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Abstract

There has been a big increase in the use of social robots, such as Pepper, which use verbal
communication as the main method of interacting with a human. Verbal communication
with a robot is performed using Automatic Speech Recognition (ASR) to recognize words
from an audio stream containing speech. These social robots are being more frequently
used in noisy environments. As such, this thesis investigates 1) whether Pepper’s built-in
keyword spotter can be replaced by an ASR system able to recognize continuous speech in
Dutch; 2) whether Pepper’s ASR pipeline can be made more robust against noise, without
changing its hardware. To that end, Pepper’s built-in keyword spotter and Sound Source
Localization (SSL) algorithm are evaluated against an ASR pipeline based on a Delay-and-
Sum beamformer, MUSIC Sound Source Localization, and Google Cloud Speech-to-Text.

The proposed pipeline showed a significant decrease in Keyword Error Rate of 6.2%
compared to Pepper’s built-in keyword spotter, and a significant decrease of Word Error
Rate (WER) of 21.4% on Dutch continuous speech in clean listening conditions. A decrease
in WER of 13.3% was observed in an SNR of 8 dB, and a decrease in WER persisted through-
out lower Signal-to-Noise ratios (SNR).

As such, it has been shown that Pepper’s speech recognition can be improved and made
more robust against noise by preprocessing the audio using MUSIC SSL and a Delay-and-
Sum beamformer, and transcribing the speech (in Dutch) using Google Cloud Speech-to-
Text.
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Introduction

In the last years, the number of advancements in robotic solutions has grown quickly. This
increased research in robotics has brought forward many different types of robots. These
robots are being used in industrial applications in the form of, for example, robotic arms for
sorting or picking up items, autonomous buggies to do pick-ups in warehouses and social
robots.

Social robots could be used to perform many different scenarios, e.g., to welcome guests
in a hotel [1], to provide information in a shopping mall [2], to interview patients to collect
patient data [3], or to educate children [4]. These scenarios assume some form of com-
munication between a human and the social robot. The most intuitive communication
method when conversing with a (humanoid) social robot is using voice interaction. For
this type of interaction, Automatic Speech Recognition (ASR) is required.

ASR is the process of recognizing words from an audio stream containing speech. This
can be used for transcription and also as input for a dialogue system. To use ASR in any
scenario, it is vital that the quality of the recognized transcription is as good as possible.
Wrong transcriptions can negatively influence the user experience, especially in human-
robot dialogues. While ASR systems perform relatively well in situations without noise,
with Word Error Rates dropping as low as 5% [5], its performance can drastically decrease
in more adverse environments [6].

This thesis aims at evaluating the ASR pipeline in a Pepper! social robot. In recent years,
the Pepper robot is increasingly more often used at events and in companies. To the best of
my knowledge, the research in this thesis is the first to evaluate and implement a Dutch ASR
pipeline, including a beamformer, specifically for Pepper; although similar work has been
carried out on other social robots [7, 8], or on Pepper without additional preprocessing [9,
10]. Section 2 gives an overview of these related works.

Social robots often need to deal with noisy environments in the scenarios in which they
are used. Unfortunately, typically, the performance of the ASR systems of these robots dete-
riorates in noisy conditions [8], limiting the locations and situations in which such a robot
can be effectively used. Given the social setting Pepper is used in most commonly, the so-
lutions should also only make use of the hardware that Pepper contains by default. Adding
additional hardware, such as more microphones, would require these to be attached on the

"https://www.softbankrobotics.com/us/pepper
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exterior of the Pepper or make significant changes to its design. Attaching hardware exter-
nally could negatively influence the Human-Robot interaction, as Pepper would get a less
humanoid expression. The limitation of not adjusting Pepper’s hardware does not include
the usage of external processing units, such as a laptop connected to Pepper by WiFi.

There are different ways to make an ASR system more robust to noise, e.g., using speech
enhancement [11, 12] or by training the ASR system on noisified speech [13]. However,
Pepper’s speech processing system is not trainable, nor can it deal with preprocessed data.
Consequently, to deal with background noise, these methods cannot be used directly. The
main aim of my research is to try to make Pepper more robust against the presence of back-
ground noise without changing its hardware, by using noise reduction based on a beam-
former.

1.1. Research Questions
This thesis aims to answer two questions:

1. Can Pepper’s built-in keyword spotter be replaced by an ASR system able to recognise
continuous speech in Dutch?

2. Can Pepper’s ASR pipeline be made more robust against noise, without changing its
hardware?

Pepper’s built-in ASR pipeline forces some limitations upon the user, e.g., recordings
cannot be used as input, preprocessing on live audio data is not possible, and the number
of supported languages is limited. For example, while Pepper is capable of recognizing
continuous speech for multiple languages, including English and Japanese?, Dutch is one
of the languages for which only recognition of pre-set utterances, i.e., a keyword spotter, is
supported®. The inability of Pepper’s built-in ASR system to transcribe continuous Dutch
speech, or other less supported languages, severely limits its functioning as a flexible social
robot world-wide.

Replacing Pepper’s ASR system could allow the circumvention of these limitations. To
that end, we propose to replace Pepper’s built-in keyword spotter with an ASR service in
the cloud. Only a limited number of cloud ASR systems for Dutch were available; we chose
Google Cloud Speech-to-Text (GC-STT)*.

Using GC-STT also allows us to preprocess the speech signal to remove the background
noise. Specifically, I propose to replace Pepper’s built-in Sound Source Localization (SSL)
algorithm with a pipeline using SSL based on Multiple Signal Classification (MUSIC) [14,
15], and to add a Delay-and-Sum beamformer [16, 17] to preprocess the data to reduce
noise and enhance the speech signal before performing the ASR °. Importantly, because
Pepper is typically used in social settings, all solutions should work in (pseudo-)real-time,

2Languages supported by Pepper’s ASR: http://doc.aldebaran.com/2-5/family/pepper_technical/
languages_pep.html

3pepper does not allow for continuous speech recognition as mentioned on http://doc.aldebaran.com/
2-5/naoqi/interaction/dialog/dialog-syntax_full.html?highlight=qichatinputstoring#
input-storing

“More information about Google Cloud Speech-to-Text can be found here: https://cloud.google.com/
speech-to-text/

5A shorter version of this research has been submitted as workshop paper for IEEE ASRU 2019, and can be
found in Appendix B
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which is defined as a period of time short enough for the user to not notice a significant
delay before receiving a transcript, after finishing an utterance. This delay is set to approx-
imately 500ms from the end of the utterance. This amount has been decided on, as half a
second is short enough to not notice any disruptive delays, even in human-human inter-
action.

The robustness against noise of the new ASR pipeline will be tested and compared
to Pepper’s baseline ASR system. Because Pepper cannot deal with audio processed out-
side of Pepper, a series of three experiments was designed to tease apart the influence
of changing the SSL algorithm (see 3.4.1), changing the ASR engine (see Section 3.4.2)
and the addition of a beamformer (see Section 3.4.3) on the performance of the proposed
pipeline. Especially the addition of a beamformer should allow for significant performance
increases compared to the built-in ASR system without beamformer or single microphone
solutions [18, 11]. Furthermore, an additional experiment has been performed to test the
performance and usability of the system in a real, noisy environment (see Section 3.4.4).






Related Work

This chapter first explains the concept of automatic speech recognition. In the subsequent
three sections, related research on ASR in social robots, ASR in noise and beamformers is
presented.

The section on ASR in social robots relates to the first research question: Can Pepper’s
built-in keyword spotter be replaced by an ASR system able to recognise continuous speech in
Dutch? The last three sections help provide the relevant background to the second research
question: "Can Pepper’s ASR pipeline be made more robust against noise, without changing
its hardware?"

2.1.ASR

Automatic Speech Recognition (ASR) is the process of recognizing words from an audio
stream containing speech. Research into ASR goes back many years, with one of the first
ASR systems being HARPY [19]. This ASR system from 1976 could approximately under-
stand 1000 isolated words. Since then the performance of ASR has dramatically improved,
both in usability and performance, even leading to a Word Error Rate as low as 5.1% on
continuous speech [5].

An ASR process generally works in several consecutive steps [20]. These steps are shown
in Figure 2.1. The input of the process is an acoustic signal, digitally represented in sam-

Language
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Acoustic pre-
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|

Figure 2.1: Visual representation of the steps performed in an ASR system, as described by O. Scharen-
borg [20].
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Figure 2.2: The proposed extention to an ASR pipeline, based on the visual representation by O. Scharen-
borg [20].

Lexicon

ples. Acoustic features are created from this acoustic signal by the acoustic preprocessing
step. The recognition is performed using acoustic models, a language model and a lexi-
con. During the recognition, the created acoustic features are compared to sequences of
acoustic models. These sequences of acoustic models represent words in the lexicon. The
word, represented by the sequence of acoustic models which matches best with the cre-
ated acoustic features, is hypothesised. Acoustic features is a broad definition, defining
any representation of information contained in an acoustic signal. Often used features are
Mel-Frequency Cepstral Coefficients (MFCC) [21] and Perceptual Linear Predictive (PLP)
cepstral coefficients [22]. A more basic acoustic feature is the Power Spectrum which is
created by the Fourier Transform. The power spectrum, which comprises of a frequency-
domain representation of the signal, is used in my research to preprocess the data before
performing the ASR.

The acoustic models and lexicon are crucial in the recognition process. The lexicon
contains all words, constructed from smaller units, such as phonemes or syllables, which
can be recognized by the system. The acoustic models are a representation of these smaller
units, based on the acoustic features used by the system.

The language model, on the other hand, contains the linguistic information used to
represent the probability of words succeeding each other, based on the language of the
speech. These probabilities are often represented by bi- or N-grams, where a bigram, for
example, depicts the following probability: P(w,|w,) = %

Up until about a decade ago, many of the state-of-the-art ASR systems were mainly
based on Hidden Markov Models (HMM) [23-25] in combination with Gaussian Mixture
Models (GMM) to represent the acoustic models. Nowadays the use of GMMs to represent
the acoustic models is surpassed by methods using Deep Neural Networks (DNN) [26, 27].
In 2012, Google already reported a decrease of Word Error Rate (WER) of approximately
5% when comparing a DNN acoustic model compared to their best HMM-GMM hybrid
method [28].
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Google Cloud Speech-to-Text (GC-STT) is used in this thesis (see section 3.1.4), which
is nowadays based on a DNN-based acoustic model. Since GC-STT performs end-to-end
transcription, it is not possible to change the acoustic models, or even which acoustic fea-
tures are used. Therefore, the research in this thesis focuses on the steps performed to
preprocess the audio before the acoustic features are created by Google Cloud Speech-to-
Text. In Figure 2.2, three steps between the signal and acoustic preprocessing are added to
the start of the pipeline from Figure 2.1. These three steps, shown at the top of Figure 2.2,
would be the addition of another acoustic preprocessing step, followed by noise reduction
or signal enhancement based on the acoustic features, followed by the transformation of
the acoustic features to a signal once again as input for the Google Cloud Speech-to-Text.

2.2. ASR for social robots

Human-Robot interaction is an essential research area for social robots, given their goal to
interact with humans as naturally as possible. The introduction already mentioned several
possible scenarios in which a social robot can be used [1-4]. In some of these interac-
tions, verbal communication with the robot is important. Roberto Pinillos, et al. [1] already
mention the difficulty in using voice interaction a noisy hotel environment, recommending
multi-modal input (i.e., using the robot’s tablet and speech recognition) as solution. The
speech recognition in the research performed by Masahiro Shiomi, et al. [2, 29] even made
use of an operator to listen along to the interlocutor’s input, to select the correct response
of the robot. This was done due to "the difficulty of speech recognition in real environ-
ments" [2]. The abovementioned research shows the need for a noise-robust ASR system
for social robots.

The need for noise-robustness already prompted Michiel de Jong, et al. [10] to use
Google Cloud Speech-to-Text in their efforts to improve Pepper’s perception. They pro-
pose using both Pepper’s built-in ASR system, and GC-STT to improve the robustness of
the speech recognition system. The measure used for their evaluation of the speech recog-
nition systems is the amount of correctly recognized commands (in the form of sentences),
instead of the transcription quality for continuous speech. They show a 4% increase in cor-
rectly recognized commands by using GC-STT instead of Pepper’s built-in keyword spot-
ter, and a 16% increase when using both systems. Their experiments are performed with-
out noise, and furthermore, use the English language. The results for Dutch continuous
speech, in noisy environments, is not evaluated as of yet.

Human-Robot interaction in which noise-robust speech recognition is used to decode
the speech of possibly multiple speakers in real-time is called Robot Audition. For exam-
ple, HARK [7] is an open-source Robot Audition framework which can be used for mul-
tiple different types of robots, and is specifically tested on the ASIMO, SIG2 and Robovie
robots. While this could include Pepper, the system is evaluated using isolated words and
to the best of my knowledge does not support Dutch. As such, it does not provide an en-
vironment which can be used for the research in this thesis. Its system consists of a full
ASR pipeline from recording to transcription. The HARK software system contains several
modules, which includes modules for sound localization using the MUSIC algorithm, and a
Delay-and-Sum beamformer or Geometric Source Separation (GSS). These can be used on
robots which have multiple microphones to perform sound separation and noise reduction
( Sound source localization and beamforming are further explained in section 2.4). Fur-
thermore, it contains modules for the extraction of acoustic features, creation of Missing
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Feature Masks (MFM) and an ASR interface. The use of Missing Feature Masks is a method
to create noise-robust ASR by identifying and removing noisy acoustic spectro-temporal
regions (i.e., the power of a frequency on a specific time) [30].

The evaluation of HARK makes use of a pipeline consisting of the MUSIC sound source
localization, GSS, and MFM only. Delay-and-Sum beamforming has not been evaluated.
The evaluation of HARK was performed on the ASIMO robot in a room with artificial noise
sources, i.e., music and speech from a 60-degree angle from the front of the robot. Isolated
Word Recognition was performed while focusing the speech enhancement forwards, i.e., its
Sound Source Localization turned off and steered forward statically. In my research, con-
tinuous speech will be used, which is more challenging to recognize than isolated words.
Furthermore, the noise data used in the research in this thesis contains noise from more
than a single direction, as is done in the evaluation of HARK. The measure of the amount
of noise used in the evaluation of HARK is the "Target-to-Robot-Noise ratio", which is the
Signal-to-Noise ratio (SNR) using the amount of noise, caused by, and recorded by the robot
as reference. The pipeline used to evaluate the HARK system was shown to achieve a Word
Error Rate (WER) of 4% to 11% without added speech or music noise, and 10% to 40% with
added noise. When the raw, noisy speech signal from a single microphone was used as
input, instead of the audio processed by the pipeline, a WER of 100% was found.

Furthermore, an experiment was performed to test HARK’s performance in separat-
ing and recognizing isolated words from three speakers simultaneously. The experiment
showed that the use of Sound Source Separation results in a WER of 25% to 50% for all
speakers, depending on the separation between the speakers. The use of MFM further in-
creased its performance, dropping the WER to between 20% to 35%.

Toshinori Ishi [8] created a noise-robust ASR system for a Robovie robot which also
takes the age of speakers into account. To achieve this noise-robust system, a 12-microphone
array is used with a Generalized Sidelobe Canceller (i.e., a type of beamformer) to per-
form the noise suppression in conjunction with a Minimum Mean Squared Error (MMSE)
feature-space noise suppression, based on the optimal single-channel noise suppression,
the Wiener Filter. Furthermore, separately trained acoustic models are used to process the
speech of adults and children separately.

The system created by Ishi is firstly evaluated using recorded, short Japanese sentences
with cafeteria noise mixed in. When looking at the noise-robustness of the system, each
of its proposed components added to the robustness, where the MMSE noise suppression
increased the performance in noise the most. Furthermore, the system is also evaluated in
areal noisy environment (i.e., a cafeteria during lunchtime), and showed an average of 27%
WER.

2.3. ASR in noise

Multiple methods exist to improve the performance of ASR in noisy situations. The main
methods include training or designing an ASR for noisy situations, and preprocessing the
audio before performing the ASR on it.

The first method, training or designing an ASR on noisy situations, is mostly based on
training the acoustic model of the ASR on noisy speech. This method allows the ASR to
recognize the utterances in noise, as the acoustic models are trained with noisy speech;
therefore being able to match its acoustic model to the features created from the noisy in-
put speech. For example, Seltzer et al. [24] investigated replacing acoustic models, based
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on Guassian Mixture Models, with Deep Neural Networks. Seltzer et al. also shows mul-
tiple approaches to training this DNN-based acoustic model which help contribute to the
noise robustness. This includes training with speech in several (noisy) conditions, using
enhanced features, and performing noise-aware training. These methods all add to the
noise robustness in their own way. Training with speech in noisy conditions makes it pos-
sible to find features that are invariant to noise. Performing feature enhancement can lower
the variability of the features by enhancing distorted features. Noise-aware training makes
use of adding an estimation of the noise signal to the acoustic models, allowing the DNN
to learn about the relationship between clean speech and noise.

The second method involves the preprocessing of audio before sending it to the recog-
nition engine. This preprocessing often entails performing noise reduction or speech en-
hancement on the input signal to create an as clean as possible speech signal. The noise
reduction can be done in many ways. One way of categorizing noise reduction methods is
by single- and multiple microphone methods.

Single microphone methods to noise reduction and speech enhancement are used fre-
quently and are often based on Discrete Fourier Transforms [11]. These methods generally
consider additive signal models. In additive signal models, noise and speech are assumed
to be statistically independent. Since these models are assumed to be independent, both
the noise and speech signals can be estimated, which in turn can be used to extract an
estimated clean speech signal. One of these methods is the Wiener filter, which is the opti-
mal filter for single-channel noise reduction [11, 31]. It is often found though, that single-
channel noise reduction techniques, including the Wiener filter, can add much distortion
and artifacts to the speech signal. These distortions and artifacts can negatively influence
ASR systems which are not explicitly trained or designed to handle distorted audio.

Multiple microphone methods for noise reduction are often (based on) beamform-
ers. Beamformers make use of spatial data which can be acquired by using the delays
between the reception of sound at each microphone. These methods can be combined
with single-microphone methods for additional noise reduction, as a beamformer creates
single-channel speech signal from the multi-channel input speech [11]. More information
on beamformers is given in the next section, 2.4.

2.4. Beamformers

Beamformers are used for the improvement of many different signals, from radar [32, 33] to
ultrasound imaging [34, 35]. Beamformers make use of arrays of receivers, in this case, mi-
crophones, to attenuate noise. Spatial data can be extracted using the Time Delay of Arrival
(TDOA), i.e., the delay between the reception of the audio on the different microphones. In
general, beamformers perform noise reduction by changing the phase of audio received on
each microphone with respect to the TDOA, such that audio from a specified direction is in
phase for all microphones.

The TDOA is often represented by the Direction of Arrival (DOA). This representation
uses the assumption that the sound waves arrive in planar waves from a specific direction.

To find the TDOA’s, a Sound Source Localization (SSL) algorithm is frequently used [36].
These algorithms make use of the received signals and knowledge of the microphone array
layout to give an estimation of the location or DOA of the signal. Several SSL methods in-
clude the Steered-Response-Power Phase-Transform (SRP-PHAT) [37], Generalized Cross-
Correlation (GCC-PHAT) [37] and subspace methods such as Multiple Signal Classification
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(MUSIC) [14, 15, 36]. Especially the latter of these is interesting, given that it allows for the
extraction of multiple sound sources simultaneously.

Using the TDOA's retrieved by an SSL algorithm, a beamformer can automatically steer
in the estimated direction of the sound source. The steering of a beamformer is done with
so-called steering vectors. These steering vectors contain the phase shift that has to be
performed by the beamformer to steer in the estimated direction, attenuating sound from
other directions than the one steered towards. Since the delays can rarely be represented
by the number of samples, the phase shift is most often performed in the frequency do-
main, which is acquired by, e.g., a Fourier Transform. The SSL works together closely with
the beamformer, i.e., providing the desired beam direction and its corresponding steering
vectors.

The phase shifts are expressed in a complex value , with k representing the
frequency and 7 the delay to the microphone from a reference point. By multiplying this
value with the frequency-domain value of the signal, the phase of this signal is shifted.
Since speech is a broadband signal, this multiplication has to be performed for each fre-
quency bin.

Beamformers are often separated into two categories: Conventional and Adaptive. These
categories are based on how the weights of each channel in the beamformer are set. These
weights depict the ratio in which the signals received on each microphone should be mixed
together in the final beamformed signal. Where a conventional beamformer has set weights
that do not change automatically based on the signal, an adaptive beamformer adjusts its
weights based on the data it receives.

Adaptive beamformers include for example the Minimum Variance Distortionless Re-
sponse (MVDR) or Capon beamformer [17] and the Generalized Sidelobe Canceller [38, 17].
These beamformers often perform more complex calculations and optimization problems,
which makes real-time processing more difficult. The performance of adaptive beamform-
ers is generally better, though the more complex calculation and optimizations could cause
delays in the pipeline, before the speech can be processed by the ASR.

The research in this thesis uses a conventional beamformer, specifically, the Delay-and-
Sum beamformer [38]. This conventional beamformer has the weights of all microphones
set to a specific value, generally to i, where M is the number of microphones.

A visual representation of the workings of the Delay-and-Sum beamformer is given in
Figure 2.3 1. It shifts the phase of each microphone’s received signal based on the calcu-
lated steering vectors to bring each channel in phase with each other. The figure shows
the in-phase signals (top of Fig. 2.3) to be stronger, though this is not precisely the case.
The signals, right before the summing step, are divided by the number of microphones
and summed together in a ratio which regains the average amplitude of the input signals.
Therefore, the maximum amplitude of the individual signals is approximately the same
as the output signal of the summing step. The individual out-of-phase signals (bottom of
Fig. 2.3) will be divided by the number of microphones as well, though as these are not su-
perimposed, they will remain divided in the output signal, effectively attenuating the noise.
The implementation of a Delay-and-Sum beamformer is explained in section 4.5.

e—j*2n*k*r

Lab Book Pages by Dr. A. Greensted:
http://www.labbookpages.co.uk/audio/beamforming/delaySum.html
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Figure 2.3: The working of a Delay-and-Sum beamformer. The top shows a simplified speech signal being
steered to be in-phase, whereas the bottom shows interference from a different angle being attenuated due
to being brought out-of-phase. Image used with permission from The Lab Book Pages'







Method

To answer the research questions, a new ASR pipeline has been created for Pepper as de-
scribed in section 3.1, in which all the separate parts of the pipeline and how these have
been used is described. To evaluate the performance of the new ASR pipeline, speech
data had to be acquired using Pepper’s microphones as a recording device. Noise data was
recorded as well in order to test the newly proposed ASR pipeline in the presence of noise.
The speech and noise data is acquired in-house and described in Sections 3.2 and 3.3, re-
spectively. The setup of the four performed experiments is explained in Section 3.4.

3.1. The Proposed Pipeline
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Figure 3.1: The bottom flow shows the proposed pipeline, which is compared to the pipeline using Pepper’s
SSL (middle flow), and the pipeline without beamformer (top flow) in Exp. 3.

|

-,
A

The bottom flow of Figure 3.1 shows the proposed pipeline: The audio is recorded using
Pepper’s built-in microphones. The audio then passes through the MUSIC SSL (see Sec-
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tion 3.1.2) and the proposed Delay-and-Sum beamformer (see Section 3.1.3), after which
the beamformed speech signal is sent to the Google Cloud Speech-to-Text (see Section 3.1.4)
for recognition. Furthermore, two baseline systems for Pepper (see Section 3.1.1) have been
used, which are the unbeamformed system (the top flow of Fig. 3.1), and a pipeline based
on Pepper’s built-in SSL and the Delay-and-Sum beamformer. Each part of proposed sys-
tem has been compared to the baseline systems in multiple experiments (see Section 3.4).

3.1.1. Pepper

Pepper is a social robot, often used for welcoming and
informing people in companies or at events!. An im-
age of Pepper is shown in Figure 3.2. Pepper has four
built-in microphones, located on top of its head, in a
rectangular or elliptical array. Figure 3.3 shows the ex-
act layout of the microphones in the Pepper robot used
in this study, where each black dot represents a micro-
phone, and where the front of Pepper’s head is facing
downwards. The microphones are separated 6.7 cm from
one another on the left-right axis and 5.8 cm on the front-
back axis. Located below the microphones is a fan for
cooling the electronics. This fan adds significant noise to
the speech recordings.

Pepper’s built-in sound source localization algorithm
estimates the direction of arrival (DOA) of the loud-
est noise it receives with about 10 degrees precision?.
Pepper’s SSL, however, cannot distinguish speech from  figure 3.2: The Pepper robot
noise. It loses reliability in noisier environments, and
when multiple sound sources are received only the location of the loudest sound source
will be stored.

Pepper’s built-in dialogue system takes the speech recorded by Pepper’s microphones
as input and uses keyword spotting to parse the speech input and decide on a reply. Pep-
per’s keyword spotter is based on the NUANCE ASR system®. Keyword spotting is available
for all languages supported by Pepper, whereas full transcription is only possible with a
limited number of languages, such as English and Japanese.

3.1.2. The MUSIC Sound Source Localization Algorithm

The MUSIC algorithm [14, 15, 36] (obtained from the Python library PyRoomAcoustics [39])
was chosen for the proposed pipeline since it explicitly considers noise to be part of its
model [36]; moreover, it allows for a high-resolution estimation of the sound source loca-
tion.

The MUSIC algorithm is a subspace method which searches for DOAs intersecting the
subspace of signals of interest [36]. The MUSIC algorithm performs eigendecomposition
on the covariance matrix of the received signal in the frequency-domain. By finding peaks
in its power, multiple sound sources can be located, including noise. The highest eigen-

"https://www.softbankrobotics.com/us/pepper
2Documentation for Pepper can be found here: http://doc.aldebaran. com/2-5/
3The use of NUANCE is shown on: http://doc.aldebaran.com/2-5/
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Figure 3.3: Top view of Pepper’s head with the microphone locations shown as black dots, and the angles used
in Exp. 1. Pepper faces downwards.

values found generally correspond with the speech signal subspace, whereas the lower
eigenvalues are in the noise subspace. The subspaces are formed by dimensionality re-
duction based on Principle Component Analysis (PCA) [12]. By projecting a sample on the
signal subspace and not on the noise subspace, the noise from the sample is partially dis-
carded. We focus on a single speaker; therefore, only the first eigenvector is used to locate
the source. The system can be extended to accommodate multiple speakers, by using the
n highest eigenvalues and corresponding eigenvectors, where 7 is equal to the number of
speakers.

Each of the possible source locations has its own set of precomputed (to reduce com-
putation time) steering vectors. These steering vectors do not change as long as the mi-
crophone array stays the same, because the respective delays between the microphones
remain the same for each direction of arrival.

The MUSIC algorithm is computationally heavy; however, when used within predefined
limits regarding listening angle, resolution, frequency range, and the frequency with which
the algorithm runs, it can be run in pseudo-real-time.

The limits set to MUSIC for these experiments are the following:

A maximum scanning range for sound source locations of 120deg centered in the forward
direction. Pepper always tries looking at the person it is conversing with, therefore this
range should be large enough to catch any discrepancies in Pepper’s look direction.

The angular resolution is the distance between sound source locations around the ref-
erence point of the microphone array, expressed in degrees. Within the 120 degree range,
73 possible sound source locations are looked into by MUSIC, which results in an angular
resolution of 1.6deg. A higher angular resolution allows for higher precision of the MUSIC
algorithm in the steering test, as with the chosen resolution, it will check every 1.6 degrees
for a sound source. During exploratory experimentation, 73 sound source locations was
found to allow the pipeline to run in pseudo-real-time (this was later found not to be true
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for live speech, see Section 5.5), with the highest precision possible. A higher precision in
SSL estimations also means a beamformer can steer its beam more precisely.

MUSIC works on broadband signals by searching for peaks in the spatial spectrum over
multiple frequency bins. The range of frequencies MUSIC takes into account can be limited
to block out unwanted frequencies or to focus on a smaller subset. The frequency range
that is used for MUSIC is 300-2000 Hz, with a frequency bin size of 62.5 Hz (due to the
number of samples per processed speech chunk). This results in (2000 —250)/62.5 = 28
frequency bins being taken into account. A range from 250-2000 has been chosen since
the most essential and audible speech frequencies are below 3000 Hz. However, between
2000 and 3000 Hz the fan adds too much noise relative to the speech intensity at these
frequencies to provide a correct estimation. Therefore this range has been left out.

3.1.3. The Delay-and-Sum Beamformer

The beamformer takes Pepper’s audio and the estimated source location from the MUSIC
algorithm and outputs a beamformed speech signal. For the experiments, a Delay-and-
Sum beamformer [40, 17] was chosen, as this type of beamformer requires a low amount
of processing power, which is vital for allowing the system to run as close to real-time as
possible, while still being able to perform proper noise attenuation [41].

A Delay-and-Sum beamformer makes use of phase shifting based on the Time Differ-
ence of Arrival (TDOA) between the microphones to attenuate noise. This time difference
can be applied to the individual channels, with respect to the center of the microphone ar-
ray or a reference microphone. Delaying (i.e., the phase shift) is performed in the frequency
domain since the TDOA in many cases is not equal to a real number of samples.

The frequency domain is obtained using the Short-Time Fourier Transform (STFT). The
audio signal is segmented in segments of n samples for each channel using a Hanning win-
dow. Each segment y(t) is transformed to yi (), which contains multiple frequency bins.
Shifting the phase of the speech signal while in the frequency domain has been done, as ex-
plained in 2.4, by multiplying each frequency bin for each microphone by e™/*27*k*T_After
multiplying, the Delay-and-Sum beamformer sums the audio of each microphone together
in pre-set (often equal) amounts. When summing the audio together, the signals that are
in phase will retain their amplitude (see Section 2.4). Out-of-phase signals, like noise from
a different direction than the beamformer is steered in, also gets summed. But since the
peaks of out-of-phase signals do not overlap, summing these causes attenuation of these
peaks.

The Delay-and-Sum beamformer does not adapt its weights for each channel automat-
ically based on the received signal, as it is not an adaptive beamformer. Since Pepper will
always focus its head on the person engaging it, and the noise generated by the fans is
stronger near the rear microphones, the front microphones are given a weight of 0.3 and
the rear microphones 0.2. These values have been found empirically during exploratory
experiments.

After summing the signals together, a single channel audio signal in the frequency do-
main is obtained. This signal is reverted to the time-domain by the Inverse Short Time
Fourier Transform (ISTFT). The single-channel signal resulting from this process is the
beamformed speech signal, which if done correctly, has attenuated the noise from the orig-
inal signal.
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3.1.4. Google Cloud Speech-to-Text

The Google Cloud Speech-to-Text (GC-STT) takes either the raw speech signal from Pepper,
or the beamformed speech signal as input and transcribes the speech into text. The Google
Cloud Speech-to-Text is based on deep neural networks. It fully supports Dutch and can
transcribe real-time streams, which is crucial for dialogues with social robots. The GC-
STT is used in two ways: as an ASR that mimics a keyword spotter in Experiment 2 and a
standard ASR in Experiment 3.

Keyword spotting, for Experiment 2, is mimicked by providing so-called phrase hints
to improve the confidence scores of the provided phrases, which increases the chance of
correctly recognizing the word. In Experiment 3, GC-STT is used in its standard capacity,
i.e., the word-by-word transcription of a continuous speech signal.

The input to the GC-STT is a stream of Pulse Code Modulation (PCM) data, which is
a digital representation of audio where the amplitude is sampled and interpolated to the
nearest integer within its sample size. More specifically, 16-bit linear PCM has been used.
This representation was chosen since it is uncompressed, and because Pepper also uses
this representation as output for its microphones. Since it is uncompressed, the signal can
be used directly for (pre)processing. The input stream for GC-STT can have a maximum
length of 65 seconds due to limitations in GC-STT. Therefore each recording in the speech
database has been streamed separately, before setting up a new connection to GC-STT.

Google Cloud Speech-to-Text is said to be robust against noise*. Preprocessing for noise
reduction is not advised as it might increase the distortion of the signal®, which could de-
crease the performance of the ASR engine.

Google’s STT only uses a single channel in its current STT. The option for GC-STT to
perform recognition on multi-channel audio specifies that multi-channel input is used
in case each channel contains a different speaker, such as the two sides of a telephone
conversation . This implies GC-STT’s acoustic models are not trained for multi-channel
speech from a microphone array. As Pepper does record multiple channels, preprocessing
the speech with a beamformer creates an enhanced single-channel signal, without losing
any data GC-STT would require for recognition.

It is important that all processing to the signal happens without adding significant dis-
tortion. Distortion in the audio has a high chance of negatively impacting the ASR perfor-
mance if the acoustic model is not trained or designed to handle this.

3.2. Speech Data

Three dedicated datasets were recorded to evaluate the proposed pipeline. Two of these
have been recorded in a sound-proofed booth. Each dataset consisted of recordings of a
single scripted dialogue spoken by Dutch native talkers. All talkers were recruited from
the Faculty of Electrical Engineering, Mathematics, and Computer Science (EEMCS) of the
Delft University of Technology, the Netherlands. They participated for free, and are native
speakers of Dutch. All participants signed an informed consent form prior to the record-

4GC-STT’s Noise-robustness is claimed on their product page: https://cloud.google.com/
speech-to-text/

SPreprocessing against noise is discouraged in the GC-STT documentation:
https://cloud.google.com/speech-to-text/docs/best-practices

6GC-STT description of multiple channel audio transcription can be found here: https://cloud.google.
com/speech-to-text/docs/multi-channel
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ings.

The dialogue consisted of 50 Dutch sentences and can be found in Appendix A. It was
constructed to contain different types of phrases and utterances that could be used in
different kinds of conversations with a Pepper robot, including short and long phrases,
homonyms, large numbers, and dates. Moreover, a monologue, in the form of a short story,
was included to test longer sentences and to investigate how the ASR would respond to
phrases with ambiguous contexts. The monologue made up 12 out of the 50 sentences of
the full dialogue.

The first dataset referred to as the "steering" dataset and used in Experiment 1 (see
Section 3.4.1), consisted of recordings made by 8 talkers (5 males and 3 females, age range:
20 - 30 years). These recordings have not been made inside a sound-proofed booth, as
this booth was relatively small. Instead it was performed in a large room (approx. 8x8
meters) in which background noise was kept to a minimum. Each participant recorded
five sentences from the dialogue. For each recording, Pepper was placed 1 meter in front
of the participant, to ensure constant and comfortable interpersonal distance, at each of
seven different angles, which are shown in Figure 3.3. The chosen angles had a 20 degree
interval except for 0 degrees and -10 degrees, since the symmetric microphone array gives
the same results for each side of the robot, on equal angles. All actuators were turned off
during the recording to avoid additional noise and to ensure Pepper did not move its head.
Each recording from each angle took about 15 seconds.

The second dataset is referred to as the "dialogue" dataset and used in Experiments 2
and 3 (see Sections 3.4.2 and 3.4.3). This dataset consisted of recordings made by 9 partic-
ipants (7 males and 2 females, age range: 20 - 30 years). Five of these participants were also
recorded for the steering dataset and returned for a second recording session for the dia-
logue dataset. Moreover, 4 additional talkers were recorded. The recording of this dataset
was performed in the sound proof booth, as these recordings only were performed in a
single angle, therefore not much space is required. This booth was approximately 1 by 2
meter in size. During the recordings, Pepper was placed 1 meter in front of the participant
at an approximately 0-degree angle (i.e. looking straight at the participant). Each recording
of the 50 sentences in the dialogue took about 6 minutes and resulted in approximately 3
minutes of actual speech data. The other three minutes were taken up by Pepper speak-
ing and large pauses between utterances. The latter three minutes are not included in the
dataset.

During the recording of the "dialogue" dataset, the results from Pepper’s keyword spot-
ter are generated as well, because Pepper’s keyword spotter cannot be evaluated using pre-
recorded speech. Pepper’s dialogue system, which allows for a scripted dialogue between
Pepper and a person, makes use of the built-in keyword spotter to decide on which reply
to give. During these recordings, the dialogue system always replied with the sentence as
defined in the dialogue, not depending on if the keyword was spotted correctly or not.

The third dataset referred to as the "Pepper SSL dialogue" dataset is used in the first
part of Experiment 3. These recordings were made following the same procedures as the
"dialogue" dataset, with the only exception that the estimations made by Pepper’s SSL were
also stored. Four participants (3 males and 1 female, age range: 20 - 30 years), which also
have taken part in recording the "dialogue" dataset, have taken part in these recordings.
The recordings for the third dataset have been made since the estimations from Pepper’s
SSL were not stored during the recording of the "dialogue" dataset by mistake.



3.3. Noise Data 19

During all recordings, the talkers were instructed to speak as they normally would in a
conversation. Due to Pepper’s dialogue engine replying overly fast after a short pause in
speech, participants were instructed not to pause within a sentence. To support the partic-
ipants with speaking without pauses within a sentence, punctuation such as commas have
been avoided in the written text of the dialogue. Some commas did remain in the dialogue,
though these were left to make the sentence more clear to avoid confusion (and there-
fore mistakes) while reading aloud the dialogue. Furthermore, sentences between which
a pause was necessary (i.e., to split up the speech recording in separate files, and for the
dialogue system to correctly recognize when to listen for the next keyword), were placed on
a new line with a dash in front of them. Participants were informed about where to pause
and where not, prior to the recording.

The recordings were manually cut at positive going zero-crossing into one-sentence
fragments using Praat [42], leaving approximately 500 ms of preceding and trailing silence.
Loud noises, such as beeps played by Pepper, that fell within the 500ms window were ex-
cluded from the 500 ms window. Pepper’s speech was also removed. Each audio fragment
has been normalized to 70 dB to ensure the Signal-to-Noise Ratio (SNR) can be more pre-
cisely determined in tests with additive noise.

3.3. Noise Data

Experiment 3 (see Section 3.4.3) will test the ASR pipeline’s performance in noise at differ-
ent SNRs, using the recordings from the "dialogue" dataset. For this experiment, noise in
different SNRs needs to be mixed into the speech recording. Therefore, several minutes of
cafeteria noise were recorded in the EEMCS faculty cafeteria using Pepper. To ensure that
the beamformer spatial filtering could be adequately evaluated, it was made sure that most
of the noise came from behind and from the sides of the robot. Noise coming from the di-
rection Pepper is facing would require a different approach than a beamformer. Stretches
of noise louder than 72 dB and silent segments were manually removed at positive-going
zero-crossings to ensure a relatively stable noise level. The noise signal was normalized to
70 dB after which randomly picked stretches of the noise were automatically mixed with
the speech signal at four different SNRs, i.e., 8 dB, 4 dB, 0 dB, and -4 dB, using a custom-
made Praat script. Two hundred ms of preceding and trailing noise was added (in addition
to the preceding and trailing silence in the speech fragments).

3.4. Experimental Set-up

To evaluate the proposed pipeline, four experiments were carried out. The first experi-
ment investigated the performance of the SSL systems, comparing Pepper’s SSL versus the
MUSIC SSL. The second experiment investigated the difference in the performance of the
recognition engine in a keyword spotting task, performed by Pepper’s keyword spotter and
Google Cloud STT. The third experiment compared the recognition performance of Google
Cloud STT on the raw audio received from Pepper, a pipeline containing using Pepper’s
built-in SSL, and the proposed pipeline. The proposed pipeline in the third experiment
used MUSIC as SSL algorithm. Comparisons to Pepper’s built-in SSL as baseline have only
been performed with clean speech, however the robustness of the proposed pipeline is
evaluated in noisy speech. The fourth experiment, the Robot-in-the-wild experiment, was
performed to evaluate the performance of the proposed pipeline in real noisy situations.
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Together, these experiments can be used to evaluate the performance of the built-in and
the proposed ASR pipeline, as the influence of the ASR engine, the SSL, and the beam-
former have been evaluated, both separately and together, by the different experiments.
All experiments have been approved by the Ethical Committee.

3.4.1. Experiment 1: Sound Source Localization Algorithm

A beamformer makes use of steering vectors to define how to delay the received speech
signal, in order to emphasise the signal from a set direction. When this direction is not con-
stantly the same, a beamformer can make use of an SSL to estimate the direction for which
steering vectors should be created. An error in the estimation of the location of the sound
source causes a beamformer to apply wrong delays, which causes the target speech signals
to be summed out-of-phase. This error will attenuate the target speech signal and could
amplify noise, instead of vice versa. Therefore the first experiment evaluates the SSL algo-
rithm of both pipelines, i.e., Pepper’s built-in SSL algorithm and the MUSIC sound source
localization.

The sound source localization algorithms were evaluated in terms of the DOA in de-
grees. To that end, the DOAs at corresponding timestamps of Pepper’s SSL and of the MU-
SIC SSL were compared. The Root Mean Squared Error (RMSE) between the estimated
angle and the ground truth angle, which is the angle at which the recording was made, was
calculated. The RMSE is calculated by the following formula:

RMSE =/ LR
n

In this formula, H is the hypothesised value (i.e., the estimated DOA), R is the reference
value (i.e., the actual DOA), and n the number of samples. By using RMSE as a metric,
significant steering errors will have a bigger influence on the result. This measure has been
chosen since significant steering errors also cause a beamformer to perform worse due to
wrong steering vectors.

Given Pepper’s default behavior to look at its interlocutor during a conversation, it is
assumed that the person speaking to Pepper is always in front of Pepper. Given this as-
sumption, the limits within which MUSIC SSL listened have been set to 60 degrees to each
side. These limits are used to lower the number of sound source locations the algorithm
has to compare, allowing the MUSIC algorithm to be used in (pseudo-)real-time. Having
these limits also prevents the SSL from focusing on the fan in Pepper’s head, decreasing the
influence of the noise generated by the fan.

3.4.2. Experiment 2: Keyword Spotter

Pepper’s built-in ASR system is a keyword spotter, while the Google Cloud system is a con-
tinuous speech recognition system. In order to investigate the performance of the Google
Cloud’s ASR system compared to the baseline Pepper keyword spotter, the second exper-
iment evaluates the recognition engines, Pepper vs. GC-STT, on a keyword spotting task
using the raw speech signal. This means no beamformer has been used to process the au-
dio, which is done to ensure an equal test between keyword spotters, given Pepper’s ASR
system does not allow recorded audio data as input. In this task, the audio recorded by
Pepper is passed both through Pepper’s built-in keyword spotter and through the GC-STT,
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which operates in 'keyword spotter’ mode using 'phrase hints'”.

Since Pepper’s dialogue function and the keyword spotter can only be used with live au-
dio, Pepper’s keyword spotter was tested during the recordings as described in Section 3.2.
Subsequently, to test the keyword spotter based on GC-STT (as in Section 3.1.4), the record-
ings were streamed to GC-STT. Each transcription created by GC-STT was checked for the
keywords it should contain, and the keywords were marked correct if they are found in the
transcription.

Performance was measured in terms of the number of correctly recognized keywords
or the Keyword Error Rate (KWER), KW ER = incorrect keywordsy,

total keywords

3.4.3. Experiment 3: Speech-to-Text Transcription

Experiment 3 evaluates the Delay-and-Sum beamformer and MUSIC SSL on a Speech-to-
Text transcription task, and its performance in noise. To that end, the beamformed speech
signal from the proposed pipeline is sent to GC-STT for transcription, and compared to the
transcript made by GC-STT of the unbeamformed audio. Two versions of the beamformed
speech signal were compared to the unbeamformed speech signal. Prior to the Delay-and-
Sum beamformer, the speech signal was passed: 1) through Pepper’s built-in SSL (as this
SSL outperformed the MUSIC SSL in the steering test, see Section 5.1); 2) through the pro-
posed MUSIC SSL.

The "Pepper SSL dialogue" and "dialogue" datasets are used for the third experiment.
For the first part of the experiment, the recordings from "Pepper SSL dialogue" were used
with only clean speech. The second part of the experiment, which tests the noise-robustness
of the proposed pipeline, uses the "dialogue" dataset, including additive noise from the
"noise" dataset.

The three systems are shown in Figure 3.1. The recordings made for the "Pepper SSL
dialogue" dataset were processed through either of the three pipelines. Recordings made
for the "dialogue" dataset were processed through the pipeline without beamformer and
the pipeline containing MUSIC SSL.

The top two flows of Figure 3.1 show the pipelines for the baseline system. The upper
flow is the baseline without any preprocessing, where speech recorded by Pepper’s micro-
phones is directly passed to GC-STT. Here the speech signal is not processed apart from
normalization, and directly sent to GC-STT. The normalization is required as speech re-
ceived by the microphones appeared to not be loud enough for GC-STT to reliably give
a transcription. Note, increasing the gain of the microphones added significant noise to
the recordings. The lack of loudness only seemed to appear when recordings instead of
live audio were used. Normalization was done using the SOX audio-processing library on
the recorded audio fragments. This baseline system is referred to as the raw speech signal
system.

The middle flow is the baseline using Pepper’s SSL instead of MUSIC SSL, before the
speech data and estimated sound source location are sent to the Delay-and-Sum beam-
former. Since Pepper’s pipeline does not work with recorded speech, the estimations from
Pepper’s SSL stored together with the recorded speech were streamed to the beamformer.
In this manner, Pepper’s SSL estimations can be used by the beamformer without using live
speech.

“Phrase hints (nowadays referred to as "Speech Adaptation" by Google) are described in GC-STT’s documen-
tation: https://cloud.google.com/speech-to-text/docs/context-strength
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The speech data is sent to GC-STT, which then provides a transcription of the speech
signal. The resulting WER is then used as a baseline comparison for the proposed pipeline.

The bottom pipeline (see Fig. 3.1) is the full proposed pipeline. The recorded audio is
processed by MUSIC SSL, which estimates the location of the most probable sound source.
This estimation is sent to the beamformer, together with speech signal. The beamformer
creates a single channel speech signal which is sent to GC-STT to be transcribed.

The performance of GC-STT on the raw speech signal and the beamformed speech sig-
nals were evaluated in terms of Word Error Rate (WER) in relation to the ground truth, i.e.,
the written text of the dialogues. Evaluation was done for each of the noise levels sepa-
rately. The WER is given by WER = %Ii]” * 100%, where S, D, and I respectively are substi-
tuted, deleted, and inserted words, and N the total number of words in the ground truth.
The comparison with the ground truth is made automatically using the python library asr-
evaluation®, which calculates the WER automatically between two text files. After this cal-
culation, the comparisons have been double-checked to remove errors such as comparing
"19" with "nineteen", and the WER has been adjusted accordingly.

3.4.4. Experiment 4: Robot-in-the-wild

The fourth experiment is the Robot-in-the-wild test. This experiment was conducted to test
the practical usage of the pipeline in a real dialogue setting. To achieve a proper evaluation
of the practical use, a transcription test is done using the full pipeline, including MUSIC
SSL, the beamformer, and GC-STT. This test is performed in the cafeteria of the auditorium
of the university.

Only four persons participated, as the test was performed during the summer break.
The experiment, furthermore, could only be performed during the lunch break. At other
times than the lunch breaks, there is no background noise at this location, which is vital to
this experiment. The four participants were of varying ages, between 20 and 60 years old,
but only males participated. Each test took around 10 minutes, excluding time to explain
the experiment.

Pepper was set up aimed forward at the participant. In this experiment, the actuators
have not been turned off. This has been done to make use of Pepper as it would be in a
regular usage scenario, where Pepper’s actuators would be turned on. Due to this, actuator
noise was still included in the unprocessed audio data. The activated actuators include the
wheels. Pepper will not automatically follow persons, but it will turn around in the same
location if it thinks the audio comes from behind. This action, including the movement of
the head, does cause substantial differences in spatial data compared to being still. Leaving
the actuators on, and performing this experiment in a real, noisy environment results in a
total of three different factors compared to Experiment 3; the moving actuators, a different
location (i.e., different background noise) and constantly changing spatial data.

During the Robot-in-the-wild experiment, a participant was asked to read the dialogue,
used in the recordings of the "dialogue" dataset, aloud. By following the same dialogue as
used in the recordings for the previous experiments, the results from the the Robot-in-the-
wild experiment can be compared to the results from the third experiment, although the
differences between the setups (i.e., different location, moving actuators and constantly
changing spatial data) should be taken into account as well.

Pepper’s dialogue system is used in this experiment to perform the dialogue, as was

8The asr-evaluation tool can be found here: https://github.com/belambert/asr-evaluation
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done during the recording of the "dialogue" dataset (see 3.2). During this experiment,
recording is stopped when Pepper speaks to circumvent the maximum recognition time
of GC-STT, and to avoid recognition of Pepper’s own voice. Pepper starts speaking when
the dialogue system (which uses Pepper’s keyword spotter) recognizes a keyword as de-
fined in the dialogue. When Pepper has finished speaking, the recording is automatically
started again.

Pepper’s dialogue system can be adjusted to respond to text as input, instead of by us-
ing its keyword spotter. This makes it possible to use the transcriptions made by GC-STT
to perform the dialogue. This has not been done during this experiment, as end-point de-
tection would have to be added to the pipeline, to recognize when a speaker is finished
with their utterance. Without end-point detection, GC-STT waits for a significant amount
of time before returning its final transcription (if its input stream is not closed), making it
unusable to directly replace Pepper’s keyword spotter by GC-STT.

As real-time is an essential aspect of the pipeline, this has also been taken into account
during the Robot-in-the-wild test. This has been done by measuring the time between
the start of the pipeline, the moment the last speech data is sent to GC-STT, and the time
the transcription is returned by GC-STT. Due to the low number of participants, and the
problems that arose during the experiment (which is further explained in Section 5.4), this
data was not properly gathered during this experiment.






Implementation

This chapter explains the implementation of the system. First, an overview of the imple-
mentation of the overall system is given, followed by a detailed description of the imple-
mentations of streaming and the beamformer.

4.1. Overall System

A combination of Python 2.7 and Python 3.6 is used to implement the system. This combi-
nation has been chosen since Pepper only works with Python 2.7 on the on-board system,
and Python 3.6 being the newest stable version of Python at the start of this project. Com-
bining the two versions is possible since the code written in Python 2.7 is only run on the
robot itself, and the socket connection (see Section 4.3) serves as a bridging component
between the two versions.

arecord
4 Channel Socket
Audio data
. Beamformed
v Audio data Audio
+
Google Cloud
On-board Pepper SSL Est. Off-board QSTF
{Pepper) ‘ (Laptop)
_ Transcription
S5L
Reguest estimation

NAOQqi

(Dialogue + SSL)

Figure 4.1: The components of the overall system, and the data sent between these components.

Figure 4.1 shows the separate components of the overall system with the data sent be-
tween these components. The system consists of two separate programs which communi-
cate with each other. These are, firstly, the code running on-board Pepper on the left side
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of the figure. Secondly, there is the code which runs on a separate instance, in this case a
laptop, shown in the middle of the figure.

The on-board code performs the recording of the audio using Pepper’s microphones
using "arecord" and sends the data to the off-board code. Moreover, the on-board code
makes calls to Pepper’s API, NAOqi!, which performs the keyword spotting task and SSL.
The off-board code receives the raw audio data sent by the on-board code, after which it
is processed by the proposed MUSIC SSL and Delay-and-Sum beamformer. The off-board
code then streams the processed audio towards the Google Cloud services, which returns
the transcription.

The code was separated into on-board and off-board for multiple reasons. It is possible
to run code on Pepper’s on-board system, though access to its ASR pipeline is still restricted.
This means preprocessing would be possible on the on-board system, though it could limit
the performance of the proposed ASR pipeline. While Pepper’s hardware would allow for
some complex computations, a full-scale audio processing pipeline including large matrix
multiplications, would push the limits of its 4 GB of memory. This would especially be the
case if the pipeline would be extended with a more computationally expensive beamformer
or SSL. Moreover, it was decided to do most processing off-board to keep the off-board
code as generalized as possible, making it possible to extend the proposed pipeline to cater
for other, similar robots. Lastly, by separating the speech processing from Pepper’s on-
board system, testing and debugging code is easier and does not require a Pepper during
the development.

4.2. Pepper On-board

The main focus of the on-board code is the recording of the audio. Furthermore, it com-
municates with Pepper’s built-in NAOqi library and sends the recorded audio data to the
off-board code.

The recording of speech data is done using 'arecord’, a standard Linux command-line
tool for sound recording and playback on a system with a soundcard using ALSA drivers.
In this manner, the raw audio can be retrieved in WAVE PCM 16-bit format. The audio
is retrieved with a sample rate of 16000 samples per second, which is the upper limit for
recording four channels for Pepper’s recording setup. The ’arecord’ command is performed
in a process separate from the running Python code, and its output is piped to the Python
program. To prevent missing chunks of audio, the subprocess’ buffer is set to 5 seconds,
which is enough to catch any regular slowdowns in the connection between Pepper and
the off-board code.

Pepper makes use of the built-in NAOqi library. This library performs all autonomous
actions done by Pepper, such as its idle movements and the retrieval of sensor data. Several
parts of the pipeline and the experiments make use of this API. The most important parts
are the dialogue system and the built-in SSL.

The dialogue system is used to perform a dialogue with the user during the recording of
speech data, and during the Robot-in-the-wild test. To use the dialogue system, a dialogue
file is created, which contains the keywords expected from the user and Pepper’s replies to
these keywords. The built-in keyword spotter is used by the dialogue system to recognize
the keywords set in the dialogue file.

INAOqi: http://doc.aldebaran.com/2-5/index_dev_guide.html
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The dialogue system is initialized at the same time as the recording is started. It then
performs the dialogue alongside the recording. To facilitate Experiment 2 (see Section 3.4.2),
the result of the keyword spotting during the dialogue (i.e., a keyword is spotted or not) is
stored.

The built-in SSL, otherwise referred as Pepper’s SSL, is used in Experiments 1 and 3 (see
Sections 3.4.1 and 3.4.3 respectively). It is performed in the background by NAOqi at all
times. An event to broadcast the SSL estimation is only triggered if a sound over a thresh-
old is detected. When this trigger is activated, Pepper broadcasts the estimated azimuth
and elevation. Furthermore, this message also contains the confidence of and energy in
the estimated direction, and Pepper’s current position. Energy and confidence are used
by NAOqi in the decision which estimated DOA is the most probable. NAOqi returns the
estimated location with the highest confidence, which is calculated using the energy.

The audio data is streamed towards the off-board code over a socket, as described in
Section 4.3. Since Google has a 65 second limit on the length of an audio stream for tran-
scription, a more extended dialogue has to be split up in several pieces. This is not the case
during the recordings of the speech datasets, given these are not transcribed during the
recording and are split manually. To circumvent the limit on live transcription while record-
ing, the recordings stop when Pepper throws the event 'ALTextToSpeech/TextStarted’, indi-
cating whether Pepper is speaking. As soon as the 'TextStarted’ event is negated, the record-
ing starts again. While this does not circumvent the issue when a user is speaking for more
than a minute at a time, it does work in most dialogue situations. Restarting the recording
can lead to slight delays if the socket does not connect immediately again. This effect is
compensated for though since the maximum throughput of the data is generally far more
substantial than the actual data.

After a chunk of audio data has been recorded, this data is sent to the off-board system
together with Pepper’s SSL estimation. This is further explained in Section 4.3.

4.3. Streaming

Streaming is performed using Python’s built-in Socket library. This library allows for the
creation of simple socket connections, over which byte streams can be sent. The socket
library has been chosen due to its simplicity, especially when dealing with byte streams.

The audio data consists of 128 kB of data per second based on the sample rate, chan-
nels and bit depth: data_size = 16000 * 4 * 2 = 128 kB. Additionally, the location is sent
together with the audio data. The audio data is sent in chunks of 16384 bytes, which is ap-
proximately 120 ms of four-channel speech data. This chunk size has been chosen to allow
for low latency while not creating a large overhead by sending too many messages.

To simplify the transmission of multiple different variables, i.e., the audio data and es-
timated location data from the Pepper SSL, protocol buffers from the ProtoBuf library have
been used [43]. Protocol buffers are a method created by Google to allow for simple se-
rialization of structured data. Given that generally only a simple byte stream can be sent
over the socket, Protobuf serializes the data it contains to bytes, which can be received and
deserialized without losing any structure to the data. This way, the location data and the
audio data can be separated easily while still being sent in a single message.
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4.4, Off-board

The off-board processing for this experiment runs on a laptop but could be run on a server
or desktop as well. Its most important tasks are performing the SSL and beamformer, the
streaming of the processed speech signal to GC-STT, and receiving the transcriptions from
GC-STT.

Two threads have been used in the program to perform several tasks in parallel: the
receiver thread and the main thread. The receiver thread only performs the acquisition
of the audio data from the on-board code and the conversion of this data to the correct
format. The main thread performs the processing of the data, including performing the
SSL and beamformer. It also takes care of transmitting the beamformed audio to the GC-
STT and the reception of the transcriptions from GC-STT.

The receiver thread receives the protocol buffer in serialized form. After deserializing,
the received audio data is converted into NumPy arrays representing the raw audio samples
in the used PCM 16-bit format. The received audio data contains the samples from multiple
microphones in a one-dimensional array (i.e., [my, my, m3, my, my,...], where m; is a sam-
ple from the respective microphone). This array needs to be split into a two-dimensional
array, where the samples of each channel are grouped together. The splitting of this one-
dimensional array to an array with the samples for each channel separated is performed by
the receiver thread as well. The NumPy arrays are stored in a queue to be used by the main
thread.

The speech signal is in the time-domain, meaning it describes the amplitude at each
sample. Acoustic features have to be made from this time-domain signal in order to process
the audio using a beamformer. These features are created using the following two steps.

Firstly, since speech is non-stationary (or quasi-stationary) [44], and since speech pro-
cessing using a Fourier transform assumes stationary signals to function optimally, the
speech signal is segmented into segments of 2048 samples. These segments are windowed
into segments of 256 samples in the main thread. The windowing method used is a Han-
ning window with a 50% overlap between segments. The windowing and overlap ensure
a smooth transition between processed segments in the audio, which otherwise can cause
anomalies in the processed audio signal.

Secondly, these segmented windows are converted, using a one-dimensional DFT in-
cluded in the NumPy library, to a frequency-domain signal. By using windowed segments
of 256 samples, 129 frequency bins will be created of equal size between 0 and 8 kHz by the
DFT. The 8 kHz upper limit is set by the Nyquist frequency, which is the highest frequency
that can be retrieved using, e.g., a Fourier transform [45], and it is defined as half the sam-
ple rate. By using windows with 256 samples as input for the DFT, the amount of frequency
bins is nr‘m‘czﬂ + 1 =#bins = 129. This transformation results in the acoustic fea-
tures, represented by a complex three-dimensional array, which represent the transformed
frequency-domain data. The three dimensions represent the frequency bins and the differ-
ent channels for each of the windowed segments.

The acoustic features (i.e., the frequency-domain signals per segment) are fed into the
MUSIC SSL algorithm from the pyRoomAcoustics [39] library. This algorithm is able to
calculate the spatial data of the acoustic features and will return a list of estimated sound
source locations in descending order, with the most probable source at the top of the list.
The MUSIC algorithm calculates steering vectors for a pre-set range of azimuths, in our
case -60 to 60 degrees, which it uses to calculate the probability of a sound coming from
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that direction. These steering vectors are retrieved for use by the beamformer in the next
stage.

The acoustic features are sent to the Delay-and-Sum beamformer as well as the steering
vectors (see 4.5). The beamformer computes the enhanced single-channel audio signal in
the frequency domain from the 4 channel data and the steering vector. This enhanced
frequency-domain signal is reverted to a time-domain signal again by using the inverse
DFT. After calculating the time-domain signal, the windowed segments are joined together
using an overlap-add, which is the inverse step of the segmentation. It adds the segments of
time-domain signal together, with the overlap defined as when segmenting the the signal.
The overlap-add creates a single, complete signal again.

Using the Google Cloud libraries, the enhanced time-domain signal is streamed to the
GC-STT. The GC-STT returns a list of hypothesised transcriptions after each sent segment,
sorted by probability as calculated by the recognizer. An ’is final’ variable is provided with
the response, which is set to true if the recognizer has identified the end of an utterance.
This variable ensures that only full transcriptions are returned, instead of interim results,
and to recognize when GC-STT will start with an empty transcript again, which requires
storing the previous transcription.

4.5. Sound Source Localization & Delay-and-Sum Beamformer

The Delay-and-Sum beamformer works on the concept of changing the phase of a complex
frequency-domain signal, with respect to the delay to a reference location. These delays are
stored in the steering vectors, which are created for each possible DOA during run-time. To
decide which steering vectors have to be used, a Sound Source Localization algorithm is
performed.

The precise location of the microphones is required to be able to calculate the steering
vectors. The microphone locations are stored in a 4 by 3 matrix depicting their euclidean
coordinates relative to the middle of the microphone array. The delays between the mi-
crophones (1) are calculated by performing the dot product between the microphone loca-
tions and the unit vector of the estimated DOA.

The steering vectors are created by calculating e as explained in Section 2.4.
Since a single steering vector contains the delay for each of the 129 frequency bins and
each of the 4 microphones, 516 computations of the exponent are required. Calculating a
single steering vector is doable while still performing in a real-time system. If all possible
DOAs are known, the pipeline can be optimized by calculating all steering vectors during
initialisation of the pipeline (i.e., before the recording is started).

Depending on the pipeline used, the steering vectors are either calculated by MUSIC
SSL or by Pepper’s built-in SSL. When the MUSIC SSL is used, the steering vectors are cal-
culated by the PyRoomAcoustics library before the recording is started. This is only done
once, since steering vectors do not change if the physical orientation of the microphone
array does not change. Moreover, given the range of DOAs and the angular resolution are
known in advance (due to the parameters of the MUSIC algorithm), all possible DOAs are
known, making it possible to precompute the steering vectors accurately.

When the beamformer code creates the steering vectors, they are calculated after Pep-
per’s SSL estimation is received. Only a single steering vector needs to be calculated, based
on the DOA estimated by Pepper’s SSL. As it is unknown which precise DOAs Pepper’s SSL
can return (i.e., the angular resolution is unknown), precomputing the steering vectors

—jx2mxkxT
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would be very difficult and has not been done.

It is possible to force the beamformer to always focus in a preset direction, e.g., for
debugging or when the DOA is known and does not change. In this case, a static azimuth
can be used to calculate the corresponding steering vector.

Applying the Delay-and-Sum beamformer is a relatively short step compared to cal-
culating the SSL. To perform the Delay-and-Sum beamforming (i.e., the phase shifts), the
complex frequency-domain signal is multiplied (using the dot product) by the steering
vector. This is performed for each frequency bin separately, but over all channels at the
same time. After performing the dot-product on the complex signal of all channels and
the steering vector, a single complex scalar is returned. This single complex scalar is the
frequency-domain representation of the beamformed single-channel speech signal, for a
single frequency. Performing the aforementioned calculations for each frequency bin, re-
sults in a vector representing the beamformed frequency-domain signal of the processed
speech segment.



Results

The results from the experiments described in Section 3.4 are given in the following sec-
tions.

5.1. Experiment 1: Sound Source Localization Algorithm

The first experiment compared the performance of Pepper’s SSL and the MUSIC SSL. The
RMSE, averaged over all recordings was 12.1 degrees for Pepper’s SSL and 19.7 degrees
for MUSIC with a standard deviation (SD) of 7.4 and 3.9, respectively. A two-tailed t-test
showed that Pepper’s SSL performed significantly better than the MUSIC SSL (p <.001).

Inspection of Pepper’s results showed that Pepper’s SSL changed its estimated location
only a few times. This was, in most cases, only when the participant started to read aloud
from a different angle. This behavior helps to avoid erroneous steering caused by noise
when speech is absent or too soft. A moving sound source, on the other hand, would pos-
sibly be wrongly steered after the first estimation.

MUSIC changed its estimation for nearly every speech sample it received. While the
sound source location estimation during voiced speech is reasonably good, during short
pauses or unvoiced speech, MUSIC tried to estimate the location of the loudest noise source
with the highest correlation between the microphones, i.e., its built-in fan. Since the RMSE
gives a higher weight to more substantial errors due to its quadratic nature, MUSIC SSLs es-
timation error becomes much more substantial. The frequent changing of the location esti-
mation, on the other hand, would possibly make MUSIC better suited for moving speakers,
or when Pepper is allowed to move its head freely. The usage of MUSIC in the pipeline,
without disabling Pepper’s head movements, was later evaluated on a speech transcription
task during Experiment 4.

5.2. Experiment 2: Keyword Spotter
To evaluate the difference in ASR performance between Pepper and Google Cloud Speech-
to-Text, their keyword spotting performances were compared. The results showed a KWER
of 34.5% (SD = 11.0) for Pepper’s keyword spotter and 28.3% (SD = 11.2) for GC-STT.

To perform a two-tailed t-test, the number of correctly recognized keywords was used.
Pepper’s keyword spotter correctly recognized 302 keywords and GC-STT recognized 473
keywords correctly of the total of 689 keywords. A two-tailed t-test with as observations 302
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and 473, with n = 689 showed that GC-STT significantly outperformed Pepper’s keyword
spotter (p <0.001).

Inspection of Pepper’s keyword spotter’s results showed that its keyword spotter has
some difficulties, especially with the monologue included in the dialogue. Pepper’s dia-
logue system, which is used to evaluate the keyword spotting task, appeared to finish its
recognition of an utterance before an utterance was finished. This caused Pepper to stop
listening to the participant’s utterance prematurely. In turn, this caused Pepper to listen for
the next keyword, causing recognition errors. Since GC-STT was not directly linked with
the flow of the dialogue system during the recordings, this problem did not affect GC-STT’s
results.

On the other hand, Pepper’s keyword spotter was able to handle the spelling of words,
whereas GC-STT was unable to perform this correctly. During a small separate test to check
if GC-STT’s lexicon contained distinct characters, it became clear these are in fact part of
its lexicon. This suggests that GC-STT prefers to transcribe words that sound alike or fit the
context of the sentence, over individual characters. The inability to spell words could make
certain interactions with the Pepper more difficult, e.g., having to spell a name to schedule
an appointment.

5.3. Experiment 3: Speech-to-Text Transcription

To evaluate the proposed pipeline, the Speech-to-Text transcription of the beamformed
speech is compared to two baseline systems. These baseline systems are: (1 Pepper’s built-
in SSL and the Delay-and-Sum beamformer, and (2 The unprocessed speech signal. Both
the proposed pipeline and the baseline systems make use of GC-STT to create the STT tran-
scription.

As mentioned before, Pepper’s ASR pipeline does not work with prerecorded speech.
This also means Pepper’s SSL can only be used on live speech. Since the estimations of Pep-
per’s SSL in noisy conditions can differ greatly from its estimations in clean speech condi-
tions, the estimations calculated during the recording of the "Pepper SSL dialogue" dataset
cannot be used for recordings with additive noise. Therefore, the comparison between the
proposed pipeline and the baseline system using Pepper’s SSL will only be performed with
clean speech. Using the recordings of the four participants from the "Pepper SSL dialogue"
dataset, the WER was calculated for the pipeline with MUSIC SSL, the pipeline with Pep-
per’s SSL and the pipeline without beamformer.

The WER for the pipeline without beamformer is 31.0% (SD: 4.6%), for the pipeline con-
taining Pepper’s SSL and the Delay-and-Sum beamformer is 30.1% (SD: 3.9%), and the pro-
posed MUSIC SSL and Delay-and-Sum beamformer pipeline is 28.0% (SD: 2.9%).

A formal statistical significance test is not performed, but a conservative model is de-
fined as done by Scharenborg, et al. [46]. If assuming that errors within a speech recording
are fully correlated, and follow a Bernoulli model [47], then two ASR systems are signif-
icantly different if their WER differ by at least % = 3.5%, where 200 is the number of
sentences in the performed dialogue. As such, the difference between the pipelines is not
significant; however, even with the small speech dataset (n=200) used in this experiment,
MUSIC SSL did achieve a higher performance than the two baselines.

The second part of the third experiment evaluated the noise-robustness of the full pro-
posed pipeline, which is done by comparing the proposed pipeline with the unbeamformed
pipeline with noisy recordings. This experiment attempts to show the proposed pipeline
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Figure 5.1: WER of the speech-to-text transcription task with the Google Cloud Text-to-Speech system on the
unbeamformed and beamformed speech signal.

Table 5.1: WER, SD and total errors of the baseline system (B) and the proposed pipeline (P), followed by the
decrease in WER by using P.

SNR | WER (B) SD (B) Total Errors (B) | WER (P) SD (P) Total Errors (P) | WER diff.
None | 51.1% 185% 1770 29.7% 8.1% 1031 21.4%

8 56.3% 14.9% 1951 43.0% 8.7% 1490 13.3%

4 69.2% 14.3% 2397 57.6% 10.5% 1995 11.6%

0 89.8% 6.9% 3112 81.4% 52% 2822 8.4%

-4 98.4% 2.0% 3408 96.6% 2.6% 3348 1.7%

is more noise-robust than Pepper’s baseline system (i.e., a pipeline without beamformer).
As Pepper itself does not use a beamformer to enhance the speech signal, the unbeam-
formed pipeline is used as baseline to compare the proposed pipeline against Pepper’s ASR
pipeline. As mentioned before, the pipeline containing Pepper’s SSL cannot be tested with
noise, therefore it will not be used in this experiment.

The comparison between the proposed pipeline, and the unbeamformed signal is per-
formed on the clean recordings from the "dialogue" dataset and the recordings from the
"dialogue" dataset with noise mixed in from the recorded noise dataset. Figure 5.1 shows
the WER for the different SNRs for the unbeamformed speech signal (dotted line with cir-
cles) and the beamformed speech signal (dashed line with crosses). The precise results are
shown in table 5.1.

Significance tests are performed similarly to the first part of Experiment 3, which shows
differences between WERs are significant with a difference of at least \5}% = 2.4% WER.
A significant difference (> 2.4% WER) is achieved in most SNRs; only with an SNR of -4
dB no significant difference is found. This shows that the proposed pipeline results in a
significantly improved noise-robustness over the baseline system.

Analysis of the transcription results showed that "jij/je/jou" ("you/your") were often
confused. This could be due to the high phonological similarity between these words, and
their occurrence in highly similar places in utterances. Moreover, both "jij" and "jou" are
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often reduced to "je" when speaking. It is thus possible that the talkers unintentionally
mispronounced these words. It is also possible that both possibilities happen.

5.4. Experiment 4: Robot-in-the-wild

The Robot-in-the-wild experiment has been done with four participants. The experiment
with one of the participants has not been successful and did not provide a transcription,
due to an error in setting up the connection between Pepper and the off-board code. From
the three remaining participants, a transcription was created by the proposed pipeline.
This led to an average WER of 51.3% (SD: 9.6%), though the transcriptions resulting from
one participant was only complete up until the dialogue, due to the same error as the fourth
participant.

Besides the connection error, several problems came up when performing the Robot-
in-the-wild experiment. These problems include Pepper looking away from its interlocutor
many times, and Pepper dialogue system continuing the dialogue due to "ghost utterances"
(i.e., an utterance was heard by Pepper that was not uttered). These problems are examples
of some of the difficulties when using the Pepper in a noisy situation, and can be used to
improve the pipeline during further research.

After performing the experiment, it was discovered that Pepper’s erratic looking be-
haviour was caused by a setting in NAOqi’s Basic Awareness !, the Engagement Mode. This
setting decides if, and how Pepper keeps track of the person it is engaging with. This setting
defaults to "Unengaged", which means Pepper responds to all stimuli and does not keep
its focus on a single person. This setting could be set to "FullyEngaged", in which it con-
tinues to look at a person using multiple sensors, including its vision. If this setting were to
be used, the assumption that Pepper always tries to look at the person it is engaging with
would be correct.

Due to Pepper looking away from its interlocutor, it in some cases reached the limits
set to the MUSIC algorithm. While the dialogue was performed, observations of the esti-
mations made by MUSIC SSL showed that MUSIC SSL did appear to steer correctly when
Pepper did look in the participants’ direction within the limits set to MUSIC SSL.

Another problem was caused by the use of Pepper’s keyword spotter to perform the dia-
logue with the participant, as mentioned in Section 3.4.4. During the experiment, Pepper’s
keyword spotter sometimes responded abnormally to utterances (i.e., replying before the
interlocutor finished their utterance) or "ghost utterances", causing the dialogue system to
continue to the next keyword in the dialogue prematurely. This caused the recognition and
the recording to stop (for the current sentence), as Pepper starts speaking, and the system
is set up to stop the recording when Pepper speaks.

5.5. Pseudo-real-time

As recognition within pseudo-real-time is important for ensuring proper Human-Robot
Interaction, the processing time and latency have been calculated for the transcription
test. This has been done for the recorded audio from the "dialogue" dataset and using
live speech. When recorded audio was used, all speech data from this recording was avail-
able to be processed from the start. In other words, if a chunk of audio is processed, the

INAOqi Basic Awareness:
http://doc.aldebaran.com/2-5/naoqi/interaction/autonomousabilities/albasicawareness.html
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pipeline does not have to wait for the next chunk. When the test was performed using live
speech (as in the Robot-in-the-wild experiment), the audio recorded by Pepper’s micro-
phones was streamed and used as input of the system, therefore when the processing of a
chunk is finished, the pipeline had to wait for the next chunk to be received.

Figure 5.2 shows the steps in the system where a times-
tamp is created to calculate the run-times. The time between ‘

these measuring points are marked. T1 is the time between
the start of the system and the connection between Pepper
and the laptop used for off-board processing. This timing has
not been taken into account as it is assumed this connection T
is made before the recording and the dialogue are started. T2 Y

Start ‘

depicts the time it takes for all audio to be processed by the ‘ Connected ‘
pipeline, including sending it to GC-STT. T3 depicts the la-

tency between sending the last chunk of speech data to GC-

STT and receiving the final transcription. v T2

On average, all recordings per participant in the "dia-
logue" dataset contained 145.0 seconds of speech data. The

Last Data sent to GC- ‘

recordings processed using the proposed pipeline required STT

on average 134.1 seconds to process per dialogue. This shows

the pipeline can work in real-time if all speech data were to be T3

available, as soon as processing of a chunk of speech data was hd

done. Final Transcription
The processing times of live speech were expected to be Received

retrieved during the Robot-in-the-wild test. Due to the prob-
lems encountered during this experiment, this had to be done Figure 5.2: The measuring
in another manner. As such, the pipeline was configured as POInts to test processing times.
it would in the Robot-in-the-wild experiment (e.g. perform- E TIII:; sczsl;gla:);og?j;g:;i
ing the pipeline using live speech data). In this configuration, pi[;eline, T3: Latency until
I have read aloud the dialogue to Pepper 5 times to calcu- receipt final transcript

late the processing time. This resulted in 32 streams per di-

alogue (160 in total) to be sent to GC-STT, given the stream is

stopped each time Pepper speaks during the dialogue in the Robot-in-the-wild configura-

tion (which it does 32 times).

The processing time and the latency by GC-STT (T2 and T3 in Fig.5.2 respectively) have
been recorded. Furthermore, the length of the recording was calculated by dividing the
number of samples sent to GC-STT by the sample rate of 16000.

T2 consistently fluctuating around approximately 100-150 ms processing time per 2048
frames (which represents 128 ms of speech data). The latency of T3 over the 160 record-
ings was approximately 300 ms per recording, with some intermittent recordings having
a latency of one second. The average latency of T2 and T3 combined was around 750ms,
which is more than the 500 ms defined as the upper limit for pseudo-real-time.

As T3 latency is approximately 300 ms, the remaining 450 ms could be blamed mostly
on T2. When using live speech, a latency occurs in T2, since the pipeline will have to wait
for the speech data to be recorded on, and received from Pepper. As the processing time of
a chunk of speech is approximately 100-150 ms, the minimum latency is 100-150 ms from
the end of the recording. Since a sliding window is used in processing the audio (during
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the segmentation of the speech signal, see Section 4.4), all data will be processed twice,
therefore leading to a latency of 200-300 ms. Furthermore, the latency between the speech
being recorded on Pepper, and it being received on the off-board system adds to the total
latency as well. This latency has not been taken into account though, and depends heavily
on the network between Pepper and the off-board processing unit.



Discussion

Despite social robots, like Pepper, being increasingly more often used in human-robot dia-
logues and noisy environments, little is known about Pepper’s ability to deal with continu-
ous speech and background noise. To the best of my knowledge, the research in this thesis
is the first to investigate an ASR pipeline for Dutch continuous speech, including prepro-
cessing by a beamformer. Specifically, this thesis investigated 1) whether Pepper’s built-in
keyword spotter could be replaced by an ASR system able to deal with continuous Dutch
speech; 2) whether Pepper’s ASR pipeline could be made more robust against noise, with-
out changing Pepper’s hardware. To that end, in four experiments, Pepper’s built-in Sound
Source Localization algorithm and keyword spotter were compared to a newly proposed
pipeline using SSL based on MUSIC, a Delay-and-Sum beamformer, and Google Cloud
Speech-to-Text. The proposed pipeline was tested in cafeteria background noise in both
an offline and online test.

The first experiment showed that Pepper’s built-in SSL significantly outperformed the
MUSIC SSL, with an RMSE that was 7.6 degrees lower for Pepper’s SSL. The second exper-
iment showed that changing Pepper’s keyword spotter with Google Cloud Speech-to-Text
yielded a significant decrease of 6.2% in Keyword Error Rate compared to Pepper’s keyword
spotter. This decrease shows Pepper’s keyword spotter can be replaced by an ASR system
able to recognise continuous speech in Dutch, with a better performance than the built-in
keyword spotter.

The third experiment investigated the effect of the proposed MUSIC SSL and Delay-
and-Sum beamformer on Automatic Speech Recognition. A comparison using clean speech
recordings resulted in a WER of 31.0% for the unbeamformed speech, 30.1% for Pepper’s
SSL, and 28.0% for the proposed pipeline. Significant differences were not found though,
most likely due to the small sample size, though MUSIC still outperformed the baseline.

To test the noise-robustness of the proposed pipeline, a comparison was performed
using the recordings from the "dialogue" dataset with additive noise. The comparison be-
tween the pipeline containing MUSIC SSL and the beamformer showed a statistically sig-
nificant decrease 0f 21.4% in WER in clean listening conditions compared to the raw speech
system. Importantly, at an SNR of +8 dB, the proposed pipeline still showed a significant
13.3% improvement in WER over the unbeamformed speech. An improvement in the WER
persisted in more difficult SNRs.

The results from the transcription experiment show that replacing Pepper’s ASR pipeline
by the proposed pipeline can make it more robust to noise. Despite the small datasets that
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have been recorded, the difference between the proposed pipeline and Pepper’s baseline is
significant up to SNRs of 4 dB. The results from the transcription experiment, furthermore,
show that the Delay-and-Sum beamformer can remove a large part of the noise generated
by Pepper’s built-in fan, as no other noise sources were present in the recordings with-
out additive noise. Despite the decrease of WER over all tested SNRs, the WER produced
by the proposed pipeline becomes very large (up to 81.4% in an SNR of 0 db). This WER
would severely influence the interaction between Pepper and its interlocutor, making it
(near) impossible to have a dialogue with Pepper. An average WER of 51.3% is observed in
the Robot-in-the-wild experiment. This experiment was only successfully performed with
three participants, but does show the pipeline performs in very noisy environments.

As indicated in the introduction, for a natural dialogue with a social robot, the dialogue
needs to occur in (pseudo-)real-time. In this thesis, pseudo-real-time was assumed to be
quick enough not to feel like there was a wait for the recognition result, and was set to 500
ms from the end of the utterance. The proposed pipeline had an average latency of 750
ms after the last utterance, therefore not performing in pseudo-real-time. The increase in
performance though, both as keyword spotter and when performing transcription, can be
worth the extra latency if Pepper is used in noisy environments.

We chose to use the MUSIC algorithm for Sound Source Localization, because the re-
search in this thesis concentrates on evaluating Pepper’s ASR in noisy backgrounds. In rel-
atively quiet environments, I acknowledge that Pepper’s SSL could be used as SSL for the
pipeline, which would decrease the amount of external processing. However, its SSL perfor-
mance is known to reduce in environments with an SNR below 3 dB!. MUSIC, on the other
hand, explicitly considers noise to be part of its model. Moreover, the pipeline containing
MUSIC takes the distance between the talker and the robot in account when creating its
steering vectors, which allows fine-tuning of these steering vectors. Nevertheless, more re-
search is required into finding the optimal SSL for Pepper (see [36] for a review of possible
SSLs).

MUSIC SSL has been used in the creation and evaluation of the HARK robot audition
system as well [7]. The HARK system showed an WER of 22% in an environment with -4
dB "Target-to-robot-noise" ratio (TTRNR), dropping to less than 13% in 0 dB TTRNRs. The
WERs achieved by HARK are much better to the WERs in this thesis (97% and 81% for SNRs
of -4 dB and 0 dB, respectively). HARK was evaluated on isolated words though, as opposed
to the continuous speech used in this thesis. Furthermore, HARK uses the TTRNR, which
includes the robot’s own noise as reference for the speech volume. This measure has not
been used in the research in this thesis, but as Pepper’s fan adds much noise to the "clean"
speech recording, the actual SNR of the recordings made with Pepper is probably much
lower.

It has been attempted to use a cloud-based ASR system for the Pepper robot in other
research. GC-STT has been used to improve the performance of Pepper’s speech recog-
nition, in combination with its default speech recognition [10], resulting in an improve-
ment of recognition results. Recent research, in which the IBM Cloud services were used
to evaluate the use of Pepper in patient assessment [9], show an improvement of speech
recognition performance as well. While their evaluation does not aim at improving the
WER specifically, they do mention that using Watson (IBM’s Cloud Services) was required
to overcome the problems caused by the fan in Pepper’s head. The research in my thesis

'Pepper’s SSLs reduced performance in noise is mentioned here: http://doc.aldebaran.com/2-5/
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concurs with the assessment that Pepper’s speech recognition is strongly influenced by the
fan. The use of only a cloud-based ASR system (i.e., without additional preprocessing), in
both the aforementioned researches, already shows an increase in the performance of the
speech recognition of Pepper. The results of Experiment 2 support this statement as well
(see Section 3.4.2).

It is important to note that the condition without added background noise, still con-
tained a substantial amount of noise. The fan, located underneath the microphones in
Pepper’s head, creates audible noise in all recordings. To create good transcriptions, the
fan noise need to be attenuated without distorting the audio. The "clean" listening con-
dition in Experiment 3 showed that the proposed Delay-and-Sum beamformer was able
to substantially attenuate the noise from the fan and actuators, although the noise was still
audible in the beamformed speech signal. GC-STT also contributed to the improved recog-
nition, due to its own noise-robustness.

The audibility of the fan noise in the speech signal beamformed by the proposed pipeline,
could be caused by the MUSIC SSL algorithm responding quickly to small pauses in speech.
During these silences, the beam is steered towards the fan noise, as it is the next most prob-
able sound source.

Exploratory experiments (at the start of this thesis) showed that audio which had most
of the fan noise removed (i.e., which sounded less noisy to the human ear) performed worse
in the transcription experiment. This finding could be due to the human ear being able to
handle small distortions in the speech, while these small distortions (e.g., audio clipping)
can cause recognition problems for a trained ASR system.

Pepper’s ability to recognize speech could be further improved if the fan noise could be
removed completely. Alternatively, a different beamformer could be used. One of the op-
tions would be a Minimum Variance Distortionless Response (MVDR) beamformer [48]. An
MVDR is an adaptive beamformer which adjusts the weights of the microphones, minimiz-
ing the variance without adding distortion in the direction of the source signal. This should
allow for better noise cancellation without any distortion of the speech signal. Another
option is the Generalized Sidelobe Canceller (GSC) [49]. This system combines a simple
beamformer and a sidelobe canceller which aims at canceling noise from non-source di-
rections. The GSC would create additional noise cancellation in specific directions, which
could help with static noise sources such as the fan. Although these beamformers could im-
prove the quality of the speech signal compared to the used Delay-and-Sum beamformer,
they might require additional computing power to be used real-time. Moreover, due to
the Pepper’s limited number of microphones, these beamformers are expected to increase
Pepper’s performance relatively little compared to the used Delay-and-Sum beamformer.

In the experiments in this thesis, two-dimensional sound source localization was used;
however, SSL algorithms often have the option to be used in three dimensions. A small-
scale test using the three-dimensional algorithm showed that the difference between the
WERSs of the beamformed audio in two or three dimensions is at most 0.8% absolute. For
Pepper, the elevation of the beamformer has seemingly far less influence on the recogni-
tion of the speech than the azimuth. Furthermore, by performing SSL in three dimensions,
the number of possible locations for sound sources becomes much higher, increasing the
processing time significantly. Keeping the (pseudo-)real-time limitation in mind, it would,
therefore, be better to perform two-dimensional SSL with a higher angular resolution than
a three-dimensional SSL.






Future Work

The most critical next step for further work is acquiring more speech data. The recorded
speech database used in the evaluations in this thesis consisted of a limited number of
participants. In order to be able to draw stronger conclusions, a more substantial number
of participants, and thereby, more speech recordings, would be needed.

Noise reduction during the preprocessing for a social robot’s ASR system was the main
focus of this thesis. While this is an important aspect of improving the ASR results, for
further work, the reverberation of a room could also be taken into account. Smaller rooms
or locations with special acoustic characters, such as a small office or a church, introduce
large amounts of reverberation in the recorded audio. This could strongly influence the
performance of the ASR system and might require extra steps to the pipeline or changes to
the parameters of the system [50].

Furthermore, different types of background noise have different characteristics than
the cafeteria noise used in this thesis, possibly producing different results when using the
proposed pipeline. Further research could be done to ensure the proposed pipeline is
noise-robust to other types of background noise.

When Pepper is used in a very noisy environment, a different method of performing
the dialogue could improve the Human-Robot interaction. One of these methods would
be to use the transcriptions from GC-STT as input for the dialogue system, instead of Pep-
per’s keyword spotter. More investigation should be done in the implementation of this
method. A possible solution could be the use of a noise-robust end-point detection algo-
rithm to detect the end of an utterance, allowing the pipeline to recognize when a person
stops speaking to Pepper.

During the final stages of this thesis, Google Cloud STT has received an update which
allows up to 5 minutes of streaming data per connection. A less restrictive time limit would
mean the stream would have to reconnect to GC-STT less often. This would result in a more
stable connection to GC-STT, given connecting to this service could add delays. Also, the
chance of errors caused by reconnecting during an utterance is reduced by making use of
this improvement. Future research could investigate whether this would have an impact
on the ASR pipeline’s recognition and computation performance.

Using different beamformers or SSL algorithms could further increase the performance
of the ASR pipeline created for Pepper. While other beamformers such as an MVDR could
increase the computational complexity of the system, optimizations performed or limi-
tations set to these beamformers might still allow for real-time processing of the speech
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stream. For example, if an MVDR beamformer is used together with Pepper’s SSL, which
does not require external processing of the audio as MUSIC does, the processing time used
by MUSIC could be replaced with the necessary computations for the MVDR.

Further work could, furthermore, include the possibility to listen to multiple people si-
multaneously. The usage of MUSIC already allows for localization of multiple signal sources,
of which only one is used in the proposed pipeline. By using a beamformer with better di-
rectionality, i.e., better separation of audio from a different DOA, in conjunction with the
MUSIC SSL, multiple speakers could be separated. Achieving this would open up many
more use cases for Pepper.



Conclusion

The research in this thesis aimed at answering two research questions: 1) Can Pepper’s
built-in keyword spotter be replaced by an ASR system able to recognise continuous speech in
Dutch?, and 2) Can Pepper’s ASR pipeline be made more robust against noise, without chang-
ing its hardware? To that end, in-house speech and noise data has been gathered, and an
ASR pipeline based on the MUSIC Sound Source Localisation, Delay-and-Sum beamform-
ing, and the Google Cloud STT has been created.

Results from the transcription experiment show that the complete, proposed pipeline
performed significantly better than Pepper’s baseline system. Furthermore, a series of three
experiments, which investigated the contribution of each of the individual components of
the proposed pipeline, showed a significant improvement of most of the proposed compo-
nents, compared to Pepper’s baseline. Although the first experiment showed that Pepper’s
SSL was able to recognize the location of a speaker more accurately than the MUSIC SSL
in clean listening condition, using MUSIC SSL in the proposed pipeline did improve the
transcription results compared to the Pepper’s baseline. The second experiment showed,
by an improvement of Keyword Error Rate, that Google Cloud SST performs better than the
ASR engine (NUANCE) used by Pepper. The third experiment showed that the addition of
preprocessing, using MUSIC SSL and a beamformer, to the pipeline improved the quality
of the transcriptions significantly.

To answer the first question: yes, Pepper’s built-in ASR engine can be replaced by a
pipeline of an SSL, beamformer and the Google Cloud Speech-to-Text. In the presence of
moderate background noise, the found significant difference persisted; however, in worse
listening conditions, the performance difference became smaller, though the proposed
pipeline still outperformed Pepper’s ASR system numerically. To answer the second ques-
tion, this better performance of the proposed pipeline shows an increased noise-robustness
compared to Pepper’s ASR system.
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A

Dialogue



Pepper
1.

10.

11.

12.

Participant

Hallo, ik ben Pepper, kan ik u ergens mee helpen?
Hallo Pepper ik wil graag met jou praten

Dat klinkt leuk. Waar wilt u het over hebben?
Ik zou graag over jou praten.
- Weet je waarom ik tegen jou praat?

Nee, waarom is dat?
Ik spreek nu tegen jou om testdata te
vergaren.
- Dit is om jouw spraakherkenning
te verbeteren en te testen.

Oh, dat klinkt handig. Heb je een paar vragen voor mij?
Ja ik wil graag weten hoe oud je bent?

Ik ben 4 jaar oud.
Dan ben je dus geboren in 2015

Dat klopt, en wanneer bent u geboren?
Mijn geboortedatum is 6 maart 1991

En waar komt u vandaan?
Ik kom uit Den Haag

Dat is in de buurt, ik kom helemaal uit Japan
Japan is wel ver weg.
- Hoeveel talen ken je allemaal?

Ik ken nu 9 talen, maar ik leer er graag meer.
Versta je ook Fries?

Nee, helaas versta ik dat niet.
Dat maakt niet uit, ik kan ook geen Fries.
- De woorden zijn lastig om uit te spreken.

Nu we het over lastig uit te spreken woorden hebben, heeft u nog een leuke tongbreker
voor mij?
De kat krabt de krullen van de trap.

Die is wel leuk. Zullen we een kleine quiz doen?
Ok



13.

14.

15.

16.

17.

18.

19.

Wat is 1 miljoen min 1?
(999.999) Negenhonderd-negen-en-
negentigduizend-negenhonderd-negen-
en-negentig

Goed! En wat is de hoofdstad van Denemarken?
De hoofdstad van Denemarken is
Kopenhagen

Helemaal top! Hoe spel je “service”
Service spel je S-E-R-V-I-C-E

Perfect! Hoe heet de spelleider in een casino?
Een spelleider in een casino heet een
croupier.

Leuk dat je mee hebt gedaan met deze korte quiz. We kunnen doorgaan als je wilt.

Nee dank je.
- Ik zou nog wel graag een verhaaltje willen
vertellen.
Oh? Ik hou wel van verhalen.

Toen de wereld pas geschapen was en de maanden nog jong waren, legden ze graag een
kaartje met elkaar.

- Vooral Februari hield veel van kaarten

- maar hij was zo ongelukkig in het spel dat hij altijd verloor.

Op zekere dag bemerkt hij dat hij alles verloren had
- maar nog éénmaal wilde hij het wagen
- misschien kon hij in één slag zijn gehele verlies terugwinnen.

En dus begon hij met zijn broers Januari en Maart te spelen.

- Ook nu was het geluk niet met hem

- hij verloor weer maar daar hij geen rode duit meer bezat om zijn verlies te betalen
- moest hij aan zijn medespelers elk een dag afstaan.

Zo komt het dat januari en maart 31 dagen hebben
- en februari voor zichzelf maar achtentwintig dagen overhield.

Ik vond dit een leuk verhaal. Zou je mij nu nog even willen helpen? Ik wil graag oefenen met
mensen helpen. Zou je willen doen alsof je een afspraak wilt maken met mijn baas.

Ok, ik wil je best helpen. Begin maar!



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Hallo, kan ik u ergens mee helpen?

Ja, ik wil graag een afspraak maken met jouw baas.

Dat kan, en wanneer zou u deze afspraak willen?

Ik wil een afspraak voor overmorgen, 23 februari.

Sorry, dan heeft mijn baas geen tijd, kunt u volgende week donderdag?

Dan kan ik ook.
Zou ik dan om tien voor half 12 kunnen komen?

Ok, u wilt een afspraak op donderdag 28 februari, om tien voor half 12. Klopt dit?

Dat is correct.

Ok, dan staat uw afspraak gepland. Kan ik u nog ergens anders mee helpen?

Ja.

- Kan ik het beste met bus 69 vanaf het station
reizen naar het kantoor?

- Of is het makkelijker om te lopen?

U kunt met de bus naar het kantoor komen. Het beste kunt u echter fietsen. Deze kunt u

huren bij de stalling.

Dat is handig om te weten dankjewel Pepper.
- Kan ik dan beter door het centrum heen fietsen, of
daar omheen?

Het beste kunt u om het centrum heen rijden.

Ok Pepper dan weet ik alles wat ik zou willen
weten.

Graag gedaan! En u bedankt voor het helpen.

Kan ik nu nog ergens mee helpen?

0Ok, ik vond het ook leuk.

Graag gedaan.

Nee hoor maar ik vond dit een interessant gesprek

Veel succes met het onderzoek.
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EVALUATING A REAL-TIME ASR PIPELINE FOR SOCIAL ROBOTS
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ABSTRACT

There has been a big increase in the use of social robots, such as Pep-
per, which use Automatic Speech Recognition (ASR) as the main
communication between a human and the robot. Since social robots
are often used in dialogues and in noisy environments, this paper
investigates 1) whether Pepper’s built-in keyword spotter can be re-
placed by an ASR system; 2) whether Pepper’s ASR pipeline can be
made more robust against noise, without the need to change Pepper’s
hardware. To that end, Pepper’s built-in Sound Source Localization
(SSL) algorithm and keyword spotter are compared to a newly pro-
posed pipeline using SSL based on MUSIC, a delay-and-sum beam-
former, and Google Cloud Speech-to-Text. This pipeline showed a
decrease in Keyword Error Rate of 6.2% compared to Pepper’s key-
word spotter and a decrease of more than 20% in Word Error Rate
compared to unbeamformed audio in clean listening conditions. At a
signal-to-noise ratio (SNR) of +8 dB, the proposed pipeline showed
a 13.3% improvement over the unbeamformed speech which per-
sisted in more difficult SNRs. Thus Pepper’s speech processing can
be improved and made more robust against noise by preprocessing
the audio with a beamformer and transcribing it using Google Cloud
Speech-to-Text.

Index Terms— Automatic Speech Recognition, Social Robot,
Noise, Pepper, Beamformer

ABSTRACT

The authors would like to thank Mark Hasegawa-Johnson for fruit-
ful discussions on the implementation of the beamformer and the
interpretation of its results.

1. INTRODUCTION

Social robots are being used in many different scenarios, e.g., to wel-
come guests in a hotel [1], to provide information in a shopping mall
[2], to interview patients to collect patient data [3], or to educate
children [4]. These scenarios assume some form of communication
between a human and the social robot. The most intuitive communi-
cation method when conversing with a (humanoid) social robot is us-
ing voice interaction, for which automatic speech recognition (ASR)
is needed. In the scenarios in which they are used, social robots of-
ten need to deal with noisy environments. Unfortunately, typically,
the performance of the automatic speech recognition (ASR) systems
of these robots deteriorates in noisy conditions [5], limiting the lo-
cations and situations in which such a robot can be effectively used.

Surprisingly, although a lot of research has been carried out on
the design of dialogues for social robots (e.g., [6, 7, 8]), less research
has been carried out investigating the ASR pipeline of social robots.

iDepartment of Computer Science

Vrije Universiteit
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It has been reported that speech recognition for social robots poses
a problem, e.g., for recognizing children’s speech [9], which still
suggests trying to reduce noise. More research in ASR pipelines
used in robots has been done before, often under the name “Robot
Audition”, though these often put the emphasis on changing the ASR
engine itself [10], or use robots which have less strong limitations
such as larger microphone arrays [5]. In this study, we use the Pepper
social robot [11].

Pepper contains a built-in ASR system, which is capable of au-
tomatic recognition of continuous speech for multiple languages in-
cluding English, Japanese and Dutch [12]. In our research, we fo-
cus on Dutch as the language of interaction between the human and
the Pepper robot. It has been found though Pepper does not prop-
erly support some languages by not having free-speech recognition,
but only recognition of pre-set utterances. One of this languages is
Dutch. The inability of Pepper’s in-built ASR system to recognize
Dutch free speech severely limits its functioning as a flexible social
robot. The first goal of this paper is to replace this keyword spotter
with an ASR system capable of recognizing Dutch continuous free
speech.

There are several ways an ASR system can be made more robust
to background noise. For instance, using speech enhancement [13,
14] or by training the ASR system on noisified speech [15]. How-
ever, Pepper’s speech processing system is not trainable nor can it
deal with preprocessed data. Consequently, in order to deal with
background noise, these methods cannot be used. The second goal
of this paper is to try to make Pepper more robust against the pres-
ence of background noise without changing its hardware, using a
beamformer.

Specifically, this paper aims to answer two questions: 1) Can
Pepper’s built-in keyword spotter be replaced by an ASR system?
2) Can Pepper’s ASR pipeline be made more robust against noise,
without changing its hardware? To that end, we propose to replace
Pepper’s built-in keyword spotter with an ASR service in the cloud.
Only a limited number of cloud ASR systems for Dutch were avail-
able; we chose Google Cloud Speech-to-Text (GC-STT) [16]. Us-
ing GC-STT also allows us to preprocess the speech signal to re-
move (some of) the background noise. Here, we propose to replace
Pepper’s built-in Sound Source Localization (SSL) algorithm with a
pipeline using SSL based on MUSIC [17, 18] and a delay-and-sum
beamformer [19, 20]. Importantly, because Pepper is typically used
in social settings, all solutions should work in (pseudo-)real time.

Because Pepper cannot deal with audio processed outside of
Pepper, a series of three experiments was designed to ultimately
evaluate the performance of the proposed pipeline of MUSIC, the
delay-and-sum beamformer, and the Google Cloud ASR. These ex-
periments are designed to tease apart the influence of changing the



sound source localization algorithm, the addition of a beamformer,
and changing the ASR engine.

Section 2 describes the general set-up of the experiments, the
speech data that was collected, and the proposed ASR pipeline. Sec-
tion 3 present the results of the experiments as well as an error anal-
ysis. The paper ends with a discussion of the results 4.

2. METHOD

2.1. The Proposed Pipeline

The bottom flow of Fig. 1 shows the proposed pipeline: The audio is
recorded using Pepper’s built-in microphones. The audio then passes
through the MUSIC sound source localization (see Section 2.1.2)
and the proposed Delay-and-Sum beamformer (see Section 2.1.3),
after which the beamformed speech signal is send to the Google
Cloud Speech-to-Text (see Section 2.1.4) for recognition. This pro-
posed system is compared to the standard Pepper system, which is
considered to be the baseline system (see Section 2.1.1).

2.1.1. Pepper

Pepper is a social robot, often used for welcoming and informing
people in companies or at events [11]. Pepper has four built-in mi-
crophones, located on top of its head, in a rectangular or elliptical
array. The exact layout of the microphones in the Pepper robot used
in this study is shown with the black dots in Fig. 2, where each black
dot represents a microphone, and where the front of Pepper’s head
is facing downwards. The microphones are separated 6.7 cm from
one another on the left-right axis and 5.8 cm on the front-back axis.
A fan for cooling the electronics is located below the microphones.
This fan adds significant noise to the speech recordings.

Pepper’s built-in sound source localization algorithm estimates
the direction of arrival (DOA) of the loudest noise it receives with
about 10 degrees precision [21]. This estimation is stored in Pepper’s
memory. Pepper’s SSL, however, cannot distinguish speech from
noise. It loses reliability in noisier environments, and when multiple
sound sources are received the location of the loudest sound source
will be stored [21].

The spatial data from the SSL can be used to calculate the de-
lay between the microphones. This delay, in turn, can be used by
a beamformer to adjust the phase of the speech signal it receives
in each of the microphones in order to amplify the sound from the
source and attenuate the sound from other directions. This is done
by multiplying the audio received by the microphones with their re-
spective steering vectors, i.e., the delays between the microphones
respective to the estimated sound source. Importantly, however, Pep-
per does not use an built-in beamformer.

Pepper has a built-in dialogue system, which takes the speech
signal recorded by Pepper’s microphones as input, and uses keyword
spotting to parse the speech input and decide on a reply. Wild-card
characters can be used in the dialogue system instead of keywords,
allowing Pepper to recognize words in a manner more similar to
speech-to-text transcription. This feature is however not available
for Dutch, the language we work with. Pepper’s built-in ASR is cre-
ated by Nuance [21].

2.1.2. The MUSIC Sound Source Localization Algorithm

In the proposed system, the MUSIC sound source localization algo-
rithm is used [17, 18]. The MUSIC sound source localization algo-
rithm takes Pepper’s audio as input and returns an estimate of the
location of the signal of the source.

Pepper
Microphones

Google
Cloud Transcription}i
ASR
MUSIC Goagle L WER
ag| Beamformer Cloud Transcription Calculatlpn&
ASR | Comparisan |

Fig. 1. The bottom flow shows the proposed pipeline with the beam-
formed speech signal, which is compared to the top flow, i.e., the
unbeamformed speech signal, in Exp. 3.

Fig. 2. Top view of Pepper’s head with the microphone locations
shown as black dots, and the angles used in Exp. 1.

We used the MUSIC algorithm in the Python library PyRoomA-
coustics [22], which is based on the paper by Schmidt [17]. The
MUSIC algorithm was chosen since it allows for a high resolution
estimation of the sound source location taking into account the dis-
tance between the talker and the microphones. The MUSIC algo-
rithm is a computationally heavy algorithm; however, when it is
used within predefined limits regarding listening angle, resolution,
frequency range, and the frequency with which the algorithm is run,
it is able to run in real time.

The MUSIC algorithm performs eigendecomposition on the co-
variance matrix of the received signal. By finding peaks in its power,
multiple sound sources can be located, including noise. The high-
est eigenvalues found correspond with the speech signal subspace,
whereas the other eigenvalues are in the noise subspace. The sub-
spaces are formed by dimensionality reduction based on Principle
Component Analysis (PCA) [14]. By projecting a sample on the
signal subspace and not on the noise subspace, the noise from the
sample is discarded partially. We focus on a single speaker, there-
fore only the first eigenvector has been used to locate the source. The
system can be extended to accommodate multiple speakers.

Each of the possible source locations has its own set of precom-
puted steering vectors. These are computed prior to running each
experiment to reduce computation time. These steering vectors do
not change as long as the microphone array stays the same, because
the respective delays between the microphones stays the same for
each Direction of Arrival.



2.1.3. The Delay-and-Sum Beamformer

The beamformer takes Pepper’s audio and the estimated source loca-
tion from the MUSIC algorithm, and outputs the beamformed speech
signal. For the experiments, a delay-and-sum beamformer [23,
20] was chosen as this type of beamformer requires the least amount
of processing power and time, which is important for allowing the
system to run in real time.

The delay-and-sum beamformer sums the audio of each micro-
phone together in pre-set (often equal) amounts. The delay-and-sum
beamformer does not adapt its weights for each channel automati-
cally on the basis of the received signal. Since Pepper will always
focus its head on the person engaging it, and the noise generated by
the fans is stronger near the rear microphones, the front microphones
are given a weight of 0.3 and the rear microphones 0.2. These val-
ues have been found empirically. The delay-and-sum beamformer
furthermore adds a delay to the phase of each channel, compared to
the middle of the array as reference location, which brings the audio
from each microphone in phase.

2.1.4. Google Cloud Speech-to-Text

The Google Cloud Speech-to-Text [16] takes either the raw speech
signal from Pepper or the beamformed speech signal as input and
transcribes the speech into text. The Google Cloud Speech-to-Text
is based on deep neural networks. The GC-STT fully supports Dutch
and is able to transcribe real-time streams, which is crucial for dia-
logues with social robots. The GC-STT is used in two ways: as a
keyword spotter in Experiment 2 and a standard STT in Experiment
3.

Keyword spotting, for Experiment 2, is mimicked by providing
so-called phrase hints to improve the confidence scores of the pro-
vided phrases, which increases the chance of correctly recognizing
the word. In Experiment 3, GC-STT is used in its normal capacity,
i.e., the word-by-word transcription of the speech signal.

The input to the GC-STT is a stream of Pulse Code Modula-
tion (PCM) data, which is a digital representation of audio where the
amplitude is sampled and interpolated to the nearest integer within
its sample size. This representation was chosen since it is uncom-
pressed, and because Pepper also uses this representation as input.
This input stream can have a maximum length of 65 seconds due
to limitations in GC-STT. Therefore each of the recordings in the
speech database has been streamed separately, before setting up a
new connection to GC-STT.

Google Cloud Speech-to-Text is robust against noise [16]. Pre-
processing for noise reduction is adviced not to be used as it might
increase distortion of the signal [16], decreasing the performance of
the ASR engine.

2.2. Speech Data

Two dedicated datasets were recorded in a sound-proof booth to
evaluate the proposed pipeline. Both datasets consisted of record-
ings of a single scripted dialogue by Dutch native talkers. All talkers
were recruited from the Faculty of Electrical Engineering, Mathe-
matics, and Computer Science (EEMCS) of the Technical University
of Delft, the Netherlands, participated for free, and are native speak-
ers of Dutch. All participants signed an informed consent form prior
to the recordings.

The dialogue consisted of 50 sentences. It was constructed to
contain different types of phrases and utterances that could be used
in different types of dialogues with a Pepper robot, including short
and long phrases, homonyms, large numbers and dates. Moreover, a

monologue, in the form of a short story, was included to test longer
sentences and to investigate how the ASR would respond to phrases
with confusing contexts, such as using months instead of names. The
monologue made up 12 out of the 50 sentences in the complete dia-
logue.

The first dataset, referred to as the ”steering” dataset and used in
Experiment 1, see Section 2.3.1, consisted of recordings made by 8
talkers (5 males and 3 females, age range: 20 - 30 years). Each par-
ticipant recorded four sentences from the dialogue. For each record-
ing, Pepper was placed 1 meter in front of the participant, to ensure
constant and comfortable interpersonal distance, at each of seven dif-
ferent angles, which are shown in Fig. 2. The chosen angles had a
20 deg interval except for 0 deg and —10 deg, since the symmetric
microphone array gives the same results for each side of the robot
on equal angles. All actuators were turned off during the recording
to avoid additional noise. Each recording took about 10 seconds.

The second dataset, referred to as the “dialogue” dataset and
used in Experiments 2 and 3, see Sections 2.3.2 and 2.3.3, consisted
of recordings made by 9 participants (7 males and 2 females, age
range: 20 - 30 years. Five of these participants were also recorded for
the steering dataset and returned for a second recording session for
the dialogue dataset. Moreover, 4 additional talkers were recorded.
During the recordings, Pepper was placed 1 meter in front of the
participant at a O degree angle. Each recording of the 50 sentences
dialogue resulted in approximately 5 minutes of speech data.

The talkers were instructed to speak as they normally would, but
to ensure they speak clearly. Due to the dialogue engine replying
overly fast after a short pause in speech, participants were instructed
not to pause within a sentence.

The recordings were manually cut at positive going zero-
crossing into one-sentence fragments using Praat [24] leaving ap-
proximately 500 ms of preceding and trailing silence. Loud noises,
such as beeps played by Pepper, that fell within the 500ms window
were excluded from the 500 ms window. Pepper’s responses were
removed. The audio fragments are normalized to 70 dB.

As Pepper robots are typically used in social contexts, several
minutes of cafeteria noise were recorded in the EEMCS faculty cafe-
teria using Pepper. To ensure that the beamformer spatial filtering
could be properly evaluated, it was made sure that most noise came
from behind and to the sides of the robot. Noise stretches louder
than 72 dB and silent segments were manually removed at positive-
going zero-crossings to ensure a relatively stable noise level. The
noise signal was normalized to 70 dB after which random stretches
of the noise were automatically mixed with the speech signal at four
different signal-to-noise ratios (SNR), i.e, 8 dB, 4 dB, 0 dB, and -4
dB, using a custom-made Praat script. Two hundred ms of preceding
and trailing noise was used (in addition to the preceding and trail-
ing silence in the speech fragments). The noisefied speech was only
used in Experiment 3. Experiments 1 and 2 were conducted with
clean speech.

2.3. Experimental Set-up

To evaluate the proposed pipeline, three experiments were carried
out. The first experiment was the steering experiment and investi-
gated the performance of the SSL systems, comparing Pepper’s SSL
versus the MUSIC SSL. The second experiment investigated the dif-
ference in performance of the recognition engine in a keyword spot-
ting task performed by Pepper’s ASR and Google Cloud STT. The
third experiment compared the recognition performance of Google
Cloud STT on the raw audio received from Pepper and the beam-
formed audio.



2.3.1. Experiment 1: Sound Source Localization Algorithm

An error in the estimation of the location of the sound source causes a
beamformer to delay wrongly, which causes the source signals to not
be out of phase. This attenuates the target signal and amplifies noise
instead of vice versa. Therefore the first experiment evaluates the
Sound Source Localization algorithm of both systems, i.e., Pepper’s
built-in sound source localization algorithm and the MUSIC sound
source localization.

The sound source localization algorithms are evaluated in terms
of the DOA in degrees. To that end, the DOASs at corresponding time
stamps of Pepper’s SSL and of the MUSIC SSL are compared. The
root mean squared error (RMSE) between the estimated angle and
the ground truth angle, which is the angle at which the recording
was made, is calculated. By using RMSE as a metric, large steering
errors will have a bigger influence on the result, just as large steering
errors make a beamformer perform worse.

Given Pepper’s default behaviour to look at its interlocutor dur-
ing a conversation, it is assumed the person speaking to Pepper is
always in front of Pepper. Given this assumption, the limits within
which MUSIC SSL has to listen have been set to 60 degrees to each
side. This is done to lower the number of sound source locations the
algorithm has to compare, allowing the MUSIC algorithm to be used
in real-time. Having these limits also prevents the SSL to focus on
the fan in Pepper’s head which produces noise.

2.3.2. Experiment 2: Keyword Spotter

Pepper’s built-in ASR system is a keyword spotter, while the Google
Cloud system is a continuous speech recognition system. In order
to investigate the performance of the Google Cloud ASR system in
relation to the baseline Pepper keyword spotter, the second exper-
iment evaluates the recognition engines, Pepper vs. GC-STT, on
a keyword spotting task using the raw speech signal, i.e., no beam-
former was used. In this task, the audio recorded by Pepper is passed
both through Pepper’s built-in keyword spotter and through the GC-
STT, which operates in a in ’keyword spotter’ mode using "phrase
hints’ [16].

Since Pepper’s dialogue function and the keyword spotter both
can only be used with live audio, Pepper’s keyword spotter was
tested during the recordings. This has been done by creating a di-
alogue in Pepper’s built-in dialogue system, where Pepper contin-
ued the conversation after each utterance by the participant. Each
correctly recognized keyword is stored in memory.

Subsequently, the recordings were streamed to GC-STT, which
operated in keyword spotter mode (see Section 2.1.4). Each tran-
scription created by GC-STT was checked for the keywords it should
contain, and the keywords were marked correct if they are found.

Performance was measured in terms of the number of correctly
recognized keywords or the Keyword Error Rate (KWER), which is
calculated using

KWER — incorrect keywords %

total keywords

2.3.3. Experiment 3: Speech-to-Text Transcription

To evaluate the beamformer on a transcription task and its perfor-
mance in noise, the GC-STT is tested on the raw speech signal,
which came straight from Pepper’s microphones, and the beam-
formed speech signal, which came from the proposed pipeline
without background noise and with background noise mixed into the
speech signal.

The two systems which were compared in Experiment 3 are
shown in Fig. 1. The performance of the GC-STT on the raw speech

and the beamformed speech was evaluated in terms of word error
rate (WER) in relation to the ground truth, i.e., the dialogues, for
each of the noise levels.

3. RESULTS

3.1. Experiment 1: Sound Source Localization Algorithm

The first experiment compared the performance of Pepper’s SSL and
the MUSIC SSL. The RMSE averaged over all recordings was 12.1
degrees for Pepper’s SSL and 19.7 degrees for MUSIC with a stan-
dard deviation (SD) of 7.4 and 3.9, respectively. A two-tailed t-test
showed that Pepper’s SSL performed significantly better than the
MUSIC SSL (p < .001).

Inspection of Pepper’s results showed that Pepper’s SSL changed
its estimated location only a few times, mostly at the beginning of
the first sentence spoken at each angle. This behavior helps avoiding
erroneous steering caused by noise when speech is absent or too
soft. A moving sound source, on the other hand, would possibly be
wrongly steered after the first estimation.

MUSIC changed its estimation for nearly every speech sample
it received. While the location estimation during voiced speech is
fairly good, during short pauses or unvoiced speech, MUSIC tried
to estimate the location of the loudest noise source with the high-
est correlation between the microphones, i.e., its built-in fan during
pauses and unvoiced speech. Since the RMSE gives a higher weight
to larger errors due to its quadratic nature, this error becomes sig-
nificantly larger. The frequent changing of the location estimation,
on the other hand, would possibly make MUSIC be better suited for
moving speakers or when Pepper is allowed to move its head freely.

3.2. Experiment 2: Keyword Spotter

To evaluate the difference in ASR performance between Pepper and
Google Cloud Speech-to-Text, their keyword spotting performances
were compared. The results showed a KWER of 34.5% for Pep-
per’s keyword spotter and 28.3% for GC-STT. So, the ASR engine
of GC-STT outperforms that of Pepper’s built-in keyword spotter. A
two-tailed t-test showed that GC-STT performed slightly better than
Pepper’s keyword spotter (p < 0.25

Inspection of Pepper’s results showed that its keyword spotter
had difficulty with the monologue included in the dialogue. The
keyword spotter lagged behind on the keywords to listen to after it
had wrongly understood a keyword, which propagated through the
entire monologue. Excluding the monologue, Pepper’s KWER was
32.4% and that of the GC-STT 24.4%. Although the KWER of both
systems decreases, the GC-STT still outperforms Pepper’s keyword
spotter. GC-STT performs even better compared to Pepper’s key-
word spotter after removing the monologue, which is caused by the
lower amount of keywords left over. (TO DO: je zegt dat Pepper
problemen heeft met de monoloog, je zegt niets over Google, maar
als je de monoloog weghaalt uit de KWER berekening heeft Google
er meer profijt van dan Pepper; dus google heeft meer last van de
monoloog dan Pepper, toch??? Dit moet je denk ik anders opschri-
jven.)

3.3. Experiment 3: Speech-to-Text Transcription

To evaluate the SSL and beamformer pipeline, transcription of the
beamformed speech was compared to that of the unbeamformed
speech signal with GC-STT. Fig. 3 shows the WER for the different
SNRs for the unbeamformed speech signal (dotted line with circles)
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Fig. 3. WER of the transcription task with the Google Cloud Text-to-
Speech system on the unbeamformed and beamformed speech sig-
nal.

and the beamformed speech signal (dashed line with crosses). As
can be seen, the beamformed speech signal consistently outperforms
the unbeamformed speech signal, although this difference reduces
to almost O for the worst SNR of -4 dB. Without the presence of
background noise ('None’ in Fig. 3), GC-STT obtains an accuracy
that is 21.4% higher for the beamformed speech signal compared
to the unbeamformed speech signal. This clearly shows that the
delay-and-sum beamformer is able to remove a large part of the
noise generated by Pepper’s built-in fan.

At SNRs of 0 dB or lower, the WER increases to more than
80%, which would make interaction with the Pepper robot in a social
setting basically impossible.

Analysis of the transcription results showed that ”jij/je/jou”
("you/your”) were often confused. On the one hand, this could
be due to the high phonological similarity between these words
and their occurrence in highly similar places in utterances. On the
other hand, both ”jij” and jou” are often reduced to ’je”. It is thus
possible that the talkers unintentionally mispronounced these words.

4. DISCUSSION AND CONCLUSION

Despite social robots being increasingly more often used in human-
robot dialogues and in noisy environments, little is known their abil-
ity to deal with continuous speech and background noise, and this is
especially the case for the Pepper social robot. This paper is one of
the first to investigate this. Specifically, we investigated 1) whether
Peppers built-in keyword spotter could be replaced by an ASR sys-
tem in order for it to deal with Dutch continuous speech; 2) whether
Peppers ASR pipeline can be made more robust against noise, with-
out the need to change Peppers hardware. To that end, in three exper-
iments, Peppers built-in Sound Source Localization algorithm and
keyword spotter are compared to a newly proposed pipeline using
SSL based on MUSIC, a delay-and-sum beamformer, and Google
Cloud Speech-to-Text. Moreover, the proposed pipeline is tested in
cafeteria background noise.

The first experiment showed that Pepper’s built-in SSL outper-
formed the MUSIC SSL, with an RMSE that was 7.6 degrees lower

for Pepper’s SSL. Eventhough MUSIC gave worse results in the
steering test, it has been used in the pipeline as it used near-field
steering vectors which take distance from the robot into account.
Besides this, since MUSIC steers away mostly during silences which
are not the focus of ASR systems, the effects of this should be min-
imal. The second experiment showed that changing Pepper’s key-
word spotter with Google Cloud speech-to-text yielded a decrease
of 6.2% absolute in keyword error rate. The final experiment inves-
tigated the effect of the proposed delay-and-sum beamformer on au-
tomatic speech recognition. A comparison of the recognition of the
raw speech signal with the beamformed speech signal showed a de-
crease of more than 20% in WER in clean listening conditions. At a
signal-to-noise ratio (SNR) of +8 dB, the proposed pipeline showed a
13.3% improvement over the unbeamformed speech which persisted
in more difficult SNRs.

It is important to note that the condition without added back-
ground noise did in fact have a substantial amount of noise. The fan,
located underneath the microphones in Pepper’s head, and the actua-
tors, especially the one in Pepper’s neck, create clearly audible noise
in all recordings. To create good transcriptions, these noises need to
be attenuated without causing distortion to the audio. The “clean”
listening condition in Experiment 3 showed that the proposed delay-
and-sum beamformer was able to substantially attenuate the noise
from the fan and actuators, although the noise was still audible in
the beamformed speech signal. Pepper’s ability to recognize speech
could be further improved if the fan noise and at least the usage of the
neck actuator would be minimized. Alternatively, a different beam-
former could be used. One of the options would be a Minimum Vari-
ance Distortionless Response (MVDR) beamformer [25]. This is an
adaptive beamformer which adjusts the weights of the microphones
to minimize the variance, but does not distort in the direction of the
source signal. Another option is the Generalized Sidelobe Canceller
(GSC) [26]. This system combines a simple beamformer and a side-
lobe canceller which aims at cancelling noise from non-source di-
rections. Although these beamformers could possibly improve the
quality of the speech signal compared to the used delay-and-sum
beamformer, they might increase complexity. Moreover, due to the
limited number of microphones that Pepper has, these beamform-
ers are expected to increase Pepper’s performance relatively little
compared to the delay-and-sum beamformer. Finally, due to their
complexity, it is not an easy feat to get these beamformers to work
fast enough for a real-time environment with a significant increase
in performance.

In our experiments, we used two-dimensional sound source lo-
calization; however, SSL algorithms often have the option to be
used in three dimensions. A small-scale test using the three dimen-
sional algorithm showed that the difference between the WERs of
the beamformed audio in two or three dimensions is at most 0.8%
absolute. For Pepper, the elevation of the beamformer has far less
influence on the recognition of the speech than the azimuth. Keep-
ing the (pseudo-)real-time limitation in mind, it would therefore be
better to perform two dimensional SSL with a higher angular reso-
lution than a three dimensional SSL.

We chose to use the MUSIC algorithm for sound source local-
ization, despite its worse results compared to Pepper’s in-built SSL
because MUSIC takes the distance between the talker and the robot
in account when creating its steering vectors. However, for an im-
proved pipeline with less external processing, it could be possible
to use Pepper’s SSL instead of an external algorithm. Pepper’s SSL
is always running in the background, and as its performance seems
to be better than MUSIC SSL, using this would decrease process-
ing time and might allow for a more robust beamforming algorithm.



Care should be taken though, as it is mentioned Pepper’s SSL’s per-
formance decreases in environments with a less then 3 dB SNR [21].

Keeping in mind the real-time aspect of this research, the cloud
solution gives an answer in pseudo real-time. Pseudo real-time is
assumed to be quick enough to not feel you have to wait for it.
The limit for near real-time for this research is set to 500ms. Pep-
per’s keyword spotter has a very fast recognition which resulted in
the recognition being finalized and closed during a small pause in
speech, before the speaker was done with its sentence. Google Cloud
STT and the full pipeline took longer than Pepper’s keyword spotter.
A recording of 10 seconds was processed in approximately 9 sec-
onds, where more than half of the time was used by MUSIC. When
the system will be used live, it therefore should perform in near real-
time. The average latency observed of GC-STT is about 300-400 ms,
not accounting for the latency caused by the set-up of the connection.

In conclusion, Pepper’s keyword spotter can be replaced with an
ASR system, such as Google Cloud STT. While Pepper’s keyword
spotter responds much faster than a cloud solution, a lower Keyword
Error Rate can be achieved within near real-time. Moreover, us-
ing the Google Cloud STT instead of Pepper’s ASR system makes
it possible to preprocess the speech signal using a delay-and-sum
beamformer to make the pipeline more robust to noise. Although the
results in background noise need to be improved before Pepper can
be used in a spoken dialogue scenario in a location with background
noise, the results presented here show that it spoken interactions with
a Pepper robot in relatively quiet conditions is already possible.
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