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Abstract

Increasing flexibility requirements and skill gaps resulting from today’s world of globalisation
and digitisation pose constant challenges for manufacturing companies. Augmented Reality
(AR) applications offer an efficient way to overcome these tensions by enhancing the interaction
between people and technology. However, individual models in the scientific literature show
ambiguous findings, and a statistically powerful empirical assessment is still missing.

Hence, this research project aims to understand the potential of AR applications in manufac-
turing environments by aggregating the empirical findings. For this purpose, the following
research question is posed: ’Can the use of AR solutions benefit manufacturing activities and if
so, how?’. Following the media naturalness theory by Kock [2005], this research hypothesises
that AR solutions in comparison to classical instructions have a reducing effect on processing
times, errors rates, and cognitive load levels of workers during manufacturing activities.

To answer the research question and prove the hypotheses, this research project conducts three
meta-analyses in which several small studies are synthesised into one large study. Specifi-
cally, the meta-analyses address the evaluation criteria ’time’, ’errors’, and ’cognitive load’.
The underlying systematic literature search to collect and evaluate relevant data follows the
framework by Vom Brocke et al. [2009]. What is more, this research project examines the inter-
relationships between the evaluation criteria and moderating variables using meta-regressions.
Finally, surveys with industrial experts in a consumer goods and chemical company support
and expand the findings from the meta-analyses and the meta-regressions.

The meta-analyses show that AR applications in comparison to classical instructions indeed
have a reducing effect on the described evaluation criteria. In particular, based on the stud-
ies, a small, reducing effect can be achieved for ’time’, a medium, reducing effect for ’errors’,
and a small to medium, reducing effect for ’cognitive load’. For this reason, all three previ-
ously formulated hypotheses are accepted. Furthermore, in line with the media naturalness
hypothesis by Kock [2005, p. 122], the meta-regressions show that ’cognitive load’ moderates
the evaluation criterion ’time’. The results are validated with the help of the expert surveys in
the company context, with time savings being identified as the greatest potential and lack of
proven profitable business models as the greatest challenge.

Further research could, on the one hand, focus on repeating the meta-analyses as soon as new
empirical studies are available and on the analysis of moderating variables. On the other hand,
a long-term validation in manufacturing environments across industries is still missing and
could show further scientific and practical relevance.
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1 Introduction

This thesis is motivated by the desire to gain a better scientific understanding of a practical
problem. As a starting point, Section 1.1 describes the underlying motivation. In particular,
this section highlights the tensions in the market of manufacturing companies and strengthens
the usage of AR as a potential solution to those tensions. Following, the research objective and
the research questions are described in Section 1.2. Lastly, Section 1.3 indicates the structure of
this thesis.

1.1 Motivation

Manufacturing companies are confronted with increasing variants and individualised prod-
ucts, with high-quality requirements and short product life cycles [Lušić et al., 2016]. These
companies find themselves in a field of tension between multiple requirements from the buy-
ers’ market and the labour market [Teubner et al., 2018]. Figure 1.1 displays the described
tension in the market of manufacturing companies.

Labour market

Shortage of 
skilled workers

Demographic 
change

Temporary work

Competition

Skill gaps

Individualisation

Variety of variants

Short product life 
cycles

Buyers’ market

Low product costs

Flexibility

TechnologyOrganisation

Human

Figure 1.1: Tensions in the market of manufacturing companies following Teubner et al. [2018]

The heightened product diversity leads to interrupted learning curves, especially in mainte-
nance applications, assembly, and machinery repair as part of manufacturing processes [Gai-
mon and Singhal, 1992; Masoni et al., 2017]. The management of process complexity is further
challenged by an ageing and heterogeneous workforce [Hold et al., 2017]. Despite these grow-
ing challenges, manufacturing systems must be reconfigurable and flexible to react quickly to
changes in the buyers’ market [ElMaraghy et al., 2013].
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1 Introduction

Highly experienced operators often meet the demand for flexibility with programming, main-
tenance, and diagnostic skills [Sethi and Sethi, 1990]. Human beings are still indispensable due
to their cognitive abilities and flexibility. In particular, experienced operators can achieve flex-
ible adaptation to changing situations and requirements. This ability to change can hardly be
realised economically and technically by automated solutions [Stoessel et al., 2008].

Simultaneously, operators are exposed to alleviated increasing cognitive and psychological
load due to highly flexible employee deployment and continually changing working environ-
ments and methods [Vernim and Reinhart, 2016]. The underlying information processes must
be optimised to reduce both mental and psychological load in a manufacturing environment
[Chen et al., 2017]. However, many manufacturing companies still find themselves confronted
with an impractical and inefficient presentation of information on the shop floor [Burggräf
et al., 2020]. To overcome these challenges, Industry 4.0 solutions that support employees in an
agile production environment are promising [Johansson et al., 2018]. In particular, AR applica-
tions offer a way to support the interaction between people and technology and combine the
advantages of manual and automated processes [Burggräf et al., 2020].

Cognitive worker assistance systems, including AR solutions, offer the potential to increase
manufacturing systems’ productivity and agility [Keller et al., 2019]. These devices enable ef-
ficient information distribution and support employees in the perception, reception, and pro-
cessing of information [Syberfeldt et al., 2017]. In this context, the individual roles of employ-
ees, their qualifications, and personal characteristics are decisive. Taking them into account
enables the provision of specific information adapted to the user and the environment [Galaske
and Anderl, 2016]. In this way, an optimal distribution of information on the shop floor can be
realised, strengthening manufacturing processes’ competitiveness in high-wage geographical
locations [Dachs et al., 2019].

1.2 Research Objective and Questions

Individual studies in the scientific literature often describe the positive effects of AR. Yet, little
is known about the actual impact on employees’ performance or cognitive load levels in man-
ufacturing environments. Therefore, this research aims to explore the interrelationships in the
usage of AR solutions in manufacturing environments.

First, characteristics of AR solutions in manufacturing environments will be identified to allow
a quantification of the impact on variables relevant to manufacturing processes. Following, the
target variables can be linked to AR solutions’ characteristics.

Given the motivation and the research objective of this study, the following central research
question for this thesis arises:

Can the use of AR solutions benefit manufacturing activities and if so, how?

Based on the central research question, further sub-research questions can be derived to be able
to answer the central research question:

1. Which factors in manufacturing activities can be influenced by the use of AR solutions?

2. Can those factors be measured and if so, how?

3. Can a benefit be achieved and if so, by how much?

2



1.3 Report Structure

1.3 Report Structure

This thesis is divided into eight chapters that follow the structure shown in Figure 1.2. In this
context, Chapter 1 introduces this thesis and comprises three independent sections. In particu-
lar, Section 1.1 highlights the underlying motivation. Then, Section 1.2 formulates the research
objective and the corresponding central research question. Three sub-questions support the
central research question. Furthermore, this section presents the structure of the report.

Chapter 2 presents the theoretical foundations relevant to this thesis. Especially, the relevance
of information in manufacturing environments and different fields of application of AR in such
environments are described in Section 2.1 and 2.2. Subsequently, Section 2.4 identifies the
knowledge gap following the existing approaches presented in Section 2.3.

Following the insights gained in the literature review, Chapter 3 describes the development of
the hypotheses. First, Section 3.1 highlights the requirements for a hypothesis. Then, Section
3.2 formulates multiple hypotheses based on further insights from the literature.

Thereupon, Chapter 4 explains the methodological approach of this thesis. The methodolog-
ical approach forms the foundation to answer the central research question and to prove the
hypotheses.

Introduction1
• Motivation
• Research objective and questions
• Report structure

Literature review2
• Technological classification
• Existing approaches
• Knowledge gap

Hypothesis 
development

3
• Definition hypothesis
• Derivation hypothesis

Methodological 
approach

4
• Methodological approach to 

prove hypothesis 

Meta-analysis5
• Systematic literature review
• Analysis of existing data
• Performance sensitivity analysis

Meta-regression6
• Identification interrelationships 

between characteristics of the 
studies

Empirical 
exploration

7
• Methodological approach and 

execution empirical exploration

Conclusion8
• Discussion
• Conclusion

Figure 1.2: Structure of the report

Next, the meta-analyses in Chapter 5 form the main part of this thesis. The first part outlines
the scientific background of a meta-analysis. Particularly, Section 5.1 discusses the advantages
and weaknesses in addition to the methodological approach and requirements. In the second
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part, Section 5.2 executes the meta-analyses to provide an empirical answer to the central re-
search question. For this purpose, a systematic literature review is first carried out following
an evaluation scheme to identify relevant studies. Subsequently, the studies and the corre-
sponding data are analysed in Section 5.2.4. Finally, Section 5.5 concludes this chapter with a
summary of the results of the meta-analyses.

Based on the results of the meta-analyses, Chapter 6 shows multiple meta-regressions. First,
Section 6.1 summarises the theoretical background and the variables of interest. Then, Section
6.2 presents the results of the meta-regressions.

The findings from the meta-analyses and meta-regressions are then put into an industrial con-
text with the help of expert interviews. Chapter 7 is divided into the methodological approach
(Section 7.1) and the execution and evaluation of the expert interviews (Section 7.2).

Lastly, Chapter 8 concludes this thesis. The results of the report are summarised and criti-
cally reflected in Section 8.1. Finally, Section 8.2 provides a conclusion by referring back to the
hypotheses raised.
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Companies across industries counteract increasing competition with increasing variants and
individualised products, with high-quality standards and shorter product cycles. As a conse-
quence, the expectations and requirements in manufacturing processes increase for employees.
AR applications are promising solutions to create a more productive working environment. In
the first place, it is crucial to understand the challenges and variables relevant in manufactur-
ing environments. This includes the relevance of information in such environments. Based on
a comprehensive understanding of manufacturing environments and the relevance of informa-
tion, emerging AR systems can be implemented in different fields of application.

Following, this chapter first presents theoretical knowledge about manufacturing environ-
ments including the relevance of information in Section 2.1.1. Thereupon, Section 2.2 includes
a short definition of AR and distinguishes between different fields of application of AR. Then,
Section 2.3 focuses on existing approaches addressing the influence of AR solutions in manu-
facturing environments. Lastly, the underlying knowledge gap is highlighted in Section 2.4.

2.1 Manufacturing Environments

Manufacturing environments encompass all value-creating and supporting processes in which
a given material is transformed into a product of various shapes and sizes [Kaushish, 2010,
p. 3]. Both the value-creating and supporting processes can include maintenance, production,
quality, logistics, and assembly tasks and can be supported by a variety of tools, equipment,
and human effort [Kaushish, 2010, p. 3].

As indicated, manufacturing companies face constantly growing competition in highly tur-
bulent and volatile markets [Gröger et al., 2013, p. 205]. To overcome those challenges in
an ever more globalized world, manufacturing companies develop more and more towards
customised products. As a result, better responsiveness and flexibility is required of manufac-
turing companies and its employees [Spath et al., 2013, p. 42]. Accordingly, the human effort is
of essential importance in manufacturing environments although capacity is limited [Stoessel
et al., 2008, p. 245].

Kaushish [2010, p. 3] defines four manufacturing attributes that are considered during most
human-driven decisions in manufacturing environments. These include cost, time, quality,
and flexibility. An efficient supply of information supports all four attributes as shown in the
following section.

2.1.1 Relevance of Information in Manufacturing Environments

Information are valuable commodities and are becoming increasingly important in manufac-
turing environments. In some cases, having or not having information can even be a success-
critical and competition-determining criterion [Willke, 2001]. In particular, information can
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result in the following effects: Immateriality as information can be used indefinitely [Wright,
1976, p. 298], the possibility of parallel usage leading to synergy effects [Mohr, 1997, p. 14],
and low reproduction costs leading to potential economic advantages [Krcmar, 2015, p. 16].

Feldmann et al. [2007, p. 21] distinguish between six different types of information in indus-
trial contexts (see Figure 2.1). These include general, procedure related, process related, order
related, product related, and quality related information. The individual types and character-
istics are described in the following. In practice, different kinds of information can occur at the
same time.

General information. General information relate to all information that is not directly related
to processes, procedures, products, or orders [Feldmann et al., 2007, p. 22]. These include
general cleaning guidelines and shift schedules.

Procedure related information. Procedure related information support employees to follow
standardised procedures which cover the order in which employees, resources, and material
pass through manufacturing environments [Feldmann et al., 2007, p. 22].

Process related information. Process related information closely relate to procedure related
information. Process related information guide the workers during their activities [Feldmann
et al., 2007, p. 21f.]. As an example, these information include work instructions to operate
equipment.

Order related information. Among other data, each order includes information about the
products to be manufactured, number of pieces, recipient, and deadlines. The necessary data
to fulfill an order is grouped as order related information [Feldmann et al., 2007, p. 21].

Product related information. Product related information contain all information that directly
describe the characteristics of a product and can be assigned to it. Data sheets and operating
instructions, for example, can be mentioned at this point. Order related and product related
information can overlap in many cases.

Quality related information. In order to be able to guarantee the highest possible production
quality, specific quality specifications must be communicated and adhered to [Feldmann et al.,
2007, p. 22]. These include, for example, audit instructions or packaging regulations.
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Figure 2.1: Types of information following Feldmann et al. [2007, p. 21]
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Efficient processing of all types of information by individual employees highly depends on
the supply of information. Feldmann et al. [2007, p. 25f.] identify seven basic requirements
that support an efficient distribution of information in manufacturing environments. To allow
an efficient supply of information, information must be correct, complete, punctual, compre-
hensible, archivable, ergonomic, and up-to-date [Feldmann et al., 2007, p. 25f.]. Individual
problems can occur if basic requirements cannot be met. Hinrichsen and Bendzioch [2019, p.
341] highlight five problems of information presentation:

1. Lack of information within the work system

2. Irrelevance of a subset of the information provided in the work system

3. No process orientation: Presentation of information does not math process sequences

4. Outdated information

5. No compatibility of information representation with human modes of information pro-
cessing

In practice, paper-based information is still most common, although these lack dynamic adap-
tation to specific needs and are highly inflexible [Feldmann et al., 2007, p. 20]. As a result,
’uncoordinated waiting times, long decision-making processes, inflexibility, and costly com-
munication’ [Gröger et al., 2013, p. 205] can occur on the shop floor. AR technologies are
promising solutions to overcome barriers as part of the presentation of relevant information.

2.2 Augmented Reality in Manufacturing Environments

This section aims to introduce the technology of AR in manufacturing environments. To achieve
this purpose, the technology is first defined in Section 2.2.1. Thereupon, Section 2.2.2 highlights
different fields of application of AR in manufacturing environments.

2.2.1 Definition Augmented Reality

Boeing employees Tom Caudell and David Mizell first introduced the term AR in 1992 [Mizell,
2020]. However, until 1994 no uniform naming for reality-enhancing technologies nor a clear
classification has been developed. In that same year, Milgram and Kishino [1994] established
the concept of the virtuality continuum which is still valid today. The concept of a virtuality
continuum describes the connection of completely real environments with completely virtual
ones (see Figure 2.2). The focus of this project falls into the virtuality continiuum and lies on AR
respectively Mixed Reality (MR). According to Azuma [1997, p. 356], both AR and MR fulfill the
following three basic characteristics:

1. Reality is combined with virtual objects and information

2. Combination takes place in real time and is interactive

3. Inserted objects are registered three-dimensional
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Even though both terms generally refer to the expansion of all human senses, the current un-
derstanding is mainly limited to visual perception. The visual perception allows to display all
six types of information identified by Feldmann et al. [2007, p. 21] to support the users. In prac-
tice, Head-Mounted Displays (HMD), tablets, smartphones, and stationary displays enable the
access of all types of information. Depending on the enabling device, the interaction between
the users and the technologies is supported by voice-control, eye-control, and head movement-
control [Danielsson et al., 2020, p. 1299]. In manufacturing environments, the central objective
of AR enablers is to minimize the discrepancy between human performance and the require-
ments of a work task and to enable flexible work deployment across different workplaces and
production lines.

Augmented 
Reality 

Real 
Environment

Augmented
Virtuality Virtual 

Environment

Mixed Reality

Figure 2.2: ’Virtuality continuum’ following Milgram and Kishino [1994]

2.2.2 Fields of Application Augmented Reality in Manufacturing Environments

The interest in AR in manufacturing environments has increased considerably. Among other ex-
perts, Dan Arczynksi predicts ’measurable savings [...] because [AR] is speeding up processes’
[David Greenfield, 2017]. In theory, there are numerous use cases of AR to achieve these savings
in manufacturing processes. Following, this section identifies potential fields of application.

Multiple fields of application of AR in manufacturing can be identified in the literature. In par-
ticular, Kohn and Harborth [2018] and Egger and Masood [2020] follow a traditional product
manufacturing life cycle including the following phases: Planning and design, prototyping,
maintenance and inspection, assembly, quality, and logistics.

Planning, design, and prototyping. The first step of the life cycle is planning and design. This
phase includes the engineering of the products and the design of corresponding documents
[Kohn and Harborth, 2018]. Next, prototype building and testing are identified as further fields
of application. Although both phases can be supported by visual overlays with AR enablers,
these fields of application still lack efficient solutions [Kohn and Harborth, 2018].

Training. The demographic change in manufacturing companies, but especially increasingly
complex tasks, require efficient training. AR solutions can be a powerful tool to support com-
plex training. Employees are enabled to directly link instructions to the tasks to strengthen and
learn new skills [Webel et al., 2013].

Maintenance and inspection. Kohn and Harborth [2018] and Egger and Masood [2020] iden-
tify maintenance and inspections as a popular field of application of AR solutions. Typically,
remote communication and assistance and the visualization of former paper-based instructions
represent suitable applications Plakas et al. [2020]. As identified by [Kohn and Harborth, 2018],
most industrial projects in Germany focus on this field of application.

Assembly. In contrast, assembly tasks represent the most popular use case for scientific re-
search projects. The difficulty of assembly tasks continually increases due to the growing
complexity in products. In this field of application, suggestions of corrective measures can
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significantly improve error rates once a mistake is detected. Thus, the impact of AR is assessed
to be highest in assembly [Plakas et al., 2020]. However, such statement must be proven to be
statistically significant.

Quality and logistics. Lastly, Egger and Masood [2020] identifies product control and distri-
bution as further fields of application. However, logistics, is often excluded from the manufac-
turing life cycle as it is an extensive research area for itself.

The described fields of application are all subject to increased requirements as a result of in-
creasing variants and individualised products. In this context, Vernim et al. [2016, p. 570]
identify assistance systems including AR systems as a key driver for flexibility (see Figure 2.3).
In the context of Industry 4.0, AR systems enable the connection of smart objects and workers.
AR systems enable both a new way of learning and the decentralisation of productions systems
and data. As described earlier, the visualisation of necessary information is crucial to increase
flexibility among different fields of application [Vernim et al., 2016, p. 570].

Enables necessary 
qualificationrequire

enable

require

enable

enableenable

enable
provides 
interface

Digitalisation

Smart objects

Connectivity

Autonomy

Decentralisation

Visualisation

Flexibility

Learning 4.0

Assistance systems 
(incl. AR)

Figure 2.3: Empowerment of flexibility by AR systems [Vernim et al., 2016, p. 570]

2.3 Existing Approaches

Recently published independent systematic literature reviews by Egger and Masood [2020],
Kohn and Harborth [2018], Baroroh et al. [2020], and Jeffri and Awang Rambli [2021] form
the basis for this chapter. The underlying reviews all address the influence of AR solutions in
manufacturing environments. However, the focus and underlying references differ in most
parts. The reviews provide an holistic overview of past research activities including empirical
studies in the field of AR to answer specific research questions across industries and types of
technologies.

The papers highlight the results of individual user surveys addressing the current knowledge,
future challenges, and influence of AR. Following Egger and Masood [2020], particularly Ger-
many, Italy, and Singapore are geographical regions in which AR systems are being researched
a lot. The majority of the research has been undertaken in laboratory environments and show
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different results depending on the experimental settings. Danielsson et al. [2020] and Kohn
and Harborth [2018] support the argument that current AR systems still lack standardisation
and development. Even in experimental settings, different devices and use cases can change
the significance of individual experiments.

As indicated, the chosen scientific articles include or address empirical studies on AR’s influ-
ence in manufacturing environments. However, the reviews still lack statistical evidence as
empirical results of individual user studies are not yet combined. In particular, Egger and
Masood [2020] and Kohn and Harborth [2018] reveal the need to obtain a more powerful un-
derstanding of the impact of AR in manufacturing environments as some empirical studies
result in ambiguous findings.

2.3.1 Relevant Factors and Measurement

The usage of AR solutions can influence different factors in manufacturing activities. To be able
to make a statistically significant statement about the benefit of AR solutions, those influenced
factors must first be identified as stated in the first sub-research question. Next, a way to
measure the relevant factors while guaranteeing statistical comparability can be determined.
As part of their paper, Egger and Masood [2020] have intensively investigated studies on AR
applications in manufacturing environments.

Egger and Masood [2020] show the percentage of papers addressing a certain dependent vari-
able. As shown in Figure 2.4, time, error rates, and cognitive load represent the most widely
spread variables. Alongside these three variables, user surveys, marker decoding distance and
time, head movements, and welt location can play a role. The meta-analyses focus on the top
three relevant variables to find sufficient empirical studies to run the analyses. Most studies do
not purely focus on the assessment of only one measure but use more than one.

The following paragraphs describe the variables processing time, error rate, and cognitive load
in the context of manufacturing environments. Furthermore, the way how the respective vari-
ables can be measured is described and, thus, the second sub-research question can be an-
swered.

Processing time. The processing time relates to the time it takes to process a task [Gong
et al., 2018]. In manufacturing environments, these tasks include assembly, maintenance, and
changeovers tasks. As indicated in Figure 2.4, the processing time is the most prominent mea-
sure used in past studies. This is strengthened by the fact that according to Kohn and Harborth
[2018], Vanneste et al. [2020], and Baroroh et al. [2020], most studies focus on the performance
improvements of individual tasks through the usage of AR systems. Time improvements di-
rectly relate to performance improvements in the context of manufacturing activities.

The processing time is measured in seconds, minutes, or hours. Consequently, comparability
between different ways of information distribution for individual tasks is given. In many com-
panies, the times are documented manually or digitally by the workers or calculated using the
total number and total time.

Error rate. In the context of AR systems in manufacturing environments, error rates refer to
the percentage of errors made in relation to the entirety [Kohn and Harborth, 2018, p. 7]. The
focus of this research lies on human-caused errors in the context of human-machine interaction.
These kinds of errors often occur due to a lack of information, knowledge, or competence.

10



2.4 Knowledge Gap

Manufacturing companies more and more follow a zero-defect strategy as troubleshooting can
be particularly costly in complex value chains.

As indicated, the error rate is usually referred to as a relative number. However, depending on
the experiment, the error rate can be an absolute number as well. In practice, both scales allow
comparability of the improvements of an AR system. The error rates are usually determined by
counting.

According to Egger and Masood [2020] and Jeffri and Awang Rambli [2021], most studies focus
on the improvements of individual tasks through the usage of AR systems. Both the processing
time and the error rate relate to the performance of functions and directly influence the Overall
Equipment Effectiveness (OEE) in the manufacturing area. The OEE supports the identification
of losses, bench-marking of processes, and the improvements of productivity.

Cognitive load. Following Sweller [1988], cognitive load refers to the used amount of working
memory resources during a task. The working memory is responsible for problem-solving
and information processing and is a crucial resource in flexible manufacturing environments.
Working memory capacity is limited, and information can only be maintained and processed
up to a certain degree [Sweller, 1988]. Thus, the aim of instructions and AR systems should be
to reduce the amount of working memory captured.

Jeffri and Awang Rambli [2021] focus on identifying relationships between the effects of AR in
the context of cognitive load and task performance. To gain a more powerful understanding of
AR systems, Jeffri and Awang Rambli [2021] reviewed 64 articles investigating the effects of the
use of AR systems. The first research question of Jeffri and Awang Rambli [2021] relates to the
methods of how cognitive load can be measured in studies evaluating the use of an AR system.
Although cognitive load measurements are not directly possible, different methodologies to
approximate it are established in the literature. Jeffri and Awang Rambli [2021] show that 30
out of 40 experiments make use of the NASA Task Load Index (NASA-TLX) or NASA Raw Task
Load Index (NASA-RTLX) to measure cognitive load levels (see Figure 2.5).

Both the NASA-TLX and the NASA-RTLX are well-accepted frameworks in the literature to approx-
imate cognitive load levels [Hart and Staveland, 1988, p. 6]. Both frameworks are subjective
assessment tools to perform subjective workload assessments during human-machine interac-
tions [So, 2020]. The score has a rating scale from zero to one hundred and is easily comparable
[Hart and Staveland, 1988, p. 6]. The score is determined by answering a questionnaire.

2.4 Knowledge Gap

The approaches described in the previous section illustrate the relevance and effects of AR
systems in industrial practice. Existing literature reveals the diversity of possible applications
of such systems which results from the requirements of the respective use cases. Figure 2.6
provides an overview of the reviews presented in Section 2.3. The overview visualises the
focus of the reviews, the existence of a theoretical and empirical aggregation, and the relevant
variables according to the respective authors.

As described earlier, the effects of AR solutions are justified theoretically in the literature but
are not yet substantiated by aggregated empirical results. Simultaneously, Terhoeven et al.
[2018], Vanneste et al. [2020], and many more show individual small user studies in which
the influence of AR solutions on different use cases in manufacturing environments is assessed
empirically. Among other factors, the influence is particularly tested with regard to processing
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Figure 2.4: Percentage of studies utilising
certain measures [Egger and Masood,
2020, p. 10]
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Figure 2.5: Frequency of subjective mea-
sures of cognitive load across articles
[Jeffri and Awang Rambli, 2021, p. 6]

times, error tolerance, and cognitive load Egger and Masood [2020, p. 10]. As a matter of fact,
sample sizes differ and empirical results show great differences depending on the principle
and the use case.

A common feature underlying all experiments is that they have not yet been investigated in
practice-relevant, long-term field experiments. Furthermore, individual studies show ambigu-
ous results, and a statistically powerful empirical assessment is still missing. The aggregated
assessment of empirical studies allows a statistical comparison of surveys and experiments
dealing with similar research questions. Nevertheless, the results heavily depend on the oper-
ators’ cognition and experience. Regardless of the effects on individual factors, comparability
of user studies during the summary of empirical studies needs to be kept in mind.

Egger and Masood [2020], Kohn and Harborth [2018], Baroroh et al. [2020], Vanneste et al.
[2020], and Jeffri and Awang Rambli [2021] highlight that an efficient implementation of AR
in manufacturing environments still requires additional research. In particular, a powerful
aggregation of quantitative-empirical effects of such technology and possible relationships of
effected variables reveal a knowledge gap (see Figure 2.6). For this reason, a meta-analysis is
needed to determine the influence of AR by synthesising several small empirical studies into
one large study.
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3 Hypothesis Development

This chapter focuses on the development of three hypotheses that will be answered as part
of this research project. Prior to the derivation of the hypotheses in Section 3.2, Section 3.1
provides a brief definition of hypotheses and highlights the requirements.

3.1 Definition Hypothesis

A research hypothesis describes a proposition or predictive statement addressing a possible re-
search outcome based on expected differences between at least two variables of interest [Allen,
2017]. The cause-effect relationships are developed taking into account existing knowledge
[Basavanna, 2015, p. 32]. Depending on how the hypotheses are formulated, they can be de-
cisive for the design of the research project. In any case, empirical studies help to test the
hypotheses.

A hypothesis is subject to various requirements, the four most important of which are ex-
plained in the following. First of all, a good hypothesis ’must state an expected relationship
between variables’ [Allen, 2017]. The expected relationship should be formulated in a positive
way, assuming that a relationship exists rather than stating that it does not. Secondly, a hy-
pothesis must be testable and falsifiable with scientific methods [Allen, 2017]. Third, a good
hypothesis must be logical and based on previous theories or observations [Basavanna, 2015,
p. 34f.]. In line, a logical chain of reasoning is important. Finally, in terms of language a hy-
pothesis should be formulated in a simple and concise way to allow an easy understanding of
the content [Allen, 2017; Basavanna, 2015]. Here, precision of expression should be preferred
over stylistic variations [Töpfer, 2010, p. 151].

3.2 Derivation of Hypothesis

AR applications can have a significant influence on multiple measures in a manufacturing en-
vironment. As indicated, the emphasis in scientific studies often lies on the evaluation criteria
’time’, ’errors’, and ’cognitive load’. In the following, a hypothesis is derived for each of these
evaluation criteria. The hypotheses are driven by the results in Chapter 2 and by theoretical
guidance and prior evidence.

As shown in Section 2.1.1, empowering operators to absorb and process different types of in-
formation can be crucial to the success of a company. In particular, Hinrichsen and Bendzioch
[2019, p. 341] list five problems of information presentation that may cause performance losses
and increase cognitive load levels. Following these problems, it is indisputable to provide the
right and latest information, at the right time, in the right quantity, and in the right way. De-
pending on how well the individual components are fulfilled, a receiver has to provide more
or less capacity for absorbing and processing the information.
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Among others, Kock [2005] and Daft and Lengel [1986] indicate that humans are endowed
with capacity-limited perceptual processes. In particular, as a result of history, individuals are
limited in terms of their ability to absorb and process information. More importantly, the abil-
ity to absorb and process information highly depends on the respective information medium
[Kock, 2005; Daft and Lengel, 1986]. Kock [2005] illustrates this dependence with the help of
the media naturalness hypothesis.

The media naturalness hypothesis builds on the fact that humans relied almost exclusively on
face-to-face communication in the past and can best process this information medium. Over
time, humans have evolved cognitive, physiological, and genetic skills to process information
from channels with similar characteristics as face-to-face communication. According to Kock
[2005, p. 124] and Daft and Lengel [1986], these characteristics can be divided into the follow-
ing five elements: Co-location (a condition in which communication partners are physically
located right next to each other), synchronicity (receiving and sending information without
any latency), the ability to convey facial expressions, body language, and speech.

The more elements a certain way of communication incorporates, the higher the degree of
naturalness [Kock, 2005, p. 124]. Likewise, the higher the degree of naturalness, the lower the
level of cognitive effort, communication ambiguity, and the higher the level of physiological arousal
as key constructs [Kock, 2005, p. 121]. In the following, all three hypotheses are derived based
on these three key constructs affected by the media naturalness hypothesis by Kock [2005].

In contrast to classical instructions (e.g., paper, PDF tablet), newly adapted AR solutions corre-
spond to a greater extent to the described characteristics of face-to-face communication. First of
all, both classical instructions and AR applications do not allow co-location as communication
partners are not physically present. However, perceived virtual co-location can be achieved
to a certain extent by using AR solutions [Lukosch et al., 2015, p. 519]. What is more, AR ap-
plications, in contrast to classical instructions, allow synchronicity [Liang and Roast, 2014, p.
609f.]. Users are only able to receive and send information using AR and dynamic media. Next,
classical instructions do not enable users to convey facial expressions, body language, and
speech during information sharing. In contrast, AR offers a wide range of possibilities to use
these elements depending on the use cases [Chen et al., 2015]. Given these arguments, media
naturalness is assessed to be higher for AR applications in comparison to classical ways of com-
munication but not face-to-face. Based on the key constructs affected by the media naturalness
hypothesis, reducing effects for the described evaluation criteria can be achieved.

Time

First, the most prominent evaluation criterion ’time’ is considered. The corresponding hypoth-
esis mainly refers to the key construct physiological arousal [Kock, 2005, p. 123]. Physiological
arousal describes the degree of activation of the central nerve system of individuals [Iwańczuk
and Guźniczak, 2015]. The Yerkes-Dodson law predicts that up to a certain extend higher phys-
ical arousal leads to performance improvements, including time reductions [Teigen, 1994]. This
prediction applies to simple, well-learned, and partly unfamiliar tasks, which is assumed to be
applicable for this research in manufacturing environments.

As a result of increased media naturalness for AR applications, individuals are more likely to
be triggered by physiological arousal using this technology in comparison to classical media
[Kock, 2005, p. 123]. In addition, AR helps to provide the right information, at the right time,
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in the right quantity to a worker, thus increasing information availability and preventing un-
necessary waste of time [Hicks, 2007, p. 239]. Given these arguments, processing times in
manufacturing environments are expected to be lower while using AR solutions.

H1: AR solutions have a reducing effect on processing times of workers during
manufacturing activities.

Errors

The second variable that plays a prominent role is the evaluation criterion ’errors’. Following
Kock [2005, p. 124], communication ambiguity is one of the key constructs that is affected by
media naturalness. Communication ambiguity refers to differing interpretations of individual
events, including the perception and processing of information. Simultaneously, Karanikas
et al. [2018, p. 261] indicate that error rates in manufacturing environments are driven by
communication ambiguity. As a result of such ambiguity, humans tend to fill in knowledge gaps
themselves if an information-giving stimulus is missing [Kock, 2005; Karanikas et al., 2018].
Subsequently, the number of errors and misinterpretations increases, especially in the case of
knowledge gaps.

In the case of AR applications, the media naturalness of such technology is assessed to be higher
compared to classical instructions. Based on the previously presented theoretical findings, the
interpretation of data and information is thus expected to be higher, leading to fewer errors.
Receivers using AR solutions can better understand the information that is meant to be commu-
nicated. At the same time, the physiological arousal described above also positively influences
the task outcome quality Kock [2005, p. 124] and errors can be detected at an earlier stage by
digital AR systems. Hence, the following second hypothesis arises:

H2: AR solutions have a reducing effect on error rates of workers during manufac-
turing activities.

Cognitive load

The third hypothesis is derived especially based on the affected key construct cognitive effort.
Among others, Kock [2004] and Daft and Lengel [1986] show that decreases in media natural-
ness lead to increased cognitive load levels. As described previously, the level of media natural-
ness is assessed to be higher for AR applications in comparison to static instructions. Likewise,
AR solutions can help to relieve the information recipient with lower processing requirements.
In manufacturing environments, cognitive load levels can particularly be improved by AR sup-
ported information provision adapted to an individual operator. Furthermore, Kock [2005, p.
121] shows that more ’natural’ communication media such as AR solutions make use of less
’specialized brain circuits to make up for the absence of [one of the five] elements’.

Given these explanations, the third hypothesis argues that following the media naturalness
theory AR solutions have a positive effect on cognitive load levels of workers during manufac-
turing activities in comparison to static instructions.

H3: AR solutions have a reducing effect on cognitive load levels of workers during
manufacturing activities.
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4 Methodological Approach

The following chapter describes the methodological approach to answer the central research
question and the corresponding sub-questions. The methodological approach follows the need
for research as identified in Chapter 2 and 2.3, and includes three sequential phases: (1) Meta-
analysis, (2) meta-regression, and (3) empirical exploration. Figure 4.1 displays the individual
steps of this research. Following, the phases are explained in more detail.

Expert

Meta-analysis
(Chapter 5) 

1

Meta-regressions
(Chapter 6)  

2

Empirical exploration
(Chapter 7)

3

Potentials

Influencing variables

Challenges

Use cases

Figure 4.1: Methodological approach

1. Meta-analysis

First, three meta-analyses are carried out to analyse the state-of-the-art and the influence of AR
solutions on variables relevant to manufacturing processes. As identified in Section 2.3, these
variables include processing time, error rates, and the cognitive stress of employees.

A meta-analysis is used if individual studies available show ambiguous results, and a statisti-
cally powerful assessment is still missing. By synthesising several small studies into one large
study, a meta-analysis provides higher significance. As a result, a more powerful statistical
influence of AR on the evaluation criteria processing time, error rate, and cognitive load is
expected. Meta-analyses follow six sequential phases: Formulation of the research question,
data collection, evaluation of data, analysis and interpretation of data, sensitivity analysis, and
presentation of results.

As part of the meta-analyses, a systematic literature search is conducted to collect and evaluate
relevant data. The underlying literature search follows the framework by Vom Brocke et al.
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[2009] (as shown in Figure 4.2), which builds on five sequential steps: The definition of the
review scope, the conceptualization of the topic, the literature search, the literature analysis
and synthesis, and the research agenda. Each step includes individual systematic approaches
that are in line with collecting and evaluating data as part of the meta-analyses.

1 2

5 3

4

Definition of review scope

▪Taxonomy for the literature 
search according to Cooper

Conceptualization of topic

▪ Relevant definitions
▪Definition of the scope

Literature search

▪Documentation based on 
STARLITE approach

▪ Systematic literature review 
following vom Brocke et al.

Literature analysis and synthesis

▪Geographic distribution
▪Main journals

Research agenda

▪Deriving cause-effect relation-
ships (hypothesis) by mathematical 
modelling, systematic analysis of 
existing user tests

▪Verification of the hypothesis 
through exploration

Figure 4.2: Framework systematic literature review by Vom Brocke et al. [2009]

The systematic literature review aims to build an extensive literature database covering empir-
ical studies on AR technologies in manufacturing environments. Here, the type of technology
used to enable AR is not specified in advance. Different types of technological enablers and use
cases shall be compared, such that the impact and advantages of different technologies on the
target variables can be distinguished. The publications contained in the database are evalu-
ated based on an evaluation scheme (see Figure 5.4). All identified publications are classified
with the help of a homogeneity assessment to avoid the ’apples and oranges problem’ [Lipsey
and Wilson, 2001]. The remaining studies are evaluated with regard to minimal statistical re-
quirements to allow extraction and synthesising. Thereupon, the meta-analyses will be carried
out with a previously selected software. The software helps to run statistical calculations to
allow an evaluation and interpretation of the data. As part of the subsequent sensitivity analy-
sis, the results are verified by checking for statistical heterogeneity, publication bias, and other
confounding factors.

2. Meta-regression

Building on the results of the meta-analyses including the systematic literature review, mul-
tiple meta-regressions are carried out next. For each of the chosen evaluation criteria, the
aim of the meta-regressions is to identify potential moderator variables to express variances
between the studies included. The meta-regressions are conducted using the random effects
meta-regressions model.

To explain heterogeneity, 9 meta-regressions are conducted for each of the evaluation criteria.
First, the evaluation criteria ’time’, ’errors’, and ’cognitive load’ are investigated as mutual
covariates. Then, further potential moderator variables addressing the characteristics of the
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studies are analysed. The meta-regressions are also carried out with the same software as the
meta-analyses, namely Comprehensive Meta-Analysis (CMA).

3. Empirical exploration

Lastly, an empirical exploration will be prepared and executed based on the previously gained
results. Expert surveys help to support the findings from the first two phases. The expert
surveys are conducted in the manufacturing department of a chemical and consumer goods
company.

The surveys follow the Delphi method, which is a systematic, multi-stage survey procedure
that allows feedback from the experts. This research project identifies four areas of focus and
corresponding research questions to encourage the experts to provide assessments, descrip-
tions, and narratives on the topic.

Table 4.1 summarises the methods used, the objectives, and the expected findings of this re-
search project.

Table 4.1: Methods, objectives, and expected findings

Method Objective Expected findings

Meta-analysis
Analysis state of the art 
and AR technologies

Quantifiable influence of 
AR solutions on the 
evaluation criteria time, 
errors, and cognitive load

Meta-regression

Identification of linear 
relationships between 
outcome measures and 
covariates

Moderating variables to 
express variances for the 
chosen evaluation criteria

Empirical exploration
Validation of results in an 
industrial environment

Verification or adjustment 
of the results obtained in 
the meta-analyses and 
meta-regressions
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Section 2.3 identifies various scientific reviews addressing the empirical influence of AR on
manufacturing environments. However, these scientific reviews lack robust statistical power.
As indicated, a meta-analysis is a promising statistical tool to achieve the desired evidence.
Thus, a meta-analysis can be a suitable tool to address the research gap. In the following, Sec-
tion 5.1 provides a definition of meta-analysis, highlights the requirements and the method-
ological approach, and discusses the advantages and weaknesses. Next, three meta-analyses
are carried out and described in Section 5.2.

5.1 Definition Meta-Analysis

A meta-analysis is a statistical technique for combining the results of individual scientific arti-
cles on the same topic that have been systematically researched [Jesson et al., 2011, p. 130]. In
this way, a meta-analysis enables an evaluation of the overall impact of the research conducted
[Pereira et al., 2019, p. 5]. The systematic approach of a meta-analysis allows for the identifi-
cation of existing evidence and correlations [Jesson et al., 2011, p. 130]. For this reason, this
statistical tool is an essential methodology for knowledge development and makes a valuable
contribution to future research agendas [Pereira et al., 2019, p. 5].

However, whenever full data sets are available for the relevant studies, it is more suitable
to analyse them directly using conventional methods rather than conducting a meta-analysis
[Lipsey and Wilson, 2001, p. 2].

Differentiation meta-analysis from primary data analysis

In comparison to a primary data analysis, a meta-analysis does not require access to the raw
data of a study. Instead, only the statistical values of the data from the primary study (e.g.
correlation, mean) are needed. Therefore, in a meta-analysis, the number of available stud-
ies represent the unit of analysis and the statistical values correspond to the data. Individual
studies show different numbers and characteristics of statistical values. Thus, mean and stan-
dard deviation are variables of interest as part of a meta-analysis [Forza and Di Nuzzo, 1998,
p. 839].

5.1.1 Fields of Application Meta-Analysis

As described previously, a meta-analysis can be used to analyse statistical values from indi-
vidual, but comparable studies. Following, this section identifies three different fields of ap-
plication of meta-analysis: Development of theories, explanation of theories, and theoretical
discussion.
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Development of theories. To begin with, one application of meta-analysis is the development
of theories as a result of joint research across scientific disciplines [Forza and Di Nuzzo, 1998;
Pereira et al., 2019, p. 839]. In many cases, researchers draw on the results of previous studies
to evaluate existing knowledge. Meta-analysis enables researchers to understand these studies
better and identify knowledge gaps [Pereira et al., 2019, p. 6]. Following a meta-analysis,
knowledge gaps can be further developed [Forza and Di Nuzzo, 1998, p. 839].

Explanation of theories. Secondly, meta-analysis can explain theories as well as deductive and
analytical processes [Pereira et al., 2019, p. 6]. Meta-analysis can substantiate abstract study
concepts by synthesising the results [Pereira et al., 2019, p. 6].

Theoretical discussion. In addition, the theoretical discussion of individual study results rep-
resents a third possible application of meta-analysis [Pereira et al., 2019, p. 6]. Here, individual
studies are summarised so that the results of the meta-analysis help answer the underlying
research question. The results of a meta-analysis in comparison to individual studies are more
powerful [Pereira et al., 2019, p. 6].

However, different probability levels of each study must be taken into account in all three ap-
plications. According to Taveggia [1974, p. 397], empirical research is always probabilistic.
Following, the results of each study might have arisen by chance. Even multiple studies may
reach different conclusions due to chance variations, differences in research methods, or other
errors. As a result, researchers need to determine how these ’artefacts’ affect the results [Taveg-
gia, 1974, p. 397]. These artefacts need to be removed to prevent inaccurate conclusions, and
the relationships between the variables need to be identified. Then again, the process is com-
plicated as the original data is usually not readily available for subsequent research [White,
1996, p. 325]. In general, published results from individual research studies show little more
than descriptive statistics and correlation coefficients. However, meta-analysis offers various
statistical options that allow an analysis of primary data studies only taking into account the
published results [White, 1996, p. 325].

5.1.2 Requirements Meta-Analysis

In preparation for a meta-analysis on the influence of AR, various requirements must be kept in
mind. To begin with, meta-analytical methods are only applicable to empirical research stud-
ies. Thus, performing a meta-analysis for descriptive, model-theoretical, or case-study-based
research is not suitable [Lipsey and Wilson, 2001, p. 2]. Furthermore, empirical research results
are required to conduct such statistical analysis. This excludes qualitative forms of research
[Lipsey and Wilson, 2001, p. 2]. As a result, scientific studies using quantitative measures and
presenting descriptive and inferential statistics to summarize the resulting data are suitable
[Pereira et al., 2019, p. 6]. Descriptive statistics deal with collecting and observing data and
their presentation in tables or graphs, for example. Inferential statistics use stochastic models
to conclude the causes that caused the data described in descriptive statistics [Pereira et al.,
2019, p. 6].

First, the meta-analysis requires a systematic literature review in which potential scientific
studies can be identified [Jesson et al., 2011]. In this context, it is important to ensure that
the selected literature is as representative as possible for the respective research area and has
the necessary methodological quality [Lipsey and Wilson, 2001, p. 3]. Furthermore, the ’publi-
cation bias’ must be taken into account, which is discussed in more detail in Section 5.1.5.
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As described, the meta-analysis focuses on aggregating and comparing the results of individual
research studies. To allow a powerful comparison, the empirical results must be

• conceptually comparable, i.e. deal with the same topics and relationships, and

• available in similar statistical forms [Lipsey and Wilson, 2001, p. 3].

However, according to Schmidt and Hunter [2016, p. 429f.], no rules are defined in the litera-
ture that detail the above-mentioned prerequisites. The research question, the research meth-
ods, and the study structure should follow similar approaches to allow comparability. In real-
ity, the decision on comparability of individual study results is ultimately subjective and based
on the opinion of the researcher [Lipsey and Wilson, 2001, p. 3]. Section 5.1.5 describes this
topic in more detail.

Further requirements for the performance of a meta-analysis are based on statistical indepen-
dence of variables. Independence of random variables is given as long as the occurrence of
one event A has no influence on another event B. Following a strict interpretation of the inde-
pendence condition, only one result from the same question should be taken from a primary
study. However, researchers partly disagree on the definition of statistical independence and
do not follow a strict interpretation consistently [Schmidt and Hunter, 2016, p. 429f.]. In reality,
the results of various primary data studies are assumed to be statistically independent instead
[Nelson and Kennedy, 2009, p. 351]. As a matter of fact, Bijmolt and Pieters [2001, p. 168] even
state that a meta-analysis leads to unsatisfactory results if the statistical independence condi-
tion is strictly adhered to. Accordingly, Bijmolt and Pieters [2001, p. 168] argue against the
strict interpretation of the statistical independence condition. In addition, Forza and Di Nuzzo
[1998, p. 844] identify further prerequisites for conducting a meta-analysis:

• Clear and homogeneous definition of concepts

• Use of scientific measurement variables (valid, reliable, and shared)

• Provision of detailed information on sampling design and resulting samples of the pri-
mary studies

• Provision of useful information in the primary studies (such as mean and standard devi-
ation for each variable, sample size and missing values)

• Information related to assumptions, conditions and hypotheses

What is more, the minimum number of studies needed to conduct a meta-analysis is not speci-
fied. Instead, Lipsey and Wilson [2001] argue that in some cases a meta-analysis can be applied
with as few as two or three individual studies.

This section describes the necessary prerequisites for conducting a meta-analysis. Next, the
methodological structure and procedure of a meta-analysis is explained in more detail.

5.1.3 Methodological Approach Meta-Analysis

As shown in Figure 5.1, the meta-analysis follows six sequential phases: (1) Formulation of a
research question, (2) collection of data, (3) evaluation of data, (4) analysis and interpretation
of data, (5) performance sensitivity analysis, and (6) presentation of results. In the following,
this section elaborates on the individual steps in more detail.
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Evaluation of data3

Collection of data2

Analysis and interpretation of data4

Formulation of a research question1

Performance sensitivity analysis5

Presentation of results6

Figure 5.1: Methodological approach meta-analysis

Formulation of a research question

The first step of a meta-analysis is to formulate a research question taking into account the
existing literature. As a result, only those studies that address the relevant hypothesis are
considered in the following steps [Forza and Di Nuzzo, 1998; Mengist et al., 2020]. Before
formulating a research question, it is helpful first to examine a variety of empirical studies
[Schmidt and Hunter, 2016, p. 3]. Next, it is necessary to agree on an acceptable level of
variation between individual studies [Forza and Di Nuzzo, 1998, p. 840]

Collection of data

A meta-analysis requires a structured method for selecting relevant studies and the corre-
sponding data. In this case, the selection method is subject to special attention to avoid possible
sources of bias [Forza and Di Nuzzo, 1998, p. 840]. A systematic literature search is a common
approach to begin the data collection in a meta-analysis. Compared to a traditional literature
search, the systematic literature search is a reproducible and transparent process and minimises
such bias. It helps collect all related publications and documents that meet the predefined in-
clusion criteria to answer a specific research question [Mengist et al., 2020].

Cooper [1988] has proposed a taxonomy to support the classification of systematic literature
searches. Figure 5.2 shows the different classification options. The taxonomy by Cooper [1988]
is in line with the framework for systematic literature reviews by Vom Brocke et al. [2009] as
indicated in Chapter 4.

Characteristic Categories

Focus Research outcomes Research methods Theories Applications

Goal Integration Criticism Central Issues

Perspective Neutral Representation Espousal of Position

Coverage Exhaustive Exhaustive and Selective Representative Central

Organization Historical Conceptual Methodological

Audience Specialized Scholars General Scholars Practitioners General Public

Figure 5.2: Taxonomy following Cooper [1988]
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Next, a search string is generated after the literature search has been classified and narrowed
down with the help of the taxonomy by Cooper [1988]. The search string and various combi-
nations of the keywords help select relevant studies that meet the selection criteria [Mengist
et al., 2020, p. 2]. The STARLITE approach by Booth [2006] represents a suitable documenta-
tion standard for conducting the literature search based on predefined keywords. As shown in
Figure 5.3, the scope of the literature search is defined and specified with the help of the fol-
lowing eight categories: Sampling strategy, type of studies, approaches, range of years, limits,
inclusion and exclusion, terms used, and electronic sources.

The STARLITE methodology is widely used in scientific papers and increases acceptance of
the work due to transparency. Furthermore, a structured approach reduces the risks associated
with different types of bias. A systematic literature review can provide reliable findings and
conclusions if the process is carried out properly [Mengist et al., 2020, p. 2]. By definition, a
systematic literature review is transparent, transferable, and replicable and, for this reason, also
requires a protocol. This helps to minimise distortions caused by extensive literature searches
[Mengist et al., 2020, p. 3].

ApproachesA

Type of StudiesT

Range of YearsR

Sampling StrategyS

LimitsL

Inclusion & ExclusionI

Terms usedT

Electronic SourcesE

Figure 5.3: STARLITE approach following Booth [2006]

Evaluation of data

The evaluation of the data follows the described data collection phase and is highly dependent
on the results of the latter [Forza and Di Nuzzo, 1998, p. 840]. This phase identifies suitable
primary studies to be included in the meta-analysis based on the data collection phase results.
The collected primary studies are assessed with the help of a predefined and systematic evalua-
tion scheme. Consequently, individual studies are eliminated, and the relevance and statistical
independence of the meta-analysis are strengthened.

As part of the framework for systematic literature reviews (Figure 4.2), Vom Brocke et al. [2009]
suggest a structured literature search process. This thesis follows the given literature search
process, as shown in Figure A.1 in Appendix A.1. The STARLITE methodology results form
the basis of the evaluation scheme and are, thus, included in the first two steps of the scheme.
Figure 5.4 displays the evaluation scheme used in preparation for the meta-analysis.

The first step of the evaluation scheme is the identification of primary studies. Primary stud-
ies are collected based on the STARLITE methodology and the corresponding keywords and
search strings. Next, the duplicates are eliminated. Duplicates occur as the keyword search is
conducted in multiple databases. Additionally, the results of the keyword search from off-topic
journals are eliminated. Following, the eligibility of the remaining articles with regard to the
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research question is evaluated. Here, the depth of content increases gradually. First, the indi-
vidual titles are assessed. Second, the abstracts of the remaining primary studies are evaluated.
Finally, the full-text of the remaining studies is assessed. Homogeneity and the availability of
the right data are crucial at this point. Last, further primary studies are identified through
a forward and backward search. The chosen studies from the forward and backward search
are evaluated according to the described procedure. As a result of the evaluation scheme, a
relevant and predefined literature database is created.
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Final 
paper set

Define range 
of years

Define 
databases

Define 
keywords

Figure 5.4: Evaluation of data following Vom Brocke et al. [2009]

Analysis and interpretation of data

Given the final paper set, the data can be analysed and interpreted. The analysis and interpre-
tation presuppose a summary of the data. In particular, the data from selected papers needs to
be extracted and standardised to derive insights and conclusions.

The data extraction process involves identifying and extracting relevant data from the selected
papers [Mengist et al., 2020, p. 8]. The literature distinguishes between three models for syn-
thesising the data: The equal effect model, the fixed effect model, and the random effect model
[Forza and Di Nuzzo, 1998, p. 840f.].

The equal effect model implies that the statistical parameter of interest (e.g. correlation, mean)
are the same for each study. As a result, the selected studies are controlled by the corresponding
parameter [Forza and Di Nuzzo, 1998, p. 840].
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The fixed effect model presupposes statistical homogeneity and assumes that the effect size
of different individual studies is only different as a result of random variability. Besides that,
there is only one ’true’ effect for the investigated research question. This effect describes the
correlations between the parameters [Forza and Di Nuzzo, 1998, p. 840].

The random effect model is used in the case that the effect sizes of individual studies vary
greatly while the studies appear clinically homogeneous at the same time. Consequently, sta-
tistical heterogeneity must be assumed and tested. The tests provide information on whether
the effect sizes’ dispersion is greater than caused by random variability. The random effect
model aims to estimate the distribution of unknown parameters [Forza and Di Nuzzo, 1998, p.
840f.].

As described, all three models calculate the weighted effect of each primary study on the over-
all result. The most suitable model needs to be chosen based on the data in the final paper
set.

The scaling of the variables varies depending on the individual studies. Consequently, it is not
possible to simply adopt the coefficient values for the analysis of the data. The data must be
standardised after the extraction of the data [Schmidt and Hunter, 2016, p.193f.]. In this case,
the effect size supports the statistical standardisation of empirical results. The effect size en-
ables a standardised interpretation across all variables and measures [Lipsey and Wilson, 2001,
p. 4]. Thus, the definition of suitable effect size to allow a meaningful numerical comparison
and analysis across primary studies is a crucial step in meta-analysis. In general, the effect size
captures the magnitude, direction, and statistical significance of the variables’ relationships.
The effect size should be defined so that other factors such as sample size have as little influ-
ence as possible [Lipsey and Wilson, 2001, p. 5]. The most common and suitable effect sizes
in a meta-analysis are the mean and the standard deviation [Lipsey and Wilson, 2001, p. 4].
Logically, a meta-analysis can only be carried out if the respective values are available in the
primary studies.

The analysis and interpretation of data includes ’the evaluation of the synthesised data and the
extraction of meaningful information’ Mengist et al. [2020, p. 8]. The results of the analysis can
be summarised with the help of a table to increase clarity [Forza and Di Nuzzo, 1998, p. 839].
Meanwhile, at the end of this phase the research questions can be answered and explained with
the help of qualitative and quantitative explanations of the results.

Performance sensitivity analysis

Following the analysis and the interpretation of the data, a sensitivity analysis enables the
investigation of possible heterogeneity and publication bias [Jesson et al., 2011, p. 143f.]. The
aim is to investigate whether there are significant differences between the studies and if the
studies included are representative. As a result, the calculated true effect sizes of the meta-
analysis can be critically assessed [Jesson et al., 2011, p. 143f.].

Presentation of results

As shown in Figure 5.1, the last step of a meta-analysis is the presentation of the generated
results. The presentation of the results can take place as part of a thesis project or a scientific
article [Forza and Di Nuzzo, 1998, p. 841]. The aim is to expand and complete the state of
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knowledge with regard to the research question addressed and to provide a basis for future
scientific research [Forza and Di Nuzzo, 1998, p. 841].

5.1.4 Advantages Meta-Analysis

The great advantage of a meta-analysis is that it is not necessary to access the raw data of the
individual studies when performing the analysis. Instead, the statistical values are sufficient
for analysis and allow a decisive result to be obtained [Lipsey and Wilson, 2001, p. 5f.]. How-
ever, if the complete data sets of the relevant studies are available, it generally makes more
sense and is more powerful to analyze them directly with conventional methods [Lipsey and
Wilson, 2001]. Still, Lipsey and Wilson [2001] highlight four advantages of a meta-analysis as
described in the following.

First, a meta-analysis enables assessing the author’s ’assumptions, procedures, evidence, and
conclusions’ [Lipsey and Wilson, 2001, p. 5f.] as the research process is explicit and systemat-
ical. A meta-analysis can provide objective and powerful results [Lipsey and Wilson, 2001, p.
5].

Second, Lipsey and Wilson [2001] emphasise that a meta-analysis is a quantitative method
that presents key study findings in a more differentiated and sophisticated way compared to
qualitative summaries or ’vote-counting’. By capturing the magnitude and direction of each
relevant statistical relationship in primary studies, the meta-analysis allows determining the
strength of the effects [Lipsey and Wilson, 2001, p. 6]. In this way, a meta-analysis allows for
an analytically precise examination of the relationships between study outcomes and study
characteristics.

Additionally, a meta-analysis provides higher significance by synthesising several small stud-
ies into one large study [Lipsey and Wilson, 2001, p. 6]. As a result of the synthesis, a meta-
analysis helps discover meaningful effects and relationships in the literature [Lipsey and Wil-
son, 2001, p. 6]. This is particularly useful when an individual study’s size is insufficient to
show an effect or the overall effect is superficially ambiguous due to differential effects in the
individual studies.

Lastly, the meta-analysis enables an organised way of handling information from a large num-
ber of primary study results [Lipsey and Wilson, 2001, p. 6]. Meta-analysis is conducted with
a software program that can process almost unlimited studies with different statistical input
data.

5.1.5 Weaknesses and Sources of Error Meta-Analysis

Meta-analyses are not only advantageous, but also have various weaknesses and sources of
error. Possible weaknesses and sources of error occur as a result of the combination of mul-
tiple primary studies without having access to the raw data. In the following, the resulting
weaknesses and sources of error are discussed.

The first weakness of meta-analyses addresses the quality of primary studies. As described
previously, the results of a meta-analysis highly depend on the quality of the final paper set. As
a result, methodologically poorer studies can degrade the results of a meta-analysis. However,
at the same time, there is relatively little agreement on the characteristics of methodological
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quality [Lipsey and Wilson, 2001, p. 9]. The assessment of methodological quality is, therefore,
subject to subjective judgement of researchers.

Additional sources of error can occur as primary studies consulted partly use different defini-
tions and variables [Forza and Di Nuzzo, 1998, p. 839]. As a result, correlations or cross-study
effects may be misinterpreted or overlooked when conducting a meta-analysis.

The literature discusses heterogeneity of different studies as another possible source of error of
meta-analyses [Lipsey and Wilson, 2001, p. 8]. In particular, the ’apples and oranges’ problem
is often highlighted by critics. The ’apples and oranges’ problem addresses the synthesis of
primary studies that deal with different characteristics. As a result, the summarised statistics
produced by a meta-analyses might not be powerful [Lipsey and Wilson, 2001, p. 8]. In reality,
however, the literature lacks predefined rules to assess an acceptable level of heterogeneity
for conducting a meta-analysis. Then again, the assessment of the underlying primary studies
is highly subjective. At the same time, Müllner [2002, p. 120] argues that up to a certain level
heterogeneity is rather a relevant effect that needs to be described as such, and not as an error.

Publication Bias

As mentioned in Chapter 4 and Section 5.1.2, the publication bias represents an additional
potential source of error. The publication bias addresses the fact that statistically significant
results with larger mean effect sizes are predominantly published by leading journals and sci-
entists [Lipsey and Wilson, 2001, p. 165]. In contrast, less significant results are often not pub-
lished in scientific literature. As a result, a high-quality final paper set used for a meta-analysis
mostly includes primary studies highlighting significant results and lacks publications with
less statistical significance. Then again, researchers must evaluate the trade-off between possi-
ble publication bias and adherence to data quality leading to a subjective decision. There is no
predefined procedure if the existence of a publication bias is suspected. However, the following
two methods are addressed in the literature: Funnel plot and trim-and-fill method.

The funnel plot helps identify the influence of a publication bias on the research results [Egger
et al., 1997]. The funnel plot maps the effect size (x-axis) against the precision of the measure-
ment (y-axis) [Jesson et al., 2011, p. 142]. In theory, as a result of smaller sampling errors, larger
studies provide better estimates of true effects and vice versa. As shown by Sutton et al. [2000]
in Figure 5.5, the funnel plot ideally displays a symmetrical funnel suggesting no publication
bias. However, a publication bias cannot be entirely ignored as asymmetries can also be caused
by heterogeneity.

Based on the funnel plot, publication bias can be accommodated in a meta-analysis using the
trim-and-fill method [Jesson et al., 2011, p. 143]. The trim-and-fill method allows an adjust-
ment of meta-analyses results with the impact of missing studies [Duval and Tweedie, 2000, p.
127]. To accommodate possible publication bias in a meta-analysis, the trim-and-fill method
produces a second ’actual’ effect size taking into account non-existing studies. However, such
a method should only be used if the existence of a publication bias is very likely [Jesson et al.,
2011, p. 143]. Figure 5.6 displays a funnel plot including missing studies (filled circles) and
the total effect sizes before (open) and after (filled) publication bias adjustment [Hopkins and
Smaill, 1999].

The visual examination of publication bias as a result of the funnel plot and the trim-and-fill
method can be subjective. Thus, publication bias is additionally examined with an Egger’s
regression test in the further course [Egger et al., 1997, p. 629].
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doing your literature review

142

to examine whether your results have been influenced by publication bias (or 
any other form of bias) (Eggar et al., 1997). A funnel plot maps the size of the 
effect measured (x-axis) against the precision of the measurement in each 
study (y-axis: inverse of variance, usually related to sample size). The theo-
retical basis for the funnel plot is that high-quality, large studies are more likely 
to provide good estimates of a true effect, and therefore there should be little 
variability between such studies (greater precision). Similarly, there should be 
more variability in the effect sizes reported for smaller or lower quality studies. 

If there is no publication bias, you would expect a funnel shaped, symmetrical 
plot, where the more precise studies (higher on the y-axis) tend to be grouped 
together, and the less precise studies (lower down the y-axis, usually smaller, but 
could be low quality) have a wide range of outcomes. This is illustrated by 
Sutton et al. (2000) and in Figure 8.5 (the top block), which shows the type of 
data you would expect if publication bias was not a significant factor.
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2000: 1575)

09-Jesson et al-4192-Ch-08.indd   142 27/01/2011   10:10:19 AM

Figure 5.5: Exemplary funnel plot no publication bias (top) and publication bias (bottom) [Sut-
ton et al., 2000, p. 1575]
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If publication bias in your included studies is a factor, then the plot will not 
look symmetrical. Figure 8.5 (the lower block) is a good example of a funnel 
plot showing publication bias. Here there seem to be no smaller trials which 
report negative effects. 

It may be possible to accommodate for publication bias in a meta-analysis 
by adding in data to replace that which is apparently ‘missing’ due to publica-
tion bias (see Figure 8.6), and therefore to produce a second pooled estimate 
of effect. However, you would need to be very confident that the distribution 
of data was indeed due to publication bias before such a technique could be 
used. The filled circles in Figure 8.6 denote the imputed missing studies. The 
bottom diamonds show summary effect estimates before (open) and after 
(filled) publication bias adjustment (Hopkins and Small, 2006).

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

P
re

ci
si

on
 (1

/S
td

 E
rr

)

Log Peto odds ratio

Funnel plot of precision by Log Peto odds ratio

Figure 8.6� )XQQHO�SORW�ZLWK�PLVVLQJ�VWXGLHV�DGGHG�LQWR�WKH�DQDO\VLV�WR�WDNH�LQWR�DFFRXQW�SXEOLFDWLRQ�ELDV�
�+RSNLQV�DQG�6PDOO�������
6HH�WH[W�IRU�NH\�WR�V\PEROV

Performing a sensitivity analysis
Now we will briefly discuss how you can tell whether the pooled effect size 
estimate calculated by your meta-analysis is robust, or whether you have 
included some bias during any stage of your data collection and evaluation. 
Sensitivity analysis allows you to assess what happens to the results of your 
meta-analysis if you change a certain parameter – that is, if you change the 
inclusion criteria of your review or some other important assumption or 

09-Jesson et al-4192-Ch-08.indd   143 27/01/2011   10:10:19 AM

Figure 5.6: Exemplary trim-and-fill method including missing studies [Hopkins and Smaill,
1999, p. 1575]
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The fact that a classical meta-analysis can only quantify relationships between two variables
represents a further limitation [Lipsey and Wilson, 2001]. A classical meta-analysis is not suit-
able in case that a research question examines multivariate relationships (e.g. in form of a
regression analysis).

Lastly, the effort and expertise required to conduct a meta-analysis can be seen as a weakness
[Lipsey and Wilson, 2001, p. 7]. In comparison to a traditional qualitative research summary, a
meta-analysis requires considerably more time.

5.2 Execution Meta-Analysis

The following sections carry out the meta-analyses according to the procedure described pre-
viously. The methods and approaches described above are used to achieve transparent and
reproducible meta-analyses.

5.2.1 Formulation of a Research Question

The first step in conducting a meta-analysis is to formulate a research question. As a result,
only studies that support the research questions are taken into account in the further course
of the meta-analyses. Kate L. Turabian [2013, p. 17f.] distinguishes between three types of
questions: Conceptual questions, practical questions, and applied questions.

Conceptual questions help readers to understand a certain problem better and to guide the
thoughts [Kate L. Turabian, 2013, p. 17]. Correspondingly, practical questions help develop
an ap-proach to change or improve a problematic or improvable situation [Kate L. Turabian,
2013, p. 17f.]. Lastly, applied questions help the readers to first better understand a practical
problem be-fore solving it. An applied question helps to develop a step towards the solution
of a practical problem [Kate L. Turabian, 2013, p. 18].

This thesis aims to understand the potential of AR solutions in manufacturing environments by
conducting three meta-analyses. The underlying problem why AR solutions are considered to
support manufacturing activities is described in Section 1.1. This project thus does not address
a conceptual question that helps the reader to understand a problem. In reality, the potential
and influence of AR solutions must first be researched to develop a concrete procedure to solve
the underlying problems. For this reason, the present research question addresses an applied
question.

Following Kate L. Turabian [2013], the applied research question of the meta-analyses is as
follows:

What influence do AR solutions have on processing time and the error rate, which are a
measure of productivity, as well as the cognitive load of workers during manufacturing
activities?

The meta-analyses described in the next sections helps to answer this question.
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5.2.2 Collection of Data

As described in Section 5.1.3, a systematic literature review constitutes the data collection for
the meta-analysis. Vom Brocke et al. [2009] suggest the taxonomy by Cooper [1988] for a correct
classification of the literature search.

Meta-analyses make use of empirical studies and aim to achieve statistically more powerful as-
sessments. To allow such assessment, the systematic literature review’s focus lies on available
research outcomes [Cooper, 1988]. This project also aims to ’integrate or synthesize past liter-
ature that is believed to relate to the same issue’ [Cooper, 1988, p. 108]. At the same time, this
project aims to identify central issues in AR applications that have dominated past endeavors.
The literature review attempts to represent the influence of AR solutions neutrally. Following
Booth [2006], the exclusion criteria do not eliminate a particular point of view. Additionally,
conclusions will be based on an exhaustive and selective review [Cooper, 1988, p. 110f.]. The
organisation of the systematic literature review follows both a conceptual and methodological
approach. Publications that relate to the same abstract ideas and employ similar methods are
grouped [Cooper, 1988, p. 111f.]. Lastly, this review intends to address general scholars and
practitioners. As a result, the review tries to pay ’greater attention to the implication of the
work being covered’ [Cooper, 1988, p. 112] than on jargon and details.

Figure 5.7 displays the described taxonomy by Cooper [1988].

Characteristic Categories

Focus Research outcomes Research methods Theories Applications

Goal Integration Criticism Central Issues

Perspective Neutral Representation Espousal of Position

Coverage Exhaustive Exhaustive and Selective Representative Central

Organization Historical Conceptual Methodological

Audience Specialized Scholars General Scholars Practitioners General Public

Figure 5.7: Completed taxonomy following Cooper [1988]

Next, a search string is created based on the classification of the literature search by Cooper
Cooper [1988]. The search string and different combinations of the keywords help to identify
relevant publications in the first place. As shown in Figure 5.8, the search string is constructed
with three distinct segments: Technology, domain, and the target variable. The corresponding
keywords result in 18 individual search strings.

Additionally, the STARLITE methodology is used as a documentation standard (see Figure 5.9)
[Booth, 2006]. As a result of an exhaustive and selective sampling strategy, this project consid-
ers all literature within predefined boundaries. The search for relevant literature is limited to
journal articles and books and is conducted with the help of an evaluation scheme following
Vom Brocke et al. [2009]. AR applications have evolved significantly in recent years, and publi-
cations have increased considerably since 2014. Consequently, this thesis includes English and
German articles between 2014 and 2021. AR solutions are currently implemented in numer-
ous different fields of application. As indicated in Section 1, this research project particularly
focuses on the manufacturing industry. For this reason, literature without any empirical eval-
uation of AR solutions in manufacturing environments is excluded. Seven different databases
are chosen not to miss any relevant research outcomes.
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3,218 scientific articles meet the predefined criteria as a result of the collection of data phase.
Next, the output is evaluated following the evaluation scheme described in Section 5.1.

Technology Domain Target variable

• Augmented 
Reality

• Mixed Reality

• Manufacturing
• Maintenance
• Assembly

• Time
• Error*
• NASA*

Combination search strings

# Technology Domain

…

Target variable

1 Augmented Reality Manufacturing Time

2 Error*

3 NASA*

5 Error*

6 NASA*

8 Error*

9 NASA*

11 Error*

12 NASA*

14 Error*

15 NASA*

17 Error*

18 NASA*

4 TimeMaintenance

7 TimeAssembly

…
…

…

…

10 TimeMixed Reality Manufacturing

13 TimeMaintenance

16 TimeAssembly

…
…

…

Figure 5.8: Keywords and search string combinations

ApproachesA

Type of StudiesT

Range of YearsR

Sampling StrategyS

LimitsL

Inclusion & ExclusionI

Terms usedT

Electronic SourcesE

Exhaustive and selective

Restriction to journal articles, conference papers, and books

Keyword search in databases, forward search, backward search

Consideration of all sources published from 2014 to March 2021

Limitation to English and German sources

Focus on empirical user studies of Augmented Reality solutions in 
manufacturing environments 

Augmented Reality/ Mixed Reality, Manufacturing/  Maintenance/ Assembly, 
Time/ Error*/ NASA*

IEEE, ISI Web of Knowledge, Science Direct, Scopus, ACM Digital Library, 
ProQuest (incl. ABI Informs), JSTOR

Figure 5.9: Completed STARLITE approach following Booth [2006]
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5.2.3 Evaluation of Data

As described previously, the identification of relevant studies strongly affects the success of
a meta-analysis. Here, it is particularly important to follow a structured approach. This sec-
tion first presents the results of the literature evaluation in line with the described evaluation
scheme (Figure 5.4). Then, the resulting final paper set is classified following step 4 of the
framework for systematic literature reviews by Vom Brocke et al. [2009].

The initial keyword search in the mentioned databases results in 3,218 potentially relevant
studies. Of these, 249 articles were found on the database IEEE, 93 on ISI Web of Knowledge,
694 on Science Direct, 1,145 on Scopus, 315 on ACM Digital Library, 231 on ProQuest (incl. ABI
Informs), and 491 on JSTOR. The various databases partly show considerable overlaps. After
removing these duplicates, 1,172 different individual studies remain. With the help of a pre-
viously created positive and negative journal list, off-topic journals are sorted out, leaving 994
papers. Similarly, 174 studies remain after a full-title assessment, 76 after an abstract evalua-
tion, and 20 after the final full-text review. Four more relevant studies are identified through a
forward/ backward search.

Keyword search in databases
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ed

Filter: duplicates

Filter: off-topic journals

Full-title assessment

Abstract assessment

Full-text assessment

Forward/ backward search

Final 
paper set

Define range 
of years

Define 
databases

Define 
keywords

Results per evaluation level

24

20

76

174

994

3,218

1,172

Figure 5.10: Resulting literature per evaluation level

As part of the eligibility assessment, studies are excluded that have not conducted and pub-
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lished empirical results of experiments in manufacturing environments. Furthermore, the re-
maining studies are examined for homogeneity. Here, the domain, the type of data, the research
methods, the experimental settings, the number of participants, and the evaluation criteria are
considered. Additionally, a comparison between classical instructions and digital assistance
technologies is crucial. In the case of single missing data, the authors of the studies were con-
tacted to include the individual studies.

The above-mentioned information of the remaining studies are summarised in Table 5.1 and in
more detail in Table B.1 and Table B.2. Particularly the later table constitutes the basis for the
following classification and the meta-analyses.

Classification final paper set

In the following, the final paper set is classified based on the aggregated data. In particular,
the classification focuses on the distribution of the remaining 24 studies in seven fields of inter-
est.

To begin with, Figure 5.11 displays the distribution of the countries in which the correspond-
ing empirical experiments were carried out. At this point, the relevance of AR in high-wage
geographical locations such as Germany, Italy, Austria, Hong Kong, and the United Kingdom
is emphasised. The distribution of studies is in line with the fact mentioned above that AR ap-
plications can especially strengthen manufacturing processes’ competitiveness in high-wage
locations [Dachs et al., 2019]. A reason for the geographical focus of scientific research could
be that high initial investment costs could pay off more quickly in high-wage countries.
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The Netherlands

Taiwan

France

China

Australia

United Kingdom

Hong Kong

Austria

Italy

Germany

Figure 5.11: Country distribution final paper set

As described in Section 5.2.2, only sources published from 2014 to March 2021 are taken into ac-
count for the subsequent meta-analyses. Figure 5.12 illustrates the scientific relevance in recent
years. The number of studies conducted increased significantly, especially in 2020. Only a few
studies were published before 2014 and do not represent the current technological potential.
Correspondingly, the number of available software and hardware solutions in the market has
recently also increased at an above-average rate.
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Figure 5.12: Distribution of years final paper set

Next, this section compares the distributions of classical and AR supported instructions. Both in
empirical studies but especially in practice, paper instructions are still widespread. Similarly,
this is reflected in the distribution of classic instructions shown in Figure 5.13. Besides paper
instructions, few studies of the final paper set use PDF tablets or short video instructions with
text to provide information classically. Even though paper, PDF tablets, and video instructions
are three different mediums, they are comparable. The instructions give very similar informa-
tion with the help of pictures and text in a non-interactive way. At the same time, the studies
as part of the final paper set focus on two enabling technologies of AR, namely HMDs and AR
screens. Figure 5.14 illustrates the number of studies using the corresponding technologies.
Both technologies are again very comparable as additional information can be displayed in the
form of AR. The chosen studies empirically compare the classical and AR supported instruc-
tions concerning the described evaluation criteria.

3

3

18

Video instruction

PDF tablet

Paper

Figure 5.13: Distribution classical instruc-
tions

12

12

AR screen

Head-Mounted Display

Figure 5.14: Distribution AR supported in-
structions

Section 2.2.2 describes five different fields of application of AR in manufacturing environments.
This meta-analyses particularly focus on the influence of AR solutions on the domains manu-
facturing, maintenance, and assembly. As shown in Figure 5.15, empirical studies mainly focus
on the measurable effects of AR solutions on assembly processes. Kohn and Harborth [2018]
have likewise identified a similar focus of research on assembly. At the same time, however,
companies are more engaged in projects related to maintenance [Kohn and Harborth, 2018].
Companies only publish quantitative results of their studies in a few cases. All six papers ad-
dressing the domain ’maintenance’ have been developed in close cooperation with industrial
partners.

The experimental settings of the final paper set can be classified into three different categories,
namely real product and setting, mock-up, and Lego. The distribution of studies is relatively
balanced (see 5.16), real products and settings have found the most applications in the final
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paper set. This involves, for example, the assembly of a chainsaw, a car door, and the mainte-
nance of a real machine. The experience of the users performing various tasks differ partly. In
contrast, all users had no or very little previous experience working with AR. Individual tasks
last between a few seconds and several minutes depending on the experimental setting. Fur-
thermore, the majority of the test persons were either students or employees of a company.

Although the categories of both the domains and the experimental settings appear hetero-
geneous, the remaining studies have comparable characteristics to enable the meta-analyses.
Firstly, the different experimental settings represent simplified activities. These activities in-
clude comparable sub-tasks in which items are located, picked, maintained, and assembled.
Secondly, the design of the experiments and the usage of the different type of instructions is
not familiar for the test persons. Consequently, possible differences between the different cat-
egories can be excluded at this stage. However, heterogeneity between the different studies is
assessed as part of the statistical analysis in the further course.

3

6

15

Both

Maintenance

Assembly

Figure 5.15: Distribution domains of rele-
vant studies

6

8

10

Lego

Mock-up

Real product/ setting

Figure 5.16: Distribution experimental set-
tings

Last, this section illustrates the existence of relevant data for each of the identified evaluation
criteria. Almost all studies report the influence of AR applications on the evaluation criteria pro-
cessing time. Furthermore, the respective percentage changes in the error rates are compared
in most studies. The measurement of cognitive load levels requires more effort and knowledge,
so this value is only given in 50% of the studies. In addition, time and error rate improvements
in industrial applications are more comparable in monetary terms. Lipsey and Wilson [2001, p.
4] mention that the minimum number of comparative studies with the same evaluation criteria
for conducting a meta-analysis is three. As shown in Figure 5.17, all three evaluation criteria
meet this requirement.

12

20

22Time

Error rate

Cognitive load

Figure 5.17: Distribution of evaluation criteria
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Table 5.1: Overview final paper set

# Author Titel Domain
Experimental 

setting
Classical 

instruction
Assistance 
Technology

1 Abbas (1)
Impact of Mobile AR System on Cognitive 
Behavior and Performance during Rebar 
Inspection Tasks

Mainte-
nance

Real product/ 
setting

Paper AR screen ✘ 🗸 ✘

2 Abbas (2)
Impact of Mobile AR System on Cognitive 
Behavior and Performance during Rebar 
Inspection Tasks

Mainte-
nance

Real product/ 
setting

Paper HMD ✘ 🗸 ✘

3
Blattgerste 
(1)

Comparing Conventional and AR Reality 
Instructions for Manual Assembly Tasks

Assembly Lego Paper HMD 🗸 🗸 🗸

4
Blattgerste 
(2)

In-Situ Instructions Exceed Side-by-Side 
Instructions in Augmented Reality 
Assisted Assembly

Assembly Lego Paper HMD 🗸 🗸 🗸

5 Botto
AR for the Manufacturing Industry: The 
Case of an Assembly Assistant

Assembly Mock-up Paper AR screen 🗸 🗸 ✘

6 Brice
AugmenTech: The Usability Evaluation 
of an AR System for Maintenance in 
Industry

Mainte-
nance

Mock-up Paper HMD 🗸 ✘ 🗸

7 Büttner
Using Head-Mounted Displays and In-Situ 
Projection for Assistive Systems – A 
Comparison

Assembly Lego Paper HMD 🗸 🗸 ✘

8 Chu
Comparing Augmented Reality-Assisted 
Assembly Functions—A Case Study on 
Dougong Structure

Assembly Mock-up Paper AR screen 🗸 🗸 🗸

9 Fiorentino
Augmented reality on large screen for 
interactive maintenance instructions

Mainte-
nance

Mock-up Paper AR screen 🗸 🗸 ✘

10 Gavish
Evaluating virtual reality and augmented 
reality training for industrial maintenance 
and assembly tasks

Mainte-
nance + 
Assembly

Mock-up
Video 

instruction
HMD 🗸 🗸 ✘

11 Gutsche
Enabling or stressing? – smart information 
use within industrial service operation

Mainte-
nance + 
Assembly

Real product/ 
setting

Paper HMD 🗸 ✘ 🗸

12 Havard

A use case study comparing AR and 
electronic document-based maintenance 
instructions considering tasks complexity 
and operator competency level

Mainte-
nance

Real product/ 
setting

PDF tablet AR screen 🗸 ✘ 🗸

13 Hoover
Measuring the performance impact of 
using the microsoft HoloLens 1 to provide 
guided assembly work instructions

Assembly Mock-up PDF tablet HMD 🗸 🗸 ✘

14 Hou
Using Animated Augmented Reality to 
Cognitively Guide Assembly

Assembly Lego Paper AR screen 🗸 🗸 🗸

15 Lampen
Combining Simulation and Augmented 
Reality Methods for Enhanced Worker 
Assistance in Manual Assembly

Assembly Mock-up Paper HMD 🗸 🗸 🗸

16 Loch
Comparing Video and Augmented Reality
Assistance in Manual Assembly

Assembly Lego
Video 

instruction
HMD 🗸 ✘ 🗸

17 Obermair
Maintenance with AR Remote Support in 
Comparison to Paper-Based Instructions: 
Experiment and Analysis

Assembly
Real product/ 

setting
Paper AR screen 🗸 🗸 ✘

18 Pringle

Using an industry-ready AR HMD on a 
real maintenance task: AR benefits 
performance on certain task steps more 
than others

Mainte-
nance

Mock-up PDF tablet AR screen 🗸 🗸 ✘

19 Sanna
Using Handheld Devices to Support 
Augmented Reality-based Maintenance 
and Assembly Tasks

Mainte-
nance + 
Assembly

Real product/ 
setting

Paper AR screen 🗸 🗸 ✘
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# Author Titel Domain
Experimental 

setting
Classical 

instruction
Assistance 
Technology

20 Uva
Evaluating the effectiveness of spatial AR 
in smart manufacturing: a solution for 
manual working stations

Assembly
Real product/ 

setting
Paper AR screen 🗸 🗸 ✘

21 Wang
Usability evaluation of an instructional 
application based on Google Glass for 
mobile phone disassembly tasks

Assembly
Real product/ 

setting
Paper HMD 🗸 🗸 ✘

22 Werrlich
Comparing HMD-based and Paper-based 
Training

Assembly
Real product/ 

setting
Paper HMD 🗸 🗸 🗸

23 Yamaguchi
Video-Annotated Augmented Reality 
Assembly Tutorials

Assembly
Real product/ 

setting
Video 

Instruction
AR screen 🗸 🗸 🗸

24 Yang
Comparing the Effects of Paper and 
Mobile Augmented Reality Instructions to 
Guide Assembly Tasks

Assembly Lego Paper AR screen 🗸 🗸 🗸

🗸 Included    ✘ Not included         Time         Error rate Cognitive load

5.2.4 Analysis and Interpretation of the Data

The studies classified previously form the basis for the analysis and interpretation of the data
in this section. For this purpose, the statistically independent effect sizes, summarised in Table
B.2, are used. First, the effect sizes are tested for outliers using Grubbs’ test [Grubbs, 1969].
Then, this section presents the results from three independent meta-analyses, each focusing on
one of the evaluation criteria.

Section 5.1.3 introduces three models for synthesizing the data, namely the equal effect model,
the fixed effect model, and the random effect model. The equal effect model does not apply to
the remaining data set as the statistical parameters of interest are not the same for every study.
Furthermore, clinical and statistical homogeneity cannot be assumed as the studies differ as
shown in the classification. Thus, the fixed effect model is not suitable for the analysis of the
data. However, the true effect sizes of the selected data differ from each other, so the random
effect model is used in this case. Section 5.2.5 performs tests for statistical heterogeneity to
check the dispersion of effect sizes.

The meta-analyses are carried out with the software CMA, one of the most widely used software
for meta-analyses. The program allows running a wide range of calculations while being easy
to use.

Grubbs’ test for outliers

This section first assesses the distribution of the effect sizes of the remaining studies. Follow-
ing Hedges and Olkin [1982, p. 25], outliers can be identified in this way already before the
meta-analyses. Above all, a disproportionate influence due to extreme effect size values can
be avoided. Grubbs’ test helps to identify such outliers for the individual evaluation criteria
[Grubbs, 1969].

Following Grubbs’ test, the identified relevant studies include two outliers for the evaluation
criterion ’errors’. The papers by Büttner et al. [2016] and Sanna et al. [2015] significantly exceed
the critical T value provided by Grubbs and Beck [1972]. Nevertheless, both extreme effect size
values are not excluded from the meta-analyses. First, the sample sizes are relatively small
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compared to the overall number of test persons and do not have a significant impact on the ef-
fect sizes [Aguinis et al., 2013, p. 275]. Second, according to Doucouliagos and Stanley [2009, p.
425] and Viechtbauer and Cheung [2010, p. 116], it is unnecessary to exclude potential outliers
as the meta-regression is remarkably resilient to high effect sizes. The evaluation criteria ’time’
and ’cognitive load’ do not include any outliers following Grubbs’ test.

Table 5.2 highlights the maximum test statistics for the evaluation criteria in comparison to
the critical T values. Additionally, Figure C.1 and Figure C.2 show the individual calculations
for the corresponding evaluation criteria in more detail and Grubbs’ test statistic is shortly
explained in Appendix C.1.

Table 5.2: Overview Grubbs’ test for outliers in final paper set

Time Errors Cognitive load

1st run max G 2.029 2.750 1.789

critical T * 2.758 2.708 2.412

2nd run max G - 2.773 -

critical T * - 2.680 -

3rd run max G - 2.642 -

critical T * - 2.652 -

* 5% significance level (two-sided)

Analysis and interpretation

As described previously, all three evaluation criteria are analysed separately using CMA. One
of the advantages of CMA is that the software can process studies with different statistical input
data. For this reason, in addition to the number of participants and the mean, the standard
deviation does not necessarily have to be given, but alternatively the associated p-value.

For each of the three analysis, CMA calculates the effect size, the standard error, the lower and
upper limit, the Z-value, and the corresponding p-value. In the following, these statistical
results are briefly described.

Effect size. The effect size refers to the magnitude of the difference between an experimental
group and a control group. The following analysis make use of Hedges’ g to express the effect
sizes of the individual studies. Compared to the widely used d by Cohen [2013] and the stan-
dard mean difference, Hedges’ g reduces biases due to small sample sizes (≤ 20) as is the case
for some of the studies [Hedges and Olkin, 1982]. Furthermore, all studies included describe
randomized experiments that measure differences between traditional and digitally assisted
instructions. Hedges’ g is particularly applicable for this case.

Hedges’ g indicates the ratio of the difference in means over the pooled and weighted standard
deviation:

g =
x1 − x2

s∗pooled
, (5.1)
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where

s∗pooled =

√
(n1 − 1)× s2

1 + (n2 − 1)× s2
2

n1 + n2 − 2
. (5.2)

According to Cohen [2013, p. 40], magnitudes of g represent the following effects:

• Small effect: g = 0.20 to 0.50

• Medium effect: g = 0.50 to 0.80

• Large effect: g = 0.80 and larger.

If g equals zero, both the classical instructions and the AR assisted instructions are assumed to
have equivalent effects. In contrast, a positive value of g indicates beneficial influence of AR,
and vice versa.

Standard error. Following Higgins et al. [2019, p. 144], the true effects of measures can never
be calculated with absolute certainty. Thus, this meta-analyses make use of the standard errors
to express the fuzziness of the values. The standard error depends on two factors in particular,
namely the sample size and the variance in the population. The standard error decreases as a
result of larger sample sizes or smaller variances.

Lower and upper limit. The confidence interval describes a statistical interval which indicates
the precision of the position estimate of a parameter [Sekaran and Bougie, 2016, p. 21]. For a
95% confidence interval, this means that when a study is repeated multiple times in an identical
manner, 95% of the results fall between the lower and the upper limit. Heterogeneity can be
expected if the confidence intervals of comparable studies do not overlap. In contrast, effect
sizes may not be statistically significant if the effect sizes have overlapping confidence intervals.
Both indications for heterogeneity and non-significance can be derived visually from a forest
plot.

Z-value and p-value. The null hypothesis of a meta-analysis is that the effect size is zero [Jesson
et al., 2011, p. 137]. Consequently, no difference between two test groups is expected. The Z-
value and the p-value are used to reject this null hypothesis.

The Z-value is an indicator for the significance of the weighted average effect sizes. It is a
random variable whose expected value is 0 and whose variance is 1. At the same time, the p-
value is an indicator for the probability that the null hypothesis was falsely rejected. Depending
on the significance level, the null hypothesis is rejected if the p-value is less or equal to it. Both
the effect size and the standard error have a major effect on the calculation of p and Z. In this
meta-analysis, the hypothesis is tested for a confidence interval of 95% (two-tailed). Following,
the critical Z-values are -1.96 and +1.96.

Figure 5.18 displays the critical values of Z and p and the joint influence on the null hypothe-
sis.
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Z < -1.96 Z > +1.96∧

p ≤ 0.05

∧
Null hypothesis rejected

→ Effect size ≠ 0

Z < -1.96 Z > +1.96∧

p ≥ 0.05

∧
Null hypothesis accepted

→ Effect size = 0

-1.96 < Z < +1.96

p ≤ 0.05         p ≥ 0.05

∧
Null hypothesis accepted

→ Effect size = 0∧

Figure 5.18: Influence Z- and p-values on null hypothesis [Sekaran and Bougie, 2016, p. 382]

Results evaluation criterion ’time’

As described previously, 22 studies are included for the analysis of the evaluation criterion
’time’. The effect sizes of the studies differ in part and reveal both negative and positive effects
of AR instructions. Thus, a purely visual evaluation of the effect sizes with the help of the forest
plot in Figure 5.19 is not very meaningful.

Nonetheless, the results of the meta-analyses indicate a small effect (Hedges’ g = 0.280) for
the evaluation criterion ’time’. The confidence interval of this evaluation criterion is 0.036 to
0.523. The effect size would fall within this range with a probability of 95% if a study would be
repeated. The confidence interval does not include zero, which is why a significant difference
between the classical and the AR assisted instructions can be assumed. Inline, Z exceeds the
critical limit of +1.96 with a value of +2.251. The corresponding p-value amounts to 0.024.
Following Figure 5.18, the null hypothesis can be rejected, and a positive but small effect of AR
assisted instructions can be assumed.

Figure C.3 displays a screenshot of the results in CMA. Furthermore, Figure C.4 indicates that
the overall effect sizes with one excluded study do not vary strongly, which is in line with the
results of Grubbs’ test for outliers. The recalculation of the total effect size excluding the study
mentioned in the row can be considered a first sensitivity analysis.

Results evaluation criterion ’errors’

For assessing the evaluation criterion ’errors’, data from 20 studies in total could be included.
Except for two, all studies have a constant effect size greater than zero (see Figure 5.20). Con-
sequently, the effect of using AR assisted instructions can be expected to be positive. The two
studies with a negative effect are the previously identified outliers. According to Büttner et al.
[2016] and Sanna et al. [2015], the increased error rates in their experiments are a result of
technical challenges in dealing with such new technologies.

The initial visual analysis can be strengthened with the statistical results from CMA. Following
Cohen [2013, p. 40], the results demonstrate a medium and positive overall effect of AR assisted
instructions on the evaluation criterion ’errors’ (g = 0.583). The confidence interval is 0.302
to 0.864, indicating that the effect size would fall within this range with a 95% probability
if a study were repeated. Again, a significant difference between classical and AR supported
instructions can be assumed as the interval does not include zero. At the same time, the Z-value
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amounts to 4.070, and the corresponding p-value is < 0.001. Consequently, the null hypothesis,
which states that the effect size is zero, can be rejected.

Figure C.5 and Figure C.6 both show a screenshot of the results in CMA. The latter indicates
that removing either the study by Büttner et al. [2016] or by Sanna et al. [2015] does not have
a significant effect on the overall effect size. The effect size would still be medium even if both
studies were removed.

Results evaluation criterion ’cognitive load’

The third meta-analysis aims to assess the influence of AR solutions on the perceived cognitive
load of operators during manufacturing activities. Twelve studies are included to determine
the overall effect size. As shown in the forest plot in Figure 5.21, the majority of studies reveal
a positive influence on cognitive load levels.

Likewise, the calculations in CMA show a small to moderate effect of AR on cognitive load levels
of individuals within manufacturing environments. The effect size is 0.325 (standard error of
0.159) and the 95% confidence interval is 0.012 to 0.638. The Z-value of 2.034 is somewhat
higher than the critical value of +1.96. In addition, significance is given as a result of p at a
level of 0.042. This suggests that AR assisted instructions can potentially decrease cognitive
load levels of operators. Users perceived their activities to be significantly less demanding due
to the use of AR.

Figure C.7 illustrates the results of the meta-analysis in CMA. The overall effect sizes vary
between 0.231 and 0.396 after removing individual studies from the meta-analysis (see Figure
C.8). Thus, the data seems to be consistent.

Effect size: 0.280

-2 -1 0 1 2

Figure 5.19: Forest plot for
’time’

-3 -2 -1 0 1 2 3

Effect size: 0.583

Figure 5.20: Forest plot for
’errors’

-2 -1 0 1 2

Effect size: 0.325

Figure 5.21: Forest plot for
’cognitive load’
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Table 5.3 summarises the results of the three meta-analyses. In addition to the effect size, all
the values described can be taken from this table. The next section determines the adequacy of
the mean effect sizes by analysing heterogeneity and publication bias. Additionally, the impact
of moderator variables on the calculated effect sizes is investigated in Chapter 6.

Table 5.3: Statistics meta-analysis

Time Errors Cognitive load    I

Hedges‘ g

(≙ effect size)
0.280 0.583 0.325

Standard error 0.124 0.143 0.159

Lower limit, upper limit 0.036, 0.523 0.302, 0.864 0.012, 0.638

Z - value 2.251 4.070 2.037

p - value 0.024 0.000 0.042

5.2.5 Performance Sensitivity Analysis

The sensitivity analysis is composed of two independent analysis. First, the individual stud-
ies are checked for statistical heterogeneity to interpret the results of the meta-analyses more
objectively. Heterogeneity of the effect sizes refers to differences between individual studies
[Higgins et al., 2019, p. 259] and is, in this case, assessed using four different indicators. As a
result, the comparability of the individual studies included is evaluated.

In the second part, the meta-analyses are examined for publication bias. As described in Sec-
tion 5.1.5, publication bias refers to the statistically biased presentation of data in science. The
underlying reason for this often lies in the preferential publication of positive and significant
results. Consequently, the results of a meta-analysis can be distorted.

Heterogeneity

As indicated, heterogeneity describes differences between studies caused by varying measure-
ment methods, populations, and other external influences. Except in perfectly equal experi-
mental settings, heterogeneity always exists. Thus, researchers focus on measuring the impact
of heterogeneity on meta-analyses rather than assessing the existence. In general, high levels
of heterogeneity between studies can limit the trustworthiness of the overall results [Cochran,
1950].

This thesis carries out a formal assessment of heterogeneity using four different indicators.
As a result, the extent to which random variability is responsible for the differences in effect
sizes is clarified. In particular, the forest plots provide a graphical indication, and Cochran’s Q
[Higgins et al., 2019, p. 280], τ2 by DerSimonian and Laird [1986, p. 180], and I2 by Higgins
et al. [2019, p. 277] allow a quantification.
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Forest plots. The forest plots shown in Figure 5.19, 5.20, and 5.21 can provide a first indication
for heterogeneity [Fletcher, 2007, p. 95]. Specifically, the focus lies on the positions of the effect
sizes and on the width and the overlap of the confidence intervals. Graphical indication of
inconsistent effect estimates between individual studies is present if the confidence intervals
differ noticeably from each other [Fletcher, 2007, p. 95]. In contrast, homogeneity is present if
the 95% confidence intervals overlap for most of the studies.

The three forest plots for the evaluation criteria ’time’, ’errors’, and ’cognitive load’ show vary-
ing effect sizes and confidence intervals. Likewise, the confidence intervals of the total effect
sizes do not cover the range of the studies included. Thus, heterogeneity can be expected based
on the findings from the initial graphical analysis.

Cochran’s Q. The literature identifies Cochran’s Q as a widely used measure for heterogeneity
in meta-analyses [Hardy and Thompson, 1998]. Q refers to the weighted sum of squared dif-
ferences between each study’s results and the overall effect size [Higgins et al., 2003, p. 557].
The weights are equivalent to those used in the meta-analyses. Q is distributed as a chi-square
statistic with k-1 degrees of freedom [Higgins et al., 2019, p. 280]. In this case, the null hypoth-
esis assumes homogeneity of all studies. A sufficiently small p-value provides insights in the
presence of heterogeneity, but not into the present level of it.

It is important to keep in mind that the test results strongly depend on the number of studies
included in the meta-analysis. The relevance is reduced as soon as the number of studies is
rather small [Gavaghan et al., 2000, p. 421]. For this reason, the relevance of our analyses must
also be critically examined.

Cochran’s Q is calculated as shown in the following equation:

Q = ∑ ωi(ESi − ES)2 (5.3)

The Q-values for all three evaluation criteria exceed the critical chi-square values with p <
0.001. Consequently, statistically significant heterogeneity is assumed for each evaluation cri-
terion. As indicated, the extent of heterogeneity cannot be assessed. Additionally, the relevance
of Q must be evaluated with caution, given the respective number of studies. Especially for the
evaluation criterion ’cognitive load’, the number of studies (12) is very low. Table 5.4 provides
the exact values of Q.

τ2 by DerSimonian and Laird. τ2 by DerSimonian and Laird [1986, p. 180] is often used
as another measure for true heterogeneity in meta-analyses. The measure τ2 calculates the
between-studies variance and can directly be calculated from Cochran’s Q:

τ2 =

{Q−d f
C if Q > d f
0 if Q ≤ d f

(5.4)

where C is a scaling factor and is computed as

C = ∑ wi −
∑ w2

i

∑ wi
. (5.5)
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Following Huedo-Medina et al. [2006, p. 5], between-studies variance refers to a quantification
of the difference between the true population effect sizes in the individual studies. τ2 can be
seen as a first indicator of the level of heterogeneity. However, comparability between meta-
analyses that make use of different input formats is not possible [Huedo-Medina et al., 2006, p.
5].

The τ2 values for all three evaluation criteria indicate true heterogeneity between the studies
included. As all three meta-analyses use different input formats, the significance needs to be
handled with care.

I2 by Higgins. I2 by Higgins et al. [2019, p. 277] is the most widely used measure to quantify
the extent of heterogeneity. I2 expresses the total variance in a meta-analysis and takes into
consideration two components, namely random variation and systematic differences between
studies [Borenstein et al., 2009]. In comparison to Cochran’s Q, I2 does not depend upon the
number of studies considered as can be seen in the calculation using Cochran’s Q:

I2 =
Q− d f

Q
× 100% (5.6)

I2 is normalised to a range of values between 0 and 100 %. Following [Higgins et al., 2019, p.
259], the different levels of I2 can be interpreted as follows:

• 0% to 40%: might not be important

• 30% to 60%: may represent moderate heterogeneity

• 50% to 90%: may represent substantial heterogeneity

• 75% to 100%: considerable heterogeneity

In the case of high values of I2, conducting a meta-regression is worthwhile Higgins et al. [2019,
p. 258]. The aim is to identify moderating variables that explain the heterogeneity, as described
in more detail in Chapter 6.

In the case of the described meta-analyses, I2 ranges between 69.352 and 75.166%. Hence,
all three meta-analyses may represent substantial heterogeneity, indicating that almost three-
fourths of the observed effects’ total variability was caused by true heterogeneity between the
studies. Furthermore, it is worthwhile to conduct a meta-regression. The extent of heterogene-
ity supports the random effects model.

Summing up, the results of the visual analysis, the Q-values, τ2, and I2 indicate that hetero-
geneity is present in each of the three meta-analyses. As presented previously, the different
values of I2 show that the meta-analyses may represent substantial heterogeneity. The het-
erogeneity is caused by variance between the studies. Although trust in the evidence of the
results is thus reduced, heterogeneity is always present Higgins et al. [2019, p. 259]. Following
the heterogeneous effect sizes, it is worthwhile examining various descriptive variables that
act as possible moderators (see Chapter 6). One must keep in mind the low number of studies
included, especially for the evaluation criterion ’cognitive load’. The results are presented in
Table 5.4.
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Table 5.4: Heterogeneity statistics for each evaluation criteria (p < 0.001 for Q)

Time Errors Cognitive load    I

Point estimate 

[95% CI]
0.280 

[0.036, 0.523]
0.583 

[0.302, 0.864]
0.325 

[0.012, 0.638]

Q 

[df]
68.521 
[21]

76.509 
[19]

38.425 
[11]

𝜏 ² 0.224 0.294 0.210

I ² 69.352 75.166 71.373

Publication bias

Next, this section analyses the publication bias described in Section 5.1.5. As suggested by
Jesson et al. [2011, p. 142], both a visual assessment of the funnel plot and the trim-and-fill
method are examined for each meta-analysis. Asymmetry is also evaluated using the regres-
sion test by Egger et al. [1997, p. 629] to eliminate possible subjectivity. The tests are performed
using CMA.

Time. First, this section analyses the funnel plot of the evaluation criterion ’time’ shown in
Figure 5.22. Looking at the distribution of the studies, the funnel plot appears to be symmetric
around the effect size. Nevertheless, 8 out of 22 studies are located outside the 95% confidence
interval. Following, publication bias cannot be entirely dismissed and needs to be evaluated
using additional methods.
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Figure 5.22: Funnel plot for ’time’ (random
effects model)
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Figure 5.23: Trim-and-fill for ’time’ (ran-
dom effects model)

The trim-and-fill method refutes the results gained from the funnel plot. As can be seen in
Figure 5.23, no corrected effect size is calculated in the case of the evaluation criterion ’time’.
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Additionally, Table C.1 shows the results of the trim-and-fill method indicating that there is no
need for studies to be trimmed. Consequently, publication bias can be neglected in this case
[Duval and Tweedie, 2000, p. 127].

Lastly, publication bias is examined with Egger’s regression test. Publication bias is assumed
to be present if the intercept is different from zero [Egger et al., 1997, p. 629]. In the case of
the evaluation criterion ’time’, the intercept is 1.22 (see Table C.2). Thus, it is assumed that
publication bias is present. However, the p-value amounts to 0.21 (1-tailed) leading to the
assumption that the bias is not significant [Egger et al., 1997, p. 629].

Errors. As can be seen in the funnel plot in Figure 5.24, only three studies are located outside
the 95% confidence limit for the evaluation criterion ’errors’. Two of which are the previously
identified outliers that are included in the meta-analyses [Duval and Tweedie, 2000, p. 128]. At
the same time, the studies in the funnel plot seem to be slightly distorted to the right, which is
why publication bias cannot be refused.

This initial evaluation is strengthened by the trim-and-fill method. Figure 5.25 and Table C.1
indicate that there is a need for five studies to be trimmed. Following, publication bias is
assumed to be present. Although Figure 5.25 displays an adjusted true effect size, the trim-
and-fill method is rather useful to detect publication bias, but not to reliably correct it [Peters
et al., 2007, p. 4548].

In contrast, Egger’s regression test reports an intercept of -0.64 and a p-value of 0.36 (1-tailed)
(see Table C.2). Again, publication bias is assumed to be present. However, the bias is consid-
ered to not be significant for the evaluation criterion ’errors’.

Summing up, the three methods show that publication bias can be assumed. Nevertheless,
Egger’s regression test additionally indicates that it is not significant and can be neglected
[Egger et al., 1997, p. 629]. Furthermore, the asymmetry of the funnel plot might not be caused
by publication bias, but by the heterogeneity at hand.
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Figure 5.24: Funnel plot for ’errors’ (ran-
dom effects model)
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Figure 5.25: Trim-and-fill for ’errors’ (ran-
dom effects model)

Cognitive load. Lastly, publication bias is evaluated for the evaluation criterion ’cognitive
load’. The funnel plot in Figure 5.26 illustrates a symmetric distribution of the studies but four
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studies are outside the 95% confidence interval. This is a first indication for the presence of
publication bias.

The trim-and-fill method in Figure 5.27, however, does not identify any studies with too much
effect. Furthermore, no studies need to be trimmed as shown in Table C.1. Consequently,
publication bias is considered rather unlikely based on the trim-and-fill method.

Egger’s regression test is carried out next. The intercept calculated in CMA amounts to 3.88 and
the corresponding one-sided p-value is 0.03. Thus, the intercept deviates significantly from
zero and publication bias can be suspected. The power of this method, however, is low with
small numbers of studies as in this case [Peters et al., 2006, p. 678]. Detailed results of Egger’s
regression test can be found in Table C.2.
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Figure 5.26: Funnel plot for ’cognitive
load’ (random effects model)
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Figure 5.27: Trim-and-fill for ’cognitive
load’ (random effects model)

In total, different results have emerged in the analysis of publication bias using the funnel plot,
the trim-and-fill method, and Egger’s regression test for asymmetry. In particular, publication
bias is negligible for the evaluation criterion ’time’. In the case of ’errors’, the trim-and-fill
method indicates publication bias. In contrast, Egger’s regression test states that publication
bias is negligible. The asymmetry shown by the trim-and-fill method could again be caused
by heterogeneity or the outliers included. For ’cognitive load’, in contrast to the trim-and-fill
method, Egger’s regression test indicates publication bias. However, Egger et al. [1997] state
that the significance of small study sets must be evaluated in a differentiated way. In general,
asymmetry can also be caused by heterogeneity between studies or even randomness [Sterne
et al., 2011, p. 2f.].

5.3 Summary Meta-Analysis

Lastly, this section shortly summarises the results of the meta-analyses. As indicated in Sec-
tion 5.1.3, the described meta-analyses follow six sequential phases in which the influence of
AR solutions on three different evaluation criteria is assessed. The collection and evaluation of
data are initialised following the taxonomy by Cooper [1988] and the STARLITE approach by
Booth [2006]. Based on 18 keyword combinations, a total of 3,218 potentially relevant studies
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are identified in seven different databases. These are evaluated using an evaluation scheme by
Vom Brocke et al. [2009]. In total, the systematic literature review results in 24 studies, of which
22 studies include ’time’, 20 include ’errors’, and 14 include ’cognitive load’ as evaluation cri-
teria.

The meta-analyses conducted based on the literature reviewed indicate that AR solutions in-
deed have a positive influence on the different evaluation criteria. In particular, AR solutions
have a small effect on processing time, a medium impact on error rates, and a small to medium
effect on cognitive load during manufacturing activities. In all three meta-analyses, the Z-value
is outside the critical limits of -1.96 and +1.96, and the p-value is less than 0.05. Consequently,
the null hypothesis, stating that the effect size is zero, is rejected for all three evaluation crite-
ria.

Considering the results of the heterogeneity analysis and the analysis for publication bias, the
sensitivity analysis generally confirms the previously analysed results. Nevertheless, the ex-
amination for heterogeneity identifies substantial heterogeneity for all three evaluation criteria.
As a consequence, trust in the evidence of the results is reduced. Based on these results, the
next step is to identify moderator variables (see Chapter 6).

As described earlier, the impact of publication bias on meta-analyses is one of the key weak-
nesses. In the case of the meta-analyses carried out, Section 5.2.5 shows that there is no evi-
dence for publication bias for the evaluation criterion ’time’. For ’errors’ and ’cognitive load’
publication bias can not be completely neglected. For both evaluation criteria, publication bias
is identified either by the trim-and-fill method or Egger’s regression test. The impact of publi-
cation bias can hardly be measured.

Table 5.5 presents an overview of the results for the respective evaluation criteria.

Table 5.5: Summary meta-analysis

Time Errors Cognitive load    I

Effect of AR
Small reducing effect

(0.280)

Medium reducing 
effect (0.583)

Small-medium
reducing effect (0.325)

Null hypothesis 

(effect size = 0)
Rejected Rejected Rejected

Heterogeneity 

(I ²)

May represent sub-
stantial heterogeneity 

(69.521)

May represent sub-
stantial heterogeneity 

(75.166)

May represent sub-
stantial heterogeneity 

(71.373)

Variance between 

studies (𝜏 ²)
Present
(0.224)

Present
(0.294)

Present
(0.210)

Publication Bias: 

Trim-and-Fill method
Negligible Present Negligible

Publication Bias: 

Egger‘s Regressions Test
Negligible Negligible Present

52



6 Meta-Regression

As indicated previously, all three meta-analyses may represent considerable heterogeneity. For
this reason, this chapter carries out multiple meta-regressions to be able to describe the existing
heterogeneity. First, Section 6.1 provides a definition of meta-regressions. Second, Section 6.2
presents the results of the meta-regressions conducted for each of the evaluation criteria. Lastly,
Section 6.3 summarises this chapter.

6.1 Definition Meta-Regression

Meta-regression is a widely used tool to study the relationships between covariates and effect
sizes [Huizenga et al., 2011]. This method builds on meta-analytical techniques and linear re-
gression principles to address heterogeneity between studies [Sutton and Higgins, 2008]. The
aim is to predict the effect size more accurately according to the values of one or more moder-
ator variables.

As previously presented for the meta-analysis, the meta-regression also distinguishes between
three types of models, namely simple regression, fixed effect mega-regression, and random
effects meta-regression. The meta-regressions conducted in the next section make use of the
random effects regression as a distribution of true effects can be assumed. The model is speci-
fied as

yj = β0 + β1x1j + β2x2j + ... + η + εj. (6.1)

In this regression equation yj refers to the effect size in study j, β0 to the estimated overall effect
size, variables xi (i = 1, ..., k) to different characteristics of the study, η to the variance in studies,
and εj to the between study variation.

One of the advantages of a meta-regression is the possibility of evaluating one or more moder-
ating variables simultaneously. Linear associations between variables and effect sizes and their
direction can, hence, be identified easily [Huizenga et al., 2011]. A prerequisite for this, how-
ever, is that enough studies are included. Small sample sizes can furthermore lead to bias in
a meta-regression. In general, the findings from a meta-regression ’are considered hypothesis-
generating’ [Baker et al., 2009, p. 1427], but can not be seen as proof of causality.

The meta-regressions for all three evaluation criteria make use of the following five variables
available in CMA: p, Q [df], τ2

initial , τ2
moderator, and R2. In this case, p presents the statistical

significance of the results, Q [df] the chi-square statistics including the degrees of freedom,
τ2

initial and τ2
moderator the total amount of variance unexplained, and R2 the amount of variance

that can be explained by moderating variables.
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In this case, R2 is of utmost interest as it represents the degree to which a moderator variable can
effectively predict a personality trait at a significant level (p < 0.1). R2 refers to the proportion
of total unexplained variance that can be explained by the moderator. It is specified as

R2 =
(τ2

initial − τ2
moderator)

τ2
initial

(6.2)

6.2 Execution Meta-Regression

This section describes the meta-regressions conducted as a result of the presence of heterogene-
ity. The key parameters described previously are analysed for a total of nine possible moder-
ator variables. A distinction is made between the defined evaluation criteria acting as mutual
moderating variables and additional variables related to the characteristics of the underlying
studies.

First, this section investigates the evaluation criteria ’time’, ’errors’, and ’cognitive load’ as
mutual covariates. Prior to the analysis in CMA, a possible influence of the variables on each
other is described below based on different literature.

• Time: Following Saptari et al. [2015] and Yang et al. [2010], processing times can have a
significant impact on error rates and cognitive load levels of individuals. In particular,
Saptari et al. [2015, p. 1201] show that time has a significant effect on errors caused by
operators. Especially time pressure increases the error rates significantly, but decreases
are possible due to ’unlimited’ time. Simultaneously, time may moderate cognitive load
levels as they are strongly influenced by it [Yang et al., 2010]. More specifically, time
pressure can cause cognitive overload, and underload can occur if processes are very
slow [Saptari et al., 2015, p. 1201]. Finally, the experimental setting and supervisors in
a real-life environment may also influence ’time’ as a covariate. Given these points, the
evaluation criterion ’time’ may have a moderating effect for ’errors’ and ’cognitive load’,
and the effect is worth investigating.

• Errors: Many companies are currently striving for lean production to increase production
efficiencies. In this context, it is particularly important to minimise errors since every
error involves a time-intensive correction [Abbassinia et al., 2020]. Thus, the number
and severity of mistakes an individual makes can impact processing times, and the effect
is worth investigating. Simultaneously, errors made by individuals can influence their
cognitive load levels. As a result of an error, an operator’s confidence can be negatively
affected, which in turn can lead to increased mental stress [Wu et al., 2019]. Errors can
also be caused by technological errors, which can also influence processing times and
cognitive load levels. Given the underlying studies, the meta-regressions can help better
understand whether ’errors’ drive the measures of effect sizes for both evaluation criteria.

• Cognitive load: The evaluation criterion ’cognitive load’ could moderate the variance be-
tween studies addressing the evaluation criteria ’time’ and ’errors’. Lindblom and Thor-
vald [2014]; Abbas et al. [2020]; Lyell et al. [2018] indicate that cognitive load levels have
a direct impact on the performance and error rates of workers in manufacturing envi-
ronments. In this context, the cognitive load level depends strongly on the availability
of information [Lindblom and Thorvald, 2014]. A lack of information can lead to under-
load, whereas too much information can cause overload, both preventing the operators
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from performing at their maximum level (see Figure 6.1). Likewise, Kock [2005, p. 122]
indicates that the level of cognitive effort used correlates the evaluation criterion ’time’.

In total, six separate meta-regressions help to identify possible interrelationships between the
evaluation criteria. The results of the meta-regressions show that only ’cognitive load’ mod-
erates ’time’ to a certain extent (see Table 6.1). With p = 0.0559, 24% of the total variance is
explained by the cognitive load levels. Figure 6.2 displays the linear relationship between the
evaluation criteria ’cognitive load’ and ’time’. As can be seen, reduced cognitive load levels
resulting from the use of AR solutions lead to reduced processing times and vice versa. In this
way, the meta-regression reflects the declining course of the grey curve in Figure 6.1 (overload),
in which performance is maximised with decreasing cognitive load. The results of Abbas et al.
[2020]; Lyell et al. [2018]; Lindblom and Thorvald [2014] can thus partly be transferred to the
influence of cognitive load on time as a result of AR applications. Underload is not visible
graphically for this meta-regression. None of the other regressions can provide any informa-
tion on the origin of heterogeneity (see Table 6.1).
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Table 6.1: Regression statistics evaluation criteria

Moderator 
variable

n Q [df] p 𝜏 𝒊𝒏𝒊𝒕𝒊𝒂𝒍
𝟐 𝜏 𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒐𝒓

𝟐
R²

Time
Errors 18 0.24 [1] 0.6213 0.265 0.274 0.00

Cognitive load 12 3.66 [1] 0.0559 0.193 0.147 0.24

Errors
Time 18 0.23 [1] 0.6340 0.327 0.352 0.00

Cognitive load 8 0.17 [1] 0.6759 0.253 0.320 0.00

Cognitive load
Time 9 0.24 [1] 0.6273 0.149 0.178 0.00

Errors 8 0.15 [1] 0.7019 0.292 0.357 0.00
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In addition to the moderator variables analysed previously, six further potential variables are
identified. The variables are related to the characteristics of the individual studies and include
average age, country, year, experimental setting, domain, and assistance technology. Each of
the variables are chosen because they could have a plausible impact on the effect sizes and are
available for most of the studies. In the following, the potential impact for each of the variables
is described in more detail:

• Average age: Franke et al. [2019, p. 463] and Wessel et al. [2020, p. 385] show that the
affinity for technological interaction decreases with increasing age. The same could apply
to the usage of AR applications as an emerging technology. Average age as a moderator
variable could thus reveal an influence on the effect sizes for each of the evaluation crite-
ria.

• Country: The media company The Economist publishes a Technological Readiness Ranking
at regular intervals. The ranking covers 82 of the largest economies and assesses the
economic and political developments that shape technological environments. The better
prepared a country is for technological disruptions, the greater the effect sizes for the
usage of AR applications could be in that specific environment.

• Year: As mentioned earlier, Mizell [2020] has first introduced the term AR in 1992. Since
then, technology has continued to develop, and, especially in recent years, attention has
increased significantly. Thus, it is worthwhile investigating the influence of the year on
the effect sizes.

• Experimental setting: As assumed in the meta-analyses, the different experimental set-
tings are comparable with each other. However, heterogeneity between the studies can
still be caused by the different experimental settings. For example, participants in Lego
experiments could be less distracted in comparison to participants in real life settings.

• Domain: As pointed out by Kohn and Harborth [2018, p. 11], the research focus differs
between scientists and companies. While scientists tend to focus on the potential of AR
in assembly, businesses tend to see more potential in the area of maintenance. The meta-
regression is not intended to prove either point of view, but the domain may have an
influence on the effect size.

• Assistance Technology: Unlike HMDs, tablets have been established in the market for
some time. For this reason, it is worthwhile to determine whether the respective assis-
tance technologies moderate the effect sizes of the studies.

The meta-regressions show that only two of the included variables significantly moderate (p
< 0.01) the effect sizes of two evaluation criteria (see Table 6.2). In the first place, the country
moderates the effect sizes of the evaluation criteria ’time’. The results of the meta-regression
show that 67% of the variance between studies can be explained by this covariate. In the same
way, the publication year moderates the evaluation criterion ’errors’. As displayed in Table 6.2,
78% of the total variance between studies can be explained by the year as a moderating vari-
able. However, in both cases no meaningful explanation on the impact of individual countries
and years can be given as highlighted in more detail in Appendix D.
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Table 6.2: Regression statistics study characteristics

Moderator 
variable

n Q [df] p 𝜏 𝒊𝒏𝒊𝒕𝒊𝒂𝒍
𝟐 𝜏 𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒐𝒓

𝟐
R²

Time

Average age 17 1.24 [1] 0.2649 0.205 0.195 0.05

Country 22 26.88 [9] 0.0015 0.225 0.074 0.67

Year 22 4.41 [6] 0.6209 0.225 0.252 0.00

Experimental 
setting

22 0.38 [2] 0.8288 0.225 0.249 0.00

Domain 22 0.67 [2] 0.7169 0.225 0.245 0.00

Assistance 
Technology

22 1.49 [1] 0.2227 0.225 0.236 0.00

Errors

Average age 14 0.90 [1] 0.3436 0.254 0.239 0.06

Country 20 0.94 [9] 0.9996 0.295 0.741 0.00

Year 20 38.76 [6] 0.0000 0.295 0.066 0.78

Experimental 
setting

20 2.69 [2] 0.2604 0.295 0.322 0.00

Domain 20 2.12 [2] 0.3461 0.295 0.302 0.00

Assistance 
Technology

20 0.12 [1] 0.7255 0.295 0.322 0.00

Cognitive load

Average age 9 0.58 [1] 0.4444 0.237 0.250 0.00

Country 12 5.08 [6] 0.5335 0.210 0.206 0.02

Year 12 8.36 [5] 0.1376 0.210 0.128 0.39

Experimental 
setting

12 0.92 [2] 0.6310 0.210 0.215 0.00

Domain 12 0.50 [2] 0.7782 0.210 0.244 0.00

Assistance 
Technology

12 0.18 [1] 0.6721 0.210 0.225 0.00

6.3 Summary Meta-Regression

To summarise, the described meta-regressions determine three covariates that moderate the
effect sizes of the studies. These include cognitive load and country as significant moderator
variables of the evaluation criterion ’time’, and the publication year as a moderator variable
of ’errors’. Table 6.3 highlights the results of the meta-regressions and especially focuses on
statistically significant results of R2. The results of the meta-regression covering the influence of
cognitive load on time are in line with studies from other research fields. This meta-regression
supports previous research findings, and a statement based on the available data can now also
be made for AR applications. Given the statistics of the meta-regressions, heterogeneity of the
evaluation criteria can only partly be explained. Especially, an explanation for the evaluation
criterion ’cognitive load’ is not possible based on the available data.

Additional data, such as the affinity for technological interaction and prior experience, were not
reported in either of the chosen studies. This is a field of research and important to investigate
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in future work. Affinity for technological interaction, in particular, is also of great importance
in the introduction in the company context to not trigger any further excessive demands on the
employees.

Table 6.3: R2 values of statistically significant moderator variables for p < 0.1

Time Errors Cognitive load    I

Time (Hedges g) - - -

Errors (Hedges g) - - -

Cognitive load (Hedges g) 0.24 (p < 0.1) - -

Average age - - -

Country 0.67 (p < 0.01) - -

Year - 0.78 (p < 0.001) -

Experimental setting - - -

Domain - - -

Assistance Technology - - -
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The results of the meta-analyses show that AR applications indeed have great potential to re-
duce processing times, error rates, and cognitive load levels of workers in manufacturing en-
vironments. However, industrial companies are partly hesitant to use such technological solu-
tions, and disruption has not yet occurred. To validate the findings from the meta-analyses and
the meta-regressions and to obtain further practical knowledge on AR solutions in manufactur-
ing environments, this research project conducts an empirical exploration in the form of expert
surveys. Section 7.1 describes the methodological approach of the empirical exploration. Then,
a Delphi survey is conducted in Section 7.2. Lastly, Section 7.3 provides a short summary of
this chapter.

7.1 Methodological Approach Empirical Exploration

As indicated, this research project aims to validate the findings from the previous analyses
and gain additional practical knowledge. For this purpose, a written survey following the
Delphi method is conducted in an industrial environment at a consumer goods and chemical
company. The Delphi method refers to a multiple-step survey technique developed by the
American RAND-Corporation in 1963 and has since established itself as a valuable survey
technique [Gordon, 1994, p. 1]. The way in which different Delphi surveys are conducted
varies to some extent, but the basic idea is always very similar [Gordon, 1994, p. 1]. The
procedure aims to first gather extensive opinions among experts and then evaluate the results
with the same or extended group of individuals in further stages. The number of stages and
the respective activities in the stages may differ.

The most crucial factor for the success of a Delphi survey is the selection of participants [Gor-
don, 1994, p. 7]. In particular, the survey results highly depend on the knowledge of the
experts and valuable input from them. Participants in a Delphi survey do not necessarily have
to be representative of a larger population, and the focus lies on knowledgeable individuals
[Galanis, 2018].

Advantages of such a multi-stage survey procedure include the determination of validated
forecasts, trends, and opinions by experts in a chosen field of interest [Powell, 2003]. Addition-
ally, more honest and complete answers are expected as the Delphi method is an anonymous
survey approach. Creswell and Poth. [2016] emphasise that such surveys can be accessed from
different locations in the world and result in fast turnarounds. Furthermore, the recipients have
great interest in that specific field of interest and mostly provide thoughtful responses [Keeney
et al., 2010].

As shown in Figure 7.1, this paper divides the survey of knowledgeable persons into three
phases, namely the preparation phase, 1st round, and 2nd round. First, the initial questionnaire
is designed as part of the preparation phase. Based on the initial questionnaire and the cor-
responding fields of interest, knowledgeable persons can be selected. Next, as part of the 1st
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7 Empirical Exploration

round, a group of experts is presented with questions addressing the application of AR. At this
stage, the survey consists of open-ended items, and respondents can provide short answers.
The results are then consolidated and completed by additional answers based on previous lit-
erature research. The collection and consolidation of the answers are then followed by a second
round in which participants rank order the extensive collection of responses. Finally, the results
of the empirical exploration can be evaluated.

Formulation of questions

Identification of expertsP
re

p
ar

at
io

n

Collection of answers via surveys

Consolidation of answers Scientific input1
st

ro
u
n
d

Rank ordering of answers

Evaluation of results2
n
d

ro
u
n
d

Experts

Experts

Figure 7.1: Survey approach following the Delphi method

7.2 Execution Empirical Exploration

The following sections highlight the results of the empirical exploration in form of a multi-
stage expert survey. Given the survey approach described in the previous section, the first
step includes the formulation of survey questions. In this context, this project first defines four
areas of interest, namely potentials, challenges, influencing variables, and use cases of AR in
manufacturing environments. All of which have great practical but as well scientific relevance
and help to fulfill the aims of this empirical exploration. A survey question is derived for each
of these areas of interest. The questions are stated in the following:

1. Potentials of AR: What potentials can AR applications bring in manufacturing environ-
ments?

2. Challenges of AR: What challenges do companies face while implementing AR solutions
in manufacturing environments?

3. Influencing variables of AR: What factors influence the success and acceptance of AR
solutions in manufacturing environments?

4. Use cases of AR: What relevance do potential use cases of AR in manufacturing environ-
ments have?
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7.2.1 Participants

The group of experts for this empirical exploration exist of employees working closely related
to manufacturing activities at a consumer goods and chemical company. In their research,
Mead and Moseley [2001, p. 11f.] identify multiple characteristics of which an expert would
need to fulfill at least one. Regarding the expert survey in a corporate context, the experience
with the topic and the organisational position are important. Hasson et al. [2000, p. 1011]
highlight that in a multi-stage survey procedure, the participants must show commitment and
attest their expertise over multiple rounds.

For this study, participants have all been working on or supervising projects related to AR in
manufacturing environments and thus qualify as experts. Because of the open-ended nature of
the survey questions in the first round, this research project considers eight experts to answer
the initial survey. Findings from the literature additionally complement the results. Then, the
first round results are rank-ordered by 15 participants qualified as experts in the same way. The
experts work in different locations across Europe, including the Netherlands, Spain, Germany,
and Italy.

7.2.2 Data Analysis

As described previously, the initial survey in the first round consists of open-ended questions
soliciting the potentials, challenges, influencing variables, and use cases of AR in manufacturing
environments. The consolidation of the answers was carried out as part of this project and clear
consensus among the participants was identified in the first round of the survey. The responses
were grouped by topic, and the most meaningful formulations were retained. The expert and
literature input yielded 11 consolidated responses for the first question related to the potentials
of AR, ten responses related to the challenges, 14 responses related to the influencing variables,
and ten responses related to the use cases.

In the second round, 15 participants rank-ordered the responses to determine the most relevant
potentials, challenges, influencing variables, and use cases. For the final evaluation, points are
attributed according to the individual rankings. The total score is then sorted in ascending
order by size (see Tables E.1-E.4).

7.2.3 Results

Although there is less consensus in the second round, clear trends on the relevance of indi-
vidual responses emerge across the four rankings. For each of the four questions, the three
most highly ranked responses are emphasised below. Table 7.1 and Table 7.2 display the entire
rankings from the second round. Tables E.1-E.4 show the rankings of individual participants
for each of the questions and the corresponding total points given to each response.

Potentials of AR. Following this Delphi survey, the top three potentials of AR in manufactur-
ing environments are (1) faster activities and processes, (2) standardised instructions, and (3)
reduction of errors. Faster activities and processes are expected to be achieved through shorter
search times and the provision of real-time information whenever needed. Among the partici-
pants, 67% rated this answer among their top three potentials, and 44 points are assigned to it.
Furthermore, in an industrial environment, standardised instructions are expected to be highly
beneficial as consistent quality outputs and fewer dependencies on experienced workers can be
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a crucial competitive advantage (45 points). Third, the reduction of errors can result from more
targeted provision of real-time information and by immediate and automatic error analysis (55
points).

The described findings align with the empirical results from previous meta-analyses on the
evaluation criterion ”time” and ”errors”. At the same time, however, AR experts working in
this specific consumer goods and chemical company do not expect the reduction of cognitive
load levels to be of high importance (see Table 7.2 and Table E.1).

Challenges of AR. Companies still face various challenges during the implementation of AR
solutions in manufacturing environments, and large-scale diffusion has not yet taken place.
The top three challenges in the consumer goods and chemical company are (1) lack of proven
business models with positive return on investments, (2) data protection, privacy, and security
issues, and (3) technological readiness. During the second round of this Delphi survey, 73%
of the AR experts ranked missing business models among the top three challenges. The com-
plexity of building and using an AR experience for individual use cases is only in a few cases
in proportion with the potentials gained. Additionally, data protection, privacy, and security
requirements are especially high in large and globally active companies. According to 53%
of the participants, this area of interest still shows significant room for improvement. Lastly,
47% of the AR experts assess technological readiness to be one of the biggest three challenges.
In particular, the battery life of AR enablers, the viewing angles, and the robustness are still
limited.

The findings from this empirical exploration are in line with the results of further research
projects. Among others, Kohn and Harborth [2018, p. 12] and Danielsson et al. [2020, p. 1301]
as well highlight data protection, privacy, and security issues, and lack of technological readi-
ness as the key challenges of AR in manufacturing environments.

Influencing variables of AR. The success and acceptance of AR solutions in manufacturing
environments highly depend on various variables. The following top three out of 14 influenc-
ing variables can be derived from this empirical exploration: (1) Technical affinity of operators
and management, (2) ease of use of AR applications, and (3) reliability of the technology. Ap-
pearing in 67% of the top three rankings and rated with 44 points, technical affinity of users is
of utmost importance to successfully implement such emerging technology. Almost as highly
prioritised (60% top three rankings, 61 points), the easiness of AR applications significantly in-
fluences the success and acceptance. Third, the reliability of such technology is expected to be
present already at an early stage of the implementation to keep users’ motivation high.

An overview of all other ranked influencing variables can be found in Table 7.2. The ranking
emphasises that multiple additional moderator variables could be examined in future meta-
regressions.

Use cases of AR. As described previously, the biggest challenge during the implementation of
AR in the manufacturing environment of this particular consumer goods and chemical com-
pany lies in the identification of profitable use cases. Here, in the short term, 87% of the experts
surveyed expect great relevance of AR in training (31 points). Among other training applica-
tions, safety, change-over, maintenance, and assembly training are of utmost relevance. Fur-
thermore, the relevance of training applications in an industrial setting is closely followed by
virtual collaboration and remote maintenance (32 points). Among the AR experts at the con-
sumer goods and chemical company, 80% rated this use case among their top three relevant
use cases. Next, 52 points are assigned to task-guidance applications on-the-job. The techno-
logical readiness of AR enablers prevents task guidance use cases to be of higher relevance at
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the current state. However, future technological developments can support on-the-job appli-
cations. Task guidance applications can as well include safety, change-over, maintenance, and
assembly instructions.

Table 7.1: Results empirical exploration potentials and challenges

Potentials Challenges

1. Faster activities/ processes
2. Standardised instructions (same quality 

output)
3. Reduction of errors/ increased reliability
4. Independent and flexible instructions
5. Increased safety 
6. Better internal and external communication
7. Better problem identification and 

description
8. Hands-free provision of information
9. Less cognitive load of users
10. Support of home-office 
11. Social employer branding

1. Lack of proven business models with positive 
ROI

2. Data protection, privacy, and security
3. Technological readiness
4. Acceptance from users
5. Limited workplace safety and health
6. Missing identification of processes/ use 

cases that are ready to implement AR
7. High initial and running costs
8. Compatibility with different technologies
9. Lack of development resources
10. Lack of AR app design and development 

standards

Table 7.2: Results empirical exploration influencing variables and use cases

Influencing variables Use cases

1. Technical affinity of operators and 
management

2. Ease of use of AR applications
3. Reliability of technology
4. Change management 
5. Leadership commitment
6. Use case readiness
7. Degree of digitisation in the 

manufacturing environment 
8. Comfort and aesthetics of devices  
9. Corporate culture incl. curiosity of 

employees
10.Age 
11.Compatibility with different technologies 

(AI, IoT, etc.)
12.Documentation of instructions and 

workshops
13.In-house app development skills
14.Cultural background

1. Trainings (pre-job)1

2. Virtual collaboration/ Remote 
maintenance

3. Task guidance (on-the-job)1

4. Task validation (post-job)1

5. Virtual factory planning
6. Audits
7. Plant visits
8. Presentation of IoT data
9. Navigation in plants
10.Material flow visualization

( x )

1: individual use cases related to safety, change-over, maintenance tasks, 

assembly tasks, material handling, machine parameter adjustment, etc.
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7.3 Summary Empirical Exploration

Lastly, this section shortly summarises the results of the empirical exploration. As indicated
in Section 7.1, a Delphi survey was conducted as part of this research project. The survey ad-
dresses the potentials, challenges, influencing variables, and use cases of AR in manufacturing
environments. In the context of this empirical exploration, a total of 15 AR experts working in
a consumer goods and chemical company were interviewed.

The results from this empirical exploration partially support the findings of the meta-analyses
and the meta-regressions. Following the AR experts, there is a great potential of AR in manufac-
turing environments, and multiple use-cases can be implemented. However, both industrial
companies and universities still face numerous challenges to enable large-scale diffusion of AR
in manufacturing environments, and the acceptance is highly dependent on various influenc-
ing variables that need to be kept in mind. Section 7.2 provides an overall ranking for each of
the four fields of interest, and the top three results are outlined correspondingly.
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Finally, this chapter includes the last two sections of this thesis. First, Section 8.1 discusses
the results of this thesis and the applicability to the research objective. Then, the discussion is
followed by a conclusion of the thesis including a brief summary of the findings.

8.1 Discussion

The main objective of this research was to understand if and how the use of AR solutions can
benefit manufacturing activities. The results of the meta-analyses show that AR application
indeed have a small to medium positive effect on the evaluation criteria ’time’, ’errors’, and
’cognitive load’. In addition, this thesis explores potential interrelationships between these fac-
tors and puts the results into the context of a chemical and consumer goods company. In the
following, this section discusses the main findings covering the scientific and practical rele-
vance, possible limitations of this research project, and future research suggestions.

Scientific relevance

Individual studies in the scientific literature show ambiguous results on the effects of AR ap-
plications in manufacturing environments. In particular, a statistically powerful empirical as-
sessment of the impact was still missing. The present study, however, hypothesized that AR
solutions have a positive effect on (1) processing times, (2) error rates, and (3) cognitive load
levels of workers during manufacturing activities. By synthesising several small studies into
one large study, the present meta-analyses provide more powerful statistical proof of the hy-
potheses and thus close the knowledge gap. Furthermore, this thesis identifies potential mod-
erating variables and examines the interrelationships using multiple meta-regressions. This
section discusses the scientific relevance and the implications of the obtained results for each
of the three hypotheses.

This research identifies ’time’ as the most relevant evaluation criterion in existing literature.
Overall, the results of the meta-analysis shows a small reducing effect of AR applications on
processing times. As a result, the described scientific knowledge gap for the evaluation crite-
rion ’time’ can be closed. Based on the underlying studies the positive effects of higher media
naturalness described by Kock [2005] can now also be transferred to AR applications. Further-
more, a statistical correlation between cognitive load and time was identified for the use of AR
solutions. These findings are backed up by neuroscientific research published by Abbas et al.
[2020], Lyell et al. [2018], and Lindblom and Thorvald [2014].

Besides ’time’, the ’error rate’ is a crucial parameter in production environments and scientific
literature. Results of the meta-analysis shows a significant medium reducing effect on the eval-
uation criterion ’error rate’. In addition, the positive impact on error rates is also strengthened
by expert interviews. Hence, the results obtained in the meta-analysis both statistically confirm
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the second hypothesis and expand current scientific studies addressing the positive effects of
AR. No significant correlations have been found between ’errors’ and the evaluation criteria
’time’ and ’cognitive load’. Instead, the meta-regressions identify the year of publication as a
moderator variable of the effect sizes, bringing a new potential for research as described in the
further course of this section.

Finally, the third hypothesis addresses the positive effect of AR solutions on cognitive load.
Although fewer studies measure and report cognitive load, the results reveal a significant small
to medium reducing effect of such technology. The previously performed studies individually
provide low significance, which the synthesis can clearly improve into one large study. The
results obtained from the meta-analysis are supported by experts who indicate that cognitive
skills and affinity for technological interaction are particularly important for the success of AR
applications. For ’cognitive load’, no significant covariates have been found. However, as
described previously, the level of cognitive load impacts the evaluation criterion ’time’. Given
these results, hypothesis three on the effect of AR applications on cognitive load levels can be
accepted.

Practical relevance

Manufacturing companies are confronted with challenges due to increasing flexibility require-
ments and skill gaps. This research shows that AR applications offer an efficient way to over-
come these tensions by enhancing the interaction between people and technology. In partic-
ular, the meta-analyses provide a statistically powerful empirical assessment from which the
insights can be used in industrial environments. Based on the findings of this research, com-
panies can decrease processing times, error rates, and cognitive load levels by using AR. In
line with the media naturalness theory by Kock [2005], AR applications are a great way to en-
hance communication and knowledge sharing compared to widely used static instructions.
These findings are strengthened and extended by the results of an empirical exploration in a
consumer goods and chemical company.

Challenges during the introduction of AR applications are often not discussed in the literature.
However, large-scale diffusion of AR solutions in industrial environments has not yet taken
place. The present research identifies multiple challenges that prevent companies from suc-
cessfully implementing such technology. These insights can be used to counteract potential
challenges at an early stage by developing countermeasures and taking special care of them.

As highlighted in previous research and the empirical exploration, companies are still strug-
gling to find suitable and especially profitable use cases of AR to leverage the potentials. This
research shows different use cases according to their potentials following the knowledge of
experts in that field. Nevertheless, companies need to match potential use cases to their weak-
nesses to improve their competitiveness. For instance, a company with relatively long search
times due to ignorance should build an AR application that supports the operators during nav-
igation in the factory.

Limitations

The aforementioned results present multiple important limitations that need to be kept in
mind. To begin with, the meta-analysis itself reveals methodological limitations. First, the re-
sults of the meta-analysis highly depend on the quality of the underlying studies. Furthermore,
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a subjective judgement of researchers to include individual studies can affect the calculated ef-
fect sizes. However, the present work has addressed this limitation in the best possible way
through a structured evaluation scheme.

The meta-analyses show that AR solutions have a positive effect on the evaluation criteria
’time’, ’errors’, and ’cognitive load’. Especially for the evaluation criterion ’cognitive load’
the number of studies included is comparably small. As a consequence, the significance of the
statistical tests that examine possible biases can be negatively influenced. Even if publication
bias and heterogeneity were partially demonstrated, it is not possible to determine what impact
these have on the results of the meta-analyses.

Although heterogeneity is suspected, the variance cannot be fully explained using multiple
meta-regressions. Meta-regressions are limited to the information available. In particular, the
present studies do not report potential moderator variables such as prior experience with AR
and the affinity for technological interaction. An expanded data set would allow differences
between studies to be further explored.

Lastly, only a small group of experts from a specific industry is interviewed as part of this
research. Consequently, the knowledge gained can not yet be applied across industries and
manufacturing companies. However, the results can serve as an initial guide.

Future research

As shown previously, AR solutions are gaining more and more interest in both scientific re-
search and in industries. Therefore, recommendations for future research are described in the
following. First of all, a repetition of the meta-analyses would be necessary as soon as a suf-
ficient number of new empirical studies on the topic of AR solutions have been published.
Further empirical studies could include Electroencephalography (EEG) testing in addition to
the NASA-TLX test. This would allow the results to be validated with a larger number of studies
based on other scientific methods.

Furthermore, a long-term validation in an industrial environment is still missing. When plan-
ning and conducting such validation, it must be considered that in countries with high data
protection requirements, tests in the company environment are difficult to achieve.

The identified variance between the studies can not be fully explained, and additional moder-
ator variables might exist. Thus, it is worth including further possible covariates and running
additional meta-regressions. The insights gained could be of great scientific and practical rele-
vance.

Finally, there is a need for further research on the potentials, challenges, influencing variables,
and use cases of AR solutions in manufacturing environments across industries. Additional
surveys and interviews with experts will need to be conducted to gain these insights.

8.2 Conclusion

Manufacturing companies are undergoing major changes in today’s world of globalization and
digitization. Among other challenges, companies - particularly in high-wage countries - are
facing growing competition and disruptive market changes. To counter these challenges in
manufacturing environments, AR solutions are a promising technology. The research objective
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of this study was to determine if and how the use of AR solutions can benefit manufactur-
ing activities. In order to answer this research question, three meta-analyses are conducted
addressing the most prominent evaluation criteria ’time’, ’errors’, and ’cognitive load’.

The meta-analyses reveal that based on the present studies AR applications indeed have a pos-
itive effect on all three evaluation criteria. Hence, the defined hypotheses are all accepted as
displayed in Table 8.1.

Table 8.1: Results of hypotheses

# Hypothesis Result

1
AR solutions have a reducing effect on processing 
times of workers during manufacturing activities.

Accepted

2
AR solutions have a reducing effect on error rates
of workers during manufacturing activities.

Accepted

3
AR solutions have a reducing effect on cognitive 
load levels of workers during manufacturing activities.

Accepted

What is more, this research project identifies ’cognitive load’ as a moderator variable for the
evaluation criterion ’time’. The variance between studies can be partly explained by different
cognitive demands. These findings are in line with prior research conducted in the field of
neuroscience [Kock, 2005].

Finally, the results of the meta-analyses and of the meta-regressions are supported by industrial
experts working in a consumer goods and chemical company. With the help of ranked answers
in the four categories potentials, challenges, influencing variables, and use cases, the relevance
of AR is also be emphasised in an industrial environment.
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B Appendix B - Quantitative studies

B.1 Overview Quantitative Studies Meta-Analysis

Table B.1: Overview final paper set

# Author Titel Year Country Domain
Experimen-
tal setting

Classical 
instruction

Assistance 
Technology

1 Abbas (1)
Impact of Mobile AR System on Cognitive 
Behavior and Performance during Rebar 
Inspection Tasks

2020 Hong Kong
Mainte-
nance

Real 
product/ 
setting

Paper AR screen

2 Abbas (2)
Impact of Mobile AR System on Cognitive 
Behavior and Performance during Rebar 
Inspection Tasks

2020 Hong Kong
Mainte-
nance

Real 
product/ 
setting

Paper HMD

3
Blattgerste 
(1)

Comparing Conventional and AR Reality 
Instructions for Manual Assembly Tasks

2017 Germany Assembly Lego Paper HMD

4
Blattgerste 
(2)

In-Situ Instructions Exceed Side-by-Side 
Instructions in Augmented Reality Assisted 
Assembly

2018 Germany Assembly Lego Paper HMD

5 Botto
AR for the Manufacturing Industry: The Case 
of an Assembly Assistant

2020 Italy Assembly Mock-up Paper AR screen

6 Brice
AugmenTech: The Usability Evaluation of an 
AR System for Maintenance in Industry

2020
United 

Kingdom
Mainte-
nance

Mock-up Paper HMD

7 Büttner
Using Head-Mounted Displays and In-Situ 
Projection for Assistive Systems – A 
Comparison

2016 Germany Assembly Lego Paper HMD

8 Chu
Comparing Augmented Reality-Assisted 
Assembly Functions – A Case Study on 
Dougong Structure

2020 China Assembly Mock-up Paper AR screen

9 Fiorentino
Augmented reality on large screen for 
interactive maintenance instructions

2014 Italy
Mainte-
nance

Mock-up Paper AR screen

10 Gavish
Evaluating virtual reality and augmented 
reality training for industrial maintenance and 
assembly tasks

2014 Italy
Mainte-
nance + 
Assembly

Mock-up
Video 

instruction
HMD

11 Gutsche
Enabling or stressing? – smart information 
use within industrial service operation

2020 Germany
Mainte-
nance + 
Assembly

Real 
product/ 
setting

Paper HMD

12 Havard

A use case study comparing AR and 
electronic document-based maintenance 
instructions considering tasks complexity and 
operator competency level

2020 France
Mainte-
nance

Real 
product/ 
setting

PDF tablet AR screen

13 Hoover
Measuring the performance impact of using 
the microsoft HoloLens 1 to provide guided 
assembly work instructions

2020 USA Assembly Mock-up PDF tablet HMD

14 Hou
Using Animated Augmented Reality to 
Cognitively Guide Assembly

2014 Australia Assembly Lego Paper AR screen

15 Lampen
Combining Simulation and Augmented Reality 
Methods for Enhanced Worker Assistance in 
Manual Assembly

2019 Germany Assembly Mock-up Paper HMD

16 Loch
Comparing Video and Augmented Reality
Assistance in Manual Assembly

2016 Germany Assembly Lego
Video 

instruction
HMD

17 Obermair
Maintenance with AR Remote Support in 
Comparison to Paper-Based Instructions: 
Experiment and Analysis

2020 Austria Assembly
Real 

product/ 
setting

Paper AR screen
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# Author Titel Year Country Domain
Experimen-
tal setting

Classical 
instruction

Assistance 
Technology

18 Pringle
Using an industry-ready AR HMD on a real 
maintenance task: AR benefits performance 
on certain task steps more than others

2018
United 

Kingdom
Mainte-
nance

Mock-up PDF tablet AR screen

19 Sanna
Using Handheld Devices to Support 
Augmented Reality-based Maintenance and 
Assembly Tasks

2015 Italy
Mainte-
nance + 
Assembly

Real 
product/ 
setting

Paper AR screen

20 Uva
Evaluating the effectiveness of spatial AR in 
smart manufacturing: a solution for manual 
working stations

2017 Italy Assembly
Real 

product/ 
setting

Paper AR screen

21 Wang
Usability evaluation of an instructional 
application based on Google Glass for mobile 
phone disassembly tasks

2019 Taiwan Assembly
Real 

product/ 
setting

Paper HMD

22 Werrlich
Comparing HMD-based and Paper-based 
Training

2018 Germany Assembly
Real 

product/ 
setting

Paper HMD

23 Yamaguchi
Video-Annotated Augmented Reality 
Assembly Tutorials

2020 Austria Assembly
Real 

product/ 
setting

Video 
Instruction

AR screen

24 Yang
Comparing the Effects of Paper and Mobile 
Augmented Reality Instructions to Guide 
Assembly Tasks

2020
The 

Netherlands
Assembly Lego Paper AR screen
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Table B.2: Overview data final paper set

# Author
Number of 
participants

∅ age
Time Error rate Cognitive load

Classical Assisted Classical Assisted Classical Assisted

1 Abbas (1) 15 - - -
∅ = 13.51
SE = 5.44

∅ = 9.08
SE = 5.43

- -

2 Abbas (2) 15 - - -
∅ = 13.51
SE = 5.44

∅ = 9.42
SE = 4.29

- -

3 Blattgerste (1) 24 23.63
∅ = 3.36
SE = 0.49

∅ = 4.3
SE = 0.8

∅ = 1.29
SE = 1.6

∅ = 1.17
SE = 1.43

∅ = 33.13
SE = 17.53

∅ = 40.5
SE = 20.92

4 Blattgerste (2) 24 23.72
∅ = 4.47
SE = 2.27

∅ = 3.88
SE = 1.04

∅ = 0.0182
SE = 0.0275

∅ = 0.0013
SE = 0

∅ = 36.7
SE = 20

∅ = 29.6
SE = 17.4

5 Botto 26 31

∅ = 185
SE = -

∅ = 128
SE = -

∅ = 1.08
SE = -

∅ = 0.15
SE = - - -

p = 0.0016 p = 0.0497

6 Brice 20 33.5
∅ = 1056
SE = 188

∅ = 1098
SE = 244

- -
∅ = 39.3

SE = 14.54
∅ = 29.4

SE = 11.95

7 Büttner 13 25.8
∅ = 8.39
SE = 0.73

∅ = 21.09
SE = 6.81

∅ = 0.25
SE = 0.46

∅ = 0.75
SE = 1.75

- -

8 Chu 16 22.5
∅ = 358.5

SE = 102.48
∅ = 446.38
SE = 81.62

∅ = 4.25
SE = 2.93

∅ = 2.31
SE = 1.92

∅ = 25.8
SE = -

∅ = 32.1
SE = -

p = 0.16

9 Fiorentino 14 25

∅ = 13.1
SE = -

∅ = 8.1
SE = -

∅ = 0.094
SE = -

∅ = 0.007
SE = - - -

p < 0.001 p < 0.001

10 Gavish 10 33.2
∅ = 516
SE = 186

∅ = 492
SE = 120

∅ = 1.3
SE = 1.1

∅ = 0.3
SE = 0.7

- -

11 Gutsche 10 42.2

∅ = 1337
SE = -

∅ = 949
SE = - - -

∅ = 40.67
SE = -

∅ = 35.83
SE = -

p = 0.199 p = 0.875

12 Havard 10 22.5

∅ = 1330
SE = -

∅ = 1180
SE = - - -

∅ = 56
SE = -

∅ = 48
SE = -

p = 0.38 p = 0.44

13 Hoover 35 -

∅ = 7
SE = -

∅ = 1
SE = -

∅ = 1868
SE = -

∅ = 1328
SE = - - -

p < 0.0005 p < 0.0005

14 Hou 25 -

∅ = 11.91
SE = -

∅ = 7.37
SE = -

∅ = 3.4
SE = -

∅ = 1.3
SE = -

∅ = 13.64
SE = -

∅ = 9.84
SE = -

p = 0.0001 p = 0.0193 p = 0.0053

15 Lampen 24 29.25
∅ = 177.76
SE = 33.37

∅ = 167.14
SE = 53.78

∅ = 27.08
SE = 17.81

∅ = 24.17
SE = 10.18

∅ = 47.88
SE = 15.29

∅ = 27.01
SE = 16.71

16 Loch 17 -

∅ = 228
SE = -

∅ = 186
SE = - - -

∅ = 53.6
SE = -

∅ = 42
SE = -

p = 0.127 p = 0.132

17 Obermair 15 -
∅ = 295.87
SE = 59.2

∅ = 297.07
SE = 66.28

∅ = 0.53
SE = 0.66

∅ = 0.13
SE = 0.35

- -

18 Pringle 18 22.44
∅ = 108
SE = 33

∅ = 93
SE = 27

∅ = 0.57
SE = 0.23

∅ = 0.38
SE = 0.21

- -

19 Sanna 6 22
∅ = 671

SE = 172.46
∅ = 630.5

SE = 102.55
∅ = 0.5

SE = 0.55
∅ = 1.33
SE = 0.82

- -
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B.1 Overview Quantitative Studies Meta-Analysis

# Author
Number of 
participants

∅ age
Time Error rate Cognitive load

Classical Assisted Classical Assisted Classical Assisted

20 Uva 16 24.6

∅ = 610.9
SE = -

∅ = 486.7
SE = -

∅ = 7.03
SE = -

∅ = 1.17
SE = - - -

p < 0.001 p < 0.001

21 Wang 30 23.77
∅ = 292.63
SE = 127.79

∅ = 316.77
SE = 169.64

∅ = 0.28
SE = 0.65

∅ = 0.15
SE = 0.36

- -

22 Werrlich 15 18.67
∅ = 600
SE = 121

∅ = 702
SE = 144

∅ = 9.58
SE = 4.127

∅ = 2.98
SE = 1.77

∅ = 48.46
SE = 10.88

∅ = 46.45
SE = 10.47

23 Yamaguchi 16 27.8
∅ = 183
SE = 43

∅ = 182
SE = 51

∅ = 0.6
SE = 1.5

∅ = 0.5
SE = 0.8

∅ = 48.1
SE = 24.3

∅ = 28.4
SE = 22.1

24 Yang 72 24.86
∅ = 313
SE = 142

∅ = 324
SE = 96

∅ = 1.17
SE = 1.63

∅ = 0.5
SE = 0.7

∅ = 19.84
SE = 12.40

∅ = 23.25
SE = 12.26
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C Appendix C - Results Meta-Analysis

C.1 Grubbs’ test

Following Grubbs [1969], Grubbs’ statistic for study i is specified as

Gi =

∣∣Ei − E
∣∣

S
(C.1)

where Ei refers to the effect size of study i, E to the mean effect size, and S to the standard
deviation. The critical values are extracted from Table of Critical Values for T provided by
Grubbs and Beck [1972]. Outliers are only found for the evaluation criterion ”error rates”. For
this evaluation criterion, Grubbs’ test was repeated twice.

Effect sizes
Grubbs' test 

statistics
Effect sizes

Grubbs' test 

statistics
Effect sizes

Grubbs' test 

statistics

-0.262 0.920 0.793 0.301 -0.376 1.374

0.329 0.067 0.812 0.325 0.373 0.054

0.912 1.042 0.078 0.579 0.729 0.734

-0.189 0.799 0.855 0.378 -0.349 1.322

0.085 0.340 0.549 0.002 0.049 0.563

-0.925 2.029 * -1.685 2.750 ** 0.338 0.012

1.360 1.792 0.763 0.265 0.830 0.927

0.147 0.237 1.360 1.000 1.282 1.789 *

0.571 0.473 1.039 0.604 0.518 0.331

0.477 0.315 0.864 0.389 0.186 0.302

0.864 0.963 0.688 0.172 0.827 0.921

1.206 1.534 0.197 0.432 -0.275 1.182

0.233 0.092 0.737 0.232 Mean 0.344

0.525 0.395 0.844 0.364 Std. dev. 0.524

-0.019 0.514 -1.097 2.027 # values 12

0.486 0.331 1.257 0.873 Critical value 2.412

0.263 0.042 0.244 0.374

1.257 1.619 2.052 1.852

-0.159 0.748 0.081 0.575

-0.746 1.731 0.531 0.021

0.021 0.448 Mean 0.548

-0.090 0.634 Std. dev. 0.812

Mean 0.289 # values 20

Std. dev. 0.598 Critical value 2.708

# values 22

Critical value 2.758

* Furthest from the rest, but not a significant outlier

** Significant outlier

Cognitive loadTime Error rates

Figure C.1: Grubbs’ test for evaluation criteria ”Time”, ”Errors”, and ”Cognitive load”
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C Appendix C - Results Meta-Analysis

1st calculation 2nd calculation 3rd calculation 

Effect sizes
Grubb's test 

statistics
Effect sizes

Grubb's test 

statistics
Effect sizes

Grubb's test 

statistics

0.793 0.301 0.793 0.200 0.793 0.060

0.812 0.325 0.812 0.231 0.812 0.101

0.078 0.579 0.078 0.925 0.078 1.415

0.855 0.378 0.855 0.298 0.855 0.188

0.549 0.002 0.549 0.183 0.549 0.442

-1.685 2.750 ** - - - -

0.763 0.265 0.763 0.154 0.763 0.000

1.360 1.000 1.360 1.092 1.360 1.231

1.039 0.604 1.039 0.587 1.039 0.568

0.864 0.389 0.864 0.313 0.864 0.208

0.688 0.172 0.688 0.035 0.688 0.156

0.197 0.432 0.197 0.737 0.197 1.168

0.737 0.232 0.737 0.112 0.737 0.055

0.844 0.364 0.844 0.280 0.844 0.165

-1.097 2.027 -1.097 2.773 ** - -

1.257 0.873 1.257 0.929 1.257 1.017

0.244 0.374 0.244 0.663 0.244 1.071

2.052 1.852 2.052 2.180 2.052 2.642 *

0.081 0.575 0.081 0.919 0.081 1.408

0.531 0.021 0.531 0.211 0.531 0.479

Mean 0.548 Mean 0.666 Mean 0.764

Std. dev. 0.812 Std. dev. 0.636 Std. dev. 0.485

# values 20 # values 19 # values 18

Critical value 2.708 Critical value 2.680 Critical value 2.652

* Furthest from the rest, but not a significant outlier

** Significant outlier

Error rates Error rates Error rates

Figure C.2: Grubbs’ test for evaluation criteria ”Errors”
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C.2 Results evaluation criterion ”time”

C.2 Results evaluation criterion ”time”

Figure C.3: Results random effects model for evaluation criteria ”time” (extracted from CMA)

Figure C.4: Results one study removed for evaluation criteria ”time” (extracted from CMA)
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C.3 Results evaluation criterion ”errors”

Figure C.5: Results random effects model for evaluation criteria ”errors” (extracted from CMA)

Figure C.6: Results one study removed for evaluation criteria ”time” (extracted from CMA)
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C.4 Results evaluation criterion ”cognitive load”

C.4 Results evaluation criterion ”cognitive load”

Figure C.7: Results random effects model for evaluation criteria ”errors” (extracted from CMA)

Figure C.8: Results one study removed for evaluation criteria ”cognitive load” (extracted from
CMA)
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C.5 Publication Bias

C.5.1 Duval and Tweedie’s Trim and Fill

Table C.1: Results Duval and Tweedie’s Trim and Fill (extracted from CMA)

Time Errors Cognitive load

Observed 
values

Adjusted 
values

Observed 
values

Adjusted 
values

Observed 
values

Adjusted 
values

Studies trimmed - 0 - 5 - 0

Fixed Effects

Point Estimate 0.24308 0.24308 0.60195 0.40148 0.22281 0.22281

Lower Limit 0.11275 0.11275 0.46669 0.27849 0.06143 0.06143

Upper Limit 0.37342 0.37342 0.73722 0.52447 0.38419 0.38419

Random Effects

Point Estimate 0.27980 0.27980 0.58321 0.35513 0.32492 0.32492

Lower Limit 0.03613 0.03613 0.30238 0.05091 0.01233 0.01233

Upper Limit 0.52346 0.52346 0.86404 0.65935 0.63752 0.63752

Q Value 68.52052 68.52052 76.50926 134.28732 38.42477 38.42477

C.5.2 Egger’s Regression of the Intercept

Table C.2: Results Egger’s Regression of the Intercept (extracted from CMA)

Time Errors Cognitive load

Intercept 1.22377 -0.64176 3.88492

Standard error 1.48202 1.71719 1.89590

95% lower limit (2-tailed) -1.86767 -4.24944 -0.33940

95% upper limit (2-tailed) 4.31521 2.96592 8.10924

t-value 0.82575 0.37373 2.04912

df 20.00000 18.00000 10.00000

P-value (1-tailed) 0.20934 0.35649 0.03380

P-value (2-tailed) 0.41869 0.71297 0.06761
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D Appendix D - Results Meta-Regression

As described in Section 6.2, the evaluation criterion ”time” is moderated by the country, and
the criterion ”errors” is moderated by the year. In the following, the attempt to conclude the
graphical regressions is explained.

As shown in Figure D.1, low-wage countries such as China and Taiwan show negative effects
of AR on the evaluation criterion ”time” whereas high-wage countries rather identify positive
effects (see, e.g., Australia, France, and the USA). There is no further information available
at this point as to why this moderation exists. Furthermore, no meaningful statement can be
provided based on the distribution of countries concerning the Technological Readiness Ranking.
In general, the moderating effects may be related to individual universities and scientists.

At the same time, Figure D.2 highlights that no (linear) trend can be identified in line with
the technological developments in recent years. Due to this, a reasonable explanation for the
moderating effect is missing at this stage.

Country
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Figure D.1: Regression country on ”time”
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Figure D.2: Regression year on ”errors”
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E Appendix D - Empirical Exploration

E.1 Results Empirical Exploration

Table E.1: Results individual rankings question related to potentials of AR

Rank Potential
Points given by participants

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Faster activities/ processes 5 1 2 2 5 1 7 3 6 1 1 1 3 3 3 44

2
Standardised instructions
(same quality output)

1 4 3 3 6 5 4 1 1 3 3 2 1 4 4 45

3
Reduction of errors/ 
increased reliability

2 3 1 4 3 9 2 9 5 7 2 3 2 1 2 55

4
Independent and flexible 
instructions

6 2 6 6 1 3 5 2 2 4 7 5 6 5 5 65

5 Increased safety 3 5 5 7 7 7 9 5 4 2 8 4 5 2 1 74

6
Better internal and 
external communication

4 7 7 1 4 6 1 6 7 6 4 6 4 6 7 76

7
Better problem 
identification & description

10 10 8 5 2 4 3 10 3 5 6 6 9 10 8 99

8
Hands-free provision of 
information

8 6 10 8 9 2 6 4 9 8 10 8 8 7 9 112

9 Less cognitive load of users 7 8 4 9 8 8 10 8 10 11 9 7 11 9 6 125

10 Support of home-office 9 11 9 10 10 11 8 7 8 10 5 10 7 8 10 133

11 Social employer branding 11 9 11 11 11 10 11 11 11 9 11 11 10 11 11 159
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Table E.2: Results individual rankings question related to challenges of AR

Rank Potential
Points given by participants

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
Lack of proven business 
models with positive ROI

2 3 3 1 3 2 5 5 3 6 1 1 4 2 1 42

2
Data protection, privacy, 
and security

6 9 1 4 2 1 2 2 4 1 4 2 3 4 4 49

3 Technological readiness 1 4 6 4 1 3 4 4 1 4 6 5 2 3 2 50

4 Acceptance from users 3 8 2 5 4 4 3 1 2 5 7 3 1 5 3 56

5
Limited workplace safety 
and health

7 1 5 2 5 5 1 3 5 10 10 4 6 6 6 76

6
Missing identification of 
processes/ use cases that 
are ready to implement AR

5 2 4 6 7 6 7 6 6 7 3 6 5 1 5 76

7
High initial and running 
costs

4 6 7 9 6 7 6 7 8 9 2 7 8 9 7 102

8
Compatibility with 
different technologies

10 10 9 10 8 10 9 8 9 2 5 9 7 10 8 124

9
Lack of Development 
Resources

9 5 8 8 9 8 8 9 7 8 9 10 9 8 9 124

10
Lack of AR App Design & 
Development Standards

8 7 10 7 10 9 10 10 10 3 8 8 10 7 10 127
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E.1 Results Empirical Exploration

Table E.3: Results individual rankings question related to influencing variables of AR

Rank Potential
Points given by participants

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
Technical affinity of 
operators and management

1 6 5 4 3 5 8 1 1 1 3 1 2 2 1 44

2
Ease of use of AR 
applications

5 1 1 3 2 8 7 3 10 3 9 2 1 1 5 61

3 Reliability of technology 2 3 6 7 6 4 4 11 8 5 1 5 4 4 2 72

4 Change management 6 8 3 2 4 3 3 5 5 13 2 6 5 5 4 74

5 Leadership commitment 4 10 4 1 7 6 1 4 3 8 6 3 6 6 6 75

6 Use case readiness 3 2 2 5 12 11 10 8 6 4 4 4 3 3 3 80

7
Degree of digitisation in the 
manufacturing environment

9 5 10 11 5 7 2 10 2 10 7 10 11 9 9 117

8
Comfort and aesthetics of 
devices

8 9 9 14 1 1 6 7 11 7 12 8 7 7 10 117

9
Corporate culture incl. 
curiosity of employees

7 12 7 6 11 12 13 6 7 6 5 7 12 11 12 134

10 Age 12 11 14 9 8 10 9 2 4 2 14 12 10 12 7 136

11
Compatibility with different 
technologies (AI, IoT, etc.)

13 7 11 8 9 9 5 13 9 9 10 9 9 8 8 137

12
Documentation of 
instructions and workshops

10 13 8 13 13 2 11 9 12 12 8 11 8 10 13 153

13
In-house app development 
skills

14 4 12 10 10 13 14 12 13 11 11 13 13 14 14 178

14 Cultural background 11 14 13 12 14 14 12 14 14 14 13 14 14 13 11 197
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Table E.4: Results individual rankings question related to use cases of AR

Rank Potential
Points given by participants

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Trainings (pre-job)1 2 1 3 4 1 5 1 1 2 2 3 1 2 2 1 31

2
Virtual collaboration/ 
Remote maintenance

1 4 1 1 3 4 2 5 1 1 1 2 3 1 2 32

3
Task guidance (on-the-
job)1 4 3 2 2 4 1 3 6 3 5 7 4 1 3 4 52

4 Task validation (post-job)1 5 2 4 3 7 6 4 2 6 3 4 3 4 4 5 62

5 Virtual factory planning 9 5 5 7 6 7 5 8 4 10 2 8 5 6 6 93

6 Audits 6 10 8 10 5 2 8 4 5 4 5 6 8 8 7 96

7 Plant visits 7 9 9 6 2 3 10 3 7 8 6 9 9 9 9 106

8 Presentation of IoT data 8 7 7 8 10 10 6 9 9 6 10 5 6 5 3 109

9 Navigation in plants 3 8 6 5 9 9 9 10 10 7 8 7 7 7 8 113

10 Material flow visualization 10 6 10 9 8 8 7 7 8 9 9 10 10 10 10 131

1: individual use cases related to safety, change-over, maintenance tasks, assembly tasks, material handling, machine parameter adjustment, etc.
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