase.
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Boskalis distinguishes three types of projects: continuous projects, single weather window
project and complex projects. A ‘continuous project’ is a project with an operational limit
which can be interrupted due to weather downtime. Dredging or rock dumping activities are
examples of a continuous project. For this type of projects the weather risk is expressed as
workability. The ‘net duration’ is defined as the time required to complete an operation
without any delay. Suppose the net duration is 24 hours in the example from Figure 1.2,
which is equal to 4 workable time steps (each time step is 6 hours). The result is that the
operation is finished after 66 hours (11 time steps), this is defined as the ‘actual duration’
(duration with weather delay). This means that 42 hours of ‘downtime’ (actual duration —

4
net duration) has occurred and the workability is changed to: — = 36%. Note that the

workability percentage will change if the operation is started at a different time step.

A ‘single weather window project’ is required for projects that need at least a
predetermined period to execute the operation given that the operational limit will not be
exceeded during this period (e.g. heavy-lifts or offshore piling). If the weather conditions
are in a workable state but the forecasted conditions are not sufficient for the net duration,
the operation will not be executed (‘waiting time’ occurs). In Figure 1.3 an example of
a single weather window is given (the net duration is 4 time steps in this example). The
operation cannot be executed any earlier, considering the two non-workable time steps. The
workability percentage does not correspond with the actual downtime for these type of
projects. The downtime for this type of projects is referred as ‘persistency’. It corresponds
to the occurrence of long-lasting (persistent) good weather conditions [56].

Legend

Workability sequence - 0 . 0 --.. ;n Workability sequence
Operation progress %////////////% %// Operation executed
) Waiting time/downtine

-

Figure 1.3: Hypothetical example of a single weather window project with a net duration of 4 time
steps adopted from Rip [45]

In this thesis the main focus is on ‘complex projects’. Complex projects consist of
series of operations, for example the installation of the foundation of an offshore wind farm.
In this project the operations can be as follows:

1. load up foundations from quay onto vessel
sailing to installation site
jack-up
install foundation
jack-down

6. sail back to port
In case of installation of multiple foundations (multiple operations are repeated) for the
wind turbines, one speaks of ‘cyclic projects’ In complex projects more operations are
executed, therefore multiple weather windows need to be available, i.e. multiple durations of

Uk N
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(a) metocean parameter(s) have to remain below a critical value(s).

In case an operation must start directly after completing the preceding operation, it is
referred as a ‘coupled operation’. For example after placing a transition piece (TP) on
a monopile (MP) for an offshore wind turbine, the TP has to be grouted immediately. In
other words, the placing of the TP is not allowed to start, if the operational limit of grouting
the TP is exceeded after placing it. An ‘uncoupled operation’ is an operation which does
not necessarily have to be followed directly by the next operation, like jacking up. Coupled
operations result in more downtime, since longer weather windows are needed.

A Marine Warranty Surveyor (MWS) is an independent third-party who provides
‘warranty windows’. A warranty window is defined as the minimum hours that need
to be available before permission is granted to start an operation. The warranty windows
are usually based on safety reasons or contingencies that may occur during an operation.
Therefore, the warranty window is longer than the net duration.

To clarify some of the aforementioned definitions, an example of a hypothetical complex
project is used which is shown in Figure 1.4. On the left three different operations are given,
each with a different operational limit. Operation 1, which is a coupled operation, has a
net duration of five time steps. Considering it is a coupled operation, it could not start any
earlier, else operation 2 would encounter downtime. After completing operation 1, operation
2 can start directly. Operation 2 is an uncoupled operation and has a net duration of three
time steps. After completion of operation 2, operation 3 cannot start directly because the
operational limit was exceeded which resulted in the non-workable state. The MWS provided
a warranty window of three time steps for operation 3, while the net duration was only two
time steps. For these reasons operation 3 experiences two time steps of downtime. The total
downtime in this hypothetical project is seven time steps.

Legend

‘ ‘ ‘ ‘ ‘ ‘ ‘ l:n Workability sequence

(current operationy

0 0

Operation 2 - Operational limit y ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Operation 1 - Operational limit x

Workability sequence

(inactive)

Operation executed

(4operation number)

=

¥

Operation 3 - Operational limit z ‘ ‘ ‘ ‘ ‘ ‘ ‘ Waiting time/downtime

(operation mumber)

t Warranty window

Figure 1.4: Hypothetical example of a complex project with a coupled operation 1 and uncoupled
operation 2 and a warranty window provided for operation 3 [56]

For complex projects the total downtime of the project is assessed, as in the example
above. It is also interesting to have a closer look at the downtime of each operation apart. In
this way one can tell which operation is most vulnerable to downtime. In the same manner
downtime per cycle can be assessed, and it can be determined which cycle was the most
vulnerable to downtime. The way to describe downtime for complex projects is based on
‘percentile values’ A percentile value gives the chance that the project duration is less or
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equal than the given value, based on the duration realizations. Hence, a P50 means there is
50% chance the duration of the project is less or equal than the P50 value. The P50 value
can be expressed in any time unit (e.g. hours, days). The percentile graph (Figure 1.5)
depicts the cumulative probability distribution: P(duration < P50) = 0.5. Generally, the
P50 or P80 values are used to determine the project duration, the choice is up to the client.
Additionally, a persistence table and a graph describing the influence of the start date can
be delivered as output for a project.

Cumulative probability

A

100%

80%

L1 —

Downtime

A 4
P50 TS0 >

Figure 1.5: Hypothetical example of the cumulative distribution of downtime of a project (P50 and
P80 indicated)

1.1.3 Downtime Modular Markov model

The current method Boskalis uses for the determination of workability is analytical, while the
determination of downtime happens through simulation. First, a distinction has to be made
between simulation and analytical methods. Analytical methods use anything from algebra
to differential equations, but no probability /statistics is used. The solutions of analytical
methods are typically exact solutions, where the parameters correspond directly to physical
processes. There are some analytical methods available in literature to assess downtime of
complex projects [5], but these are disregarded in this thesis since they can become very
complex with multiple operations subject to multiple operational limits. Simulation on the
other hand, approximates analytical problems by means of probability /statistics. Boskalis
uses hindcast data in order to obtain the workability/persistency/downtime of complex
projects. Simulation is a technique of conducting realizations using a model to figure out
the behavior at different environments. The selection of a method depends on several
factors, such as the available hindcast data, desired accuracy and available time to do the
analysis. These factors must be discussed and weighed between the Tender Department and
Hydronamic Department, in order to choose which type of downtime method should be used.
For complex projects the use of simulation technique is preferred because of the analytical
complexity as explained. The downside of these simulations on hindcast datasets is that
these datasets only consist of 10-25 years of data. This may sound like a big dataset, but
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the opposite is true for complex projects. Due to the presence of seasonality effects a project
has to start each year at the same date of the year. This results in the same number of
project realizations as the number of available years in the dataset. Simulating this number
of project realizations will give a large probability distribution of the project durations. The
more years available, the more accurate the probability distribution can be estimated. This
principle is referred to as ‘simulation uncertainty’. It can be compared to coin tossing:
if the coin is tossed 10 times, the outcome does not have to be 5 times heads and 5 times
tails, knowing that the probability a head/tail appears is 0.5 of a fair coin. When the coin is
tossed a 1000 times, the probability of a head or a tail will be close to 0.5. For this reason,
a stochastic data generator, the so-called ‘Downtime Modular Markov model’, is modelled
to augment the existing datasets in order to obtain more project realizations.

The Downtime Modular Markov model (hereinafter referred to as DMM-model) is a
model that estimates the project duration and the downtime for projects of Boskalis. The
basis for the DMM-model has already been programmed in Rip [415]. This model abstracts
the actual metocean conditions by producing binary workability sequences for a single
operation and for series of operations (complex projects). By means of the Markov theory
a dataset of metocean parameters is statistically enlarged. With a larger dataset more
project simulations can be realized, thereby a more accurate result for the expected project
downtime can be estimated (this is schematized in Figure 1.6). Several modules have been
made in order to make the model more realistic (e.g. introducing seasonality). In Chapter 2
the DMM-model will be further discussed.
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Figure 1.6: Hypothetical example of the purpose of the DMM-model; by enlarging the dataset, the
simulation uncertainty reduces
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1.1.4 Problem statement

In tender phases of projects accurate information about downtime is important (as explained
in Section 1.1.1). The current approach of Boskalis is to simulate complex projects directly on
the hindcast data, which causes a high simulation uncertainty. Recently, the DMM-model is
created in order to reduce this uncertainty, by stochastically producing workability sequences
for sequential operations in complex projects. The first study of this model yielded in
promising results to assess the project duration/downtime. However, an extensive validation
study is needed before such a new model can be practically implemented. A software-testing
process is applied for that purpose (Chapter 4). Such a process consists of a verification and
validation phase (Chapter 5 and 6). The verification process assesses the DMM-model on its
correctness, consistency and completeness, where the validation process analyzes whether
the DMM-model works sufficiently accurate. From this study the model can be further
improved and extended, hence the reliability of a computer model increases and it brings
the DMM-model one step closer to implementation.

1.2 Research description

1.2.1 Research objective

The basis of the DMM-model is readily available. The objective of this thesis is to further
develop it. It needs to be determined whether the theories are correctly implemented and
whether the model and its modules are working sufficiently accurate. Recommendations
need to be made on how to further improve the model, and it needs to be concluded whether
it is still believed that the model is of additional value regarding weather risks.

1.2.2 Research questions

1. Literature study:

(a) How can downtime be analyzed with the current DMM-model?
(b) Which methods for metocean parameter generators can be found in literature?

(c) Is it possible to quantify uncertainties concerning the DMM-model?
2. Verification:

(a) Is the concept and the model code of the current DMM-model correct, consistent
and complete?

3. Validation:
(a) Do the DMM-model and its individual modules perform sufficiently accurate?
4. Improvement and extensions:

(a) How can the current DMM-model be improved/extended?



Chapter 1. Introduction 15

1.2.3 Methodology

In order to answer the research questions from above, this thesis will be conducted in the
following steps (in Figure 1.7 these steps are indicated blue encircled numbers):

1. Understanding of the work methods of Boskalis regarding workability and downtime.
2. Analyzing the current DMM-model and the underlying Markov theory it is based on.

3. Creating an overview of other stochastic metocean parameter generators, like the
DMM-model.

4. Analyzing other uncertainties that are present in the model and its parameters.
5. Conducting a concept and model verification of the DMM-model per module.
6. Validating the modules of the DMM-model separately (White-box validation).

7. Validating the total DMM-model, based on its input data and output (downtime
distribution).

8. Analyzing the results of the verification and the validation phase. From these results
improvements and extensions are made regarding the model.

9. Making recommendations about the improvement of the DMM-model and conclude
whether the model is valuable for Boskalis to perform weather risk assessments.

Chapter 5 Chapter 546 _

Concept verification ,— Results of analysisg—
) 8)
Chapter 6 Chapter 7 Chapter 8
Extending & Conclusions &
| T dations (¢ |

Validation per moduje~
6)

Improving

Chapter 5 Chapter 6

Model verification Data validation ~ —| Results of analysis—,
| 7) S )

DMM-model
validation

Figure 1.7: Framework of the methodology of this thesis combined with the chapter layout. The
red line indicates the same methodology can be applied for further research. The blue encircled
numbers indicate the steps from above.

1.2.4 Thesis outline

To answer the research questions and the set goals, this thesis is organized in the following
way: Chapter 1 describes the problem definition with its research questions and introduces
the work-methods to analyze downtime for marine projects. In a previous study another
model (the DMM-model) is developed to estimate downtime based on the Markov theory.
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Chapter 2 describes the Markov theory and analyzes the DMM-model. It is recommended
to understand the basis of the DMM-model while reading this thesis, therefore it is essential
that this chapter is well-understood. An overview of other metocean parameter generators
(such as the DMM-model) is given in Chapter 3 as part of the literature study. The purpose
of this thesis is to further develop the DMM-model. By doing so, a software-testing process
is followed, which is explained in Chapter 4. It starts with a verification of the software,
which is conducted in Chapter 5. Thereafter, a validation is conducted in Chapter 6. Based
on the results of the verification and validation process improvements and extensions can be
made for the DMM-model, which are clarified in Chapter 7. Lastly in Chapter 8, conclusions
of the thesis and recommendations for further research are provided.



2  Downtime Modular Markov
Model

This chapter aims to answer the research question No. la: ‘How can downtime be analyzed
with the current Downtime Modular Markov model?’. The DMM-model is a computer
model with algorithms and equations based on the Markov theory that tries to capture the
downtime behaviour of marine projects. The Markov theory will be introduced in Section
2.1. Several assumptions and requirements are stated in order to make the DMM-model
functional (Section 2.2). The input data consists of metocean historical datasets near the
project locations (Section 2.3). Subsequently, each module on which the DMM-model is
based will be outlined in Sections 2.4 - 2.8. In Section 2.9 is explained what the output is of
the DMM-model. In order to visualize how projects are simulated, an example is provided
in Section 2.10. In final Section 2.11 an answer is given to the research question.

2.1  Markov theory

Markov analysis is a probabilistic method which can be compared to decision analysis'. The
difference lies in that Markov analysis provides probabilistic information about the decision,
which helps the decision maker in making a decision. In Section 2.1.1 the introduction of
the Markov theory will be described, and in Section 2.1.2 the maximum likelihood estimate
is described. Finally, the time-dependency, the Chapman-Kolmogorov equations and the
limiting probabilities are described in Section 2.1.3, 2.1.4 and 2.1.5 respectively.

2.1.1 Introduction theory

The Markov process is a type of stochastic or random process, that has the property to
make the next value of the process dependent of the current value. This theory is explained
by using the book of Ross [17] and Taylor III et al. [53]. Consider that X = (X;:t € T) is
a stochastic process on a probability space, with discrete time step t = 0,1,2,...,7. Random
variable X; can be interpreted as the ‘state’ of the system at time step ¢, within ‘state
space’ S. The most simple example of the Markov chain is with two states S = {0, 1},

!Decision analysis: the discipline compromising the philosophy, methodology, a collection of systematic
procedures to address complex decisions in a formal manner [26].

17



Chapter 2. Downtime Modular Markov Model 18

where state 0 denotes non-workable and state 1 denotes workable. Between these states
transition probabilities are present, P;;, such that the current state is < and the next state
is j. More than two states are possible too, then the transition probabilities are given as:
Py, Vi, j=0,1,...,N.

P{Xt+1 = .7|Xt = Z‘VXFt—l = Z‘15—17 "-7X1 = ilyXO = ZO} = P’L] VZ,] € S7t = 07 17 7T
(2.1)

Equation 2.1 states that the future state X;i; is independent of the past states
Xo, X1, ..., X;—1 and solely depends on the present state X;. The Markov chain consti-
tutes a collection X;,¢ > 0 having the transition probabilities F;;, Vi,j = 0,1,..., V.
Figure 2.1 clarifies the two state example with the workable and non-workable states. The
transition probabilities are indicated with arrows. The first subscripted number is the start
state and the second subscripted number is the end state.

Figure 2.1: A first-order Markov chain example with 2 states and the transition probabilities P;;

2.1.2 Maximum likelihood estimate and transition matrix

The transition probabilities P;; can be estimated from the observed transitions [52]. The
mazimum likelihood estimate (MLE)” of the transition probabilities can be computed as
follows:

N N
Pj==2 Vijes (2.2)
7

In this equation the IV;; is the number of transitions from state i to state j and N is equal
to the total number of transitions that start from state ¢. The transition matrix can be
obtained from the given transition probabilities. In Equation 2.3 a two state (left) and any
higher order state (right) transition matrix is given:

2The most likelihood estimation is a statistical method of estimating population characteristics given
a sample by finding the parameter values that maximize the probability of getting the particular sample
actually obtained from the population [18].
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Poo Poi Pz
Plo Pll P12 ..
Poo  Por . . :
Pij = lPlo P11 -Pij = . . . (23)
Py Pan Pp

Given that probabilities are positive and the process must be in some state after leaving
state 7, the following holds:

Y Pjit)=1, VijjeSs (2.4)
jes
In Section 1.1.2 is explained that the workability is defined binary over time. The
information about the wave height or any other metocean parameter is disregarded because
it is irrelevant. The only relevant information is whether, under the metocean conditions,
the operation can be performed or not; this binary workability indicates the ‘states’. This
principle is also used in stock market analysis, where the price is not relevant but only
the change of the price (the stock price might go up or down). Based on a hypothetical
metocean historical dataset, the following workability sequence is observed:

066011000110 0O0O0O0O0111O01111

With Nogo = 6; No1 = 4; N1o = 3; Ni1 = 7 and N{ = 10; Ny = 10 the maximum likelihood
6 4 7
estimate can be calculated: Pyy = 1—0; Py = 1—; Py = E; P = 10 Note that the last

state is not included in the number of start states. With these probabilities the following
transition matrix (Equation 2.3) is defined:

0.6 0.4
Fij = l0.3 0.7] (25)

The summation of each row equals a probability of 1. The table can be interpreted as
follows: if the current time step is non-workable, the probability to stay in a non-workable
state equals 0.6 (transition probability Pyg) and to go to a workable state equals 0.4. In the
same manner the transition probabilities for a workable sea state are indicated.

2.1.3 Time-dependency

A Markov chain can be time-dependent, unless the observations are independent of the past
or present. In that particular case, the given time independent sequence is for example a
random walk. This can be interpreted as a model for an individual walking on a straight
line, who at each time step either takes a step to the right with probability p or a step
to the left with probability 1 — p. For metocean parameters this does not hold; they are
time-dependent. This dependency is determined on how many time steps influence the next
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transition, thereby the ‘order’ of the Markov chain is introduced. By increasing the Markov
chain order (i.e. making the next state dependable of more time steps), the autocorrelation
is captured. Figure 2.1 presents a 1-time step dependency, where the next time step is
influenced by the current time step. Suppose that state 1 is a rainy day and state 0 a sunny
one. Now suppose that the transition probability to go to a sunny day starting from a
rainy day (Pyp) is a and to go to a rainy day starting from a sunny day (FPp1) is 5. Then,
the left transition matrix in Equation 2.3 can be filled in, with the remaining probabilities
(1 —a,1 — B). The time-dependency can be extended, if for example the next sunny/rainy
day is dependent on the past 2 (or more) days. By increasing the time-dependency, the
transition matrix increases as well. The left matrix in Equation 2.3 is a 1st-order chain,
where X;y1 only depends on the value of X;. Higher order chains can be obtained, where
Xi+1 depends on Xy, Xy 1, ..., X;_(,—1) with u denoting the number of the order chain. The
most likelihood of Equation 2.2 changes to:

Nij. ki

Pij. =
ij..k

, Vi,..keS (2.6)

Consider the aforementioned hypothetical observed workability sequence and suppose
that the time-dependency is of order 2. This implies that the next state depends on the past
2 states (X, X¢—1). The following transitions can be observed: Nyog = 3, Noo1 = 3, No1o =
0, No11 = 4, N1go = 2, N1g1 = 1, N11g = 3, N111 = 3. The following 2-start-states can be
observed: Ng, = 6, Ny, = 4,N{; = 3,N{; = 6. From these observations the maximum

likelihood estimate (Equation 2.6) can be calculated: Pyyy = 5’ Pyo1 = 6 Py10 =0, Py11 =
1 3 3
1, Pigo = =, Pig1 = 3’ Pi1o = =, Pi11 = —. The resulting transition matrix of the 2nd-order

Markov chain can be indicated as follows:

Table 2.1: Transition matrix of 2nd-order Markov chain

Next time step:
Current time step: 00 01 10 11

00 P()oo P001 0 0
01 0 0 P010 PQH
10 Pioo  Piox 0 0
11 0 0 P110 P11

Note that, the summation of probabilities on each row equals 1 again.

2.1.4 Chapman-Kolmogorov equations

With the Chapman-Kolomogorov equations the limiting probabilities (Section 2.1.5) can be
obtained. In the foregoing one-step transition probabilities P;; have been used. The n-step
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transition probabilities P}, the probability that a process in state ¢ will be in state j after n
transitions, are defined by the Chapman-Kolmogorov equations:

Pirj%—i_m = P{Xoym = j|Xo = i},

P;}—i—m _ Z Z%PIZL Vn,m > 0,Vi,j €S (2.7)
kesS
Py =gy

This can be interpreted as going from state i to state j in n+ m steps (with an intermediate
stop in state k after n steps. Summing over all possible k£ values gives Pij+m.

By multiplying the transition matrix F;; n times by itself the n-step transition matrix
is obtained. This is clarified with the two-state example of Table 2.1. Suppose that the
current state is workable ‘1. In Figure 2.2 the transition probabilities are visualized for the
current and next time steps (¢,¢ + 1 and ¢ 4+ 2). The transition probabilities at time step:
t 4+ 2 become 0.49, 0.21, 0.12 and 0.18. Note that the summation of these probabilities is
equal to 1 again. The probability that the state after 2 time steps is workable again is 0.49
+ 0.12 = 0.61 and non-workable 0.21 + 0.18 = 0.39. The following n-step transition matrix
is obtained (with n = 2 in this case). In the lower row of the matrix the two transition
probabilities starting from a workable state are given. The same approach can be applied
with a non-workable starting state.

(2) _ |0.48 0.52
P2 — (2.8)
0.39 0.61
Time step: t Time step: t+1 Time step: t+2
0.49
0.7
] v
0.21
o7 0.3 Non-workable
Workable
0.12
o
0.3 0.3

Non-workable

0.18
Non-workable

|

Figure 2.2: 2-Step schematization of transition probabilities from X; = 1, hence the summation of

) )

the workable states equal P1(12 and the summation of the non-workable states equal P1(§ in Equation

2.8



Chapter 2. Downtime Modular Markov Model 22

2.1.5 Limiting probabilities

With the knowledge from Section 2.1.4 and keep on multiplying the transition matrix P;;
many times (n — 0o) by itself, it seems that Fj} is converging to a limiting probability ;.
For example, if we keep on tossing a fair coin, the lim, o F;; will eventually get 0.5. This
limiting probability can be computed given that the Markov chain is ergodic”.

T = Z 7'1'1‘131‘]‘7 Vj S

iesu (2.9)
Z m; =1
jes
This results in the following limiting probabilities from our two state example.
7o = Poomo + Piom
w1 = Poimg + Piim (2.10)
mo+m =1
Rewriting the equations above results in:
P, P
o 10 ol (2.11)

:7, m = ——
Po1 + Pio ' Py + Py

By increasing the schematization in Figure 2.2 the changes in the state probabilities will
converge, until they result in the limiting probabilities and there is no change at all. The
limiting probability is the probability that the process is in state j after large number of
transitions, independently of the initial state. The 1st-order limiting probability is equal
to the workability percentage. This probability will be used later on for the estimation
of the first state of a project simulation in the DMM-model, since that state cannot be
based on any earlier states. The foregoing assumes a 1st-order Markov chain, the limiting
probabilities for higher orders (u) are calculated with:

T—u

. 1

Mjk.l = T _u Z 1{Xt:j:Xt+1:k:-'thwLu—l:l} (2.12)
t=1

2.2 Preliminaries

The following requirements and assumptions are set (adopted from Rip [45] and extended).
Requirements The generated dataset with the Markov theory should preserve the same

characteristics as the original dataset.
e Seasonality is respected.

o Persistency of sequential workable/non-workable time steps is respected.

3Positive recurrent and aperiodic states are called ergodic
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e The overall and monthly workability is respected.
Assumptions

o There is no trend in the observed data (no climate change); just seasonality affects are
considered.

e The net duration of an operation is deterministic.

o The operational limit is fixed per operation (hard boundary): a time step is either
workable or not.

e The statistics within the original dataset are assumed to be representative for the
truth.

2.3 Input data

Metocean historical (hindcast) datasets near project locations used for the DMM-model and
HADDOCK are obtained from the in-house global offshore database. These datasets consist
mostly of hourly, 3-hourly or 6-hourly data (depending on how it is measured) and they
consist of approximately 10-25 years of data. The parameters in the metocean dataset are
for example the significant wave height Hy, wave peak period T, the wave zero-crossing
period T, wind speed U, wave direction Oyave dir., €tc.

The metocean parameters which constitute an operational limit for the projects are
interpolated to hourly data. The MATLAB function interpl with ‘spline’ method is used
for this purpose. The spline method in MATLAB is the ‘piecewise cubic spline interpolation’,
which makes a cubic polynomial curve fit between three data points (x;—1, ¢, 141). Rip
[45] concluded that this approach distorts the exceedance probability distribution of weather
windows (i.e. the persistency), and consequently the downtime distribution may be effected.

After interpolating to hourly-time series of the metocean parameters, the ‘binary
workability sequences’ are created similarly as in Figure 1.2. Where every workable
time step is denoted with a 1 and every non-workable time step is denoted with a 0. Each
operation is assigned to a column in a matrix (the so-called ‘workability-array’). The
obtained ‘workability-array’ is schematized in Table 2.2.

2.4 Module A: Seasonality

Seasonality takes place due to the earth’s orbit and its declination. The Northern Hemisphere
is closer to the sun in our summer (July) than the Southern Hemisphere, which means it is
summer on the whole Northern Hemisphere. During our winter (December) the Southern
Hemisphere is closer to the sun, than the Northern Hemisphere. For the people living on
the Southern Hemisphere the seasons are the other way around. Generally, sea states are
calmer during summer than winter, meaning that the workability percentages would be
larger. If the transition probabilities are called time homogeneous or stationary, it is assumed
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Table 2.2: A hypothetical example of a ‘workability-array’, where the first column represents the
time steps and all the other columns represent the binary workability sequences for all operations.

Time step Operation 1  Operation 2 ---  Operation N
01-01-1991 0:00 1 1 0
01-01-1991 1:00 1 0 e 0
01-01-1991 2:00 1 1 1
01-01-1991 3:00 0 1 1
01-01-1991 4:00 0 1 0
31-12-2015 23:00 0 0 e 1

that they do not vary over the year, but in reality seasons do influence these transition
probabilities. It is probable that the transition to a workable state is higher during summer,
than during winter (on the Northern Hemisphere). Therefore, two approaches to include
seasonality are introduced: the piece-wise time homogeneous (PWTH) method and the
non-time homogeneous (NTH) method.

Piece-wise time homogeneous This approach is also called ‘monthly stationary’ in
this thesis, as it assumes monthly piece-wise stationarity probabilities. The dataset is split
into periods and for these periods the transition probabilities are assumed to be constant.
For the piece-wise time homogeneous process the metocean data is split into 12 monthly
(m =1,2,...,12) datasets. The split datasets consist of the number of years available in
hindcast data disjoint time-series. In the split datasets the number of transitions (state 4
to j) are counted and subsequently the transition probabilities P;;(m) are computed (with
equation 2.2). This calculation accepts a small inaccuracy due to the transitions spanning

different years.

Non-time homogeneous The probabilities of this approach are also called ‘inhomoge-
nous’ or ‘non-stationary’ probabilities in this thesis. The non-time homogeneous method
in the DMM-model allows the one-step transition probabilities to vary over time, as the
transition probabilities are calculated per day, R](t) I.e. the non-time homogeneous Markov
process is considered, where the transition probabilities vary over the year (depending on
the day of the year). For this method the transition probabilities are calculated by using a
discrete non-parametric kernel function, that gives more weightage to transitions near the
calendar day of interest within a certain bandwidth. Days exceeding the bandwidth are
disregarded. By means of a least squared cross validation (LSCV) the kernel bandwidths
are chosen. This process will not be used for higher order chains, due to the computational
complexity. To clarify both methods Figure 2.3 is presented with both methods.

Hypothesis tests as defined in Section 6.2.2, the homogeneity test, determine which
method is more accurate to perform the simulation of the DMM-model with.
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Figure 2.3: Comparison between the piece-wise time homogeneous and the non-time homogeneous
processes (with different bandwidths (h)) for the transition probability Py extracted from Rip [45].

2.5 Module B: Time-dependency

By time-dependency the order of the chain is meant, as Section 2.1.3 explains this theory. If
a higher order is used, more ‘memory’ is built in the model, and more accurate predictions
can be made. However, the additional history (‘memory’) grows exponentially with the
order, which is equal to (ns — 1)n¥. Where ns and u denote the number of states and the
order respectively. The parametric uncertainty (Section 3.2 addresses to the uncertainties)
increases as more parameters need to be estimated. Hypothesis tests as defined in Section
6.2.2, the order test, are built in order to determine which Markov chain order is most
accurate. The non-time homogeneous method can only be performed in a 1st-order Markov
chain, but the piece-wise time homogeneous method can be performed in a 1st- and 2nd-order
Markov chain.

2.6 Module C: Linked Markov chains

With the modules C, D and E the model is made applicable for sequential operations as well.
In this module the ‘influence period’, D(p,q), and the ‘cross-transition probability’, R@q, are
introduced, which form a link between 2 different Markov chains. These parameters ensure
that the modelled time steps are physically feasible.

Influence period This method overcomes that the model produces unrealistic changes
in between 2 succeeding operations. For example, a workable 1 state is produced at time
step t of operation p with an operational limit of Hg < 0.5 m, and at the next time step ¢ + 1
non-workable 0 state is produced of operation ¢ with an operational limit of H; < 3 m. If
the time step is one hour, this implies that the sea states changes in one hour from Hs < 0.5
m to Hy > 3 m, which is not realistic. It determines the duration the next operation(s) has
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to be workable, after a workable time step of the current operation. The influence period
is defined as the time period from the moment that an operation becomes non-workable
(i.e. the 1/0 boundary of the first operation is passed), until the time step the succeeding
operation becomes non-workable (i.e. the 1/0 boundary of the second operation is passed).
Figure 2.4 presents an example of two different influence periods for an operation with limit
H, < 0.5 m followed by an operation with limit Hs < 1 m.

2
1.5
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T Operational limit 2
0-5 777777777777777777777777777777 T R A e e e 1
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Time step

Figure 2.4: An example of two influence periods (D; and Ds) for an operational limit Hs < 0.5 m
following operational limit Hs < 1 m; extracted from Rip [45]

Note that the last observed 1/0 crossing of operation 1 before the 1/0 crossing of operation
2 determines the influence period D(p,q), as time step 94 is not counted for any influence
period. Similarly, only the first 1/0 crossing of operation 2 that follows after a 1/0 crossing
of operation 1 determines the influence period. From all of the observed influence periods D
in the hindcast data an exceedance probability curve can be made, as depicted in Figure 2.5.
The exceedance probability curve decreases as the influence period increases.

Figure 2.5: An exceedance probability curve of the influence period D(H; < 0.5 m, H; <1 m)

After completing an operation the DMM-model draws an exceedance probability P(D >
d) from an uniform distribution [0,1]. Where d corresponds to the influence period of the
drawn probability P(D > d) of all the operations that follow. Each influence period is
scheduled at the starting time step ¢ + 1, if the current operation is completed at time step
t. Figure 2.8 shows a simulation example wherein the influence period is applied.
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Cross-transition probability In case there is no influence period D(p, q) scheduled,
which might occur when the next operational limit is stricter than the current operational
limit, then the cross-transition probability is used. The Markov chain order determines how
many states are needed to produce the new state. For example, if the chain order is two,
it means that two time steps are looked back. Suppose that states {A; = 1, A;_; = 1} are
generated and operation A is finished. In the observed metocean dataset is counted how
many times a {A; =1, A;_1 = 1} is followed by a B;41 = 0 or 1. This approach is similar
as the most likelihood estimate of the regular transition probabilities (Equation 2.2). The
cross-transition probability is defined as:

spg  Nipja

Vi,j €8 (2.13)
1] N;;, 9 9
Where Nj»p;» is the number of observed transitions which start from state ¢ in the workability
sequence of operation p to state j in the workability sequence of operation ¢. And, N, is

the number of transitions that start from state ¢ in the workability sequence of operation p
(N;; = qu Niqu, qu S S)

2.7 Module D: Coupled operations

If operation B must start directly when operation A has been completed, then operation
A is referred to as a coupled operation. This definition is already introduced in Section
1.1.2. Coupled operations are more sensitive to encounter downtime than an uncoupled
operation, because a larger weather window is needed which suits both operations executed
consecutively. In the model, the workability sequence for both operations are generated
simultaneously, which means four states, S = {0,1,2,3} can be defined (see Table 2.3). The
model checks whether both operations can be performed without downtime in between them.

Table 2.3: Workability states for a coupled operation

Coupled operation Subsequent operation Modelled state value

0 0 0
0 1 1
1 0 2
1 1 3

In the model the transition probabilities between the four states are estimated from the
input data with the maximum likelihood estimate (Equation 2.2). It might happen that
specific states will never be visited. If the operational limit of the ‘coupled operation’ is
stricter than the subsequent operation (e.g. coupled operational limit: Hs < 0.5 m and
subsequent operational limit: Hs; < 3 m), than state two (S = 2) will never be visited. Vice
versa, state one (S = 1) will never be visited. In these scenarios the state that is never
visited will be denoted with a probability of 0. Note that Module C is not used being used
for the coupled operation, because it is incorporated in Module D.



Chapter 2. Downtime Modular Markov Model 28

2.8 Module E: Parallel operations

‘Parallel operations’ are defined as performing two operations simultaneously. This theory
is not (yet) incorporated in the DMM-model. Two types of parallel operations can be
distinguished. Type 1: the operations must be executed simultaneously with the same net
duration. Type 2: the operations may be executed simultaneously (i.e. a new operation may
start when only one operation of the parallel operations has finished). Initially, the same
states as determined for coupled operations (Table 2.3) are created S = {0,1,2,3}.

Type 1 For the first type the unnecessary operational limits need to be disregarded. For
example, operation A has operational limits of H; < 1 m and U < 10 m/s and operation B
has operational limits of Hy, <2 m and 7}, < 7 s, then the determining operational limits will
be H; <1m, U <10 m/s and T,, < 7 's. The operational limit H, < 2 m is disregarded, since
it will always hold if Hs < 1 m holds. In Figure 2.6 the first example (above) schematizes the
first type. Both operations have the same net duration (three time steps). Operation 1 could
start one time step earlier, but both operations must start simultaneously and therefore it
starts one time step later (more downtime is observed). l.e. a workable weather window
where S = 3 is searched which is sufficiently long to fit the net duration.

Type 2 The approach from above cannot be applied for the second type. In Figure 2.6
the second example (below) a type 2 process is schematized. Operation 1 has a net duration
of three time steps and operation 2 has a net duration of four time steps. Operation 1 starts
when the weather window is sufficiently long enough. A single time step later operation 2
can be executed, both operations are executed simultaneously for two more time steps till
operation 1 has finished. Finally, operation 2 needs two more time steps to finish. L.e. a
workable weather window where S = {2, 3} is searched which is sufficiently long to fit the
net duration of operation 1 and a workable weather window where S = {1, 3} is searched
which is sufficiently long to fit the net duration of operation 2.

Operation 1 - Operational limit x \:I I:I:I [ 1] I:I Legend
Operation 2 - Operational limity \:I | I:l:\ | | | D D Workability sequence
I (0] (0] - % Waiting time/downtime
u
1 t - Operation executed
f
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Operation 1 - Operational limit x \:I I:I:I [ 1] I:I [0,1] State values
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Figure 2.6: Schematizations of a type 1 (above) and a type 2 (below) parallel operations
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2.9 Outcome

The outcome of the DMM-model is the distribution of the project duration and downtime
duration. These can be described by an empirical cumulative distribution function (ECDF),
which is defined as:

Fule) = 131X, < a), (2.14)
nia

where

) (2.15)
0 otherwise

The model-user is free to choose how many years need to be simulated. By increasing
the number of years, the simulation uncertainty decreases (Section 1.1.3) which is quantified
by the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality” to obtain the confidence bands for
F,. With F}, the lower (L) and upper (U) confidence bands are defined as follows [13]:

L(z) = mam{ o () — ;lln(i),()},
(2.16)
U(z) = mm{ () + %ln(%), 1},
Then, for any CDF F and all n
P(L(z) < F(z) <U(z)) >1—-a VzreR (2.17)

Where 1—« is the probability at each point = that F'(z) does not lie within the confidence
bands. In Figure 2.7 is shown that increasing the sample size n (number of generated years),
results in smaller maximum distances between F},(x) and L(z) and U(z). Note that, the
larger the sample value n develops, the less important the a-value gets as the lines converge.
It is suggested to create a 1000 project realizations (sample n) with the DMM-model, because
this reduces the uncertainty to a value below the 5%. In Figure 1.6 is presented how this
influences the confidence bands on the project duration.

4P(sup |Ey () — F(z)] > 6) <1-2e2" for any €,n >0
z€R
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Figure 2.7: By increasing the sample size n the maximum distance between F),(z) and L(z) or
U(z) decreases for multi a-values

2.10 Project example

The DMM-model will be explained by the following hypothetical project in Figure 2.8, where
the blue circles correspond with the numbered list below. In this small project 1st-order
Markov chain is assumed.

A

Operation A:
(H,< 1 m, 2hr)

Operation B:
(H, < 2 m, 3hr)

) (Lipa
> DAC)=0 -p

Operation C:
(U< 7m/s, 3hr)

r
1
1

L)
- =p D(B.D)=3

P e R

Operation D:
(H, < 2.5 m, 2hr) e

pan) (3)

Figure 2.8: Visual clarification of the DMM-model simulation procedure with a hypothetical project.

1. The first symbol is produced with the limiting probabilities for operation A, as can be
calculated with Equation 2.11.

2. The workability sequence continues with the transition probabilities of operation A,
as can be with Equation 2.2, until the net duration of two hours is reached. The
completion of the operation is framed with a black rectangle.
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3. For all succeeding operations the influence period of operation A is determined.
Operation B is influenced 7 time steps and operation D is influenced 9 time steps.
Operation C is not influence at all, which can be explained by its different parametric
unit. The influence period is determined with the exceedance probability as explained
in Section 2.6. The net duration of operation B (indicated with a black rectangle) is
within the influence period. From this time step the project continues.

4. For all succeeding operations the influence period of operation B is determined. This
is only the case for operation D, but it does not create any new states. Operation C
does not have a generated state by the influence period, hence the cross-transition
probability is used Pi]fc which results in a non-workable state. The cross-transition
probability is calculated with Equation 2.13.

5. The workability sequence continues with the transition probabilities F;;, until the net
duration of 3 hours is reached. The completion is framed with a black rectangle.

6. The influence period of operation A was sufficiently long for operation D, that the
net duration fits within this period. No new states have to be generated with the
transition probabilities of operation D.

These steps summarize how 1 project is simulated, which resulted in a project duration
of 15 time steps. The downtime is calculated by subtracting the total net duration of the
project duration which is 15 — 10 = 5 time steps. The more projects are simulated, the less
the simulation uncertainty.

2.11  Conclusion

In this chapter the Markov theory and the DMM-model are analyzed. The actual metocean
conditions are abstracted to binary workability sequences. Based on the statistics from these
sequences a stochastic simulation is possible with the Markov theory. New binary workability
sequences are generated for each operation in the project. On these grounds many project
simulations are possible, causing a lower simulation uncertainty. While, HADDOCK is only
able to simulate a number of projects equal to the number of available years in the metocean
hindcast dataset (approximately 10-25 years).

The settings of the DMM-model are determined by the hindcast data, project start date,
years to simulate, Module A and Module B. In Module A hypothesis tests are built which
determine the seasonality that can be piece-wise time homogeneous or non-time homogeneous.
And, in Module B hypothesis tests are built to determine the time-dependency of Markov
chain. Module C and Module D are not part of the settings, but they will be activated in
case needed (depending on the operations within the project). Module C links two Markov
chains with the influence period or the cross-transition probability. Module D ensures the
operation following a coupled operation does not encounter downtime. This summarizes the
work-method of the DMM-model and answers research question No. la: ‘How can downtime
be analyzed with the current Downtime Modular Markov model?’.
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Figure 2.9 presents a breakdown of the DMM-model for visualization purposes. The
upper box presents how the binary workability sequences are created. The metocean dataset
together with the operational limit determine the workability state sequences, which are
in turn the input for the Markov model. The middle box presents the Markov model with
the different modules. Modules A and B are performed on the created binary workability
sequences. Thereafter the new states are generated with the Markov theory. These newly
generated states are linked by using the other modules (C,D and E) in order to create
projects. Since more projects can be realized with the newly generated data, the probability
distribution of the project duration and downtime duration is narrower (more accurate).
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Figure 2.9: Breakdown of the DMM-model for complex marine projects extracted from Rip [45]
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3  Simulation

A model tries to represent the real-world, where the model-user can compare the results
of the model with his expectations. A simulation is defined as the operation of the model
representing the real-world [32]. The operation of the DMM-model is an example of such
a simulation, with the actual project duration and downtime distribution as output. This
leads to the following research question No. 1b: ‘ Which methods for metocean parameter
generators can be found in literature?’. This is addressed in Section 3.1.

According to Box “All models are wrong, but some are useful” [11], because all models
try to approximate the real-world but not one model can duplicate the ezact real-world.
Each model has its uncertainty, and the model-user should be aware of these uncertainties.
In Section 3.2 uncertainties concerning computerized simulations are addressed, and it aims
to answer research question No. lc: ‘Is it possible to quantify uncertainties concerning the
DMM-model?’. In Section 3.3 both research questions will be answered.

3.1 Overview of other metocean parameter generators

Metocean parameter generators are statistical models that try to produce realistic random
sequences of meteorological and oceanic variables (e.g. wave height (Hy), wave period (T},),
temperature) for a set location. Many of these generators are used for water engineering
design, agricultural, ecosystem and hydrological impact studies [60]. The DMM-model
applies a Monte-Carlo' simulation which comprises the statistical metocean data. For
similar models one should realize the output of these models are not forecasts, but rather
a distribution of possible scenarios. Monbet et al. [34] conducted a survey into stochastic
models and methods for sea state time-series, with a particular focus on simulation. The
following Sections review examples of these generators. It is scoped to time-series for a given
location only, where other models make use spatio-temporal” information (e.g. in [1] the
datasets along a maritime line are extrapolated). Furthermore, in this review it is assumed
that there is no over-year trend in the data, as was also given as assumption in Section 2.2.

'Random samples from a known population of simulated data to track statistical behaviour [36].
2Relates to space and time.

35
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3.1.1 Gaussian based models

Metocean datasets cannot be assumed to be Gaussian distributed, but it is possible to
transform the time-series into time-series with Gaussian marginal distributions. The Box-
Jenkins and the Translated Gaussian process describe how this is conducted.

Box-Jenkins method In the book of Jenkins et al. [12] several models are described
that can generate time-series. The autoregressive (AR), the moving-average (MA) and
the autoregressive moving-average (ARMA) model can be used to simulate time-series for
hydrological events [63]. A prerequisite of the Box-Jenkins model is that the input data
(metocean datasets) have to be stationary and normally distributed with a constant mean and
variance. However, these long-term datasets are nonstationary and therefore this prerequisite
is not met. The datasets can be transformed to a more or less stationary time-series by
using the method of Bruce (1982), the method of Box-Cox (1964) or the modified Box-Cox
method by Guedes Soares and Ferreira (1995) [63]. Once the transformation is applied, an
ARMA model can be used to the transformed time-series to generate time-series. Several
studies have done this approach for generating Hy, a bivariate time-series (Hs,T'), and also
for wind U processes [34]. The main drawback is that the metocean datasets consist of
more parameters than 1 or 2, which are correlated with one another. Therefore, generating
time-series for all these parameters is rather complex. In these cases, the transformed set
must be multi-variate normal, which means that any relationship between the transformed
variables must be linear [41] and thereafter the ARMA model can be used.

Translated Gaussian Process The Translated Gaussian Process (TGP) is much like
the Box-Jenkins method. Given that the metocean datasets are non-stationary, the TGP
reduces the data to stationarity via filtering, de-trending and normal scores transformation.
Subsequently, time-series are generated for the transformed data with a Gaussian correlated
simulation method. And finally, by inverse operations the non-stationary non-Gaussian
trending characteristics of the original metocean dataset is recaptured [59]. Walton and
Borgman generated time-series only for Hg by using Inverse Discrete Fourier Transformation
(IDFT). This method can produce time-series fast and the results mimic the original dataset
reasonably. The same procedure is used for more parameters in [10] and [14] to multivariate
time-series (Hg, T, 0,,). In case strong dependence is apparent between the parameters (like
the correlation between wave height and wave period), another transformation to restore the
original distributions has to be used. Instead, the Rosenblatt transformation is then used,
this is done for (Hs,T'),(Hs, 0 ),(U, @) according to [34]. Apparently, it has not been done
for more than 2 metocean parameters yet, while the Rosenblatt transformation is capable of
doing it for more variables.

3.1.2 Re-sampling models

The principle of re-sampling is randomly sampling the original metocean dataset, and thereby
generating new time-series. Following this theory it might be possible that at time ¢ the
wave height is 3 m and the next hour (¢ + 1) the wave height is 0.5 m, which is not realistic.
This is where the block-resampling and the Markov chains re-sampling come in.
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Block re-sampling New time-series are generated by randomly sampling block lengths
l; and time locations t;. For a given time-series X}, blocks are defined as [34]:

Bi = {XtiaXti+17"'7Xti+li} (31)

This approach is not appropriate for metocean data to determine persistency. If blocks
are too small the same problem occurs, as re-sampling without blocks (as earlier explained).
And the other way around, if blocks are too long the new generated time-series will tend to
mimic the hindcast data and no innovation is brought in [34]. However, when the metocean
dataset is transformed into the workability-array as in Section 2.3, block re-sampling might
work. In this approach the autocorrelation functions may be difficult to preserve.

Markov chains re-sampling The essence of re-sampling Markov chains is to build non
parametric estimators of the transition probabilities. The DMM-model is based on this
technique. In literature similar methods are found [28] [44] [35] [16].

3.1.3 Parametric models

In the sequel various parametric models are gathered.

Finite state space Markov chain In the article of Sahin [48] hourly wind speed data
is synthetically generated by using a 1st-order Markov chain with 8 states. The states are
defined by means of the mean and multiple standard deviations. With a uniform random
number generated transitions between successive time steps are obtained, similarly as the
DMM-model. It is concluded that a lst-order does not preserve sufficiently accurate the
statistics of the wind speed; higher orders are recommended. The drawback of this approach
is that many parameters need to be estimated, but there are approaches to overcome this.

Copula model In [29] time-series are constructed for significant wave height and wind
speed by using copulas. Copulas are applicable for models when multiple variables are
correlated with one another. It can be imagined that a stronger wind results in a higher wave.
Copulas are functions that join multivariate distributions to their one-dimensional marginal
distribution functions, which are uniformly distributed between [0,1]. The procedure to
generate time-series is as follows:

1. By using a random number generator the first wind speed value is created.

2. With the first wind speed, the wind speed values are calculated by solving the inverse
conditional Gaussian copula.

3. Subsequently, significant wave heights are computed for each wind speed with the
inverse conditional Gumbel copula.

4. The inverse cumulative distribution function is applied to transform the significant
wave heights and wind speeds to their original values.
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5. The generated values are combined per month to include seasonality. Hence, whole
years are generated.

In article of Jager et al. [23] is described how synthetic hourly time-series of significant
wave heights (H) and the corresponding mean zero-crossing periods (7;,02) are characterized.
Time-series with the duration of an oceanographic winter are simulated by means of vine-
copulas so that the joint dependencies between the variables are captured. In this manner
time-series are generated for two parameters, while for complex marine projects often more
parameters are needed.

Multivariate distributions Most of the aforementioned methods are limited to a one
or two parameters, while the existing metocean datasets consist of more parameters. In
[19] a method is described to model multivariate distributions of n metocean parameters.
That method aims at modeling of seasonal joint distributions of these parameters. First
the seasonal variations are captured through a harmonic representation of the mean values
and the standard deviations of the considered n variables. Seasonal dependency was then
removed by de-trending the data, allowing the method to provide more data. With this
transformation the nature of the joint probability distributions remain unchanged. A four-
parameter gamma distribution was used to model the probability density function for each
metocean parameter, and subsequently transformed into a stationary Gaussian distribution
(this is referred to as the Nataf transformation). The time-series are retransformed into
standard normal distributions via so-called diffeomorphism. Eventually, the multivariate
probability distribution functions are obtained by means of multinormal distribution. The
correlation between the metocean variables is then reproduced.

In [19] the described method was able to model seasonal information on the joint
occurrences of mean wind velocity, significant wave height and mean wave period. Because
of the interest in weather persistency, several mathematical persistence models were made,
which are able to extrapolate information about the occurrences of weather windows. Most
of the marine operations have two operational limits and the third parameters is defined as
the minimum duration of the weather windows (persistency). This model can consider the
frequency of occurrence of the required weather window as a function of the two operational
limits. The presence of seasonality is herein taking into account. Following the same steps as
described above, it was observed that the seasonal trends and the duration dependence are
well captured by the model. For simplicity this method has only been tested for significant
wave height and mean wind velocity at 10 m elevation. Therefore, more validation is needed
for this method for multiple parameters.

Nonlinear autoregressive models Literature provides several models based on ‘Artifi-
cial Neural Networks’ which are able to model the wind speed (U) [37] or significant wave
height (H;) combined with wave period (T') [31]. However, these models are currently used
for short-term prediction. Furthermore, there are several models based on time-varying
autoregressions to model the wind speed (U) [22] or wave height (H) [51]. Where the
AR-model of wind speed is given by Equation 3.2 and the AR-model of significant wave
height is given by Equation 3.3.
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Yet again only 1 or 2 parameters are generated, while complex projects require more
parameters.

3.2 Uncertainty

In practice it is difficult to determine downtime for complex projects analytically, therefore
simulation/sampling studies are performed. These computerized simulations/sampling stud-
ies are representations of real-world processes and with the results, downtime distributions
can be obtained. Such a stochastic process is bounded by probabilistic rules to generate new
synthetic time-series with the same characteristics of the observed data. These principles
introduce uncertainties [27].

3.2.1 Types of uncertainty

In general there are two types of uncertainty: inherent/aleatory uncertainty and knowl-
edge/epistemic uncertainty. Aleatory uncertainty dictates the natural randomness in the
states of system, as one can never know the exact outcome with for example coin toss-
ing. Epistemic uncertainty is caused by the lack of knowledge/data. It can be reduced
by increasing the amount of knowledge/data. Van Gelder [57] framed different types of
uncertainties in the block scheme of Figure 3.1. Where the inherent uncertainty could
exist in space or time. The epistemic uncertainty is subdivided into model and statistical
uncertainty. The model uncertainty arises through imperfectly knowing/understanding
the processes or phenomena in the model. Statistical uncertainty is the uncertainty that
originates from the chosen statistical function which might not describe the process or
phenomenon adequately. It is subdivided in the distribution type and the parameters of this
distribution. The less knowledge/data, the larger the uncertainty of the parameters. The
distribution type uncertainty represents the uncertainty of distribution, as it is not precisely
known for example whether the occurrences of the water level in the North sea is exponential
or Gumbel distributed or differently distributed. The three most important uncertainties
within the DMM-model are assigned to the classifications within this framework. Below,
these uncertainties are further elaborated.

In Section 1.1.3 the term ‘simulation uncertainty’ has been introduced already, which
relates the uncertainty to the number of replications. For the DMM-model this corresponds
to the number of project simulations; the more project simulations, the less the simulation
uncertainty. In literature this uncertainty is often referred to as aleatoric uncertainty [61]
(in time) for parameters. In simulation studies the probabilistic rules are often determined
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Figure 3.1: Classification of different types of uncertainty [57], with the main uncertainties of the
DMM-model assigned to their corresponding uncertainty classification.

by the mean and variance of (a) parameter(s). The newly generated synthetic time-series
are simulated according to their a priori distributions. Since it is logically impossible
to simulate the exact future, the simulated parameter(s) include some uncertainty and
hence the downtime prediction is not exact. However, by repeating the prediction the
simulation/aleatoric uncertainty decreases.

The ‘parametric uncertainty’ is the uncertainty related to the estimation of the
input parameter(s) of the stochastic model [20]. In literature this is often referred to as
the epistemic uncertainty [20]. For example, a die is rolled 4 times and the following
numbers were observed: 1,2,2,4. It is known that a fair die has 6 sides with each the same
probability. In this example, we cannot determine these probabilities due to lack of data.
The parametric uncertainty decreases if the parameters are based on more data, because the
a priort distributions are more certain. In case more input parameters have to be simulated,
the parametric uncertainty increases. Additionally, datasets could consist of ‘observational
errors’, which is described as mistakes in the data collection and part of ‘missing’ data.
This is sometimes referred to as noisy data. In the die example, a 5 could be recorded when
actually a 4 was observed. Datasets are collected by devices or humans, hence they are prone
to errors. Enlarging your dataset will reduce the uncertainty induced by observational errors.
The available hindcast datasets consist of approximately 20 years of data, hence it is believed
that the uncertainty induced by observational errors is low. The parametric uncertainty is
associated with the observational errors, as the input parameters are calculated with the
recorded datasets.

The ‘model uncertainty’ describes non-statistical errors in abstraction [61] and is also
part of the epistemic uncertainty. The more input parameters are used, the more complex
the model gets and the lower the model uncertainty gets. For example, by modelling an
open ocean with only wave height and wave period will give a simplistic result, but when
the wave direction, wind speed, current velocity are included as well, the model will give a
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more detailed representation of the reality. Including all parameters will make the model
more realistic, hence the model uncertainty decreases. This uncertainty is conflicting with
the parametric uncertainty, as more parameters need to be estimated.

The ‘code uncertainty’ is also known as the numerical uncertainty, which is defined
as the numerical errors and algorithmic mistakes. The more complex the model, the more
vulnerable it is to coding errors. The more a model is validated the lower the code uncertainty.

3.2.2 Uncertainty in models

In this Section the aforementioned uncertainties will be discussed for both models (HAD-
DOCK and DMM-model), with its purpose to identify the reasons that cause the uncertain-
ties.

e Simulation uncertainty:

— HADDOCK: available hindcast datasets of approximately 10-25 years
— DMM-model: number of project realizations as required (1000 is suggested in
Section 2.9)

The simulation uncertainty is dependent on the replications of project simulations. HAD-
DOCK uses the hindcast dataset for the simulation, hence the number of project simulations
is equal to the number of available years in hindcast data. This causes a high simulation
uncertainty. The DMM-model generates a predetermined number of stochastic project
realizations based on the statistics of the hindcast data in order to reduce this uncertainty.
The more project realizations, the less the simulation uncertainty.

e Parametric uncertainty:

— HADDOCK: interpolation
— DMM-model: interpolation (same) + estimation of input parameters

In HADDOCK the output is fully determined by the hindcast data. There is no kind of
some inherent randomness in the model, this results in no parametric uncertainty. Unless,
the dataset needs to be interpolated to 1-hourly data. In that case parameters are estimated
by interpolation techniques, which introduces parametric uncertainty. The DMM-model
applies the same interpolation step. Besides, the DMM-model has to estimate the input
parameters, such as the transition probabilities ﬁij and the limiting probabilities 7;, that
are needed for the simulation. The parametric uncertainty increases by threefold as more
parameters need to be estimated: (1) using a higher-order Markov chain; (2) using the
non-time homogeneity; (3) generation of coupled operations.

e Model uncertainty:

— HADDOCK: basis
— DMM-model: basis (same) + statistical deviations
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In both methods there is some ‘basis’ model uncertainty, as not all factors contributing to
downtime are accounted for (e.g. breakdowns, crew transfers). The DMM-model increases the
model uncertainty, due to the abstraction of real metocean conditions to binary workability
sequences. Deviations in workability percentage or persistency are likely to occur because of
the abstraction. The aforementioned threefold that increases the parametric uncertainty
will reduce the model uncertainty, because these deviations will be reduced.

e Code uncertainty:

— HADDOCK: code-errors
— DMM-model: code-errors (higher)

The code uncertainty is unknown for HADDOCK, but since it has been extensively validated,
it is believed that this uncertainty is low. A software-testing process (see Section 4) can be
used in order to assess this uncertainty. The DMM-model is going through a software-process
in this thesis, and there are (some fatal) errors found in the algorithm (this is elaborated in
Chapters 5 and 6). Therefore, the code uncertainty is higher in the DMM-model than in
HADDOCK. The more errors are rectified, the lower the code uncertainty.

¢ Observational errors:

— HADDOCK: mistakes in data collection
— DMM-model: mistakes in data collection (same)

It is believed that the observational errors are small in the hindcast datasets. The 3rd party
selling the datasets validates them in order to filter outliers. Moreover, the dimension of
errors induced by devices are too small to determine whether an operational limit is exceeded
or not. The observational errors are the same for both models, since the same datasets are
used.

3.2.3 Uncertainty quantification

As described in the previous Sections, HADDOCK and the DMM-model are prone to a
variety of uncertainties. The model-user should be aware of these uncertainties, else critical
and expensive decisions with unfounded confidence are made. The essence of the DMM-model
is to reduce the simulation uncertainty, but simultaneously a stochastic process introduces
new uncertainties. By means of the DKW inequality (Section 2.9) confidence bands are
defined to quantify the simulation uncertainty. In order to make reliable decisions based on
your model, the model-user should be familiar with the other uncertainties as well. This
Section provides a first step in quantifying the parametric and model uncertainty. The code
errors should rather be rectified than quantified, therefore this uncertainty is not further
considered. The observational errors are considered to be too small to influence the project
downtime, hence the observational errors are also not further considered. This Section aims
to give quantification possibilities regarding the parametric and model uncertainty. Once
these are quantified a visualization, such as a bar chart, can be obtained.



Chapter 3. Simulation 43

Parametric uncertainty The piecewise cubic spline interpolation creates a smooth line
between the data points, while in reality these data points are more spiky. The quantification
of the uncertainty regarding the interpolation method can be studied by comparing an original
hourly dataset with an hourly interpolated dataset. Additional parametric uncertainty is
introduced by estimating the input parameters: P;;, ;, ]55-'7, D(p,q). The more parameters
need to be estimated, the higher the parametric uncertainty. A lower parametric uncertainty
comes at the expense of a higher model uncertainty. The following parameters are used in

the DMM-model:

e Transition probability pl-j:
These are calculated with the most likelihood estimator (Equation 2.2), which has its
mean P;; and variance Var[P;;], defined as [40]:

]5“_ Nij+1
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Where N;; denotes the number of transitions starting from state ¢ to state j, N; denotes
the number of transition starting from state ¢, and N denotes the total number of
transitions. The more observations available, the more accurate the most likelihood
estimate is, as the variance decreases. Hence, the monthly stationary transition
probabilities will be very accurate, as they are based on many observations. However,
these are used throughout the whole month for every time step, which causes model
uncertainty. In Figure 2.3 can be seen that these probabilities remain the same for
the whole month. In reality however, the transition probabilities on the first day of
the month will definitely not be the same as the last day of the month. The non-
time homogeneous function overcomes this problem, as it calculates daily transition
probabilities by means of kernel functions. For that method fewer observations are
used, hence the variance increases.

o Limiting probability 7;:
These can be calculated with Equation 2.11 or 5.1. The latter indicates that the
limiting probabilities are equal to the workability percentage. A standard deviation
can be computed from the workability percentage, and with it uncertainty is quantified.

o Cross-transition probability Pf}q:
The cross-transition probability is nearly similar to the regular transition probability.
The difference lies in that transitions spanning different operations are used, which
makes it a bit more complex. However, the same approach can be applied as the
regular transition probability to quantify the mean and variance.

o Influence period D(p,q):
The influence period is determined from an exceedance curve, which is the inverse of a
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cumulative probability curve. Therefore, the DKW inequality can also be used for the
influence period in order to quantify the uncertainty related to it.

Model uncertainty The model uncertainty is nil when all the parameters influencing
downtime are known. HADDOCK and the DMM-model only comprise metocean conditions
related to operations; other influences, such as breakdowns and crew transfers, are not
incorporated. In reality there is also a distribution in the net durations and operational
limits, where the models apply deterministic values for it. It is the captain his call whether
the operation will be executed or not, and some crews could execute certain operations faster
than others. These influences comprise the ‘basis’ model uncertainty and these are difficult
to quantify, but structured expert judgement could be useful tool for it. From real executed
projects can be studied how much percentage of downtime is related to non-metocean
parameters.

Furthermore, additional model uncertainty is introduced in the DMM-model by abstract-
ing metocean data to binary states. The information of the metocean parameter is lost, as it
cannot be determined whether the value is close or far off the operational limit. Deviations
in workability and persistency could arise as a result from this. The chi-squared and the
two-sample Kolmogorov-Smirnov test, as given in Section 6.3, could be used to quantify the
uncertainty related to the persistency deviation.

3.3 Conclusion

In the beginning of this Chapter the research question: ‘Which methods for metocean
parameter generators can be found in literature?’ was asked. Monbet et al. conducted
a survey of stochastic models for wind and sea state time-series, which is extended in
this thesis in Section 3.1. Gaussian based models such as the ‘Box-Jenkins method’ and
‘Translated Gaussian Process’; re-sampling models such as ‘Block re-sampling’ and ‘Markov
chain re-sampling’; Parametric models such as ‘Finite state space Markov chain’, ‘Copula
method’, ‘Multivariate distribution method’ and ‘Nonlinear autoregressive models’ are the
described generators. The past decades copula-based approaches have become more popular
to generate time-series for sea states. However, the main drawback of all models is that they
are limited to a few number of parameters, mostly just 1 or 2, that are generated. Fouques
[19] proposed a method for multivariate distributions, but nevertheless it is only validated
for 2 variable. Some of these models are applicable for scheduling marine operations based
on persistency if the operations are only subject to the generated parameters. Validating
the DMM-model with one of the mentioned models is questionable, because each model has
its limitations and uncertainties. For validation purposes it is therefore recommended to
compare the generated time-series with the observed/hindcast data.

Furthermore, several types of uncertainties concerning computerized simulations are laid
out in Section 3.2 in order to answer research question No. lc: ‘Is it possible to quantify
uncertainties concerning the DMM-model?’. Section 3.2.3 aims to answer this research
question. The code uncertainty and observational errors are disregarded in answering this
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question, as it is believed that code errors can be rectified and mistakes in data collection
will not influence the downtime duration. The essence of the DMM-model is to reduce
the simulation uncertainty, which is quantified by the DKW inequality. The quantification
of the other uncertainties is not as straightforward as the simulation uncertainty. The
parametric uncertainty can be quantified in a way, as each estimated input parameter has
some uncertainty. Also, the model uncertainty can be quantified by the deviations from
reality in terms of workability percentage and persistency. These deviations are due to the
abstraction of metocean data into binary data. The interpolation uncertainty and ‘basis’
model uncertainty do not necessarily have to be quantified, because they are the same for
both methods.
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4  Software-testing

The last few decades the reliability of computer predictions is a matter that grows in interest.
This also applies to simulation of metocean parameters, considering the amount of available
data is growing each day. Questions that arise are “can the computer prediction be used
as decision? What is the accuracy of the computer prediction? How can the validity be
assessed of the computer prediction?” The answering of these questions is addressed to
model verification and validation (V&V) [6]. Answers to questions like aforementioned are
needed regarding the DMM-model, observed that the DMM-model is programmed only
once. It may therefore still contain several errors or limitations. There are no grounds to
place confidence on for the model, when there has not been conducted a thorough V&V
process. The terms ‘verification’ and ‘validation’ are often used in the software testing
and software engineering world, but the definition of both terms are mostly vague. In the
following sections the differences between verification and validation are attempted to define
as clear as possible.

Figure 4.1 maps how V&V is related in a modelling process, based on [416]. The
V&V process starts when the understanding of the real world and the problem is tackled.
Subsequently, a conceptual model is built, followed by the computer model. The first version
of the computer model is ready to perform downtime simulations, which is done in Rip [15]
(indicated with the blue lines). Enough hindcast datasets are available to develop and use
the model.

47
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Figure 4.1: Schematized map of relation between real world, concept and computer model. Blue
lines indicate how a model is built. Green lines indicate the verification phase. Red lines indicate the
validation phase.

In this map the blue lines indicate the ‘conceptual modelling’ describes the theoretical
concepts where the model is based on, and the ‘model coding’ describes the coding of
the theories in MATLAB. ‘Downtime simulations’ describes the generated output of the
DMM-model, which represent the real-world. These 3 steps can be compared by a simple
example where the bed sediment movement is modelled. The concept focuses on the theories,
such as the Shields parameter. The model coding addresses to modelling the situation and
relevant equations. The output of such a model is the volume of moved sediment. In Figure
4.1, it can be noted that there are two types of verification (green lines), defined as follows:

1. Conceptual verification: determining that the conceptual model contains all necessary
input and details in order to conduct the downtime simulation.

2. Model verification: determining the relation between the concept and the computer
model.

Furthermore, there are various forms of validation (indicated with red lines in Figure
4.3), which are defined as follows:

1. Data validation: determining that the hindcast data required to make downtime
simulations is sufficiently accurate and determine how many years are needed to
simulate.

2. White-box validation: determining that the modules of the DMM-model represent the
real world with sufficient accuracy.
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3. Black-box validation: determining that the overall DMM-model represents the real
world with sufficient accuracy.

The V&V process is an on-going development throughout the life-time of the DMM-
model, and it should not be conducted just once. In the beginning of this process the
conceptual and model verification are more relevant, because in this phase the errors and
limitations can be easier identified. In a later stage white and black-box validation is more
relevant, since the model is complete. Often the real world data is inaccurate, and that is
where the data validation comes in, with its purpose is to better understand the data. The
cyclic software development process of the DMM-model is visualized in Figure 4.2. It starts
with understanding the DMM-model, followed by the verification phase and the validation
phase. In the final phase the findings of previous phases are improved and the model is
developed to a new-state-of-the-art.

DMM-model

4 2
Extensions/ Improvement Verification

Validation

Figure 4.2: The cyclic software-testing process of the DMM-model.

4.1 Verification

At the starting of the software testing/software engineering process, a verification study has
to be conducted first. Verification addresses to the numerical treatment of the model, i.e.
it is concerned with whether the model is well-programmed and error-free. It answers the
main question: “Are we building the model the right way?” [9]. Small model errors can
cause major model failures, therefore this process is very important. The DMM-model will
be checked whether it is consistent, complete and correct.

The verification process is divided into two approaches; the conceptual verification and
the model verification. The concept verification determines that the theories and assumptions
underlying the DMM-model are correct. It includes the reasonableness of the model structure,
logic and mathematical relationships. While, model verification determines the correctness
of the computer programming and implementation of the DMM-model. The concept and
model verifications will be conducted per module, and for the correctness and consistency of
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the DMM-model relations in between modules are verified. This is schematized in Figure
4.3. Although model verification and white-box validation are often treated simultaneously,
they are not treated together in this thesis. The used methods for model verification are
‘checking the code’ and ‘visual checks’. Checking the code means the verifier reads the code
and ensures the right logic and date is used, this is mostly done for complex models like
the DMM-model. Visual checks are done by running the code and check whether different
elements/variables behave logically [16].

Hindcast data Synthetic data
Approx. 20 yrs 1000 yrs

Figure 4.3: Schematization of the verification process, where A B C D denote the different modules.

4.2 Validation

Validation is done at the end of the software testing process, after the verifications are
completed. Validation addresses to the quality of the model, i.e. it is concerned with checking
that the right model is programmed instead of checking whether the model is programmed
the right way. It answers the main question: “Are we building the right model?” [9]. The
correctness of the final output of the DMM-model with respect to the specified requirements
has to be determined. If some errors are missed in the verification process, they can be
caught as failures in the validation process. The DMM-model is developed for the specific
purpose to assess more accurately downtime of complex marine projects. Its validity is
determined with respect to that purpose [19]. Several evaluations have to be conducted
until sufficient confidence is obtained that the model can be considered valid for its intended
purpose.

As aforementioned, three forms of validation will be conducted (data, white-box and
black-box validation). The used data in the DMM-model is extracted from the real world
and used as input for the conceptual model and computer model. The assessing of the
input data is beyond the scope of this thesis. The data validation is concerned with how
many years are required as input/output of hindcast data to obtain a realistic sea state
based on workability percentage and persistency. Inaccurate input data can cause significant
inaccuracy of output data. The white-box validation is concerned with the output of each
module in comparison with the real world. The used method for white-box validation
will be ‘inspecting outputs’ Inspecting outputs can be done for each module, where the
actual and the expected results are compared [46]. And finally, the black-box validation is
concerned with the overall behavior of the DMM-model. Two forms of black-box validation
are available. The output of the DMM-model, which comprehends the downtime duration
distribution or the actual project duration distribution, can be compared with the same
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distributions simulated by HADDOCK. And, the output distributions can be compared
with similar simulations models, such as Copula [29]. However, in Section 3.3 it is concluded
that only the hindcast data will be used in this thesis. In Figure 4.4 the validation process
is schematized. The red arrows indicate the white-box validation, the black arrows indicate
the black-box validation and the green ellipse indicates the data validation.

Black-box validation

B
QF’% Hindcast data

Approx. 20 yrs

Synthetic data
1000 yrs

‘White-box validation

Figure 4.4: Schematization of the validation process, where A B C D denote the different modules.
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5 Verification

This chapter tries to answer the research question No. 2a: ‘Is the concept and the model code
of the current DMM-model correct, consistent and complete?’ It is assumed that the reader
understands the work methods of the different modules of the DMM-model as explained in
Chapter 2. In this chapter a verification will be done by means of ‘verification-testing’. The
verification will be conducted with multiple tests for the modules of the DMM-model, and
they are regarded separately in the following sections. The verification-testing is meant to
determine whether the DMM-model meets the specified requirements in the model. The
concept and the model code are treated separately in Sections 5.1 and 5.2. These are verified
whether they are error-free, consistent or contain any limitations. Initially, it is assumed
that the DMM-model performs incorrectly, until evidence indicates otherwise. Conclusions
are drawn in Section 5.3, which refocuses the purpose of this chapter. It reveals a synopsis
of what was found and leads into the implications of the findings, which will be observed
again in Chapter 6 and 7.

5.1 Conceptual verification

5.1.1 Module A: Seasonality

Weather conditions vary over the year (seasonality), therefore transition probabilities of the
DMM-model will vary over the year. It is conceivable that during the winter more severe
conditions are present, than during the summer. This results in more workable states during
summer, than during winter. Two methods to take seasonality into account are piece-wise
time homogeneous and non-time homogeneous. For verification of Module A, piece-wise time
homogeneous method and non-time homogeneous method are treated separately. For further
research it is recommended to compare the methods below with the methods introduced by
Trahan [55].

Piece-wise time homogeneous This theory is based on the article of Anastasiou and
Tsekos [3], who partitioned the hindcast data into two seasons (summer and winter). Where
the piece-wise time homogeneous function in the DMM-model is only able to partition the
hindcast data into monthly workability sequences. Hence, for the sake of completeness, the
DMM-model can be improved by making the piece-wise time homogeneous function also
applicable for seasons or weeks. The monthly stationarity is derived by initially splitting

93
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the hindcast dataset into 12 monthly workability sequences, which are in turn used for
the calculation of the transition probabilities Pij, the limiting probabilities m; and the
cross-transition probabilities ]55-'1. The cross-transition probabilities are verified in Section
5.1.3.

As the theory describes in [45], the monthly time-series of each year are concatenated.
This accepts a small inaccuracy spanning different years, because the concatenation of the
monthly datasets adds a transition between the different years which did not occur in reality.
More specifically, with this theory there exists a transition between the last time step of the
last day of each month and the first time step of the first day of each month. For clarification
of this error consult Figure 5.1, where the blue boxes indicate the workability sequences of
January months over multiple years and the arrows indicate the newly added transitions.
The error influences monthly transition probabilities P;;(m) and limiting probabilities ;(m).

Year 01/1999 01/2000 01/2001

Monthly workability sequences

Figure 5.1: Schematization of the non-existing transitions (indicated with the arrow) in between
different years for the same month for the piece-wise time homogeneous method. The blue boxes
depict workability sequences for January over multiple years.

Non-time homogeneous This theory is based on Rajagopalan et al. [44], who used
non-parametric kernel estimators to determine the transition probabilities of precipitation
data. The same methodology is also applicable on metocean hindcast data to determine the
transition probabilities per day Pij (t). It is noted that the theory of the DMM-model has
an erronious assumption of 366 days per year, which is obviously only true for leap years.
Therefore, the correctness of the transition probabilities before and after the leap-day will
be checked in the model verification (Section 5.2.2).

Furthermore, it is concluded that the transition probability is the only parameter modelled
non-time homogeneously. It is inconsistent to predicate the other parameters (the limiting
probability and the cross-transition probability) upon monthly datasets, once the non-time
homogeneous function is being used. The other parameters can be calculated by using the
same kernel bandwidths in the determination of the transition probabilities.

5.1.2 Module B: Time-dependency

Module B determines the order of the chain as explained in Section 2.5. Using a higher
order chain results in a larger transition matrix (Table 2.1 presents the 2nd-order transition
matrix). It is concluded in Rip [45] that higher order chains are solely used in the piece-wise
time-homogeneous function, because of the complexity in determination of the transition
probabilities for higher order chains in the non-time homogeneous function. And, because
it is believed that the increase parametric uncertainty (consult Section 3.2 for uncertainty
explanations) does not weigh up against the achieved lower model uncertainty. However,
the piece-wise time homogeneous function is limited to a 2nd-order Markov chain. It will



Chapter 5. Verification 55

be validated in Chapter 6 whether the use of higher order chains result in more accurate
workability sequences.

5.1.3 Module C: Linked Markov chains

Influence period The influence period D(p,q) implements a number of time steps at
once in contradiction to the Markov theory, which will only generate single time steps
(as explained in Section 2.6). The implemented time steps by the influence period are
theoretically a block repetition of the hindcast data with a determined length based on the
exceedance probability. After implementing the influence period in operation ¢, the regular
Markov transition probabilities continue for operation g. No literature has been found for
such a concept. It is concluded that this concept is not correctly implemented. The left
boundary of the influence period is defined by the 1/0 crossing of operation p and the right
boundary of the influence period is defined by the 1/0 crossing of operation ¢. First of all
the influence period is implemented after an operation is finished and not after the 1/0
crossing of operation p is observed. Secondly, only workable time steps are implemented in
operation ¢ without the boundary of the 1/0 crossing in operation ¢ (i.e. a non-workable
state should have been placed after the influence period). The following two scenarios will
explain more clearly why it is incorrect.

Scenario 1: After the implementation of the influence period, the DMM-model continues
with the regular transition probabilities Pg-, when actually a 0 should have appeared based
on the hindcast data. This is because the influence period is a block of 1s, until a 0 appears
in the workability sequence of operation ¢ (the 1/0 boundary of operation ¢). By continuing
with the regular transition probabilities P%, there is a highly likely chance another set of 1s
is going to appear (since the transition probability Pj; is large in many cases). This results
in a too high persistency of workable time steps in the workability sequence of operation g,
and thus less downtime occurs.

Scenario 2: In case the randomly chosen influence period is zero time steps (D(p,q) = 0),
which might occur when operation p and operation g are having different parametric
operational limits. Then there are no workable time steps scheduled for operation ¢ (i.e. in
hindcast data a transition is observed from a workable state in operation p to a non-workable
state in operation ¢). Hence, a non-workable time step should be generated in the workability
sequence of operation gq. However, the DMM-model uses the cross-transition probability
instead to generate a state for operation ¢, which offers again the possibility to generate a
workable time step in the workability sequence operation ¢. Therefore, the probability of
generating a non-workable time step has become too low and the possibility of generating
a 1 too high. This scenario also results in a too high workable persistency and thus less
downtime.

In Section 7.1.1 will be explained how these scenarios are solved. Furthermore, the
theory of the DMM-model describes that the exceedance curves of the influence period are
yearly based, which will result in a too conservative downtime approximation for the summer
months. This can be solved by introducing seasonal or monthly exceedance curves. And, it
is noted that the influence period works only one-way. It implements workable time steps
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in the workability sequence of operation ¢, when the preceding operation p has a stricter
operational limit. Theoretically, this can also be applicable the other way around. In case
the first operation p with a less strict operational limit observes a non-workable time step
and crosses the 0/1 boundary, then operation ¢ with a stricter operational limit cannot be
workable either for a certain period. This introduces the non-workable influence period,
DO(p, q), and is illustrated in Figure 5.2.

Operational limit 1

Operational limit 2

0 T T T T T 1
0 20 40 60 20 100 120

Time step

Figure 5.2: Schematization of the non-workable influence period, where the periods D are defined
by the passages of the 0/1 boundary of operation 1 and the 0/1 boundary of operation 2.

A situation might occur as presented in Figure 5.3, where operation A becomes workable
after 4 time steps and finishes within 3 time steps. The DMM-model would use the cross-
transition probability PijB to generate the first state of operation B as indicated with an
arrow. This time step could be a workable or non-workable state. Given that operation A
was not workable at the 4th time step with an operational limit of Hy; < 3 m, then it is also
known that operation B cannot be workable for a certain period. This means that there is a
non-workable influence period, which could overlap the state that is going to be generated
by the cross-transition probability. The horizontal red bracket indicates the non-workable
influence period.

R
Y a5
Operation A RGB! )
(Hs < 3 m; net = 3 hrs)
Operation B 0000
(Hs < 1 m; net = 3 hrs) —_—
D’(p,q)

Figure 5.3: A hypothetical situation where the non-workable influence period overlaps the state
that is generated by the cross-transition probability.

Cross-transition probability No literature have been found for this concept. The
concept is based on the same idea of the regular transition probabilities, however these
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transitions are in between different operations. Metocean parameters are correlated to each
other, some less distinct than others, but there is a natural correlation. Therefore, applying
the concept of the most likelihood estimation on the ‘cross-transition probability’ makes
sense. As explained in Section 5.1.1, the DMM-model is limited to piece-wise stationarity in
determining the cross-transition probability, which would be inconsistent if the seasonality in
Module A is assigned to non-time homogeneity. In theory, it would be possible to make the
cross transition probability non-time homogeneous. In that case the same kernel bandwidths
should be used, which were predetermined in Module A for each specific operation. As
it is anew concept, the mathematical relation between ]55-'1 and 77? is derived in order to
indicate the cross-transition probability its order of magnitude. Consult Appendix C for the
derivation and the results.

5.1.4 Module D: Coupled operations

Complex projects can consist of coupled operations, and the theory of Module D is correct
for only 1 sequentially coupled operation. However, in reality more than one sequentially
coupled operations are possible too. Multiple sequentially coupled operations apply to for
example on the sequence of decommissioning a topside. Cutting the legs of the topside
(operation A), followed by hoisting the topside (operation B). Subsequently, the topside
is placed on a barge (operation C), followed by sea fastening the topside on the barge
(operation D). Each operation has a different operational limit and no downtime is allowed
in between the operations. In this example operation A, B and C are denoted as coupled
operations.

An important conclusion can be drawn based on the theory of this module. There is
a limit to sequentially coupled operations, due to parallel generation of the workability
sequences of the coupled operations and of the operation that follows. For example, if there
are 2 sequentially coupled operations (A and B), the workability sequences for operation A,
B and C are generated in parallel. This introduces 8 different states (S =0,1,2,3,4,5,6,7)
which are similarly created as in Table 2.3. Hence, 64 transition probabilities (assuming
a lst-order Markov chain) are possible between those states. The number of transition
probabilities can be calculated with O((4"*1)%), where n denotes the number of sequentially
coupled operations and w the chain order. Note that this is a double exponential function,
which means the number of transition probabilities grows quickly as the order or number
of sequentially coupled operations grows (as presented in Table 5.1). For example, just 1
sequentially coupled operation with a 3rd-order Markov chain, results in 4096 transition
probabilities ((42)3). The more transition probabilities the more complex the DMM-model
gets and the higher the parametric uncertainty (Section 3.2). Having too many transition
probabilities would lead to copying the hindcast data, as the transition probabilities tend
to values of 0 and 1. No new information is gained with DMM-model when hindcast data
is exactly copied, making it worthless. The number of sequentially coupled operations is a
fixed number, which is known prior to a project simulation, but the Markov chain order
can be chosen. Therefore, an optimum analysis for the amount of transition probabilities
that can be used to simulate reliable metocean parameters (consult the article of Jimoh
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and Webster [24] for this purpose). In Section 7.1.3 is explained how sequentially coupled
operations can be modelled in the current DMM-model.

Table 5.1: The amount of transition probabilities by varying the Markov chain order (first column)
and the number of sequentially coupled operations (first row), which can be determined by O(4"+1)%,

No. coupled operations
0 1 2
4 16 64
16 256 4096
64 4096 262144
256 65536 16777216

Order
W N

Furthermore, it was already stated in Section 2.7 that Module C is not used when the
coupled and its succeeding operation are simulated. An error could occur as presented
in Figure 5.4. In this example a 1st-order Markov chain is applied and 4 time steps are
generated. The influence period D(A, B) should have been used after the transition 2nd
transition, because operation A crosses the 1/0 boundary and the operational limit of
operation A is stricter than operation B. Hence, operation B should be workable for a
minimum number of time steps. Suppose the least observed influence period is D(A, B) = 2
time steps, as indicated in the figure, which means at least 2 workable states should be
generated. However, in the 4th time step a non-workable state is generated in operation B,
which is possible since a 1st-order is applied. This example shows that unrealistic workability
sequences can be generated with the current approach. The module will be validated in
Section 6.2.4, in order to find out whether these inconsistencies are occurring.

Operation A: 1 1
(H,<1m)

Operation B: "1 1 1
(H, < 3 m)
D(A,B) = 2 hours

Figure 5.4: Hypothetical project simulation of a coupled operation and its succeeding operation,
where the influence period should overlap the a generated state.
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5.2 Model verification

5.2.1 Module A: Seasonality

Piece-wise time homogeneous In this model verification the Iaij (m) and m;(m) are
checked. It is proved that the error described in the concept verification is taking place. It can
be recovered by partitioning the monthly workability sequences per year. Subsequently, the
transitions can be counted and the maximum likelihood estimate ]5Z-j (m) can be calculated
from these summations.

Furthermore, it is proved that in the monthly workability sequences of the DMM-model
the first time step of the next month is included in the array of the current month. The
reason for including this time step is to obtain the last transition of the month, as clarified
in Figure 5.5. This makes sense for the calculation of the monthly transition probabilities,
Pij(m), however the limiting probabilities 7;(m) are changed as well by this inclusion. These
are calculated with the following formula:

N;

_ . . '1
Nt N, Vi,j €S (5.1)

T

Where N; and N; denote the number of observed states per month. This formula is valid

if only the states of the current month are taken into account, but due to the inclusion of

the first time step of the next month a small error is made. The limiting probabilities are

used in both seasonality methods. Separate monthly datasets excluding the first time step
of the next month have to be made to recover this error.

,'H—.]ZH]EI—["P]J
hours 19 200 21 22 '_’.'%i[] 1 2 3 1

Workability sequence -- 0 0 [._-:-- 0 0

Figure 5.5: Schematization of the last transition of the month

Non-time homogeneous In this model verification the influence of the 366 days assump-
tion on the transition probabilities is checked. The calculation of transition probabilities are
correct for leap years. However, for non-leap years it is proved that most of the transition
probabilities are miscalculated, except for the following days:

1Jan + Kernel bandwidth < Correctly computed f’ij < 28Feb — Kernel bandwidth (5.2)

The kernel bandwidth denotes a number of days determined in Module A (as explained
in Section 2.4). The transition probabilities of the days not within the domain of Equation
5.2 are incorrectly computed due to the 366 days assumption. The DMM-model loops
through the 366 days to determine the transition probabilities per day. As a result, data is
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shifted due to the leap-day. Table 5.2 presents in the first column the loop-days and how
they correspond to dates in reality.

Table 5.2: Comparison of the numbered days in the DMM-model and reality

Day in DMM-model Date of leap year Date of non-leap year

58 27-Feb 27-Feb
59 28-Feb 28-Feb
60 29-Feb 1-Mar
61 1-Mar 2-Mar
62 2-Mar 3-Mar

If the transition probabilities are computed on 61st day for example. Then it turns
out that this day corresponds to 25% of the hindcast data with 1-March and 75% of the
hindcast data with 2-March. This applies to all days onwards from the 60th day, due to
the unsynchronized numbering of the dates from the leap-day. Equation 5.2 also includes
the kernel bandwidth, because the kernel bandwidth is used for the calculation of the
transition probabilities. The first few days of January are determined with the last few days
of December because of the kernel bandwidth, which explains the left hand side of Equation
5.2. The right hand side of the equation can be explained similarly.

5.2.2 Module B: Time-dependency

The standard MATLAB code to construct a state-transition matrix for higher order Markov
chains is not verified, but is assumed to be correct. The transition matrix indicates how
many of each transition is observed. It is used as input for the limiting probabilities m;(m),
the monthly transition probabilities ]5ij (m) and the cross-transition probabilities ﬁ’ijq. The
code of the hypothesis tests are concluded to be incorrect (see Section 6.2.2 for explanation
of the hypothesis tests). First the hypothesis test of seasonality has to be conducted for all
operations. Piece-wise time homogeneity can be applied in case none of the hypothesis tests
are rejected, else non-time homogeneity should be used. Secondly, the order test should only
be conducted if the seasonality is determined to be piece-wise time homogeneous. A 2nd
order should be assigned if none of the operations reject the hypothesis test, else a 1st order
should be used. A pseudocode is given of this process in Listing 5.1.
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Listing 5.1: Pseudocode: Redefining the hypothesis-tests

© 00 J O U = W N =

= = = = = = =
S U W N = O

Testl = SeasonalityTest (All operations)
if all(Testl) > «

Seasonality = Piece—wise time homogeneous
else
Seasonality = Non—time homogeneous
Order =1
end
if Order = 1
continue
else
Test2 = OrderTest (All operations)
if all(Test2) > «
Order = 2
end
end

5.2.3 Module C: Linked Markov chains

Influence period Based on several checks it is concluded, that the function for the
influence period is written correctly disregarding the wrong implementation as Section 5.1.3
describes. However, the function is being called for every operation transition for every
year/project that is generated, which is very time consuming. The resulting exceedance
curve is based on the hindcast data, therefore it has to be called just once for every possible
operation combination, before looping in the generation of years/projects to make the
DMM-model more efficient.

Cross-transition probability The same as the influence period holds for the cross-
transition probability, as this function is being called for every year/project that is generated
in case the influence period is not scheduled. The cross-transition probabilities are based on
the (monthly) hindcast data, therefore they have to be determined before looping in the
generation of years to make the DMM-model more efficient.

As aforementioned, the cross-transition probability is determined by piece-wise station-
arity, which includes the error described in Section 5.1.1.

5.2.4 Module D: Coupled operations

The concept verification indicated that multiple sequentially coupled operations cannot be
simulated. This Section addresses to the model verification. It is verified that the current
DMM-model is only able to simulate coupled operations in piece-wise stationarity, and not
in the non-time homogeneous function. Therefore, a more thorough validation is performed
in Section 6.2.4, to find the limitations of this module.
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5.3 Conclusion

Every module has been verified on its theoretical concept and model code. From the
verification it is concluded that several limitations and errors were obtained in the modules,
which are overviewed in Table 5.3. Research question No. 2a: ‘Is the concept and the model
code of the current DMM-model correct, consistent and complete?’ can be unfolded into
three aspects (correctness, consistency and completeness). In terms of theoretical concepts
of the DMM-model only the influence period is verified to be incorrect, the other theoretical
concepts are verified to be correct, consistent and complete. In terms of the model code
the DMM-model is verified to be is not correct, as errors have been found in for example
the determination of the transition probabilities. Neither the model code is consistent, as
for instance the cross-transition probabilities can only be determined monthly stationary.
Nor the model is code is complete, as it is for example limited to a 2nd-order Markov chain.
This answers the research question and the found limitations and errors will be validated or
improved in the next chapters of this thesis.
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Table 5.3: Summarized conclusions per module of the verification process

Comment:

Module A:

Module B:

Module C:

Module D:

Piece-wise time homogeneous:
« The function makes a small error in the derivation of the P;j(m) and m;(m),
which can easily be recovered. The degree of this error is rather small.
e The function is limited to monthly stationarity, while it can be extended to
weekly or seasonal probabilities.
Non-time homogeneous:
o The function miscalculates the transition probabilities Isij(t), due to leap-years.
e The limiting probabilities 7; are based on monthly stationarity, while with the
kernel bandwidth the limiting probabilities can also be determined for each
day.

The hypothesis tests had to be recoded, due to several errors. It needs to be validated
whether higher orders are more accurate. Time-dependency can only be used for the
piece-wise time-homogeneous function, while several hypothesis tests concluded that
the non-time-homogeneous function matches better the hindcast data.

Influence period:

e The influence period is incorrectly implemented, as too many workable time
steps are implemented.

e The exceedance curves are yearly based, which can be too conservative. There-
fore, the seasonal and monthly exceedance curves have to be validated. .

e The influence period works only one-way. It implements only workable time
steps for operation ¢, which follows from preceding operation p with a stricter
operational limit. The influence period can be made two-way, where non-
workable time steps are implemented.

e It is concluded that the influence period can be coded more time efficient.

Cross-transition probability:

e This probability is limited to piece-wise stationarity, while in theory the same
kernel bandwidth, predetermined in Module A for non-time-homogeneous
function, can be used.

o A small error is made in the derivation of the Pg], because of an error in the
piece-wise time-homogeneous function. The degree of this error is similarly
small as the error of Py;(m).

e It is concluded that the cross-transition probability can be coded more time
efficient.

e The model is limited to one sequentially coupled operations, however in practice
more sequentially coupled operations can be possible too.

e The model is limited to piece-wise stationarity for coupled operations. In
order to make the model more consistent coupled operations have to be made
non-time-homogeneous as well.
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6 Validation

In this chapter a software validation is conducted for the DMM-model. As explained in
Chapter 4 the validation is performed after the verification process is finished. As Section 4.2
describes, the validation is divided into three parts: the ‘white-box’, ‘data’ and ‘black-box’
validations. These three validations are analyzed in Sections 6.2, 6.3 and 6.4 respectively.
Three different datasets have been used for the validation, as given in Section 6.1. As a
conclusion, in Section 6.5 an answer will be given to research question No. 3a: ‘Do the
DMM-model and its individual modules perform sufficiently accurate?’. In Chapter 5 several
errors, inconsistencies or limitations have been found and it is studied in this chapter what
the influence is of these findings. With ‘sufficiently accurate’ is meant whether the model
and its modules perform reliable despite the findings of the verification. After the validation
a prioritization of the findings can be made. For example, in case a module does not perform
sufficiently accurate the findings are assigned to a high priority to resolve.

6.1 Input data

The following three datasets are used for validation of the DMM-model in this Chapter.
o ‘Gulf of Guinea dataset’ consist of 23 years (from 1992 — till 2015) sampled with an
interval of 3 hours. Coordinates: 0.5°N 4.5°E
o ‘North sea dataset’: consist of 23 years (from 1992 — till 2015) sampled with an interval
of 3 hours. Coordinates: 57.83°N 0.5°W
o ‘Tasman sea dataset’: consist of 24 years (from 1992 — till 2016) sampled with an
interval of 3 hours. Coordinates: 38.5°S 148°E

65
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Figure 6.1: The H,, T, scatter (left) and the sample autocorrelation (right) for the Gulf of Guinea
dataset.
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Figure 6.2: The H,, T, scatter (left) and the sample autocorrelation (right) for the Tasman sea
dataset.
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Figure 6.3: The H,, T, scatter (left) and the sample autocorrelation (right) for the North sea
dataset.

The datasets are time-series consisting of observations (e.g. Hj, U, T},), which can be
considered as 1, ..., z,. The mean of the datasets is given by:
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The autocovariace is given by:

n—|h|

40 = (regp — D~ 7) (62)

t=1

The autocorrelation’ is determined with the mean and the autocovariance as [3]:

6.2 White-box validation

The white-box validation determines whether the modules of the DMM-model represent the
real world with sufficient accuracy.

6.2.1 Module A: Seasonality

In the verification of Module A an error is found in the piece-wise time homogeneous method
and in the non-time homogeneous method. In this Section it is studied what the influence is
of these errors.

The seasonality effects influence the transition probabilities as explained Section 2.5. In
Figures 6.4a and 6.4b the transition probability Fy; is presented for the piece-wise time
homogeneous and the non-time homogeneous function. The left figure is based on a wave
field in the North sea (Northern Hemisphere) and the right figure is based on a wave field
between Australia and Tasmania (Southern Hemisphere). Both metocean datasets are
subject to an operational limit of Hg < 1.5 m. It is clear that the transition probability of
moving to a workable state is higher in the summer, than during winter on the Northern
Hemisphere. Vice versa, the transition probability of moving to a workable state for the
Southern Hemisphere is higher during winter months of the Northern Hemisphere.

From Figure 6.4 it can be observed that Module A works sufficiently accurate. The
monthly homogeneous method results in a stationary probability for each month and by
using a higher kernel bandwidth A a smoother line throughout the year is obtained. A
stationary probability throughout the whole year would appear if a kernel bandwidth of 365
is chosen. The best proposed fit is determined with a least square cross validation procedure.
The error found in the verification (Section 5.1.1) for the piece-wise homogeneous function
is too small to have a noticeable influence on the results of the transition probabilities. This
also holds for the found error during verification of the non-time-homogeneous function
(Section 5.2.1). The results of the transition probability in Figure 6.4a have a large standard
deviation in July for a kernel bandwidth of 7 days. This can be explained by analyzing the
hindcast data in the specific month. It is concluded that 23-years of hindcast data is still
a relatively small amount of data. If one-day observations deviate from the nearest days,

!The autocorrelation is the correlation of a function with a lagged version of itself. It illustrates how
rapidly the time-series are expected to change [58].
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(a) Northern Hemisphere (North sea) (b) Southern Hemisphere (Tasman Sea)

Figure 6.4: Seasonality effects on both hemispheres presented with transition probability Py;
subject to operational limit Hy; < 1.5 m. Piece-wise time homogeneous method is indicated in blue
and the non-time homogeneous method is performed with different kernel bandwidths h.

and thereby exceeding the operational limit, the transition probability Fy; will decrease
significantly. In this example the found error due to leap-days is not clearly noticeable, but
it is recommended to recover the error anyway.

6.2.2 Module B: Time-dependency

In the verification of Module B it is recommended to validate the effect of time-dependency,
because the current DMM-model is limited to a 2nd-order for the piece-wise time homogeneity
and limited to a 1st-order for the non-time homogeneous method. This Section addresses to
that purpose. In this validation it is studied which seasonality method is more accurate,
and whether a higher order describes the hindcast more accurate than a 1st- or 2nd-order.

Two type of tests are conducted: the homogeneity-test and the order-test. The model
code is verified to be incorrect (Section 5.2.2), therefore it is rewritten according to Listing 5.1
to perform the hypothesis tests. Consult Appendix D for explanation of hypothesis-testing
and consult Appendix E.2 for the results. In this thesis a 95% confidence level (o = 0.05) is

used, which is a general guideline.

Homogeneity test [52] The transition probabilities per week within a month should be
more or less the same, if the assumption of monthly piece-wise stationarity is correct. The
monthly workability sequences are sub-divided into Y = 4 different sub-intervals (weeks per
month). The transition probabilities per week (sub-interval) are tested with the transition
probabilities per month. The following hypotheses are defined:

e Hy:Pyj(y) =PFj(m) Vi,jeSy=1234m=12,..,12
e Hy: sz(y) #* B](m) Vi,jeS,y=1,2,3,4m=1,2,...,12

Where Pj;(y) denotes the transition probability from state i at time t to state j at
t + 1 during subinterval y (week). This transition probability holds for [t,,t, + Ay], where
ty is defined as the first time step in sub-interval y with length Ay. P;;j(m) denotes the
transition probability from state ¢ at time ¢ to state j at ¢t + 1 during interval m (month).
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This transition probability holds for [t,,,t, + Am], where t,, is defined as the first time
step in sub-interval m with length Am. The maximum likelihood estimates of the transition
probabilities during subinterval y or interval m are calculated as follows (where int denotes
y or m):

Nij (znt)
> jes Nij(int)’
The number of transitions from state ¢ at time ¢ to state j at time ¢+ 1 in the (sub)interval

is denoted with N;;(int). The Chi-square test” (or x? test) is used to test the null-hypothesis.
It is defined as follows [4]:

Py;(int) = Vi,j € S (6.4)

Y N (P (1) — Pos ()2
CoY Y Nzg(y)(PZZJDEy()m)R (m)) vijes (65)

y=1jes

The limiting x7 distribution has (n% — 1) - Y degrees of freedom (u is the order of the
chain). Summing over all x?, the total test statistic x? has a limiting x? distribution with
(n¥ —1)-Y - n% degrees of freedom. A small number (10719) is added to the number of
transitions for smoothing to avoid ]% = 0. If the null-hypothesis is true, the hindcast data
is considered to be piece-wise time homogeneous. Alternatively, the non-time homogeneity
is assigned to the DMM-model.

Order-test [4] The transition probabilities for a Markov chain order u and a Markov
chain order v+ 1 should be more or less the same, if the assumption of a Markov chain order
u is correct. In other words, the last state before the u states should not have an influence
on the transition probabilities.

e Hy: The Markov chain order is of order u, implying that P;; j = P; ki, Vi € S (the
workability sequence ij...k covers the last u 4 1 states and the workability sequence
j...k covers the last u states, [ is the next state)

e H;: The Markov chain is not order u, hence P;; 1 # Pj. u

A y2-test is used to test the null hypothesis. Higher order chains are only applicable for
piece-wise stationarity, therefore this test will only be performed if the homogeneity test
proved that the hindcast data is piece-wise time homogeneous. Furthermore, in [45] it is
concluded that after order 6, not much more knowledge is gained and using an even higher
order chain would lead to an exact replica of the original data. Therefore, the order test is
limited to the 6th-order. The maximum likelihood estimate of P;; i for a stationary chain

is defined as:
b= Nij. ki
7.kl — x7x
Nij...k

Vi, g, .kl €S (6.6)

2A chi-square test compares two variables in order to determine if they are related.
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With:

Sk => Nijw, Vijkes (6.7)
les

The x? statistic for the null hypothesis is defined as:

N (P g — Pi )2
¢ =3 Mol 2 Bt gy e s (6.8)
icS 1es Pj. ki
With: N
Pin= Lies Nij..i Vi, j,...kesS (6.9)

* ;
2ies Vi w

The limiting x? distribution has (ns — 1)? degrees of freedom. Summing over all x?, the
total test statistic x? has a limiting x? distribution with (ns — 1)2 - n% degrees of freedom
(where u is the chain order). A small number (10719) is added to the number of transitions
for smoothing to avoid ]%j = 0. If the null-hypothesis is true, then the workability sequence
has a Markov chain order wu.

For comparison purposes, another test statistic is analyzed; the log likelihood ratio test
statistic [52], which is given by:

—2n(A) =2 > Ny u(n(Pyj. ) — (P 1)), Vij,..kleS (6.10)
1€S,jES

This test statistic has x? distribution with (n%*! —n%) . (ng — 1) degrees of freedom.

Conclusion In Appendix E.2 the results of the hypothesis-tests are presented and
summarized in Tables 6.1 and 6.2. A project simulation in the DMM-model is ran only in
the homogeneous mode or only in the non-homogeneous mode. To run it in the homogeneous
mode, all of the homogeneity hypothesis tests must be fulfilled (for all operations for all
months). In the results it can be noticed that only one operation (Hs < 2.5 m) in the Tasman
Sea can be considered piece-wise time homogeneous (PWTH) and all of the other operations
are non-time homogeneous (NTH). A (large) marine project could consist of 25 different
operations. Therefore, it will be unlikely the homogeneity tests result in the piece-wise time
homogeneous mode for larger projects. However, for smaller projects consisting of only a few
operations, there is a chance that the operation(s) is/are piece-wise homogeneous. In that
case the order test has to be performed as well, since the DMM-model is able to simulate
2nd-order Markov chain with the homogeneous mode. A handful of order-tests resulted in
an accepted hypothesis, which means even higher order are needed in case the hypothesis
was rejected. The rejected tests are denoted with a - in Table 6.2. All of the order-tests
have to be fulfilled to run the DMM-model with a 2nd-order Markov chain. In other words,
it is not valid to run Operation A with a 2nd-order and Operation B with a 1st-order. It
can be concluded for the used operations and datasets, that the DMM-model will always be
more accurate with a 2nd-order than a 1st-order Markov chain.
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Table 6.1: Summarized results of the seasonality (chi-squared) hypothesis tests, where NTH means
non-time homogeneous and PWTH means piece-wise time homogeneous.

‘Hsglm Hy;<2m Hy<25m U<10m/s T,<7s H;<2m;U <10m/s Hy<2m;T,<Ts

Gulf of Guinea NTH NTH NTH NTH NTH NTH NTH
North sea NTH NTH NTH NTH NTH NTH NTH
Tasman sea NTH NTH PWTH NTH NTH NTH NTH

Table 6.2: Summarized results of the order hypothesis tests, where the lowest order is reported in
case the test was not rejected. The - denotes that all tests were rejected for orders 1 to 6.

‘Hsglm Hy<2m Hy<25m U<10m/s T,<7s Hg<2m;U <10m/s H,<2m; T, <7Ts
Chi-squared test

Gulf of Guinea - - 5 2 - - -

North sea - - - - - - -

Tasman sea 2 4 6 - 2 - 2
Log likelihood ratio test

Gulf of Guinea - 6 5 2 3 6 3

North sea - - - - - - -

Tasman sea 2 4 3 - 2 - 2

It is expected that most of the future projects will be performed with non-time homogene-
ity and first-order based on the hypothesis tests, certainly the complex projects consisting
of multiple operations. In case the seasonality test results is accepted, it is expected that
the order-test will almost always result in a higher Markov chain order. Furthermore, it
is recommended to study the possibility to run a project simulation with each operation
assigned to its best test results. In this thesis, a project simulation will be run with a
predetermined Markov chain order and predetermined homogeneity.

The likelihood ratio test statistic resulted in a better description of the workability
sequences with a higher order chain for more operations. This is due to the use of the
natural logarithm instead of squaring the differences. The likelihood ratio test statistic is
preferred for the order test, because the differences in ijkl and ]A%j,_.kl are too significant to
square them.

Remarks In this thesis solely the chi-squared and the log likelihood ratio test statistics
are used. It is recommended to study the influence of different test statistics, considering the
differences in the two used statistics. Alternative test statistics are the Akaike information
criterion (AIC) [54], the Bayesian information criterion (BIC) [25], the exact test [12] and
the ¢-divergence test statistic [33]. Furthermore, in this thesis add-one smoothing is applied,
where one-count is added to each IV;; before calculating ]Sij [38]. The reason for that is that
in the metocean hindcast data some transitions might not have been observed, while they
could occur in reality. This is called the zero-count problem or the sparse data problem.
There are alternative smoothing techniques: back off smoothing, Bayesian smoothing [38]
or Good-Turing smoothing [30]. In this thesis only the transition probabilities are used for
both hypothesis tests, while the limiting probabilities can also be used.
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6.2.3 Module C: Linked Markov chains

Module C will be validated with the operations given in Table 6.3.

Table 6.3: The operations used for the white-box validation of the influence period and the
cross-transition probability (Module C).

Operation No: Limit:
1 H; <1m
H;, <2m
H; <25m
U <10 m/s
T,<7s
Hs; <2m; U <10 m/s
Hy <2m;T,<T7Ts

N O TR W N

Influence period In the verification (Section 5.1.3) it is concluded the concept of the
influence period is not correctly implemented. This conclusion is disregarded for the white-
box validation. The white-box validation focuses solely on the obtained exceedance curves.
In Section 5.2.3 it was concluded the MATLAB code is written correctly for that purpose.
The yearly exceedance curve of D for the North sea dataset is validated in Appendix E.4.
The obtained figures show the expected results. The closer two operational limits (p and q)
are to each other, the shorter the influence period D(p, q) gets. In case operational limit ¢ is
stricter than operational limit p, there is no influence period. From the figures it can be
noted, that some exceedance curves do not start at a probability of 1. This happens when
operational limits p and ¢ are assigned to different parameters (e.g. D(Hs < 2.5 m, U < 10
m/s)). Hence, the DMM-model creates correctly the exceedance probability curves, but the
implementation of the influence period goes wrong. In Section 7.1.1 the influence period
will be rectified.

Cross-transition probability In the verification (Section 5.2.3) it was concluded the
MATLAB code of the cross-transition probabilities contains an error. In Appendix E.5 the
cross-transition probability P} (i.e. from a non-workable state in operation p at time step ¢
to a workable state in operation ¢ in time step ¢ + 1) is presented throughout the year with
monthly stationarity. In the North sea (Figure [£.6) this probability is larger during the
summer months, because of calmer weather conditions (seasonality). The cross-transition
probability Py in the Gulf of Guinea is significantly larger (Figure F.7), than the North
sea. This can be explained by its swell region which is calmer than the wind-waves of the
North sea. Besides, the seasonal phenomena are less present considering the location is
approximately at the equator. Also, the cross-transition probability P} in the Tasman sea
(Figure £.6) is large, due to calm weather conditions.

Furthermore, it can be noticed that the cross-transition probabilities decrease in case
the limits of operations p and ¢ are close to each other. This can be explained by the
following example: if operation p with operational limit Hy < 1 m is non-workable at t, the
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cross-transition probability will be larger if we move to a workable state of operation ¢ at
t+ 1 with operation limit of Hy < 2 m, instead of moving to a workable state of an operation
with an operational limit of H; < 1.5 m. Note that in this example the operational limit of
the same parameter is less strict, which will not happen in the current DMM-model with
the cross-transition probability because of the influence period. However, the logic remains
the same when two parameters are considered which differ from each other.

It is concluded that the cross-transition probability is well modelled in the DMM-model.
And, the error found in the verification phase is of small significance that it is unnoticeable
in the results.

6.2.4 Module D: Coupled operations

In the verification it was concluded that multiple sequentially coupled operations could not
be simulated. Nor can coupled operations be simulated in the non-time homogeneous method.
Therefore, it is validated in this Section what the influence is of these findings. Several
hypothetical projects will be simulated in order to find the limitations (Table 6.4). First, a
project is simulated without a coupled operation 1st-order and piece-wise time homogeneous)
to find out whether the DMM-model simulates the set operations correctly. Subsequently, the
same operations with non-time homogeneity with a coupled operation is simulated, because
in the verification (Section 5.2.4) it was concluded this was not possible. After confirming
this conclusion, only piece-wise time homogeneous projects will be simulated with each a
different module adjustment. The modules are adjusted by changing the parametric values
of the operational limits. It will be validated what the effect is on the coupled operations by
varying the influence period (No. 3), cross-transition probability (No. 4), 2nd-order Markov
chain (No. 5) and multiple coupled operations (No. 6). Table 6.4 indicates which scenarios
succeeded during this validation.

Table 6.4: The simulation of 6 small hypothetical projects, wherein the other modules are adapted.
Abbreviations: O = Order, PWTH = Piece-Wise Time Homogeneous, NTH = Non-Time Homoge-

*:

neous, Coupled operation
No. Settings: Operations: Succeeded:
1. No coupled; 1°* O; PWTH (1) H;<1.5m, (2) T, <7s, (3) U <9 m/s v
2. 1 coupled; 15t O; NTH (1*) Hy<15m, (2) T, <7s,(3) U <9m/s X
3. 1 coupled; 15 O; PWTH  (1*) Hy < 1.5m, (2) Hs <2 m, (3) U <9 m/s X
4. 1 coupled; 15 O; PWTH  (1*) Hy<1.5m, (2) T, <7s,(3) U <9 m/s X
5. 1 coupled; 2" O; PWTH  (1*) Hy < 1.5m, (2) T, <7s, (3) U <9 m/s X
6. 2 coupled; 15 O; PWTH  (1*) Hy <1.5m, (2¥) T, <7s, (3) Hs <1m/s X

From the 6 performed tests only the first one succeeded, where no coupled operation
was included. The other tests included a coupled operation with different settings of the
Modules A, B and C. These resulted in a crash or computational errors were observed in
the simulation. The observations are explained below:
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No. 1 Without coupled operations the DMM-model works correctly.

No.

2

It is observed that the non-time homogeneous probabilities cannot be determined for
more than 2 states. Coupled operations have 4 states (S = 1,2,3,4), because the
coupled operation and the succeeding operation are bundled, as explained in Section
2.7.

The project may not encounter downtime between operation 1 (coupled) and operation
2. The simulation, however, continues when operation 2 is finished regardless what
operation 1 has done.

Same error as in No. 3. In some tests the DMM-model did not recognize two
sequentially workable net durations which were generated.

The initial state cannot be generated, hence the simulation crashes. A 2nd-order
Markov chain with piece-wise time-homogeneity and a coupled operation will always
result in a crash (it does not matter if there is influence period or cross transition
probability in the project).

Same error is made as in No. 3 for the 1% operation. Furthermore, the DMM-
model should generate 8 states (S =1,2,..,8) when there are 2 sequentially coupled
operations. The DMM-model can create 4 states maximum, hence a second error is
observed at the start of operation 3.

Based on the preceding observations it can concluded this module does not work at all.
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6.3 Data validation

The metocean data (‘hindcast’ data) near project locations used for the DMM-model and
HADDOCK is obtained from the in-house global offshore database. These datasets are
already validated to ensure the data is clean, correct and useful. The measured metocean
parameters are not validated in this thesis. Nor are the net durations and operational limits.
These are deterministic, while in practice this does not necessarily have to be true. An
operation can be executed longer or shorter than the predefined net duration. Also, a vessel
captain can decide with his own judgment or experience whether the operation will be
executed or not. Therefore, the focus of this Section is addressed to the quantity of the
data. Questions arise like ‘How much input data is needed? How many years are needed to
generate?’. The answering of these questions are closely related to uncertainty assessment,
as Section 2.9 describes that the simulation uncertainty decreases by increasing the sample
size n (number of generated years). In this data validation the focus is put on the number of
output years, because the number of input years is fixed. Two datasets (North sea and Gulf
of Guinea) from Section 6.1 and four different operational limits (Hs < 1 m, Hs < 2.5 m,
T, <6sand U <5 m/s) are considered. From the datasets and the operational limits, the
workability sequences are obtained. Both datasets consist of 23 years of hindcast data, which
are augmented to 1000 years. The first state is determined with the limiting probability
(Equation 2.9) and all of the other states are determined with the transition probabilities
(Equation 2.3). The workability percentage and the persistency are assessed in the following.

Workability percentage From the 1000 generated years the workability percentage is
determined. Subsequently, the generated 1000 years are divided into bins of 1, 10, 15, 20, 25
and 100 years. From these bins the workability percentages are determined (Equation 1.1).
In Figure 6.5 one of the results is presented as an example, and in Appendix E.6 the other
box plots are shown of the results.
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Figure 6.5: The workability percentage of the North sea dataset subject to an operational limit
H, <1 m for non-time homogeneity and 1st-order measured for different bins of years. The whiskers
of the box plot indicate the 95th percentiles and the red cross are its outliers.

The smaller the bin size, the more variation in the workability percentage, however the
variation decreases quickly with a larger bin size. The y?-test is used to analyze the variation
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around the mean. Considering the small differences between piece-wise time homogeneous
and non-time homogeneous methods, only the piece-wise time homogeneous method is used
in the following. The following hypotheses can be defined:

« Hy: Tr(b)=TF VieSb=1,.,B
« H:Tr(b)#£TF VieSb=1,.,B

Where 77 (b) is the number of observed time steps with state ¢ in generated bin b, and T} is
expected number of time steps with state . The expected number of time steps is obtained
by multiplying the workability percentage of the original dataset by the total number of
time steps in bin b. The x? statistic to test the hypothesis Hy is defined as follows:

O (T (0) - T))?

=YY e, vies (6.11)

b=1ieS i

In case the null-hypothesis is true, a limiting x? distribution can be obtained with (ns — 1)n;
degrees of freedom. Where ng and n; denotes the number of states and the number of time
steps respectively. From this test it can be concluded whether the number of generated years
is enough to preserve the workability percentage of the original dataset. If the null-hypothesis
is rejected, it can concluded more years need to be generated. The results of the y?-test are
presented in Table 6.5, and conclusions are drawn in the conclusion Section.

Additionally, the root mean square error (RMSE) is used to analyze the variation around
the mean, which is defined as follows:

B i \2
RMSE; = \/ Zb:l(Wg W) (6.12)

Where, iji indicates the workability percentage per bin and W; indicates the mean of
the workability percentages of the bins. The 1 year bin (7) has 1000 bins (B) in the 1000
generated years. Wb’i indicates the workability percentage for every 1 year and W; indicates
the mean of these workability percentages. The results of the RMSE are presented in Table
6.6.

Table 6.5: The results of the x? statistic test for the North sea dataset, with the homogeneous
method and 1st Markov chain order. a-value of 0.05 is used for the test.

Dataset: North sea
Operation 1 year 10 years 15 years 20 years 25 years 100 years 1000 years

Hi<1Im p<a P>« P>« P>« P>« P>« P>«
Hs:<2bm p<a p>a« P>« D>« D>« D>« D>«
T,<6s p <« P>« P>« P>« P>« P>« P>«

Persistency L, ..., L, are the lengths of consecutive 1s in the workability sequence and
the ECDF of persistency is computed as Equation 2.14 by replacing X; with L;. The
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Table 6.6: The results of RMSE for the workability of North sea and Gulf of Guinea datasets are
given. Solely the homogeneous methods are regarded, with 1st-order Markov chain.

Dataset: North sea
Operation 1 year 10 years 15 years 20 years 25 years 100 years
Hy;<1m 0.0214 0.0070 0.0054 0.0050 0.0043 0.0020
H; <25m 0.0260 0.0074 0.0060 0.0048 0.0043 0.0015
T,<6s 0.0230  0.0070 0.0054 0.0051 0.0043 0.0025

Dataset: Gulf of Guinea
Operation 1 year 10 years 15 years 20 years 25 years 100 years
H;<1m 0.0118 0.0038 0.0028 0.0025 0.0017 0.0011
U<5m/s 0.0160 0.0047 0.0042 0.0037 0.0034 0.0015

corresponding confidence bands are computed as Equation 2.16. In Appendix E.G the
graphs of the cumulative probability functions are presented of the results. The confidence
bands are significantly larger of the original dataset compared to the generated datasets.
A larger dataset means more workability windows, and therefore a larger sample size n is
obtained which reduces the confidence bands (Equation 2.16). For quantification purposes,
the two-sample Kolmogorov-Smirnov test is used to analyze the differences between two
cumulative distribution functions, which is defined as follows:

Dpm = sup |Fyp(z) — Fom ()], (6.13)
T

Where Fi ,, and F3 ,, are the cumulative distribution functions of both samples. The smaller
the distance D, ,,, the better the persistency is preserved. To test whether the two samples
are drawn from the same distribution (null-hypothesis), the following formula is defined [43]:

[ nm 0.11
n—+m

Where,
Qrs(\) =23 (~1)/ le 2™V (6.15)
j=1

With limiting values,
Qrs(0) =1 Qrs(o0) =0 (6.16)

Figure 6.6 presents the persistency curves of the original hindcast (HADDOCK) dataset,
the 1000 years generated piece-wise time homogeneously and the 1000 years generated non-
time homogeneously with the DMM-model. The persistency curves for the other operations
are given in Figures .13 - E.15 in Appendix E.6. The confidence bands are disregarded. In
Table 6.7 the distances between the three datasets and the results of the test statistics are
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given. The big difference between HADDOCK and the DMM model in the figure below can
be explained by the low workability percentage (20%) with this operational limit (Hs <1
m). The result of a low workability percentage is that a low number of persistency samples
(blocks of consecutive 1s in the workability sequence) is obtained. Hence, an increase in
probability is easy obtained when certain persistency blocks are more frequently observed.

) . . . . . . . . ]
0 10 20 30 40 50 60 70 80 90 100
Persistency duration [h]

HADDOCK —DMM-PWTH—DMM-NTH

Figure 6.6: The cumulative distribution of persistency for the North sea subject to an operational
limit of H; <1 m and 1st-order and both homogeneity.

To conclude how many years are needed based on persistency purposes, the two-sample
Kolmogorov-Smirnov test is used on multiple different output years (10, 20, 50, 100, 1000
years). The generated ECDFs and the lower band are used in Equation 6.13 to determine
the maximum distances. This maximum distance should be sufficiently small enough
(approximately 0.05 based on Figure 2.7), to conclude how many years are needed based on
persistency. It is not expected to have large differences between piece-wise time homogeneous
and non-time homogeneous methods, therefore the non-time homogeneous method is analyzed
only and just 1 with the homogeneous mode. In Table 6.8 the test results of are presented,
where the * denotes the homogeneous method. Conclusions from this study are drawn in

the conclusion Section.

Table 6.7: Statistic test results of the two-sample Kolmogorov-Smirnov test, with the datasets of
the North sea and the Gulf of Guinea for several operational limits. 1st Markov chain order is used
for all operations. The significance level is set on 5%. Abbreviations: PWTH = Piece-Wise Time
Homogeneous, NTH = Non-Time Homogeneous, O = Original

Dataset: North sea Dataset: Gulf of Guinea

n, m Hy<lm H;<2bm T,<6s|Hs<1lm U<5b5m/s
PWTH, NTH D, 0.0107 0.0082 0.0070 0.0101 0.0031
p-value p <« p <« p <« p <« P>«
O, NTH Dyom 0.7754 0.0293 0.0887 0.7020 0.0570
p-value p <« p <« p <« p <« p <«
O, PWTH Dy 0.7728 0.0232 0.0830 0.7062 0.0590
p-value p<L o P>« p <« p <« pL
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Table 6.8: The maximum distances of the two-sample Kolmogorov-Smirnov statistic test, with the
datasets of the North sea and the Gulf of Guinea for several operational limits. Non-time homogeneity
and 1st Markov chain order is used for all operations, * indicates homogeneous.

Dataset: North sea Dataset: Gulf of Guinea
Hy<1lm H;<25m T,<6s| H;<1m H;<1lm U<5m/s
10 yrs 0.0469 0.0470 0.0355 0.0348 0.0351 0.0248
20 yrs 0.0332 0.0334 0.0252 0.0246 0.0249 0.0175
50 yrs 0.0213 0.0210 0.0159 0.0157 0.0157 0.0110
100 yrs 0.0152 0.0149 0.0113 0.0111 0.0111 0.0078
1000 yrs 0.0048 0.0047 0.0036 0.0035 0.0035 0.0025

Conclusion  Workability percentage: It is noticed that the differences between piece-wise
time homogeneous and non-time homogeneous are small, meaning that the workability
percentage is presented well for both methods. Furthermore, it is remarkable that there are
more outliers below the median for the North sea dataset than above the median, and for
the Gulf of Guinea dataset vice versa. The North sea tends more to stormy weather, causing
lower workability percentage. While, in the Gulf of Guinea a calmer weather is more likely
to be expected, hence higher outliers in the workability percentages are observed. Based
on the x2-test and the RMSE it can be concluded that 10 years is enough to preserve the
workability percentage of the original dataset.

Persistency: The differences between piece-wise time homogeneous and non-time ho-
mogeneous methods are very small. However, the differences between the original and
the generated datasets is remarkable, specifically when the workability percentage is low
(less persistency samples are present). The hypotheses tests are rejected, meaning that the
distributions are different. The generated datasets overestimate the persistency compared
to the original dataset till a cumulative probability of approximately 0.8. An overestimation
of persistency would lead to less downtime of the project consisting of longer net durations.
However, this is partly compensated by the same overestimation of persistency of non-
workable hours, leading to longer downtime durations. The same cumulative distributions
are obtained for the different output years (10, 20, 50, 100, 1000 years), which means
that generating 10 years is enough already (keep in mind that more years would make it
more accurate). However, the DMM-model is not able to generate the same persistency
distribution as observed in the hindcast data, resulting in rejections of the hypothesis tests.
The influence of it in terms of downtime is studied in Section 6.4.
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6.4 Black-box validation

In the white-box validation (Section 6.2) it is observed that the coupled operations are not
working correctly, therefore Module D is disregarded in the black-box validation and thus
only Modules A, B and C will be used. Different geographical locations, different projects
and different data are regarded in the following Sections to validate the DMM-model.

6.4.1 Different geographical locations

In this Section the same project as analyzed in Rip [45], will be validated on other geographical
locations in order to study the influence of different hindcast datasets.

Project The project is called West of Duddon Sands (WoDS). The project is delimited to
the foundation installation of the monopiles (MPs) and the transition pieces (TPs) with the
Pacific Orca (PO) only. The planned cycle of operations with the corresponding operational
limits are given in Table 6.9. This cycle was repeated 17 times to install 78 monopiles and
transition pieces, mostly 5 sets per trip (cycle) were installed. Operation 4a used to be
a coupled operation, but in this project it is considered uncoupled as it is proved not to
work correctly in Section 6.2.4. Warranty windows shorter than the net durations are not
considered in the DMM-model, because this crashes the DMM-model and simulating without
them does not affect the results. Operation 3b and operation 5 are not considered, because
operation 3b has no operational limit and operation 5 requires the water depth which is not
measured.

The net durations vary per cycle in the executed project, as they are not deterministic
in reality. This is due to difference in number of MPs/TPs to be installed, a learning curve,
and other random variations. Table 6.9 shows the average net duration of each operation of
the 4 considered cycles.

Table 6.9: Planned installation cycle and operational limits on Pacific Orca with the warranty
windows, extracted from Rip [45].

No. Description Operational limit Warranty Net
window  duration
1  Load up to 5 MPs and TPs from the quay U<12m/s - 19 h
wall onto installation vessel
2 Sail to project site & jack-up H; <25m/sU <13 m/s 12 h 19h
Installation (2-5 x per cycle)
3a Handle MP and place in gripper frame H;<1mU<13m/s 6h 4h
3b Pile MP & remove hammer - - 4 h
4a Place TP H; <15mU<13m/s - 4h
4b Grout TP Hs<2m 24 h 3h
5 On-site relocation & jack-up 10 m keel clearance - 6 h

6 Sail back to port H; <25mU<13m/s 12h 17h
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Settings
o Locations: The North sea, Gulf of Guinea and Tasman sea (datasets in Section 6.1).
e Seasonality: non-time homogeneity
e lst-order
e 1000 years to be generated
e Start date: January 1

Results The downtime distributions of the 1000 generated years (DMM-model) and the
original dataset (HADDOCK) are compared with each other for each location. In Figures
6.8 - 6.10 the cumulative probability curves are presented and the confidence bands are
based on Equation 2.16. It is observed that the downtime distribution for the DMM-model
deviates significant from the HADDOCK simulation in the Gulf of Guinea (Figure 6.8). The
longest downtime duration of HADDOCK is even longer than all downtime durations of
the DMM-model, which is statistically unlikely. Downtime in the Gulf of Guinea is almost
only due to operation 3a (Hs <1 m, U < 13 m/s). In the data validation it is observed
that the persistency of this operational limit deviated between both models significant
as well (Figure 6.7). It is concluded in Section 6.3 that this deviation is due to the low
workability percentage of the specific operation, which results in a low number of persistency
samples. Thus, deviations in persistency are more likely to occur. This persistency deviation
explains the downtime deviation between HADDOCK and the DMM-model. The other two
locations (North sea and Tasman sea in Figures 6.9 and 6.10 respectively) show that the
downtime distribution of the DMM-model follows the downtime distribution of HADDOCK
reasonably well. In the data validation it is observed that the persistency distribution
for these locations were better preserved (as these operations have a higher workability
percentage). Therefore, the downtime distribution is more trustworthy for locations where
the persistency distribution is more preserved. Furthermore, the downtime distributions of
the DMM-model are above the downtime distributions from HADDOCK. In Section 5.1.3
it is concluded that the influence period is incorrectly implemented; the approach is too
optimistic, resulting in less downtime.
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Figure 6.7: The cumulative distribution of persistency for the Gulf of Guinea subject to a set
operational limit: Hy; < 1 m with 1st-order and both homogeneities.
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Figure 6.8: The cumulative probability distributions of the downtime on the Gulf of Guinea dataset
with start date January 1. The duration is computed with HADDOCK and with the DMM-model
simulated 1000 years.
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Figure 6.9: The cumulative probability distributions of the downtime on the North sea dataset
with start date January 1. The duration is computed with HADDOCK and with the DMM-model
simulated 1000 years.
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Figure 6.10: The cumulative probability distributions of the downtime on the Tasman sea dataset
with start date January 1. The duration is computed with HADDOCK and with the DMM-model
simulated 1000 years.
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6.4.2 Different project

Project So far only the Hg and U have been modelled with the DMM-model.

This Section validates whether other meto-
cean parameters are correctly simulated.
For that purpose the hypothetical project
in Table 6.10 is created. It is the instal-
lation of MPs and TPs, but instead of a
gripper frame, a seabed template is used
for the installation. Besides the Hy and U,
there have also been set limits to T}, and v
(which indicate the peak wave period and
the surface current velocity respectively).
In some cases combinations of H,,T}, are
set, like operation 3 is limited to (Hs < 2
m, T, < 7s), (Hi <15m, T, <9s).
This is visualized in Figure 6.11 with a
red line, where every point between this
line and the axes is workable.

Table 6.10: Planned installation cycle

0 5 10 5 20
Tp [s]

Figure 6.11: H,,T,-scatter of a dataset that has
been collected at the North sea (53.91°N,2.15°F).
The red line indicates a combination of operational
limits: (Hs <2m, T, <7s), (H; <15m, T, <9
s).

and operational limits of a hypothetical project.

No. Description Operational limit Warranty window Net duration
1 Sailing to site Hy,<3m - 17 h
9 Boom up and prepare lifting Hs; <2 m,U <12m/s, v =1m/s ) 1h

template m
3 Connect template + lifting + (Hs <2m, T, < 7s), (Hs < 1.5 m, ) ih
position on seabed T,<9s),U<12m/s,v=1m/s
Connect upending-lifting tool
4 to MP + upending MP + Hy <2m, T, <75, U<12m/s, 8h 2h
v=1m/s
place on seabed
5 Place hammer on MP, piling, Hy<15m, Ty <9s, v=1m/s ) ih
place hammer on deck P
6 Lift and install anode cage Hy; <15m 3h 2 h
Lift TP on MP + change
7  rigging (spreader bar) + final U<10m/s,v=1m/s 4h 2h
bolting
8 Retrieving template (Hs S;pH;, 9Tps)%’U7 2’1(2[{;2 1.5 m, - 1h
9 Sailing back to port H;<3m - 17 h
Settings

o Location: Another North sea dataset collected at (53.91°N,2.15°E), consisting of 23

years (from 1992 till 2015) sampled
e Seasonality: non-time homogeneity
e lst-order
e 1000 years to be generated

with an interval of 3 hours.
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o Start date: January 1

Results The downtime distributions of the 1000 generated years (DMM-model) and the
original dataset (HADDOCK) are compared with each other for the North sea location. In
Figure 6.12 the cumulative probability curves are presented and the confidence bands are
based on Equation 2.16. The transition probabilities are determined similarly as Hg and
U and the simulation with these transition probabilities occurs correctly. It is remarkable
that the DMM-model curve is again above the HADDOCK curve. The optimistic influence
period (as explained in Section 5.1.3) and the overestimation of the persistency (see Figure
[.19) would be a logical explanation for this. Longer persistency durations are more likely
to occur in the DMM-model, than they occurred in reality (HADDOCK). Both explanations
lead to less downtime in the project simulation.

il
e v
[=2] ~1 o © —

0.5

Cumulative probability
o o o
MW e

o
=

1 1
0 5 10 15 20
Downtime duration [days]

=}

—HADDOCK Il95% UB/LB —DMM Il95% UB/LB

Figure 6.12: The cumulative probability distributions of the downtime on the given North sea
dataset with start date January 1. The duration is computed with HADDOCK (original) and with
the DMM-model simulated 1000 years.
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6.4.3 Different data

This Section focuses on the input of different data, as a harmonic sinusoidal motion and
1000 output years of the DMM-model are used as input data in the DMM-model.

Harmonic sinusoidal motion A harmonic sinusoidal motion has been created repre-
senting the wave height (H) and three different operational limits have been set: Hy < 1.5
m, H;, <2 m and Hs; < 2.5 m. This is schematized in Figure 6.13 for only 24 hours of the
23 years (January 1, 1992 - December 31, 2014) with a mean at Hs = 2 m. With a 2-hourly
time step, the workability sequences per operational limit are shown in Figure 6.14.
It can be noticed that

the less strict the opera- 3.5

tional limit, the more work- 3

able time steps are obtained
in the workability sequence
and hence a longer work-
able persistency period is
achieved. The harmonic si-
nusoidal motion is constant

o
(=

Wave height [H,]
S S

(==}

throughout all the 23 years, 0 5 10 15 20

hence the workability per- Time [h]

centage and persistency are "7 Operational limit 3 - - —-Operational limit 2
constant. The workability Operational limit 1 Harmonic Sinusoidal Motion

percentage and the persis-
tency of the hindcast dataset
are presented in Table 6.11.
From a harmonic sinusoidal
motion it can be predicted how it will propagate, because it will remain constant and
continuous.

Figure 6.13: Wave height modelled as a sinusoidal harmonic
motion with three operational limits schematized for 1 day.

However, the
DMM-model  intro- hours 0 2 4 6 8 10 12 14 16 18 20 22 0
duces randomness, Operational limit 1 FRORSORORN 0] m
since DMM-model is Operational limit 2 - 0 0 0 O
based on a Markov Operational limit 3 -- 0 0 O

chain Monte Carlo
(MCMC) procedure. Figure 6.14: 2-Hourly measured workability sequences per operational
This causes the persis- limit presented for 24 hours corresponding to Figure 6.13.
tency to change. The
hindcast dataset subject to the 3 operations is augmented to a 1000 years. From these 1000
years the workability percentage and persistency values are obtained, which are presented in
Table 6.11 and Figures 6.15 and E.20a - E.21.

It can be concluded that the workability percentage is well preserved by the DMM-model,
however from Figure F.22 it can be noticed that the variation is still significant when smaller
bins are generated. Furthermore, it can be concluded that the persistency is completely
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changed. The 1000 years are generated with a 1st-order Markov chain, which results in the
transition probabilities of Equation 6.17 of Operation 1 of the harmonic sinusoidal motion.
Hence, shorter and longer (non)-workability windows can be created (i.e. a persistency
distribution is obtained). By increasing the Markov chain order it is expected that the
persistency distribution is more like the original one. For instance, if the 13th-order Markov
chain for Operation 2 of the harmonic sinusoidal motion is considered, then the DMM-model
would create exact copies of the hindcast data. Hence, the new persistency distribution will
be the exact same as the hindcast persistency distribution.

1 _
P =

(6.17)

0.9413 0.0587
0.1429 0.8571

Table 6.11: The workability percentage and the persistency presented of the harmonic sinusoidal
motion subject to the three operations of the hindcast data (HADDOCK) and only the workability
percentage of the 1000 years generated with the DMM-model.

HADDOCK DMM-model
Workability Persistency [h] Workability percentage
percentage
Operation 1: H; < 1.5m 29.17% 7 29.08%
Operation 2: H, <2m  54.17% 13 54.27%
Operation 3: H; <2.5m 70.83% 17 70.94%
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Figure 6.15: The persistency duration distribution of the original (hindcast) and DMM-model
generated 1000 years datasets are presented for operation 2 (limit of Hy < 2 m).

1000 years So far all of the persistency distributions have deviated from the hindcast
persistency distribution, some less distinct than other. In this Section 1000 years generated
by the DMM-model will be used as input for the DMM-model. From these 1000 years the
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transition probabilities will be determined and DMM-model will regenerate 1000 years based
on these probabilities. The following 1000 generated years will be input for the DMM-model:

o H; <1 m subject to the Gulf of Guinea dataset (as Figure F.13a)

o H, <1 m subject to the North sea dataset (as Figure [.14a)

The regeneration will be done with 1st-order Markov chain for piece-wise time homogene-
ity. The results of the cumulative distribution functions (CDF) are depicted in Figure 6.16.
The operations with the biggest deviation are used in validation (operational limit Hy <1
m in the North sea and Gulf of Guinea). The green line is based on the hindcast dataset
(23 years). The CDF of the 1000 years generated based on the probabilities of the hindcast
data deviated significantly (input red line). However, the CDF of the regenerated 1000 years
(output, blue line) closely follows CDF of the 1000 years input curve (red). Hence, with the
obtained transition probabilities (1st-order) the persistency is preserved. The significant
change in persistency between the original and the 1000 years will be improved in Chapter
7. From the harmonic sinusoidal motion it can be concluded that the time-dependency has
an influence on the persistency and it is kept in mind that lower workability percentages
can result in stronger persistency deviations (as the data validation concluded).

Cumulative probability

Cumulative pr

I I I I I I I |
60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 0
Persistency duration [b] Persistency duration [b]

HADDOCK — 1000 yrs input —1000 yrs output HADDOCK — 1000 yrs input —1000 yrs output

(a) North sea (b) Gulf of Guinea

Figure 6.16: The cumulative distribution of persistency for both 1000 years datasets with operational
limit: Hs <1 m. The 1000 years output is the regenerated workability sequence.
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6.5 Conclusion

In this Chapter a software validation study is conducted, which is divided into a white-box
validation, a data validation and a black-box validation. In the beginning of this Chapter the
research question No. 3a: ‘Do the DMM-model and its individual modules perform sufficiently
accurate?’ was asked. It can be unfolded into two aspects, whether the total DMM-model
performs sufficiently accurate and whether the modules perform sufficiently accurate. In the
verification phase errors have been found for each of the modules. With ‘sufficiently accurate’
is meant, whether these errors influence the output of the modules/model in such a way
that they become unreliable. Based on the white-box validation it can be concluded that
only Module A works sufficiently accurate. The downtime distributions produced by the
DMM-model are too optimistic, which is a result of the inaccuracies of the other modules.
Additionally, a data validation is conducted which validated that 10 years are needed to
simulate to preserve the workability percentage and the persistency. Table 6.12 summarizes
per validation the most important observations.



Chapter 6. Validation 90

Table 6.12: Summarized conclusions of the validation process

Comment:

White-box:

Data:

Black-box:

Module A: The seasonality is presented properly, despite the found errors in
the verification. Therefore, these found errors are ascribed to low priority for
fixing and the module performs sufficiently accurate to simulate projects.
Module B: Due to the found errors in the verification phase, this module had
to be rewritten in order to execute the hypotheses tests. From these tests is
concluded that futuristic project are most accurately performed with non-time
homogeneity and with a higher order.

Module C: The small error of the cross-transition probability found in the
verification is not noticeable. However, the influence period is incorrectly
implemented as noticed in the verification phase.

Module D: Based on several tests it is concluded that, this module does not
work at all. Rectifying this module has high priority.

Based on workability, 10 years is enough to preserve the workability percentage
of the original dataset with sufficient accuracy.

Based on persistency (with 95% confidence bounds), 10 years is enough, as the
cumulative distribution curves result in the same distribution. However, the
generated persistency distribution curves deviate from the original dataset.

Similarly as concluded in the data validation, the cumulative distribution
function of persistency changes when 1000 years are generated with the DMM-
model from the hindcast data. This affects the downtime duration and therefore
it has to be improved.

The influence period is too optimistic, in which results less downtime.

The persistency is overestimated, which results in less downtime. In Chapter 7
it is studied whether a higher order could solve this deviation.




7 Extensions & Improvement

This chapter aims to answer the research question No. 4a: ‘How can the current DMM-model
be improved/extended?’. The findings of the verification and the validation already answer
the question ‘Can the current DMM-model be improved/extend?’, but the answer does
not incorporate the ‘how’. At the end of the software-testing process, the findings of the
verification and validation are rectified. In this thesis only the most important findings
will be rectified, for that matter a prioritization is made in Section 7.1. In Section 7.2 new
coding methods are introduced, which are based on an image compression technique of a
DNA-sequence. This method has the potential to solve the problems that were established
with coupled operations.

7.1 Rectifications

In Appendix B the found errors, limitations and inconsistencies during the Verification
and Validation process are listed, some of which have already been rectified. The errors
in the influence period, persistency and the coupled operations are considered to have the
highest priority. These will be elaborated in the following Sections (7.1.1 - 7.1.3). The other
improving points are not reviewed any further in this thesis, but it is recommended to rectify
them too.

7.1.1 Influence period

The influence period is bounded by the 1/0 crossing of operation p (left boundary) and the
1/0 crossing of operation ¢ (right boundary) (see Figure 2.4). In Section 5.1.3 it is concluded
that it is not correctly implemented, because in the implementation the left boundary is
given by the net duration of operation p and the right boundary is a workable time step
instead of a non-workable time step of operation ¢. This problem can be solved in two ways
by recoding the existing module.

Method 1: The ‘reasonably’ smallest influence period is implemented, instead of taking
a random influence period from the exceedance probability curve. The smallest influence
period is the minimum number of time steps observed in hindcast data that operation ¢ has
to be workable after operation p crosses its 1/0 boundary. This is where the exceedance
probability of the influence period is equal to 1 (see Figure 7.1). To avoid data collection

91
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mistakes, the ‘reasonably’ smallest influence period is chosen, which is defined as the influence
period corresponding to an exceedance probability of 0.98 (the red marker in figure). It
is assumed that no more than 2% in the data contains errors, hence the 0.98 probability.
The DMM-model does not generate states for operation p after it is completed, therefore
it is not known whether the next state of operation p is workable or not. However, it is
known that operation ¢ has to be workable for a minimum amount of time steps. After
implementation of the reasonably smallest influence period the regular transition probabilities
Piqj can continue. It might be possible that the reasonably smallest influence period is zero
(where the exceedance probability is equal to 0.98). In that case, the DMM-model should
generate the next time step based on the cross-transition probability.
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Figure 7.1: Exceedance probability of the influence period D(Hs < 1 m, H, < 2.5 m) with a zoom
in at the reasonably smallest influence period (approximately 5 hours) at an exceedance probability
of 0.98.

Method 2: Just like the original method, a random influence period will be taken from
the exceedance probability curve. However, a non-workable state is followed at the end of
the influence period. The non-workable state is the right boundary of the influence period,
as shown in Figure 2.4, and therefore it should be generated as well. In case the randomly
chosen influence period is zero, a non-workable state is generated. This adaption ensures
that the cross-transition probability can be dropped, because the influence period will be
used at all times for the transition between two Markov chains. In the current model the
cross-transition probability is only used when there is no influence period scheduled, which
is no longer the case.

Furthermore, seasonality is taken into account for both methods of the influence periods
(which was not yet incorporated in the model). The yearly exceedance curves are considered
to be too conservative, hence monthly exceedance curves are made. Figure 7.2 presents how
these 2 methods are implemented.
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Figure 7.2: A hypothetical project simulation with 2 operations (p and ¢), where operation ¢
encounters the influence period. Method 1 denotes the reasonably smallest and method 2 denotes a
randomly chosen influence period from the exceedance curve.

T

Additionally, the influence periods and the cross-transition probabilities are determined
in advance of generating years (as recommended in Section 5.2.3), because they are based
on hindcast data. This rectification assures that the influence periods and cross-transition
probabilities are being called just once instead of a 1000 times (if 1000 years are generated),
which makes the simulation more efficient. It is recommended to study more thoroughly
the influence periods and the cross-transition probabilities, since no literature was found for
these concepts.

Conclusion Method 1 will be more appropriate for the current DMM-model because the
current DMM-model stops generating states for operation p after it is finished, and hence
it is unknown in which state operation p will be. Therefore, implementing the reasonably
smallest number of time steps is a logical choice. Method 2 implements after the influence
period of operation ¢ an additional non-workable state as the right boundary. This influence
period actually happened after the crossing of a 1/0 boundary of operation p, and not after
finishing operation p. For that reason method 2 is not applicable for the DMM-model,
however it can be used for the new coding method, which will be explained in Section 7.2.

7.1.2 Persistency calibration

In Chapter 6 it is observed that the persistency is not preserved when simulating with
the DMM-model, therefore the persistency will be calibrated by varying the Markov chain
order. Calibration is fitting the model to the observed data by adjusting the parameters (the
Markov chain order in this case) [27]. In Section 6.4.3 it is proposed that a higher Markov
chain order will lead to a higher accuracy of the persistency. Moreover, for the harmonic
sinusoidal motion it is expected the DMM-model will generate the exact persistency of the
harmonic sinusoidal motion from a specific Markov chain order. In order to study the effect
of the Markov chain order on the DMM-model, the harmonic sinusoidal motion and the
North sea dataset are augmented to 1000 years with different higher Markov chain orders.
For both datasets the operational limit is set to Hs; < 2 m and piece-wise time homogeneity
is applied. Such a testing process is called ad hoc testing in the software testing world.
The DMM-model is treated as a ‘black-box’ for this purpose. Figures 7.3 - 7.4 present the
obtained persistency curves for both datasets.
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Figure 7.3: Increasing the Markov chain order the cumulative distribution of persistency converges
to the hindcast data (persistency of 13 hrs). An operational limit of Hy < 2 m is used on the
harmonic sinusoidal motion.
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Figure 7.4: Increasing the Markov chain order the cumulative distribution of persistency converges
to the hindcast data. An operational limit of Hy < 2 m is used on the North sea dataset. The red
markers indicate the splitting points where the generated dataset splits off the hindcast dataset.

Conclusion The harmonic sinusoidal motion resulted in what was expected: applying
a higher chain order resulted in a more accurate persistency preservation. From a 13th-
order Markov chain the expectation was that the DMM-model would regenerate the exact
persistency of the hindcast, because the persistency is 13 hours (see Operation 2 in Table
6.11). However, it can be noticed that there is a slight deviation between a probability of
0.9 - 1 (marked with an ellipse). This deviation can be explained by the error which is
made in the determination of the transition probabilities in the piece-wise time homogeneous
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function (see Section 5.1.1), which can easily be fixed.

The North sea dataset resulted likewise in a better persistency preservation with a higher
Markov chain order, although the 13th-order Markov chain still deviates from the hindcast
data. There appears a relation in the duration of the persistency preservation and the
Markov order chain. It can be seen in Figure 7.4 that the persistency is preserved until the
duration of the persistency (hours) is equal to the Markov chain order. From this point the
generated curve seems to release the hindcast data curve. These splitting points are marked
with red stars in the figure. In other words, the persistency is preserved for the Nth-order
until the Nth-hour.

The rough assumption of monthly stationary transition probabilities in combination with
a higher order Markov chain also affects the transition between 2 months, as a non-existing
transition might occur. This is explained with Figure 7.5 with the 8th-order. The first
state of the next month (February) needs to be determined based on the last 8 states of
January. It might be possible that this sequence of states is not observed in February in the
hindcast data, hence there is no transition probability assigned and no transition is possible.
A try-catch block' is used in MATLAB to solve this problem. In the simulation of 1000
years with 13th-order Markov chain, there were 79 non-existing transition observations.

Operationp 1 1 1 1 - 1 1

Hour 17 18 19 20 21 22 23 24 1 .-

Date 31 January 1 February
T

Figure 7.5: A hypothetical non-existing transition possibility, where the first state of the next
month (February) is based on the last states of January with 8th-order.

The Markov chain order has to be even higher than order 13 to preserve the persistency
more accurate for the North sea. The riskiness in doing this, is that the DMM-model will
tend to regenerate the eract hindcast data, causing no new information and making the
DMM-model worthless. This is visualized in Figure 7.6 where a 14th-order is used and
all of the transition probabilities are equal to 1. Therefore, ideally an optimum must be
obtained in which the persistency is more or less preserved and the DMM-model is still able
to create new data. Currently, the DMM-model simulates every operation from the start
date until the operation is completed. To make sure the net duration for each operation has
been observed in hindcast data, the DMM-model should use the Nth-order Markov chain
with piece-wise time homogeneity, where N denotes the duration of the longest operation.
The non-time homogeneity function is only able to simulate 1st-order Markov chain in the
current model. This raises the question whether the non-time homogeneous function with
1st-order is more accurate than piece-wise time homogeneous function with the Nth-order.
The answer to this question will differ per project per location. A quantification in the

LA try-catch block avoids errors and finishes the program in another way.
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parametric and model uncertainty could answer this question (as explained in Section 3.2.3).
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Figure 7.6: A hypothetical workability sequence generation with 14th-order, with the result that
every transition probability is equal to 1. Thus, hindcast data is exactly copied.

7.1.3 Sequentially coupled operations

In this Section an idea is given of how the sequentially coupled operations can be solved
(it is not yet incorporated in the model). The current DMM-model is not able to simulate
sequentially coupled operations. Currently, the DMM-models simulates a coupled operation
by generating two parallel workability sequences (the coupled operation and the succeeding
operation), which is a small example of a ‘Hidden Markov Model’ [15]. Two states ¢ € {0,1}
of two operations are converted into four states i € {0,1,2,3} as explained in Section
2.7. This enables the possibility to find the location where the coupled and succeeding
operation are finished without downtime in between them. In reality 5 sequentially coupled
operations (or even more) are not unthinkable. Prior to the simulation, it is known how
many sequentially coupled operations are present in the project. Thus, more states can be
created for the sequentially coupled operations and the subsequent operation. For example,
if there are 2 sequentially coupled operations eight states ¢ € {0, 1,2, ...,7} have to created,
as shown in Table 7.1.

Table 7.1: Workability states for 2 sequentially coupled operations (operation A and operation B)
and the subsequent operation C.

Op. A Op. B Op. C State
0

—F R, OROOO
—o O, O R, OO
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From the new states the following lst-order transition probability matrix can be created:

Po Por Poo Pos Pos FPos FPos For
Py Pi1 P12 Py3 Pu Pis Pis Pir

(7.1)

With the new transition probability matrix the project can be simulated and a window
is searched where in between operation A, operation B and operation C no downtime occurs.
The disadvantage of multiple sequentially coupled operation is that the number of states
increases with O(2!7"), where n denotes the number of sequentially coupled operations. The
number of transition probabilities increase as the number of states increase, as explained in
Section 5.1.4, and thus the parametric uncertainty increases. Moreover, when a higher-order
is used, even more transition probabilities are possible. Having too many sequentially coupled
operations in a project and applying a higher chain order could lead to copying the exact
hindcast data with the DMM-model.

7.1.4 Result

The current DMM-model is improved by rectifying the influence period and by making it
applicable for higher Markov chain order (in the piece-wise time homogeneous function),
as is described in Section 7.1.1 and 7.1.2. The theory on improving sequentially coupled
operations is given in Section 7.1.3, but this has not been coded yet. In terms of validation
the same downtime distributions obtained in Section 6.4.1 are used to indicate the differences
with the improved DMM-model. The settings in this validation are as follows:

o Location: North Sea, Gulf of Guinea and Tasman sea (datasets in Section 2.3).

e Seasonality: piece-wise time homogeneity

e Gth-order

e 1000 years to be generated

o Start date: January 1

In Figures 7.7 - 7.9 the results of this validation are depicted. It can be noted that the
downtime distribution curves are moved to the right in the improved model (as expected),
hence more downtime occurs. This is due to less workable states are implemented by the
influence period and because the persistency is in a lesser extent overestimated (this will
differ per location and per operational limit).
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Figure 7.7: The cumulative probability distribution of the downtime on the North Sea dataset
computed with HADDOCK, DMM-model and the improved DMM-model.
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Figure 7.8: The cumulative probability distribution of the downtime on the Gulf of Guinea dataset
computed with HADDOCK, DMM-model and the improved DMM-model.
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Figure 7.9: The cumulative probability distribution of the downtime on the Tasman Sea dataset
computed with HADDOCK, DMM-model and the improved DMM-model.
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7.2 New coding methods

In this Section new coding methods are introduced. These methods are based on a com-
pression technique, which decreases the simulation time significantly. And, the problem of
sequentially coupled operations is solved. In Appendix A the algorithm block schemes are
presented for the new methods, which visualize the following steps clearer.

7.2.1 Initializing

Before generating time-series the model initializes by loading the hindcast data and the
project with its operations. Subsequently, the ‘workability-array’ is created similarly as in
the DMM-model (Section 2.3). From the workability-array the (1) probabilities, (2) influence
periods and the (3) undoubted periods can be determined as follows:

1. Not any different from the current DMM-model, the limiting probabilities 7; and the
transition probabilities F;; are determined from the hindcast data with a predetermined
Markov chain order. For simplicity reasons, only the piece-wise time homogeneity is
applied.

2. The influence periods are determined according to Method 2, as suggested in Section
7.1.1. Additionally, this module is extended by including the non-workable influence
period, as suggested in Section 5.1.3. The symbol of the influence period is changed to
D*(p, q) for the regular (workable) influence period and D(p, ¢) for the non-workable
influence period.

3. The ‘undoubted periods’, U(p, q), is a new module, which indicates states that are
never visited at specific time steps t. For example, if operation A has an operational
limit of Hy; < 1 m and operation B has an operational limit of Hs; < 2 m, it can be
concluded that state {B; = 0} can never be visited if state {A; = 1} at time step
t. From the workability-array is determined which operations will induce undoubted
periods for succeeding operations. The following equation are established for the
undoubted periods:

0, if pt)=4q(t)=0 Vt:p=0
Ulp,q) =1, if p(t)=qt)=1 Vt:p=1 (7.2)
2, if p(t)=q(t) Vt:p=i1€S

A ‘0’ is assigned to the undoubted periods when operation p has a less strict operational
limit than operation ¢. Similarly, a ‘1’ is assigned to the undoubted periods when
operation p has a stricter operational limit than operation ¢. When the workability
sequence of operation p is ezxactly the same as the workability sequence of operation ¢,
the undoubted period is assigned with a ‘2’ This could happen when both operations
have the same operational limit.
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7.2.2 Generating time-series

Two methods are developed in order to generate time-series for the operations within a
project: the ‘Updated Conditional Markov Probabilities’ and the ‘Markov Dependency’. The
explanation of these new methods are further elaborated in Section 7.2.3. The process of
both methods are the same for steps 1 to 3. Given the initializations, the generation of
time-series can be started by the following steps:

1. The first symbol(s) of each operation is determined by its limiting probability ;.

2. The workability chain for the first operation will be generated with the transition
probabilities F;; 1, where k denotes the next state dependable of the Markov chain
order.

3. Implement the undoubted periods U(p, q) for the succeeding operations. After this
step the workability-array will look like Figure 7.10.

The ‘Updated Conditional Markov Probabilities’ continues as follows:

4. Implement the influence periods for the succeeding operations (D%(p, ¢) and D'(p, q)).

5. Move to the next operation and update the transition probabilities according to the
propositions in Section 7.2.3. With the (new) transition probabilities the workability
chain can be generated.

6. Repeat step 3 to 5, until the complete workability-array is filled.
The ‘Markov Dependency’ continues as follows:

4. Determine the new transition probabilities with the Markov Dependency according to
the principles explained in Section 7.2.3. With the new transition probabilities the
workability chain can be generated.

5. Repeat step 3 to 4, until the complete workability-array is filled.

The algorithm block scheme are provided in Appendix A to visualize the different
processes of the different methods.

7.2.3 Missing data imputation

Missing data refers to the absence of some part of a familiar data structure. These can
appear for example in the hindcast data at a time step which was not measured by the
buoy. Survey or research data are prone to missing data, because observations might be
missed due to human/computational errors. Research in this field has risen over the last few
decades, because errors like these are made in daily life. Imputation theories focus on the
estimation of the parameter of interest in the missing data situation [17]. As well as the
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Figure 7.10: A hypothetical schematization of the project generation in the new coding method
after step 3.

situation in the new coding method presented in Figure 7.10, there are time steps missing
data and hence an imputation theory needs to be applied. For certain operations undoubted
periods and/or influence periods are inserted without the use of the Markov theory. Filling
up the time steps missing data with the current Markov transition probabilities would be
wrong, because the implemented states ‘should’ be generated with the current transition
probabilities. In doing so, too many workable time steps will be generated for operations
having implemented workable periods (like operation B in Figure 7.10), or too many non-
workable time steps in operation C. As a result, the workability percentage will deviate for
those operations. Therefore another process is required which solves these problems. This is
where the ‘Updated Conditional Markov probabilities’ and the ‘Markov Dependency’ come
in, which will be explained below.

Updated Conditional Markov Probabilities This process recalculates the limiting
probabilities and the transition probabilities, given that a preceding operation has inserted
states by means of the undoubted or influence period for the current operation. The gaps
are filled by the updated transition probabilities. This Section explains how the limiting
and the transition probabilities are updated, but before doing so the following principles
need to be determined:

T=T-NF-NFP,  Vijes (7.3)

Where T denotes the total time steps that need to be generated for the operation that
misses data and T denotes the total time steps to be generated per operation, which is
predetermined by the user. NZ»C and N ]C denote the number of implemented time steps for
states ¢ and j by the undoubted and influence periods.

In Section 2.1.5 is concluded that the 1st-order limiting probability is equal to the
workability, hence it can be computed according to Equation 5.1. Where N; + N; is equal
to the total time steps of the hindcast data. The number of expected states NE in the to be
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generated workability sequence can be calculated as:

NE=m.T, Vies (7.4)

)

Finally, the number of time steps of state i that are expected to be placed NiP can be
obtained by:

NP —

(2

{@_Nﬂ if NEF>NEC (7.5)

0, otherwise

With the preceding principles the following proposition can be defined:

Proposition 7.1. The updated limiting probability for the unfilled time steps for the operation
missing data is given by:

Fi=—, VieS (7.6)
T

Proof. For state i = 1 Equation 7.5 can be rewritten as:

C ; C
0, otherwise
For state i = 0 Equation 7.5 can be rewritten as:
C ; C
Jﬁ:_thmzfAEZM (7.8)
0, otherwise
By combining Equation 7.7, Equation 7.8 and Equation 5.1, it will result in:
NP
T = NP NT NT (7.9)
Equation 7.3 is equal to the denominator of Equation 7.9, therefore holds:
Ny
T = —= 7.10
1= (7.10)
Analogously, 79 can be derived. O

The number of gaps (indicated with dots in Figure 7.10) are defined as Nyg, Nun, Non,
which mean the transitions from a gap to a non-workable state (n — 0), from a gap to a gap
(n — n), from a non-workable state to a gap (0 — n) respectively. Similarly, NV,; and Ny,
can be defined in case an operation has workable states and gaps (as operation B in Figure
7.10). Analogously as Equation 7.4 and Equation 7.5, the number of expected transitions
(Ist-order) and the number of to be placed transitions can be derived.
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ij

E C . E C
i . .
0, otherwise

Furthermore it is concluded that the Markov reversibility condition holds, which is
defined as [2]:

TFiPij = TI'ijZ' Vi,j €8 (713)

Proposition 7.2. The updated transition probabilities for the unfilled time steps for the
operation missing data are given by:

P
NOO

NOn + NnO + 77(0 ' Nnn
Py =1— Py

pO():

7.14
NP (7.14)
Nln + an + 77(1 : Nnn
Pyy=1- Py

PH:

Proof. Analogously as Equation 7.4, the following can be defined:
NE =Pyj-m-(T—1) (7.15)

Analogously as Equation 7.5, the following can be defined:

17

. (7.16)
0, otherwise

Nil; = {NZ}JE - N7 if NZ']JE; = Ng

Non = Npp because of the Markov reversibility condition (Equation 7.13) holds. Pyo can be
determined with the gaps and Equation 7.16.

Ngo
NOn"‘NnO‘i"ﬁO'Nnn (717)
Pyy =1— Poo

pO():

Similarly, Py and ]510 are determined. Note that transitions of Ni; are only possible at the
gaps Nun, N1, and Ny;.

Nfi
N1n+Nn1+7~Tl 'Nnn (718)
Pyy=1-Py

Pllz
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The disadvantage of the updated conditional Markov probabilities is that it is limited to
a lst-order Markov chain, which has proven to wrongly reproduce the persistency. However,
it is partly compensated by the implemented states. Another disadvantages appears in case
an operation has a limited number of implemented states. In that case, there is hardly
a link between this operation and any other operation, which is unrealistic. The Markov
Dependency aims to capture this missing link.

Markov Dependency Since metocean parameters are correlated with each other, it is
striven to capture these dependencies. This Section proposes a new method for that purpose.
No literature was found, but there is some resemblance with ‘Hidden Markov Models’.

The first operation in the new coding method will be generated with regular Markov
transition probabilities f’ij_._k, and then the undoubted states are implemented (as explained
in Section 7.2.2). This marks the start of step 4, where the project generation could look
like Figure 7.10. The second and succeeding operations g will be dependable of its preceding
operation p. Equation 7.19 presents how the new transition probability matrix @ is created
for a 1st-order Markov chain of the succeeding operation ¢ with a dependency to its preceding
operation p. ﬂ?k denotes the number of time steps of the observed transition ij...k in
hindcast data of the preceding operation p. For each of these observed transitions a new
transition probability matrix is created for operation ¢ with order u. In other words, a
new matrix is created for operation ¢, with its probabilities based on operation ¢ at the
same time steps transition 7j...k is observed in operation p. This means that a lst-order
Markov chain results in 16 transition probabilities instead of 4. Analogously can be seen
in Equation 7.20, which represents the dependency matrix for a 2nd-order Markov chain,
that 64 transition probabilities are possible. The number of transition probabilities grows
by O(22“*2), where u denotes the order. It indicates that the parametric uncertainty (as
explained in Section 3.2) grows as well, because more parameters need to be estimated. The
given two examples have a 1st- and 2nd-order Markov chain, yet any order is possible in the
MATLAB function.

Qoo Qo1 Qoo Qo1
T(I))o : T(I))l :

Qo Qu Qo Qn
i = 7.19
@i TP Qoo Qo1 v Qoo Qo1 (7.19)
107 1Q10 Qu 1 1Q0 Qu
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[ Qoo Qoo1 Qooo  Qoo1] |
o |Qouio Qou|  p |Qoo Qonn
000" 1 Qr00 Quon 01" 1 Qi00 Qo
Qi Quin | Quio Qi
Qoo Qoo1 Qooo  Qoo1
o . |Qouio Qout| p Qoo Qont
010" 1 Q100 Qi 01" 1 Q100 Qi
Q110 Q111 Q10 Q11
@ik = Qoo Qoo | [Qooo Qoo | (7:20)
v |Qouio Qoit| p Qoo Qont
1007 1Q100 Qo 011 Q100 Qo
| Q10 Qui1 Q110 Qui1
Qoo Qoo1 Qooo  Qoo1
™, Qoo Qo1 v, Qo0 Qo1
Qoo Q101 Q10 Q101
L Q110 Q111 Qi Q111 |

Figure 7.11 is a simple example to clarify the aforementioned theory with 1st-order
Markov chain. The transitions 1 — 1 for operation p are indicated with arrows. At these
time steps the transitions are counted for operation ¢: Nf, = 0, N§; =2, N, =2, N}, = 1.
From these counted transitions the transition probabilities can be computed with Equation
2.2. These probabilities correspond with transition probability matrix 77, : Q;; in Equation
7.19. This can be done analogously for the other transitions observed in operation p.

avaa ~

Operationp 1 1 1 1-1 1_1 1. .....

=— — — ER—
Operationq!/% _1_|1 1:_1_.1.1 1:_1__1. .....
Pl

ij AT T
L
L]

Figure 7.11: An hypothetical workability sequence for 2 operations to clarify the Markov dependency,
where the transitions 1 — 1 are indicated with arrows. At these time steps the transition probabilities
are determined for operation gq.

As explained, the number of transition probabilities grows quickly using a higher order,
which increases the parametric uncertainty. To restrain this uncertainty within narrower
limits, the order can be reduced for one of the operations. In the 2nd-order example from
above (Equation 7.20), a 2nd-order is used for both operations p and ¢. In theory, it is
possible to use different order for different operations. For example, a 1st-order for operation
q and a 2nd-order for operation p will result in Equation 7.21. Vice versa, a 2nd-order for
operation g and 1st-order for operation p will result in Equation 7.22. This is possible for
any order u, and the number of transition probabilities grows by O(2ur*4a+2) where u, and
uq denote the order of operation p and g respectively.
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Additionally, time-shifting can be applied to the Markov Dependency, which means
other time steps of operation p can be used to determine the dependency probabilities for
operation ¢q. The previous theory uses the same time steps of operation p to generate states
for operation ¢, hence no time shift is applied. This can be seen in Figure 7.11. Another
possibility would be to use earlier time steps of operation p to determine the transition
probabilities of operation ¢, which is called backward time shifting. Vice versa, forward time
shifting is also possible, where further time steps are used of operation p to determine the
transition probabilities of operation ¢. Figure 7.12 clarifies how time shifting works with a
2nd-order for both operations. The black bracket indicates the current time step of operation
q. In case of backward time shifting the blue bracket of operation p is used, and similarly
the red bracket is applied for no time shift, and the green bracket for forward time shifting.

forward
none
backward

ooty 11 1 1 [ o N+

Operation q. 1 1 2
—_—

v

Figure 7.12: Time-shifting visualized for the Markov Dependency method, where backward-, no-
and forward-shifting are indicated with blue, red and green brackets respectively.
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The pitfall of the Markov Dependency is that some transition probabilities might not
have been assigned to a value, since these were not observed in hindcast data. This is
probable with operations with a limited number of transitions from 1 — 0 and 0 — 1,
especially when a higher order is assigned to the operation. For example, if a 2nd-order
is assigned to such an operation p with limited number of transitions; it can be imagined
that not all of the possible transition variations of operation ¢ have been observed at the
time steps of operation p transitions as 1 — 0 — 1. Hence, it will be expected some Q;j
probabilities are not assigned to any value in the matrix of 7%, in Equation 7.20. This
problem is solved with a try-catch block, which ensures that the model will only create
transitions which did occur in hindcast data.

Remarks The proposed dependency is only dependent on the preceding operation. The
paradox is that a state can be generated for operation C depending on operation B, while
the combination of states S = {X 4, Xp, X¢} might never been observed in hindcast data.
Another remark is that, in case two operations do not have a distinct correlation (i.e.
temperature and wave period), the added value of the Markov Dependency is questionable.
It can be improved by calculating a correlation coefficient (CC) on the raw hindcast data and
applying the Markov Dependency with the operation having the highest CC-value. These
remarks are recommended for further study, in which [39] and [62] can be used to determine
correlations between multivariate ocean parameters.

7.2.4 Data compression

The generated dichotomous workability-array Z consists of T rows x O columns, where T
is equal to 8766 x years and O is equal to the number of operations. In case the user wants
to generate 1000 years, the workability-array will enlarge to 8.766 - 10° rows. Simulating
projects through this dataset will take tremendously long, and thus a data compression
technique is used. Data compression reduces the storage space and processing costs, along
with speeding up data transmission [21], which happens for example by compressing a raw
image to a JPEG file. A simple example of data compression (the so-called ‘run-length
encoding method’) works as follows:

Dataset: A A A A B B B A A A A A A A C B B B C C
Compressed dataset: 44 3B T7A 1C 3B 2C

The compressed dataset can be interpreted as a sequence of four As, three Bs, seven
As, one C) three Bs and two Cs. The original dataset consists of 20 characters, where the
compressed dataset consists only of 12 characters. This example is a lossless compression,
meaning that the original dataset can be perfectly reconstructed by reversing the compression,
which happens for example in ZIP file formats. Contrary to the JPEG file example is a lossy
compression, which partially discards the original data and therefore an inexact original
dataset is obtained by reversing the compression.

The same methodology as the example above is applied in the generated dataset by the
new coding method. The generated binary dataset is reconstructed into persistency blocks
(consecutive workable time steps and consecutive non-workable time steps), by finding the
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transitions where a workable moves to a non-workable state 1 — 0 and vice versa 0 — 1.
From these blocks the initial time step, final time step and the block length are saved. Note
that for small persistency blocks (i.e. blocks consisting of only 1 to 3 time steps) more data
is created instead of reduced. The net durations of all operations are given at the beginning
of the simulation. These can be compared with the workable persistency block lengths.
In case the net duration is longer than the persistency block length, the persistency block
length plus the following non-workable persistency block length is downtime. This process
continues until a workable persistency block length is found, in which the net duration fits.
At this point the model continues with the next operation at the specific time step, and the
preceding process repeats itself. Unless, the operation is coupled, which means the next
operation has to start immediately after completing the current operation. In that case, it
is checked whether the persistency block of the next operation is a workable persistency
block and whether it is longer than the net duration of the next operation. If so, the project
simulation can continue. If not, the model will look for a new sufficient persistency block
for the coupled operation and thereafter check whether the persistency block of the next
operation is workable and longer that the net duration. This methodology allows projects
to be generated efficiently, because the simulation time is reduced significantly. A data
compression module is already incorporated in HADDOCK and can be used for this process
as well. An additional advantage is that the workability-array (for all years for all operations)
is generated, which allows the model-user to take any start date he pleases.

In the article of Schouhamer Immink [50] more compression methods are described, in
which for example the blocks lengths can be coded alphabetically where the Z denotes 26.
In [21] a survey is conducted to capture existing compression approaches in the field of DNA
sequences, biological data and file formatting, which could be used for further study into
metocean data compression techniques.

7.2.5 Small validation

A small scale validation is conducted for the two proposed methods: Updated Conditional
Markov Probabilities (UCMP) & Markov Dependency (MD). The workability percentage and
the persistency are compared with the hindcast data and with the results of the improved
DMM-model. Furthermore, the downtime of a hypothetical project (Table 7.2) is analyzed
for the different models. Note in Table 7.2, the last three columns indicate whether the
operation has a workable influence period D! (p, ¢), a non-workable influence period D°(p, q)
or undoubted periods U(p, q). The undoubted periods are applied in the UCMP method
and MD method, and the influence periods are only applied in the UCMP method.

Settings For all the methods there are several general settings, such as the North sea
dataset given in Section 6.1 is used as location. Furthermore, 1000 years will be generated
with a project start date on May-1. In the DMM-model the 1st-order is used and for the
new methods operation A corresponds with a 7th-order, because the longest net duration is
7 hours (this was suggested in Section 7.1.2) and the other operations correspond with a
1st-order.
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Table 7.2: A hypothetical project to validate the new coding method.

No. Description Operational limit Warranty Net DY(p,q) D%(p,q) Ul(p,q)
window  duration

1 Operation A U<10m/s - 6 h - - -
2 Operation B H,<25m 10 h 7h - Yes -
3 Operation C Hy <1m U <10 m/s 8 h 5h Yes Yes Yes
4 Operation D H,<2m - 4 h Yes Yes Yes
5 Operation E T,<7s - 5h Yes Yes -

Table 7.3: The settings belong to the hypothetical project from Table 7.2 to validate the new coding
method.

DMM-model Conditional Updated Markov Probabilities Markov Dependency

Seasonality: PWTH PWTH PWTH
Order: 1st-order Operation A: Tth-order Operation A: Tth-order
Other operations: 1st-order Other operations: 1st- and 2nd-order

Workability percentage The workability percentage of the hindcast data extracted
from HADDOCK is assumed to be representative for the truth, since it has enough samples.
The generated datasets should preserve this percentage with a certain accuracy and the
results are presented in Table 7.4. It is calculated with Equation 1.1.

Table 7.4: The workability percentage per operation of the new coding method with the Updated
Conditional Markov Probabilities (UCMP) and with the Markov Dependency (MD) compared with
the hindcast data (HADDOCK).

Operation No. HADDOCK DMM UCMP MD Ilst-order MD 2nd-order

Operation A 71.73% 71.77%  71.64% 71.75% 71.85%
Operation B 73.10% 73.13% 70.20% 71.37% 72.97%
Operation C 20.52% 20.45% 15.44% 12.86% 14.75%
Operation D 58.88% 58.83%  56.64% 42.69% 44.32%
Operation E 46.79% 46.79%  78.46% 40.27% 40.44%

It can be seen that the DMM-model preserves the workability percentage very well,
just as operation A for all other methods. The modelling of operation A is very similar as
the DMM-model. The only difference is that this operation is generated with a 7th-order
Markov chain with the other methods (UCMP and MDs). Operation B implements only
the non-workable influence periods D°(p, q) for the UCMP (see Table 7.2). The updated
probabilities are not much affected when a limited number of states are implemented. It can
be concluded that the workability percentage is well preserved for all methods. Operation C
has both influence periods (D!(p, q) and D%(p, q)) and undoubted periods. The latter can
be explained because if operation B cannot be workable, operation C cannot be workable
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either. Due to the many implemented states the workability percentage changes significantly,
resulting in a too low percentage for all new methods. Operation D has both influence
periods and both undoubted states, hence many states are implemented for the UCMP
method resulting in a slightly too low workability percentage. The MD methods produced a
too low workability percentage for operation C, hence succeeding operations are dependent
on this operation, causing a low workability percentage as well. In other words, in the
MD method operation E is dependent on operation D, which is in turn dependent on
operation C, and so forth. When Operation C experiences a too low workability percentage,
it automatically influences the succeeding operations in the MD method. The result of the
UCMP method turns out exceptionally high for operation E, namely 78.46%, where the
others are between 40-47%. In the UCMP method a specific operation is influenced by all
its preceding operations, hence the workability percentage of operation E is not trustworthy
anymore.

Persistency  The persistency of the hindcast data extracted from HADDOCK is assumed
to be representative for the truth, since it has enough samples. The generated datasets
should preserve this persistency with a certain accuracy. The cumulative distribution curves
of Operation A and Operation C are presented below in Figure 7.13, and for the other
operations consult Appendix F.1.

0.
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0.
0.
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Cumulative probability
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20 25 30 20 25 30
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—HADDOCK —DMM —UCMP —MD-01—MD-02 —HADDOCK —DMM — UCMP —MD-01—MD-02

(a) Operation A (b) Operation C

Figure 7.13: The cumulative distribution of persistency for the North sea subject to a set operational
limit of U < 10 m/s (left) and H, < 2.5 m (right)

Operation A clearly shows the difference between a lst-order (DMM) and a 7th-order
Markov chain (UCMP and both MD methods). From a persistency of 7 hours the UCMP and
MD curves start to release the HADDOCK curve and start to converge to the DMM-model
curve. In the graph of operation C can be observed that the hindcast persistency is well
kept with the MD methods, to a persistency duration of approximately 15 hours. The
UCMP method gives a too high probability for a 1 hour persistency, that can be explained
by the overlapping influence periods of the preceding operations. This phenomenon repeats
itself for the other operations as well. It can be concluded based on all operations that the
UCMP method is not trustworthy and that the MD methods preserve the persistency more
accurate than the DMM-model and the UCMP method. The difference between the 1st-
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and 2nd-order of the MD method is not so much. Based on these operations it is concluded
that the 2nd-order is slightly more accurate, but more research is recommended for this
method since only 5 operations are regarded on 1 location.

Downtime  The downtime of the original dataset, as produced by HADDOCK, is not
assumed to be representative for the truth, since it only has 23 samples. However, it gives
an idea of how the downtime distribution is going to look like. The cumulative probability
distributions are given in Figure 7.14 for all the used models with their confidence bounds
(a-value of 0.05).
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Figure 7.14: The cumulative probability distribution of the downtime, based on the project in Table
7.2 and the North sea dataset with start date 1-May. The durations are computed with HADDOCK,
DMM, UCMP, MD-O1 and MD-02 models.

The confidence bands are much wider of the HADDOCK simulation (black), due to the
smaller sample size. The DMM-model is used with the rectified influence period (method
1: implementing the reasonably smallest number of time steps). The distributions of the
DMM-model and the MD methods are somewhat similar to each other, where downtime for
the DMM-model is to a lesser extend than the MD methods for this hypothetical project.
The downtime of the UCMP-method is overestimated, because the probability of the 1
hour persistency is too high which causes more downtime. Furthermore, the workability
percentage did not correspond with the hindcast data. As a result, the downtime distribution
cannot be considered reliable of the UCMP method.

The workability is better preserved for the DMM-model, but the persistency is better
preserved for the MD methods. Therefore, it is difficult to say which method is better. Both
methods need further development, where for the DMM-model the persistency needs to
be improved and for the MD methods the workability percentage needs to be improved.
The UCMP-method did not show any promising results, it is therefore not recommended
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Figure 7.15: Comparison between HADDOCK, MD-0O1 and MD-0O2 methods with the P50 and
the P80 values, based on the hypothetical project in Table 7.2 and the North sea dataset.

to further study this approach. The MD methods open up new perspectives since multiple
sequentially coupled operations are possible.

An additional advantage of the MD method is that any start date can be chosen, hence
it can be studied which date is most reliable to start your project. This is also possible
for the UCMP method, but this method is not considered any further since it brought
many repercussions regarding to the workability percentage and persistency. The effect of
different start dates of HADDOCK and the MD methods are shown in Figure 7.15. The
P50 and P80 values are plotted throughout the year and the seasonality effects are clearly
present in the graph. The curves of MD methods follow the HADDOCK curves similarly
till the months August and September. The differences in these months can be explained
by analyzing the cumulative probability distribution curves of these months. Figure 7.16
represents the cumulative probability curve with 1-December as start date. It can be noted
that the differences between the different methods is large at the values of P50 and P80
(green markers in figure). It is believed that the percentile values of the hindcast data is
too inaccurate due to the large confidence bands. The P80 value of hindcast data could be
according to Figure 7.16 between 12.2 and 98.9 days, which is a significant bandwidth. The
lower workability percentage of the MD methods (Table 7.4) is not considered to be the
reason for the deviation, because in that case the first months of the year should deviate as
well. But it must be kept in mind that the lower achieved workability percentage can result
in more downtime.

Increasing Markov chain order It is concluded in Section 7.1.2 that a higher Markov chain
order results in a better persistency preservation. It is therefore validated in this paragraph
how this affects the downtime. The same operations from Table 7.2 and the same North
sea location from Section 6.1 is used. The 1st-order for the improved DMM-model resulted
in Figure 7.14. Since a higher order Markov chain is still not possible in the non-time
homogeneous function, the piece-wise time homogeneous function is used. Figure 7.17
presents the cumulative downtime distribution curve for this project without the confidence
bands (1000 projects are generated for all different Markov chain orders). It can be seen
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Figure 7.16: The cumulative probability distribution of the downtime, based on the project in
Table 7.2 and the North sea dataset with start date 1-December. The durations are computed with
HADDOCK, MD-0O1 and MD-0O2 models. The P50 and P80 values indicated with green markers.

that the 1st- and 2nd-order result in less downtime, than the other higher orders. The other
higher orders result in more or less the same distribution curve.
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Figure 7.17: The cumulative probability distribution of the downtime based on the project in Table
7.2 and the North sea dataset with start date 1-May.

For the 1000 generated projects the total encountered downtime per operation is given
in the bar chart of Figure 7.18. It can be seen that Operation C and Operation D are most
vulnerable to downtime. In Operation C it can also be seen that the higher orders resulted
in more downtime, which explains the observation in Figure 7.17. Therefore, the persistency
distribution curve for Operation C is provided in Figure 7.19, which reveals that the lower
Markov chain orders overestimate the persistency and hence result in less downtime. The
other persistency curves are provided in Appendix F.3.
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Figure 7.18: The bar chart per operation with the total downtime encountered of all the 1000
generated projects.
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Figure 7.19: The cumulative probability distribution of the persistency based on Operation C in
Table 7.2 with the North sea dataset and start date 1-May.

7.3 Conclusion

‘Yes’ is the answer whether the DMM-model can be improved, and in Appendix B an
overview is structured on which points each module can be further developed. The most
important considered rectifications are the influence period, persistency preservation and
the coupled operations. Research question No. 4a addresses to ‘How can the current DMM-
model be improved/extended?’. This question is answered in threefold by using the most
important considered rectifications. The influence period is improved by applying method 1
for the DMM-model as explained in Section 7.1, where the ‘reasonably’ minimum number of
workable time steps are implemented instead of an arbitrarily period from the exceedance
probability curve. The persistency preservation is improved by increasing the Markov chain
order. The DMM-model was only limited to 1st-order for non-time homogeneity method
and 2nd-order for piece-wise time homogeneity method. The piece-wise time homogeneity
function is now applicable for higher orders, but the non-time homogeneity method is
still limited to a lst-order Markov chain. It is therefore recommended to further develop
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the non-time homogeneity method, as this method yielded in promising results in Section
6.2.1. The DMM-model cannot simulate coupled operations, let alone sequentially coupled
operations. The error causing the failure for coupled operations is indicated and needs to be
solved. Sequentially coupled operations can be improved in the model by incorporating the
suggested theories of Section 7.1.3. Also, the Markov Dependency method (as introduced
in Section 7.2) is able to model sequentially coupled operations, and it shows potentials in
terms of persistency preservation. However, this method needs more validation before it can
be used.
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8 Synthesis

The purpose of this study was to develop the ‘Downtime Modular Markov’ model (DMM-
model). A software-testing process is used in order to achieve this. Such a process consists of
a verification phase followed by a validation phase and finished with an improvement phase.
In this chapter the conclusions derived from the conducted work of this thesis are presented,
and answers are given to the research questions. Additionally, recommendations are given
for Boskalis and for further research. The chapter closes with a discussion, in which the
study is brought into a broader perspective and where the DMM-model will be evaluated.

8.1 Conclusions

Thesis goals The first goal of this thesis was to analyze the DMM-model and summarize
the work methods. It has been compared with other stochastic simulation models of metocean
parameters in terms of downtime of complex projects. The main goal of this thesis was to
thoroughly develop the DMM-model. A total list of all findings for improvement can be
found in Appendix B. From the development study it is concluded that the DMM-model
cannot be used practically yet, as it still contains several important (some fatal) errors and
limitations. The crucial findings to make the DMM-model practicable are: the influence
period, coupled operations, higher-order Markov chains. These are further elaborated in the
next paragraph. It is concluded that the DMM-model has an additional value regarding the
uncertainty quantification of weather conditions, as the simulation uncertainty is significantly
reduced.

Main findings The main findings of this thesis are summarized below, with the first 3
concerning the DMM-model and the last concerning the new methods:

o In the verification phase it is concluded that the influence period (Module C) is
incorrectly interpreted. It is solved by implementing the influence period corresponding
with a probability of 0.98 of the exceedance curve, instead of implementing an arbitrary
chosen influence period of the exceedance curve.

e In the validation phase it is concluded that the simulation of projects consisting of
coupled operations (Module D) does not work at all; even some test scenarios resulted
in a fatal error. This module has to be recoded correctly and extended to make it
work for multiple sequentially coupled operations.
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o The DMM-model is limited to a 2nd-order Markov chain (Module B). It is observed that
the workability percentage is well preserved, but the persistency deviates significantly.
The DMM-model is calibrated by using higher Markov chain order, which resulted in
a better persistency preservation.

e In the improvement phase two new methods are developed, the so-called ‘Updated
Conditional Markov Probability’ (UCMP) method and the ‘Markov Dependency’
(MD) method. In these methods the problems regarding the coupled operations are
solved. Alas, the results of the UCMP-method did not preserve the statistics of the
hindcast data accurately enough, hence no further study is recommended for this
method. The MD-method showed good results in terms of persistency, but it needs
further improvement regarding workability percentage. Therefore, more research is
recommended for this MD-method.

With the required rectifications the DMM-model can be practically implemented. The
most important rectifications are to make it workable for (sequentially) coupled operation(s)
and applicable for higher-order Markov chains in both seasonality methods. Additionally,
smaller errors, limitations, inconsistencies are provided which ought to be rectified as well.

Added value The added value of the DMM-model regarding downtime analysis in
general, is that there was no stochastic model in current literature to simulate complex
marine projects. Secondly, it provides a mathematical approach to quantify the simulation
uncertainty. The added value of the DMM-model in comparison to HADDOCK (Boskalis’
current method to estimate downtime) can be expressed in assessing the uncertainties related
to the models. The uncertainty in the hindcast data related to observational errors, is
the same for both models and hence no assessing is needed. Nor the code uncertainty is
considered, as it is believed that code errors should rather be rectified instead of quantified.
Thus, only the simulation, parametric and model uncertainties are considered to influence the
downtime estimation. The DMM-model reduces the simulation uncertainty at the expense
of the parametric and model uncertainty. In the list below a summarized overview of the
causes that determine the uncertainties in HADDOCK and the DMM-model is given.

e Simulation uncertainty:

— HADDOCK: available hindcast datasets of approximately 10-25 years

— DMM-model: number of project realizations as required (1000 years is suggested)
e Parametric uncertainty:

— HADDOCK: interpolation

— DMM-model: interpolation (same) + estimation of input parameters
e Model uncertainty:

— HADDOCK: basis
— DMM-model: basis (same) + statistical deviations
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Research questions For this research the questions below were stated. The answers
to these questions are already provided in the course of this thesis. In this paragraph
summarized answers are described, and for a more detailed answer it is recommended to
address the corresponding chapters.

e How can downtime be analyzed with the current DMM-model? The DMM-model
abstract actual metocean conditions by stochastically producing binary ‘workability
sequences’ for each operation within a project. Additional modules are incorporated
to include effects such as seasonality, time-dependency, coupled operations. From
every project simulation the downtime duration is estimated. Sections 2.3 to 2.11
explain more comprehensively the work methods of the DMM-model. For an even
more thorough explanation consult the thesis of Rip [45].

o Which methods for metocean parameter generators can be found in literature? Gaussian
based models such as the ‘Box-Jenkins method’ and ‘Translated Gaussian Process’;
re-sampling models such as ‘Block re-sampling’ and ‘Markov chain re-sampling’; Para-
metric models such as ‘Finite state space Markov chain’, ‘Copula method’, ‘Multivariate
distribution method’ and ‘Nonlinear autoregressive models’ are found in literature.
See Section 3.1 in Chapter 3.

o Is it possible to quantify uncertainties concerning the DMM-model? In terms of
simulation uncertainty ‘yes’, however the quantification of the other uncertainties is
not that straightforward. Hence, more research is required for that purpose. Consult
Section 3.3 for a more detailed answer (Chapter 3).

o Is the concept and the model code of the current DMM-model correct, consistent and
complete? Only the concept of the influence period is incorrect, the other theoretical
concepts are correct, consistent and complete. In terms of the model code, the DMM-
model is incorrect, inconsistent and incomplete. See Table 5.3 in Chapter 5 for the full
assessment.

e Do the DMM-model and its individual modules perform sufficiently accurate? Based
on the white-box validation it can be concluded only Module A performs sufficiently
accurate. As a result of this, the DMM-model performs inaccurate as well. A more
comprehensive answer is given in Section 6.5 of Chapter 6, where Table 6.12 summarizes
the findings of the validation.

o How can the current DMM-model be improved/extended? The most important points
to improve are: applicability of higher-order Markov chains (Module B), the correct
influence period (Module C), workable coupled operations (Module D). The influence
period and the applicability of higher-order Markov chains is already improved, and
the theory on how to rectify the coupled operations is provided. Consult Appendix B
for all the improving points regarding the DMM-model. See Section 7.3 for a more
detailed answer (Chapter 7).
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8.2 Recommendations

In terms of recommendations a distinction has been made between recommendations to
Boskalis and recommendations for further research.

Boskalis The short-term recommendation for Boskalis is to submit to the improving
points of Appendix B. These should be rectified in order to make the DMM-model practically
workable. It is still believed that the gained lower simulation uncertainty, at the expense of
increase in parametric and model uncertainty, is of added value compared to the current
methodology to determine downtime (with HADDOCK). Besides, the parametric and model
uncertainties can be controlled by choosing a different seasonality method or Markov chain
order. The conducted hypotheses tests indicated that futuristic projects should be simulated
with non-time homogeneity. However, with coupled operations in the project the number of
transition probabilities grows very quickly (see Table 5.1). In that case a piece-wise time
homogeneous approach could be suitable. It is therefore recommended to further assess and
quantify the parametric and model uncertainty.

The long-term recommendation to Boskalis is to develop a model that segregates the
stochastically generation of metocean parameters and the simulation of projects, where the
DMM-model performs this simultaneously. This gives the advantage that any start date can
be chosen and sequentially coupled operations can be simulated without the increased model
and parametric uncertainty. For this purpose, a model such as the Markov Dependency
method should be developed.

Further research  Throughout this thesis several recommendations are made already
for further research. This paragraph lists recommendations considered to be the most
important. In Rip [415] additional recommendations can be found regarding the DMM-model
and downtime simulation analysis in general.

e The main recommendation is to further study and quantify the model and the paramet-
ric uncertainties; Section 3.2.3 creates a basis for this purpose. The model uncertainty
decreases as more parameters are estimated (e.g. a higher Markov chain order), but
at the same time the parametric uncertainty increases. An optimum study should
be performed where the sum of both uncertainties is minimized. Consider also other
estimators for the transition probabilities (as the most likelihood estimator is used in
this thesis).

o Formalize mathematically the (improved) influence period D(p,q) and the cross-
transition probability P/, as these concepts were not found in literature but in only
Rip [45].

o Formalize mathematically the Markov Dependency as introduced in Chapter 7; inves-
tigate whether it can be written as a theorem. Furthermore, extensive validation is
required for this method.

o Recode Modules A and B (seasonality and time-dependency) of the DMM-model in
such a way that any Markov chain order can be used for both homogeneities.
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e Recode Module D (coupled operations) of the DMM-model to make it workable for
multiple sequentially coupled operations: e.g. a ‘Hidden Markov Model’ can be used
for this purpose.

e A persistency preservation study: e.g. find the highest possible Markov chain order to
preserve the persistency accurately, but still new information can be obtained with
the specific order.

e It is recommended to further study the Updated Conditional Markov Probability
method despite the results. Such a method could open new doors in the field of data
imputation (replacing missing data).

8.3 Discussion

This thesis provides a framework for the use of software-testing. Many companies use a
variety of models as black-boxes without knowing exactly what happens inside the box. Many
users assume their models work correctly, where the provided framework initially assumes a
model works incorrectly until evidence indicates otherwise. In this manner the DMM-model
is tested and more confidence has been built to obtain reliable results. It should be kept in
mind that there are still other unquantified uncertainties besides the simulation uncertainty
while using the DMM-model. Altogether, it is still believed that the DMM-model can make
more accurate downtime estimations than HADDOCK based on metocean conditions. This
especially holds for big cyclic projects, since more variations of project progressions are
realizable than they are for smaller projects. Big cyclic project mostly consist of coupled
operations which increases other uncertainties. Ideally, the simulation of the DMM-model
should be segregated into stochastic generation of metocean parameters and the project
simulation. This would reduce the model uncertainty and speed up the simulation time. It
can be concluded that models, such as the DMM-model, can help tender teams in making
their decisions based on project duration, giving them a competitive advantage. However, it
should be kept in mind that the hindcast data used as input for the downtime estimation is
assumed to be representative for the truth, which is not certain. If in the hindcast data a
1000-year storm occurred, then the model will treat it as it happens every 20 years (if the
dataset is recorded for 20 years). This is obviously not true.
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A Algorithm block schemes

A.1 Improved DMM-model scheme

A 4
2. Generator
Luad:. ol Add 1 or 0 to workability | _
- Project "1 array with P, -
- Metocean data array i
Determine: -
_ P Set:
B ”U = tyep = 1+order
- I)L(]ﬁ.q) - Operation no. = 1
pq
- pl_j A
Create: . Operation
- Random number matrix EndDate =t,, operations Y
o finished?
- All dates created?
- First states with /1, for
all operations v No
A
Generate:
1. Initialization - D(operation no., next operations)

!

Operation no. = Operation no. + 1

v

tyep = time step of last non-zero
symbol in workability sequence of
Operation no.

All years
generated
?

No

bstep
empty?

- Downtime
distribution

- Actual project

duration distribution

Add 1 or 0 to workability
array with Pi?q

3. Module C

Figure A.1: A schematization of the algorithm for constructing workability sequences of marine
projects with the improved ‘Downtime Modular Markov’ model.
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A.2 Updated Conditional Markov probabilities scheme

4
2. Generator
L(IT.(I:. N o Add 1 or 0 to workability |
- Project 71 array with P, N
- Metocean data - v
Set:
Determine: St =2
step — No
- Py - Operation no. = tatep = batep T 1
- 11 operation no. +1
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- D'(p.q) N
- D'(p.q) :
Al o
operations P Run-length encoding 3
Create: created? g
- Random number matrix Set: ¢ o+
- All dates P -ty = 1+O0rder @,
- First states with /1, for - Operation no. = 1 Simulate projects E
all operations Generate: imutate projects =1
: —
- U(Op: ion no. , Next operations) ] o
1. Initialization - D'(Operation no., Next operations) 8
° - D’(Operation no., Next operations) =
Update Markov - Downtime
distribution

probabilities P;; (1% order)
- Actual project
duration distribution

3. Next operation update

Figure A.2: A schematization of the algorithm for constructing workability sequences of marine
projects with the ‘Updated Conditional Markov probabilities’ method.
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A.3 Markov Dependency scheme

4
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. o Add 1 or 0 to workability |
- Project "1 array with P, : -
- Metocean data array i
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. = 1+4order All years
Deter 3 N ) —t
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-, operation no. +1
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7
\ 4 operations »| Run-length encoding 8
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sate: 2
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- First states with /1, for - Operation no. = 1 Simulate projects E
all operations Generate: imutate projects c
- U(Operation no. , Next operations) ] g'_,'
o
1. Initialization l S
Determine Markov dependency

Py i(Operation no, next operation)
(any order)

- Downtime
distribution

- Actual project

duration distribution

3. Next operation adaption

Figure A.3: A schematization of the algorithm for constructing workability sequences of marine
projects with the ‘Markov Dependency’ method.
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B Improving points

During the verification and validation process several errors/ limitations/ inconsistencies
have been found, which are sorted below per module (and some have already been reported).
Furthermore, the priority is assigned alphabetically, with (a) being the highest priority, (b)
being next, etc. The following numbers have been solved already: 5d, 5e, 3e, 5c.

1. Module A: Seasonality

(a)

()

Miscalculation in the daily transition probabilities, due to leap years in hindcast
data (Section 5.2.1).

The least squared cross validation (LSCV) is not defined when Py jnit = ]5017_151..
Additive smoothing can solve this problem.

The transition probabilities are limited to daily/monthly probabilities. For the
sake of completeness, weekly/seasonally /yearly transition probabilities should be
created.

The limiting probabilities 7; are based on monthly stationarity. For the sake
of completeness and consistency, the limiting probabilities should be made dai-
ly /weekly /seasonally /yearly.

Error in the derivation of P;j(m), as explained in Section 5.1.1.

2. Module B: Time-dependency

(a)
(b)
(c)

The piece-wise time homogeneous function is limited to 1st and 2nd order Markov
chain. Higher orders should be made possible (Section 5.1.2).

A higher order Markov chain should be possible for the non-time homogeneous
function. applicable for piece-wise time homogeneity (Section 5.1.2).

The hypothesis-tests should be redefined; Listing 5.1 represents the idea of how it
should be coded. If the homogeneity hypothesis-test is rejected for any operation,
take the inhomogenous mode with 1st order. If the homogeneity test is confirmed
(for all operations), perform the order hypothesis-test. If the order hypothesis-test
is rejected for any operation, take 1st-order. If the order test is confirmed (for
all operations) take the 2nd-order. Also, the degrees of freedom are differently
defined in this thesis.
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3. Module C: Linked Markov chains

(a) The exceedance curves of the influence period are yearly based, while seasonal-
ly /monthly based should be possible too.

(b) The influence period can also work the other way around. When a non-workable
state is observed in operation p the next state(s) have to be non-workable in
operation ¢ in case it has a stricter operational limit.

(c) The DMM-model crashes when: Operation A has an influence period for the next
2 operations (C, D) & the influence period length of operation D is longer than
the influence period length of operation C & the net duration of operation C is
shorter than the influence period length of operation C.

(d) The cross-transition probability is monthly stationary. For the sake of com-
pleteness and consistency, the cross-transition probabilities should be made
daily /weekly/seasonally /yearly.

(e) The influence period can be coded more efficient.

(f) The cross-transition probability can be coded more efficient.
4. Module D: Coupled operations

(a) This module does not work at all, when non-time homogeneity is applied (Section
5.2.4).

(b) The DMM-model is limited to one sequentially coupled operation, while in practice
more sequentially coupled operations take place as well (Section 5.2.4).

5. Miscellaneous

(a) Without a warranty window in the project, the DMM-model is unable to create
binary workability sequences.

(b) Warranty windows shorter than the net durations, results in an incorrect project
schematization. The duration of the warranty window is considered as the net
duration of the operation.

(¢) The DMM-model will crash in case a project consist of cycles, due to incorrectness
programming of certain variables.

(d) The DMM-model is unable to run a project consisting of operations with-
out a determined operational limit in the inhomogeneous mode. There are
no ‘columnStates’ defined, resulting in a crash. Nor the defining of the
‘columnStates’ is done correctly in the inhomogeneous mode for multiple oper-
ations with the same operational limits.

(e) Dvoretzky-Kiefer-Wolfowitz inequality results in the following confidence bands:
. 1 2
F.(z) + Q—Zn(—) (differs slightly from Equation (4.3) in Rip [15]).
n o«
(f) The persistency is not preserved simulating with the DMM-model.



C Relation between P and 7T

This chapter gives a mathematical derivation of the relation between Pf;q and 7r It is

partly adopted from Rip [45] and extended. The cross-transition probability Pp 7 is deﬁned
as follows:

. NP4
Py = (C.1)

Where N denotes the number of observed transitions that start from ¢ € 0,1 in the
workability sequence of operation p. NZE"}‘I denotes the number of observed transitions that
start from the same state 7, as assigned in N?, to state j € 0.1 in the workability sequence
of operation ¢q. An example of the derivation of N{{ is presented in Figure C'.1. Table C.1
presents the values of N’ N7 and Ng-q for the sequence of Figure C.1.

Workability sequence p:

Workability sequence g:

Figure C.1: Example of the derivation of NV}

Table C.1: The values of N/,N/ and N for the sequence of Figure (.1

d=7 NIl =3|Ny=11
N10_2 N{’f’:4 NY =6
N'=6 N/ =6| T=17

The limiting probability for state ¢ of operation ¢ is defined as:

N?
il = ?Z (C.2)

129



Appendix C. Relation between P/} and m§ 130

Where T denotes the length of the workability sequence and is defined as:
T = N} + NJ = N + N{ (C.3)

N, N?, N§ and N} can be rewritten in terms of Nf’jq:

N NPE+ NET, if the first symbol of the workability sequence ¢ = 0 (C.4)
! NPT+ NEf + 1 if the first symbol of the workability sequence ¢ =1 .
Hence:
N{ > NV! + Nfi (C.5)
Analogously,
NP — NPE+ NH, if the first symbol of the workability sequence p = 0 (C.6)
te NPE+ NI¢ + 1 if the first symbol of the workability sequence p =1 '
Hence:
NY > NPI + NI (C.7)
NO — Ni§ + NI, if the first symbol of the workability sequence ¢ =1 (C.8)
o NI+ Ni§ + 1 if the first symbol of the workability sequence ¢ =0 '
Hence
N¢ > NI§ + N§¢ (C.9)
Analogously,
NP N§! + NE§, if the first symbol of the workability sequence p = 1 (C.10)
0 NE+ NEE + 1 if the first symbol of the workability sequence p = 0 '
Hence:
N§ > NT + N§d (C.11)

The ‘boundary states’, BS%, are defined as the states of the first time step in the
workability sequence of operation g and the last time step in the workability sequence of
operation p. Four different combinations of boundary states can be established, defined as
follows:

BS® . BSY BSo Bs0 st (C.12)

From these four boundary states, the following four propositions can be determined:
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Proposition C.1. The relation between the cross-transition probability Pf}q and the limiting

probability 7! of state i in operational q with BS s given by:

NP +1 N +1 NP +1 NP

>l if NP 1 NI >aloif NP1 N
P ¢ N% +1 Nig+1 pra g N% +1 N%]f
w0 =T uf NP —1 NI o1 4= if NP _ 1 NM
<ml if N%—F1<Nﬁl)]+1 <7l if N%+1<—N(ﬁq
0 Ny -1 NI ! Ny —1 = N
Np Npq + 1 ] Np Npq
>mg if ]\%>(J)(\),%q >ni if N%>N(§g
pra) — 4 if &:N(])Dg"'l pra) — 9 if &:Nm
10 0 Ni N{Jg 11 1 Ni Nﬁ;
NPV NY N
Proof. Equation C.1 can be rewritten as:
=
NY

And with Equation C.3 and Equation C.4, Equation C.2 can be rewritten as:

NiY + Not
NY + Ny

q _
ﬂ-l_

Comparing Equation C.14 and Equation C.15 results in:

] Np Npq

>l if %>~

N N

ppq _q &_Nm
R I v
. NO NOl

<7T111 Zf N71p<N7ﬁ1

Analogously, the relations between P!, P!, Pii and 7{, nd can be obtained

(C.13)

(C.14)

(C.15)

(C.16)

O]

Cautionary note If the workability percentage of p = 100%, i.e. the workability
sequence of p only contains workable states, 1s, thus NJ{ = N§{ =0 and N} = T. Hence:

Pq pq

N N
i =" and P} = 21— due to BS?, resulting in 7] ~ P} if NV} and N¥ > 1.

NP N1
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Lemma C.1.1. If operation p is less strict than operation q, given that both operations are
restricted to the same metocean parameter and the time interval is sufficiently small, which
results in D(p,q) =0 and N = 0, the following relations can be determined for BS%;
Pr—1 BN =0
0 o1 (C.17)
Plf <mg P > 7

Proof. The workability percentage of operation p has a higher or equal workability percentage
of operation ¢, which implies 7} > 7. This results in:

Nig > N§i (C.18)
Equation C.1 combined with axiom NJJ = 0, results in:
PY =0 (C.19)
Combining Equation C.19 with PJj =1 — P} results in:
P =1 (C.20)
Equation C.16 combined with the axiom results in:
PPa > 79 (C.21)
Combining Equation C.21 with Pf{ =1 — P! and 7l = 1 — 7{ results in:
PP < 7l (C.22)
O

Equation C.22 is clarified with the following example. In this example workability
sequence p has an operational limit of Hy < 3m and workability sequence ¢ an operational
limit of Hy < 1m. In Figure C.2 the transitions N} = 0, hence PJ{ = 1. For that reason the
transitions N are struck through, leaving only workable states in operation p. It follows
that PP? > 7, because the number of not-workable states is reduced.

Workability sequence p: H, <5m:
Workability sequence g: H<1m: 0 0 0

T

=1 |
=
=
=

Figure C.2: Clarification for Equation C.22 with an example of operations p and ¢
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Proposition C.2. The relation between the cross-transition probability Pf}q and the limiting

probability 7! of state i in operational q with BS'Y s given by:

NP +1  NH NP +1  NPI4+1

LA v v A e v
pra q . N%+1 N%g] pra a . N%"'l Nﬁ}‘i‘l
00y =m0 if NP _1 NP9 o1\ =71 if NP _1 NI
q N%Jrl N%% q N%Jrl N +1

<m if 1< wm <m if S < T

NP Npq Np Npq
s i N N st i NG MO
N N
PP q . No Nog > . Ny Né’l 1
P, =nl if — = PR =79 if 0= +
10 0 NP~ NP9 11 1 NP NP
<md if Nf(})) < L%% <al if N < Né%“

N TN I N

Proof. Equation C.1 can be rewritten as:
NGt
v

And with Equation C.3 and Equation C.4, Equation C.2 can be rewritten as:

qo NI+ Nt +1
! N + N§

Comparing Equation C.24 and Equation C.25 results in:

NP +1 NP +1

>ql if
YN N
prol—qt uf N +1  Nyj+1
o1 ! NP -1 Npf
ol if N%+1 Nt +1
1
NY -1 N

Analogously, the relations between P!, PP, Pyl and 7{, nd can be obtained

(C.23)

(C.24)

(C.25)

(C.26)
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Proposition C.3. The relation between the cross-transition probability Pf}q and the limiting

probability 7! of state i in operational q with BS° s given by:

NP Npq 1 NP NP‘I
S AR e (s Sadif Shs S
N, Noo N, N,
" NP e +1 " NP N
pre) — 4 Zf -1 -'10 pre) — 4 Zf -1 'l
00 0 Np Npq 01 1 Np Npq
N% Npqo?i- 1 N% N%]q
<my if S5 < —hwr < if <y
Ny Nog Ny Noy
NP+1 NP4 NPy+1 NM
>7Tg if %+ 00;— >7r11 if %+ >7%
ppq _ 9 N0+1_Ngg+1 ppq R N0+1_N01
0 y="m0 uf NP _1  ~ NM i =m if NP _1 NP4
b, 10 b, b
ot if N0+1<Ngg+1 Al i N0+1<&
N T PNt
Proof. Equation C.1 can be rewritten as:

Npq

P = 5

Ny

And with Equation C.3 and Equation C.8, Equation C.2 can be rewritten as:

NI+ Ni§+1
N?Y + N¥

q _
7r0_

Comparing Equation C.28 and Equation C.29 results in:

L, NP NPE+1
> 7T8 ’Lf Nié > T&?
pra) — 4 if &ZN{JS‘F:{
00 0 Né Né)(l)]
Pq
iy NN
RS A

Analogously, the relations between PY!, PP, P¥! and 7{, n{ can be obtained

(C.27)

(C.28)

(C.29)

(C.30)
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Proposition C.4. The relation between the cross-transition probability Pf}q and the limiting

probability 7! of state i in operational q with BS'Y s given by:

A

Pq
F 00

pPY
P10

q
< T

N N
NP~ NP
N N
NP_NPQ
vl
N§ ~ Nig
Ny +1 N
NP —1 7 NPI
N(]‘;’+1_Ni§’%
NP —1 NP
N1 Nl
NP —1 ~ NH

Proof. Equation C.1 can be rewritten as:

Pqg __
PlO_

>al o if ﬁ Lﬁ]—i_l
B A
pra q N%_Nﬁ}+1
<7l if i% Lﬁq—Fl
PUONT N
¢ .. NE+1 _ NT+1
>moaf N7 1 Nﬁl
¢ - N%D+1 Nt +1
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And with Equation C.3 and Equation C.8, Equation C.2 can be rewritten as:
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Comparing Equation C.32 and Equation C.33 results in:
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Analogously, the relations between PY!, PP, P¥! and 7{, nf can be obtained

(C.31)

(C.32)

(C.33)

(C.34)
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D  Hypothesis testing

Hypothesis testing concerns statistical testing in order to determine whether there is enough
‘evidence’ to conclude a condition (the hypothesis) is true. It consists of the following steps
(based on Wikipedia):

1. State the Null Hypothesis (Hp) and the Alternative Hypothesis (Hj).

2. State the appropriate test statistic T'.

3. Derive the sampling distribution under the null-hypothesis of the test statistic T'.
4. Select a significance value «, in this thesis a = 0.05 is used.

5. The distribution of the test statistic under the null hypothesis partitions the possible
values of T' into those for which the null hypothesis is rejected (the so-called critical
region), and those for which it is not. The probability of the critical region is «.

6. Compute from the observations the observed value t,,, of the test statistic 7.
7. Compute the p-value (probability) of the test statistic. p = P(T > tops)

8. Conclude, based on a comparison of the computed value of the test statistic and the
significal value o, whether to accept or reject the null hypothesis.

Reject the null-hypothesis, if the p-value is less than the significance value «. If the
p-value is not less than the significance level «, then the test has no result. "The probability
of rejecting the null hypothesis is a function of five factors: whether the test is one- or
two tailed, the level of significance, the standard deviation, the amount of deviation from
the null hypothesis, and the number of observations [7]. A schematization of a 1-sided
hypothesis test with a chi-square distribution and the probability is presented in Figure D.1.
The used test statistics in this thesis is the Pearson’s ’Chi-square test’ or x?-test and the
"log-likelihood-ratio test’, which are defined as follows respectively:

= (0; — E)?
- (D.1)

=2

=1
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—2In(A) = =2 (In(0;) — In(E;)) (D.2)

i=1
Where:

e X2 = Pearson’s cumulative test statistic, which asymptotically approaches a x? distri-
bution

o —2In(A) = Log likelihood test statistic, which asymptotically approaches a —2In(A)
distribution

e O; = The number of observations %

o E; = Np; = The expected (theoretical) frequency of type i, asserted by the null
hypothesis that the fraction of type ¢ in the observations (the number of observations
is N) is p;

The degrees of freedom (df) are the number of values that are free to vary. For purpose
of illustration, a sum is set to a fixed 10: a 4+ b = 10. The degree of freedom is in this
example is 1, since only 1 cell can ’freely’ vary. The general principal is:
df = (number of cells) - 1

1.0 L L L
Degrees of freedom 1
0.8 - 7]
—k=1 |
— k=2 |
L k=3 ]
e 0.6 - — k=4 —
w r —k=5 1

a L

04+ —
0.2F -
0.0 [ AR S L PR w— ]
0 2 4 6 8

X2 = Pearson's cumulative test statistic

Figure D.1: Chi-squared distribution, with x? on the x-axis and the p-value on the y-axis
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E.1  Seasonality

0.0 I I I I I I I I I I I
1Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan

0 I I I I I I I I I I I I
1

Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan
Date Date
—PWTH—h = 7 days—h = 15 days—h = 30 days—h = 60 days —PWTH—h = 7 days—h = 15 days—h = 30 days—h = 60 days
(a) Northern Hemisphere (North sea) (b) Southern Hemisphere (Tasman Sea)

Figure E.1: Seasonality effects on both hemispheres presented with transition probability Py;
subject to operational limit Hs; < 1.5 m. Piece-wise time homogeneous method is indicated in blue
and the non-time homogeneous method is performed with different kernel bandwidths h.

0 I I I I I | I I
0

T Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan
Date

—PWTH—h = 7 days—h = 15 days—h = 30 days—h = 60 days

Figure E.2: Seasonality effects in the Gulf of Guinea presented with transition probability Py;
subject to operational limit Hy; < 1.5m. Piece-wise time homogeneous method is indicated in blue
and the non-time homogeneous method is performed with different kernel bandwidths h.
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E.2  Results hypothesis tests

E.2.1

Hypothesis chi-square test for monthly piece-wise homogeneity

Table E.1: The results of the hypothesis chi-square test (a = 0.05) for 7 different operational limits

in the Gulf of Guinea with first-order Markov chain

Location: Gulf of Guinea

Markov chain order: 1

Month: | H, <1m Hy<2m Hy<25m U<10m/s T,<7s Hy<2m;U <10m/s Hs,<2m;T,<7s
Jan P>« P>« P>« p <« P> p<a« P>«
Feb p<L o p<a« P>« P> P> p<a« P>
Mar p< p <« P>« P>« P>« p <« P>«
Apr p<a p<a« p<a p<a p>a p<a p>a
May p< p <« p< p<« P« p <« p<L o
Jun p<a p<a p<a« p<a p>a p<a p>a
Jul p<La P>« p< p<a« P> P>« P>
Aug P>« p >« P>« p<a P>« p > p<a«
Sep p<a P>« p<a« p<u« P>« P>« P>«
Oct p<a P p<a p>a pLa pla p<a
Nov P>« P« P>« P>« P>« P« P>«
Dec p<a« P>« P> D> P> P>« P>

Table E.2: The results of the hypothesis chi-square test (a = 0.05) for 7 different operational limits
in the North sea with first-order Markov chain

Location: North sea
Markov chain order: 1

Month: | H,<1m H,<2m H;<25m U<10m/s T,<7s Hy<2m;U <10m/s H,<2m;T,<7s
Jan p<a« P>« P> D>« P>« P>« P>«
Feb P> p<a« P> p<a«a p>a p<a«a p<a«
Mar p<« p <« p< p<« P>« p <« p<La«a
Apr p>a p<a p<a P> p>a p<a p>a
May p<a p >« P>« p >« P> p >« p >«
Jun P>« P>« P>« P>« P>« P>« p<a«
Jul P>« p >« P>« p<a« P> p >« p<La«
Aug p<a P p>a p<La p>a pla p<a
Sep P>« P« P>« P>« p<La« P« P«
Oct p<a« p<a« p<a« P>« p<a« p<a« p<a«
Nov P>« p>« p>a p>« P> p>« P>
Dec P>« P>« P>« p<a« P>« p <« p<a«
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Table E.3: The results of the hypothesis chi-square test (a = 0.05) for 7 different operational limits
in the Tasman sea with first-order Markov chain

Location: Tasman sea
Markov chain order: 1

Month: | H; <1m Hy<2m Hy<25m U<10m/s T,<7s Hy<2m;U <10m/s H,<2m;T,<7s
Jan P>« P>« P>« P>« P>« P>« P>«
Feb P>« P> P>« p>« P> P> P>
Mar P> P>« D> D>« P>« j e P>«
Apr p<a« p<a« P> p<a« p>a p<a« p>a
May P>« P>« P> p<a« P>« P>« P>«
Jun p<a« P>« P> p<a« p>a p<a« p<a
Jul P>« p <« P>« P> p<a« p <« p<«
Aug p>a P> P> p<a p<a« p > p>a
Sep P>« p >« P>« p >« P> p >« P>
Oct p<a P>« P>« P>« P>« P>« P>«
Nov p< P> p>a p >« P> p >« P>
Dec P>« j e P>« P>« P>« P>« P>«

.3  Hypothesis test for Markov chain order

Table E.4: The results of the hypothesis test (o« = 0.05) for 7 different operational limits in the
Gulf of Guinea

Location: Gulf of Guinea
Test statistic: Chi-square test

Order: | Ho<1lm Hs<2m Hg<2bm U<10m/s T,<7s Hy,<2m;U<10m/s Hy<2m;T,<Ts
1 p<a p<a p<a p<La p<a p<a p<a
2 p< P« p< P>« p< p<L p<La«a
3 p <« p<a« p<La« P>« p<La« p<L o« p<a«a
4 p <« p<a« p<a« P>« p<a« p<a« p<a«
5 p<a p<L P> P>« p<a«a p<La«a p<La«a
6 p<« P« P>« P>« p< p< p<L o«

Table E.5: The results of the hypothesis test (o = 0.05 for 7 different operational limits in the Gulf
of Guinea

Location: Gulf of Guinea
Test statistic: Log likelihood ratio test

Order: | Hi<1lm Hy<2m Hy;<25m U<10m/s T,<7s Hy<2m;U <10m/s Hs<2m;T,<Ts
1 p<a« p <« p< <« p< p< <«
2 P« p<La« p<La« P>« p<L p<La«a p<L
3 p <« p <« p<a« P>« p>a p<a« P>«
4 p<a p<a p<a P>« p<a p<a p<a
5 p<a«a p< P>« P>« p<La«a p< 6p < «
6 P« P>« P>« P> P>« P>« P>
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Table E.6: The results of the hypothesis test («0.05) for 7 different operational limits in the North
sea

Location: North sea
Test statistic: Chi-square test

Order: | Ho<1lm Hs<2m Hy¢<2bm U<10m/s T,<7s H;<2m;U <10m/s Hys;<2m;T,<Ts
1 p<a p<a p<a p<a p<a p<a p<a
2 p<« p <« p< p <« p< p< <«
3 p< o« p <« p<L p<La« p<La«a p<La« p<La«
4 p<a p<a pL« pL« pL« p<« p<a
5 p<a p<a p<a p<a p<a p<a p<a
6 p<a«a p<a« p<a«a p <« p<La«a p<La«a p <«

Table E.7: The results of the hypothesis test (o« = 0.05) for 7 different operational limits in the
North sea

Location: North sea
Test statistic: Log likelihood ratio test

Order: | Ho<1lm H,<2m Hy<2bm U<10m/s T,<7s Hy;<2m;U <10m/s Hy<2m;T,<Ts
1 p<a  pZa p<a p<a p<a p<a p<a
2 p<a« P« p< <« p< p< <«
3 p<a p<a« p<L p <« p<La«a p<a«a p<a«a
4 p<a  p<a p<a p<a p<a p<a p<a
5 p<a«a pLa«a p <« p<L p<La«a p<La«a p<a«a
6 p< <« p< <« p< p<La«a p <«

Table E.8: The results of the hypothesis test (o« = 0.05) for 7 different operational limits in the
Tasman sea

Location: Tasman sea
Test statistic: Chi-square test

Order: | Ho<1lm Hy<2m Hy;<25m U<10m/s T,<7s Hy<2m;U <10m/s Hs<2m;T,<Ts
1 p<« p <« p< <« p< p< <«
2 P>« p <« p<La«a p<La« P>« p<La« P>«
3 p<a p<a p<« p<a« p<« p<« p<a
4 p<a P>« p<a p<a p<a p<a p<a
5 p<« P« p< <« p< p< <«
6 p< o« P>« P>« p<La« p<La« p<La« p<
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Table E.9: The resulted p-values of the hypothesis test for 7 different operational limits in the

Tasman sea

Location: Tasman sea

Test statistic: Log likelihood ratio test

Order: | Ho<1lm Hs<2m Hg<25m U<10m/s T,<7s Hy;<2m;U <10m/s H;<2m;T,<Ts
1 p<a p<a p<a p<a p<a p<a p<a
2 P>« p<a« p<L <« P>« p<La«a P>«
3 P« p<L« P>« p<L p<L p<La«a p<L o«
4 P>« P>« p>a p<a« p<a« p<a« p<a«a
5 P> P>« p>a p<a« p<a« p<a« p<La«a
6 P>« P>« P>« p <« p<a«a p<L p<
E.4 Influence periods
: Fength of influence D [days] : oo e 5 O

—D(H, < 1m, H, < 2m)
L H, <2

T, <
—D(H, < 1m, H, < 2m&U < 10m/s)
D(H, < 1m, H, < 2m&T, < 7s)

4 5 6 7
Length of influence D [days|

—D(H, < 2m, H, < 2.5m)
—D(H. < 2m,U < 10m/s)
— D(H.
—D(H.
—D(H, < 2m, H, < 2m&T, <7s)

< 2m&U < 10m/s)

Figure E.3: Exceedance probability of influence periods D(p, q) for operational limit H; < 1 m

(left) and Hs; < 2 m (right) in the North Sea

1 B 6 7 8 0
Length of influence D [days| 1 2
—D(H, <2.5m,U < 10m/s)
—D(H, <2.5m,T, < Ts)
2.5m, H, < 2m&U < 10m/s)
—D(H, < 2.5m, H, < 2m&T, < Ts)

4 5 6 7
Length of influence D [days]

—D(U < 10m/s,T,, < 7s)

—D(U < 10m/s, H, < 2m&U < 10m/s)

—D(U < 10m/s, H, < 2m&T, < Ts)

Figure E.4: Exceedance probability of influence periods D(p, q) for operational limits Hs; < 2.5 m

(left) and U < 10 m/s (right) in the North Sea
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2 3 4 5 6 7 8 9 10 11 0 I L L L L L L L I}
Length of influence D [days| 0 1 2 4 5 6 7 8 9 10 11
—D(T, < 7o, H, < 3miel < 10m/s) Length of influence D [days]
—D(T, < 7s, H, < 2m&T, < 7s) —D(H, < 2m&U < 10m/s, H, < 2m&T, < Ts)

Figure E.5: Exceedance probability of influence periods D(p, q) for operational limit 7, < 7 s (left)
and Hy <2 m, U <10 m/s (right) in the North Sea

E.5 Cross-transition probabilities
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Figure E.6: The cross-transition probability PJ}! of the hypothetical project in Table 6.3 presented
over the year with monthly stationarity in the North sea (left) and the Tasman sea (right)
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<7s—q: H, < 2m&U < 10m/s)
p:H, <2m&U < 10m/s — q: H, < 2m&T, < Ts)

Figure E.7: The cross-transition probability Pj}’ of the hypothetical project in Table 6.3 presented
over the year with monthly stationarity in the Gulf of Guinea
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E.6 Data validation
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(a) Piece-wise time homogeneity (b) Non-time homogeneity

Figure E.8: The workability percentage of the North sea dataset subject to an operational limit
H, <1 m for both (in)homogeneities and 1st-order measured for different bins of years. The whiskers
of the box plot indicate the 95th percentiles and the red cross are its outliers.
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Figure E.9: The workability percentage of the North sea dataset subject to an operational limit
T, < 6 s for both (in)homogeneities and 1st-order measured for different bins of years. The whiskers
of the box plot indicate the 95th percentiles and the red cross are its outliers.
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Figure E.10: The workability percentage of the North sea dataset subject to an operational limit
H, < 2.5 m for piece-wise time homogeneity and 1st-order measured for different bins of years. The
whiskers of the box plot indicate the 95th percentiles and the red cross are its outliers.
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Figure E.11: The workability percentage of the Gulf of Guinea dataset subject to an operational
limit Hy <1 m for both (in)homogeneities and 1st-order measured for different bins of years. The
whiskers of the box plot indicate the 95th percentiles and the red cross are its outliers.
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Figure E.12: The workability percentage of the Gulf of Guinea dataset subject to an operational
limit U < 5 m/s for both (in)homogeneities and 1st-order measured for different bins of years. The
whiskers of the box plot indicate the 95th percentiles and the red cross are its outliers.
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Figure E.13: The cumulative distribution of persistency for the Gulf of Guinea subject to a set

operational limit with 1st-Order and both homogeneities.
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Figure E.14: The cumulative distribution of persistency for the North sea subject to a set operational

limit with 1st-Order and both homogeneities.
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Cumulative probability
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Figure E.15: The cumulative distribution of persistency for the North sea subject to an operational
limit of Hy < 2.5 m, with 1st-Order and both homogeneities.
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Figure E.16: The cumulative distribution of persistency for the Gulf of Guinea subject to a set
operational limit with confidence bands determined with an a-value of 0.05. 1st-Order and non-time

homogeneity.
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Figure E.17: The cumulative distribution of persistency for the North sea subject to a set operational
limit with confidence bands determined with an a-value of 0.05. 1st-Order and non-time homogeneity.
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Figure E.18: The cumulative distribution of persistency for the Gulf of Guinea subject to a set
operational limit with confidence bands determined with an a-value of 0.05. 1st-Order and non-time
homogeneity.

E.7 Black-box validation

E.7.1 Different project

Cumlative probability

Persist

— Hinde.

Figure E.19: The workable persistency duration distribution of the original (hindcast) and DMM-
model generated 1000 years datasets are presented for the operation the first three operations in the
hypothetical project in Table 6.10.

E.7.2 Different data
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Figure E.20: The persistency duration distribution of the original (hindcast) and DMM-model
generated 1000 years datasets are presented for the sinus subject to two operational limits.
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Figure E.21: The persistency duration distribution of the original (hindcast) and DMM-model
generated 1000 years datasets are presented for the sinus subject to the limit of Hy < 2.5 m.
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Figure E.22: The workability percentage of the harmonic sinusoidal motion subject to an operational
limit Hs; < 1.5 m for piece-wise time homogeneity and 1st-order measured for different bins of years.
The whiskers of the box plot indicate the 95th percentiles and the red cross are its outliers.



' Extensions & Improvement

F.1  New coding method: Persistency
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(a) Operation A (b) Operation B

Figure F.1: The cumulative distribution of persistency for the North sea subject to a set operational
limit of U < 10 m/s (left) and H, < 2.5 m (right).
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Figure F.2: The cumulative distribution of persistency for the North sea subject to a set operational
limit of Hs <1 m, U <10 m/s (left) and Hs < 2 m (right).

151



Appendix F. Extensions & Improvement 152

Cumulative probability
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Figure F.3: The cumulative distribution of persistency for the North sea subject to a set operational
limit of T,, < 7 s (Operation E).

.2  New coding method: Workability
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Figure F.4: The workability throughout the year for the North sea subject to a set operational
limit of U < 10 m/s (left) and H, < 2.5 m (right).
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Figure F.5: The workability throughout the year for the North sea subject to a set operational
limit of Hy <1 m, U <10 m/s (left) and Hy; < 2 m (right).
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Figure F.6: The workability throughout the year for the North sea subject to a set operational
limit of T), < 7 s (Operation E).

.3 Increasing Markov chain order: Persistency
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Figure F.7: The cumulative probability distribution of the persistency based on Operation A and
Operation B in Table 7.2 with the North sea dataset and start date 1-May.
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Figure F.8: The cumulative probability distribution of the persistency based on Operation C and
Operation D in Table 7.2 with the North sea dataset and start date 1-May.
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Figure F.9: The cumulative probability distribution of the persistency based on Operation E in
Table 7.2 with the North sea dataset and start date 1-May.
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