

Design Tools for the Virtual Wind Tunnel

Setting up the geometry for CFD calculations

Msc thesis by R.A.G. Kerklaan
December 2006

Delft University of Technology

Faculty of Civil Engineering and Geosciences
Structural Design Lab (SDL)

Master’s thesis

i

Design Tools for the Virtual Wind Tunnel

Setting up the geometry for CFD calculations

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science (MsC.)

in

Civil Engineering

by

R.A.G. Kerklaan
born in Delft, The Netherlands

Delft University of Technology
Faculty of Civil Engineering and Geosciences

Building Engineering
Structural Design Lab (SDL)

Master’s thesis

ii

Master’s thesis

iii

Preface

This report is the result of my graduation project and marks the end of my Master of Science
study at the faculty of Civil Engineering of Delft University of Technology. The report
describes the research project that has been performed at the Structural Design Lab from
February 2006 to December 2006. The subject of the thesis is wind engineering, with the
focus on the development of a set of design tools that can be used to determine the wind
load on a building or structure using Computational Fluid Dynamics (CFD). A lot of people
have contributed, directly or indirectly, to this project. First of all I would like to thank the
members of my graduation committee for their ideas and comments during our meetings and
for their contribution to this report. I also want to thank Rogier van Nalta and Dennis Snijders
for their previous work on this subject. Next to these people, I would like to thank the other
graduate students of the SDL that work in room 0.72 as well. Although most work of this
thesis is performed at home, I have had a pleasant time there. Above all, thanks go to my
parents, brother and girlfriend for their continuous support and encouragement.

Ruud Kerklaan
Naaldwijk, December 2006

Master’s thesis

iv

Master’s thesis

v

Graduation committee

Prof. dipl- ing. J.N.J.A. Vamberský (Chairman)
Organization: Delft University of Technology
Faculty: Civil Engineering and Geosciences
Section: Building Technology and Process
Address: Stevinweg 1, room 1.36 – Stevin II
 2628 CN Delft
Telephone: +31 15 2785488
E-mail: J.N.J.A.Vambersky@CiTG.TUDelft.nl

Prof. Ir. L.A.G. Wagemans
Organization: Delft University of Technology
Faculty: Civil Engineering and Geosciences
Section: Structural Design Lab
Address: Stevinweg 1, room 1.59 – Stevin II

2628 CN Delft
Telephone: +31 15 2784752
E-mail: L.A.G.Wagemans@CiTG.TUDelft.nl

Ir. J.L. Coenders
Organization: Delft University of Technology
Faculty: Civil Engineering and Geosciences
Section: Structural Design Lab
Address: Stevinweg 1, room 1.58 – Stevin II

2628 CN Delft
Telephone: +31 15 2785711
E-mail: J.L.Coenders@CiTG.TUDelft.nl

Dr. dipl-ing. S. Zlatanova
Organization: Delft University of Technology
Faculty: OTB Research Institute for Housing, Urban and Mobility Studies
Section: GIS-Technology
Address: Jaffalaan 9, room 2.240
 2628 BX Delft
Telephone: +31 15 2782714
E-mail: S.Zlatanova@OTB.TUDelft.nl

Dr. Ir. L.L.M. Veldhuis
Organization: Delft University of Technology
Faculty: Aerospace Engineering
Section: Aerodynamics
Address: Kluyverweg 2, room 041
 2629 HT Delft
Telephone: +31 15 2782009
E-mail: L.L.M.Veldhuis@LR.TUDelft.nl

Master’s thesis

vi

Master’s thesis

vii

Contact data student

Name: R.A.G. (Ruud) Kerklaan
Workplace: Delft University of Technology

Faculty of Civil Engineering and Geosciences
Structural Design Lab
Stevinweg 1, room 0.72
2628 CN Delft

Student no.: 9428437
Telephone: 06-14770763
E-mail: R.A.G.Kerklaan@student.TUDelft.nl

Master’s thesis

viii

Master’s thesis

ix

Abstract

Since the introduction of new and stronger materials in building engineering in the second
half of the 20th century, wind load has become an important factor for the design of buildings.
Since then methods are developed to take the effects of wind into account in the design
process. The building code is an appropriate method to determine the wind load on standard,
simple designs. For more complex designs one can rely on wind tunnel experiments to
determine the wind load. However, as they are very expensive and time-consuming, wind
tunnel studies are not suitable for the early stage of the design process. Computational
methods have been introduced recently to determine the effects of wind using a technique
called Computational Fluid Dynamics. At the Structural Design Lab of Delft University of
Technology a Virtual Wind Tunnel has been proposed that enables structural engineers to
predict wind loads in the early stage of the design process using CFD. The computational Van
Nalta domain is developed in which CFD calculations on building models can be performed.

CFD is a complex field that requires a thoroughly knowledge of fluid dynamics, numerical
analysis and wind engineering. Performing a calculation is a difficult procedure that can be
very time-consuming. The definition of geometry for CFD calculations is also complicated. To
enable structural engineers to predict wind loads and compare alternative geometries in a
relatively short time, the complex process of CFD has to be simplified.

The purpose of this Master’s thesis is to develop a set of design tools that enables the
structural engineer to setup the geometry for a CFD calculation. With this toolbox the wind
load on a building or structure can be predicted and several geometries can be compared in a
relatively short period without much interference of the user. This should make shape
optimization with respect to wind loads possible. To predict the wind loads on a building that
is placed in a built environment, design tools are developed to generate a 3D model of the
environment. Other tools are developed to simplify the building of interest by reducing the
input of the building design. This reduces the calculation time of the CFD software
considerably. As the dimensions of the computational domain in which the calculations are
performed depend on the dimensions of the research area, a final design tool is developed
that generates the domain dependent on the dimensions of the research area.

It is concluded that the developed design tools work for CFD applications. Many tests with the
various tools have shown that in most cases promising results are obtained and the geometry
that is generated by the tools is suitable for CFD analysis. For several test cases some CFD
calculations are performed in the Van Nalta domain. It was not the intention to obtain very
accurate results from the calculations, as there is still quite some uncertainty about the use of
CFD in wind engineering. To a large extent the accuracy of CFD calculations depends on the
available computer resources and further research is required to increase the accuracy.
However, following the current trends in the development of computer resources, it will
probably be possible in the nearby future to calculate the wind effects on complex building
models that are placed in a built environment accurately. For wind engineering problems CFD
can become a valuable tool for structural engineers then.

Master’s thesis

x

Master’s thesis

xi

Glossary

CFD: Computational Fluid Dynamics; the numerical calculation of flow problems using
computational methods

Virtual Wind Tunnel: proposed application to indicate the wind loads on a building or
structure in the early stage of the design process using CFD

Van Nalta domain: computational domain developed at the Structural Design Lab of Delft
University of Technology in which CFD calculations can be performed

Rhinoceros: CAD environment in which the several design tools of this thesis are developed
using the Rhinoceros Visual Basic language

GIS: Geographic Information Systems in which geographical information about the earth can
be processed

Top10Vector: GIS dataset containing a digital 2D map of the Netherlands

Object-oriented models: building models that originate from object-oriented CAD systems.
The models are constructed from objects that represent the elements from which a building is
built of, like beams, columns, floor and walls. The models have sense for the computer

AHN: Algemeen Hoogtebestand Nederland; GIS dataset containing an elevation model of the
Netherlands

Fluent: CFD software that is used in this thesis to solve numerical flow problems

Gambit: Fluent’s pre-processor to setup the geometry and generate meshes for CFD analysis

Grid/mesh: subdivision of the continuous domain into discrete control volumes where the
variables of the partial differential equations describing the fluid flow are calculated

Size function: function to smoothly control the growth in mesh size over a particular region
of the geometry

Map scheme: mesh method that generates a regular, structured grid on a surface

Pave scheme: mesh method that generates an unstructured grid on a surface

Interval size: mesh method that divides an edge in intervals of the specified size

Cooper scheme: mesh method that extrudes the 2D grid on a surface to form a 3D grid

Tecplot: Post-processing software to analyze the results of a CFD calculation

Master’s thesis

xii

Master’s thesis

xiii

Table of Contents

Preface ... iii
Graduation committee .. v
Contact data student ... vii
Abstract .. ix
Glossary .. xi
Table of Contents ... xiii
1. Introduction .. 1

1.1 Problem definition ... 1
1.2 Research goal ... 3

2. Computational Fluid Dynamics ... 5
2.1 Introduction .. 5
2.2 The process of CFD ... 6

2.2.1 Geometry description ... 7
2.2.2 Grid generation ... 7
2.2.3 Discretization .. 8
2.2.4 Selection of a turbulence model .. 9
2.2.5 Boundary conditions and flow specification .. 9
2.2.6 Calculation of the numerical solution ... 10
2.2.7 Analysis of the results .. 10

2.3 Fluent .. 10
3. Wind Engineering .. 11

3.1 Introduction .. 11
3.2 Wind standards ... 14

3.2.1 Dutch code ... 14
3.2.2 Eurocode .. 18

3.3 Wind tunnel tests .. 21
3.4 Computational Wind Engineering .. 23

3.4.1 Introduction .. 23
3.4.2 Computational domain ... 24
3.4.3 Computational grid .. 25
3.4.4 Solving the system .. 25

4. Geographic Information Systems ... 27
4.1 Introduction .. 27
4.2 Creating a GIS model of the real world .. 28

4.2.1 Introduction .. 28
4.2.2 Spatial data acquisition .. 29

4.3 GIS data structures ... 30
4.3.1 Raster data models .. 30
4.3.2 Vector data models .. 31
4.3.3 Raster VS vector data models ... 31

4.4 GIS applications .. 32
4.4.1 Top10vector .. 32
4.4.2 Actueel Hoogtebestand Nederland (AHN) ... 33

5. Computer-Aided Design .. 35
5.1 Introduction .. 35
5.2 Form representation .. 36

5.2.1 Wire Frame modeling ... 36
5.2.2 Surface modeling ... 37
5.2.3 Solid modeling .. 37

5.3 Freeform curves and surfaces ... 39
5.3.1 Bézier Curves .. 39
5.3.2 B-Spline Curves ... 40
5.3.3 NURBS ... 41

Master’s thesis

xiv

5.4 Exchange of CAD Data Files ... 41
5.5 Developments in CAD .. 42

5.5.1 Object-Oriented Modelers ... 42
5.5.2 Parametric modelers .. 45

5.6 Conclusion .. 45
6. Thesis approach .. 47

6.1 Wind load determination .. 47
6.2 Approach for the generation of geometry .. 49
6.3 Strategy of the design tools .. 50

7. Tools to setup the geometry for CFD calculations 53
7.1 Tool 1: Generation of the 2D research area ... 53

7.1.1 Purpose .. 53
7.1.2 GIS data ... 53
7.1.3 Explanation of the tool ... 55

7.2 Tool 2: Extrusion of buildings inside the research area .. 57
7.2.1 Purpose .. 57
7.2.2 Explanation of the tool ... 57
7.2.3 Points of concern ... 60

7.3 Tool 3: Simplification of the building of interest .. 62
7.3.1 Purpose .. 62
7.3.2 Rotating Lines method ... 63
7.3.3 Rectangle method ... 65
7.3.4 Rotated Square method ... 68
7.3.5 Integrated method .. 71
7.3.6 Meshes ... 73
7.3.7 Curve simplification ... 76
7.3.8 Lofting .. 79
7.3.9 Results ... 80
7.3.10 Restrictions ... 86
7.3.11 Suggestions for additional methods ... 87
7.3.12 Evaluation ... 88

7.4 Tool 4: Generation of the computational domain .. 90
7.4.1 Introduction .. 90
7.4.2 The Van Nalta domain ... 91
7.4.3 Purpose .. 93

7.5 Conclusion .. 95
8. CFD Calculations ... 97

8.1 Single cube: 60 x 60 x 60 m ... 98
8.1.1 Grid generation ... 98
8.1.2 Setting up the calculation in Fluent ... 100
8.1.3 Results ... 103

8.2 Two cubes .. 105
8.3 Faculty of Electrical Engineering ... 107
8.4 Tetrahedral cells .. 109

8.4.1 Apartment building .. 110
8.4.2 Faculty of Architecture ... 112
8.4.3 Office building ... 114

8.5 Part of the Delft University of Technology district ... 115
8.6 Comparison with the building codes .. 119

8.6.1 Calculation of the wind load according to the Dutch building code 119
8.6.2 Calculation of the wind load according to the Eurocode 123
8.6.3 Wind load according to CFD calculations .. 127
8.6.4 Comparison ... 128
8.6.5 Conclusion .. 128

8.7 Conclusions .. 131
8.7.1 General .. 131
8.7.2 Convergence ... 132

Master’s thesis

xv

8.7.3 Grid quality ... 132
8.7.4 Local grid adaption .. 134
8.7.5 Boundary conditions .. 134
8.7.6 Wind direction ... 134
8.7.7 Van Nalta domain .. 135

9. Thesis Evaluation .. 137
9.1 The Virtual Wind Tunnel .. 137
9.2 Design Tools ... 138

9.2.1 Modeling the environment .. 138
9.2.2 Simplification of the building of interest ... 140
9.2.3 Generation of the computational domain ... 147

9.3 CFD calculations .. 148
9.3.1 Introduction .. 148
9.3.2 Results ... 148

9.4 Future of the Virtual Wind Tunnel ... 149
10. Conclusions and recommendations .. 151

10.1 Introduction .. 151
10.2 Conclusions ... 151

10.2.1 Developed Design Tools ... 151
10.2.2 CFD calculations .. 152

10.3 Recommendations ... 153
10.3.1 Design Tools ... 153
10.3.2 CFD calculations .. 154

References .. 155
Appendix A: Additional information ... 159

A.1 Fluids in motion ... 159
A.2 Turbulence Modeling .. 165
A.3 Historical overview of GIS ... 166
A.4 Recent developments in GIS ... 167
A.5 Industry Foundation Classes ... 168

Appendix B: TDN-Code ... 169
Appendix C: Script to generate the 2D research area .. 173
Appendix D: Script to generate the 3D model .. 179
Appendix E: Script Rotating Lines .. 185
Appendix F: Script Rectangle ... 191
Appendix G: Script Rotated Square .. 201
Appendix H: Script Preprocessing .. 213
Appendix I: Script Rotating Lines for Meshes .. 217
Appendix J: Script Curve simplification ... 225
Appendix K: Script Loft... 229
Appendix L: Script to generate the journal file .. 231
Appendix M: Steady calculation procedure in Fluent ... 243
Appendix N: Step by step guide - grid generation methods 253

N.1 Hexahedral elements .. 253
N.2 Tetrahedral elements – Automatic meshing .. 255

Appendix O: Least Squares method ... 257

Master’s thesis

xvi

Master’s thesis

1

1. Introduction

The goal of this thesis is to make a significant contribution to the creation of a set of design
tools that enables the structural engineer to quickly setup a CFD calculation to predict the
wind loads on a building or structure in the early design stage. The design tools must be able
to compare several alternative geometries in a relatively short time to optimize the design
with respect to wind loads. This chapter will give the problem definition and the research goal
of the Master’s thesis project.

1.1 Problem definition

For a long time wind loads were not taken into account in the design of buildings. This was
mainly because of the very large dead weight, low slenderness and still limited height of
these structures. From the 1950’s new and stronger materials were introduced in building
engineering. Structural elements became lighter and more slender, which decreases the
permanent vertical load. As a consequence, wind loads became more important for the
design of high-rise buildings. Research into wind loads on buildings resulted in various design
codes to take the effects of wind into account. These codes were mainly based on standard,
rectangular building shapes and supplied coefficients for estimating pressures on a structure.
However, for more complex building shapes it is not possible to determine the wind load with
the existing codes. Examples of such complex buildings are the Tenerife Opera House by
Santiago Calatrava, given in the left picture of Figure 1.1, and the Guggenheim Museum in
Bilbao by Frank O. Gehry, given in the right picture. Experimental methods like wind tunnel
tests have been developed to gain insight in the flow pattern around complex building
shapes. Nevertheless, these tests are very expensive and time-consuming. This discourages
designers to perform such a test in the early stage of the design process. But it is just this
stage of the process where very important design decisions are made. So, more insight in
wind loads and the flow pattern around a building is desired in the early design process.

Figure 1.1: It is difficult to predict wind loads on complex building shapes (Internet, [14])

Design codes and experimental methods are not fully adequate to provide complete insight in
the wind effects on buildings. Another option to determine the wind loads on buildings is the
use of Computational Fluid Dynamics. Within the framework of wind engineering, CFD can be
described as the numerical calculation of the flow pattern using computational methods. CFD
has become a very suitable tool for analyzing flows for which no analytical solutions are
available. In theory CFD is able to solve the mathematical models up to a desired accuracy
without the limitation of geometry. Changes in the physical model or shape of the object are
relatively easy to perform, what can make CFD a very powerful tool to determine the wind
effects on a building in the early design process. Analysis results can be used to optimize the
design, leading to a more efficient shape or a better structure.

Master’s thesis

2

However, at this moment, CFD is not generally accepted yet for use in wind engineering. This
is mainly because there is still contradiction on the use of CFD to predict wind effects on
buildings and structures. Because there is no general approach for setting up a flow problem,
results of CFD calculations are not widely accepted.

To develop a general approach for CFD in wind engineering, a computational wind tunnel has
been proposed at the Structural Design Lab of Delft University of Technology. The tunnel is
named The Virtual Wind Tunnel (Nalta, [16]) and the goal is an application that can be used
in the early stage of the design process to indicate the wind loads on a building or structure
using CFD. The Virtual Wind Tunnel should enable the structural engineer without much
knowledge of CFD and wind engineering to predict the wind loads and compare alternative
geometries in a relatively short time. The complex process of setting up a CFD simulation has
to be automated as much as possible to enable the structural engineer to perform some quick
calculations. In recent graduation research at the Structural Design Lab a domain has been
developed by Van Nalta [16] and Snijders [23]. The so-called Van Nalta domain shows
promising results for the calculation of the pressure distribution on relatively simple shapes,
like cubes and cylinders. Also the grid generation process is studied extensively, what has
resulted in guidelines to create proper grids for various shapes.

However, an important problem is the current capacity of desktop computers. As the Virtual
Wind Tunnel is intended to be a design tool for structural engineers, most users will have a
normal desktop computer to perform the calculations. Nevertheless, the computational
demand for complex CFD calculations is very high and the limited power influences the ability
to make accurate computations. Even for the relatively simple shapes that were investigated
in the Van Nalta domain, the maximum number of cells that can be used to generate a grid
was quickly consumed. However, following the current trend of the development in computer
resources, increasing the computation processing speed and memory capacity continuously,
these problems will certainly overcome in the nearby future.

To simulate the flow pattern around complex objects and especially built environments, the
computer power is still too small. Nevertheless, anticipating on future developments, methods
to automate the process of CFD to enable engineers to quickly set up some calculations still
have to be developed. In the other graduation studies, only the wind effects on single objects
were investigated. But the flow pattern around a building highly depends on its surroundings.
One of the goals of the Virtual Wind Tunnel could be to simulate the flow pattern around a
building that is placed in a built environment. To create a realistic model of the surroundings
of the building of interest, a method has to be developed that can generate a 3D model of
the existing built environment. The actual situation of the surroundings can be obtained from
GIS technology. However, modeling complex building geometry for CFD calculations is still a
major bottleneck. CAD models of a building usually contain lots of little details, like door
handles, casings and railings. They are not relevant to determine the global wind loads on a
structure, but will increase the calculation time of the CFD software tremendously due to the
grid complexity. A method that simplifies the geometry of a building and neglect small details
would be very valuable. Nevertheless, CAD data is usually not directly suited for use in CFD
and problems arise in the translation of information from CAD data to CFD software. Only the
surfaces that come in direct contact with the flow are required for CFD analysis. Calculations
of the flow pattern around a building require airtight building models. If edges, surfaces and
solids do not meet and gaps are introduced, wind can flow through the model and problems
will arise as the meshing algorithms require a perfect model description as input.

Master’s thesis

3

1.2 Research goal

The complex process of CFD requires a thoroughly knowledge of wind engineering, fluid
dynamics and numerical analysis of the user. Setting up the geometry for CFD calculations of
complex buildings in a built environment is also a very difficult process. To enable structural
engineers without much knowledge of fluid dynamics to predict wind loads and compare
alternative geometries in a relatively short time, the process of CFD and the input of
geometry has to be simplified as much as possible. With a manageable toolbox containing a
set of design tools, the process of setting up the geometry and performing the simulations
can be automated.

Anticipating on future developments of computer resources, the goal of this Master’s thesis is
to develop a set of design tools that enables the structural engineer to quickly setup a CFD
calculation. With this toolbox the wind loads on a building or structure can be predicted and
several geometries can be compared in a relatively short time without much interference of
the user. The focus of the design tools lies on the creation and preparation of the geometry
and the setup of the CFD calculations. To predict the wind loads on a building that is placed
in a built environment, the first design tools will generate a 3D model of the built
environment for a certain location using GIS technology. To limit the calculation time of the
CFD software, another design tool will simplify the various CAD models of the building of
interest by reducing the input of the building design. Because the inner geometry that is also
modeled frequently is not relevant to determine the wind loads, the design tool will remove
the eventual inner geometry. In case of eventual gaps in the model, the tool will also make
the models airtight. After the simplified building model and the model of the built
environment are joined, it can be translated to the CFD software. Possible problems that
occur in this translation process will be investigated. The model of the research area is then
placed in a computational domain that bounds the flow problem. As the dimensions of this
domain depend on the dimensions of the research area, a final design tool will automatically
create the right computational domain for a certain research area. After the geometry is
setup in the CFD software, the complex process of meshing the geometry will be
investigated. When a general method is developed to mesh the computational domain and
the research area, finally some calculations will be performed for several test cases.

Chapters 2, 3, 4 and 5 discuss the required theory about computational fluid dynamics, wind
engineering, GIS technology and CAD. Additional information about these topics is included in
Appendix A. Chapter 6 gives the strategy for using the design tools to setup the geometry for
a CFD calculation. In Chapter 7 the development of the various tools is discussed extensively.
All developed methods, procedures and scripts originate from own ideas and work, except
where otherwise mentioned. In Chapter 8 several CFD calculations with various building
models are discussed in detail and a comparison is made with the building codes. In Chapter
9 an evaluation is given of this Master’s thesis and in Chapter 10 finally the conclusions and
recommendations are discussed.

Master’s thesis

4

Master’s thesis

5

2. Computational Fluid Dynamics

2.1 Introduction

In many branches of engineering there has to be an understanding of the motion of fluids.
Examples are the aircraft and automobile industries, where the aerodynamics of airplanes
and cars must be determined. One way to obtain this aerodynamic information is the use of
wind tunnel tests. Such tests might consume many hours of preparation and wind tunnel time
and are very expensive. Another method to solve fluid dynamic problems is the use of CFD.

Computational Fluid Dynamics (CFD) can be described as the use of computers to produce
information about the flow pattern in given situations (Shaw, [22]). It is in general a
technique in which equations describing the fluid flow are solved numerically on a computer.
The flow volume is divided in a finite amount of cells in which physical quantities like velocity
and pressure are supposed to be constant. Subsequently the so-called Navier-Stokes
equations are solved iteratively for each cell. To be useful, the results must be a realistic
simulation of the fluid in motion. If the results are realistic depends on the problem being
simulated, the software being used and the skill of the user. Users of CFD must be very
familiar with the flow problem they wish to simulate.

CFD is used in a variety of industrial sectors nowadays, including aerospace, defense,
automotive, physics, engineering and computer science. For example, predictions can be
made of the following:
 Lift and drag of an aircraft
 Flames in burners
 Air flow inside internal combustion engines
 Dispersion of pollutants into rivers and oceans
 Flow of cooling air inside electrical equipment

In this chapter the process of CFD is discussed extensively. In Appendix A.1 the theory
behind fluids in motion is included as background information. Appendix A.2 includes some
aspects of turbulence modeling.

Figure 2.1: CFD simulation of a Formula 1 car in Fluent (Internet, [9])

Master’s thesis

6

2.2 The process of CFD

A fluid flow problem can be described by a series of partial differential equations that govern
the flow. These partial differential equations can be discretized by replacing the derivates in
the equations by discretized algebraic forms. In this way a numerical analogue of the partial
differential equations is built that can be solved to obtain the flow variables at discrete points.
The boundary conditions and the initial conditions that are applied determine the flow
problem. To produce a solution from the numerical analogue many equations have to be
calculated, which requires a broad number of calculations to be carried out. Computers are
the ideal tool for this.

The essential steps in a CFD analysis, which are formulated by Arif [3], are presented in
Figure 2.2. The analysis starts with the description of the geometry. The geometry can be
generated by a CAD program or with a pre-processor. This is a special program within the
CFD software to generate geometry. The second step is the generation of a grid or mesh on
the geometry on which the Navier-Stokes equations can be discretized. The third step is the
discretization of the partial differential equations. These continuous equations can be
approximated with a system of algebraic equations for the variables at discrete locations. In
the following step a turbulence model has to be selected to takes turbulence into account. In
the next steps the flow properties are specified. The boundary conditions, initial conditions
and some fluid properties specify the flow problem that has to be solved. Once the calculation
is setup, the numerical solution can be computed using a solver. The set of approximating
equations is solved numerically for the flow field variables at each point or cell. Finding a
solution is an iterative process. The calculation is repeated until a satisfactory solution is
found. In the last step the results have to be analyzed to see if the solution is physically
reasonable. Using graphs or contour plots, information about the flow parameters can be
presented in a visual form.

Figure 2.2: Essential steps in a CFD analysis

In most CFD packages three main pieces of software are provided to assist the user in
carrying out the analysis process. These pieces are:
 A pre-processor
 A solver
 A post-processor

All tasks that take place before the calculation of the numerical solution is started are called
pre-processing. The most difficult task in the pre-processing phase is the generation of the
grid or mesh. Before solving the numerical equations, all relevant data that has been defined
by the pre-processor must be given to the solver. When the equations are finally solved, a
large number of variables are calculated in the flow domain. Computer graphics is often the
only way to analyze the data written by the solver program. The post-processing program is
used to display the results.

In the following paragraphs the process of CFD is discussed more extensively.

Geometry
description

Grid
generation

Discretization Turbulence
model

Boundary
conditions

Flow
specification

Numerical
solution

Analysis of
the results

Master’s thesis

7

2.2.1 Geometry description

To simulate the flow around an object a model has to be built of the object. This model can
be drawn in a CAD program or with a pre-processor. For simple models the pre-processor can
be used, but for complex geometries it is recommended to use a CAD program or object-
oriented and parametric modelers. The geometry is defined by the coordinates of the object
as well as any outer boundaries. Only the exterior surfaces of the objects to be modeled are
needed, because only these surfaces come in contact with the flow. Interior surfaces do not
have to be drawn and can be deleted. The amount of desired detail will have consequences
for the complexity and amount of computer power required to obtain reliable results.

2.2.2 Grid generation

One of the most important steps in the CFD process is the generation of a grid or mesh
throughout the flow domain. When a partial differential equation is set to be solved, a
subdivision of the continuous domain into discrete volumes where the variables are calculated
is required. This discretization defines a computational grid and the process to perform this
discretization is called grid generation. The results of the CFD analysis highly depend on the
grid type and amount of cells used. The accuracy increases when more cells are used.
However, more cells lead to longer computation time and computer resources limit the
amount of available cells. The grid generation phase is the phase of the analysis process that
determines the total time required to obtain results from a calculation too a large extent.
(Thompson et all, [24]). The grid itself however will be influenced by the used discretization
method.

Grids can be divided into two types: structured grids and unstructured grids. In a structured
grid all elements are similar in shape and placed in a regular way. The grid is relatively easy
to generate and has a clear, transparent structure. For complex geometries it is however very
difficult to generate a mesh using a structured grid. In an unstructured grid, the elements
vary in topology and size. There is no global structure of the elements. It is more difficult to
generate these grids, but as the complexity of the geometry increases, the grid quality
remains high. However, the structure of the grid is less transparent than a structured grid
and the computational demand is higher. Unstructured grids are more suitable for local mesh
adaptation, where the grid is refined only where necessary. Figure 2.3 and Figure 2.4 give
examples of structured and unstructured grids.

Figure 2.3: Examples of structured grids (Apsley, [2])

Figure 2.4: Examples of unstructured grids (Apsley, [2])

Master’s thesis

8

Grids are made of cells that can have any shape, but in practice the shape of the cell is
similar to one of the basic shapes given in Figure 2.5.

Figure 2.5: Common used cell shapes for meshing 3D geometry (Snijders, [23])

The grid should be more refined in those regions where high gradients of the flow occur. The
difficulty now is to know where these regions are and how fine the grid should be. The
positions of the critical areas can be assumed manually to build a grid taking this into
account. Doing a simulation with such a grid may help to determine the actual positions of
the regions of high flow gradients. This technique is known as adaptive meshing (Shaw,
[22]). Depending on the software used, the grid refinement can also be done automatically,
where the program decides where to refine the grid.

2.2.3 Discretization

To obtain a numerical solution of partial differential equations, discretization of the equations
is required. The continuous partial differential equations describing the fluid flow (the Navier-
Stokes equations) are approximated by a system of discrete algebraic equations (Thompson
et all, [24]). These equations are then solved numerically. In the continuous domain each
flow variable is defined at every point in the domain. In the discrete domain each flow
variable is defined only at discrete locations, which are determined by the applied grid.

Figure 2.6: Continuous vs discrete domain (Internet, [9])

A variety of techniques can be used to perform the discretization. Three of the major
methods are the finite difference method, the finite element method and the finite volume
method. In this thesis the CFD software Fluent will be used. Fluent uses the finite volume
method as discretization method.

Finite Volume Method (FVM)
The finite volume method is the most popular numerical discretization method used in CFD.
The solution domain is subdivided into a finite number of small control volumes by a grid,
which defines the boundaries of the control volumes. The governing partial differential
equations are converted into a numerical form by integration over the control volume. The
variability in the flow is balanced through the volume and considered to be constant in each
volume. The solution variables of a volume are stored at the center of the volumes in so-
called computational nodes. The finite volume method is not limited to a grid type; both
structured and unstructured grids can be used. The finite volume method is explained in
Figure 2.7.

Master’s thesis

9

Figure 2.7: Discretization according to the Finite Volume Method (Apsley, [2])

2.2.4 Selection of a turbulence model

Depending on the investigated flow problem and available computer capacity, an appropriate
choice needs to be made for the turbulence model. Distinction is made between the Large
Eddy Simulation (LES) method and the Reynolds Averaged Navier-Stokes (RANS) method
with its Reynolds stress transport models and a large number of variants of the ĸ-ε models.
RANS modeling is much faster than LES but it is assumed to be unfit when high accuracy is
needed. Additional information about turbulence modeling is given in Appendix A.2.

2.2.5 Boundary conditions and flow specification

The next step in the CFD process is to setup the boundary conditions of the variables to be
calculated. Examples of boundary conditions are inlet, outlet, wall and far-field conditions.
Figure 2.8 shows an example of the boundary conditions for the two-dimensional flow over a
block. At the inlet, fluid enters the domain and usually a prescribed velocity is used as
boundary condition. At the outlet, fluid leaves the domain and a prescribed pressure is usually
used as boundary condition. For viscous fluids, usually the no-slip boundary condition is used
for walls, which means that there is no velocity right at the surface. Far away from the block
the fluid flows with a free-stream velocity V∞.

Figure 2.8: Boundary conditions for a 2D flow over a block (Nalta, [16])

The boundary conditions, together with the initial conditions and some fluid properties such
as velocity, density and viscosity, specify the actual flow problem that is to be solved. The
number and type of boundary conditions must accord with the governing equations of the
flow. The initial conditions specify the number of iterations required to get a solution.

Master’s thesis

10

2.2.6 Calculation of the numerical solution

In this step the set of approximating equations are solved numerically in an iterative process
for the flow field variables at each point or cell. The calculation is repeated until a solution
with a sufficient and user-defined accuracy is found. There are many methods available to
calculate the numerical solution, ranging from fast and relatively inaccurate calculations to
slow and very accurate calculations.

2.2.7 Analysis of the results

Huge amount of data are produced after the simulation. The results have to be checked to
see if the solution is physically reasonable. To interpret the results, information about the
flow parameters can be presented in a visual form like graphs or contour plots.

Figure 2.9: Visual representation of CFD results (Snijders, [23])

2.3 Fluent

There are several programs available for numerical flow calculations. They range from very
specialized programs, which solve problems within strict boundaries, to extensive commercial
packages that solve the complete Navier-Stokes equations in three dimensions. The CFD
software that will be used during this Master’s thesis is Fluent. Fluent is a commercial CFD
software package developed by Fluent, Inc. (Internet, [9]) that enables engineers and
designers to simulate fluid flow, heat and mass transfer and lots of related phenomena like
turbulence.

As in most commercial CFD packages the finite volume method is used in Fluent to discretize
the partial differential equations. The domain can be discretized with the structured as well as
the unstructured grid technology. The grid can consist of elements in a variety of shapes,
from 2D rectangles and triangles to 3D tetrahedrals, prisms and pyramids. These elements
are created using a mesh generation module called Gambit, which is also included in Fluent.
The pre-processor Gambit is based on ACIS geometrical libraries, which uses Non-Uniform
Rational B-Splines (NURBS) to describe geometry. It can also be used to read CAD files and
adapt the imported geometry for CFD analysis. Fluent’s post-processing tools can be used to
generate meaningful graphics and animations.

In Fluent the Reynolds stress transport models and several versions of the popular ĸ-ε model
are available to deal with turbulence. Also the Large Eddy Simulation (LES) method is
supported, what makes it a very powerful package for wind engineering in the nearby future
considering the increasing computer power and decrease in computer cost.

Master’s thesis

11

3. Wind Engineering

3.1 Introduction

Wind is a natural motion of the air characterized by a direction and velocity. It originates from
the irregular heating of the earth by the sun, which causes differences in air pressure. As a
consequence, large areas with dimensions of some hundreds of kilometers can arise where
the air pressure is relatively high or relatively low. These differences in pressure, together
with the rotation of the earth and friction of the air with the earth’s surface, cause wind. The
air flows from areas with a high air pressure to places with a low air pressure.

Until the second half of the 20th century, wind loads were hardly taken into account in the
structural design of buildings. Because of the very large dead weight of these structures at
that time and the limited height and slenderness, wind loads did not have a significant
influence on the structure. From the 1950’s new and stronger materials were introduced in
building engineering. Structures became lighter and more slender, reducing the member sizes
and their stiffness. Buildings and structures became higher and more sensitive for wind from
now on, which led to more research in wind loads and finally resulted in several design codes
for wind loads on buildings and structures. With these codes it is possible to determine the
wind loads for common building shapes on the basis of various coefficients.

For the simple shapes of the first high-rise buildings, the design codes to determine the wind
load were sufficient. But for more complex building shapes it is not possible to determine the
wind loads with the existing codes. Wind tunnel tests have been introduced to predict the
flow pattern around buildings and structures by experiment. With these tests it is also
possible to determine the wind loads on buildings with complex shapes. The latest technology
to investigate the wind loads is the use of Computational Fluid Dynamics. CFD can form an
alternative for the expensive and time consuming wind tunnel tests and could also be used to
calculate flow problems for the built environment, like pollution dispersion and ventilation.

Figure 3.1: Predicting wind loads on complex buildings can be very difficult (Internet, [8])
 Left picture: Turning Torso in Malmo, Sweden, by Santiago Calatrava
 Right picture: Walt Disney Music Hall, Los Angeles, by Frank O. Gehry

Master’s thesis

12

When wind hits a building, a part of the kinetic energy will be transformed into forces and
pressures on that building. Besides wind direction and velocity the pressure is determined by
the shape of the building and type of landscape. For the calculation of the wind pressure on a
structure the following equation can be used (Cauberg, [6]):

2 21 [/]
2
ρ= ⋅ ⋅ ⋅w pp C U N m (3.1)

Where: ρ = density of the air (1,2 kg/m3)
 Cp = coefficient, depending on the shape of the object
 U = wind velocity

An obstacle like a building or structure in the flow domain influences the flow pattern in the
domain. At the windward side of the building the air is slowed down and a part flows around
and over the building. Because more air has to pass here in the same time, the velocity will
increase. The other part of the incoming air flows down generating a vortex in front of the
building. A lot of wind hindrance will occur in this area. At the top of the windward side of the
building the air separates because of the sharp edge of the roof. This develops a wake at the
leeward side of the building. The wind profile of the wake with high turbulence and velocity
gradients is very divergent from the undisturbed profile. As a consequence of the flow pattern
around a building an area with relatively high pressure will develop at the windward side of
the building. At the leeward side of the building an area with relatively low pressure will
develop where the air velocity is usually low.

Figure 3.2: Flow pattern around a high-rise building (Cauberg, [6])

Master’s thesis

13

The wind velocity varies in time. The Beaufort scale divides the wind velocity in 12 classes,
varying from windless until hurricane velocities, and gives a relation between wind velocity
and wind strength (Cauberg, [6]). In a wind rose the expected wind strength over a year is
given for the various wind directions using charts. The length of a chart reflects the frequency
in which the wind strength will occur. The frequency zones are given by circles with an
increasing chance of occurrence. The thickness of a chart gives the wind force on Beaufort
scale. Figure 3.3 gives the wind rose of Vlissingen for a year. It is to be expected that most of
the wind comes from the south-west direction.

Figure 3.3: Wind rose of Vlissingen for a year (Internet, [7])

Master’s thesis

14

3.2 Wind standards

Wind forces are very important for the structural design of high-rise buildings. The size of
these forces grows exponentially with the height. Fluctuations in wind velocity result in a
dynamic load on a building. Stiffness and mass determine the influence of the wind loads on
the construction. Because of the development of light and flexible structural materials the
influence of wind is increasing. Building codes have been the most commonly used design
tool for structural engineers. The codes are based on wind studies, are easy to use and can
be applied to a wide range of cases. Most countries have their own building code. However,
the European Eurocode is being developed at the moment to replace several national codes.
In this paragraph the procedure to calculate the wind load according to both the Dutch code
and the Eurocode is summarized.

3.2.1 Dutch code

Wind is considered first as a load case in the ‘Technische Grondslagen voor bouwconstructies‘
(TGB) from 1955. In the TGB 1955 the wind loads are determined by multiplying a pressure
with coefficients for under- or overpressure. TGB 1972 uses statistic variables for the first
time. The pressure is derived from an hour-average wind velocity, exceeded once in five
years with a chance of 50%. The current Dutch codes for the calculation of wind forces on
buildings and structures are NEN 6700 and NEN 6702. The code NEN 6700 gives the basis
demands for the structural safety of buildings and structures, during the construction phase
as well as the utilization phase. The code NEN 6702 gives a calculation model and form
factors to determine the wind loads. These form factors are derived from wind tunnel tests
and relate the shape of a building with the amount of wind pressure. However, for complex
building shapes the tables of NEN 6702 are often not valuable. For those cases wind tunnel
tests will be necessary to determine the wind loads.

Some important aspects of NEN 6702 towards wind loads are (Geurts, [10]):
 The Netherlands are divided in three geographic areas with a representative, constant

wind velocity, based on the variation of wind velocity and geographical differences;
Distinction is made between built and unbuilt surroundings, leading to six standardized
wind climates

 The basis for the wind velocity is an extreme hour-average velocity that will be exceeded
once in 12,5 years. On average only one of the four wind directions is important for a
construction. Therefore the reference period for wind loads is shortened from 50 years
according to the TGB 1972 to 12,5 years.

 Figures are developed for the form factors, where distinction is made in form factors for
an entire building and local form factors

Figure 3.4: The Netherlands can be divided in three wind areas (NNI, [18])

Master’s thesis

15

NEN 6702 prescribes the wind load on a building or structure with the following equations:

1rep w dim indexp p C C φ= ⋅ ⋅ ⋅ (3.2)

= ⋅index repF A p (3.3)

Where: prep: representative wind pressure
 pw: extreme wind pressure, depending on the global and local wind

climate
Cdim: relation between wind gusts and building dimensions
Cindex: form factor for pressure, suction and friction

 Φ1: dynamic factor
 Findex: representative wind force on a surface
 A: surface exposed to the representative wind pressure

Global wind climate
The extreme wind pressure pw in the above mentioned equation is influenced by the global
wind climate. This climate can be described on the basis of observations of meteorological
institutes. According to NEN 6702 [18] the Netherlands can be divided in three areas, where
for each area an extreme hour-average wind velocity is determined with a reference period of
12,5 years.

Local wind climate
The height of the layer in which the flow pattern is influenced by the roughness of the
surface is called the atmospheric boundary layer. It is the layer in which the interaction
between the wind and structures takes place. Above a smooth surface the atmospheric
boundary layer will be smaller than above a city with many high-rise buildings. Within the
boundary layer the wind velocity varies over the height. As can be seen in Figure 3.5, a
different roughness of the terrain leads to a different profile of the boundary layer. The air
velocity at pedestrian level for example will be smaller above a rough surface than above a
smooth surface. As a consequence, higher wind loads will be measured on structures in an
open country than on structures that are placed in a built environment.

Figure 3.5: Wind velocity profile for different terrain roughness (Woudenberg, [29])

The wind pressure pw of Equation (3.2) is on local level influenced by the surroundings. High
above the ground air can move freely due to differences in air pressure. Near the ground the
air is slowed down by the local environment and turbulence is increasing. The influence of the
surroundings on the average wind velocity can be described by the wind velocity profile. The
profile describes the development of the wind velocity over the height. Obstacles on the
surface influence the profile: above a rough surface the air is slowed down more and the
atmospheric boundary layer will be higher.

Master’s thesis

16

Within the atmospheric boundary layer, the variation of the mean wind velocity with the
height can be described by a logarithmic velocity profile. This profile is used in NEN 6702 as
well and can be used up to 150 m. The profile is given by:

()
*

0

lnu z dU z
zκ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (3.4)

Where: u*: friction velocity
 κ: Von Karman constant, which is 0.42
 z: height above the ground
 z0: roughness height of the terrain
 d: displacement length

The friction velocity u* is a measure for the exchange of the horizontal wind velocity from a
high altitude to a low altitude. The roughness height z0 is a factor that represents the
roughness of the ground surface and varies from 0.0002 above sea to 2.0 above cities. The
displacement length d is only used for dense areas, like city centers. In such areas the flow
pattern above buildings and other obstacles in the area has no relation with the flow pattern
between the obstacles. The displacement length defines a fictive ground level from which the
logarithmic profile is valid. In the layer below d the velocity field is undefined and very
turbulent. Figure 3.6 gives the characteristics of the atmospheric boundary layer.

Figure 3.6: Characteristics of the atmospheric boundary layer (Nalta, [16])

Roughness
Obstacles on the earth determine the roughness of the surface. In wind engineering the
various types of landscapes are usually classified in roughness classes. A high roughness class
of 3 or 4 refers to landscapes with many trees and buildings, while a sea surface is classified
as 0. In general it can be said that the rougher the surface, the larger the turbulence will be.
Turbulence can be described as the mean deviance in wind velocity compared to the hour-
average wind velocity (Cauberg, [6]). The turbulence is largest near the surface and is
decreasing with increasing height. In a built environment the wind loads on a specific height
are lower than in an open area. But because of a larger turbulence the dynamic part of the
wind load will be larger in a built environment. In norm tables the extreme wind pressures for
several heights above the ground are prescribed.

Master’s thesis

17

Form factors
To what extent the wind results in forces on a building depends on the shape and dimensions
of the building. They determine the flow pattern around a building and as a consequence the
pressure, suction and friction. NEN 6702 gives form factors for the response of the building.
These factors give the relation between the shape of a building and the total amount of wind
pressure and wind suction on a building. However, most buildings do not satisfy the given
shapes in the norms. For buildings with a shape divergent from the code wind tunnel
research remains the appropriate method to determine the form factors accurately.

In the European norm Eurocode 1 tables are given to take the influence of rounded corners
and the slenderness of a building into account. The slenderness is an important factor that is
not considered for the form factors in the NEN 6702 code. However, the slenderness is very
important for high buildings because it determines to what extent the wind will flow around a
building (Woudenberg, [29]). For high buildings wind tunnel research is a very appropriate
method to obtain wind form factors and wind loads.

Figure 3.7: Form factors for pressure, suction and friction for buildings with a rectangular
 floor plan (NNI, [18])

Master’s thesis

18

3.2.2 Eurocode

In 1990 the European committee initiated to develop a uniform, technical code for the design
of buildings and infrastructures. This Eurocode will replace the several national codes of the
EU member states. It provides common structural design rules for the design of structures
and their components. The Eurocode is a collection of the following codes (NNI, [17]):

 Eurocode 0: general rules for calculations according to the limit states method
 Eurocode 1: gives design values for load, such as dead load, fire, snow and wind

There are special codes for the various building materials:

 Eurocode 2: concrete structures
 Eurocode 3: steel structures
 Eurocode 4: composite structures
 Eurocode 5: timber structures
 Eurocode 6: masonry structures
 Eurocode 9: aluminium structures

And finally there are two separate codes for:

 Eurocode 7: soil mechanics
 Eurocode 8: seismic loads

In 2006 these Eurocode parts will be published and in 2010 they are expected to be fully
implemented to replace all national codes. For the calculation of wind loads the Eurocode 1
part 1-4 is used. The code includes design rules for whole structures, parts of a structure and
elements attached to a structure. It is applicable to buildings and structures with heights up
to 200 m.

In the Eurocode, the wind action is represented by a simplified set of pressures and forces
whose effects are equivalent to the extreme effects of the turbulent wind. The Eurocode
prescribes the wind load on a building or structure with the following equation:

()w ref e e d f refF q c z c c A= ⋅ ⋅ ⋅ ⋅ (3.5)

Where: qref: The reference mean velocity pressure
 ce: The exposure coefficient. This coefficient takes the wind profile into
 account
 ze: The reference height. Usually this is the height of the building or
 structure
 cd: This coefficient takes the dynamic effects of the response of the

building or structure into account
 cf: The force coefficient. This coefficient takes the geometry of the
 building or structure into account

Aref: The reference area of the building or structure that is subjected to
the wind

The several factors of this equation are discussed on the following pages.

Master’s thesis

19

The reference mean velocity pressure
The wind velocity and the velocity pressure are in the Eurocode composed of a mean and a
fluctuating component. The mean wind velocity is the characteristic 10 minutes mean wind
velocity at 10m above the ground in the open field, irrespective of wind direction and time of
the year. The wind forces are based on this mean wind profile and depend on the reference
mean velocity pressure:

2

2ref refq vρ
= (3.6)

Where: ρ: the air density
 vref: the reference wind velocity

The reference wind velocity can be calculated from:

,0ref dir season refv c c v= ⋅ ⋅ (3.7)

Where: cdir: the directional factor
 cseason: the season factor
 vref,0: the fundamental value of the reference wind velocity

The reference wind velocity is calculated from a basic value multiplied by factors for the
direction of the wind and the season. The season factor can be used for temporary
structures.

The exposure coefficient
The wind velocity profile is taken into account with the exposure coefficient ce. The exposure
coefficient is defined by a roughness coefficient and a topography coefficient, which all
depend on the reference height ze:

[]2 2() () () 1 2 ()e e r e t e v ec z c z c z gI z= + (3.8)

Where: g: the peak factor with value 3,5
 Iv(ze): the turbulence intensity
 cr(ze): a roughness coefficient
 ct(ze): a topography coefficient

The turbulence intensity is defined as the ratio of the maximum or minimum wind speed and
the mean wind speed at a certain height. The influence of hills and cliffs for a certain mean
wind speed is taken into account by the topography coefficient. The roughness coefficient
takes the roughness of the terrain into account.

Dynamic effects
The effects of the vibrations of the structure due to turbulence are taken into account with
the dynamic factor cd. It is obtained from the following expression:

2 2

2

1 2 ()

1 7 ()
p v e

d

v e

k I z B R
c

I z B

+ ⋅ ⋅ ⋅ +
=

+ ⋅ ⋅
 (3.9)

Master’s thesis

20

Where: kp: the peak factor defined as the ratio of the maximum value of the
 fluctuating part of the response to its standard deviation
 Iv: the turbulence intensity, which depends on the reference height
 B2: the background factor; allows for the lack of full correlation of the

pressure on the structure surface
 R2: the response factor; allows for turbulence in resonance with vibration

The force coefficient
The force coefficient takes the geometry of a building into account. For a rectangular floor
plan it is defined by:

,0f f rc c λψ ψ= ⋅ ⋅ (3.10)

Where: cf,0: the force coefficient of rectangular sections with sharp corners
 ψr: the reduction factor for square sections with rounded corners
 ψλ: the end-effect factor for elements with free-end flow

The various parameters are based on results of wind tunnel tests.

The reference area
The reference area depends on the length and width of the structural element being
considered and can be determined with the following expression:

refA l b= ⋅ (3.11)

Master’s thesis

21

3.3 Wind tunnel tests

For complex buildings that are placed in a diverse built environment it is very hard to judge
the flow pattern beforehand. Wind tunnel tests are therefore often necessary. The current
form factors in NEN 6702 and the Eurocode are also based upon wind tunnel tests. The wind
tunnel is essential for situations where the codes do not foresee. For buildings with a non-
rectangular plan, buildings with rounded edges, complex details and buildings in a complex
environment, the standards do not foresee and wind tunnel research is necessary.

With wind tunnel tests a complex built environment can be investigated by making a scaled
model of the buildings and expose it to wind. The required wind is generated on scale with
ventilators. To develop a velocity profile comparable to the atmospheric boundary layer, the
air is led over a foreland before it reaches the scaled model. The foreland is an area where
the roughness of the terrain in front is simulated. This terrain can be a flat landscape, open
water or a built environment. The roughness of the terrain also influences the amount of
turbulence. Turbulence is generated by blowing over a row of swords and a foreland of
blocks. Figure 3.8 shows the setup of a wind tunnel test with the scaled model at a rotating
platform, a foreland of blocks and a row of swords.

Figure 3.8: Setup of a wind tunnel test (Van der Ven, [28])

In wind tunnel studies most often an area with a radius of 300 m around the building or
region of interest is modeled. By placing the scaled model on a rotating platform all wind
directions can be investigated. The amount of detail required in the model depends on the
purpose of the wind tunnel research. For the determination of forces on the main structure,
small details are less relevant than for the investigation of local forces at fasteners of façade
elements for example.

Master’s thesis

22

During a wind tunnel test all forces have to be determined that can occur during the lifespan
of a building. According to CUR Aanbeveling 103 [27], two measurements have to be carried
out in order to cover future changes of the surroundings that can influence the wind loads on
a building in a negative way. Such a situation can occur when some buildings of the
environment are demolished for example. In the first measurement, all surrounding buildings
are modeled according to the actual situation. In the second measurement, the surrounding
buildings are chopped off to a maximum height of 15 m. The maximum values obtained from
these two measurements are normative.

Figure 3.9: In wind tunnel tests two measurements have to be carried out: one measurement

where the surroundings are modeled as the actual situation and another
measurement where the surrounding buildings are chopped off (Geurts, [11])

For wind tunnel tests the model of the reality must satisfy some modeling rules. In a wind
tunnel, vortexes release at a different location from rounded buildings than in reality. This is
caused by the small Reynolds numbers that are used in wind tunnel tests. Therefore results
of tests with round buildings or rounded corners might not be representative. Another aspect
is ’blocking’ in the wind tunnel. The projected surfaces of the buildings are limited in relation
to the dimensions of the wind tunnel. When the model becomes too large, the velocity of the
air will increase too much due to the smaller distance between the model and the ceiling of
the wind tunnel. Therefore the profile of the tested object might be 5% of the tunnel profile
at maximum. For the visualization of the flow pattern in wind tunnel tests, usage is made of
smoke or fibers. With thermistors the average wind velocity can be determined in a certain
measure point. The wind pressure on buildings and structures can finally be obtained by
static pressure gauges on the model.

Figure 3.10: Visualization of the flow pattern

Master’s thesis

23

3.4 Computational Wind Engineering

3.4.1 Introduction

Computational Fluid Dynamics is in general a technique in which equations describing the
fluid flow are solved numerically on a computer. Computational wind engineering (CWE) is
the application of CFD in wind engineering. Topics of CWE are flows around off-shore
structures, buildings, bridges, towers and effluents dispersion into the environment. Wind
effects were traditionally investigated in wind tunnels. However, with the increasing computer
capacity nowadays, the use of computational fluid mechanics to investigate the wind effects
is growing.

Computational wind engineering is a difficult process because the flow obstacles, the so-
called bluff bodies, often have sharp edges at their corners, where the flow separates. The
flow field around bluff bodies is highly complicated compared to the flow fields traditionally
treated in the field of CFD, such as channel or pipe flows. A very fine grid is required to
analyze these flow fields with high precision.

CWE can be used to investigate the interaction between the wind and a structure. Global
forces and moments can be determined, as well as local forces considering the fastening of
façade elements. The dynamic behaviour of a structure can also be investigated. Besides,
predictions of pollution dispersion around buildings or in city blocks are also important
subjects in CWE. Finally, pedestrian comfort around high-rise buildings can also be
investigated. Strong wind is often observed near the ground around these buildings. Since
pedestrians are hindered considerably by this wind, architectural design to avoid such strong
winds is also an important subject of CWE.

The use of CFD for wind engineering problems has some advantages over the use of wind
tunnel tests. It is possible to calculate various model configurations in a relatively short
amount of time and at low cost. The costs of a wind tunnel test are much higher, what
discourages engineers to perform such a test in the early design phase. Wind tunnel tests are
only performed at the final stage of the design process, to verify the calculations. With CFD
simulations the wind effects on a building or structure can be investigated in an early stage of
the design process. The results of these simulations can be used to optimize the design.
Another advantage is that CFD programs determine all aspects of the fluid field. In every
arbitrary point the velocity, fluid direction, turbulence and pressure can be calculated and
visualized in various ways. An important disadvantage of CFD is that the user needs quite
some much knowledge and insight of fluid dynamics, which the average structural engineer
does not have. The user has to define a lot of parameters and make a lot of choices to setup
a calculation. To verify the calculations it remains necessary to do some wind tunnel tests.

The process of a CWE analysis is more or less the same as a CFD analysis. The process is
only more aimed at buildings and structures. The computational domain is the volume in
which the flow has to be computed. This domain has to be discretized by the computational
mesh which defines the spatial resolution of the numerical solution. The solution of the
discretized equations is gained by iteration. After analyzing the solution some steps might be
repeated if necessary to adapt the solution. Some typical aspects of the CWE process are
discussed further in the next paragraphs.

Master’s thesis

24

3.4.2 Computational domain

Domain size
To examine the wind effects on a building dependently of its surroundings, a CAD model of
the built environment has to be generated. The size of the computational domain depends on
the built area to be investigated and the boundary conditions. The Cost Action C14
workgroup [8] gives recommendations for the size of the computational domain and on the
use of CFD in wind engineering in general. Figure 3.11 gives the recommended size of the
entire computational domain, depending on the maximum height Hmax of a building inside the
built area.

Figure 3.11: Recommended dimensions for a computational domain by the CAC14 workgroup

 (Franke, [8])

The inlet and side boundaries of the domain should be 5 Hmax away from the area to be
investigated. The outlet boundary should be 15 Hmax away to allow flow development, as a
fully developed flow is normally used as a boundary condition at the outlet. The top of the
computational domain should be at least 6 Hmax away from the tallest building to prevent an
artificial acceleration of the flow over this building. The extent of the built area that is
represented in the computational domain may be similar as the built environment in wind
tunnel simulations (Franke, [8]). Most often an area with a radius of 300 m around the
building or region of interest is modeled there.

Details
The central building at which the wind effects are of main interest requires the highest level
of detail. The level of detail depends on the effects being studied. If for example pressures on
the surface of a roof are of interest, details on the roof need to be presented. The level of
detail may be limited by the computational mesh required to resolve the details. In general it
can be said that features larger than 1 m should be presented (Franke, [9]). For individual
buildings the level of detail required depends on the distance from the building of interest.
Buildings further away may be presented as simple blocks.

Master’s thesis

25

Boundary conditions
When investigating the flow over for example an airplane, car or building, the flow equations
are the same. It is the boundary conditions that are defined in the model that determines the
behaviour of the flow. When the further located surroundings of the region of interest are cut
off by the computational domain, the boundary conditions represent the influence of these
cut off surroundings.

3.4.3 Computational grid

The results of the calculations highly depend on the used grid to discretize the computational
domain. The resolution of the grid should be fine enough to capture all important physical
phenomena. In regions where high gradients occur in the flow, the grid should be more
refined. With regard to the shape of the computational cells, hexahedrals are preferred over
tetrahedrals as they lead to smaller errors and better convergence.

Figure 3.12: Unstructured hexahedral meshes for typical building groups (Kim, [14])

3.4.4 Solving the system

The system of algebraic equations is finally solved on a computer using iterative methods to
reach a steady state solution. The solving process starts with an initial guess of the flow
variables after which the variables are recalculated in every iteration. The user has to specify
a permitted error and the iteration process continues until each equation is solved up to this
error. Every solution depends on the grid that is used. The quality of the grid must be high,
especially in the region of interest.

Master’s thesis

26

Master’s thesis

27

4. Geographic Information Systems

4.1 Introduction

Geographic information is information about specific places and objects on the surface of the
earth (Bernhardsen, [1]). This information can be obtained through measurements and
observations or interpreted from data analysis. Geographic information is usually represented
in the form of maps, photos and images. Such a map or image is an effective medium for
presentations and storage of geographical data.

A Geographical Information System (GIS) is a system which can process geographical
information in various ways. It is a computer-based capability for saving, editing and
analyzing geographical data. Compared to maps, GIS has the advantage that data storage
and data presentation is separate. As a result, data may be presented and viewed in various
ways. From a single data source many useful presentations can be created, for example of
buildings, roads, the environment, utilities or property records. Many GIS systems can
integrate data from a wide range of resources, including maps, images, statistical data and
data from computer-aided design (CAD) systems.

A primary purpose of GIS is to analyze the relationships among objects in space. That is why
all data in a GIS are linked to a specific location on the earth’s surface through a system of
coordinates. By using a GIS a wide variety of qualities and characteristics can be attached to
the geographical locations. These characteristics are called attributes and they are the power
of the GIS technology.

GIS is used in many technologies nowadays, including:
 Electronic navigation systems
 Analysis and planning systems for the design of road and transport systems
 Information systems for land ownership and building authority
 Urban planning systems

In this chapter some methods to convert the real world into a GIS model and some GIS
datasets that are used in this thesis are discussed in detail. In Appendix A a historical
overview and some recent developments in GIS technology are included as additional
information.

Figure 4.1: GIS application areas (Internet, [1])

Master’s thesis

28

4.2 Creating a GIS model of the real world

4.2.1 Introduction

The real world is far too complex to model it completely, so only specific areas and
characteristics of interest should be selected for a GIS application. Simplified models of the
real world have to be used to bring it into a GIS.

Figure 4.2: Transformation of the real world into GIS (Bernhardsen, [1])

Maps are graphic representations of the real world. Such a representation is always an
abstraction of reality, as it is impossible to capture all complexity. Topographic maps for
example abstract the real three-dimensional world at a reduced scale on a two-dimensional
paper. Standard topographic maps can show a variety of information, for example roads, land
use, elevation, rivers and boundaries. The objects represented on maps are called features.
These features have a location, a representative shape and a symbol that represents one or
more of its characteristics. With attributes, non-spatial information which describes the
characteristics of a feature can be added to the features. In a GIS, attributes are stored in
tables that can be viewed by selecting the object. There are standard attributes that indicate
the position of the object and connections to other objects. There may also be specific
attributes such as land use and population. Attributes can be used to select certain features
or to perform mathematical calculations.

There is a very wide range of techniques available to obtain the data for a GIS model. They
vary from digitizers which extract spatial information from photographs and maps, to land
survey instruments and very sophisticated global positioning systems (GPS) that use
satellites. However, data collection is by far the most time consuming part of creating a GIS
model and forms the bottleneck of the process. In the next paragraph some techniques to
acquire data for GIS applications are discussed more in detail.

Figure 4.3: Real world data acquisition using satellites (Internet, [4])

Master’s thesis

29

4.2.2 Spatial data acquisition

There are several methods available for entering spatial data into a GIS. Examples are:
 Global Positioning Systems (GPS)
 Remote sensing
 3D laser scanning

Global Positioning Systems (GPS)
A GPS is a set of hardware and software to determine accurate locations on the earth using
signals received from satellites. With GPS, location data and associated attribute data can be
transferred to a GIS. GPS operate by measuring the distances from multiple satellites orbiting
the earth to compute the x, y and z coordinates of the location of a GPS receiver. For an
accurate determination of the receiver location, four satellites are required. The use of more
satellites simply adds confirmation to the location of the receiver. There are 24 satellites in
the total GPS system from which 21 are active. There are 3 reserve satellites in case of
unexpected circumstances. At least five satellites are visible from any location on earth. As
buildings, hills, trees and other objects may block the signal of a satellite, there is usually still
a sufficient amount of satellites available to determine the location of the receiver. For each
satellite the location in space is accurately known. The orbits are carefully planned and
constantly updated by the satellites. For each satellite the receiver can see, the distance to
the receiver is calculated by comparing the time the signal was sent with the time it was
picked up by the receiver. When for four satellites at minimal these distances are known, the
exact location of the receiver can be determined. Examples of GPS equipment that is
currently available are car navigation systems, small hand-held units and mobile telephones.

Remote sensing
In the broadest sense, remote sensing is the measurement of information of an object by a
recording device that is not in physical contact with the object (Internet, [20]). In the context
of GIS technology, remote sensing is the utilization of for example aircrafts and satellites to
gather information about the environment. Without direct contact between the recording
device and the object, some means of transferring information through space must be
utilised. Remote sensing instruments record information about an object by measuring the
object’s transmission of electromagnetic energy from reflecting and radiating surfaces.
Remote sensing is mainly used for earth observations. Using satellites, planes or balloons,
information about the surface of the earth is acquired.

3D laser scanning
A 3D laser scanner is a device that analyzes a real-world object or environment to collect data
of the shape of the object. The scanning device scans the surface of an object with a focused
beam and records the reflected light. The collected data can then be used to construct digital,
three dimensional models for a wide variety of applications. The purpose of the 3D laser
scanner is to create a point cloud on the surface of the object. The points can then be used
to reconstruct the shape of the object into a 3D surface model. For most situations, a single
scan will not produce a complete model of the object. Multiple scans from different directions
are required to obtain information about all sides of the object.

Figure 4.4: Principle of 3D laser scanning (Internet, [4])

Master’s thesis

30

4.3 GIS data structures

In a GIS model the geographical data can be divided into spatial data and attribute data. The
spatial data contain the objects representing the real world, such as buildings, roads and
rivers, and gives the location of these objects. The attribute data contain the characteristics
of these objects and indicate what the object is. The spatial data in GIS models can be
presented in two ways: as raster data in the form of uniform cells, or as vector data in the
form of points, lines and areas. These two data types will be discussed in the following
paragraphs.

4.3.1 Raster data models

The raster model represents the real world through uniform, regular cells. Raster data can be
visualized as a regular grid lying over the terrain, where the area is divided into rows and
columns. The spatial data is therefore not continuous but divided into discrete units. The area
which each cell represents varies from a few meters to kilometers and is known as the
resolution of the grid. Each grid cell contains location coordinates and an attribute value, such
as land use or terrain type. For the description of the terrain type several codes are used. For
example a forest has code 1, a road has code 2 and a house has code 3. Within each cell the
terrain is generalized to be a flat surface of constant elevation.

Figure 4.5: Each grid cell has a code describing the terrain within that cell (Bernhardsen, [1])

The attribute values in a raster model can represent numerous phenomena, for example
codes for topography, urban districts, land use or distances from a given object. Only one
attribute value may be assigned to a single cell, so objects that have several attributes are
therefore represented with a number of raster layers, one for each attribute. Raster
databases may therefore contain hundreds of thematic layers.

Figure 4.6: Objects with several attributes are represented with a number of layers, one for

 each attribute (Bernhardsen, [1])

Master’s thesis

31

Raster data models are usually used in digital imaging, where just the color is recorded for
each cell. There is no distinction between dots that are part of a note or dots that are part of
a line segment for a geometric entity, such as a line or a circle. There are no X and Y values
in the raster data that define where a line starts or where it ends. Files such as TIFF, GIF,
JPEG and BMP are typically raster data formats.

4.3.2 Vector data models

In the vector data model the elements that represent the real world objects are described as
points, lines or polygons. There is a mathematical definition for the parts of the drawing that
represent the object. There are real X and Y values for the geometric entities. An object
shape is represented by dots which are located where the shape of the object changes. The
dots are joined by straight lines. Examples of vector elements are property boundaries for
houses represented as polygons and locations represented as points. Attributes are assigned
directly to the objects. For 3D vector data models, the Boundary representation is the most
used representation. This method is discussed further in Paragraph 5.2.3.

4.3.3 Raster VS vector data models

Raster data models are less accurate than vector data models in defining the spatial location,
as the smallest entity is always a cell, which represents an area and not a coordinate. But it is
more expensive in terms of data storage and computing power (Delaney, [7]).

Figure 4.7: From the Real World to Vector and Raster models (Internet, [5])

Master’s thesis

32

4.4 GIS applications

GIS is used in a wide variety of applications nowadays, varying from navigation systems to
planning systems for the design of roads and urban districts. Many other disciplines can also
benefit from GIS techniques. Two important GIS datasets that will be used during this thesis
are the Top10vector and the Actueel Hoogtebestand Nederland (AHN). The Top10vector
dataset is a digital 2D map of the Netherlands. The AHN is an elevation model of the
Netherlands where the height of the surface and all kinds of objects like buildings and roads
is stored. When these two datasets are linked, a 3D model of a certain region of the
Netherlands can be generated. These models can be used in the Virtual Wind Tunnel to
simulate the flow pattern around a building that is placed in a built environment. The
Top10vector and AHN datasets will be discussed further in the following paragraphs.

4.4.1 Top10vector

As one of the first countries the Netherlands have a very detailed digital topographic map of
the whole country in 2D. This Top10Vector dataset is based on air photography and terrain
exploration and has a scale of 1:10.000 (Internet, [11]). The Top10Vector contains closed
polygons that represent different elements on the earth’s surface, like buildings and roads.
Out of the built-up area the individual buildings are visible. Within the built-up area only
building blocks are visible. The Top10Vector contains the following topographic elements:
 Buildings
 Roads
 Railways
 Vegetation
 Hydrographs
 Relief
 Boundaries between regions

For the Netherlands the dataset is divided in 675 files that correspond to the size of real
topographic maps. The files are available in different formats including DXF, which makes it
very suitable for use in CAD applications.

Figure 4.8: Top10Vector file for the area between Arnhem and Nijmegen (Internet, [12])

Master’s thesis

33

4.4.2 Actueel Hoogtebestand Nederland (AHN)

The Survey Department of the Dutch Ministry of Transport, Public Works and Water
Management (Rijkswaterstaat) has built a detailed elevation model of the Netherlands. The
project was initially meant to provide information for the management of coasts, dykes,
polders and higher-level areas which seem to be drying out. But also for the construction of
infrastructural works the data are of great importance (Internet, [13]). The heights of the
dataset are stored in points that lie on a rectangular grid. The AHN has an average point
density of 1 point per 16 m2 and contains next to information about the ground level, also
elevation data of built areas, dykes and roads.

Figure 4.9: Graphical representation of the AHN dataset (Internet, [13])

The technique used to obtain data for the AHN is called airborne laser altimetry. An airplane
using a laser scanner flies across the area that must be scanned. The plane transmits pulses
of laser light to the ground and measures the time of pulse return. The time span between
transmission and return indicates the relative elevation of the measured point. To determine

the absolute elevation of the plane relative to
NAP, the position of the plane must be known.
Via GPS the location of the plane is determined.
The laser data are checked with reference
measures on a flat surface of approximately one
hectare, frequently a football field. From these
measurements if follows that the height of the
measured points differ 5 cm at average from the
real heights with a standard deviation of 15 cm
(Internet, [13]). The laser scanner does not
measure only terrain surfaces but also objects
like buildings, cars and vegetation. To produce
digital maps of a surface from the scanned data
it is necessary to classify the measured points
and distinguish the points on the ground from
the other points. This process is called filtering
and the result is shown in Figure 4.9. Usually it is
not possible to recognize the difference between
small objects and little fluctuations in height of
the surface automatically. These small objects
have to be filtered manually then.

Figure 4.10: Principle of Airborne Laser
 Altimetry (Internet, [13])

Master’s thesis

34

Master’s thesis

35

5. Computer-Aided Design

5.1 Introduction

Computer Aided Design (CAD) is the use of a wide range of computer-based tools that assist
engineers, architects and designers in their design activities. It is used in a wide range of
applications, from producing designs for buildings, roads and industrial prototypes to
producing plans for electrical supplies. CAD drawings can generally be categorized based on
the engineering discipline they are related to. There are specialized CAD software packages
that are aimed at specific disciplines, but many CAD packages can be used for a wide variety
of disciplines.

Before the computer era the use of paper drawings was the only means of documenting a
design. These drawings took various forms ranging from small handmade sketches to large
sheets of paper many meters long using drafting machines (Schoonmaker, [21]). The overall
format was standardized across entire nations. First commercial applications of CAD were in
automotive and aerospace industry. In those days CAD was limited to producing drawings
similar to hand-drafted drawings. With the rise of computer technology, CAD systems to
generate, edit and store drawings electronically have developed over a number of decades
and they became the standard method for producing drawings. Adapting the design is an
important advantage of CAD systems compared to handmade drawings. Designs can be
scaled, moved or rotated without the need of generating a new drawing. Today CAD is not
limited to drafting and rendering; it ventures into more intellectual areas of designer’s
expertise.

In this chapter various methods to describe geometry in general are dealt with. Several CAD
systems are discussed that are especially developed for the design of buildings. The design
tools that will be developed in this thesis must be able to work with the various types of CAD
models that can be generated with these systems.

Master’s thesis

36

5.2 Form representation

Geometric modeling deals with the mathematical representation of curves, surfaces and solids
that is necessary in the definition of complex physical or engineering objects. The objects of
concern in engineering range from simple mechanical parts to complex objects such as
automobiles, ships, airplanes and buildings. These geometric shapes all have topology and
geometry. Topology describes the relationship between faces, edges and vertices of an object
that does not change when the object is deformed. Geometry describes the exact position of
these faces, edges and vertices and gives shape to the topology.

Figure 5.1: Topology contains the properties of geometric shapes that do not change when
 the shape is deformed. It gives coherence between the points (Tolman, [25])

There are several methods to represent the geometry and topology of an object. The
common method is the use of traditional, technical 2D drawings with cross-sections and
views from different sides. Although these drawings are sufficient, the geometry and topology
can be represented in more advanced ways using 3D modeling:
1) Wire Frame modeling
2) Surface modeling
3) Solid modeling: a. Constructive Solid Geometry

b. Sweeping
c. Boundary representation

These methods will be discussed further in the following paragraphs.

5.2.1 Wire Frame modeling

Wire frame modeling is one of the earliest geometric modeling techniques and is the simplest
way of representing 3D objects. It is constructed using points with 3D coordinates, connected
with straight lines or curves. A wire frame model does not have surfaces; it contains only
points and lines defining the edges of the modeled object.

Figure 5.2: Wire frame representation (Internet, [10])

Master’s thesis

37

5.2.2 Surface modeling

The first extension of the wire frame model is the surface model. It contains surfaces in stead
of points and lines and is used for modeling the shape of curved surfaces, such as shell
structures and terrain models. Complex, double curved surfaces can be represented using B-
Splines or NURBS (Tolman et al, [25]). These techniques will be discussed in Paragraph 5.3.

Figure 5.3: Surface representation (Internet, [10])

Similar to surface modeling, an object can be described with meshes. A mesh is a collection
of vertices and polygons forming faces, which define the shape of an object. The faces are
arranged in such a way that they form the outside surface of the object. Meshes usually
consist of triangles or other simple convex polygons.

5.2.3 Solid modeling

In a solid model the object is defined by a closed boundary. The boundary of the object
separates the interior and exterior of the model. The object is defined by the volume space
within the defined boundary. An advantage of solid modeling is that information like weight,
volume or moment of inertia can be calculated for an object. A number of techniques are
developed to form a solid model, like Constructive Solid Geometry, Sweeping and Boundary
Representation.

Constructive Solid Geometry
The Constructive Solid Geometry (CSG) combines simple geometric primitives to form more
complex solid objects using so-called Boolean operations. Typical geometric primitives are
cones, cylinders, spheres and blocks. Using a Boolean operation, a new solid is constructed
from two intersecting solids. Typical Boolean operations are union, intersection and
difference. Given two sets A and B, its union consists of all points from either A and B. Its
intersection consists of all points in both sets and its difference, for example written as A-B,
consists of all points in A but not in B.

Figure 5.4: Constructive solid representation as a result of subtraction (Internet, [10])

- =

Master’s thesis

38

Sweeping
The geometric shapes that can be built using the Boolean operations on the geometric
primitives are limited. For complex objects it is more efficient to generate the shape using
Sweeping. Sweeping can be carried out in different forms. The most commonly used are
extrusion and revolving. With extrusion an object model can be generated from a 2D cross-
section, given the direction of extrusion and a certain depth. By revolving a 2D cross-section
that is specified by a closed curve around the axis of symmetry, an axially symmetric object
can be formed. The sweeping technique is most convenient for solids with translational or
rotational symmetry.

Figure 5.5: Some shapes are easier to create with sweeping techniques (Internet, 10)

Boundary representation
The most used representation in 3D modeling is the boundary representation. With this
method, an object is represented as a collection of boundary surfaces. The boundary
representation is an extension to the wire frame model by adding surface information to the
model. Due to this surface information the method is very suitable for hidden surface removal
and rendering.

Figure 5.6: Boundary representation by joining the boundary surfaces (Internet, [10])

Master’s thesis

39

5.3 Freeform curves and surfaces

With Non Uniform Rational B-Splines (NURBS) a wide range of curves and surfaces can be
parametrically represented, from straight lines and flat panels to precise circles and complex
curved surfaces (Rogers, [19]). NURBS curves and surfaces are defined by a complex
combination of mathematical equations, formulas and procedures. The development of
NURBS began in the 1950’s when engineers needed a mathematical representation of
freeform surfaces, like car bodies and aircraft wings. Pierre Bézier was one of the pioneers of
the development of NURBS and invented the Bézier curves, the precursors of NURBS. They
are used for curve representation, but are not suited for describing any curve. Bézier curves
were followed by B-spline curves and finally by NURBS, which can be used to describe any
curve. B-spline curves and NURBS are generalizations of the Bézier curves and have become
the standard for describing, constructing and modeling free formed curves and surfaces in
computer aided design and interactive graphics. In this thesis NURBS curves will be used to
simplify a model of the building of interest. This procedure is discussed in Paragraph 7.3.7.

5.3.1 Bézier Curves

Bézier curves are the precursors of NURBS. They are used for curve representation, but are
not suited for describing any curve. A Bézier curve is determined by a control polygon, such
as shown in Figure 5.7. The control polygon is defined by four points, from which two are the
endpoints of the Bézier curve. The point B0 is the origin endpoint. The point B3 is the
destination endpoint. The points B1 and B2 are so called control points and control the path of
the Bézier curve. The curve does not pass through any of the control points; it only passes
through the endpoints with tangent vectors of the same direction as the first and last polygon
spans. Bezier surfaces are surfaces which are described by a set of Bézier curves.

Figure 5.7: A Bézier curve is defined by a control polygon of four points (Rogers, [19])

The parametric Bézier curve function is defined by:

() (),
0

 for 0 1 ; 2 1
n

i n i
i

P t B J t t i n
=

= ≤ ≤ ≤ ≤ +∑ (5.1)

Herein is n the degree of the curve and i the number of control points. The Bézier curves
have at least one more control point than the degree of the curve. Point B=0 refers to the
first point and B=n refers to the last point of the Bézier curve. The term Jn,i(t) in this function
is called the blending function:

(),
! (1)

!()!
i n i

n i
nJ t t t

i n i
−= −

−
 (5.2)

The blending function, also known as the basis function, influences the control points that
form the Bézier curve.

Master’s thesis

40

In summary, the parametric Bézier curve function is built up of three different components:
 Control points:

The control points of a Bézier curve define the vertices of the control polygon and are
given by Bi. The curve follows the shape of the control polygon. By moving the control
points of the polygon, the shape of the Bézier curve can easily be changed. Usually, the
first and the last point of the control polygon are the same as the first and the last point
of the Bézier curve.

 Basis Function:
The basis or blending function Jn,i(t) indicate the influence each control point has on the
shape of the curve on that point. Figure 5.8 gives some cubic Bézier curves with their
blending function. With Bézier curves the blending functions are symmetrical.

 Degree:
Each Bézier curve has an associated degree that controls the smoothness of the curve. A
degree of 1 will produce a straight line between the control points. A higher degree will
result in a smoother curve. The higher the degree of the curve, the more points are
needed to define it.

Figure 5.8: Examples of cubic Bézier curves and their basis function (Rogers, [19])

5.3.2 B-Spline Curves

B-Spline curves are a generalization of the Bézier curve. A spline curve is a sequence of
Bézier curve segments that are connected together end to end to form a single continuous
curve (Sederberg, [20]). The spline curve consists of several subintervals that correspond to
the various Bézier curves of the spline. Each sub endpoint is called a knot. The set of sub
endpoints is called a knot vector. Each subinterval of the spline is influenced by only d control
points.

B-Spline curves can be classified by uniform or non-uniform spacing of the knots. With
uniform spacing B-spline curves the distance between the knots is equal. Non-uniform
spacing B-spline curves have various distances between the knots. The shape of these curves
can vary more than the shape of uniform B-spline curves.

Master’s thesis

41

5.3.3 NURBS

A special form of B-spline curves are the Non-Uniform Rational B-Spline (NURBS) curves. The
curves are non-uniform, so the distance between the knots can vary. Rational B-spline curves
are specified as a ratio between two spline functions:

,

,

()
()

()

n

i i n i
i o

n

i n i
i o

w B J t
P t

w J t

=

=

⋅ ⋅
=

⋅

∑

∑
 (5.3)

Herein is Bi the set of control points and wi the set of weight factors for each control point.
The weighing factors determine the influence of the various control points. So, when the
distance between the knots of a curve varies and the control points are weighted, the curve is
a Non-Uniform Rational B-Spline curve. With NURBS, any shape from a simple line or circle to
the most complex 3D surfaces or solids can accurately be described. By moving the control
points of boundary curves or internal curves, almost any surface can be described. In CAD
and CFD-programs, three-dimensional objects are generally described using NURBS.

Figure 5.9: NURBS surface (Internet, [6])

5.4 Exchange of CAD Data Files

Most CAD file types are binary data files. This means that one can not directly view and
manipulate the data in the file. Files which one can directly view are known as ASCII files.
Most CAD systems have their own file format, custom-made for the particular program. A
major disadvantage is that the files have to be read, written and viewed with the same CAD-
system that created it. Therefore, CAD data files are not directly interchangeable from one
CAD system to another. Neutral file formats have been developed to deal with this file
incompatibility. The format is public domain to some degree and is almost always in ASCII
format. The originating CAD system creates the neutral file after which it can be exchanged
between two systems. The receiving CAD system reads or imports the neutral file. The most
common neutral file formats are DXF, IGES and STEP (Schoonmaker, [21]).

The exchange between a CAD system and Gambit, the Fluent pre-processor, is also based
upon neutral file formats. Gambit is based on the ACIS geometrical libraries, but it can also
import IGES and STEP data files. However, there are some bottlenecks when CAD models are
translated to CFD systems. The ACIS modeling algorithms require a high degree of precision
and accuracy of the model, but the inaccurate way in which most models are drawn leads to
errors and inconsistencies. Therefore, the geometry often needs to be repaired after it is
imported in Gambit.

Master’s thesis

42

5.5 Developments in CAD

In the previous paragraphs the methodology how CAD is used in the traditional CAD systems
is discussed. However, there are some important recent developments in CAD that deserve
some attention. In this paragraph object-oriented and parametric modelers are discussed. In
Appendix A.5 additional information about Industry Foundation Classes is included. The
design tools that are developed in this thesis should support the different types of building
models that originate from the various CAD systems and modelers.

5.5.1 Object-Oriented Modelers

A major disadvantage of the traditional CAD systems is that the models have no meaning for
the computer. The drawings contain lines and points, but the interpretation is done by man.
In the last decade a new technology is developed, called object-oriented modeling (Blaha,
[5]). With this technology a model of the reality is described in terms of objects that are used
in reality, such as walls, columns and girders. The model contains essential characteristics of
these objects and also information about the relationships between the objects. If, for
example, a wall is replaced in the model, the windows, doors and channels in that particular
wall are also replaced automatically. This is very useful in the design process.

The structure of the object-oriented models is based on so-called information models. With
these models information can be modeled that can be interpret by man as well as the
computer. Object-oriented models are a collection of objects that are organized into classes
with common features like attributes and procedures. Attribute values, such as width, height,
length or material, represent properties of the object itself or associations with other objects.
Procedures are operations that the object can perform, such as move or stretch, and describe
the behaviour of objects. The structure of object-oriented models can be represented using a
graphical modeling language. In this case the Unified Modeling Language (UML) will be used
(Internet, [17]).

Figure 5.10: Objects in an object-oriented model

In Figure 5.10 two examples of objects in an object-oriented model are given. The objects
have attribute values, like width and height, and the object door also has two procedures; the
door can be opened or closed. Objects are derived from so-called classes. A class describes
the type of an object. Figure 5.11 gives an example of the class structural element. In a class
the properties of the objects of a certain type are described. The object beam in Figure 5.10
is an instance of the class structural element. Each object has its own value for each
attribute, but shares the attribute names with other instances of the class. Other instances of
the class structural element can be objects like columns or plates for example.

Figure 5.11: Class in an object-oriented model

Master’s thesis

43

One of the powerful tools of object-oriented models is the ability of hierarchical classification
and inheritance. Attributes and operations can be shared among classes based on a
hierarchical relationship. A so-called superclass has general characteristics that subclasses
inherit. Each subclass inherits all features of its superclass and adds its own unique features.
Figure 5.12 gives an example of inheritance. The subclasses beam and column inherit the
attributes width, height, length, weight and material of the superclass structural element. The
subclasses can add their own attributes, like bending moment or axial force.

Figure 5.12: The subclasses Beam and Column inherit attributes from a superclass

The examples in the preceding pictures can be extended to form an entire room. Figure 5.13
gives a model of a bathroom that is enclosed by walls, a ceiling and a floor. The bathroom
contains a toilet, shower, bath tub and a wash basin.

Figure 5.13: UML model of a bathroom (Kerklaan, [13])

Master’s thesis

44

Figure 5.14 shows a class model of an entire house. The house can have several rooms, like
a hall, kitchen and living room, and each room has its own orientation. The rooms are
separated by one or more dividing elements, like floors, walls or a roof. The dividing elements
can have cavities with a door or window. The house can also have a garden and it is built on
a foundation. With this class model several instances for different house designs can be
made.

Figure 5.14: UML model of a house (Kerklaan, [13])

An important advantage of object-oriented modeling is the transparent structure and relative
simplicity of the models. The above discussed method of object-oriented modeling, which is
explained with the graphical modeling language UML, is often used in the next generation
architectural and structural CAD systems. Figure 5.15 shows cross-sections of simple
instances of the class model of the house, generated in ArchiCAD (Internet, [18]). All objects,
structure or furniture, have sense for the computer; they are not only points and lines. The
computer recognizes the various elements. By replacing an element, all accompanying
elements are also replaced.

Figure 5.15: Instances of the class House (Kerklaan, [13])

Master’s thesis

45

5.5.2 Parametric modelers

Some other modern CAD systems have the ability to create parametric models. In the original
CAD systems, coordinate-based geometry is used to create graphic entities. Editing these
entities is difficult and can easily lead to errors. In a parametric model, each entity, such as a
line, arc or Boolean primitive, has parameters associated with it. These parameters control
the geometric properties of the entity, such as the length, width and height or radius. They
also control the location of the entities within the model. By changing some parameters, the
model can quickly be adapted. Within some parametric modelers also equations can be added
to the models. These equations can be used to construct relationships between the
parameters. This is very useful when a certain parameter depends on the values of others.

A parametric modeler is also aware of the characteristics of components and the association
between them. It maintains constant relationships between elements as the model is
manipulated. A door in a wall for example maintains its relationship with the wall when the
wall is replaced. This is also the case in object-oriented modeling.

Examples of parametric objects in Building Engineering are prefab elements, façade elements
or hollow core slabs. Although the composition of these elements can be quite complicated,
there are only a couple of parameters required to describe the element. Buildings are often
unique products that are constructed with standard, serial manufactured elements. Because
parametric modeling is very suitable for designing with standard elements, it is very useful for
Building Engineering.

5.6 Conclusion

In this chapter various types of CAD models are discussed. The traditional CAD models
consist of points, lines, surfaces and solids and have no meaning for the computer. The next
generation CAD systems work with advanced object-oriented models and parametric models
and do have sense for the computer. The design tools that are developed in this thesis should
support the different types of building models that originate from the various CAD systems.
For use in the Virtual Wind Tunnel, it also has to be possible to exchange the different CAD
models with the CFD software. Chapter 7 deals with this problem.

Master’s thesis

46

Master’s thesis

47

6. Thesis approach

The theory discussed in the previous chapters will be used to develop the various design tools
to setup the geometry for CFD calculations. In this chapter an overview of the options to
determine the wind loads will be given first, just as the current state of the Virtual Wind
Tunnel. Then the purpose of the design tools and their contribution to the Virtual Wind
Tunnel is given. Finally the strategy of the various tools to setup the geometry will be given.

6.1 Wind load determination

In Figure 6.1 an overview is given of the options to determine the wind loads on a building or
structure. Calculations according to the building code and wind tunnel studies are generally
applied methods and their results are widely accepted. As there is still contradiction on the
use of CFD in wind engineering, CFD results are not generally accepted yet. The Virtual Wind
Tunnel is therefore proposed to develop a general approach for setting up a flow problem. In
recent graduation studies a computational domain is developed in which the CFD calculations
can be performed. Some recommendations of these studies are used in this thesis to develop
the various design tools. The scheme is discussed more extensively on the next page.

Figure 6.1: Options to determine the wind loads and the purpose of the Virtual Wind Tunnel

Wind load determination

Building code

 Limited to simple
building shapes

Wind tunnel studies Comp. Fluid Dynamics

 Give reliable results
for complex buildings

 Expensive
 Time consuming

 Solves mathematical
models up to a
desired accuracy

 Applicable in the
early design stage

 Suitable for shape
optimization with
respect to wind loads

The Virtual Wind Tunnel

 Development of a general approach for
CFD in wind engineering

 Application to indicate the wind loads in the
early stage of the design process

Recent graduation studies Recommendations Thesis contribution

 Development of the
Van Nalta domain

 The domain shows
promising results for
pressure distributions
on simple shapes

 The definition of
building geometry
needs to be improved

 Simplification of the
geometry to eliminate
small details would
be very valuable

 The domain should
be tested for multiple
objects

 Development of a set
of design tools to
quickly setup the
geometry for CFD
calculations

 The toolbox enables
the comparison of
alternative geometries
in a relatively short
period

Master’s thesis

48

Until now the structural engineer has to rely on the building code or real wind tunnel studies
to determine the wind loads on a building or structure. As the Dutch building code NEN 6702
and the Eurocode are limited to simple shapes, real wind tunnel tests are necessary to
determine the wind effects on complex building shapes. Although these studies give reliable
results for situations where the codes do not foresee, designers are discouraged to perform
such a study in the early design process as they are very expensive and time-consuming. A
third option to determine the wind loads on a building or structure could be the use of
Computational Fluid Dynamics. In other industrial sectors CFD has become a very suitable
tool for analyzing flow problems for which no analytical solution is available. CFD can solve
the mathematical models up to a desired accuracy and changes in the geometry are relatively
easy to perform. This can make CFD a very powerful tool to determine the wind effects in the
early design process. Shape optimization with respect to wind loads could be possible then.

However, as there is still contradiction on the use of CFD in wind engineering, results of CFD
calculations are not widely accepted yet. To develop a general approach for CFD in wind
engineering, a computational wind tunnel has been proposed at the Structural Design Lab of
Delft University of Technology. The goal of the so-called Virtual Wind Tunnel is an application
that can be used in the early stage of the design process to determine the wind loads. In the
recent graduation studies by Van Nalta [16] and Snijders [23] a computational domain has
been developed that shows promising results for the pressure distribution on simple shapes,
like cubes and cylinders. However, for more complex building geometry the computational
demand seems too high for the current desktop computers. Nevertheless, anticipating on
future developments of computer resources, there are still some fields that require further
research. From the recent graduation studies it is concluded that the definition of geometry
has to be improved. The conversion of a detailed CAD model of a building to a useful CFD
model seems to be a major problem that seriously affects the applicability of the Virtual Wind
Tunnel. To perform parameter studies and to improve the design, alternative geometries
must be compared. Methods that are able to automatically create the geometry could save
valuable time. Finally it is concluded that the computational domain should be tested for more
complex geometry and for an environment that contains a number of buildings. In the recent
studies only single objects of a simple shape were studied. The consequences of placing more
complex or several building shapes in the domain should be examined.

From the conclusions and recommendations of the recent graduation studies it appears that
certain tools to setup the geometry for CFD calculations are desired. The design tools that are
developed in this thesis are to a large extent able to automatically generate the building
geometry. With the toolbox it will be possible to setup a CFD calculation and compare several
alternative geometries in a relatively short time. This makes shape optimization with respect
to wind loads possible. As less interference of the structural engineer is required, valuable
time will be saved as well. The purpose of the various design tools and their order in the
geometry generating process is discussed in the next paragraphs.

Master’s thesis

49

6.2 Approach for the generation of geometry

During this Master’s thesis several design tools will be developed to generate the geometry
for CFD calculations. Looking at the entire CFD process, the tools concentrate on the first
step, the description of geometry. In the previous graduation studies by Van Nalta [16] and
Snijders [23] some other steps of the CFD process are investigated and the results of these
studies will be used in this thesis to perform some CFD calculations. In Chapter 8 the results
of some calculations for several test cases will be discussed.

Figure 6.2: The design tools concentrate on the first step of the CFD process

In Figure 6.3 a general approach for the generation of building geometry for CFD calculations
is given. The straight orange boxes represent the models or datasets from which the required
geometry can be generated. The blue diamonds represent the procedures that have to be
carried out to adapt the various models. The yellow straight boxes finally represent the
results that follow from the various procedures. As the flow pattern around a building is
influenced by its surroundings, it can be desired to take the environment into account in the
calculations. Next to a model of the building of interest, a 3D model of the environment is
required then as well. However, at the moment there are hardly any useable 3D models of a
certain area available and a method has to be developed to generate such models. Examples
of data from which the 3D models of the environment can be constructed are GIS datasets,
separate building models or 3D scans of a certain area or building. Next to a model of the
environment, a 3D CAD model of the building of interest is required as well. As calculations
for global wind load determination do not require highly detailed building models, the CAD
models can be simplified by neglecting small details to quicken the calculation process. The
simplified model of the building of interest can then be joined with the 3D model of the
environment to create an integrated model of the research area. The next step is to mesh the
model to be able to perform a CFD calculation. In Paragraph 6.3 the strategy of the various
design tools and their position in the geometry generation approach is discussed in detail.

Figure 6.3: General approach for the generation of building geometry

Geometry
description

Grid
generation

Discretization Turbulence
model

Boundary
conditions

Flow
specification

Numerical
solution

Analysis of
the results

Master’s thesis

50

6.3 Strategy of the design tools

With the design tools that will be developed in this thesis, three types of geometry can be
generated. The first design tools can be used to generate a 3D model of the environment for
a certain area. Another design tool can be used to simplify the geometry of the building of
interest and to remove little details. Joining the results of these tools gives an integrated
model of the research area with a simplified model of the building of interest, surrounded by
the buildings of the environment. A final design tool can be used to create the computational
domain in which the CFD calculations are performed. In Figure 6.4 the strategy of the various
design tools to generate the geometry for a CFD calculation is given, according to the general
approach as discussed in Paragraph 6.2. The rounded green boxes represent the various
tools and give their order in the total process. With the design tools the calculations to predict
the wind loads on a building or structure can be setup in a relatively short time and
alternative geometries can be compared without much interference of the user. This would
make shape optimization with respect to wind loads possible. The purpose of the various
tools is discussed more extensively in the rest of this paragraph; the development process of
the tools is discussed in Chapter 7.

Figure 6.4: Strategy of the various design tools to setup the geometry for CFD calculations

Master’s thesis

51

Modeling the environment
GIS technology offers two datasets for the Netherlands that can be used to generate a 3D
model of a certain area. The Top10Vector dataset provides a digital topographic map of the
Netherlands in 2D which is composed of closed polygons that represent various objects on
the earth’s surface. Such objects are for example buildings, roads, water and vegetation. The
other dataset is the Actueel Hoogtebestand Nederland (AHN), which provides an elevation
model of the Netherlands. In this dataset the height of the country is stored on a regular grid
with a density of one point per 16 m2, where each point represents the height of that
particular location. Joining the two datasets gives a 2D digital topographic map for a certain
area with the accompanying height information.

Because the amount of built environment that has to be taken into account for the CFD
calculations is limited, the first design tool can be used to create a restricted 2D research area
from the Top10Vector dataset. For real wind tunnel studies a research area with a radius of
300 m around the building of interest seems sufficient. Buildings further away do not have a
significant influence anymore on the flow pattern around the central building. For the CFD
calculations the extent of built area that is represented will initially be similar as for real wind
tunnel studies. By assigning the center location of the building of interest and the radius of
the research area, the first design tool will be able to create a bounded 2D research area with
height information that originates from the AHN dataset.

With the second design tool a 3D model of the environment can be generated by extruding
the various elements of the 2D research area over their concerning height. The extrusion
heights are derived from the AHN dataset for that particular area. Within the generated 3D
model of the environment, the model of the building of interest can be placed to create an
integrated 3D model of the research area. With this model it is possible to take the influence
of the surroundings into account in the calculation of the wind loads on the building of
interest.

Simplification of the building of interest
To determine the wind loads on the building of interest, a CAD model of the building is
required. Nowadays these models usually originate from traditional CAD or object-oriented
systems. However, CAD models of a certain building often contain lots of information that are
not relevant to determine the global wind loads. Little details have hardly any influence on
the wind effects, but a very complex grid is required to mesh all these small details. This
increases the calculation time of the CFD software considerably. Inner geometry is also not
relevant as only the surfaces that come in direct contact with the flow are necessary for CFD
analysis. Nevertheless, deriving just the exterior surfaces of a building model is very hard as
façades for example are usually constructed from several elements, like bricks, window-
frames, glass and awnings. It is not possible to subtract a single surface from the façade
then. A final aspect is that building models have to be fully airtight for CFD analysis. Drawing
inaccuracies can introduce small gaps through which air can flow into the building, which is
off course not permitted.

The purpose of the third design tool is to simplify the building of interest by wrapping an
airtight, fitting surface around the model. The wrapped surface replaces all internal and
external geometry and excludes small details. It is only this wrapped surface model that will
be used for the CFD calculations. The procedure to wrap a surface around the building model
consists of several steps. First enclosing curves are generated around the model at different
height levels. Several methods will be developed to create these curves. Detailed façades can
result in highly fluctuating enclosing curves, which can be simplified by fitting a NURBS curve
through it. Finally a surface can be lofted through the curves that wraps the original building
model.

Master’s thesis

52

As discussed in Paragraph 5.5, recent developments in CAD have resulted in new
technologies, like object-oriented and parametric modeling systems. As architects and
structural engineers work with these various systems nowadays, the design tool to simplify
the building of interest must support the different models that originate from the various CAD
systems. To quicken the simplification process, the CAD building models can be filtered first
by manually deleting some inner geometry that is not relevant to determine the global wind
loads. One can filter a building model on element size or on element type for example. As
most models are constructed in several layers to distinguish the various building elements,
the irrelevant parts can be removed by manually deleting the elements of a specific layer.

The simplified model of the building of interest and the 3D model of the surrounding buildings
together will form an integrated 3D model of the research area. All procedures to setup this
area with the various design tools will be executed in the 3D CAD environment Rhinoceros
(Internet, [1]). As both the model of the environment and the simplified building model are
generated in Rhinoceros, it is the intention to manually place the building model in the 3D
model of the environment. However, the Top10Vector and AHN datasets originate from GIS
technology and all data correspond to the global coordinate system. As building models are
usually generated in a local coordinate system, both models use different systems to define
the coordinates. When the models are joined, they are placed at different locations and some
operations are required to move the building model to the right place in the model of the
environment. Although it will not be developed in this thesis, an additional design tool could
be generated that links the local coordinate system with the global coordinate system. When
the user knows the global coordinates in the model of the environment where the building of
interest has to arise, a design tool should be able to place the building model with the right
orientation at the desired location.

Generation of the computational domain
The last design tool that will be developed can be used to generate the computational domain
in which the calculations are performed. The domain must be large enough to avoid that the
flow pattern at the boundaries of the domain is influenced by the buildings in the research
area. The Van Nalta domain (Nalta, [16]), which is developed at the Structural Design Lab of
Delft University of Technology, forms the base for the computational domain that is used in
this thesis. The Van Nalta domain was developed to investigate the wind effects on a cube
with dimensions of 60x60x60 m3. However, for calculations with a research area containing
several building models, the dimensions of the original domain are not sufficient. For each
calculation the domain has to be adapted, as the dimensions depend on the maximum height
of the buildings in the research area and the radius of the research area.

The purpose of the fourth design tool is to create the computational domain, depending on
the dimensions of the research area. The domain is divided in two parts, a wind environment
and a building environment. In the building environment the model of the research area will
be placed and this part of the domain has to be meshed manually. The wind environment
contains the regions around the building environment and will be meshed automatically
during the generation of the domain. The structure of the Van Nalta domain is discussed
more extensively in Paragraph 7.4. After the entire domain is meshed and boundary zones
are defined, the calculation can be setup in Fluent. The guidelines that were developed in the
previous graduation studies will be used for this procedure. The results of some calculations
with models that are generated with the various design tools are discussed in Chapter 8. By
going through the entire CFD process it will be investigated if the various design tools work
for CFD applications. Comparing the results of a CFD calculation with the Dutch building code
or the Eurocode would be very interesting then.

Master’s thesis

53

7. Tools to setup the geometry for CFD calculations

In this chapter the design tools to setup the geometry for CFD calculations are discussed in
detail. The first and second tools to generate a 3D model for a certain area are demonstrated
for a part of the Delft University of Technology district. For the third tool that simplifies the
model of interest, several methods are developed. These methods are discussed extensively
and explained on the basis of some simple models. The fourth tool can be used to generate
the computational domain for a certain research area, depending on the dimensions of that
area. The Van Nalta domain, which was already developed at the Structural Design Lab,
forms the base for the generation of the domain. All developed procedures, methods and
scripts originate from own ideas and work. Only the method that directly finds an intersection
between a mesh object and a line is developed with some outer help. This method is then
implemented in the own developed methods that are discussed in Paragraph 7.3.

7.1 Tool 1: Generation of the 2D research area

7.1.1 Purpose

The flow pattern around a building is strongly influenced by its surroundings. That is why the
surroundings are of great importance for the CFD calculation. The amount of built
environment that has to be taken into account can be limited. In real wind tunnel studies a
circular area with a radius of 300 m around the building of interest is usually modeled
(Franke, [8]). Buildings further away have no influence of concern on the flow pattern around
the region of interest. In accordance to real wind tunnel tests, the extent of built area that is
represented in the CFD calculations will initially be similar.

Information about the built environment can be obtained from GIS technology. But until now
there are no useable 3D models of certain regions of the Netherlands available. However, as
mentioned in Chapter 4, research is done to create a digital topographic map of the whole
country in 2D. Besides, a detailed elevation model of the Netherlands is built where the
height of the ground level, built areas, dykes, rivers and roads are modeled. With these two
models it should be possible to create a 3D model of the built environment for a certain area.

The purpose of the first design tool is to generate a 2D research area from the Top10Vector
dataset for use in the Virtual Wind Tunnel. When the user specifies a certain location of the
building of interest, the design tool should be able to automatically create a circular research
area with a certain radius around the central building. All objects outside this area can be
removed, only the inner objects will remain. The 3D CAD environment Rhinoceros is applied
to create the tool. Rhinoceros is able to read both the digital map of the Netherlands and the
elevation model of the country. Furthermore, it is possible to script with Rhinoceros, what
makes it a very suitable environment to create the design tool. For scripting, Rhinoceros uses
a specialized version of Microsoft’s Visual Basic language, called Rhinoceros Visual Basic. This
version adds over 200 methods to the native Visual Basic language, which enables the
programmer to work with specialized geometry, like meshes and NURBS curves and surfaces.

7.1.2 GIS data

The datasets that are used to generate the 3D model of the built environment are the
Top10Vector and the AHN. These datasets are obtained in DXF format from research institute
OTB in Delft. The Top10Vector dataset contains a map of the southern part of Delft at scale
1:10.000. The AHN dataset contains the heights of the surface and all kind of objects for a
part of the Delft University of Technology district. The heights are stored in points that lie on
a regular grid with a point density of 1 point per 16 m2.

Master’s thesis

54

A 2D model of the university district, where the two datasets are joined together, is shown in
Figure 7.1. Figure 7.2 gives a closer view of the district to show the rectangular grid of points
of the AHN that lies over the Top10Vector dataset.

Figure 7.1: 2D model of the University of Delft district; Top10Vector and AHN together

Figure 7.2: Close-up of the district near the faculty of Electrical Engineering

The points itself of the AHN dataset have no height, they all lie on a plane with zero elevation
in z-direction. The height of the area they represent is stored in the layer of the points. Each
point has its own layer, where the name of the layer corresponds to the concerned height.

Master’s thesis

55

The Top10Vector is a vector data model that is composed of only closed polygons that
represent the various elements on the earth’s surface. To distinguish these elements there is
a distinction in layers of the polygons. Every element type has its own layer with a unique
code, wherein all polygons are subdivided. There are for example separate layers for roads,
buildings and vegetation. The several layers can be turned on and off separately. Appendix B
gives a list of all layers in the Top10Vector dataset, the so-called TDN code (Internet, [2]).

7.1.3 Explanation of the tool

Before running the script, the user has to open both the Top10Vector and AHN datasets in
Rhinoceros. When the script is loaded, the user is asked for the radius of the research area.
This is 300 m by default, but the user is able to give any radius. After entering the desired
radius the user is asked to pick the center location where the building of interest will arise.
The user can do this by simply mouse clicking on a certain location in the map. After this the
script will first turn off all layers in the Top10Vector dataset that do not represent any
building type. The purpose is to create a 3D model of the buildings inside the research area
only. Elements like roads, rivers or vegetation are not modeled, because this would
complicate the grid generation process considerably. In a further phase of the script a flat
ground surface will therefore be created that corresponds to the size of the research area.

When the script has turned off the various layers, a circular area around the center location
of the building of interest will be created with the entered radius. The script will now check
which polygons representing the built environment and which height points lie at the outside
of the circular area. These will be deleted then. When a polygon crosses the boundary of the
area, the polygon will be kept. Initially it was intended to trim the polygons at the boundary,
where the part at the outside of the circular area would be deleted. However, scripting this
procedure appeared to be very complicated. Besides, when a polygon is trimmed at the
boundary, only a part of the building would be modeled then. This does not correspond with
the reality and it also involves an abrupt change of the built environment at the boundary.
Therefore it is decided to keep the complete building when it is located at the boundary of
the circular area. To check if a polygon lies outside the research area, a Rhinoceros command
is used that returns all control points of a polygon. For each control point it will be checked if
its distance to the center location of the research area is larger or smaller than the user-
defined radius of the research area. The mathematics for this procedure are:

2 2

() ()
() ()

() ()

x x

y y

x control point center location
y control point center location

distance x y radius

Δ = −
Δ = −

= Δ + Δ <

 (7.1)

If the distance for one or more control points of the polygon is smaller than the radius, the
polygon lies completely or partly in the research area. This polygon must remain then. When
the distance of all control points is larger than the radius, the polygon lies completely outside
the research area. Subsequently, the script checks which height points that lie in the research
area also lie in a building polygon. A special plug-in for Rhinoceros is used for this procedure,
which automatically finds all points that are enclosed by a certain polygon. All height points
that lie in the research area and are enclosed by a building polygon are kept; the remaining
points are deleted. Because the polygons that cross the boundary of the circular area are
kept, the actual research area is larger than the original area. That is why the script finally
deletes the original circle and creates a new circle that fits all polygons. Figure 7.3 gives the
result of the first tool for a part of the Delft University of Technology district. All polygons and
height points at the outside of the research area are deleted. Within the research area, only
the points that contain the height of the remaining building polygons are kept.

Master’s thesis

56

The variables which the user has to specify are summarized in Table 7.1.

Variable User specified value
Radius of the research area
Center location of the building of interest

Table 7.1: Variables to specify when running the script of the first design tool

Figure 7.3: Result of the first tool: A 2D model of the research area with the necessary
 height points lying at the inside of the polygons

As can be seen in Figure 7.3, there are no height points at the top side of the upper
polygons. This is caused by the relatively small amount of available height data of the
university district. However, the method seems to work properly. When in the nearby future
the Top10Vector and AHN datasets are available for other areas, the method will also be
suitable to generate a research area from these datasets. This of course on condition that the
datasets are received in the same format; that means the heights in the AHN dataset have to
be stored in the layer of the various points. Because all polygons that cross the boundary of
the research area are kept, the actual research area is larger. The script draws a new circle
with a larger radius that fits all polygons. The center location of this new research area
corresponds to the user-specified center location of the building of interest. In this way the
center location of the building remains the center of the research area. The whole model is
then moved from the center location of the research area to the origin of the coordinate
system. As the computational domain that will be constructed around the research area to
perform the CFD calculations is also generated around the origin, the model of the research
area is directly in the right place when it is imported in the domain. Finally the radius of the
research area is given to the user. The radius is required to determine the dimensions of the
domain. In Appendix C the first tool is discussed extensively on the basis of the written script.

Figure 7.4: The tool finally gives the radius of the research area

Master’s thesis

57

7.2 Tool 2: Extrusion of buildings inside the research area

7.2.1 Purpose

With the first design tool a 2D model of the region of interest is generated. The buildings
inside the research area are represented as polygons. These polygons enclose several height
points that contain information about the elevation height of the building that is represented
by the polygon. For use in the Virtual Wind Tunnel a 3D model of the region of interest is
required. So, the purpose of the second design tool is to generate an elevated model from
the 2D model that is created by the first design tool. The script of the second design tool is
again written in the Rhinoceros Visual Basic language.

As mentioned in Chapter 3 two measurements have to be carried out during a real wind
tunnel test: one measurement where the surrounding buildings are modeled as the actual
situation and a second measurement where the surrounding buildings are chopped off to a
maximum height of 15 m. The maximum values obtained from these measurements are
normative. The user of the Virtual Wind Tunnel must also be able to do these two
measurements. The second design tool will therefore be able to extrude the buildings inside
the research area over both the actual height and, if a building is higher than 15 m, over the
truncated height.

7.2.2 Explanation of the tool

Before running the script of the second design tool, the user first has to open the 2D model
of the research area in Rhinoceros. When the script is loaded, the user is asked to choose the
extrusion height of the surroundings. The buildings can be extruded over their full height,
over a truncated height if a building is higher than 15 m and over no height at all. With the
last option the user is also able to simulate the flow pattern around a building without
modeling the built environment. After an extrusion method is chosen, the script checks for all
polygons in the model which height points are located in the area surrounded by a polygon. A
special Rhinoceros plug-in is used to automatically determine which points are enclosed by
the polygon. The layers of these points contain the height over which the concerned polygon
has to be extruded. The script determines then the average height of all points that are
enclosed by the polygon and extrudes the polygon over this averaged height. However, due
to inaccuracies in the AHN dataset, some height points differ considerably from the real
height. The divergences originate from for example inaccuracies of the laser scanning
equipment. The dataset also contains blunders that are caused by disturbing objects on the
earth’s surface, like vegetation, water and mobile objects. Figure 7.5 shows some correct and
divergent height points that lie in the polygon of the faculty of Electrical Engineering.

Figure 7.5: Correct and divergent height points in the faculty of Electrical Engineering polygon

Master’s thesis

58

The correct height of the building is about 89 m, but there are points of 9,39 m and even
-0,62 m. By taking the median height of all points as extrusion height in stead of the average
height, the divergent height points can be neglected. As the median is the middle of a
distribution, the list of height values for a certain polygon has to be arranged first from the
lowest value to the highest value. Sorting the list is easily done in Rhinoceros with one simple
command. If a certain polygon contains an uneven number of height values, the median is
just the middle value of the sorted list. If there is an even number of height values of a
certain polygon, the median is the average of the two middle values of the list. In Figure 7.6
the values of all height points in the faculty of Electrical Engineering polygon are sorted and
represented in a graph. The median of the values is 88 m and corresponds to the middle
point of the sorted height points.

Figure 7.6: Median of the height values of the faculty of Electrical Engineering polygon

When the polygon is extruded over the median height, the result is a closed solid with the
shape of the underlying polygon. If the user has chosen the option to chop off the buildings
that are higher than 15 m, the script checks if the averaged height of the points is larger than
15 m. If so, the concerned polygon is extruded over 15 m. Smaller buildings are just extruded
over their actual height.

When all buildings are extruded, the script finally extrudes the circular ground plane that was
created by the first design tool. The circle is extruded over a constant height and forms a flat
ground surface that corresponds to the size of the research area. Finally the script informs
the user about the maximum height over which a polygon is extruded. This corresponds to
the highest surrounding building in the research area. The maximum height of surrounding
buildings and the building of interest determines the size of the computational domain that
will be used for the CFD calculations. In Paragraph 7.4 the generation of the computational
domain is discussed further. Figure 7.8 on the next page shows the result of the second
design tool for a part of the Delft University of Technology district.

Figure 7.7: The tool finally gives the maximum height of the surrounding buildings in the
 research area

Uneven number of height values:

1
2

thnMedian value of list+⎛ ⎞= ⎜ ⎟
⎝ ⎠

Even number of height values:

(
) / 2
Average value below median

value above median
= +

Master’s thesis

59

Figure 7.8: Result of the second design tool: A 3D model of the research area with a flat,

 circular ground surface

The 3D model of the research area can be saved in a wide variety of formats, so it can be
used in many applications. To investigate the wind forces and pressures on a new building,
the user can manually add a 3D CAD model of the building of interest into the model of the
research area. This can be done in Rhinoceros, but when the modeled area is saved in the
right format, it should be possible to do it in other CAD environments as well. Adding a new
building to the research area is not definitely necessary. The model could also be used to
investigate the wind effects on an existing built environment, for example to determine the
most suitable location for a specific new building. The user could also use the 3D model to
investigate the effects for the surrounding buildings when a particular building in the research
area is removed. Finally, the model could also be used as input for scaled model
manufacturers to create a real scaled model of a certain area. These models could for
example be used for real wind tunnel research.

In Appendix D the second design tool is discussed extensively on the basis of the written
script. The variables which the user has to specify are summarized in Table 7.2.

Variable User specified value
Extrusion method:
 - Extrusion over the full height
 - Extrusion over the truncated height
 - No extrusion at all

Table 7.2: Variables to specify when running the script of the second design tool

Master’s thesis

60

7.2.3 Points of concern

Although the second design tool seems to work properly, there are some points of concern.
The first problem is that an entire building is represented by only one polygon. When a
building consists of several building parts with a different height, the polygon is extruded over
one height, which is the average of all building parts. The left picture of Figure 7.9 shows the
extruded faculty of Civil Engineering. In reality the building consists of several parts with their
own height. The lecture halls for example are about 9 m high, the Stevin labs about 12 m and
the main building about 33 m. However, because the building is represented as one polygon,
it is extruded over the average height of all building parts, which is 12,5 m.

Figure 7.9: all building parts of Civil Engineering extruded over the average height (left)
 all building parts of Civil Engineering extruded over their concerning height (right)

There seems to be methods available that solve these problems. For the points of the AHN
dataset a very complicated algorithm can recognize a large change in height. It seems
possible to create a new polygon automatically around the divergent height points. These
new polygons could be extruded over the corresponding height then. However, due to the
relative coarse point density of the AHN dataset, the shape of these new polygons will
probably not exactly match the real shape of the building parts. With more height points per
m2 a more accurate result could be obtained. A better method seems to manually create
polygons in the Top10Vector dataset for areas with divergent height points and separate
these from the original polygons. The different building parts could then be extruded over
their concerning height. In the right picture of Figure 7.9 this method is implemented for the
faculty of Civil Engineering. As all building parts are extruded over different heights, the
model describes reality much better. However, a thoroughly knowledge of the buildings in the
environment is necessary for this method, which is usually not the case.

Another aspect is that only the polygons that represent buildings are extruded. All other
polygons are turned off, so roads, water and vegetation for example are not modeled. In
stead of these elements, a flat ground surface is modeled to simplify the grid generation
process. A complex surface with lots of small height differences would cause a very complex
grid, which results in less cells being available for modeling the primary buildings. For use in a
design application a very high accuracy of the ground surface might not be that necessary.
However, trees for example could still be modeled. If for example a certain tree form is
modeled, it can be placed in the model of the research area at the concerning locations that
follow from the tree layers in the Top10Vector dataset. With the elevation data that follow
from the AHN dataset for these locations, the tree models could be scaled to the right
dimensions. In this way the influence of large vegetation can be taken into account in the
model of the research area. This option could be a useful extension of the second design tool.

Main building Stevin labs

Lecture halls

Master’s thesis

61

A final point of concern is that still no slope surfaces like roofs can be modeled. All polygons
are extruded straight up and have a flat top side. Other surfaces, like for example the slope
underside of the Aula Congress Centre of the Delft University of Technology can not be
modeled as well. The building is represented as a solid block with straight walls. However, as
the models of the environment are used in a design application, it might not be that
necessary for now to have a very high accuracy of the surrounding buildings. At GIS
technology, research is done at the moment to develop more accurate and airtight 3D models
of certain environments. If these methods come widely available in the future, more accurate
models of the built environment can be generated for use in the Virtual Wind Tunnel.
However, one must keep in mind that the purpose of the Virtual Wind Tunnel is a design
application with which the global wind forces can be calculated as an indication. Highly
detailed models of the environment are therefore not that necessary.

Figure 7.10: Slope surfaces can not be modeled with the current design tools (Internet, [15])

Master’s thesis

62

7.3 Tool 3: Simplification of the building of interest

7.3.1 Purpose

CAD models of a building usually contain lots of information that are not relevant to
determine the global wind loads on a structure. Modeling all little details, like window frames,
door handles and railings will cause a very complex grid that increases the calculation time of
the CFD software tremendously. For CFD analysis only the surfaces that come in direct
contact with the flow are necessary. But most building models also contain the interior
structures and several furniture objects in high detail. These objects are certainly not relevant
to determine the wind loads. A method that automatically removes the interior geometry and
simplifies the external geometry to a certain degree by neglecting small details would be very
valuable as this can save a lot of calculation time. For meshing, also a lot of cells can be
saved when not all little details are modeled. This is also valuable, as the amount of cells
that can be used is limited due to the actual computer capacities. Meshing large building
models that are placed in a built environment can therefore be very difficult.

Figure 7.11: Highly detailed external and internal geometry in CAD models (Internet, [18])

For CFD analysis the provided input models have to be airtight, meaning that all lines and
surfaces have to connect exactly. However, this is not always the case as edges, surfaces and
solids do not always meet in a CAD model of a building design. These gaps are generally
introduced by inaccuracies of the drawers and give problems with the grid generation as the
meshing algorithms require a perfect model description as input. Gaps in a model could also
cause air flowing through the building, which is of course not permitted. By wrapping a
surface around the building model an airtight model could be created that is very suitable for
CFD simulations. If the shape of the model is followed to some degree by the wrapped
surface, a simplified building model can be generated that excludes all little details.

The purpose of the third design tool is to simplify the external geometry of the building of
interest by wrapping a fitting surface around the model. The wrapped surface heals eventual
gaps, which makes the model airtight, and replaces the external and internal geometry of the
building. It is only this wrapped surface that will be used for the CFD analysis. The following
paragraphs discuss four methods that have been developed to create the wrapped surface.
The methods are again scripted in the Rhino Visual Basic language and are based on finding
the most outer points of the model for different height levels. If for a certain level the outer
points are found, a polygon can be generated through the points, which encloses the model
at that level. If this process is repeated for the full height of the building, where the level of
concern is elevated each time over a certain distance, the model is enclosed by an amount of
polygons. A surface can then be generated through these polygons, which wraps the model.
For all three methods the process is divided in several parts. First the enclosing polygons for
the several height levels are generated. When the model is highly detailed this will lead to
very fluctuating polygons. To simplify these curves and get rid of little details, a smooth
NURBS curve can be fitted through the fluctuating curve. Finally a surface can be generated
through the enclosing curves that wraps the model.

Master’s thesis

63

7.3.2 Rotating Lines method

The first method to generate the enclosing curves around a model is called Rotating Lines.
The method is based on finding the outer points of the model. The method is first developed
in 2D and later extended to 3D. When the building model is opened in Rhinoceros and the
script is loaded, the user is asked to pick the center location of the model with the mouse.
From this location, lines will be drawn with a user-specified length. For each line it will be
checked if there is an intersection with the various elements of the model. The script
recognizes intersections with lines, surfaces and solids. If there is more than one intersection
for a certain line, the script will search for the intersection point with the largest distance
from the center location of the model. At this location the script adds a point to the model.
This procedure is now repeated for the next line, where each new line will be rotated over a
certain angle around the center location of the model. The user has to specify an amount of
parts from which the rotation angle can be calculated. If, for example, the amount of parts is
90, the angle over which the lines will be rotated is 360/90 = 4 degrees. The following
pictures explain the method on the basis of a very simple 2D model.

Figure 7.12: Rotating Lines method; 2D example

In Figure 7.12 a simple model that consists of rectangular shapes is given. The method starts
with drawing a line from the user-specified center location of the model, with a user-specified
length in the north direction. The length of the line must be higher than the largest distance
between any point of the model and the center location. Else the line won’t reach these
points. The script uses some Rhinoceros commands that automatically determine the
intersection between a line element and other lines, surfaces or solids. The distance between
the intersection point and the user-defined center location of the building is then calculated.

2 2

() ()
() ()

() ()

x x

y y

x intersection point center location
y intersection point center location

distance x y

Δ = −
Δ = −

= Δ + Δ

 (7.2)

For a certain line element, a point is added to the model at the intersection with the largest
distance to the center location of the building. The procedure is repeated for the next line,
which is rotated around the center location. In this example the amount of parts that is
specified is 360, what means that the rotation angle is 1 degree. So, for each degree the
most outer point of the model will be found. When the lines are finally rotated over 360
degrees, the outer points in all directions are found. By adding a polyline through these
points and removing the inner geometry, the model is enclosed by a surrounded curve. The
result is shown in the right picture of Figure 7.12.

Master’s thesis

64

The procedure can now be extended to the third dimension. The level at which the outer
points are determined is raised each time in order to generate the enclosing curves at
different heights. When this is done for the full height of the building, a surface can be lofted
through the various curves. The lofting process however is a separate method and will be
discussed in Paragraph 7.3.8. Figure 7.13 explains the Rotating Lines method for a simple 3D
model.

Figure 7.13: Rotating Lines method; 3D example

In Figure 7.13 a 3D model is given, based on the 2D model of Figure 7.12. The model
consists of surfaces and solids. After loading the script, the user is again asked to pick the
center location of the model. He is also asked for the length of the rotating lines and the
amount of parts for which the outer points have to be determined. Because the script now
works in three dimensions, the user is also asked for the height of the building and the step
size over which the concerning level has to be elevated. Finally the user is asked for the
height where the script has to start. Usually this is the bottom of the model. In the middle
picture of Figure 7.13 some already generated enclosing curves can be seen. The total height
of the model is four units; the step size is 0.25 units. When for all steps the outer points are
found and the curves are generated, a lofted surface can finally be generated with the Loft
method that is discussed later. The result is shown in the right picture. All underlying model
parts are removed, what is left is a hollow surface model. The variables which the user has to
specify are summarized in Table 7.3.

Variable User specified value
Center location of the model of interest
Length of the rotating lines
Amount of parts to determine the outer points for
Height of the model
Step size to elevate the level of concern
Starting height of the script

Table 7.3: Variables to specify when running the script of the Rotating Lines method

The method also seems to work properly on more complicated models. However, complex
building models will also contain more detail. As a consequence, the enclosing curves are not
smooth anymore. To simplify the fluctuating curves and get rid of the little details, special
fitting algorithms can be used. In Paragraph 7.3.7 the NURBS fitting technique is discussed
that can be used to simplify the enclosing curves.

In Appendix E the Rotating Lines method for 3D models is discussed extensively on the basis
of the written script.

Master’s thesis

65

7.3.3 Rectangle method

Another method that is developed to find the outer points of a model is a method called
Rectangle. A disadvantage of the Rotating Lines method is that the distance between the
outer points increases as the distance between the boundaries of the model and the center
location of the model increases. For very large models with a rectangular shape, the shape of
the enclosing curve will differ from the real shape. This phenomenon can best be
demonstrated with an example.

Figure 7.14: Disadvantage of the Rotating Lines method for large models: when a curve is
 generated through the points, the curve differs from the original model

As a consequence of the rotation of the line, the distance between the outer points increases
when the intersection locations are further away from the center location. When a polyline is
created through these outer points, the enclosing curve will differ at the corner points from
the original model. A method that deals with this problem is the Rectangle method.

The Rectangle method is also based on finding the outer points of a model by the intersection
of a line with the various elements of the model. In stead of lines that rotate around a center
location, a rectangle that is drawn by the user and encloses the model will now be used as
basis for the lines. Starting from the lower left corner of the rectangle, a line will be created
to the upper left corner of the drawn rectangle. After having checked if there is an
intersection with the model elements, the line will be moved to the right over a user-specified
distance. For this new location of the line it will again be checked if there is an intersection
with the various elements. For all intersection points of a certain line element the distances
are compared and the minimum and maximum values are derived. At these locations points
are added to the model then. This process is repeated until the line element is finally arrived
at the right side of the rectangle. The procedure now continues with a line that is created
from the lower left to the lower right corner of the drawn rectangle. After having checked if
there are intersections with the model elements, the line is moved upwards over the same
user-specified distance. This process continues until the line is finally arrived at the top side
of the rectangle. The method is explained with pictures on the following page on the basis of
the simple 2D model.

Master’s thesis

66

Figure 7.15: Rectangle method; 2D example

In Figure 7.15 the simple 2D model is given again. When the script is loaded, the user is first
asked to draw a rectangle around the model. Then a line is created from the lower left corner
of the rectangle to the upper left corner. The script checks if there are intersections between
the line and the model parts and, in case of several intersections, automatically places a point
at the nearest and most far away intersection location from the bottom of the rectangle. The
next line that is drawn is moved to the right over the user-specified distance. When the line is
finally arrived at the right side of the drawn rectangle, the process is repeated, but now in
vertical direction. Starting from the lower left to the lower right, lines are drawn and moved
upwards over the user-specified distance. The process ends when the line is arrived at the
top side of the rectangle. All outer points are found now.

The next step is to draw the enclosing polyline through the outer points. However, this
procedure is more complicated in comparison with the Rotating Lines method. For the
Rotating Lines method, all outer points lie in the right sequence in the outer points array
because of the rotation of the lines. The neighbouring outer points lie next to each other in
the array. With the Rectangle method, the outer points do not lie in the right sequence in the
array. The nearest and most far away intersection points for a certain location of the line are
placed next to each other in the array. When directly creating a polyline through the points of
the array, a zigzagging curve would arise. So, the points in the array have to be ordered first
before the enclosing curve can be drawn through it.

The procedure of ordering the array of outer points is based on finding the closest point for a
certain outer point. Starting from the first point of the array, the distances from all other
points in the array to this first point are calculated. The closest point is now placed in a new
array. From this point the distances to all other points are calculated again to find the closest
point for that one. The closest point that is found now is again placed in the new array.
Points that are already placed in this new array are ignored by the determination of the
closest points. The reason is that it could else be possible for a certain point that the distance
to a point in the new array is smaller than the distance to a point that is not already placed in
this array. When all points are gone through, a new array is originated with the outer points
lying in the right sequence. Neighbouring outer points now lie next to each other in the array.
After adding a polyline through these points and removing the inner geometry, the model is
enclosed by a surrounded curve. The result is shown in the lower right picture of Figure 7.15.

Master’s thesis

67

The procedure can again be extended to the third dimension. The level at which the outer
points are determined is raised each time to generate the enclosing curves at different
heights. Figure 7.16 demonstrates the method for the simple 3D model.

Figure 7.16: Rectangle method; 3D example

The model in Figure 7.16 consists of surfaces and solids. After loading the script, the user is
asked to draw a rectangle around the model. The script uses the dimensions of this rectangle
to determine the length of the curves and the boundaries between which the curves will
move. The user is also asked for the distance between the line elements over which the lines
have to be moved. If the user wants a very accurate enclosing of the model, the distance
between the line elements must be small. However, a small distance between the line
elements will lead to more outer points and the process of finding the closest nearby point to
generate a polyline will take longer. The user is also asked for the height of the building and
the step size over which the rectangle has to be elevated each time. Finally the user is asked
for the height where the script has to start. The total height of the model in Figure 7.16 is
four units. The step size is 0.25 units. The distance between the line elements is set to 0.1.
With the Loft method, a lofted surface can finally be created between the curves when for all
steps the enclosing curves are generated. After removing all underlying model parts, a hollow
surface model will remain. The variables which the user has to specify are summarized in
Table 7.4.

Variable User specified value
Rectangle around the model of interest
Distance between the line elements
Height of the model
Step size to elevate the level of concern
Starting height of the script

Table 7.4: Variables to specify when running the script of the Rectangle method

Some results of the Rectangle method for some more complicated models are discussed in
Paragraph 7.3.9. A method to simplify the enclosing curves is discussed in Paragraph 7.3.7.
In Appendix F the Rectangle method for 3D models is discussed extensively on the basis of
the written script.

Master’s thesis

68

7.3.4 Rotated Square method

The third method that is developed to find the outer points of a model is a method called
Rotated Square. The method is based on the Rectangle method that is discussed in
Paragraph 7.3.3. The method is developed to find the outer points in case of in-built surfaces.
The original Rectangle and the Rotating Lines method do not give proper results for such
situations. The following pictures demonstrate the problem.

Figure 7.17: Limitations of the Rotating Lines and Rectangle method: outer points at in-built
 façades are not completely found

If, for example, the floor plan of a model has a shape like the left picture of Figure 7.17. The
middle picture gives the result of finding the outer points with the Rotating Lines method.
The right picture gives the result for the Rectangle method. As can be seen, most outer
points on the in-built façades are not found. Creating the enclosing polyline through these
points will certainly give a divergent curve. This is especially the case for the Rotating Lines
method.

The developed Rotated Square method deals with this problem. In this method, the user is
still asked to draw a rectangle around the model of interest. The corner points of this
rectangle are now used to generate a square that is rotated over 45 degrees. The square fits
the original rectangle exactly. Figure 7.18 demonstrates the principle.

Figure 7.18: The Rotated Square method: the square fits the drawn rectangle exactly

The left picture of Figure 7.18 shows a user-defined rectangle that can be drawn around the
model of interest. The corner points of this rectangle are used to define a square that is
rotated over 45 degrees and fits the rectangle exactly. The rotated square will now be used
as basis for the lines that will search for intersections with the various elements of the model.
Starting from the lower left edge of the square, a line will be drawn and moved to the upper
right edge of the square over user-specified intervals. For each interval it will be checked if
there is an intersection between the line and the various model elements. In case of more
than one intersection for a certain location of the line, the script will search for the closest
and most far away intersection related to the startpoint of the line. At these locations points
will be added to the model. If the line has finally arrived at the upper right edge of the
square, the procedure continues with lines moving from the upper left edge of the square to
the lower right edge of the square. The method is explained more extensively on the basis of
a 2D model on the following page.

Master’s thesis

69

Figure 7.19: Rotated Square method; 2D example

In Figure 7.19 the model with the in-built façades is given again. When the script is loaded,
the user is first asked to draw a rectangle around the model. A rotated square is created from
the corner points of the original rectangle. Then a line is drawn from the bottom corner of the
square to the left corner of the square. The script checks if there are intersections between
the line and the model parts and, in case of several intersections, places a point at the
nearest and most far away intersection location related to the startpoint of the line. The next
line that is drawn is moved diagonally in upwards and right direction over a user-specified
distance. When the line is finally arrived at the upper right edge of the square, the process is
repeated, but now with lines moving from the upper left edge to the lower right edge of the
square. Then all outer points of the model are found.

The next step is to draw the enclosing polyline through the outer points. As in the Rectangle
method, the outer points do not lie in the right sequence in the array. Before the polyline can
be created, the outer points have to be ordered first. The procedure of ordering the array is
again based on finding the closest point for a certain outer point. Another consequence of
this method is that some outer points are placed twice in the array, because for both
directions wherein the lines move, the same outer point can be found. While ordering the
array it will also be checked if a certain point is placed twice in the array. The procedure of
ordering the array is already discussed in Paragraph 7.3.3.

Master’s thesis

70

The procedure of finding the outer points with the Rotated Square method can again be
extended to the third dimension. The level at which the outer points are determined is raised
each time to generate the enclosing curves at different heights. The following pictures
demonstrate the method for a simple 3D model.

Figure 7.20: Rotated Square method; 3D example

After loading the script, the user is asked to draw a rectangle around the model. The script
again uses the corner points of the rectangle to create the rotated square. Then the user is
asked for the distance between the line elements over which the lines will be moved. He is
also asked for the height of the building and the step size over which the rotated square has
to be elevated each time. Finally the user is asked for the height where the script has to start.
When for all steps the outer points are found and the curves are generated, a lofted surface
can finally be generated with the Loft method that is discussed in Paragraph 7.3.8. After
removing all underlying model parts, a hollow surface model remains. The variables which the
user has to specify are summarized in Table 7.5.

Variable User specified value
Rectangle around the model of interest
Distance between the line elements
Height of the model
Step size to elevate the level of concern
Starting height of the script

Table 7.5: Variables to specify when running the script of the Rotated Square method

Results of the Rotated Square method for some more complicated models are discussed in
Paragraph 7.3.9. A method to simplify the enclosing curves is discussed in Paragraph 7.3.7.
In Appendix G the Rotated Square method for 3D models is discussed extensively on the
basis of the written script.

Master’s thesis

71

7.3.5 Integrated method

The discussed methods to find the outer points and generate the enclosing curves seem to
work properly for rectangular building models. However, additional tests showed that the
methods sometimes fail in finding all outer points of a model, especially for multiple curved
models. Figure 7.21 gives an example of a freeform, organic shape. Such organic shapes are

very popular in the actual Blob architecture and it is
desired that the various tools support such models as
well. However, none of the developed methods to
generate the enclosing curves succeeded in finding all
outer points of the given model. If the Rotating Lines
method for example gave the outer points for a certain
location of the model, it failed in finding the outer points
at other locations. Those points were found then with
the Rectangle method, but this method failed in finding
the points at other locations again. Joining the several
methods to one integrated method appeared to be the
solution. Several tests with various curved models
showed that the integrated method succeeded each
time in finding all outer points of the various models.

Figure 7.21: Freeform organic shape

A rectangle that has to be drawn around the model forms the base of the integrated method.
From this rectangle the rotated square can be constructed and the middle of the rectangle
forms the centre point of the rotating lines method. The coordinates of the centre point are
calculated from the coordinates of the corners of the drawn rectangle:

() () ()() 1 2 -
x x x

x lower left corner lower right corner lower left corner= + ⋅ (7.3)

() () ()() 1 2 -
y y y

y lower left corner upper left corner lower left corner= + ⋅ (7.4)

After the rectangle is drawn around the building model, the user is asked for the distance
between the line elements for the Rectangle and Rotated Square method and for the amount
of parts for the Rotating Lines method. From the amount of parts the angle over which the
lines are rotated can be calculated. The process of finding all outer points then starts with the
Rectangle method and is directly followed by the Rotating Lines method. The length of the
rotating lines is equal to the length of the diagonal between the lower left and upper right
corner of the rectangle. In this way the lines are always long enough to reach all model parts.
The process to find the outer points is then finished with the Rotated Square method. The
final step is to draw a polyline through the points that encloses the model. However, as a
result of the execution of the three methods in one continuous process, quite a lot of points
are found that do not lie in the right sequence. Before the enclosing curve can be generated,
the array that contains the outer points has to be ordered first. This procedure is again based
on finding the closest point for a certain outer point. On the next page the results of the
three separate methods and the integrated method are given for the organic shape of Figure
7.21. Because the script of the integrated method is very long as it is just a sequence of the
various separate methods with only some small adaptations, it is not given in this report.

Master’s thesis

72

In Figure 7.22 the results of the Rotating Lines method (left) and the Rectangle method
(right) are given for the freeform shape. Both methods are not able to find all outer points on
the boundary of the model. Generating the enclosing curve through the points will give a
curve that reasonably differs from the original model.

Figure 7.22: Results of the Rotating Lines and the Rectangle method for the given shape

In the left picture of Figure 7.23 the result of the Rotated Square method is given for the
freeform shape. Comparing the results of the three methods, it can be concluded that each
method finds certain points that are not found with the other methods. Joining the methods
together gives an integrated method that is able to find all outer points on the model. The
result of the integrated method is given in the right picture of Figure 7.23. As all outer points
of the model are found, the enclosing curve will perfectly match the original model.

Figure 7.23: Results of the Rotated Square and integrated method for the given shape

Additional tests with other complex, multiple curved models showed that for each model the
integrated method was able to find all outer points. When the original methods fail in finding
those points on a certain model, the integrated method seems to be a proper alternative.
However, as three procedures have to be executed in this method, it will take quite some
time before all points are found and the enclosing curves are generated. This is especially the
case for extended building models with many elements and a considerable height. A method
that quickens the process to some extent would therefore be very valuable.

Master’s thesis

73

7.3.6 Meshes

As architects and structural engineers work with various CAD systems nowadays, the purpose
of the design tool to simplify the geometry is to support the diverse model types. When
traditional models, originating from systems like AutoCAD, are imported in Rhinoceros, the
models are still constructed from lines, surfaces and solids. The various developed tools work
very well on these models. However, as mentioned in Paragraph 5.5, recent developments in
CAD have resulted in technologies like object-oriented modeling and parametric modeling.
Models that are created with these technologies are not constructed from lines or surfaces
anymore, but of objects with attributes and procedures. The several objects represent the
elements from which a building or structure is built of, like walls, floors, beams and columns.
The objects have sense for the computer; they are not only points and lines. When such
models, made in systems like ArchiCAD or Autodesk Revit, are imported in Rhinoceros, the
model contains no lines, surfaces or solids anymore. Because Rhinoceros is not an object-
oriented or parametric environment, the objects are converted to meshes. A mesh is basically
a collection of vertices and faces connected together to represent a surface.

Figure 7.24: Object-oriented models imported in Rhinoceros are constructed from meshes

In Figure 7.24 an example is given of an object-oriented model of an office building that is
imported in Rhinoceros. The original model is made in ArchiCAD (Internet, [18]). In
Rhinoceros, the meshes are built up from vertices and faces, forming triangles. The problem
that arises here is that the current version of Rhinoceros is not able to determine the
intersections with meshes. The developed tools to find the outer points of a model appear not
to work for these models. However, two methods are developed to deal with meshes and
which are able to find the intersection points. The first method converts the meshes to
surfaces by deriving the vertices and faces from which the mesh is built. Through these
entities a surface can be created, for which it is possible to determine the intersection point.
Another method makes use of a new version of Rhinoceros, which is however still in
development. With the newest beta edition it seems possible to directly determine the
intersection with a mesh. On the following pages these methods are discussed further.

Master’s thesis

74

The first method that deals with meshes is based on returning the face vertices of a mesh
object. Through these vertices a surface can be created, for which it is possible to determine
the intersection point with a line element. When this is done for all meshes of the model, a
model is obtained that is constructed from only surfaces. For these surfaces it is possible to
determine the outer points and generate the enclosing curves with the developed methods.
The principle is explained in Figure 7.25.

Figure 7.25: Conversion of meshes to surfaces

In the left picture of Figure 7.25 a mesh of a mechanical device is given. The mesh is
constructed from vertices forming triangles. The method returns the vertices of the triangles
and uses these as boundaries between which surfaces can be created. In the middle picture
all mesh triangles of the model are conversed to surfaces. The right picture finally shows a
rendered picture of the model.

Because the above discussed method has to be carried out before one of the methods to find
the outer points is applied, the method to convert the meshes into surfaces is called
Preprocessing. The preprocessing process can be seen as a method to prepare the models for
the methods to generate the enclosing curves. Next to meshes, a model can also contain
block instances. These instances are some kind of superiors of meshes. For block instances it
is not possible to determine the intersection between a line element and the instance as well.
Exploding a block instance gives the meshes from which the instance is built of. For cases
where a model contains block instances, the Preprocessing method also gives an option to
derive meshes from the instance.

The Preprocessing method gives the user four options. First the number of blocks, meshes,
face curves and surfaces can be count, to control if the model contains one of these entities.
Then the user has the option to split the block instances into meshes. The next option is to
split the meshes into face curves and finally surfaces can be created from the face curves.
The user interface of the method is given in Figure 7.26.

Figure 7.26: Preprocessing method

Master’s thesis

75

Figure 7.27 demonstrates the process of converting a mesh to surfaces with the
Preprocessing method and generating the enclosing curves with the Rotating Lines method
for a chess pawn. Finally a surface is lofted through the curves with the Loft method, which is
discussed in Paragraph 7.3.8.

Figure 7.27: The process of wrapping a surface around a mesh object

The first picture of Figure 7.27 gives the mesh model of a pawn. The second picture shows
the result of converting the mesh model to a surface model. For an object that is built up
from surfaces, the outer points over the height of the model can be found with the Rotating
Lines method. The third picture shows this procedure. After lofting a surface trough the
curves, a hollow surface model of the pawn is generated that replaces the original geometry.
The result is shown in the fourth picture. The method also seems to work properly on more
complicated models. The results of some test cases are discussed in Paragraph 7.3.9. In
Appendix H the Preprocessing method is discussed extensively on the basis of the written
script.

Another way of finding the intersection point with a mesh object is using the newest Beta
release of Rhinoceros 4. For all previous scripts and methods, Rhinoceros 3 is used. This is
also the version that is installed on the computers of the faculty of Civil Engineering of Delft
University of Technology. Rhinoceros 3 is not able to determine the intersection between a
line element and a mesh, but Rhinoceros 4 is. In this latest version, some commands and
functions are implemented that are not supported by Rhinoceros 3. With these commands it
is possible to directly determine the intersections. However, Rhinoceros 4 is still in
development and no final versions are available yet. Although Beta releases are free to
download with the license key of Rhinoceros 3, it is not allowed to install Beta software on
the faculty’s computers. Nevertheless, with some help of David Rutten (Internet, [3]) a
method is developed for Rhinoceros 4 to find the intersection with a mesh. This method is
then implemented in the Rotating Lines, Rectangle and Rotated Square methods, leading to
two variants of each method: one variant to determine the outer points for a model that is
built up of lines, surfaces and solids, and another variant to determine the outer points for a
model that is built up of meshes. Both variants give the same results, but with the meshes
variant for Rhinoceros 4 the whole Preprocessing process can be skipped. This saves time,
especially when the model contains hundreds of meshes. The scripts were tested on an
ouster system where Rhinoceros 4 was installed and they all seem to work properly. Appendix
I gives the implementation of the method to find intersections with a mesh, in the Rotating
Lines method. The implementation in the Rectangle and Rotated Square method is also
performed, but as the procedure is the same, the implementation for these methods is not
given in this report.

Master’s thesis

76

7.3.7 Curve simplification

Applying one of the three methods to determine the outer points of a model give the
enclosing curves of the model for several height steps. The smaller the distance between the
line elements is chosen, the more outer points are found. When the model is highly detailed,
the enclosing curves will fluctuate considerably. To simplify the curves and get rid of the little
details, special fitting algorithms can be used. In this paragraph the NURBS fitting technique
is discussed to simplify the enclosing curves. However, it must be said that it is not always
necessary to simplify the enclosing curves. When a building model has smooth façades for
example without much detail, the enclosing curves perhaps do not have to be simplified. The
user must choose for himself if he wants to simplify the curves or not.

The NURBS fitting technique will use the outer points of the model where the enclosing
curves are constructed from, as control points to fit a simplified curve through it. By assigning
parameter values to the control points, a curve can be created that fits the points at the
given parameters. Depending on the parameter values, the curve can follow the control
points exactly or more approximately. As the original enclosing curves are constructed from
the outer points of the model, they automatically form the control points of the enclosing
curves. The enclosing curves go straight through the control points; no parameter values are
defined to fit the curve through the points. Here lies the difference with the NURBS fitting
technique as the fitting curves do not go exactly through the outer points. The method uses
the outer points as control points to fit a smooth curve through the points dependent on the
given parameter values.

NURBS fitting
NURBS curves are curves that are parametrically represented. The curve is defined by its
degree, the control points, knots and weight values. The degree of the curve can be any
positive whole number, but it is usually 1, 2 or 3. If the degree is 1, the curve is linear and it
will consist of straight sections. Quadratic curves have degree 2 and cubic curves have
degree 3. For fitting a smooth curve through the control points, degree 3 is recommended.
Another factor that defines a NURBS curve is the knots. The knots determine the smoothness
of the curve. The amount of knots on a curve is the degree of the curve plus the number of
control points minus 1. For a NURBS curve of degree 3 and with 11 control points, the list of
knots can be for example: 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8. The knot values in the list must
be of increasing order. The number of times a knot value is duplicated in the list is called the
knot’s multiplicity. In this example the knot values 0 and 8 have multiplicity 3 and the knot
values 1 to 7 have multiplicity 1. If a knot value is duplicated by the degree of the curve it is
said to be a full-multiplicity knot. With a degree 3 curve, the knot values 0 and 8 have full-
multiplicity for this example. A knot value that appears only once is called a simple knot.
Duplicate knot values in the middle of the knot list make a NURBS curve less smooth. A full-
multiplicity knot in the middle of the knot list means that the curve is bent into a sharp kink
there. When the knot list starts and ends with a full-multiplicity knot, the curve starts exactly
in the first control point and ends in the last control point. If not, the curve can start or end
at a different location to construct the best fit. So, a knot list that starts and ends with a full-
multiplicity knot and has simple knots between them, results in a smooth curve that goes
exactly through the first and last control point and fits the other control points. The last factor
that defines a NURBS curve is the weight of the control points. The weight values determine
the influence of the control points and can be seen as variables that indicate the accuracy of
the fitting process. In general the first and last weight should be set to 1. If the weight value
of the control points is larger than 1, the points are closer approximated by the curve. If the
weight values are smaller than 1, the points are less approximated. On the next page some
examples are given of the construction of NURBS curves.

Master’s thesis

77

Coordinates and weight
factors of the control points:

 X Y Z W
1 0 0 0 1.0
2 1 2 0 1.0
3 5 8 0 1.0
4 4 7 0 1.0
5 8 5 0 1.0
6 9 5 0 1.0
7 5 3 0 1.0
8 6 2 0 1.0
9 8 1 0 1.0
10 10 1 0 1.0

Knot vector:
0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5

Figure 7.28: Kinked NURBS curve due to full-multiplicity at the 6th control point

In Figure 7.28 a NURBS curve with its control points is given. The coordinates of the control
points, together with the weight factors of the points, are given in the table next to the
figure. Also the knot vector for this curve is given. The knot list has a full-multiplicity knot at
the beginning and end, resulting in a curve that starts and ends exactly in the first and last
control point. The knot list also contains a full-multiplicity knot in the middle, what results in
the sharp kink in the middle of the NURBS curve. The curve goes exactly through the control
point there. In Figure 7.29 the same curve is given again, only the knot vector is changed.
The list only has full-multiplicity knots at the beginning and end of the list; all other knot
values are single knots. This results in a smooth curve that goes exactly through the start and
endpoint and fits all other control points.

Coordinates and weight
factors of the control points:

 X Y Z W
1 0 0 0 1.0
2 1 2 0 1.0
3 5 8 0 1.0
4 4 7 0 1.0
5 8 5 0 1.0
6 9 5 0 1.0
7 5 3 0 1.0
8 6 2 0 1.0
9 8 1 0 1.0
10 10 1 0 1.0

Knot vector:
0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7

Figure 7.29: Smooth NURBS curve

Master’s thesis

78

Figure 7.30 shows two curves with various weight factors for the control points.

Weight factors of the
control points:

 W1 W2

1 1.0 1.0
2 1.0 0.3
3 1.0 0.3
4 1.0 0.3
5 1.0 0.3
6 1.0 0.3
7 1.0 0.3
8 1.0 0.3
9 1.0 0.3
10 1.0 1.0

Figure 7.30: Weight factors determine the influence of the control points

The influence of the weight factors is small for the curve in the given example. For the black
NURBS curve in Figure 7.30 the weight factors for the control points are set to 0.3. For the
original grey curve the weight factors were set to 1.0. The lower weight values result in a
smaller approximation of the control points. Only at the end of the curve a small difference
can be seen between the two NURBS curves. However, as follows from the given figures, the
NURBS curve is very smooth in relation to its original curve that is drawn directly through the
control points. Simplifying the enclosing curves by fitting a NURBS curve using its control
points looks very promising.

The script that is developed for the NURBS fitting method returns the control points of the
enclosing curves. The first and last control points get a full-multiplicity knot; the rest of the
knot list is filled with single knot values. This results in a NURBS curve that starts and ends
exactly in the first and last control point. The user must specify a certain weight value that is
set to all control points, except the first and last one. The weight value for these control
points is set to 1 by default. Then the script is able to create a NURBS curve from the derived
control points. The process is repeated for all enclosing curves in the model, after which the
original curves are deleted. The result is a model that contains only NURBS curves. With the
Loft method that is explained Paragraph 7.3.8, finally a surface can be generated through the
curves. The script of the NURBS fitting method is given in Appendix J.

Master’s thesis

79

7.3.8 Lofting

After the enclosing curves for several height levels are generated and eventually simplified, a
lofted surface can be created through the curves to form a closed surface model. The lofting
process has become a separate procedure and is not directly implemented in the methods to
find the outer points and generate the enclosing curves. By separating these procedures, the
user has the possibility to adapt or eventually remove some enclosing curves that do not fully
satisfy. This could be desired if the methods to find the outer points do not give a satisfactory
result for a certain height level. For the models that are tested and discussed in Paragraph
7.3.9 this was not the case and the methods returned accurate curves. However, if for a
certain model the methods somehow do not give a satisfying result, the user just has the
opportunity to intervene. By returning the control points of a curve it can be adapted
manually to the desired result, or it can be removed from the model.

After the enclosing curves are checked by the user, the script to loft a surface through the
curves can be loaded. The script searches for the lowest curve and from there it creates a
straight surface to the curve that lies one level higher. From there on, the next surface is
lofted to the curve that lies one level higher again. The procedure continues until through all
curves the surfaces are lofted. In vertical direction the model is now closed by the surfaces.
However, the bottom and top of the model are still open. To close the model completely, a
planar surface is generated through the lowest and topmost enclosing curve. The lofted
surfaces and the planar surfaces at the bottom and topside of the model are finally joined
together, to form one single surface model. The procedure is explained with the following
pictures on the basis of a 3D example.

Figure 7.31: Lofting method to loft surfaces between the enclosing curves

In Appendix K the lofting method is discussed extensively on the basis of the written script.

Master’s thesis

80

7.3.9 Results

After all methods are gone through for a certain building model, a lofted surface that has
wrapped the model is left. All inner and outer geometry of the original building model are
removed, what remains is a closed, hollow surface model. This simplified model of the
building of interest can manually be placed in a 3D model of the research area then. In this
paragraph some results are discussed of the various methods to create a wrapped surface
around a building model. The several building models originate from various CAD systems,
like SketchUp and ArchiCAD.

Dream and Realization (SketchUp)
The first building model that is used to test the various methods is obtained from students of
the faculty of Architecture of Delft University of Technology. The model is the result of a
design exercise called Dream and Realization. It is a design of an office building that consists
of three separate blocks that are connected through atria. The model was generated in
SketchUp and exported to Rhinoceros in the dwg file format. When opened in Rhinoceros, the
model contained only block instances. Because the intersection between the line elements
and a block instance can not be determined in Rhinoceros, the block instances were first
converted to meshes with the Preprocessing tool. The same tool is then used to return the
face curves of the meshes and create surfaces through these face curves. From now on it
was possible to determine the intersection between the line elements and the model parts. As
the building had a nice, rectangular shape, the Rectangle method was used to determine the
outer points and generate the enclosing curves over the full height of the building. No curve
simplification was applied, as the enclosing curves were quite smooth. The facades of the
building model did not contain small details.

The variables that were specified when running the Rectangle method are summarized in
Table 7.6. As a result of the conversion from meshes to triangular surfaces, the amount of
elements that the script had to go trough to determine the outer points was large. Where the
original model contained about 1.200 elements, the conversed model contained 18.599
elements. As for each line of the method all elements have to be checked if it has an
intersection with the line, it takes quite some time before all outer points are found. To
quicken the process, a larger distance between the line elements or a larger step size to
elevate the level of concern can be chosen. Less line elements have to be gone through then.
However, this is only permitted when the model is relatively straight and when it does not
contain many details. Another method to quicken the process is to manually delete all inner
geometry before the script is executed. Most architects work with several layers to distinguish
the various building elements. When for example all objects in the various furniture or
internal structure layers are removed, the model contains far less elements. As the script has
to go through fewer objects then, the process can be quickened considerably. Finally it is also
possible to use the Rectangle method variant that is adapted for Rhinoceros 4. With this
version it is directly possible to determine the intersection between a line element and a
mesh. It is not needed to convert the meshes to surfaces what results in less elements. This
saves time twice: the process of converting the meshes can be skipped and the script has to
check fewer elements.

Variable User specified value
Rectangle around the model of interest -
Distance between the line elements 1.000 mm
Height of the model 42.000 mm
Step size to elevate the level of concern 500 mm
Starting height of the script 0 mm

Table 7.6: Specified variables for the Rectangle method

On the next page the results of the Rectangle method are given for the office building.

Master’s thesis

81

Figure 7.32: Design of the office building

Figure 7.33: Enclosing curves over the full height of the building

Figure 7.34: Result of the methods: a wrapped, hollow surface model of the office building

Original building model:

 18.599 elements

 Model contains

internal and external
geometry

Enclosing curves model:

 85 curves

 Distance between

curves = 500 mm

 Original geometry is

removed

Lofted model:

 1 single polysurface

 Model is empty

 Surface model

replaces internal and
external geometry

Master’s thesis

82

The figures on the previous page show the original building model, a model containing the
enclosing curves and finally the wrapped surface model of the office building. Before the
scripts were executed, some internal geometry was deleted to quicken the process. Especially
the stairs with all its steps contained a lot of elements. After the Rectangle method was
executed for the building model, 85 enclosing curves were generated. Through these curves
a surface is lofted that wraps the original model. The result that is shown in Figure 7.34
matches the original building model accurately. If there were any gaps in the model, they are
now closed. All inner and outer geometry is removed; what remains is a single, hollow
surface model that consists of one part. The next step is to eventually place the model in a
3D model of the environment and export it to the CFD software.

Office building (ArchiCAD)

The next building model that is used to test the various methods is an office building that is
drawn with ArchiCAD. The model was placed as an example on the ArchiCAD installation CD.
As ArchiCAD is an object-oriented CAD system, the model elements are converted to meshes
when imported in Rhinoceros. As the building model had a rectangular shape, the Rectangle
method was used again to find the outer points of the model. In stead of converting the
meshes to triangular surfaces, the Rhinoceros 4 variant of the Rectangle method was used.
With this variant it is possible to directly determine the intersection between the line elements
and the meshes, so no preprocessing was needed. The building model contained office rooms
at the front side of the model. The offices were fully furnished with desks, chairs, computers
and carpets. The backside of the model contained a large hall with some structural elements.
To quicken the process, all furniture and internal structures were manually removed from the
model before the scripts were executed.

The variables that were specified when running the script are summarized in Table 7.7. As
the façades of the building model were straight without much detail, the chosen distance
between the line elements was relatively large. The step size was chosen smaller, as the
office building contained some canopies with a limited thickness that had to be modeled. In
the figures on the following page the result of the Rectangle and Loft methods are given for
the office building. The surface model looks a little strange because the facades and roof do
not contain any texture, but it reflects the form of the original model accurately.

Variable User specified value
Rectangle around the model of interest -
Distance between the line elements 1.000 mm
Height of the model 13.000 mm
Step size to elevate the level of concern 500 mm
Starting height of the script 0 mm

Table 7.7: Specified variables for the Rectangle method

Master’s thesis

83

Figure 7.35: Design of the office building

Figure 7.36: Enclosing curves over the full height of the building

Figure 7.37: Result of the methods: a wrapped, hollow surface model of the office building

Original building model:

 2.059 meshes

(= 11.860 surfaces)

 Model contains
internal and external
geometry

Lofted model:

 1 single polysurface

 Model is empty

 Surface model

replaces internal and
external geometry

Enclosing curves model:

 27 curves

 Distance between

curves = 500 mm

 Original geometry is

removed

Master’s thesis

84

Apartment complex (ArchiCAD)

Another building model that is used to test the various methods is an apartment complex that
is again modeled in ArchiCAD. Because the building is modeled in an object-oriented system,
the various elements were again converted to meshes when imported in Rhinoceros. As the
building model contains in-built façades, like the glass staircase in the middle of the building,
the Rotated Square method is used to find the outer points of the model. To quicken the
process, the Rhinoceros 4 variant of the script is used that directly finds the intersection
between a line element and a mesh. Some furniture, inner structures and window screens
were deleted to decrease the amount of elements. This also shortened the process. The
variables that were specified when running the script are summarized in Table 7.8.

Variable User specified value
Rectangle around the model of interest -
Distance between the line elements 1.000 mm
Height of the model 19.000 mm
Step size to elevate the level of concern 500 mm
Starting height of the script 0 mm

Table 7.8: Specified variables for the Rotated Square method

The figures on the next page give the result of the Rotated Square method and the Loft
method to generate a lofted surface around the building model. Again the shape of the
original building model is reflected accurately. Only the balconies are not modeled precisely.
Due to the operating procedure of the methods, horizontal surfaces that are placed behind
standing surfaces are not found. Because the outer points are determined on a horizontal
plane that is leveled each time, the border of the balconies prevent that the floors behind are
modeled. The balconies in the surface model are just represented as box volumes. However,
for the determination of the global wind loads, this would probably be not a major bottleneck.

Master’s thesis

85

Figure 7.38: Design of the apartment complex

Figure 7.39: Enclosing curves over the full height of the building

Figure 7.40: Result of the methods: a wrapped surface model of the apartment building

Original building model:

 6.331 meshes

(= 37.765 surfaces)

 Model contains
internal and external
geometry

Enclosing curves model:

 39 curves

 Distance between

curves = 500 mm

 Original geometry is

removed

Lofted model:

 1 single polysurface

 Model is empty

 Surface model

replaces internal and
external geometry

Master’s thesis

86

7.3.10 Restrictions

Building parts of different height
The results of the tests in the previous paragraph show that the developed methods work
and give good results for the given building models. Especially for rectangular and circular
models the three methods work very well. If a building model has multiple curved façades the
original methods might fail, but several tests with the integrated method showed that this
method is capable of finding the outer points for such models. Although it takes some time
then to generate the enclosing curves, accurate results are obtained. However, there still are
some restrictions on the various methods to find the outer points and to create the enclosing
curves. The principle of the methods is to create a curve from the first outer point that is
found, through all next outer points, to the last outer point. As the last outer point is the
same as the first outer point, the result is a closed curve. Problems arise when a building
model consists of various parts with different heights. In Figure 7.41 an example is given of a

Blob model that consists of two higher parts at
the outside and a lower part in the middle of
the model. When the level of concern of the
various methods is raised above the height of
the middle part, only points at the outer model
parts are found. As one single enclosing curve is
generated through these points, the curve also
passes the lower middle part of the model.

Figure 7.41: Blob model (Toussaint, [26])

In Figure 7.42 this principle is explained further. The figure gives a side view of the model
with the enclosing curves that are generated with the Rotated Square method. At a certain
level the left and right model parts are just separated by air as there is no construction in
between. At that level only the outer points at the outside model parts are found. As for each
level only one curve is created through all points, the curve crosses the middle area.

Figure 7.42: Side view of the model with the generated enclosing curves

In Figure 7.43 a 3D view of the enclosing curves of the Blob model is given. When a surface
is lofted through the curves, the air in the middle would be modeled as a building part, which
is off course not desired. Ultimately the method should recognize building parts of different
heights. In stead of creating one single enclosing curve, it should create multiple enclosing
curves at a certain height level in case of several building parts. Joining the separate lofted
building parts would give a single building model again. At the moment the various methods
are only able to find the outer points in a
horizontal plane and the level of concern is
raised each time to create the curves at several
heights. The methods should be adapted to find
the outer points on a vertical plane as well. In
addition to a horizontal plane that is raised each
time, a vertical plane that moves in a horizontal
direction along the model could be used to find
some other outer points. This can help to find
the various building parts of different height.

Figure 7.43: Enclosing curves of the model

Master’s thesis

87

When the methods to find the outer points would be adapted to use a vertical plane as well
that moves in horizontal direction, it is not recommended to create enclosing curves through
the points. It will be difficult to automatically create a surface through the various horizontal
and vertical curves then. However, using both a horizontal and a vertical plane to find the
outer points results in a point cloud on the boundaries of the model. For a point cloud it is
possible to directly construct a surface through the points that will enclose the model.

Processing time
Another restriction of the various methods to simplify the building of interest is the time
required to find the outer points of the model. Especially when the Integrated method is used
it takes quite some time before all enclosing curves are generated, as the Rotating Lines
method, the Rectangle method and the Rotated Square method are all executed in a
continuous process. The total time required to wrap the building model with a surface can
increase up to several hours then. The Rhinoceros Visual Basic language in which the various
methods are scripted appears to be the reason of the moderate processing speed. The script
is gone through step by step and only one task can be performed at the same time. Although
the Visual Basic language is reasonably simple to learn and very suitable for those who are
not that familiar with programming, the methodology is a disadvantage of the language. To
quicken the process of the various methods, the scripts should be translated to more
advanced programming languages. Rhinoceros supports DotNET plug-ins and the C++
programming language as well, which are able to script the methods with more advanced
techniques. Using these advanced languages could quicken the procedures considerably.
However, the Rhino Visual Basic language uses special commands that are able to directly
determine the intersection between lines, surfaces and solids. DotNET plug-ins and the C++
language do not support these commands and the programmer should construct these
algorithms by himself then, which could be difficult.

Nevertheless, as a first study to the development of a tool that simplifies a building model,
the developed methods seem to work properly for most cases. From the results of the tested
models it can be concluded that the methods have potential. To optimize the process, further
research is required to translate the scripts of the methods to more advanced programming
languages. As Rhinoceros also supports DotNET plug-ins and the C++ language, it remains a
very suitable environment in which the tools could be implemented.

7.3.11 Suggestions for additional methods

Only for building models that consist of several parts which are separated by air, the
developed methods seem not capable of wrapping a fitting surface around the model. In this
paragraph two suggestions for additional methods to simplify such models are discussed.

Shrinking sphere
Simplification of a certain building model by wrapping a hollow surface around the model
could be realized by using a shrinking sphere. Suppose a user-defined sphere that encloses
the building model completely. When the sphere is able to deform due to a certain elasticity
and if it is prohibited to perforate the sphere, the model could be wrapped by shrinking the
sphere. In fact some kind of vacuum will be generated then that creates a surface around the
model of interest from the sphere. If one is able to script this procedure and to ascribe an
elasticity to the sphere, it could be a very suitable method to enclose all kinds of models.

Master’s thesis

88

Laser scanning approach
Another option to wrap a surface around a building model is a method that works similar to
laser scanning equipment. Figure 7.44 gives the procedure of scanning an object using laser
devices. If a certain script is able to imitate this equipment, a certain building model could be
scanned to find the outer points of the model. The source of the scanner should be able then
to circle around the model in all possible directions. A single line could be generated then
from the scanner to the model and for each position of the scanner, the intersection with the

boundary of the model could be determined. A single
point can be added to the model at that location then.
Repeating this procedure for all possible positions of the
scanner should result in a point cloud on the boundaries
of the model. With a technique called reconstruction the
point cloud could be converted into a 3D surface model
then. Reconstruction involves finding and connecting
adjacent points in order to create a continuous surface.
Rhinoceros should be very suitable for the development of
such a method.

Figure 7.44: Laser scanning

If other methods to simplify a building model are developed in future research, the user of
the Virtual Wind Tunnel will have a variety of design tools at his disposal. The user must
decide for himself then which available tool is the most appropriate for a certain case.

7.3.12 Evaluation

In the previous paragraphs various methods of the third design tool that simplifies the
building of interest are discussed. With these methods it is possible to wrap a surface around
the model that replaces the external and internal geometry of the original building design.
The total process consists of creating the enclosing curves for several height levels with the
Rotating Lines, Rectangle, Rotated Square or Integrated method, eventually simplifying the
enclosing curves with the NURBS fitting method and finally lofting a surface through the
curves. The original geometry is deleted automatically then. The result of the various
methods is a single, hollow surface model that can be used for CFD analysis. Calculations to
determine the wind loads can be performed for only the surface model itself, or it can be
placed in a 3D model of the environment that can be generated with the first and second
design tools. In this way the influence of the surrounding buildings can be taken into account
in the calculation of the wind loads. The surface model of the building of interest has to be
placed manually in the 3D model of the environment then.

To find the outer points and generate the enclosing curve for a certain model, the user must
choose the most appropriate method. In general it can be said that the Rotating Lines
method is most suitable for building models with a more or less circular floor plan. When the
center location of the model is taken as the location from where the rotating lines are
constructed, it must be possible to accurately generate the enclosing curves at various height
levels. For buildings with a rectangular or extended ground plan the Rectangle method is the
appropriate method to find the outer points and generate the enclosing curves. The Rotated
Square method, which is based on the Rectangle method, is the most suitable method for
buildings with in-built façades. For building models where the previous methods fail, the
Integrated method that combines all other methods should be used in order to create the
enclosing curves.

Master’s thesis

89

For each method to find the outer points and generate the enclosing curves, two variants are
developed. The first variant determines the intersection between the rotating or moving line
element of the methods and the line elements, surfaces and solids of the model. However,
when a model is converted to meshes when it is imported in Rhinoceros, it is not possible to
directly find the outer points of the model with the first variant. The meshes can be converted
to triangular surfaces then with the Preprocessing method, after which it is possible to use
the first variant of the methods. However, this is an extra step in the process and takes some
time. Another possibility to determine the intersection between the line elements and a mesh
is using the second variant of the methods. For this second variant, Rhinoceros Beta 4 is
required as the script uses some commands and methods that are only supported by the
newest version. With these commands it is possible to directly determine the intersection with
a mesh, without the need of converting it to its triangular surfaces. However, as Rhinoceros 4
is still in development, no final releases are available yet. It is therefore not allowed to use it
on the faculty of Civil Engineering’s computers, so only on outer computer systems these
scripts can be used.

The total procedure of generating the enclosing curves, simplifying the curves with the
NURBS fitting method and lofting a surface through the curves is performed several times for
various building models. In the object-oriented models, the designer is free to present
moveable objects like doors and windows opened or closed. If front doors and windows are
still open when executing the methods to find the outer points, no point will be found at the
locations of these doors and windows. In stead, the most outer point for that cross-section
will be found on a wall or object inside the model. Therefore it is important to close all doors
and windows of the model before the methods are applied.

Complex models contain lots of elements. Especially when the meshes are converted to
surfaces, the amount of elements quickly increases. The amount of elements in the model
has a significant influence on the time required to find all outer points. For each line of the
method, all model elements have to be checked if there is an intersection with the line.
Reducing the amount of elements will certainly decrease the amount of time required. Before
the methods to find the outer points are executed, it is recommended to delete all inner
geometry. In most models, the various building element types are constructed in several
layers. If the elements of the layers that represent for example furniture and inner structures
are removed from the model, significant time can be saved. Just turning off these layers is
not sufficient, as the elements are still part of the model then. They are hidden, but the script
still goes through all these elements. They really have to be removed from the model.

Master’s thesis

90

7.4 Tool 4: Generation of the computational domain

7.4.1 Introduction

To obtain reliable results from the CFD calculations, a computational domain with sufficient
dimensions has to be generated around the research area. The domain must be large enough
to avoid that the flow pattern at the boundaries of the domain is influenced by the buildings
in the research area. At the location where the domain ends, a boundary condition has to be
defined that determines the nature of the flow problem. Distances from the research area to
the boundaries of the domain are usually related to the maximum height of the buildings that
are exposed to the flow. As already mentioned in Chapter 3, the Cost Action C14 workgroup
gives recommendations for the size of the computational domain. In Figure 7.45 this
recommended domain size is reproduced from Figure 3.11.

Figure 7.45: Recommended dimensions for a computational domain by the CAC14 workgroup
 (Franke, [8])

The inlet and side boundaries of the domain should be 5 Hmax away from the area to be
investigated. To allow a full development of the flow, the outlet boundary should be 15 Hmax
away from the research area. The top of the computational domain should be at least 6 Hmax
away from the tallest building to prevent an artificial acceleration of the flow over this
building. However, according to Van Nalta [16], a survey of recent literature shows that a
wide range of different domain sizes is used in practice. In his Master’s thesis at the
Structural Design Lab of Delft University of Technology, Van Nalta developed his own domain,
the Van Nalta domain, which encloses all other domain sizes. Figure 7.46 shows the
dimension of the Van Nalta domain.

Figure 7.46: Top and side view with the dimensions of the Van Nalta domain (Nalta, [16])

Master’s thesis

91

The inlet and outlet boundaries are 20 Hmax away from the research area, the side boundaries
are 10 Hmax away. The top of the computational domain is even 20 Hmax away. This is very far
in comparison with the recommendations of the Cost Action C14 workgroup. Calculations with
the Van Nalta domain show that the dimensions of this domain are more than sufficient
(Nalta, [16]). Velocity profiles at the upstream, side and top boundaries are unaffected by
objects in the research area. The large size surely has an influence on the grid size. However,
the influence is considered to be small, because cells are larger near the boundaries and the
largest amount of cells is located near the center of the domain.

Because the Van Nalta domain is developed at the Structural Design Lab and quite some
research is done with the domain recently, it will also be used in this thesis to perform the
simulations. In the next paragraph, some more details about the domain are given.

7.4.2 The Van Nalta domain

Figure 7.47 shows the unmeshed structure of the Van Nalta domain. The size of the domain
is related to the height h of the object placed inside the central cylinder. The coordinate
system that is used is placed at ground level, in the center of the cylinder and has the x-axis
in the flow direction, the y-axis in the cross-direction and the z-axis in the height direction.
The total length of the domain is 40h (x-direction), the total width is 20h (y-direction) and the
total height is 20h (z-direction). The domain contains three horizontal planes at z=0, z=5h
and z=20h. The cylinder has a diameter of 5h.

Figure 7.47: Structure of the Van Nalta domain (Nalta, [16])

The domain can be divided into control volumes using a mesh. Cells far away from the center
can be larger, because the gradients of the flow parameters are generally small there. A
uniform grid for these areas will reduce computing time. The mesh around the object itself
should be unstructured to be able to input any shape. These demands require a hybrid grid.

In the domain of Figure 7.47, the object is placed in the lower part of the central cylinder.
This part is called the building environment and the mesh should be unstructured here. To
decrease the number of cells and the total computing time, a structured hexahedral grid is
applied in the regions outside of the cylinder. These regions are called the wind environment.
In order to automatically create the mesh of the wind environment, regardless of the object
to be studied, the mesh outside this environment should not be affected by the object inside
the cylinder. This demand is met in the Van Nalta domain. Figure 7.48 shows the mesh of the
domain and some boundary conditions.

Master’s thesis

92

Figure 7.48: Mesh and some boundary conditions of the Van Nalta domain (Nalta, [16])

The topmost pictures of Figure 7.48 show the mesh on the ground floor of the wind
environment and the side boundary. The bottom pictures show the mesh of the outer
boundaries and the boundary conditions for the domain. As can be seen, the cell size
increases as the distance to the central object increases. The mesh near the object is the
most important part of the mesh, since the largest gradients in the flow will be located here.
For 3D unstructured meshes, the tetrahedron cell types are most suitable as they are flexible
and as they can be used for automated meshing of complex geometries (Snijders, [23]). That
is why the cylinder of the domain can best be meshed using an unstructured grid with small
tetrahedral cells.

To solve a flow problem, boundary conditions are required. The Van Nalta domain has a
velocity inlet boundary at the front, where the velocity is defined as a logarithmic profile by
using a user-defined function. The parameters of the logarithmic profile are based on the
Dutch building code. The outlet of the domain is defined as a pressure outlet boundary,
where the pressure is set to be the atmospheric pressure. At the outlet, the studied object is
supposed to have no effect anymore on the flow. The Van Nalta domain has symmetry walls
on the sides, which can be seen as very smooth walls. At a symmetry boundary, the
components normal to the boundary are all set to zero. This means that no energy can leave
the domain through the boundary. The top of the domain is also modeled as a velocity inlet.
The bottom of the domain finally has a wall boundary condition. Here the no-slip condition is
applied, meaning that the flow velocity in all directions at the wall is set to zero.

Master’s thesis

93

7.4.3 Purpose

The purpose of the fourth design tool is to create the Van Nalta domain, depending on the
radius of the research area and the maximum height of a building in the research area. The
radius and the height of the largest building in the environment follow from the tools to
generate the 3D research area. Together with the height of the building of interest, the
maximum height of the building in the research area can be determined. Until now, the Van
Nalta domain was only used to simulate the wind effects on single objects. These objects
were placed in the bottom cylinder of the domain. To simulate the wind effects on complex
building models that are placed in a built environment, it is desired to also use this domain.
The built environment, that has a circular ground surface, will be placed in the bottom
cylinder then. The next pictures again show the dimensions of the original Van Nalta domain.

Figure 7.49: Dimensions of the Van Nalta domain (Nalta, [16])

Originally, the dimensions of the domain were only dependent on the height of the object of
concern. From now on, the radius of the research area will also determine the dimensions of
the domain. The total length and width of the domain remain 40h respectively 20h, but the
radius of the cylinder will become the radius of the research area that is generated with the
first design tools. This means that the building environment of the domain increases and the
wind environment decreases. However, as the dimensions of the domain are still more than
sufficient in comparison with several other domains that are used in practice, it is likely that
this will not affect the results.

Gambit, the Fluent pre-processor, will be used to generate and mesh the computational
domain. An advantage of Gambit is that it can run so-called journal files. In a journal file, text
based commands, arranged as they would be typed into the program or entered through a
graphical user interface, can be scripted. When running the journal file, Gambit will work over
the commands given in the file, building the model that is scripted.

The purpose of the fourth design tool now is to create the journal file with which the
computational domain can be generated in Gambit, depending on the maximum height and
radius of the research area. The generation of the meshes for the wind environment will also
be scripted in the journal, just as the definition of some boundaries. After the domain is
generated, it is the intention that the user itself places the model of the research area into
the lower cylinder of the domain. Only the objects in the research area and the cylinder itself
have to be meshed manually then. Finally the boundaries of these objects have to be defined.

Master’s thesis

94

The journal file can be generated using a Visual Basic macro that is run in Microsoft Excel.
Figure 7.50 shows the interface of this macro in Excel. It is important to set the regional
settings in Windows to English (UK) to prevent errors with dots and commas.

Figure 7.50: Macro to generate the journal file with which the domain can be created

When the journal file is generated and run in Gambit, the computational domain including the
mesh of the wind environment can be created. The result is given in Figure 7.51. The length
and width in this example are 2400 m respectively 1200 m; the radius is 300 m. The next
step is to manually import the research area with the building of interest into the lower
cylinder of the domain. The user only has to mesh the buildings of the research area and the
lower and upper cylinder then. The Visual Basic script to generate the journal file is given in
Appendix L.

Figure 7.51: Result of the journal file to generate the computational domain

Master’s thesis

95

7.5 Conclusion

In this chapter the various design tools to setup the geometry for a CFD calculation are
discussed extensively. The purpose of these tools is to assist the user of the Virtual Wind
Tunnel to predict the wind loads on a building or structure and compare alternative
geometries in a relatively short time without much interference of the user. Because the wind
around a building is influenced by its surroundings, tools are developed to create a restricted
3D environment for a certain area. Information about the environment is obtained from GIS
technology. Another tool is developed to simplify the building model of interest. Usually these
building models contain lots of detail and inner geometry that are not relevant to determine
the wind loads on a building. Several methods are developed that determine the outer points
and generate the enclosing curves for several height levels of the model. With a special fitting
technique these curves can be simplified if necessary to reduce the amount of detail. Finally a
surface can be generated through the enclosing curves that wraps the model. It is just this
hollow surface model that will be used by the CFD software to calculate the wind loads on the
building. If the influence of the environment has to be taken into account, the surface model
of the building can be placed in the 3D model of the environment. Such an integrated model
of the research area is given in Figure 7.52. The result of the methods to simplify a building
model is placed in the 3D model of a part of the Delft University of Technology district. The
model of concern is the SketchUp model of an office building.

Figure 7.52: Integrated model of the research area that can be used for CFD calculations

The office building forms the central building of the research area. The simulations to predict
the wind loads are performed in a computational domain where the model of the research
area is imported. To obtain reliable results, the domain must be large enough to avoid
influencing of the flow pattern. The dimensions of the domain depend on the maximum
height of the buildings in the area and the radius of the research area. These values are
returned when the design tools to generate the research area are executed. With the height
and radius, the fourth design tool that is developed can finally be used to create the Van
Nalta domain with the required dimensions. The 3D model of the research area has to be
placed manually in the domain then. After meshing the area and setting up the calculation,
the CFD software is able to predict the wind loads.

Master’s thesis

96

The design tools to simplify the building model of interest and generate the 3D model of the
research area are developed in Rhinoceros. Because several methods are developed to find
the outer points of the model of interest, quite some scripts are written for the various tools.
A special toolbar for Rhinoceros is therefore developed that enables the user to quickly load
the various scripts. The toolbar is called Virtual Wind Tunnel and the interface is given in
Figure 7.53.

Figure 7.53: Toolbar for Rhinoceros that supports the written scripts of the design tools

With the toolbar it is possible to perform all processes that are needed to generate a 3D
model of the research area with a simplified surface model of the building of interest. The
toolbar is divided in four rows. In the top row, the A and E toolbar buttons refer to the Area
script and the Extrusion script. With the Area script the restricted 2D research area can be
generated from the Top10Vector dataset. With the Extrusion script the generated 2D
research area can be extruded to a 3D model on the basis of the AHN dataset.

The second row of the toolbar contains three buttons that refer to the scripts to find the
outer points of a 2D model. The first button refers to the Rotating Lines method, the second
button refers to the Rectangle method and the third button refers to the Rotated Square
method. Each method has two variants. The first variant determines the intersection between
the line element of the method and the lines, surfaces and solids of the model. The second
variant determines the intersection between the line element and a mesh element. This
second variant can only be used in Rhinoceros 4. The two variants of each method are
supported by the toolbar. Clicking with the left mouse button on the toolbar button will load
the first variant of the method; the second variant will be loaded when clicking with the right
mouse button on the toolbar button.

The third row of the toolbar contains the buttons that refer to the scripts to find the outer
points of a 3D model. The methods are the same as in the second row, but the scripts are
extended to determine the outer points for several height levels. When running these scripts,
the user also has to enter the height of the model, the starting height of the method and the
step size.

The fourth row finally contains another three buttons. The P toolbar button refers to the
Preprocessing script to convert block instances or meshes into the triangular surfaces. The S
button refers to the Curve Simplification method that simplifies the enclosing curves with the
NURBS fitting method. The L button finally refers to the Loft script that lofts surfaces between
the enclosing curves and creates the wrapped surface.

Master’s thesis

97

8. CFD Calculations

To finish the thesis project some CFD calculations are performed for several test cases that
are generated with the various developed design tools. It is not the intention to obtain very
accurate results from the calculations, as there is still quite some uncertainty about the use of
CFD in wind engineering. The calculations are just performed to test if the various design
tools work for CFD applications. Additional research is required to investigate the accuracy of
the results, especially for the calculations with more complex building models.

Two conceptual grid generation methods will be discussed in this chapter, but they are still
not optimal. Meshing complex geometry requires lots of cells, but the capacity of the current
desktop computers is the limiting factor for the amount of cells that can be used. With the
actual hardware it is very hard to develop a proper grid that simulates the flow pattern on all
places of the research area accurately. The simulations that are discussed in this chapter and
the recommendations that are given must therefore be seen as a first step to the
development of a proper grid generation method for meshing complex geometry. Additional
research is required to develop the methods further. However, for simple geometry it is
already difficult to obtain reliable results with the actual computer resources, as the amount
of cells that can be used is quickly consumed. It might take some years before the wind
effects on entire built areas can be simulated accurately.

The simulations that will be discussed in this chapter are executed in the Van Nalta domain,
where the models are placed in the lower part of the central cylinder. The domain itself is
already meshed during the generation of the domain. After the model of interest is imported
in the domain, only the cylinder containing the research area has to be meshed manually. In
the graduation studies of Van Nalta [16] and Snijders [23], a grid generation method is
developed to mesh the cylinder containing simple geometry, like a cube. This method is used
as a starting-point for the development of a more general grid generation method that can be
used to mesh more complicated geometry. However, verifying the results of the calculations
is difficult as there is hardly any reference information available for the discussed test cases.
Especially for complex building geometry it is very hard to judge the results. The only way of
verifying them is to compare the results with real wind tunnel studies.

In the next paragraphs two grid generation methods will be discussed that are developed for
meshing the several test cases. The first method uses hexahedral elements and can be used
to mesh simple geometry. The second method uses tetrahedral elements and is able to mesh
more complicated geometry. For the simple building models the results of the CFD calculation
can be compared with a calculation according to the Dutch building code or the Eurocode. In
Paragraph 8.6 such a comparison will be made for a building model of the faculty of Electrical
Engineering of Delft University of Technology. In additional studies the results of the CFD
calculations with more complex building geometry should be compared with real wind tunnel
tests to verify the results of these calculations. As for this thesis no reference information is
available for the performed CFD calculations with the more complex geometry, the
calculations are just executed to demonstrate the potential of the grid generation methods.

Master’s thesis

98

8.1 Single cube: 60 x 60 x 60 m

8.1.1 Grid generation

The first object that is used to generate the geometry for the CFD calculations with the
various design tools is the cube that is used in the previous graduations studies of Van Nalta
[16] and Snijders [23]. The cube has dimensions of 60 x 60 x 60 m3. With the Rectangle and
Loft methods a surface is wrapped around the model that fits the original cube accurately.

Figure 8.1: Wrapped surface model (right) of the original cube (left)

The surface model of the cube is placed in the lower cylinder of the Van Nalta domain. Only
the lower and upper cylinders of the domain have to be meshed manually, as the rest of the
domain is already meshed during the generation of the domain. The regions of the domain
outside the cylinders are meshed with structured hexahedral elements as they give best
results in computing time and reduce the numerical error. Cells far away from the central
object are larger as the gradients of the flow parameters are generally small there. This also
has a positive influence on the required amount of cells to mesh the domain. The
computational domain is divided in two levels. In the lower part of the domain the mesh is
denser and the cells have the same height everywhere. The height of the lower part of the
domain is 5 times the height of the highest object in the research area. The height of the
upper part of the domain is 15 times the height of the highest object in the area.

Figure 8.2: Surface model of the cube placed in the unmeshed lower cylinder of the domain

In his graduation study, Van Nalta developed a method to mesh the lower cylinder containing
a cube with a high quality grid. To limit the amount of cells, hexahedral elements were used
to mesh the cylinder. As an introduction to the grid generation process, this method is now
used to mesh the lower cylinder containing the surface model of the cube. After the model is
placed in the cylinder, a size function is attached to the ground edges of the cube and the
bottom of the cylinder. With this function the growth in cell size from the cube’s bottom to
the edge of the circular ground face is controlled smoothly. As only a small growth factor is
used, the grid quality remains high. To facilitate a smooth transition from the cylinder mesh
to the mesh outside the cylinder, the growth in cell size by the size function is restricted by
attaching the mesh distribution on the circular edge of the cylinder, defined by the outside
mesh, to the function. After the size function is attached to the ground face, it is meshed with

Master’s thesis

99

quadrilateral elements using the pave scheme. This creates an unstructured grid on the
bottom of the cylinder with small cells at the edges of the cube that grow smoothly over the
ground surface to the edge of the cylinder. The mesh distribution on the ground edges of the
cube is then linked to the top edges of the cube. With this procedure, the mesh nodes on the
ground edges are in fact copied to the top edges of the cube to retain the same cell size.
Then the roof is meshed with quadrilateral elements using the map scheme. This creates a
regular, structured grid on the roof of the cube. The vertical side edges of the cube are then
meshed using an interval size. This divides the edges in intervals of the specified size. Finally
the lower cylinder is meshed with hexahedral elements using the Cooper scheme. By
specifying the bottom face of the cylinder and the roof of the cube as source faces, the
Cooper scheme projects the mesh on these faces with a uniform grading to the top of the
cylinder, forming 3D elements. In fact, the scheme just extrudes the 2D grid on the faces to
form a 3D grid. The height of the elements is defined by the size of the intervals on the
vertical edges of the cube. As the chosen interval size is equal to the start size of the size
function, hexahedral cells of more ore less equal width, length and height are the result. The
process is then repeated for the upper cylinder, where the mesh distribution on top of the
bottom cylinder is used to project the mesh through the upper cylinder.

Figure 8.3: Ground mesh of the cylinder and a summary of the grid generation method

In Figure 8.3 the mesh on the ground surface of the lower cylinder and a part of the ground
mesh around the cylinder is given. Starting from the ground edges of the cube, the cell size
increases smoothly to a maximum size at the edge of the cylinder. This is due to the size
function. The cells outside the cylinder determine the maximum cell size of the cells inside the
cylinder. Because the cells have to connect perpendicular to the cube and the cylinder, a
transition in cell direction occurs at a certain distance from the cube. This transition should
not be located to close to the central object. The ground mesh, together with the mesh on
top of the cube, is then projected to the top of the cylinder with a uniform grading. The
grading is determined by the interval size on the vertical edges of the cube. The grid
generation method is summarized in the textbox next to Figure 8.3. The variables that are
used to mesh the lower cylinder are specified in Table 8.1.

Size function attached to the ground
edges of the cube and the circular
ground face of the bottom cylinder

Start size 6 (= 0.1 x h)
Growth rate 1.02
Size limit 60 (= h)

Side edges of the cube Interval size 6 (= 0.1 x h)
Table 8.1: Variables used to mesh the lower cylinder containing a cube

 Attach a size function to ground edges of
the cube and the bottom of the cylinder

- Start size = 0.1*h
- Growth rate = 1.02
- Size limit = h

 Mesh the ground surface with
quadrilaterals using the pave scheme

 Link the mesh on the ground edges of the
cube to the top edges of the cube

 Mesh the top surface of the cube with
quadrilaterals using the map scheme

 Mesh the vertical side edges of the cube
with interval size 0.1*h

 Mesh the cylinder with hexahedral
elements using the Cooper scheme

Master’s thesis

100

A see-through of the mesh of the lower cylinder is given in the left picture of Figure 8.4. The
inner cylinder mesh is not given, but must be imagined as volume elements with dimensions
corresponding to the cylinder’s bottom and the cube’s roof mesh elements, with a uniform
height. The height of the elements is defined by the interval size on the vertical edges of the
cube. The volume elements are then projected through the cylinder to the top of the cylinder.
The right picture of Figure 8.4 gives a cross-section of the cylinder mesh. With this grid
generation method applied to the cube volume, the amount of cells in the lower cylinder is
177.640. The upper cylinder contains 56.856 cells and the domain around the cylinder
contains 316.720 cells. The total amount of cells in the computational domain is 491.226.

Figure 8.4: See-through of the cylinder mesh and cross-section of the mesh near the cube

The next step is to define the remaining boundaries of the domain. Most boundaries are
already defined during the generation of the domain with the fourth design tool. For all
objects that are placed in the lower cylinder and for the ground surface of the cylinder, the
boundaries have to be defined manually. The ground surface and the objects will be defined
as wall elements with the no-slip condition, meaning that the flow velocity in all directions at
the wall is set to zero. The parameters of all boundaries of the domain are defined in Fluent
during the setup of the calculation.

8.1.2 Setting up the calculation in Fluent

Once the entire computational domain is meshed and the boundary zones are defined, the
calculation can be setup in Fluent. The calculation will be steady-state, meaning that the
governing equations do not contain time-dependent terms. The guidelines that are used to
setup the calculation are formulated by Van Nalta and are with some small adaptations given
in Appendix M. In this paragraph some essential steps of the setup procedure are discussed
more extensively.

Boundary conditions

The boundary zones of the domain that were defined during the grid generation process are
specified by assigning physical conditions to the zones. The quality of the solution largely
depends on the quality of the boundary conditions. The following conditions need to be
applied. They can be defined as constant values or by using a user-defined function.
 Flow inlet and outlet parameters
 Wall parameters
 Side parameters

Master’s thesis

101

Flow inlet and outlet parameters
The velocity inlet boundary condition is used to define the velocity profile at the inlet
boundary. The logarithmic velocity profile that is prescribed in the Dutch building code NEN
6702 is used to define the inlet conditions. The profile is characteristic for the wind climate in
Zuid-Holland for unbuilt areas and is given in Figure 8.5.

()
*

0

lnu z dU z
zκ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (8.1)

Figure 8.5: The logarithmic velocity profile is used as the inlet boundary condition

The figure gives the velocity profile at the inlet boundary of the computational domain in
Fluent. In the equation that describes the profile is U(z) the mean wind speed, u* the friction
velocity, z0 the roughness height, d the displacement length and κ the Von Karman constant.
According to the Dutch building code NEN 6702, the roughness height for the unbuilt area of
the characteristic wind climate is z0 = 0.2 m. At the inlet boundary also a value for the
turbulence quantities needs to be defined. As the realizable ĸ-ε turbulence model will be used
for the calculations, the turbulent kinetic energy ĸ and the turbulent dissipation rate ε have to
be defined. A user-defined function is used to add the turbulence quantities and the
logarithmic velocity profile to the calculation. It is given in Appendix M.

The top of the computational domain is also defined as a velocity inlet with the same function
as the real inlet. In this way a constant horizontal velocity umax is defined at the top of the
domain. At the outlet of the domain a pressure outlet condition is used where the pressure is
equal to the atmospheric pressure.

Wall parameters
Wall boundary conditions need to be defined for the ground surfaces of the domain and for
the surfaces of the building. With these boundary conditions a roughness is given to the
ground and the cube to model the environment and the façades. The parameters that need
to be defined to give the walls a certain roughness are the roughness length Ks and a
roughness constant Cs. According to Van Nalta [16] the wall parameters can be determined
with:

Roughness length: Ks = 13 Z0 for non-uniform roughness
 Ks = 20 Z0 for uniform roughness

Roughness constant: Cs = 0.75 for non-uniform roughness
 Cs = 0.50 for uniform roughness

As the ground roughness is usually considered as non-uniformly distributed, the roughness
constant of 0.75 is attached to the bottom of the domain in Fluent. With a roughness height
of z0 = 0.2 m for the unbuilt area, the roughness length that will be attached to the ground
surfaces becomes 2.6. The surfaces of the cube are also defined as wall boundaries. For the
façades of the cube, the roughness is considered to be uniformly distributed and a roughness
constant of 0.5 is attached to the sides of the cube. The Eurocode gives friction coefficients
for three types of façades. These friction coefficients are 0.01 for smooth surfaces, 0.02 for
rough surfaces and 0.04 for very rough surfaces. As the façades of the cube are modeled as
very rough surfaces, the roughness length that will be attached to the cube becomes 0.8.

Master’s thesis

102

Sides
At the sides of the domain the symmetry condition is applied to the boundaries. This means
that no energy can leave the domain through the boundary, as the components normal to the
boundary are all set to zero.

Convergence

When running a CFD simulation, the set of equations are solved numerically in an iterative
process. The calculation is repeated until a solution with a sufficient and user-specified
accuracy is found. For any given conservation equation, an approximate solution is obtained
at each iteration that results in a small imbalance in the conservation statement. When the
flow problem is setup correctly, the imbalance in each cell decreases as the iteration process
continues. This imbalance is called the residual. The total residual for each variable across the
entire domain is the sum of the absolute values of the individual cell residuals. Convergence
criteria for the residuals indicate that a certain level of convergence has been achieved.
Before a simulation is run it is important to wonder what accuracy is needed. For
aerodynamic applications for example, deep convergence is required if the lift and drag
coefficients are predicted. If one is simply looking for some approximating flow features,
rough convergence is probably acceptable. According to Fluent (Internet, [9]) the default
convergence criterion of 10-3 is sufficient for most problems. However, for computational wind
engineering this criterion seems to be insufficient. For a calculation that is initialized from the
velocity inlet, leading to a constant wind speed in the entire domain, Van Nalta recommends
a convergence criterion of 10-9.

When a solution is fully converged, the values of the residuals have leveled out to some value
and then stopped changing as the iteration process continues. If the convergence criteria are
set too strictly, no solution is found and the iteration process continues until a specified
maximum number of iterations. An example is given in the left picture of Figure 8.6. The
solution is fully converged to a value of about 10-18 at minimum, but the convergence criteria
are not met as the iteration process continues. Another possibility is that the residuals for all
variables fall below the convergence criteria, but are still decreasing. The solution is still
changing, but the desired accuracy is reached. An example is given in the right picture of
Figure 8.6, where the iteration process stops after 2750 iterations. Although the solution is
not fully converged, the convergence criteria for all variables are met.

Figure 8.6: Examples of the convergence paths of the residuals during the iteration process

Master’s thesis

103

8.1.3 Results

The flow problem discussed in the previous paragraphs is solved iteratively with a maximum
of 1000 iterations and convergence criteria of 10e-9. With a mesh consisting of 491.226 cells,
the simulation took about 3½ hours. In the left picture of Figure 8.7 the residuals of the
variables are plot. During the simulation the continuity, x-, y- and z-velocity and the
turbulence variables ĸ and ε are monitored. The solution is fully converged, but the
convergent criteria are not met. The criteria of 10-9 are probably too high.

Figure 8.7: Convergence of the residuals (left) and surface monitor above the roof (right)

Monitoring the residuals is not the only option to judge the convergence of a solution. Also
surface and force monitors can be applied to examine the convergence. A surface monitor
can be a plane or a point and can for example be placed above the roof of the object and in
the wake behind the object. Monitoring the velocity magnitude in those points for example
during the iteration process helps to judge the solution. When they level out to a certain
value, the solution is considered to be converged. The right picture of Figure 8.7 gives the
convergence history of the velocity magnitude just above the roof of the cube. The left
picture of Figure 8.8 gives the convergence history of the velocity magnitude in the wake
behind the cube. Force monitors can finally be used to monitor the forces on a certain
surface. The right picture of Figure 8.8 gives the monitored drag at the back of the cube.

Figure 8.8: Surface monitor in the wake (left) and force monitor of drag at the back (right)

The convergence of the residuals in combination with surface or force monitors provides a
much better idea of the convergence of a solution. From the figures on this page it can be
concluded that the solution of the calculation with the cube is fully converged. As was to be
expected, the results are the same as Van Nalta got from his calculations. The results can be
presented further with colorful plots or derived in absolute quantities, such as maximum
force, pressure or momentum. On the following page some results are presented in a visual
way.

Master’s thesis

104

When the simulation process is finished and the flow field variables are found, information
about the flow parameters can be presented in a visual form to check if the solution is
physically reasonable. With isometric views insight into the pressure distribution on the
façades of a model can be provided. Important or critical places are easy to identify. An
example is given in the left picture of Figure 8.9. Also the turbulent kinetic energy can be
displayed on the model to show the critical turbulent zones for example.

Figure 8.9: Isometric views of pressure distribution and turbulent kinetic energy distribution

With contours of velocity magnitude and pathlines a visualization of the flow around the
model can be given. In the left picture of Figure 8.10 the velocity contours around the cube
are displayed. Near the ground and at the back of the cube the air velocity is small. Due to
the logarithmic wind profile that is used, the air velocity increases with the height. Also the
wake structure and size of the wake at the back of the cube are shown. The results seem to
be physically reasonable. In the right picture of Figure 8.10 pathlines colored by the velocity
magnitude are displayed around the cube. Pathlines represent the track that particles will
travel when they are released in the fluid motion. Especially for the visualization of complex
three-dimensional flows they are an excellent tool.

Figure 8.10: Contours of velocity magnitude and pathlines to visualize the flow

There are many ways of representing and analyzing the solution of a simulation. When CFD
results are compared with experiments a problem arises, as for experiments only a limited

amount of data can be obtained or visualized. The
best way to compare results with experiments is the
use of pressure coefficients. The pressure coefficient
is related to the wind speed at building height. For
the front façade of the cube an example is given in
Figure 8.11. At 45 m, or at ¾ of the height, a
maximum pressure coefficient of 0.8 is found. This
corresponds to the Dutch building code, where the
wind load is also calculated with a coefficient of 0.8
for pressure and a coefficient of 0.4 for suction.

Figure 8.11: Pressure coefficients at the
 middle of the front façade

Master’s thesis

105

8.2 Two cubes

As a first step to the development of a grid generation method
for models containing several buildings, a second cube is added
to the research area. The cubes are placed at the x=0 axis with
a distance between them corresponding to the distance between
a cube and the edge of the cylinder. Nevertheless, problems
aroused immediately when the model was meshed. The grid
generation method discussed in the previous paragraph seemed
not suitable for meshing a cylinder containing multiple objects.
The method also did not work for a single cube that was moved
from the center of the cylinder. The structured mesh that is
applied on the roof of the cube using the map scheme appeared

to be the cause of the method’s failure. After the ground surface of the cylinder is meshed
using the size function, the mesh distribution on the ground edges of the cube is copied to
the top edges. This distribution is then used to mesh the roof of the cube. However, when
the cube is not placed in the middle of the cylinder, the distribution of the mesh on the
ground edges of the cube is not equal for all edges. The mesh distribution on the top edges
of the cube is therefore also not equal. When the roof of the cube was meshed with the map
scheme, the cylinder could not be meshed with the Cooper scheme. Using the pave scheme
to mesh the roof of the cube with an unstructured mesh appeared to be the solution.

After adapting the grid generation method it was possible to mesh the cylinder containing the
two cubes. First a size function is attached to the ground edges of the cubes and the bottom
of the cylinder to smoothly control the growth in cell size. Then the ground surface and the
roof of the cubes are all meshed with quadrilateral elements using the pave scheme. This
results in an unstructured grid on both the bottom of the cylinder and the roof of the cubes.
Then the vertical edges of the cubes are meshed using an interval size between the mesh
nodes. Finally both cylinders are meshed with hexahedral elements using the Cooper scheme.
After the resulting boundary zones are defined, the calculation is setup in Fluent. The same
procedure is used as discussed in Paragraph 8.1.2. In Figure 8.12 the ground mesh of the
cylinder and the grid generation method is given. In Table 8.2 the variables are summarized
that were used to mesh the cylinder.

Figure 8.12: Ground mesh of the cylinder and a summary of the grid generation method

Size function attached to the ground
edges of the cube and the circular
ground face of the bottom cylinder

Start size 6 (= 0.1 x h)
Growth rate 1.02
Size limit 60 (= h)

Side edges of the cube Interval size 6 (= 0.1 x h)
Table 8.2: Variables used to mesh the lower cylinder containing two cubes

 Attach a size function to ground edges of
the cubes and the bottom of the cylinder

- Start size = 0.1*h
- Growth rate = 1.02
- Size limit = h

 Mesh the ground surface with
quadrilaterals using the pave scheme

 Link the mesh on the ground edges of the
cubes to the top edges of the cubes

 Mesh the top surfaces with quadrilaterals
using the pave scheme

 Mesh the vertical side edges of the cubes
with interval size 0.1*h

 Mesh the cylinder with hexahedral
elements using the Cooper scheme

Master’s thesis

106

In the next figure the convergence of the residuals is given. The solution appears to be fully
converged as the residuals have leveled out to some value and stopped changing as the
iteration process continued.

Figure 8.13: Convergence of the residuals

In Figure 8.14 some other results of the simulation are given. In the left picture streamtraces
are displayed together with the turbulent kinetic energy on the ground and the surfaces of
the cubes. The picture is generated in Tecplot (Internet, [24]), another CFD post-processor.
The streamtraces show the flow pattern around the obstacles and are similar to the pathline
rakes of Fluent. The right picture shows the flow pattern in top-view using pathlines in Fluent.

Figure 8.14: Streamtraces and pathline rakes show the flow pattern around the two cubes

To test the adapted grid generation method further, some other models are used to
investigate the possibilities and shortcomings of the method. In the next paragraph a
calculation with the building of the faculty of Electrical Engineer is discussed. The building
model is derived from the 3D model of the Delft University of Technology district that was
generated with the first design tools.

Master’s thesis

107

8.3 Faculty of Electrical Engineering

Figure 8.15: Faculty of
 Electrical Engineering

corners Gambit automatically adapts the shape and size of the cells if necessary to connect all
cells on the model correctly. The growth in cell size is again restricted by attaching the mesh
distribution on the circular edge of the cylinder, defined by the outside mesh, to the size
function. The height of the cells is determined by the mesh distribution on the vertical edges.
It is recommended to mesh all vertical edges using an interval size equal to the start size of
the size function. This results in mesh elements of more or less the same length, width and
height. It is also possible to mesh the vertical edges with an interval count. This divides the
edge in a user-specified amount of intervals. If all vertical edges have the same length it is
possible to create intervals of the desired size with this method, as long as the interval count
is chosen correctly. However, if there are vertical edges of different length, it is not
recommended to use an interval count to mesh the edges. This would result in various
interval sizes on the different vertical edges, which is not preferred. For the Electrical
Engineering building, all vertical side edges are meshed using an interval size equal to the
start size of the size function. In Table 8.3 the variables that are used to mesh the cylinder
are summarized.

Size function attached to the ground
edges of the cube and the circular
ground face of the bottom cylinder

Start size 3
Growth rate 1.02
Size limit 88

Side edges of the cube Interval size 3
Table 8.3: Variables to mesh the lower cylinder containing the Electrical Engineering building

Figure 8.16 on the next page shows some results of the simulation. The left picture gives the
pressure distribution on the building; the right picture gives the contours of velocity around
the building.

Another model that is used to test the adapted grid generation
method is the building of the faculty of Electrical Engineering of
Delft University of Technology. Unlike the cube model that is used
in the previous graduation studies, the various edges of the
Electrical Engineering building are not equal in length. The longest
horizontal edge is about 71 m, the shortest edge 7 m. All vertical
edges have a length equal to the height of the building, which is 88
m. For the cube, the length of all edges was 60 m. The size
function that was used to control the growth in cell size from the
cube’s bottom to the edge of the circular ground face uses a start
size for the cells of 0.1 times the height of the cube. Adapting this
relation for the Electrical Engineering building gives a start size of
8.8 m for the cells. However, as the shortest horizontal edge is only
7 m, it is recommended to decrease the start size to the length of
the shortest edge at maximum. This results in at least one cell at
that edge. As the width of the building is 21 m, a startsize of 7 m
results in three cells over the width of the building. This is probably
too less to obtain reliable results. Therefore a start size of 3 m is
applied, what results in 7 cells over the width of the building. In

Master’s thesis

108

Figure 8.16: Pressure distribution and contours of velocity around the faculty’s building

Some more tests with the adapted grid generation method showed that the method works for
straight buildings where the ground and the roof have the same layout. The method starts
with the attachment of a size function to the ground edges of the building model and the
ground surface of the lower cylinder. It is recommended to use the shortest edge of the
building model at maximum as the start size for the size function. The shortest edge of the
model and its length are easy to find using a special tool in Gambit. After the size function is
attached to the bottom of the cylinder, it is meshed using the pave scheme, resulting in an
unstructured grid on the ground surface. The mesh distribution on the ground edges of the
building model is then copied to the top edges of the model. The top surface is meshed using
the pave scheme, creating an unstructured grid on the roof of the model. The next step is to
mesh the vertical side edges. It is recommended to use an interval size in stead of an interval
count, in order to create the same mesh distribution on vertical edges of different length. For
meshing the vertical edges, it is recommended to use an interval size equal to the start size
of the start function. Finally the lower and upper cylinders are meshed with hexahedral
elements using the Cooper scheme. In Appendix N a detailed step by step guide is given of
this first grid generation method.

Although the method works fine for the discussed geometry, the applicability is very limited.
If the layout of the ground and the top of the building is not the same, the method does not
work anymore. Linking the mesh distribution on the ground edges of the model to the top
edges is not possible for such models. When the model is not straight because it contains
balconies for example, the method also does not work. For the apartment building for
example that was used to test the various design tools, it is not possible to use the developed

grid generation method to mesh the model as the
mesh on the ground edges can not be copied to the
top edges. Another disadvantage of the method
appears to be the use of hexahedral elements to
mesh the cylinder. The cells have to connect
perpendicular to the building model and the round
edge of the cylinder. For complex building models or
models containing several buildings, this is very
difficult or even impossible to achieve with
rectangular cells.

Figure 8.17: The first grid generation method does not work for complex building geometry

In the next paragraph another grid generation method is discussed that uses tetrahedral cells
in stead of hexahedral cells. This method seems suitable to mesh the cylinder containing one
or more complex building models.

Master’s thesis

109

8.4 Tetrahedral cells

In general, the advantage of using hexahedral meshes is that it requires fewer cells and
usually gives a more accurate and earlier converged solution. However, the number of shapes
that can be described with hexahedral cells is limited, what makes it unfit for meshing
complex building models. Tetrahedral cells offer the most flexibility and theoretically it is even
possible to mesh any shape with tetrahedral cells. A drawback of tetrahedrons is that it may
require two or three times as many cells to get the same solution as with hexahedral cells.
The large amount of tetrahedral cells is quite often too many for the available computer
resources. The computer for example that is used for the calculations of this thesis has an
Intel Pentium IV processor with 1.0 gB of RAM memory. If the total amount of cells remains
under approximately 1.2 million, a reasonably calculation speed is achieved. When more cells
are used, the amount of RAM becomes insufficient and data has to be written and read to
and from the hard drive. This slows down the calculation speed considerably. As the Van
Nalta domain without the inner cylinders already contains about 317.000 cells, only 883.000
cells remain to mesh the cylinder containing the research area. This is certainly too less to
obtain very accurate results for complex models. However, with the current development of
computer resources this problem will probably overcome in the nearby future.

Anticipating on these developments, the second grid generation method that is developed for
this Master’s thesis does use tetrahedral cells as they are still the most suitable type for
meshing complex geometries and as they can be used for automated meshing. With
automated meshing it is possible to mesh an entire area by only defining a mesh distribution
on the edges of the models within the area. Gambit is capable of creating the total mesh for
that area automatically then. However, this method does not always result in the best grid by
definition and meshing the domain manually sometimes gives more accurate results.
Nevertheless, meshing complex geometry by hand is very time-consuming when the model
contains lots of edges and surfaces and errors are easy to make. Therefore automatic
meshing with tetrahedral cells seems to be the most appropriate method that is universally
applicable. At the moment it is not expected to obtain very accurate results from the method
for complex building models, due to the limited computer resources. Nevertheless, as will be
demonstrated in the rest of this chapter, it appears to be a potential method to generate a
grid for complex building geometry.

The first step of this second grid generation method is to mesh all edges of the model inside
the cylinder with a certain interval size. It is recommended to use an interval size that is
equal to the length of the shortest edge of the model at maximum. The result is an equal
mesh distribution on all edges of the model with at least one cell at the shortest edge. If the
model contains only large edges or if there are enough resources available, it is of course
recommended to use a smaller interval size. When all edges of the models are meshed, the
cylinder can be meshed with tetrahedral elements using the TGrid scheme. The cylinder is
automatically filled with a grid then. In Appendix N a detailed step by step guide is given of
this second grid generation method.

In the next paragraphs some results of the grid generation method are discussed. The
method is applied to the models of an apartment building and an office building, which were
used to test the design tools, and to a model of the faculty of Architecture of Delft University
of Technology. Due to the limited amount of cells, the results are probably not very accurate.
However, the results must be seen as a proof of concept that the models can be meshed,
simulations can be performed and output is obtained.

Master’s thesis

110

8.4.1 Apartment building

Figure 8.18: Apartment building model

can not be linked. With hexahedral elements it is also very difficult to mesh the complex
geometry and to connect the cells perpendicular to the building model and the round edge of
the cylinder. Using tetrahedral elements is the only way of meshing such complex building
models.

The shortest edge of the building is 1.4 m. This length is used as interval size for meshing all
edges of the building. Meshing the cylinder with tetrahedral elements results in 646.252 cells
in the lower cylinder and 1.033.375 cells in the total computational domain. The mesh is far
too coarse as the balconies for example just have two cells over the height. An accurate
simulation of the flow pattern around the balconies is therefore not possible. However, as the
maximum amount of cells of 1.2 million is almost reached, refinement of the mesh is not an
option at the moment. In Figure 8.19 the mesh on the apartment building and the
convergence of the residuals during the simulation are given.

Figure 8.19: Mesh of the apartment building and convergence of the residuals

Looking at the path of the residuals it can be concluded that the residuals are converged. The
variables have leveled out to some value and then stopped changing. As discussed in one of
the previous paragraphs, monitoring the residuals is not the only way to judge the
convergence of a solution. Also surface and force monitors can be applied to examine the
convergence. Another option to evaluate the solution is to perform a grid convergence study.
With this method the quality of the grid is judged. The method is discussed in Paragraph
8.7.2. As the maximum amount of cells that can be used is already reached for this model,
such a study is not an option at the moment.

The first model that is used to generate a grid with
the second grid generation method is the relatively
complex model of an apartment building. The
model was first used to test the various developed
design tools to create a wrapped surface around
the model. This hollow surface model of the
building is very suitable for CFD calculations as all
original internal and external geometry is replaced.
Only the surfaces that come in direct contact with
the flow are modeled. Due to the balconies and
divergent roof layout in comparison with the
ground, it was not possible to use the first grid
generation method as the ground and top edges

Master’s thesis

111

In Figure 8.20 an impression is given of the pressure distribution on the façades of the
apartment building. Verifying the results is difficult as there is no reference information
available for this model. For the moment, real wind tunnel studies will be the only option to
verify the results of CFD calculations with such models.

Figure 8.20: Static pressure distribution on the façades of the apartment building

In Figure 8.21 a part of the flow pattern around the building is given. The global pattern is
perhaps reasonably approximated. However, the pattern around the balconies for example is
probably not very accurate as they are meshed with only two cells over the height. For an
accurate description of the flow pattern at those locations a lot more cells are required.

Figure 8.21: Flow pattern around the apartment building

Master’s thesis

112

8.4.2 Faculty of Architecture

Figure 8.22: Faculty of Architecture

magnitude above the roof of the main building and in the wake behind the building. In Figure
8.24 the convergence history of the monitored variables is given. The convergence of the
residuals in combination with the surface monitors provides a much better idea of the
convergence of a solution. As all variables have leveled out to a certain value, the solution is
considered to be fully converged.

Figure 8.23: Mesh on the faculty of Architecture and the convergence path of the residuals

Figure 8.24: Surface monitor above the roof (left) and in the wake (right): Velocity Magnitude

A second model that is used to generate a grid with the
second grid generation method is the model of the
faculty of Architecture of Delft University of Technology.
The model is derived from the 3D model of the
university district that was generated with the first
design tools. The shortest edge of the model is 1.2 m.
The edges are all meshed using an interval size of 1 m,
resulting in 641.501 cells in the cylinder and 1.128.951
cells in the total domain. As the amount of 1.2 million
cells is almost reached, further refinement is not useful.
In Figure 8.23 the mesh on the faculty’s building and the
convergence of the residuals are given. As the residuals
have leveled out to some value, it can be concluded that
the residuals have converged. For this calculation, also
surface monitors have been used to monitor the velocity

Master’s thesis

113

In Figure 8.25 some results of the simulation are presented in a visual form. In the left
picture the static pressure distribution on the façades of the building are given. The right
picture gives the velocity vectors around the centre of the building. With velocity vectors a
clear visualization of the flow pattern around the building can be provided. The vectors are
colored by their velocity magnitude.

Figure 8.25: Static pressure distribution and velocity vectors around the centre of the building

In Figure 8.26 the flow pattern around the building is given. The pathlines are released at
two different height levels; at 10 m and at 20 m above ground level. In this way the flow
pattern around and above the lower parts of the faculty’s building can be clearly visualized.

Figure 8.26: Pathlines show the flow pattern around the faculty of Architecture

Master’s thesis

114

8.4.3 Office building

Figure 8.27: Model of the office building

convergence of the residuals are given. As the variables have more or less leveled out to
some value, it can be concluded that the residuals have converged. However, the paths are
not very smooth and better results are possible. Refining the grid further will certainly give a
more converged solution.

Figure 8.28: Mesh of the office building and the convergence path of the residuals

In Figure 8.29 the static pressure distribution on the façades of the office building and the
flow pattern around the building are given. Due to the limited amount of available cells, the
results are probably not very accurate. However, the simulations with the apartment building,
the faculty of Architecture and the office building show that the grid generation method
works and results can be obtained. This proves that the various developed design tools to
setup the geometry work for CFD applications. With the discussed grid generation methods it
is possible to mesh simple as well as complex building geometry. Especially for complex
geometry the results are probably not accurate enough yet to determine the global wind
loads on a building. However, taking the constant developments in computer resources into
account, it will be possible in the nearby future to determine the wind loads on complex
building geometry accurately.

Figure 8.29: Static pressure distribution on the façades and flow pattern around the building

Another building model that is used to test the
second grid generation method is the model of
an office building. This model is also used to
create a wrapped surface around the model
with the various developed design tools. The
shortest edge of the hollow surface model is
1.5 m. Using an interval size of 1 m to mesh
the edges appeared to be the minimum, as this
size resulted in 709.391 cells in the cylinder
and 1.116.989 cells in the total domain.
Further refinement is not useful as the amount
of 1.2 million cells is almost reached. In Figure
8.28 the mesh on the office building and the

Master’s thesis

115

8.5 Part of the Delft University of Technology district

A final test for the developed grid generation method is the model of a part of the university
district. For the single building models discussed in the previous paragraphs, the limited
amount of cells that can be used with the available hardware resulted in a coarse grid on the
models. As the model of the university district contains several buildings, the grid will be even
coarser. To give a first impression of the flow pattern around the several buildings, the grid is
perhaps suitable. However, to determine the flow pattern at specific locations accurately the
grid is far too coarse. The goal of this test is just to show that the grid generation method
also works for a model containing several buildings.

The model that is discussed in this paragraph is derived from the larger 3D model of the
university district that was generated with the first design tools. For this case, only the
buildings of the faculty of Electrical Engineering, Civil Engineering and Architecture and the
sport centre are modeled. The model is manually adapted a little to remove some very short
edges and to improve the ability to mesh the model. The building model of the faculty of Civil
Engineering is also adapted. In the GIS datasets, the total building was presented with only
one polygon. Extruding the polygon gave a single model with the same height everywhere.
However, in reality the building consists of several parts with their own height. The original
polygon is therefore manually split in several polygons that represent the various building
parts. Extruding these polygons over various heights gives a building model that represents
reality much better. The model of the research area is given in Figure 8.30. The radius of the
total area is 500 m, which is quite large in comparison with the smallest area that would fit
around the building models. The radius of this smallest area is 250 m and the design tools to
generate a 3D model of the environment also give this radius as output. However, to provide
a smooth transition between the mesh on the building models and the edge of the cylinder, a
certain distance between the buildings and the cylinder edge is required. The radius of the
actual research area is for this example two times the radius of the original area. The
computational domain is therefore also generated with a radius of 500 m for the central
cylinder.

Figure 8.30: Model of the research area: part of the Delft University of Technology district

Master’s thesis

116

The shortest edge of the model is 7.4 m. Using an interval size of 3.7 m to mesh the edges of
all buildings models results in at least 2 cells at the shortest edge. After meshing the cylinder
with tetrahedral elements, the amount of cells in the lower cylinder is 620.112. The total
amount of cells in the computational domain is 1.009.571. Further refinement is therefore not
very valuable. In Figure 8.31 the mesh on the several building models and a part of the mesh
on the ground surface is given. Although the grid is considerably coarse, it can be concluded
that the grid generation method also works for models with several buildings.

Figure 8.31: Mesh on the several building models and the ground surface

In Figure 8.32 the convergence of the residuals is
given. As the residuals have more or less leveled
out to some value, it can be concluded they have
converged. Force and surface monitors are not
applied. In Figure 8.33 the static pressure
distribution on the façades of the building model
are given. It is difficult to judge the accuracy of the
solution, as the grid is reasonably coarse. However,
the results look physically reasonable. At the
façade of the Civil Engineering building right behind
the high-rise of the faculty of Electrical Engineering
for example, less pressure is measured.

Figure 8.32: Convergence of the residuals

Figure 8.33: Static pressure distribution on the façades of the various building models

Master’s thesis

117

In Figure 8.34 the flow pattern around the several buildings is represented with pathlines.
The particles are released at 150 m in front of the research area and 5 m above ground level.
The pathlines are colored by the velocity magnitude of the particles. The blue color indicates
a low velocity; green and yellow indicate a higher velocity. In the figure it is nicely visualized
how the air is forced between the faculty of Civil Engineering and the faculty of Architecture;
these are the top buildings in the model. The color of the lines show how the velocity
increases as the air is squeezed between the buildings. This pattern differs somewhat from
reality as no vegetation is modeled. However, the results look reasonable.

Figure 8.34: Pathlines colored by velocity magnitude; front view

In Figure 8.35 the pathlines are given from another point of view. The large wake behind the
faculty of Architecture is nicely visible. Behind the high-rise building of Electrical Engineering,
a large whirl arises as the air collides with the faculty of Civil Engineering. Pathlines are a very
powerful tool to visualize such phenomena. However, one must keep in mind that only the
pathlines that are released at 5 m above ground level are visualized. For different heights the
flow pattern will differ and divergent phenomena might occur at different heights.

Figure 8.35: Pathlines colored by velocity magnitude; back view

Master’s thesis

118

The flow pattern in the research area can also be visualized using Tecplot, another CFD post-
processor. The streamtraces in Figure 8.36 are all released at 150 m in front of the research
area, but at different heights. Using Tecplot it is also possible to make animations of the flow
pattern, what improves the insight in the pattern further. Because the research area was
meshed with a considerably coarse grid, the quantitative pressure distribution for example is
not very accurate. However, the streamtraces and pathlines probably give a reasonable
indication of the flow pattern in the research area. These results can for example be used to
determine the most suitable location for a certain wind turbine or to find a sheltered place for
a terrace or tram stop.

Figure 8.36: Streamtraces visualize the flow pattern in the research area

Master’s thesis

119

8.6 Comparison with the building codes

The results of the CFD calculations that are discussed in this chapter have demonstrated that
the design tools work for CFD applications. With the developed grid generation methods the
models can be meshed and results can be obtained. As the amount of cells that can be used
to mesh the domain is limited, the grid is too coarse to simulate the flow pattern through the
research area accurately. However, for a first indication of the global wind loads on a
building, the coarse grid is perhaps sufficient. Comparing the results of a CFD calculation for a
simple case with the building codes would therefore be very valuable.

The building model of the faculty of Electrical Engineering of Delft University of Technology is
selected for the comparison, as the building has a simple, rectangular shape. With both the
Dutch building code NEN 6702 and the Eurocode it should be possible to determine the wind
load on this shape. Figure 8.37 gives the façade of the Electrical Engineering building on
which the wind load will be calculated. The dimensions of the façade are b x h = 71 x 88 m2.

Figure 8.37: Façade of concern for the calculation of the wind load

8.6.1 Calculation of the wind load according to the Dutch building code

According to NEN 6702 [18] the wind loads on a structure or building can be calculated from:

1rep w dim indexp p C C φ= ⋅ ⋅ ⋅ (8.2)

= ⋅index repF A p (8.3)

Where: prep: representative wind pressure that follows from the most

unfavourable combination of forces that occur at the same time
 pw: extreme wind pressure, depending on the global and local wind

climate
Cdim: relation between wind gusts and building dimensions
Cindex: form factor for pressure, suction and friction

 Φ1: dynamic factor
 Findex: representative wind force on a surface
 A: surface exposed to the representative wind pressure

The determination of the various factors is given on the next pages.

Façade dimensions: b x h = 71 x 88 m2

Master’s thesis

120

Extreme wind pressure
The Netherlands are divided in three wind areas based on geographical differences, with a
representative, constant wind velocity. For each area the code gives an extreme wind
pressure pw for built and unbuilt regions as a function of the height above the terrain. Figure
8.38 gives the three wind areas in which the Netherlands are divided with the extreme wind
pressure pw near the height of the Electrical Engineering building. As the building has a height
of 88 m and is located in the built region of area II, the extreme wind pressure is 1,64 kN/m2.

Figure 8.38: The three wind areas with their representative wind pressures (NNI, [18])

According to NEN 6702 [18], the extreme wind pressure pw can also be calculated with:

2

*

0

0

11 7 2,5 ln
2

ln

w
w

w

z dkp u
zz d

z

ρ

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎛ ⎞−⎢ ⎥= + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟⎢ ⎥⎛ ⎞− ⎝ ⎠⎣ ⎦⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (8.4)

Where: u*: friction velocity

z0: roughness height of the terrain
 z: reference height
 dw: displacement length
 k: specific factor
 ρ: air density

In Table 8.4 the characteristics to determine the extreme wind pressure are summarized for
the three wind areas. For a building height of 88 m the wind pressure pw is:

2
20,9 1 88 3,51 7 1,225 2,5 2,82 ln 1,64 kN/m

4,79 2 0,7wp
⎡ ⎤−⎡ ⎤ ⎛ ⎞= + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 (8.5)

 unbuilt built
 I II III I II III
u* 2.25 2.3 2.25 3.08 2.82 2.6
z0 0.1 0.2 0.3 0.7 0.7 0.7
d 0 0 0 3.5 3.5 3.5
k 1.0 1.0 1.0 0,9 0,9 0,9

Table 8.4: Characteristics for the wind climate according to NEN 6702 [18]

Master’s thesis

121

Dimension factor
The factor Cdim is a factor that takes the relation between wind gusts and the dimensions of a
building into account. The factor is introduced as large surfaces do not experience the effects
of wind gusts at the same time everywhere. For buildings with a rectangular projection to the
wind direction, the dimension factor can be calculated from:

1 7 () 1
1 7 ()dim

I h BC
I h

+ ⋅ ⋅
= ≤

+ ⋅
 (8.6)

1()

ln
0, 2

I h
h

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8.7)

2/3 2 /3

1
0,94 0,021 0,029

B
h b

=
+ ⋅ + ⋅

 (8.8)

Where: I(h): turbulence intensity at height h
 B: effective width
 h: height of the building part where the wind acts upon
 b: width of the building part where the wind acts upon

For the turbulence intensity and the effective width of the building it follows:

()
1() 0,16

ln 440
I h = = ; 2/3 2 /3

1 0,54
0,94 0,021 88 0,029 71

B = =
+ ⋅ + ⋅

 (8.9)

For the dimension factor it follows:

1 7 () 1 7 0,16 0,54 0,86
1 7 () 1 7 0,16dim

I h BC
I h

+ ⋅ ⋅ + ⋅ ⋅
= = =

+ ⋅ + ⋅
 (8.10)

Form factor for pressure, friction and suction
For façades of buildings with a rectangular floor plan, the form factor Cindex follows from
Figure 8.39. For pressure the form factor is 0,8.

Figure 8.39: Form factors for façades of buildings with a rectangular floor plan (NNI, [18])

Master’s thesis

122

Dynamic factor
The effects of vibrations of the structure are taken into account with the dynamic factor Φ1.
As dynamic behaviour is not considered in this thesis, a factor of 1 can be used.

Representative wind pressure
With the derived variables it follows for the representative wind pressure:

2
1 1,64 0,86 0,8 1 1,13 kN/mrep w dim indexp p C C φ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = (8.11)

Reference area
The reference area of the façade of the Electrical Engineering building that is subjected to
wind is:

271 88 6.284 A b h m= ⋅ = ⋅ = (8.12)

Representative wind force
The representative wind force on the concerning façade can finally be calculated from:

6.284 1,13 7.101 kNindex repF A p= ⋅ = ⋅ = (8.13)

Master’s thesis

123

8.6.2 Calculation of the wind load according to the Eurocode

In Paragraph 3.2.2 the process to calculate the wind load according to the Eurocode is
summarized. This procedure will now be used to determine the forces on the building of the
faculty of Electrical Engineering. The Eurocode prescribes the wind load with the following
equation:

()w ref e e d f refF q c z c c A= ⋅ ⋅ ⋅ ⋅ (8.14)

Where: qref: The reference mean velocity pressure
 ce: The exposure coefficient. This coefficient takes the wind profile into
 account
 ze: The reference height. Usually this is the height of the building or
 structure
 cd: This coefficient takes the dynamic effects of the response of the

building or structure into account
 cf: The force coefficient. This coefficient takes the geometry of the
 building or structure into account

Aref: The reference area of the building or structure that is subjected to
the wind

Reference mean velocity pressure
In the CFD calculations the logarithmic velocity profile that is prescribed in the Dutch building
code is used, which is characteristic for the wind climate in a built area in Zuid-Holland. For a
proper comparison, the reference wind velocity in the Eurocode calculation is therefore
derived from the characteristics defined in the Dutch building code. The logarithmic velocity
profile is given by:

()
*

0

lnu z dU z
zκ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (8.15)

Where: u*: friction velocity
 κ: Von Karman constant, which is 0.42
 z: reference height
 z0: roughness height of the terrain
 d: displacement length

In Table 8.4 the characteristics of the wind climate for three wind areas were summarized. As
the building of the faculty of Electrical Engineering is located in a built region of area II, the
reference wind velocity can be calculated from:

()
*

0

2,82 88 3,5ln ln 32,18 m/s
0, 42 0,7

u z dU z
zκ

⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (8.16)

With an air density of 1,225 kg/m3, the reference mean velocity pressure follows from:

()()2 2 21, 225 32,18 634,45 N/m
2 2refq U zρ

= ⋅ = ⋅ = (8.17)

Master’s thesis

124

Exposure coefficient
The exposure coefficient takes the wind profile into account and is defined by the turbulence
intensity, a roughness coefficient and a topography coefficient. The exposure coefficient can
be calculated from:

[]2 2() () () 1 2 ()e e r e t e v ec z c z c z gI z= + (8.18)

Where: g: the peak factor with value 3,5
 Iv(ze): the turbulence intensity
 cr(ze): a roughness coefficient
 ct(ze): a topography coefficient

The topography coefficient ct takes the increase of the mean wind velocity over isolated hills
and cliffs into account. As there are no cliffs or hills in the research area, the coefficient is 1.
The roughness coefficient takes the roughness of the terrain into account and is given by:

0

() ln min
r e T

zc z k
z

= ⋅ (8.19)

Where: kT: terrain factor
 zmin: minimum reference height
 z0: roughness length

The terrain factor can be determined with:

0,07 0,07
0

0,II

0,70,19 0,19 0,23
0,05T

zk
z

⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (8.20)

Where: z0: roughness length

z0,II: the roughness length for terrain category II, which is 0,05

The minimum reference height zmin depends on the terrain category and is 10 for built regions
of area II. The roughness coefficient can now be calculated from:

0

10() ln 0,23 ln 0,61
0,7

min
r e T

zc z k
z

= ⋅ = ⋅ = (8.21)

The final variable that defines the exposure coefficient is the turbulence intensity. The
turbulence intensity is defined as the ratio between the maximum or minimum wind speed
and the mean wind speed at a certain height. It can be calculated from:

0,23() 0,38
() () 0,61 1

T
v

r t

kI z
c z c z

= = =
⋅ ⋅

 (8.22)

From the calculated variables the exposure coefficient follows from:

[] []2 2 2 2() () () 1 2 () 0,61 1 1 2 3,5 0,38 1,35e e r e t e v ec z c z c z gI z= + = ⋅ ⋅ + ⋅ ⋅ = (8.23)

Master’s thesis

125

Dynamic factor
The effects of vibrations of the structure are taken into account with the dynamic factor cd.
As dynamic behaviour is not considered in this thesis, the factor is 1.

Force coefficient
The force coefficient takes the geometry of a building into account. It is defined by:

,0f f rc c λψ ψ= ⋅ ⋅ (8.24)

Where: cf,0: the force coefficient of rectangular sections with sharp corners
 ψr: the reduction factor for square sections with rounded corners
 ψλ: the end-effect factor for elements with free-end flow

The various parameters are based on results of wind tunnel tests. The force coefficient cf,0
depends on the width and depth of the building. For rectangular buildings the coefficient can
be derived from Figure 8.40. The width b of the façade of the Electrical Engineering building
is 71 m; the depth d of the building is 21 m. The ratio between the depth and width is 0.296.
This gives a force coefficient cf,0 of 2,1.

Figure 8.40: Force coefficients cf,0 of a rectangular section (NNI, [17])

The reduction factor ψr is a coefficient that takes the effect of rounded corners into account.
As the building has no rounded corners, the coefficient is 1. The end-effect factor ψλ takes
the reduced resistance of the structure due to the wind flow around the end of the building
into account. It depends on the slenderness of the structure and a solidity parameter and can
be derived from Figure 8.41. The solidity takes the effect of openings in the structure into
account, but is 1 for the closed building of the faculty of Electrical Engineering. According to
the Eurocode, the effective slenderness for rectangular buildings higher than 50 m is:

Minimum of 1,4 ; 70l
b

λ λ⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

 (8.25)

Master’s thesis

126

Figure 8.41 gives the variables l and b to determine the effective slenderness for wind normal
to the plane of the picture. For the faculty of Electrical Engineering the effective slenderness
is 1,4 x 88/71 = 1,735. The end-effect factor becomes 0,62.

Figure 8.41: End-effect factor as a function of the solidity parameter and the slenderness

 (NNI, [17])

For the force coefficient it follows:

,0 2,1 1 0,62 1,302f f rc c λψ ψ= ⋅ ⋅ = ⋅ ⋅ = (8.26)

Reference area
The final variable that is required to calculate the wind load is the reference area of the
building that is subjected to wind. For the faculty of Electrical Engineering, the reference area
of the concerning façade can be determined with the following expression:

271 88 6.284 refA b h m= ⋅ = ⋅ = (8.27)

Total wind load
From the calculated variables the total wind load according to the Eurocode on the façade of
concern can finally be determined:

() 634,45 1,35 1 1,302 6.284 7.015.963 w ref e e d f refF q c z c c A N= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = (8.28)

Master’s thesis

127

8.6.3 Wind load according to CFD calculations

To compare the wind load according to the building codes an additional CFD calculation is
performed with the building of the faculty of Electrical Engineering. In stead of the calculation
that is discussed in Paragraph 8.3, the building is now meshed with tetrahedral cells as this
element type will be used most often in practice. The edges of the model are meshed with an
interval size of 1, what resulted in approximately 1.1 million cells. Further refinement is not
possible, but as the shortest edge of the building model was 7 m, the mesh is perhaps fine
enough already for the determination of global wind loads. In the previous CFD calculations
that are performed in this thesis, the boundary conditions were all taken from the conditions
for the single cube. However, to simulate reality and to be able to make a fair comparison
with the building codes, some boundary conditions have to be adapted.

Ground surfaces
For the CFD calculation with the single cube an unbuilt area was considered with a roughness
height of z0 = 0.2 m. However, the faculty of Electrical Engineering is located in an urban
area and in the calculations according to the Eurocode a roughness height of z0 = 1 m was
used. Fluent uses two parameters to define the roughness of a boundary: the roughness
length Ks and the roughness constant Cs. The parameters can be determined with:

Roughness length: Ks = 13.Z0 for non-uniform roughness
 Ks = 20.Z0 for uniform roughness
Roughness constant: Cs = 0.75 for non-uniform roughness
 Cs = 0.50 for uniform roughness

As the roughness of the ground surface is considered to be non-uniform, a roughness
constant of 0.75 is attached to the ground surface in Fluent. With a roughness height of
z0 = 1 m, the roughness length Ks becomes 13. This differs considerably with the roughness
length of 2.6 that was used for the calculations with the cube.

Building façades
For the calculations with the cube, the roughness of the walls was considered to be uniformly
distributed and a roughness constant of Cs = 0.50 was attached to the sides of the cube. As
the roughness of the façades of the faculty of Electrical Engineering can also be considered
as uniformly distributed, the same value is attached to these façades. The Eurocode gives in
addition friction coefficients for three façade types. These coefficients are 0.01 for smooth
surfaces, 0.02 for rough surfaces and 0.04 for very rough surfaces. The sides of the cube
were modeled as very rough surfaces, what resulted in a roughness length of 0.8 However,
the façades of the faculty of Electrical Engineering can be considered as smooth. This gives a
roughness length of 20 x 0.01 = 0.2.

Velocity profile
In the previous CFD calculations of this thesis a User-Defined Function (UDF) was used to
add the logarithmic velocity profile to the calculations. In this function the characteristics of
the profile were all defined for the unbuilt regions of area II. However, as the building of the
faculty of Electrical Engineering is located in the built region of area II, some characteristics
have to be changed in the function. Table 8.5 gives the original and adapted values of the
characteristics that define the logarithmic velocity profile that is used in the calculations. The
values originate from the Dutch building code NEN 6702 [18].

 Original values (unbuilt region) Adapted values (built region)
Friction velocity u* 2,3 2,82
Von Karman constant κ 0,42 0,42
Displacement length d 0 3,5
Roughness height z0 0,2 0,7

Table 8.5: Characteristics of the logarithmic velocity profile for the unbuilt and built area II

Master’s thesis

128

Results
After 1000 iterations the solution appeared to be fully converged, as the residuals had leveled
out to some value and then stopped changing. To determine the forces on the concerning
façade of the Electrical Engineering building, the Force Reports option in Fluent is used. This
option allows the user to report the total forces or moments on a certain boundary of the
model. Figure 8.42 gives the report of the forces on the concerning façade. The total force
consists of a pressure force and a viscous force. The viscous force is the force due to the
shear stress on the surface and is defined as:

duviscosity
dy

τ = ⋅ (8.29)

Herein is y the direction perpendicular to the surface and u the velocity parallel to the
surface. As there is hardly any gradient du/dy on the surface perpendicular to the flow
direction, the viscous force at the front façade of the building is nearly zero.

Figure 8.42: Force Report of the concerning façade of the faculty of Electrical Engineering

8.6.4 Comparison

The results of the various calculations are summarized in Table 8.6. According to the Dutch
building code, the total pressure force on the concerning façade is 7.101 kN. Forces caused
by suction or friction are not considered in the comparison. With the Eurocode, a total
pressure force of 7.016 kN is calculated. The results of both codes are nearly the same.
However, according to the CFD calculation the pressure force on the façade is only 2.055 kN,
which differs a factor 3,5 with the building codes. Assuming that the calculations according to
the building codes and the CFD calculation are performed correctly according to the various
guidelines, the difference is quite large.

 Dutch building code Eurocode CFD results
Total force on the concerning façade 7.101 kN 7.016 kN 2.055 kN

Table 8.6: Total force according to the Dutch building code, Eurocode and CFD results

8.6.5 Conclusion

The results of the CFD calculation and the calculations according to the building codes differ
considerably and it is very hard to give an explanation for the large difference. The results of
the calculations according to the building codes are nearly the same and the values for the
extreme wind pressure pw, which are used in the Dutch code NEN 6702, are derived from real
wind tunnel studies. Although the correction factors that are used in the building codes are
on the safe side, a difference between the CFD calculation and the codes of factor 3,5 is too
large to have full confidence in the CFD results. All CFD calculations that are performed in this
thesis are setup according to the guidelines given by Van Nalta [16]. The parameters that
describe the logarithmic velocity profile are all derived from the Dutch building code. It is
therefore difficult to explain the large difference between both methods. When the results of
a calculation with the 60 x 60 x 60 m3 cube, performed by Snijders [23] in his Master’s thesis,
are analyzed, the Force Report gives a total force of 1.205 kN on the surface that is directed
to the flow. According to the Dutch building code, a total force of 3.758 kN is to be expected
on that surface. So, in the previous graduation studies the resulting forces already differed a
factor 3 as well.

Master’s thesis

129

A first explanation of the large difference could be an incorrect setup of the CFD calculation.
The parameters of the logarithmic velocity profile or other boundary conditions are perhaps
not defined correctly. However, as two graduation studies are already performed on this
topic, errors are not expected here. On the other hand, Van Nalta has validated the current
approach to perform a CFD calculation by comparing the pressure coefficients on a cube as a
result of real wind tunnel studies, with pressure coefficients on a cube that follow from CFD
calculations. These coefficients were the only wind tunnel results available; forces for
example are not compared. As pressure coefficients do not give information about the real
pressure that acts on a surface, incorrect conclusions can be drawn from such a comparison.
The pressure coefficients for the concerning surface of the cube can for example be the same
for both the CFD calculation and the wind tunnel test. It is however possible that the real
pressure that acts on the surface differs considerably. In further studies the real pressure
distribution on simple models have to be compared between CFD calculations and real wind
tunnel studies to exclude eventual errors in the current approach to perform a calculation.

It is also possible that the large difference between the CFD results and the building codes
originate from the quality of the grid. Although the residuals were converged considerably
after the calculation, the grid quality still can cause some errors. Although a grid convergence
study can not be performed at the moment due to the actual computer resources, a grid
independent solution is desired since it eliminates any errors that originate from the
coarseness of a grid. However, refining the grid further is not an option as the maximum
amount of cells was almost reached in the calculation.

Another explanation of the poor results could be the modeling of turbulence. At the moment
the realizable k-ε model is the only possible way of calculating turbulence, due to the limited
computer resources. Modeling the separation of air from the building with the k-ε model is
difficult and an incorrect modeling of turbulence can have a significant influence on the
accuracy of a solution. However, as the faculty of Electrical Engineering has straight corners
and as there are hardly any viscous forces at the façade of concern, the poor turbulence
model can not explain the large difference. Using other turbulence models is therefore not
very valuable in this case. Only for rounded corners the k-ε model becomes inferior to model
the air separation accurately and large differences in the results can occur then. The
Reynolds stress model for example can deliver more accurate results. However, this model
requires 50-60% more calculation time per iteration compared to the k-ε model (Nalta, [16]).
In addition, 20% extra memory is required and more iterations are needed to obtain a
converged solution. Nevertheless, really accurate results can only be obtained using Large
Eddy Simulation. As the computational demand is very high for this modeling type, LES will
just come into reach in the far future.

A final explanation of the large difference could be an imperfection of the building codes. In
the CFD calculation the pressure distribution on the façade is determined by the logarithmic

velocity profile. As the wind velocity is increasing with
the height, the forces on the building near the ground
will be smaller than at a larger height. In the building
codes an extreme wind pressure is calculated for a
certain height. As this peak pressure is just multiplied by
the area of the surface of concern, it is considered to
act everywhere on the surface. In Figure 8.43 the
contours of static pressure on the façade of concern
according to the CFD calculation are given. The pressure
distribution differs considerably with the distribution
according to the building codes. There are areas of low
pressure and at the boundaries of the façade even
suction occurs.

Figure 8.43: Static pressure contours
 on the concerning façade

Master’s thesis

130

In comparison with the building codes, the total force according to the CFD calculation that
acts on the façade will be smaller due to the more realistic pressure distribution. A difference
in the results of factor 3,5 is still quite large, but the current approach of the building codes
with a poor pressure distribution and correction factors that are on the safe side will result in
an overestimated total force on a structure. However, from the pressure distribution given in
Figure 8.43, it can be derived that the maximum pressure on the façade is 610 N/m2.
Comparing this value with the extreme wind pressure of 1640 N/m2 that is used in the
calculation according to the Dutch building code NEN 6702, it can be concluded that a large
difference occurs here as well. The most plausible explanation for the large difference
between CFD and the building codes is therefore an incorrect approach to setup a CFD
calculation.

In additional research lots of comparisons should be made between real wind tunnel studies
and CFD calculations to judge the accuracy of the CFD results. When an explanation for the
large difference between CFD and the building codes is found, the current approach of the
Virtual Wind Tunnel can be validated. First comparisons should be made for simple models
with both straight and rounded corners. In addition some more complex models could be
used. Then comparisons should be made for a research area containing several simple
shapes. Finally a more complex building that is placed in a built environment should be used
to compare the results between wind tunnel studies and CFD calculations. If the accuracy of
the CFD results is determined, the different methods to predict the wind loads can be judged.
When in the end the CFD results are profitable in comparison with the codes, smaller forces
can be obtained from the wind calculations. More efficient structures can be designed that
will reduce the costs considerably. Especially for complex building models the Virtual Wind
Tunnel could become a very valuable design application then.

Master’s thesis

131

8.7 Conclusions

8.7.1 General

In this chapter the results of some CFD calculations are discussed that were performed on
several models which were generated with the various developed design tools. The goal of
the calculations was to proof that the tools work for CFD applications and to demonstrate that
calculations can be performed with the generated models. Two grid generation methods are
developed that are able to mesh both simple and complex building geometry. Especially for
meshing complex geometry, a lot of cells are required to obtain accurate results. However,
the computer resources are still the limiting factor for the amount of cells that can be used.
With the hardware used for this thesis it was therefore not possible to obtain very accurate
results for complex building geometry. However, from the simulations discussed in this
chapter it can be concluded that the developed design tools work for CFD applications, that
the grid generation methods are able to mesh the various geometry and that results can be
obtained.

The Van Nalta domain was used to perform the calculations, with the building models placed
in the lower part of the central cylinder. As the domain itself was automatically meshed
during the generation of the domain, only the cylinder containing the model of interest had to
be meshed manually. Two grid generation methods are discussed to mesh the central
cylinder. The first method is based on a grid generation method developed by Van Nalta and
uses hexahedral cells to mesh the cylinder. This method can only be used to mesh simple
geometry with the same layout from the bottom to the top of the building model. The second
grid generation method uses tetrahedral elements and can be used to mesh more complex
geometry. However, meshing a model with tetrahedrons requires a lot more cells, quite often
too many for the available resources. At the moment it is therefore impossible to obtain very
accurate results and it will be very hard to simulate the flow pattern around specific small
building parts precisely. The comparison between a CFD calculation and the building codes
for the faculty of Electrical Engineering showed a large difference between both methods. At
the moment there is no sure explanation for the different results, but it is possibly caused by
an incorrect approach to setup a CFD calculation. An analysis of the results of a calculation
performed by Snijders [23] with the 60 x 60 x 60 m3 cube showed a difference of factor 3 as
well in comparison with the building codes. As the same approach is used for the calculations,
it is plausible that the current approach to setup a CFD calculation is inferior. Further research
is therefore required to validate the current approach by comparing the results from CFD
calculations with results from real wind tunnel studies. From these comparisons a certain
trend can perhaps be derived that can be used to outweigh the large difference between CFD
and the building codes. If the CFD results are considered to be accurate finally, a major
advantage of using CFD to determine the wind loads in stead of the building codes is that the
CFD results give a lot more insight in the flow pattern. As the results can be presented in
various visual forms, lots of phenomena can be investigated and critical places are easy to
find.

Master’s thesis

132

8.7.2 Convergence

The convergence of a solution can be judged in several ways. One way is to monitor the
convergence of the residuals during the iteration process. Other ways are using surface and
force monitors to examine the convergence of specific quantities in the domain. When the
monitored variables level out to a certain value, the solution is considered to be fully
converged. The quality of the grid has a large influence on the convergence of a solution.
One of the most reliable methods to investigate if a grid is appropriate or not is performing a
grid convergence study. The method involves performing a simulation on two or more
successively finer grids.

When a grid is refined, the cells become smaller and the number of cells in the flow domain
increases. As the numerical error becomes smaller, the solution approaches the ‘exact’
solution. Suppose a model that is meshed with 50.000 cells for example. By refining the grid
to 100.000 cells and 200.000 cells, the numerical error decreases for each refinement. The
decrease in error after each refinement will be smaller as the grid becomes smaller. If the
solution does not change considerably anymore, the solution is called the grid independent
solution. If the computer resources allow such a study, a grid independent solution is desired
in the end since it eliminates any errors that originate from the coarseness of a grid. The grid
independent solution should be used for the comparison with real wind tunnel results to show
what the error of the CFD calculation is. However, with the actual capacity of the desktop
computers it is usually not possible to perform a grid convergence study as refinement of a
grid is generally not an option.

8.7.3 Grid quality

The quality of the grid influences the results of a CFD calculation considerably. A poor quality
can cause inaccurate solutions or a poor convergence. One option to judge the grid quality is
to perform a grid convergence study. Another characteristic that defines the quality of a grid
can be derived in Gambit as well.

Skewness
Skewness is defined as the difference between the shape of a cell and the shape of an
equilateral cell of equivalent volume (Internet, [9]). Highly skewed cells should be avoided,
since it negatively affects the accuracy and convergence of a solution. For triangular cells the
angles between the cell edges should be close to 60 degrees and never larger than 90
degrees. Figure 8.44 gives an example of a triangular cell with a low and high skewness.

Figure 8.44: Cells with low skewness (left) and high skewness (right); (Internet, [9])

The skewness of a cell can be calculated from:

max minSkewness = max ,
180

e e

e e

θ θ θ θ
θ θ

⎡ ⎤− −
⎢ ⎥−⎣ ⎦

 (8.30)

Where: θmax: largest angle in cell
 θmin: smallest angle in cell

θe: angle for equiangular cell (triangle: 60 degrees; square: 90 degrees)

Master’s thesis

133

A general guideline for judging a cell’s quality based on the skewness is given in Table 8.7.

Cell quality Excellent Good Acceptable Poor Sliver Degenerate
Skewness 0.00-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.99 0.99-1.00

Table 8.7: Guidelines to judge the cell quality based on skewness

In any case the skewness of hexahedral, triangular and tetrahedral cells must be lower than:
 Hexahedrals: < 0.85
 Triangles: < 0.85
 Tetrahedrals: < 0.90

For the CFD calculation for the faculty of Architecture of Delft University of Technology, the
grid quality is examined in Gambit using the skewness of the cells. In Figure 8.45 the
skewness of all cells of the central cylinder and a part of the domain around the cylinder is
indicated with colors. Blue cells have a very low skewness and are therefore of high quality.
Light purple and especially red cells have a higher skewness and their quality considerably
decreases. In the central cylinder the quality of the tetrahedral cells is smallest near the edge
of the cylinder. The quality of the hexahedral cells is smallest near the corner points of the
parts of the domain outside the cylinder. The worst element of the domain is located in the
central cylinder and has a skewness of 0.74. It can be concluded that the quality of the cells
of the computational domain is acceptable.

Figure 8.45: Examination of the mesh using the skewness of the cells

The green histogram at the right of the mesh window represents the quality distribution of
the mesh elements. Each vertical bar on the histogram corresponds to a unique set of upper
and lower quality limits. Ideally the first bar of the histogram should contain most cells, as
this would give a grid of the highest quality. However, for the calculations that are performed
in this thesis it is impossible to receive such a high quality. For the amount of cells that can
be used to mesh the complex geometry, the presented quality is reasonably. Without refining
the grid considerably, it is not possible to improve the quality of the grid at the moment.

Master’s thesis

134

8.7.4 Local grid adaption

Due to the limited computer resources, the building models discussed in this chapter are
meshed with a considerably coarse grid. However, in some cases there are regions where
smaller cells are required. To investigate smoke dispersion or wind hindrance problems for
example, or to determine local forces for the connection of façade elements, a lot more cells
are required. To provide a more accurate solution, the resolution of the grid at such
interesting areas can be refined by local grid adaption. As the maximum amount of available
cells was already consumed for most cases of this thesis, grid adaption is not considered in
the calculations. However, to determine the exact flow around the balconies of the apartment
building for example, the grid at those locations certainly has to be refined.

8.7.5 Boundary conditions

The boundary conditions that are applied on the building models and the ground surface are
derived from the conditions formulated by Van Nalta. With wall parameters a certain
roughness is given to the ground surface and the façades of the buildings. The surfaces of
the original cube were modeled with a uniform roughness, but for building models with
balconies or partial glass façades for example, the roughness is not uniform. However, as the
accuracy of the simulations was of minor importance, all building façades are modeled with
the same uniform roughness as the cube. To describe the reality accurately, all façades have
to be modeled with a corresponding roughness off course. The Eurocode offers friction
coefficients for three types of façades. However, not all existing façade variants can be
divided in those three types, so further research is required to translate a certain façade
structure in a specific roughness value. For all calculations, the boundary conditions for the
ground surface were defined for an unbuilt area. However, when the environment is also
modeled, the boundary conditions must be adapted and another roughness factor must be
ascribed to the ground. The Dutch building code provides various roughness heights for
several area types. Research is required to choose the right roughness height for a certain
ground surface.

8.7.6 Wind direction

For all calculations that are discussed in this chapter, only one wind direction is considered.
The building models are all placed with their longest side perpendicular to the flow, which
results in the maximum possible pressure on those sides. However, in reality wind comes
from different directions and just as for ordinary wind tunnels, at least the governing
directions that follow from the wind rose should be investigated. As the Van Nalta domain is
developed for wind coming from one direction, the only way to investigate other wind
directions is to rotate the model of interest in the domain. One option is to rotate the model
itself to the desired direction before it is meshed. This can be done in Rhinoceros for
example, but many other CAD packages will be able to read and adapt the models as well.
Also Gambit is able to rotate the model. A disadvantage of this method is that for each
rotation the model has to be meshed again and an entire new calculation has to be
performed, which takes quite some time. Another method to investigate different wind
directions is proposed by Snijders [23] and implies a rotation of the total inner cylinder,
including the mesh. When the inner cylinder is rotated over a small angle, the flow gradients
will generally not change very much. Results from a previous calculation can then be used as
a starting point for new calculations. This will certainly quicken the convergence process and
shortens the time required to obtain a solution. However, the method is not applied yet and
additional research is necessary to develop the method further.

Master’s thesis

135

8.7.7 Van Nalta domain

All calculations that are discussed in this chapter are performed in the Van Nalta domain.
Although there is no confidence about the accuracy of the results, the domain seemed
suitable of performing the calculations. However, the domain is very large in comparison with
other domain sizes that are used in practice. According to Van Nalta [16] the dimensions are
even more than sufficient. Although the cells are larger near the boundaries of the domain,
still quite a lot of cells are required to mesh the domain outside the cylinder. To be able to
refine the grid in the cylinder, it is perhaps possible to reduce the size of the computational
domain. The velocity profiles at the boundaries will possibly be unaffected as well for a
smaller domain.

Another way to save cells is to remove the smallest elements from the research area.
Especially for simulations with several buildings this can be valuable as such models require
lots of cells. When the buildings with the smallest influence on the flow pattern are removed,
cells can be saved to refine the grid on the remaining other buildings.

A final point of attention is the radius of the central cylinder. A certain distance between the
buildings and the edge of the cylinder is required to provide a smooth transition between the
mesh on the building models and the cylinder edge. For the calculations with the single
building models a radius of 212 m is used, which resulted in a sufficient distance between the
building model and the edge of the cylinder. The radius of 212 m originates from the
calculations with the cube in the previous graduation studies. The ratio between the distances
from the origin to the most far away corner of the cube and the ground edge of the cylinder
is 1:5. This ratio is given in the left picture of Figure 8.46. For the calculation with a part of
the university district, the ratio between the radius of the smallest circle around the model
(250 m) and the radius of the cylinder (500 m) is only 1:2. Although the results of the
simulation seemed reasonable, it is unknown if this ratio is sufficient. However, a ratio of 1:5
appears to be useless for this case as it results in a radius for the research area of 1250 m.
Further research is required to investigate the effects of the radius of the central cylinder on
the results of a calculation.

Figure 8.46: Ratio between the distances to the edges of the research area and the cylinder

Master’s thesis

136

Master’s thesis

137

9. Thesis Evaluation

In this chapter an evaluation is given of the Master’s thesis project. The purpose of the thesis
and its contribution to the Virtual Wind Tunnel is summarized. A review of the development
process of the various design tools and a vision for the future of the Virtual Wind Tunnel is
given in this chapter as well.

9.1 The Virtual Wind Tunnel

Until the second half of the 20th century, wind loads were hardly taken into account in the
structural design of buildings. With the introduction of new and stronger materials in building
engineering around the 1950’s, structural elements became lighter and more slender. As the
permanent vertical load decreased, wind loads became more important for the design of
high-rise buildings. Research into wind loads resulted in various design codes to take the
effects of wind on common building shapes into account. For centuries these codes were the
only way to estimate the pressure on a building. However, for complex building shapes the
codes seemed not sufficient and wind tunnel tests have been introduced to determine the
wind loads on these buildings by experiment. Although wind tunnel studies give reliable
results for situations where the codes do not foresee, they are very expensive and time-
consuming. This discourages designers to perform such a test in the early stage of the design
process. However, as it is just this stage where very important design decisions are made,
more insight in the wind loads and flow pattern is desired. As a solution, computational
methods are proposed to calculate the wind effects numerically using a technique referred to
as Computational Fluid Dynamics (CFD). In theory CFD is able to solve the mathematical
models up to a desired accuracy without the limitation of geometry. As changes in the
physical model are relatively easy to perform, CFD seems very suitable for shape optimization
with respect to wind loads.

However, for use in wind engineering CFD is not generally accepted yet. As there is still
contradiction on the use of CFD to predict the wind effects on buildings and structures,
results of CFD calculations are not widely accepted. To develop a general approach for CFD in
wind engineering, a computational wind tunnel has been proposed at the Structural Design
Lab of Delft University of Technology. The goal of this Virtual Wind Tunnel is an application
that can be used in the early stage of the design process to indicate the wind loads on a
building or structure using CFD. Ultimately, this structural design tool should enable structural
engineers without any specific knowledge on wind engineering to perform reliable wind load
calculations. The possibility of comparing several alternative geometries in a relatively short
period should make shape optimization with respect to wind loads possible.

By now a computational domain is developed at the Structural Design Lab by Van Nalta [16]
and Snijders [23], which showed promising results for the calculation of the pressure
distribution on a 60x60x60 m3 cube. However, for CFD simulations on complex building
geometry the computational demand is very high and the limited power of the current
desktop computers influences the ability to make accurate calculations. Only with very
powerful machines or with a cluster of computers it will be possible to obtain accurate results
for complex geometry. Nevertheless, as most structural engineers will only have a normal
desktop computer at their disposal, the Virtual Wind Tunnel is not suited yet for final wind
load determination. However, as the computer resources are developed continuously, it could
be possible in the nearby future to simulate the wind effects on complex buildings accurately.
Research into smoke dispersion, wind hindrance, heating or ventilation problems will also
come into reach then.

Master’s thesis

138

To predict the wind loads on a building or structure and compare alternative geometries in a
relatively short period, the process of setting up a CFD calculation has to be automated.
When the building geometry is generated as much as possible automatically, less interference
of the structural engineer is required and valuable time can be saved. Anticipating on the
future developments in computer resources, several design tools are developed in this thesis
to generate the building geometry for CFD calculations. With this toolbox it is possible to
setup a CFD calculation and compare several alternative geometries in a relatively short time.

9.2 Design Tools

During this Master’s thesis several design tools are developed to generate the geometry for
CFD calculations. The purpose of the tools is to quickly setup a CFD calculation without much
interference of the user. As alternative geometries can be generated in a relatively short time,
the tools are very suitable for shape optimization with respect to wind loads. With the design
tools three different types of geometry can be generated. The first and second design tools
can be used to generate a 3D model of the environment for a certain area. The third design
tool can be used to simplify the geometry of the building of interest and get rid of little
details. The fourth design tool can finally be used to generate the computational domain for
the CFD calculations. In this paragraph the possibilities and restrictions of the various design
tools are discussed extensively.

9.2.1 Modeling the environment

As the flow pattern around a building is influenced by its surroundings, it can be very useful
to take the environment into account in the calculations. Besides a model of the building of
interest, also a 3D model of the environment is required then. The difficulty here is that there
are hardly any useable 3D models of a certain area available. However, GIS technology offers
two information models that can be used to generate a 3D model of a certain area in the
Netherlands. The first dataset is the Top10Vector, which provides a digital topographic map
of the whole country in 2D. The dataset is composed of closed polygons that represent
various elements on the earth’s surface, like buildings, roads and vegetation. The second
dataset that originates from GIS technology is the Actueel Hoogtebestand Nederland (AHN).
The AHN dataset provides an elevation model of the Netherlands where the height is stored
for each 16 m2 of the country. The height points are placed on a regular grid where each
point represents the height for that particular location. The dataset contains height
information of the ground surface, buildings, roads and water for example.

The first design tools that are developed during this thesis are able to link the two discussed
datasets in order to generate a realistic 3D model of the environment for a certain location.
The amount of built environment that has to be taken into account for the CFD calculations
can be limited. For real wind tunnel studies, a research area with a radius of 300 m around
the building of interest seems sufficient. Buildings further away do not have a significant
influence on the flow pattern around the central building anymore. For the CFD applications
the extent of built area that is represented in the calculations will initially be similar as for real
wind tunnel studies. The process to generate a 3D model of the environment is divided in two
parts. The first design tool can be used to create a restricted 2D research area from the
Top10Vector dataset. By assigning the center location of the building of interest and the
radius of the research area, a circular region with limited dimensions is extracted from the
digital topographic map. With the second design tool all polygons in this area can be extruded
to create a 3D model of the environment. The extrusion heights are derived from the AHN
dataset for that particular area. As one single polygon will contain several height points, the
design tool calculates the average of all height values and extrudes the polygon over the
concerning height.

Master’s thesis

139

The Top10Vector dataset that was used for this thesis only contained information about the
southern part of Delft. The AHN dataset provided even less information as it only contained
height values for a part of the Delft University of Technology district. However, the design
tools showed promising results and if the Top10Vector and AHN datasets become available
for other areas, the tools will also be capable of generating 3D models for these locations.

Figure 9.1: Result of the first design tools: a 3D model of the environment

Restrictions
Although the design tools work properly, there are some restrictions of the methods. First of
all, the buildings in the Top10Vector dataset are represented by only one polygon. When the
polygon is extruded over the average of all height values inside the polygon, the building has
the same height everywhere. However, in reality buildings often consist of several parts with
their own heights. For an accurate representation of the environment it is therefore desired to
split the original polygon into several polygons that represent the various building parts.
Extruding these parts over the different heights gives a building model that represents reality
much better. Nevertheless, as a total building is represented as only one polygon at the
moment, it is extruded over the average of all building parts. Complex methods are available
that can recognize a large variation between neighbouring height points. With these methods
it could be possible to generate a new polygon around the divergent height points. The
original polygon that represents the total building can be divided in smaller polygons then
that represent the various building parts. However, the point density of the AHN dataset is
only one point per 16 m2. This is very coarse and a polygon that is generated around some
divergent points will certainly not represent the shape of the real building part. The various
polygons will also not connect properly then. Only when the density of the AHN dataset is
increased considerably, the method can work. Another option is to manually split the
polygons in several parts and extrude the various building elements over the concerning
height then. However, a thoroughly knowledge of the buildings in the research area is
necessary for this method. It is therefore not widely applicable.

Master’s thesis

140

Another aspect is that no slope surfaces can be modeled with the developed methods. All
polygons are extruded straight ahead and have a flat top side. If a building has a slope roof
in reality, it is modeled as a flat building with the average of all height values as extrusion
height. However, a very accurate description of the surrounding buildings is not necessary.
Most detail is required for the building of concern. Only for a very accurate prediction of the
flow pattern at specific locations in the environment, more detailed models of the surrounding
buildings are required. At the moment GIS technologists investigate the possibilities to
develop more accurate 3D models of a certain environment. If these methods become widely
available in the future, more detailed models of the surrounding buildings can be generated
for use in the Virtual Wind Tunnel. However, for global wind load determination on buildings
that are placed in a built environment, the accuracy of the surroundings is sufficient.

A final point of concern is that only the buildings in the environment are modeled. All other
elements, like roads, vegetation and water are not represented in the 3D model. A complex
ground surface with differences in height would cause a very complex grid on the bottom of
the research area, which results in less cells being available for meshing the building models.
In stead of those various elements, the environment is modeled with a flat ground surface.
However, for mountainous areas or areas with dikes or elevated roads for example that will
influence the flow pattern considerably, it is important to model these elements. Some small
adaptations of the developed scripts will make this possible already. Each element type has a
separate layer in the Top10Vector dataset. The scripts remove all polygons from the model
that do not represent a building by turning off their layers. Adapting the scripts so that a
certain element is not removed will give a more detailed model of the environment.

9.2.2 Simplification of the building of interest

To determine the wind loads with computational methods, a CAD model of the building of
interest is required. When such models are obtained from architects or structural engineers
for example, they usually contain lots of information that are not relevant to determine the
global wind loads. Little details have hardly any influence on the flow pattern, but they will
cause a very complex grid that increases the calculation time tremendously. Another aspect is
that only the surfaces that come in direct contact with the flow are necessary for CFD
analysis. However, most building models contain internal geometry as well, like interior
structures and furniture objects. Removing all unnecessary geometry by hand to remain only
the exterior surfaces of the building model is very hard as there is not always a strict
distinction between internal and external geometry. Façades for example can be constructed
from various separate elements, from which some are part of internal structures as well.
Deriving only the exterior surfaces of the building model is very complicated then. A final
aspect is that for CFD analysis the building models have to be fully airtight. Small drawing
inaccuracies can introduce gaps through which air can flow into the building, which is off
course not permitted. To cover these problems, a third design tool is developed that excludes
little details and replaces all internal and external geometry by wrapping an airtight surface
around the building model of interest. It is only this wrapped surface that is used for CFD
analysis.

Several methods are developed to create the wrapped surface around a certain building
model. The methods are based on creating enclosing curves around the model at several
height levels. By generating a surface through these curves then, the model can be wrapped.
The various methods are briefly discussed in the rest of this paragraph.

Master’s thesis

141

Rotating Lines method
The first method to create the enclosing curves around the model of interest is the Rotating
Lines method. The method is based on finding the outer points of the model at a certain
height level. When all outer points are found, a curve can be generated through the points
that encloses the model at that level. Repeating this procedure for the full height of the
building, where the level of concern is elevated over a certain distance each time, gives
various enclosing curves over the height of the building. A surface can be generated through
the curves then that wraps the model and replaces the internal and external geometry.

With the Rotating Lines method the user is first asked to pick the center location of the
building model. From this location a line is drawn in north direction with a user-specified
length. For that line it is checked if there is an intersection with the various elements of the
model. If so, the script determines the intersection point for that line with the largest distance
from the center location of the model. At this location a point is added to the model then. The
procedure is repeated for a second line that is rotated over a user-specified angle around the
center location of the model. The script continues until the line is rotated over 360 degrees,
giving the outer points for all directions. By adding a polyline through these points, the model
is surrounded by an enclosing curve. The method is explained in Figure 9.2 for a simple
building model.

Figure 9.2: Rotating Lines method for a simple building model

Master’s thesis

142

Rectangle method
The second method that is developed to create the enclosing curves around the model of
interest is the Rectangle method. The method is especially developed for large models with a
rectangular shape, as the Rotating Lines method seemed not very suitable for such models.
As a consequence of the rotation of the line, the distance between the outer points increases
as the distance between the boundaries of the model and the center location of the model
increases. Especially at corners the enclosing curve will differ from the original model then. A
method that deals with this problem is the Rectangle method. The method is also based on
finding the outer points of a model by the intersection of a line with the various elements of
the model. A rectangle that has to be drawn around the model is now used to define the
movement and length of the lines. Starting from the lower left corner of the rectangle, a
vertical line will be created to the upper left corner of the rectangle. The line is then moved to
the right over a user-specified distance. For each line it is checked if there is an intersection
between the line and the various model elements. The distances between the various
intersection locations and the start point of the line are then calculated. At the closest and
most far away intersections a point is added to the model. The process is repeated until the
line element is finally arrived at the right side of the rectangle. The procedure now continues
with a horizontal line moving from the bottom of the rectangle to the top of the rectangle.
When all outer points are found, a polyline is added through the points to generate the
enclosing curve. The method is explained in Figure 9.3 for the simple building model.

Figure 9.3: Rectangle method for a simple building model

Master’s thesis

143

Rotated Square method
The third method that is developed to create the enclosing curves around the model of
interest is the Rotated Square method. The method is developed to find the outer points in
case of in-built façades. The Rotating Lines method and the Rectangle method do not give
proper results for such building models, as most outer points on the in-built façades are not
found. The Rotated Square method, which is based on the Rectangle method, deals with this
problem. The user still has to draw a rectangle around the model of interest. The corner
points of this rectangle are now used to generate a square that is rotated over 45 degrees.
The rotated square fits the original rectangle exactly and forms the basis for the lines that will
find the intersections with the various model elements. Starting from the lower left edge of
the square, lines will move to the upper right edge of the square over user-specified intervals.
For each interval it will be checked if there is an intersection between the line and the various
model elements. If the line has finally arrived at the upper right edge of the square, the
procedure continues with lines moving from the upper left edge of the square to the lower
right edge of the square. In Figure 9.4 a simple building model with in-built façades is given.
A rectangle that has to be drawn around the model forms the base for the rotated square.
Lines will then move from the lower left edge of the square to the upper right edge to find
the outer points of the model.

Figure 9.4: Rotated Square method for a building model with in-built façades

In Figure 9.5 the process continues. When the line has arrived at the upper right edge of the
square, the procedure is repeated, but now with lines moving from the upper left edge to the
lower right edge of the square. When all outer points are found, the enclosing polyline is
generated through the points.

Figure 9.5: Rotated Square method for a building model with in-built façades

Master’s thesis

144

Integrated method
The discussed methods to generate the enclosing curves seem to work properly for circular
and rectangular building models. However, especially for multiple curved models the methods
sometimes fail in finding all outer points. Several tests showed that the three methods are all
capable of finding certain outer points of such models, but not all points. Additionally, each
method found some points that were not found with the other methods. To find all outer
points on a complex, multiple curved surface, the three separate methods are joined in the
Integrated method. Various tests with multiple curved models showed that the Integrated
method succeeded each time to find all outer points of the models. A rectangle that has to be
drawn around the model forms the base again of the method. The procedure to find all outer
points starts with the Rectangle method and is directly followed by the Rotating Lines
method. The middle of the rectangle forms the centre point of the rotating lines method. The
lines with a length equal to diagonal between the lower left and upper right corner of the
rectangle will rotate around the centre point to find the outer points of the model. Finally the
Rotated Square method is executed, where the rotated square is constructed from the drawn
rectangle. As a result of the execution of the three methods in one continuous process, the
outer points do not lie in the right sequence in the array and it is not possible to directly
generate the enclosing curve through the points. The array containing the outer points will be
ordered first by a procedure that is based on finding the closest point for a certain outer
point. Then the enclosing curve is generated through the points.

Extension to the third dimension
The methods that are discussed in this paragraph can be extended to the third dimension by
elevating the level at which the outer points are determined. Starting from the bottom of the
model, the level of concern is raised each time over a user-defined distance to generate the
enclosing curves at several height levels. The procedure is repeated until over the full height
of the building the enclosing curves are generated.

Restrictions of the methods to generate the enclosing curves
With the discussed methods it is for many cases possible to find the outer points on a two
dimensional plane and to generate an enclosing curve that fits the original shape accurately.
However, when the methods are applied in three dimensions, problems arise when a building
model consists of various parts with a different height that are separated by air. As only one
enclosing curve is generated through the outer points at a certain height level, the curve can
also cross areas where no points are found, for example the air between separate building
parts. When a surface is lofted through the curves, the air would be modeled as a building
part then. It is suggested to adapt the methods to find the outer points on both a horizontal
and a vertical plane that moves through the model. On the boundaries of the model a point
cloud will arise then, through which a surface can be constructed.

Another restriction of the various methods is the time required to find the outer points of
large building models. The limited processing speed is caused by the huge amount of
elements of such models and the Rhinoceros Visual Basic language in which the methods are
scripted. Although the process of the methods is very clear as all procedures are visualized on
the screen, it takes quite some time before all enclosing curves of an entire model are
generated. It is suggested to translate the various scripts to more advanced programming
languages. As these languages are more complicated, some experience in programming is
certainly required then. However, it could speed up the process considerably.

For additional research some suggestions are given for other methods to simplify the model
of the building of interest. By using a shrinking sphere with a certain elasticity, the model
could be wrapped when it is prohibited to perforate the sphere. A vacuum could be generated
then that creates a fitting surface around the model of interest. Another method could be
developed that works similar to laser scanning equipment. When a script is able to imitate the
laser scanner, a point cloud on the boundaries of the model could be generated. This point
cloud can be converted to a 3D surface model then that wraps the original model accurately.

Master’s thesis

145

Curve simplification
Applying the discussed methods to find the outer points of a model give the enclosing curves
for several height steps. When the model is highly detailed or when it does not have smooth
façades, the curves will fluctuate considerably. To simplify the enclosing curves and get rid of
little details, a NURBS curve can be fitted through the enclosing curves. This technique uses
the outer points through which the enclosing curves are constructed as control points to fit a
NURBS curve through it. By assigning parameter values to the control points, a curve can be
created that fits the points exactly or more approximately, dependent on the given parameter
values. In Figure 9.6 an example is given of the NURBS fitting method. The dots in the figure
represent the outer points that could be found for a certain façade. If the enclosing curve is
generated through the points, a reasonably rough and fluctuating curve originates, which is
represented by the dotted line in the figure. To simplify the curve and get rid of those
fluctuations, a NURBS curve can be fitted through the outer points. Weight factors that are
assigned to the outer points determine the influence of the points. They are the parameters
that indicate the accuracy of the fitting process. If the weight value of the control points is
larger than one, the points are closer approximated by the NURBS curve. If the weight values
are smaller than one, the points are less approximated. In this way it is possible to create a
straight NURBS curve that replaces the fluctuating enclosing curve and neglects small details.

Figure 9.6: Enclosing curve simplification by fitting a NURBS curve through the outer points

However, it is not always necessary to simplify the enclosing curves. When a building has
smooth façades for example without much detail, the enclosing curves will not fluctuate very
much and perhaps they do not have to be simplified. It is up to the user of the design tools if
the enclosing curves have to be simplified or not. In addition to the NURBS fitting method,
another method to simplify the enclosing curves was proposed in this thesis. In theory, the
least squares method should also be capable of simplifying the enclosing curves. The least
squares method is in general a method to determine the best-fit curve through a certain
dataset. It is based on minimizing the squared error in vertical direction between a data point
and a parametric curve. The smaller the difference between the original dataset and the
proposed curve, the better the fit. In Appendix O the method is discussed extensively and
examples are given to fit a straight line and a parabola through a certain dataset. In order to
fit a straight line through the dataset, a first degree polynomial is required that minimizes the
total error. To fit a parabola through the dataset, a second degree polynomial is required.
The first and second degree polynomials are a function of x, with only one solution for a
certain x value. However, as the enclosing curves of the building models are closed curves, at
least two solutions have to be found for a certain x value. Third degree curves at minimal are
therefore required to formulate the fitting polynomials. It was suggested to use an ellipsoidal
or circular equation to fit a curve through the outer points, but some tests showed that the
result is always an elliptical curve. As this does not represent the reality, curves of a higher
degree are necessary to generate a best-fit curve through the outer points. Nevertheless, the
use of only the NURBS fitting method to simplify the enclosing curves is probably sufficient. If
it is desired to use another method as well, the least squares method seems to be an
appropriate method. Additional research is required then to develop the method further.

Figure 9.7: Least squares method: fitting a straight line and a parabola through a dataset

Master’s thesis

146

Lofting method
In this chapter several methods are discussed to generate the enclosing curves around a
building model. The methods can be extended to the third dimension to create the curves at
different height levels. Starting from the bottom of the building model, the level at which the
outer points are determined is raised each time to generate the enclosing curves over the full
height of the building. After the curves are created, the original building geometry is removed
from the model. Then a surface can be lofted between the enclosing curves to form a closed
surface model. It is just this hollow model that is used for the CFD calculations. The surface
model replaces all inner and outer geometry of the original building model and reduces the
amount of data for the CFD software considerably. When the surroundings also have to be
taken into account for the calculations, the simplified building model can manually be placed
in the 3D model of the environment. In Figure 9.8 the lofting method is given for the model
of an office building. A hollow surface model is generated from the enclosing curves.

Figure 9.8: Lofting method to create a hollow surface model from the enclosing curves

Preprocessing
A final method that is developed for the simplification of the building of interest is a method
called Preprocessing. As architects and structural engineers work with various CAD systems
nowadays, the various tools to simplify the building of interest must support the different
model types. In traditional CAD systems the models are generated from lines, surfaces and
solids and those entities remain when the model is imported in Rhinoceros. The developed
methods to generate the enclosing curves use specific Rhino commands that are able to find
the intersections with lines, surfaces and solids directly. However, when building models are
created with modern CAD systems, like object-oriented modellers, the models are not
constructed from lines, surfaces or solids anymore. These models are constructed from
objects that represent the elements from which a building or structure is built of, like beams,
columns, floors and walls. As Rhinoceros is not an object-oriented CAD system, the objects
are converted to meshes when such models are imported in Rhinoceros. A mesh is basically a
collection of vertices and faces connected together to represent a surface. Unfortunately, the
current version of Rhinoceros is not capable of determining the intersection between a line
element and a mesh object. However, with the Preprocessing method the mesh objects can
be converted to surfaces by deriving the vertices and faces from which the mesh is built.
Through these entities a surface can be created, which makes it possible to determine the
intersections with the line element. Nevertheless, converting the meshes to surfaces results in
a significant growth of model elements. For large building models it can take quite some time
then to find all outer points, as for each line it has to be checked if there is an intersection
with one of the elements. Manually deleting some inner geometry before the methods are
executed will quicken the process considerably, as less elements have to be checked.

Another option to determine the intersection with the line element and a mesh object is using
the newest Beta release of Rhinoceros 4. Some additional commands and functions are
implemented in this release that are able to determine the intersection with a mesh object
directly. For each method to find the outer points of a model and create the enclosing curves,
a variant is developed that supports these new commands. Together with those variants of
the various methods it is possible to find the intersections for models that are constructed
from lines, surfaces and solids as well as models that are constructed from meshes.

Master’s thesis

147

9.2.3 Generation of the computational domain

The final design tool that is developed in this thesis is a tool to generate the computational
domain in which the CFD calculations are performed. To obtain reliable results from the
calculations, a domain with sufficient dimensions around the research area is required. The
domain must be large enough to avoid that the flow pattern at the boundaries of the domain
is influenced by the buildings in the research area. The Van Nalta domain that is developed in
recent graduation studies by Van Nalta [16] and Snijders [23] forms the base for the domain
that is used in this thesis. The Van Nalta domain was developed to investigate the wind
effects on simple objects, like cubes and cylinders. The size of the original domain depends
on the height of the object placed in the central cylinder of the domain. In this thesis the
domain is used to perform calculations on entire buildings and even areas containing multiple
building models. The cylinder of the original domain is therefore too small and the structure
of the domain had to be adapted. For calculations with a research area that consists of
several buildings, the dimensions of the domain must depend on the radius of the research
area and the maximum height of a building in the research area. A final design tool is
developed that automatically creates the domain for a certain research area, depending on
the dimensions of the area.

The Fluent pre-processor Gambit is used to generate and mesh the computational domain.
Gambit can run so-called journal files in which text based commands can be scripted. When
the journal file is run, Gambit works over the commands given in the file to generate the
model that is scripted. The developed final design tool can be used to create the journal file
with which the computational domain can be generated in Gambit, depending on the
maximum height and radius of the research area. The journal file is generated using a Visual
Basic macro that is run in Microsoft Excel. The file also contains commands to mesh the
regions of the domain outside the central cylinder. After the domain is generated, the user
can place the model of the research area into the cylinder. It is only this cylinder that has to
be meshed manually then.

Figure 9.9: Macro to generate the journal file

Master’s thesis

148

9.3 CFD calculations

9.3.1 Introduction

For several building models that were generated with the various developed design tools,
some CFD calculations are performed to investigate the potential of the tools. The purpose of
the calculations was to proof that the tools work for CFD applications and to demonstrate that
calculations can be performed with the generated models. Two grid generation methods are
developed that are able to mesh both simple and complex building geometry. Looking at the
entire CFD process, the activities of this thesis concentrate on the first, second and last step:
the description of geometry, the generation of a grid and the analysis of the calculation
results. In the previous graduation studies by Van Nalta [16] and Snijders [23] the other
steps of the CFD process are investigated and the results from these studies are used in this
thesis to setup the CFD calculations. As there are still quite some uncertainties about the use
of CFD in wind engineering, it was not the intention to obtain very accurate results from the
calculations. Meshing complex building geometry also requires lots of cells, but the capacity
of the current desktop computers is the limiting factor for the amount of cells that can be
used. With the available hardware for this thesis it was therefore not possible to obtain very
accurate results for complex models.

Figure 9.10: This thesis concentrates on the first, second and last step of the CFD process

9.3.2 Results

The CFD calculations that are performed in this thesis have demonstrated that the developed
design tools work for CFD applications. The grid generation methods are able to mesh the
various building geometry and results are obtained from the calculations. However, it is very
hard to judge the accuracy of the results, especially for complex building models. The limited
amount of cells to mesh the computational domain seriously influences the ability to obtain
accurate results. The only way to verify the CFD results is to compare them with results from
real wind tunnel tests or, in case of simple geometry, a calculation according to the building
codes. For the simple shape of the faculty of Electrical Engineering of Delft University of
Technology, a comparison is made between the codes and a CFD calculation. The comparison
showed that the CFD results for the total wind load on the front façade are at the moment a
factor 3,5 smaller than the results that are obtained from calculations according to the
building codes. A comparison of the maximum pressure in N/m2 on the façade showed a large
difference of factor 2,7 between the methods as well. The reason of these large differences is
not certain, but they are probably caused by an incorrect approach to setup a CFD
calculation. An analysis of the results of a calculation performed by Snijders [23] for the
original cube showed a difference of factor 3 as well in comparison with the building codes.
As the same approach is used for the calculations, it is plausible that the current approach to
setup a CFD calculation is inferior. Further research is therefore required to verify the results
from a large number of CFD calculations with results from real wind tunnel studies in order to
validate the current approach of the Virtual Wind Tunnel. If a certain trend can be derived
from these comparisons, it could be used to outweigh the large difference between CFD and
the building codes. The CFD results for the various forces in combination with the pressure
distribution would be very valuable then for a first indication of the global wind loads in the
early stage of the design process.

Geometry
description

Grid
generation

Discretization Turbulence
model

Boundary
conditions

Flow
specification

Numerical
solution

Analysis of
the results

Master’s thesis

149

In this thesis several design tools are developed to create the geometry for CFD calculations.
The design tools will assist the user of the Virtual Wind Tunnel to setup a simulation in order
to predict the wind loads on a building or structure. Various tests with the design tools have
shown that for many cases the tools succeed in generating the geometry. However, from the
calculations that are performed in this thesis it can be concluded that a major bottleneck of
the entire process to predict the wind loads is the CFD itself. The design tools are able to
setup the geometry for the calculations, but the CFD technique is not able at the moment to
obtain very accurate results from the calculations. To a large extent this has to do with the
computer resources and it will probably take years before the wind effects on complex
building models that are placed in a built environment can be simulated accurately.

9.4 Future of the Virtual Wind Tunnel

At the moment the structural engineer has to rely on the building codes or real wind tunnel
studies to determine the wind loads on a building or structure. At the Structural Design Lab of
Delft University of Technology, computational methods are proposed to calculate the wind
effects numerically using CFD. The result of previous graduation studies by Van Nalta [16]
and Snijders [23] and this Master’s thesis is a computational domain in which the CFD
calculations can be performed, a set of design tools to setup the building geometry for the
calculations and some potential grid generation methods that are able to mesh both simple
and complex building geometry. The actual status of the Virtual Wind Tunnel and its
accompanying design tools is an application with which the wind effects on a single building
or a built environment can be investigated, but the accuracy of the results is uncertain. Due
to the limited computer resources, the amount of cells that can be used to mesh the research
area is restricted. This seriously influences the ability to make accurate calculations. Further
research is required to validate the results of a large amount of CFD calculations with results
from real wind tunnel tests and the building codes. If reliable results can be obtained in the
end, the accuracy of the CFD calculations should be superior over the building codes. If this
can be achieved, the Virtual Wind Tunnel would be a very valuable tool for structural
engineers to indicate the wind loads on a building or structure in the early stage of the design
process. As it is this stage of the process where important design decisions are made, the
increased insight in the wind effects can help the engineer to design more efficient structures.
Shape optimization with respect to wind load is possible then.

The design tools that are developed in this thesis to setup the geometry for CFD calculations
give promising results for many cases. The amount of detail of a 3D model of the surrounding
buildings, that can be generated with the first design tools, is reasonable. As all buildings are
modeled as straight blocks with a flat top surface, the accuracy of the model is not very high,
but for global wind load determination the amount of detail of the environment is sufficient.
The model of the building of interest requires more detail, but there is an ongoing battle
between the amount of detail that is represented and the calculation speed of the CFD
software. Very small details are not relevant to determine the global wind loads, but they will
increase the calculation time considerably. Design tools are developed in this thesis to
simplify highly detailed building models. A surface that is wrapped around the model replaces
all internal and external geometry and heals eventual gaps in the model. For many cases the
design tools seem to work properly, but there are also models imaginable where the methods
fail. The time required to simplify very complex building model is also a point of concern. For
an optimal use in the Virtual Wind Tunnel, the design tools should be developed further to
support more complex shapes and to quicken the process to setup the geometry.

Master’s thesis

150

The solution of a CFD calculation is to a large extent influenced by the grid that is applied.
For the calculations with the building models in this thesis, it was only possible to generate a
coarse grid on the models. An accurate prediction of the flow pattern at specific locations is
therefore difficult. Local grid adaption to refine the mesh in specific regions is possible, but
this has to be done very carefully in order to retain a high grid quality. Further research is
required to investigate the effects of local grid adaption for the results of the calculation and
the quality of the grid. In the end, a grid independent solution is desired since it eliminates
any errors that originate from the coarseness of a grid.

The Virtual Wind Tunnel has the possibility to become a valuable tool for structural engineers
in the nearby future. With the actual capacity of desktop computers it is not possible yet to
obtain accurate results for complex building models, but following the current trends in
computer resources it can be concluded that the use of CFD for wind engineering problems is
on the verge of being applicable. This off course under the condition that the large difference
between CFD and the codes is solved. For final wind load determination the Virtual Wind
Tunnel is not suitable yet and real wind tunnel studies remain necessary for the time being.

Master’s thesis

151

10. Conclusions and recommendations

10.1 Introduction

In this Master’s thesis several design tools are developed to generate the geometry for CFD
analysis. The purpose of the tools is to quickly setup a CFD calculation to determine the wind
loads on a building or structure, without much interference of the user. The tools can be used
to generate a 3D model of the environment and to simplify the geometry of the building of
interest. A final tool can be used to generate the computational domain in which the
calculations are executed. Many tests are performed with the various design tools to
investigate the possibilities and restrictions of the tools.

For several models that were generated with the design tools, some CFD calculations are
performed to test if the tools work for CFD applications. The results are promising, but the
accuracy is still moderate. The capacity of the current desktop computers seems to be the
limiting factor to obtain very accurate results.

10.2 Conclusions

10.2.1 Developed Design Tools

 Under the restrictions of the various methods, the developed design tools are very well

able to generate the geometry for CFD calculations. A sufficient detailed 3D model of the
environment can be created and complex building geometry can be simplified and
eventually closed by wrapping a fitting surface around the model. For each case a
computational domain with sufficient dimensions around the research area can be
generated in which the calculations can be performed.

 The design tools assist the user of the Virtual Wind Tunnel to setup the geometry for the
CFD calculations and can save valuable time. As physical changes in the building models
are easy to perform, alternative geometries can be compared in a relatively short period.
This makes shape optimization with respect to wind load possible.

 With the design tools to generate a 3D model of the environment it is not possible to
model building parts of different height. In the Top10Vector dataset all objects are
represented with only one polygon that encloses the entire object. If a building for
example consists of several parts of different height, the polygon is extruded over a
height that is the average of all separate building parts.

 The design tools to generate the 3D model of the environment are not able to model
slope surfaces as well. All polygons are extruded straight up and have a flat top side.
However, for a first indication of the global wind loads, the amount of detail of the
surrounding buildings is sufficient. Most detail is required for the building of interest.

 The third design tool to simplify the building of interest contains four methods to create
the enclosing curves. The Rotating Lines method, the Rectangle method, the Rotated
Square method and the Integrated method all have their advantages in comparison with
the other methods. The user must decide which method is the most appropriate for a
certain building model.

 With the third design tool various building models that originate from different CAD
systems can be simplified. The tool supports both traditional CAD systems and advanced
object-oriented systems. When a model that originates from object-oriented systems is
converted to meshes when imported in Rhinoceros 3, the meshes can be converted to
surfaces with the Preprocessing method. Another option is to use the Rhinoceros 4
variant of the tool that is able to directly determine the intersection with a mesh element.

 The third design tool fails in generating the enclosing curves when a building consists of
several parts with a different height that are just separated by air. As only one curve is
generated at a certain height level, the air between the building parts will be modeled as
a building element when a surface is lofted through the curves.

Master’s thesis

152

 The design tools to generate the geometry are scripted in the Rhinoceros Visual Basic

language. As the tools work visually, the procedure of the tools is very clear. However, as
only one task can be performed at the same time, the process to simplify the building of
interest takes quite some time for complex building models that contain lots of elements.
This is especially the case when meshes that originate from object-oriented modelers are
converted to surfaces, as the amount of elements considerably increases then.

 For the simplification of the building of interest, valuable time can be saved by using the
Rhinoceros Beta 4 variant of the methods in case the model is constructed from meshes.
As this variant is capable of finding the intersections between a line element and a mesh
directly, the meshes do not have to be converted to surfaces. As less elements have to
be checked then, time will be saved.

 Significant time can be saved as well by manually filtering the various building models.
When all irrelevant geometry, like furniture and internal structures, is removed from the
model before the design tool is executed, the process can be quickened considerably.

10.2.2 CFD calculations

 The developed design tools work for CFD applications. The wrapped surface model of a

building replaces all internal and external geometry and reduces the amount of data for
the CFD calculations considerably. Models of the environment are easy to make, which
makes it possible to take the surrounding buildings into account in the calculations. The
models that are generated by the design tools can be meshed by the CFD software and
results can be obtained from the calculations.

 The grid generation methods that are developed are able to mesh both simple and
complex building geometry. However, the amount of cells that can be used is limited by
the computer resources. The capacity of the current desktop computers influences the
ability to make accurate calculations considerably. Only with the best available work
stations or with a cluster of computers it could be possible to obtain very accurate results.

 Judging the results of the CFD calculations that are performed in this thesis is difficult as
there was no reference information available. The only way to verify the results is to
compare them with results from real wind tunnel studies. Judging the grid quality is also
difficult as grid convergence studies can not be performed with the actual desktop
computers.

 To obtain a solution with the highest accuracy that is possible with the current resources,
the grid must be refined until a mesh is obtained with an amount of cells just below 1.2
million. Further refinement is not recommended as the calculation speed is slowed down
considerably then.

 A comparison between the building codes and a CFD calculation for the simple shape of
the Electrical Engineering building resulted in a large difference between the methods.
The reason of the difference is not certain, but it is probably caused by an incorrect
approach to setup a CFD calculation.

 In comparison with the building codes, a CFD calculation offers considerable advantages.
Although the current accuracy is moderate, the CFD results can give lots of insight in the
wind effects. The visualization of the flow pattern gives very useful information that can
never be obtained with calculations according to the building codes.

 In the total process to predict the wind loads on a building or structure using CFD, the
largest bottleneck still seems to be the CFD itself at the moment. The design tools are
able to setup the geometry, but very accurate results can not be obtained yet from the
calculations. To a large extent this has to do with the computer resources.

 For final wind load determination the Virtual Wind Tunnel is not suited yet because the
accuracy is not high enough. Following the current trends in the development of
computer resources, it will probably be possible in the nearby future to investigate the
wind effects on entire built areas accurately. For the time being, real wind tunnel tests
remain necessary.

Master’s thesis

153

10.3 Recommendations

10.3.1 Design Tools

 In order to generate more detailed models of the environment, it is recommended for

further research to split the polygons that represent the buildings in smaller parts if a
building consists of several building elements. The various building parts could then be
extruded over different heights, what results in a more realistic description of the
buildings in the environment. The generation of slope surfaces from the GIS datasets
should also be investigated to simulate the flow pattern in the research area more
accurately.

 In the 3D model of the environment the ground is modeled as a flat surface to save cells
when meshing the domain. When the computer resources are sufficient, other elements
in the environment, like roads, water, dykes and vegetation, should be modeled as well
by adapting the script of the first design tool. This will result in a more complex ground
surface and more cells are required to mesh the surface. However, especially for large
differences in height between the various elements, reality will be described much better.

 The various methods of the design tool to simplify the building model of interest fail when
a building model consists of elements of different height that are separated by air. It is
recommended to develop other methods to solve the restrictions of the current methods.
Adapting the methods to find the outer points on a vertical plane as well that moves in
horizontal direction through the model could help to find the outer points on all
boundaries of the model. Through the resulting point cloud on the boundary a surface
can be created then.

 Other methods to wrap a surface around a building model are imaginable as well. It is
suggested to use a shrinking sphere that has to be constructed around the model, with a
certain elasticity. When it is not permitted to perforate the sphere, the building model
could be wrapped by shrinking the sphere to create a vacuum. Another method is
suggested that works similar to laser scanning equipment, generating a point cloud on
the boundary of the model. Further research is required to develop these methods.

 At the moment, the only way to simplify the enclosing curves and get rid of little details is
to fit a NURBS curve through the original curve. It is recommended to develop other
methods as well to remove small details from a building model. The least squares method
seems to be an appropriate method to simplify the enclosing curves, but a complete
different approach of simplifying a building model could be valuable as well.

 The design tools are developed in Rhinoceros and written in the Microsoft’s Visual Basic
language. As the tools work visually and as only one task can be performed at the same
time in Visual Basic, the process to generate the enclosing curves around a complex
building model can take quite some time. It is recommended to convert the script of the
tools to more advanced programming languages, like C++ or DotNET, in order to quicken
the process.

 When a 3D model of the environment and a surface model of the building of interest are
developed with the various design tools, the models have to be joined together manually
at the moment. As the model of the environment uses a global coordinate system and
the building model of interest a local coordinate system, some work is required to place
both models at the right place when they are joined. An additional design tool could be
developed that links the local coordinate system with the global coordinate system. The
design tool should be able then to place the building of interest with the right orientation
and at the desired location in the model of the environment.

Master’s thesis

154

10.3.2 CFD calculations

 It is very hard to judge the results of the various CFD calculations that are performed in

this thesis as no reference information from real wind tunnel studies was available. For
additional research it is recommended to compare the CFD results with real wind tunnel
studies to verify the CFD calculations.

 The results of a CFD calculation are to a large extent influenced by the amount of cells
that is used to mesh the domain. Due to memory restrictions of the available hardware,
only a coarse grid could be used. If the computer resources allow, it is recommended to
investigate the influence of the grid on the solution by performing a grid convergence
study. In the end a grid independent solution is desired as it eliminates any errors that
originate from the coarseness of the grid.

 The comparison between the building codes and a CFD calculation for the faculty of
Electrical Engineering showed a large difference between the methods. The reason of this
difference should be investigated, but it is possibly caused by an incorrect approach to
setup a CFD calculation. Many comparisons should be made between real wind tunnel
studies and CFD calculations for both simple and more complex geometry, in order to
validate the current approach of the Virtual Wind Tunnel. Perhaps a certain trend can be
derived that can be used to outweigh the large difference between CFD and the building
codes. In the end one should proof that the results of a CFD calculation are profitable in
comparison with the codes.

 The boundary conditions that are applied in this thesis on the building models and the
ground surface are derived from the boundary conditions for the cube model, which were
formulated by Van Nalta. With wall parameters a certain roughness can be given to the
ground surface and the façades of the buildings. To model the reality accurately, further
research is required to translate the structure of the real ground surface and the building
façades into roughness parameters. The influence of different roughness parameters on
the flow pattern around a building should be investigated as well.

 To simulate the flow pattern around specific small building parts accurately or to
determine local forces, the computer capacity is too small as many cells are required for
such calculations. It is recommended to adapt the grid locally in order to refine the mesh
at critical places. Where possible, cells could be removed to obtain more cells for meshing
certain important regions. However, one must be careful with local grid adaption in order
to prevent large transitions between the local fine grid and the adjacent coarse grid.
Large changes in cell size will have a negative influence on the accuracy of the solution,
which can be larger than the profits of a locally finer grid. Other possibilities to save cells
could be the reduction of the dimensions of the computational domain and the removal of
the smallest objects in the research area.

 Additional research is required to investigate the influence of the radius of the central
cylinder of the domain for the results of a CFD calculation. For single objects the distance
between the object and the edge of the cylinder seems sufficient. However, when an
entire built environment is placed in the cylinder, the radius of the cylinder must be
increased considerably in order to provide a smooth transition between the mesh on the
buildings and the edge of the cylinder. It is currently not known which ratio should be
used between the radius of the research area and the radius of the central cylinder.

Master’s thesis

155

References

[1] Anderson, J.D. 2001, Fundamentals of aerodynamics, McGraw-Hill, New York
[2] Apsley, D. 2003, The CFD Process, The University of Manchester
[3] Arif, H. 1999, Application of Computational Fluid Dynamics (CFD) to the modeling of flow

in horizontal wells, Stanford University
[4] Bernhardsen, T. 1999, Geographic Information Systems, an introduction, John Wiley &

Sons, New York
[5] Blaha, M. & Rumbaugh, J. 2005, Object-Oriented Modeling and Design with UML,

Pearson Prentice Hall, New Jersey
[6] Cauberg, J.J.M. 2003, Toegepaste Bouwfysica, Delft University of Technology
[7] Delaney, J. 1999, Geographical Information Systems, an introduction, Oxford University

Press, New York
[8] Franke, J. 2004, Recommendations on the use of CFD in Wind Engineering, Cost Action

C14
[9] Franke, J. 2004, Recommendations on the use of CFD in predicting pedestrian wind

environment, Cost Action C14
[10] Geurts, C.P.W. & Staalduinen, van, P.C. 2001, Windtunnelonderzoek altijd nuttig en

soms noodzakelijk, Bouwen met staal, vol. 163, december 2001, pp. 46-50
[11] Geurts, C.P.W. 2005, Wind tunnel applications in building engineering, Delft University of

Technology Wind Laboratory
[12] Jiang, Z., Memarzadeh, F. & Weiran, X. 2004, UVGI Interaction of Airborne Organisms,

ORF, Bethesda
[13] Kerklaan, R. & Jansen, H. 2003, UML en ArchiCAD oefening, Delft University of

Technology
[14] Kim, S-E & Boysan, F. 1999, Application of CFD to environmental flows, Journal of wind

engineering and industrial aerodynamics, vol. 81, pp. 145-158
[15] Kolbe, T.H., Groger, G. & Plumer, L. 2006, 3D City Models and their Potential for

Emergency Response, University of Bonn, Germany
[16] Nalta, van, R. 2004, Computational Wind Engineering: Background, Approach and

Validation, Delft University of Technology
[17] NNI 2005, Eurocode 1: Belastingen op constructies – Deel 1-4: Algemene belastingen –

Windbelasting, NEN-normenshop
[18] NNI 2001, NEN 6702: Belastingen en vervormingen, TGB 1990, NEN-normenshop
[19] Rogers, D.F. 2000, An Introduction to NURBS with historical perspective, Academic

Press, London
[20] Sederberg, T.W. 2005, An Introduction to B-Spline Curves, Utah
[21] Schoonmaker, S.J. 2003, The CAD guidebook, Marcel Dekker Inc., New York
[22] Shaw, C.T. 1992, Using Computational Fluid Dynamics, Prentice Hall International (UK)

Ltd, Hertfordshire
[23] Snijders, D.P. 2006, Shaping the Virtual Wind Tunnel, Delft University of Technology
[24] Thompson, J.F., Soni, B.K. & Weatherill, N.P. 1999, Handbook of Grid Generation, CRC

Press, New York
[25] Tolman, F.P., Behesti, M.R. & Dado, E. 2001, Bouwinformatica: Ontwerp en Constructie,

Delft University of Technology
[26] Toussaint, M.H. 2006, Structural Design of a Timber Grid Shell, Delft University of

Technology
[27] Vambersky, J.N.J.A., Woudenberg, I.A.R. & Geurts, C.P.W. 2005, CUR Aanbeveling 103:

Windtunnelonderzoek, Civieltechnisch Centrum Uitvoering Research en Regelgeving
[28] Ven, van der, K.W.M. & Uffelen, van, G.M. 2004, Windtunnelonderzoek aan

windbelasting op gebouwen, Cement, no. 3, pp. 74-77
[29] Woudenberg, I.A.R. & Vambersky, J.N.J.A. 2003, Windbelasting, hoogbouw en

regelgeving, Cement, no. 6, pp. 89-94

Master’s thesis

156

Internet pages

[1] Rhinoceros (s.d.) Modeling tools for designers [online]. Available from:

http://www.rhino3d.com/ [Accessed 3 March 2006]
[2] TDN (s.d.) Kadaster [online]. Available from: http://www.tdn.nl/

[Accessed 3 March 2006]
[3] Reconstructivism (s.d.) Reconstructivism [online]. Available from:

http://www.reconstructivism.net/ [Accessed 10 March 2006]
[4] Unesco (s.d.) Training Module on GIS [online]. Available from:

http://gea.zvne.fer.hr/index.html/ [Accessed 7 April 2006]
[5] GISHydro (s.d.) A GIS-Based Hydrologic Modeling Tool [online]. Available from:

http://www.gishydro.umd.edu/ [Accessed 7 April 2006]
[6] Moshplant (s.d.) Bézier Curves [online]. Available from:

http://www.moshplant.com/direct-or/bezier/ [Accessed 14 April 2006]
[7] KNMI (s.d.) De website van het KNMI [online]. Available from: http://www.knmi.nl/

[Accessed 20 April 2006]
[8] U-Dispuut (s.d.) Stichting Dispuut Utiliteitsbouw [online]. Available from:

http://www.udispuut.tudelft.nl/ [Accessed 26 April 2005]
[9] Fluent (s.d.) CFD Flow Modeling Software & Solutions from Fluent [online]. Available

from: http://www.fluent.com/ [Accessed 27 April 2006]
[10] CADD (s.d.) Computer Aided Detector Design [online]. Available from:

http://cadd.web.cern.ch/cadd/ [Accessed 1 May 2006]
[11] Geodan (s.d.) Een wereld van geo-informatie [online]. Available from:

http://www.geodan.nl/nl/index.htm [Accessed 1 May 2006]
[12] Radboud Universtiteit Nijmegen (s.d.) GISdesk [online]. Available from:

http://www.ru.nl/gisdesk/geo-data/algemeen_beschikbaar/ [Accessed 2 May 2006]
[13] AHN (s.d.) Actueel Hoogtebestand Nederland [online]. Available from:

http://www.ahn.nl/ [Accessed 2 May 2006]
[14] McGill (s.d.) School of Architecture [online]. Available from

http://www.mcgill.ca/architecture/ [Accessed 5 May 2006]
[15] TU Delft (s.d.) TU Delft [Online]. Available from: http://www.tudelft.nl

[Accessed 12 May 2006]
[16] Pointwise (s.d.) Reliable CFD Meshing and Grid Generation from Pointwise [Online].

Available from: http://www.gridgen.com/ [Accessed 15 May 2006]
[17] Object Management Group (s.d.) UML [Online]. Available from: http://www.uml.org/

[Accessed 19 July 2006]
[18] Graphisoft (s.d.) ArchiCAD [Online]. Available from: http://www.graphisoft.com/

[Accessed 19 July 2006]
[19] Construsoft (s.d.) Tekla Structures [Online]. Available from: http://www.construsoft.nl/

[Accessed 20 July 2006]
[20] Wikipedia (s.d.) Remote Sensing [Online]. Available from:

http://en.wikipedia.org/wiki/Remote_sensing/ Accessed 20 July 2006]
[21] Paul Bourke (1997) Intersection of a line and a facet [Online]. Available from:

http://local.wasp.uwa.edu.au/~pbourke/geometry/linefacet/ [Accessed 11 August 2006]
[22] SDC Publications (s.d.) Autodesk Architectural Desktop [Online]. Available from:

http://www.schroff1.com/revit/1585030996.htm [Accessed 13 August 2006]
[23] ONL (s.d.) Oosterhuis_Lénárd [Online]. Available from: http://www.oosterhuis.nl/

[Accessed 23 August 2006]
[24] Tecplot (s.d.) CFD Post-Processing, Plotting, Graphing & Data Visualization Software

[Online]. Available from: http://www.tecplot.com/ [Accessed 26 September 2006]

Master’s thesis

157

Appendices

Master’s thesis

158

Master’s thesis

159

Appendix A: Additional information

In this appendix some additional information on the theory about CFD, GIS and CAD is given.

A.1 Fluids in motion

The basic equations describing fluid flow are derived from the mass, momentum and energy
balance on a fluid element (Shaw, [22]). Three fundamental physical principles to solve the
basic equations were already formulated in the 18th century by the well-known scientist
Leonhard Euler:

 Mass is conserved; No mass is created or destroyed in a fluid flow

This principle is referred to as the Continuity equation

 Momentum is conserved; Momentum is defined as the mass of a particle multiplied by

its velocity. The amount of momentum is constant in a flow
This principle is referred to as the Momentum equation

 Energy is conserved; No energy is created or destroyed in a fluid flow

This principle is referred to as the Energy equation

Combining these equations leads to the governing equations for fluid motion. According to
Anderson [1] there are two main approaches for fluid modeling, with their own form of the
governing equations:

 The Langragian approach: the fluid motion is analyzed using an infinitesimal fluid

element or control volume that is moving along a streamline

 The Eulerian approach: the fluid motion is analyzed using a finite control volume V
that is fixed in space. The volume is bounded by control
surface S and the fluid is moving through the volume

On the next pages the three fundamental principles are evaluated inside a fixed control
volume using the Eulerian approach, as in most CFD software packages the flow fields are
computed in the Eulerian reference system (Jiang et all, [12]).

Figure A.1: Control volume fixed in space with the fluid moving through it, Eulerian approach
 (Anderson, [1])

Master’s thesis

160

Conservation of mass
The conservation law of mass is based upon the principle that the net mass flow out of the
control volume through the surface is equal to the time rate of mass decrease inside the
control volume. When this condition is satisfied, mass is conserved. The net mass flow out of
the control volume is the product of the fluid density, the component of fluid perpendicular to
the surface and the area of the surface and is given by the following equation:

ρ ⋅∫∫
S

V dS (A.1)

The dot product of V and dS indicates that the velocity is taken perpendicular to the control
surface. The total mass inside the control volume is:

ρ∫∫∫
V

dV (A.2)

Because the size of the control volume remains constant in time, the mass decrease inside
the volume is equal to the time-derived density, integrated over the volume:

ρ∂
−
∂ ∫∫∫

V

dV
t

 (A.3)

The net mass flow out of the control volume must be equal to the mass decrease inside the
volume. Combining these two equations leads to the following equation for the conservation
of mass:

0ρ ρ∂
⋅ + =

∂∫∫ ∫∫∫
S V

V dS dV
t

 (A.4)

This equation is also known as the continuity equation.

Master’s thesis

161

Conservation of momentum
To create a change in momentum of a single particle, a force is required. As momentum is
defined as the mass of a particle multiplied by its velocity, it follows from the conservation
law of mass that a change in velocity is needed to change the momentum, as mass is
constant. A change in velocity leads to an acceleration or deceleration of the particle. The
required force to create a change in momentum is equal to the mass of a particle multiplied
by its acceleration or deceleration and can be written as F = m·a. This equation is also known
as Newton’s second law. The equation F = m·a is a vector relation and can be split in three
directions along the x, y and z-axis. In the following the expression for F in x-direction will be
derived using the forces and pressures on the infinitesimal fluid element shown in Figure A.2.

Figure A.2: Shear forces and pressures in x-direction on an infinitesimal fluid element

 (Anderson, [1])

It follows that the total force in x-direction is given by:

ττ τ ρ
∂⎛ ⎞∂ ∂∂

= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
yxxx zx

x x
pF dxdydz f dxdydz
x x y z

 (A.5)

Herein is fx the x-component of the body force per unit mass acting on the fluid element.

From Newton’s second law it follows that the net force exerted on the control volume is equal
to the mass of a particle times its acceleration. Acceleration is the time rate of change of the
velocity and is in x-direction given by:

/=xa Du Dt (A.6)

The mass of an infinitesimal fluid element is constant and given by:

ρ=m dxdydz (A.7)

Master’s thesis

162

From Equations (A.6) and (A.7) it follows for the product of mass and acceleration:

ρ=x
Duma dxdydz
Dt

 (A.8)

Combining Equations (A.5) and (A.8) results in the x-component of the momentum equation:

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
x

Du p f
Dt x x y z

 (A.9)

The y and z-components can be derived in a similar way:

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
y

Du p f
Dt x x y z

 (A.10)

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
z

Du p f
Dt x x y z

 (A.11)

These momentum equations are called Navier-Stokes equations. However, in CFD literature,
the Navier-Stokes equations usually refer to the complete set of mass, momentum and
energy equations. Finally the magnitude of the shear stresses on the fluid element of Figure
A.2 can be defined. In Newtonian fluids, such as air, the shear stress is proportional to the
rate of deformation. Herein is the viscosity μ the proportion factor:

τ μ ∂
=

∂x
u
y

 (A.12)

The shear stresses for Newtonian fluids are defined as:

2τ λ μ ∂
= ∇ ⋅ +

∂xx
uV
x

 (A.13)

2τ λ μ ∂
= ∇ ⋅ +

∂yy
vV
y

 (A.14)

2τ λ μ ∂
= ∇ ⋅ +

∂zz
wV
z

 (A.15)

τ τ μ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
xy yx

v u
x y

 (A.16)

τ τ μ ∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂⎝ ⎠
xz zx

u w
z x

 (A.17)

τ τ μ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
yz zy

w v
y z

 (A.18)

The stresses , , , , ,xy xz yx yz zx zyτ τ τ τ τ τ are called the viscous shear stresses and the stresses

, ,xx yy zzτ τ τ are called the viscous bulk stresses. Bulk stresses cause compression or extension

of the fluid. The bulk viscosity coefficient is given by:
2
3

λ μ= − (A.19)

Master’s thesis

163

Conservation of energy
The conservation law of energy is based upon the principle that energy can only change in
form; it can not be created or destroyed. Every change in energy over time inside the control
volume must result from an amount of heat added to the flow from the surroundings and an
amount of work that is performed on the fluid inside the control volume. The energy, heat
and work flux have to be in equilibrium:

∂ ∂ ∂

= +
∂ ∂ ∂
E Q W
t t t

 (A.20)

The rate of heat addition is determined by the rate of volumetric heating and the rate of heat
addition to the control volume due to viscous effects:

ρ ∂∂ ∂
= +

∂ ∂ ∂∫∫∫ viscous

V

QQ q dV
t t t

 (A.21)

Herein is q the rate of heat addition per unit mass and Qviscous the total of viscous effects. The
amount of work that is performed is determined by the amount of work due to pressure,
body forces and shear stress on the control surface:

()ρ ∂∂
= ⋅ − ⋅ +

∂ ∂∫∫∫ ∫∫ viscous

V S

WW f U dV pU dS
t t

 (A.22)

Herein is Wviscous the total of viscous effects. The rate of change of total energy is the rate of
energy flow across the control surface and the time rate of change of energy in the volume:

()
2 2

2 2
ρ ρ
⎛ ⎞ ⎛ ⎞∂ ∂

= + + ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
∫∫∫ ∫∫

V S

E U Ue dV U dS e
t t

 (A.23)

When Equations (A.21), (A.22) and (A.23) are combined, the following energy equation is
obtained:

2 2

2 2
ρ ρ ρ
⎛ ⎞ ⎛ ⎞ ∂∂ ∂

+ + + ⋅ = + − ⋅⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫∫∫ ∫∫ ∫∫∫ ∫∫viscous

V S V S

QU Ue dV e U dS q dV pU dS
t t t

 ()ρ ∂
+ ⋅ +

∂∫∫∫ viscous

V

Wf U dV
t

 (A.24)

Master’s thesis

164

Navier-Stokes equations
The continuity, momentum and energy equation are the basic equations of fluid dynamics.
For wind engineering, the fluid is considered incompressible due to the relatively low speed of
wind. As a consequence of the incompressibility the density ρ and viscosity μ of the fluid are
constant and the equations describing the flow can be simplified. With constant mass and
density, the change of volume of a fluid element in time is zero. Another consequence of the
incompressibility and constant density is that the continuity and momentum equations are
sufficient to describe the flow. The energy equation does not have to be taken into account.
The simplified set equations describing the flow are known as the Navier-Stokes equations.
When Equations (A.13), (A.16) and (A.17) for the stresses are substituted in the momentum
Equation (A.9), it follows for the momentum equation in x-direction:

2 2 2 2

2 2() 2ρ λ μ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= − + ∇⋅ + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
x

Du p u u v wV f
Dt x x x z x y x z

 (A.25)

The Continuity Equation (A.4) can be written as:

0ρ ρ+ ∇⋅ =
D V
Dt

 (A.26)

As a consequence of the constant density, the continuity equation can be simplified to:

0∂ ∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂
u v wV
x y z

 (A.27)

0⎛ ⎞∂ ∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

u v w
x x y z

 (A.28)

From Equations (A.25), (A.27) and (A.28) it follows that the momentum equation in x, y and
z-direction can be simplified to:

2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

x
Du p u u u f
Dt x x y z

 (A.29)

2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

y
Dv p v v v f
Dt y x y z

 (A.30)

2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

z
Dw p w w w f
Dt z x y z

 (A.31)

These three equations are known as the Navier-Stokes equations for an incompressible fluid.

In the theory about fluids in motion, no attention was paid to turbulence so far. Turbulence
however leads to rapid velocity fluctuations in both space and time. Unfortunately, the
amount of calculation effort required to capture both time and space variations of the
variables is extremely large. This has led to the concept of turbulence modeling. The subject
of turbulence modeling is further discussed on the next page.

Master’s thesis

165

A.2 Turbulence Modeling

Turbulence can be described as the variation of the wind speed around its mean. Due to this
unsteadiness the flow hardly remains at equilibrium. To model the turbulence behaviour of
the flow a turbulence model is needed. With a turbulence model the Navier-Stokes equations
are simplified with a new set of equations that model the unsteadiness of the flow. There are
several turbulence models available ranging from simple algebraic models to highly
sophisticated models like Reynolds-stress transport models (RSTM). The reliability of CFD
solutions for turbulent flows depends on the turbulence model used. The most important
methods to deal with turbulence behaviour are:

Direct Numerical Simulation (DNS)
The most accurate method to deal with turbulence is DNS. All scales in a turbulent flow are
simulated without any modeling of turbulence. The grid must be fine enough to solve the
smallest scales. However, as the flows encountered in urban areas involve scales ranging
from small gusts to vortices comparable to the scale of the building or structure itself, the
computational demand for this method is too high for use in wind engineering (Franke, [9]).

Large Eddy Simulation (LES)
To reduce the computational demands the Navier-Stokes equations can be simplified by
filtering the small eddies. This filtering is also knows as time averaging and leads to the LES
method. By using a grid that is too coarse to capture the small scales of the flow, only the
large eddies are taken into account. The result of filtering the small eddies is a modified set
of Navier-Stokes equations forming a turbulence model, which are computationally less
expensive to solve. The LES method gives good results comparable with experimental data,
but the computational effort is still too high for use in a design application. However, rapid
evolution of CPU hardware will surely overcome this restriction in the near future.

Reynolds Averaged Navier-Stokes (RANS)
The generally used method for the computation of turbulent flow is the Reynolds Averaged
Navier-Stokes (RANS) method. All scales of turbulence are modeled in this method. The RANS
equations are derived by splitting the velocity into a mean and a fluctuating component. The
Navier-Stokes equations are then averaged in time over all scales of turbulence to directly
produce the solution of the flow variables. Averaging results in an additional set of six
unknown terms in the momentum conservation equations that are known as Reynold stresses
(Arif, [3]). The additional equations that are derived to determine the Reynold stresses are
known as the turbulence model. If these six terms are ignored, the time-averaged
momentum equations are the same as the original momentum equations. RANS modeling is
much faster than LES and DNS but it is assumed to be unfit when high accuracy is required.

The derivation of the additional equations requires an approximation due to the complexities
of the turbulence. This has resulted in a variety of turbulence models for the RANS equations.
The available RANS turbulence models range from a large number of variants of the ĸ-ε
models to Reynolds stress transport models. The original ĸ-ε model seems to be the most
widely used turbulence model in building aerodynamics for their simplicity. However, the
conventional ĸ-ε models have some drawbacks. Analysis of the flow field around a bluff body
with the standard ĸ-ε model results in the overproduction of turbulence energy around the
frontal corners of the bluff body. As a result, the predicted values of velocity or pressure
differ from the experimental results. Many attempts have been made to revise the ĸ-ε model
and several new models have been proposed, under which the realizable ĸ-ε model and the
RNG ĸ-ε model. The prediction accuracy of these new models has significantly improved.

Master’s thesis

166

A.3 Historical overview of GIS

GIS has evolved out of a long tradition of map making. The earliest known maps were drawn
on parchment to show the gold mines at Coptes (1292-1225 B.C.). Around 300 B.C. the
Greeks acquired cartographic skills and made the first realistic maps. These maps were drawn
almost exclusively to facilitate commercial sea voyages.

Around 1400 A.D. several developments in cartography were made in Europe. The invention
of the printing press made maps more widely available. In stead of copying by hand, many
identical copies could be produced now. Besides, more and more exploration voyages were
undertaken, which increased knowledge of the world and the interest in map making. During
the 16th century, many maps were produced from the ever-increasing information brought
back by navigators and explorers. From now on, the accuracy of the maps was greatly
increased by more precise determinations of the size and shape of the earth.

Figure A.3: Ptolemy’s map of the world (Internet, [1])

As in the 18th century the prosperous countries evolved to more organized societies, the
needs for geographic information increased. Because maps became also important in military
operations, military agencies became the leading makers for all civilian and military maps.

In history, geographical information was usually used for trade and exploration expeditions.
When in the 19th century new infrastructures were evolved, such as roads, railways and gas
and water supplies, the demand for geographical information arose. The exact location of
cities, mountains, lakes and rivers became very important.

With the technological innovations in the 20th century the progress of map making became
also more developed. Especially the development of satellites with photographic equipment
increased the speed and accuracy of map making. With the introduction of the computer
geographical data could now also be automatically processed. This has led to a wide variety
of Geographic Information Systems.

Master’s thesis

167

A.4 Recent developments in GIS

Nowadays GIS is used in many technologies. Compared with a couple of years ago, acquiring
data for use in a GIS is no longer a major problem. Trends in GIS data show that remote
sensing will become an important source of GIS data in the nearby future. In the broadest
sense, remote sensing is the measurement of information of an object by a recording device
that is not in direct contact with the object (Internet, [20]). In practice, remote sensing is the
measurement of any device for gathering information about the environment. The devices
used for GIS applications are usually aircrafts and satellites. Another trend shows that the
exchange of GIS data will become more common and has been facilitated by exchange
standards.

Another major development of the last two years is the growing awareness of GIS in the
general public. The tsunami in South Asia in 2004 and hurricane Katrina in the United States
in 2005 showed how important GIS is in order to protect lives. When viewing satellite imagery
and comparing the changes of land cover before and after the disasters, very important
information can be obtained about nature’s behaviour. Also rescue efforts are heavily relying
on GIS technology.

The integration of GIS and the internet is another recent development. In the past, static
pictures were used to present maps of a certain area on the internet. Nowadays it is possible
to use dynamic pictures where the user itself can decide what has to be mapped and how it
must be presented. It is possible to chart neighbourhoods on the basis of population, real
estate, income distribution and busyness. Other applications are websites where a whole
environment can be mapped on the basis of a specified address or postal code. The most
famous integration of GIS and internet is Google Earth. With this technology it is possible to
take a look at each arbitrary place on earth by means of satellite and air photos. An additional
option is the possibility to plot certain data on a map, to chart crime numbers for example.
Another option is to construct 3D buildings with a special plug-in, to create a 3D environment
of a certain area. GIS is also integrated in mobile internet nowadays. With this technology,
actual traffic information can be asked for and it is even possible to search for the nearest
parking garage with a free place for example. When a route planner is integrated, the driver
can be guided to the garage also.

In the nearby future, other applications of GIS are expected to be introduced. An example is
the registration of property. Until recently, maps were only presented in two dimensions.
Because multiple usage of space is often necessary nowadays, flat maps are not sufficient
anymore. The registration of property demands a three dimensional approach when
properties of various owners are placed on each other. If for example a tunnel is built
underneath a certain district with another owner, the properties can not be registered under
the same owner. Research is done at the moment to separate the several properties and its
various owners by registering property in three dimensions.

Master’s thesis

168

A.5 Industry Foundation Classes

Standardization of information models and information exchange is very important to provide
interchangeability between the software used by all building project participants. In 1995
Bentley and Autodesk formed the International Alliance for Interoperability (IAI) to develop a
method to exchange a complete, accurate building data model from one computer application
to another, with no loss of information (Tolman et al, [25]). The IAI developed the Industry
Foundation Classes (IFC), which are data elements that represent the parts of a building or
elements of the building process and contain relevant information about those parts. IFC’s are
used by computer applications to provide a computer readable project model that contains all
the information of the building parts and process elements and their relationships. The goal is
that all project participants exchange information with this project model, not with each
other. The project model provides an object-oriented database of the information shared
among project participants and continues to grow as the project goes through all phases,
from design and construction to operation.

Figure A.4: Exchange of information in the past and future (Tolman et al, [25])

Architect

Structural
Engineer

 HVAC
Engineer

 Civil
Engineer

Control
Engineer

Building
Owner

 Facility
Manager

 Project
Manager

Architect

Structural
Engineer

 HVAC
Engineer

 Civil
Engineer

Control
Engineer

Building
Owner

Facility
Manager

 Project
Manager

Project
 Model

Master’s thesis

169

Appendix B: TDN-Code

The Top10Vector dataset that is used to generate a 3D model of the environment is
composed of closed polygons that represent the various elements on the earth’s surface.
Every element type has its own layer with a unique code, wherein all polygons are
subdivided. The several layers can be turned on and off separately. This appendix gives a list
of all layers in the Top10Vector dataset, the so-called TDN code.

1 Bebouwing

1.1 Gebouw, huis 1003
1.2 Bebouwd gebied 1013
1.3 Hoogbouw 1033
1.4 Muur 1043
1.5 Kassen 1073
1.6 Opslagtank 1083
1.7 Politiebureau 1103
1.8 Postkantoor 1113
1.9 Gemeentehuis 1123
1.10 Hospitaal 1213
1.11 Markant Object 1303
1.12 Jaknikker 1313
1.13 Zuiveringsinstallatie 1373
1.14 Paal 1413
1.15 Vlampijp 1423
1.16 Schietbaan 1453
1.17 Seinmast 1463
1.18 Energiemolen 1503
1.19 Windmolen 1513
1.20 Watermolen 1533
1.21 Windmolentje 1543
1.22 Gemaal 1553
1.23 Religieus gebouw 1703
1.24 Kapel 1753
1.25 Kruis 1763
1.26 Hunebed 1773
1.27 Gedenkteken 1783
1.28 Toren 1803
1.29 Watertoren 1823
1.30 Vuurtoren 1853

2 Wegen cat 2

2.1 Autosnelweg 2003
2.2 Lokale autoweg 2083
2.3 Autoweg als verbindingsroute 2103
2.4 Verbindingsroute met gescheiden rijbanen 2203
2.5 Verbindingsroute > 7 m 2303
2.6 Autoweg met gescheiden rijbanen als verbindingsroute 2343
2.7 Verbindingsroute > 4 m 2403
2.8 Lokale autoweg met gescheiden rijbanen 2443
2.9 Verbindingsroute > 2 m 2503
2.10 Autoweg met gescheiden rijbanen als overig aanbev. r. 2803
2.11 Lokale weg met gescheiden rijbanen 2873
2.12 Autoweg als overig aanbevolen route 2903

Master’s thesis

170

3 Wegen cat 3

3.1 Overig aanbevolen route met gescheiden rijbanen 3003
3.2 Overig aanbevolen route > 7 m 3103
3.3 Lokale weg > 7 m 3143
3.4 Overig aanbevolen route > 4 m 3203
3.5 Lokale weg > 4 m 3243
3.6 Overig aanbevolen route > 2 m 3303
3.7 Lokale weg > 2 m 3343
3.8 Overige weg > 2 m 3403
3.9 Gedeeltelijk verhard > 2 m 3413
3.10 Onverharde weg > 2 meter 3433
3.11 Overkluizing 3453
3.12 Passage 3463
3.13 Voetgangersgebied 3473
3.14 Voetpad < 2 m 3523
3.15 Straat 3533
3.16 Fietspad > 2 m 3603
3.17 Fietspad < 2 m 3623
3.18 Met fietspad 3633
3.19 Pad 3643
3.20 Pontveer 3663
3.21 Voetveer 3673
3.22 Veerdienst 3683
3.23 Brug 3713
3.24 Pijlers van een brug 3733
3.25 Vonder 3743
3.26 Beweegbaar brugdeel 3763
3.27 Tankstation 3813
3.28 Parkeerfaciliteit 3833
3.29 Wegafsluiting 3853
3.30 Kilometerpaal 3863
3.31 Wegwijzer 3873
3.32 Afritnummerblok 3893
3.33 Parkeerterrein 3903
3.34 Wegnummerblok A-route 3913
3.35 Wegnummerblok N-route 3923
3.36 Wegnummerblok E-route 3933
3.37 Rijstrookcirkel 3953

4 Spoor

4.1 Enkelspoor 4003
4.2 Dubbelspoor 4043
4.3 Driespoor 4103
4.4 Vierspoor 4143
4.5 Tramroute 4233
4.6 Smalspoor 4253
4.7 Metro bovengronds 4263
4.8 Station 4303
4.9 Metro / sneltramstation 4333
4.10 Laadperron 4353
4.11 Kilometerpaal spoorweg 4393
4.12 Kabelbaanmast 4403
4.13 Kabelbaan 4413
4.14 Zend- / ontvangstmast 4733
4.15 Hoogspanningsmast 4803
4.16 Hoogspanningsleiding 4813

Master’s thesis

171

5 Vegetatie

5.1 Boom 5003
5.2 Loofbos 5023
5.3 Naaldbos 5053
5.4 Gemengd bos 5063
5.5 Griend 5073
5.6 Populierenopstand 5083
5.7 Heg 5113
5.8 Bomenrij 5123
5.9 Bouwland 5203
5.10 Grasland 5213
5.11 Boomgaard 5223
5.12 Kwekerij 5233
5.13 Heide 5243
5.14 Zand 5253
5.15 Overig bodemgebruik 5263
5.16 Begraafplaats 5303
5.17 Fruitkwekerij 5313
5.18 Contour tbv erven 5333
5.19 Hulplijn (afsluiter) 5393
5.20 Contour 5403
5.21 Damlijn 5453
5.22 Hulplijn (eilandverbinder) 5463

6 Hydrografie

6.1 Greppel 6003
6.2 Sloot < 3 m 6013
6.3 Sloot tussen 3 en 6 m 6023
6.4 Water 6103
6.5 Oeverlijn 6113
6.6 Hoogwaterlijn 6203
6.7 Laagwaterlijn 6213
6.8 Dieptelijn 6223
6.9 Dieptepunt 6233
6.10 Steenglooiing 6293
6.11 Draslanden 6303
6.12 Riet 6313
6.13 Paalwerk 6393
6.14 Aanlegsteiger > 2 m 6513
6.15 Aanlegsteiger < 2 m 6523
6.16 Dok 6543
6.17 Dukdalf 6573
6.18 Kilometerraaipaal 6613
6.19 Kilometerraaibord 6623
6.20 Peilschaal 6633
6.21 Baak 6643
6.22 Lichtopstand 6653
6.23 Lichttoren 6673
6.24 Sluisdeur 6723
6.25 Stuw 6743
6.26 Duiker 6763
6.27 Grondduiker 6773
6.28 Dam 6793
6.29 Stroompijl groot 6813
6.30 Stroompijl klein 6823
6.31 Eb en vloedpijl 6833

Master’s thesis

172

7 Relief

7.1 Dijk > 2,5 m 7103
7.2 Dijk 1 – 2,5 m 7113
7.3 Boezemkade 7143
7.4 Wal 7153
7.5 Geluidswering 7163
7.6 Ingraving 7203
7.7 Hoogteverschil 7223
7.8 Aardrand 7253
7.9 Recht omhoog 7263
7.10 Recht omlaag 7273
7.11 Schuin omhoog 7283
7.12 Schuin omlaag 7293

8 Grenzen

8.1 Grenspunt 8123
8.2 Hek 8193
8.3 Camping 8783
8.4 Sportcomplex 8893

Master’s thesis

173

Appendix C: Script to generate the 2D research area

In this appendix the script that generates the 2D research area from the Top10Vector and
AHN datasets is discussed in detail. The script uses an external plug-in for Rhinoceros that
automatically select the points that lie in any closed curve. The plug-in is called RegionSelect
and can be downloaded from http://www.reconstructivism.net/. The plug-in is a so-called
DotNET plug-in, what means that it is written on the VisualBasic.NET platform. In order to
run these RhinoDotNET plug-ins, at least V1.1 of the Microsoft.NET framework has to be
installed. This is free downloadable from the Microsoft website: http://www.microsoft.com/.
Once the .NET framework is installed, the RhinoDotNetManager that runs DotNET plug-ins
needs yet to be installed. This in itself is a plug-in for Rhinoceros that can be downloaded
from http://www2.rhino3d.com/wip_plugins/. Once the DotNetManager is installed, it can be
run by entering _DotNetManager inside the Rhinoceros command line. The manager can add
the RegionSelect plug-in to Rhino.

Before running the script to generate the research area, the user has to import both the
Top10Vector and AHN datasets for a certain location in Rhinoceros. The script can be loaded
by entering LoadScript in the command line. A new window is opened with which the scripts
can be loaded. With the Add… button the various script files can be added to the program.

Master’s thesis

174

On the basis of the script code, the tool will now extensively be discussed. The script starts
with the Option Explicit command. With this command Rhino or any other program that runs
the script, will check if all variables are properly defined. If this command is not added, it will
be very hard to find errors in the script. Before the script can do anything, it needs a
subroutine. The subroutine controls all the code that is needed to perform the tasks of the
script. In this case the subroutine is called Area. In the following step the variable and
constant terms are declared that will be used in the subroutine.

Option Explicit

Sub Area()

Dim radius, r
Dim arrCenter, arrEnd(2)
Dim arrLayers
Dim strLayer
Dim iAllObj, i
Dim arrPoints, arrPoint
Dim arrPnts, arrPnt
Dim dx, dy, d, dx2, dy2, d2, dmax
Dim x1, x2, y1, y2
Dim xmin, xmax, ymin, ymax
Dim allBuildings, building
Dim arrObjects, Obj
Dim Circ, Crc
Dim invert
Dim extrPolygons, p
Dim rectangle, Rect

Const extHeight = -2

Because the height layers of the AHN dataset contain points in stead of comma’s to separate
the decimals, the Visual Basic script can give errors when it is not set to the right region
settings. With the setLocale command the local ID is set to English – United Kingdom.

setLocale(2057)

After defining the variables and local settings, the script starts with unselecting all eventually
selected objects. Then it asks the user to give a radius of the research area in meters. The
radius is 300 m by default, but the user can enter any radius. After that the user is asked to
pick a location in the research area where the building of interest will arise. He can do this by
simply mouse-clicking in the model.

Rhino.UnselectAllObjects
radius = Rhino.Realbox("Give radius of the research area
 (meters)",300.0)
Rhino.MessageBox ("Pick center location of the new building")
arrCenter = Rhino.GetPoint

When the user has picked a center location, the script will add a new layer to the model
called Center_point and makes it current. Now a new point will be created with the
coordinates of the center location that was given by the user. Other tools that will use this
model now always can find the center location of the new building. After the point is created,
its layer is turned off so it cannot be accidentally removed anymore. The current layer is set
back to default.

Master’s thesis

175

Rhino.AddLayer("Center_point")
Rhino.CurrentLayer("Center_point")
If IsArray(arrCenter) Then
 Rhino.AddPoint arrCenter
End If
Rhino.CurrentLayer "Default"
Rhino.Layermode ("Center_point") ,1

Because only the polygons that represent buildings will be extruded, the layers that contain
other elements, like roads, water and vegetation will be turned off. Nevertheless, if one also
wants to model other elements, the numbers of the layers that are turned off have to be
changed here.

arrLayers = Rhino.LayerNames
If IsArray(arrLayers) Then
 For strLayer = 2000 to 7000
 Rhino.LayerMode strLayer , 1
 Next
End If

For the remaining polygons is checked if it lies at the in- or outside of the circular research
area. With the Rhino.CurvePoints command the control points that lie on all corners of a
polygon are obtained. For each control point will now be checked if its distance to the new
building’s center location is larger or smaller than the user-defined radius of the research
area. If the distance of one or more control points of the polygon is smaller than the radius,
the polygon lies completely or partly in the research area. The polygon must remain and it
will be selected. If for all control points of a polygon the distance to the center location is
larger than the radius, the polygon will not be selected. So, in conclusion, all polygons that
are located at the boundary of the research area are selected, just as the polygons that lie
completely in the research area.

allBuildings = Rhino.NormalObjects
If IsArray(allBuildings) Then
 For Each building in allBuildings
 If Rhino.IsCurve(building) Then
 arrPoints = Rhino.CurvePoints(building)
 If IsArray(arrPoints) Then
 For Each arrPoint in arrPoints
 dx = arrPoint(0) - arrCenter(0)
 dy = arrPoint(1) - arrCenter(1)
 d = Sqr((dx)^2 + (dy)^2)
 If d < radius Then
 Rhino.SelectObject(building)
 End If
 Next
 End If
 End If
 Next
End If

Subsequently a new layer is added to the model, called ExtrPolygons. The layers of the
selected polygons are changed to this new layer. The polygons stay selected.

Rhino.AddLayer("ExtrPolygons")
Rhino.CurrentLayer("ExtrPolygons")
Rhino.Command("_ChangeToCurrentLayer")

Master’s thesis

176

For each polygon of the new layer, the script will select all height points that are surrounded
by the polygons, using the Region_Select plug-in. So, all polygons that must remain and the
necessary height points are now selected. With the Rhino.InvertSelectedObjects the selection
can be inverted. So all points that are not surrounded by a polygon and all polygons that do
not lie partly or completely in the research area, are now selected. The selected objects are
then deleted.

extrPolygons = Rhino.ObjectsByLayer("ExtrPolygons")
For p = 0 to UBound(extrPolygons)
 Rhino.Command "_RegionSelect '_SelID " & extrPolygons(p)
Next
Rhino.SelectObjects(extrPolygons)
invert = Rhino.InvertSelectedObjects
Rhino.DeleteObjects invert

What remains are the polygons with their height points that lie in the region of interest.
Because some polygons lie at the boundary of the circular research area, the circular area can
not be taken as basis for the ground surface anymore. The actual area is larger, so a new
plane has to be created. With the Rhino.CurvePoints command the control points at the
corners are again obtained for the remaining polygons. The minimum and maximum x and y
value of all control points are then determined.

Rhino.SelectObjects(extrPolygons)
If IsArray(extrPolygons) Then
 dmax = 0
 xmin = 0
 xmax = 0
 ymin = 0
 ymax = 0
 For Each Obj in extrPolygons
 If Rhino.IsCurve(Obj) Then
 arrPnts = Rhino.CurvePoints(Obj)
 If IsArray(arrPnts) Then
 For Each arrPnt in arrPnts
 dx2 = arrPnt(0) - arrCenter(0)
 dy2 = arrPnt(1) - arrCenter(1)
 If dx2 < 0 Then
 If dx2 < x1 Then
 x1 = dx2
 xmin = arrPnt(0)
 End If
 End If
 If dx2 > 0 Then
 If dx2 > x2 Then
 x2 = dx2
 xmax = arrPnt(0)
 End If
 End If
 If dy2 < 0 Then
 If dy2 < y1 Then
 y1 = dy2
 ymin = arrPnt(1)
 End If
 End If
 If dy2 > 0 Then
 If dy2 > y2 Then
 y2 = dy2
 ymax = arrPnt(1)
 End If

Master’s thesis

177

 End If
 Next
 End If
 End If
 Next
End If

From the minimum and maximum x and y values of the control points the radius of a new
circle can be calculated that fits all polygons. First a new layer is added to the model, Circle.
The new layer is made current and the circle is created. If some polygons are then still
selected, they are unselected with the Rhino.UnselectAllObjects command.

Rhino.AddLayer "Circle", RGB(105, 105, 105)
Rhino.CurrentLayer("Circle")
r = 1/2*(sqr((CStr(xmax)-CStr(xmin))^2 + (CStr(ymax)-CStr(ymin))^2))
Rhino.AddCircle arrCenter, r
Rhino.UnselectAllObjects

The circular research area is then moved to the origin of the coordinate system. Because the
computational domain that will be constructed around the research area to perform the CFD
calculations is also generated around the origin, the area is directly placed right when
imported in the domain. First all objects of the model are placed in the iAllObj array. Then the
point is defined where the model has to be moved to. Finally the model is moved from the
center location of the circular area to the origin of the coordinate system.

iallObj = Rhino.NormalObjects
arrEnd(0) = 0
arrEnd(1) = 0
arrEnd(2) = 0
Rhino.MoveObjects iAllObj, arrCenter, arrEnd

Because the model will be disappeared from the current view now, the window is zoomed to
the extents of the visible objects.

strView = Rhino.CurrentView
Rhino.ZoomExtents strView

Then the radius of the research area is given to the user. This radius is needed in a later
stage to create the computational domain.

Rhino.MessageBox ("Radius (m) of the research area for use in the
 Virtual Wind Tunnel: " & CInt(r))

The subroutine is finally finished by using the End Sub code. With the Area command
Rhinoceros is told to run the subroutine.

End Sub

Area

The result of the script is a 2D model of the research area with polygons that represent the
buildings in the research area. The polygons contain several height points that hold
information about the elevation level of the buildings. The research area is bounded by a
circular polygon.

Master’s thesis

178

Master’s thesis

179

Appendix D: Script to generate the 3D model

In this appendix the script that generates a 3D model from the 2D research area created by
the first tool, is discussed in detail. This script also uses the Region_Select plug-in, so it has
to be installed first if it is not already done. Before running the script that generates the 3D
model, the user has to open the 2D model of the research area in Rhinoceros first.

Again the script starts with the Option Explicit command and the definition of the subroutine.
In the following step the variable and constant terms are declared that will be used in the
subroutine. The local settings are then again set at English – United Kingdom.

Option Explicit

Sub Extrude()

Dim iallObjects, iPoints, i
Dim layName, arrLayers, strLayer
Dim strTekst
Dim maxHeight, extHeight, height
Dim Pnt, Crv
Dim selPolygon
Dim arrHeight(), arrSorted, median, m, u
Dim arrOptions(2)

Const circHeight = -2

setLocale(2057)

The script now sets the current layer to Default and turns off the layer that contains the
circle, which forms the ground surface. Else the circle would also be extruded if the script
goes through all polygons of the model to extrude them.

Rhino.CurrentLayer "Default"
Rhino.LayerMode "Circle" , 1

The script will now ask the user over which height the polygons have to be extruded. The
polygons can be extruded over the actual height, over a truncated height if a building is
higher than 15 m or over no height at all.

arrOptions(0) = "1) Full height"
arrOptions(1) = "2) Truncated height"
arrOptions(2) = "3) No height"

strTekst = Rhino.ListBox (arrOptions, "Choose extrusion height of the
 surroundings:")

Master’s thesis

180

If the user chooses the first option the script will go through an extensive procedure for each
polygon. First the maximum height is set to zero. Then all polygons of the model are placed
in an array. The script will then loop through all these polygons. The first step in the loop is
to set the length of the arrHeight array to -1. In this array, all heights of the points of a
certain polygon will be stored and sorted. Because on forehand it is not known how many
values have to be stored in the array, the length of it is first set to -1. Before a height is
added to the array, the array is lengthened by 1 and the height is stored at this new location.

If strTekst = "1) Truncated height" Then
 maxHeight = 0
 iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons")
 If IsNull(iAllObjects) Then Exit Sub
 For i = 0 to UBound(iAllObjects)
 Rhino.UnselectAllObjects
 ReDim arrHeight(-1)
 median = 0

Then all points that lie in a certain polygon are selected with the RegionSelect command. The
polygon is given a name to be able to call it later.

 If Rhino.IsCurve(iAllObjects(i)) Then
 If Rhino.IsCurveClosed(iAllObjects(i)) Then
 Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i)
 Rhino.ObjectName iAllObjects(i), i

For each point that is selected the height is derived from the accompanying layer. The height
is then stored in the arrHeight array.

 iPoints = Rhino.SelectedObjects
 If IsArray(iPoints) Then
 For Each Pnt in iPoints
 layName = Rhino.ObjectLayer(Pnt)
 If IsNumeric(layName) Then
 height = CDbl(layName)
 ReDim Preserve arrHeight(UBound(arrHeight) + 1)
 arrHeight(UBound(arrHeight)) = height
 End If
 Next

The height of each point is derived from the accompanying layers and added up:

 If IsArray(iPoints) Then
 For Each Pnt in iPoints
 layName = Rhino.ObjectLayer(Pnt)
 If IsNumeric(layName) Then
 height = CDbl(layName)
 totHeight = totHeight + height
 End If
 Next

After this is done for all points, the arrHeight array contains all height information for the
polygon. Due to the inaccuracies of the AHN dataset, some points differ considerably from
the real height. Taking the mean height of all points will lead to a lower height than reality
because of these inaccuracies. The problem can be solved by taking the median height in
stead of the mean height. As the median is the middle of a distribution, the array containing
the height information has to be sorted first. Sorting the array is easy in Rhinoceros because
of the Rhino.SortNumbers command.

Master’s thesis

181

After the array is sorted it will be checked if the amount of values in the array is even or
uneven. When the amount is uneven, the median height is simply the middle value of the
array. With an even amount of values, the median height is the mean of the middle two
values in the array.

 arrSorted = Rhino.SortNumbers(arrHeight, vbTrue)
 u = UBound(arrSorted)
 If u MOD 2 = 0 Then
 median = arrSorted(u/2)
 Else
 m = arrSorted(u/2 - 1/2) + arrSorted(u/2 + 1/2)
 median = m/2
 End If

To be able to give the user the maximum height all buildings in the environment, it must be
checked for each polygon if the median height is larger than the maximum height that was
already defined. If so, the maximum height is set to this new value.

 If median > maxHeight Then
 maxHeight = median
 End If

Then the concerning polygon is called and extruded over the median height. The polygon
itself is deleted then. What remains is a solid.

 Rhino.UnselectAllObjects
 Rhino.Command "SelName " & i
 selPolygon = Rhino.SelectedObjects
 Rhino.Command ("_extrudeCrv c=yes " & median)
 For Each Crv in selPolygon
 Rhino.DeleteObject(Crv)
 Next
 End If
 End If
 End If
 Next
End If

If the user chooses the second option that extrudes the polygons over a maximum height of
15 m, the script will go through almost the same procedure as for the first option.

If strTekst = "2) Truncated height" Then
 maxHeight = 0
 ReDim arrHeight(-1)
 iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons")
 If IsNull(iAllObjects) Then Exit Sub
 For i = 0 to UBound(iAllObjects)
 Rhino.UnselectAllObjects
 median = 0
 If Rhino.IsCurve(iAllObjects(i)) Then
 If Rhino.IsCurveClosed(iAllObjects(i)) Then
 Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i)
 Rhino.ObjectName iAllObjects(i), i
 iPoints = Rhino.SelectedObjects
 If IsArray(iPoints) Then
 For Each Pnt in iPoints
 layName = Rhino.ObjectLayer(Pnt)
 If IsNumeric(layName) Then
 height = CDbl(layName)

Master’s thesis

182

 ReDim Preserve arrHeight(UBound(arrHeight) + 1)
 arrHeight(UBound(arrHeight)) = height
 End If
 Next
 arrSorted = Rhino.SortNumbers(arrHeight, vbTrue)
 u = UBound(arrSorted)
 If u MOD 2 = 0 Then
 median = arrSorted(u/2)
 Else
 m = arrSorted(u/2 - 1/2) + arrSorted(u/2 + 1/2)
 median = m/2
 End If

The only difference is that the extrusion height is set to 15 m if the median height of all
points for a polygon is higher than 15 m.

 If median > 15 Then
 extHeight = 15
 If extHeight > maxHeight Then
 maxHeight = extHeight
 End If
 End If
 Rhino.UnselectAllObjects
 Rhino.Command "SelName " & i
 selPolygon = Rhino.SelectedObjects
 Rhino.Command ("_extrudeCrv c=yes " & extHeight)
 For Each Crv in selPolygon
 Rhino.DeleteObject(Crv)
 Next
 End If
 End If
 End If
 Next
End If

Also for the third option the script will go through a more or less same procedure.

If strTekst = "3) No height" Then
 maxHeight = 0
 iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons")
 If IsNull(iAllObjects) Then Exit Sub
 For i = 0 to UBound(iAllObjects)
 Rhino.UnselectAllObjects
 If Rhino.IsCurve(iAllObjects(i)) Then
 If Rhino.IsCurveClosed(iAllObjects(i)) Then
 Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i)
 Rhino.ObjectName iAllObjects(i), i

The extrusion height is only not determined anymore, but it is permanently set to zero. If for
some reason one wants to extrude all buildings in the research area over a certain equal
height that is not zero, only the value for the extrusion height has to be changed here then.

 extHeight = 0
 If extHeight > maxHeight Then
 maxHeight = extHeight
 End If
 Rhino.UnselectAllObjects
 Rhino.Command "SelName " & i
 selPolygon = Rhino.SelectedObjects

Master’s thesis

183

 Rhino.Command ("_extrudeCrv c=yes " & extHeight)
 For Each Crv in selPolygon
 Rhino.DeleteObject(Crv)
 Next
 End If
 End If
 Next
End If

The following final procedures are run through for all three options. First the layer that
contains the circle for the ground plan is turned on again and made current. With the
RegionSelect command, all points that are enclosed by the circle are selected. Differently
said, all height points that lie in the polygons are selected, as the circle encloses all polygons.
The selected height points are then deleted as they are not useful for the CFD software.

Rhino.LayerMode "Circle" , 0
Rhino.CurrentLayer("Circle")
circ = Rhino.ObjectsByLayer("Circle")
For c = 0 to Ubound(circ)
 Rhino.Command "_RegionSelect '_SelID " & circ(c)
Next
iPoints = Rhino.SelectedObjects
Rhino.DeleteObjects iPoints

The circle is then extruded over a constant height to generate the ground surface.

Rhino.SelectObjects(circ)
Rhino.Command ("_extrudeCrv " & circHeight)
Crv = Rhino.SelectedObjects
Rhino.DeleteObjects Crv

Rhino.UnselectAllObjects

Finally the script returns the maximum extrusion height of all buildings in the research area.
The largest value of the height of the building of interest and the maximum extrusion height
determines the dimensions of the computational domain. The script ends with finishing the
subroutine and the command that tells Rhinoceros to run the subroutine.

Rhino.MessageBox("The maximum height of the surrounding buildings is
 " & CInt(maxHeight) & " m.")

End Sub

Extrude

Master’s thesis

184

Master’s thesis

185

Appendix E: Script Rotating Lines

In this appendix the script of the Rotating Lines method to find the outer points of a model
and generate the enclosing curves for several height levels is discussed in detail. The script
starts with the Option Explicit command and the definition of the subroutine. In the following
steps the variable and constant terms are declared that will be used in the subroutine.

Option Explicit

Sub Rotating_Lines_3D

Dim lijn, length
Dim angle, parts
Dim midpoint, midp, endpoint, point(), maxPoint, maxPnt()
Dim cpnt, arrCpoint, bpnt, arrBpoint
Dim dxc, dyc, dxb, dyb
Dim mx, my, mz, x, y, z
Dim cafst, cmaxAfst, bafst, bmaxAfst
Dim cxmax, cymax, bxmax, bymax
Dim selected
Dim iAllObjects, i
Dim arrCCX, j, arrCBX, b
Dim p, h, height, step, h_end, h_start
Dim surrounded, sur(), surround
Dim delete

With the following code the osnap mode is set to zero. This means that it is no longer
possible to snap to for example endpoints, center points or midpoints of the model parts in
Rhinoceros. Else this could give problems when picking the center location of the model with
the mouse.

Rhino.OsnapMode 0

In the next step some new layers are added to the model. The layers of all objects of the
model are changed to a new layer, called Building. The layer Points will be used to store all
outer points of the model. The enclosing curves that will be generated through these points
will be stored in the Surrounded layer.

Rhino.AddLayer "Building"
Rhino.CurrentLayer("Building")
selected = Rhino.Command ("_SelAll")
Rhino.Command ("_ChangeToCurrentLayer " & selected)
Rhino.UnselectAllObjects
Rhino.AddLayer "Points"
Rhino.AddLayer "Surrounded", RGB(190,190,190)

The user is then asked to pick the center location of the building in top view, from where the
rotating lines can be generated. The coordinates of this location are stored in the midpoint
variable.

Rhino.MessageBox ("Pick center location of the building in Top-view")
midpoint = Rhino.GetPoint

Master’s thesis

186

Then the user is asked for the length of the rotating lines and the amount of parts for which
the outer points have to be determined. From this amount the rotation angle of the lines can
be calculated. The amount of parts is 360 by default.

length = Rhino.RealBox("Give the length of the rotating lines")
parts = Rhino.IntegerBox("Give amount of parts",360)
angle = 360/parts

Finally the user is asked for the height of the building, the starting height from where the
script has to start and the step size. The starting height will usually be the bottom of the
model. The user always has to specify the full height of the building, even if the starting
height lies on a different level. The amount of loops h_end that the script has to do to
determine the outer points over the full height of the building can be derived from the height
of the building and the step size.

height = Rhino.RealBox("Give the height of the building")
h_start = Rhino.RealBox("Give starting height")
step = Rhino.RealBox("Give step size")
h_end = (height / step)

Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects.
The various objects can now be called on from here. The layer Building contains all model
parts. If there are no parts at all the script will stop.

iAllObjects = Rhino.ObjectsByLayer("Building")
If IsNull(iAllObjects) Then Exit Sub

Before the loop process to find all outer points starts, the variable sur that was declared
already will be re-declared now. In this variable all the curves that will be generated through
the outer points are stored. Because on forehand it is not known how many curves will be
stored in this array, the length of the array is first set to -1. When the first curve is
generated, the length of the array will be redefined and the curve will be stored at that
position in the array then.

ReDim sur(-1)

The process to find all outer points for a certain height will be repeated for the amount of
loops (h_end – h_start). In each loop the variable maxPnt will also be re-declared first. In this
variable all outer points that are found will be stored. Because it is again not known on
forehand how many outer points will be found, the length of the array is first set to -1. Then
the x, y and z coordinates of the starting point of the rotating lines are defined and stored in
an array. These values follow from the user-given center location, where the z-value is raised
for each loop with the step size.

For h = 0 To (h_end – h_start)
 ReDim maxPnt(-1)
 x = midpoint(0)
 y = midpoint(1)
 z = midpoint(2) + h_start + (h*step)
 midp = Array(x, y, z)

Then the endpoint of the lines is defined. The x-coordinate of the endpoint is the same as the
x-coordinate of the start point. The y-coordinate is increased with the user-specified length of
the line. The z-coordinate of the endpoint is raised for each loop with the step size.
 mx = midpoint(0)
 my = midpoint(1) + length
 mz = midpoint(2) + h_start + (h*step)
 endpoint = Array(mx, my, mz)

Master’s thesis

187

Now the following loop is gone through for all parts that are defined by the user. Some
maximum distances are first set to zero. Then a line will be added to the model from the just
defined midpoint to the endpoint. The line is then rotated around the midpoint with an angle
that is derived from the user-defined parts for which the outer points have to be determined.

 For p = 0 To parts
 cmaxAfst = 0
 bmaxAfst = 0
 cxmax = 0
 cymax = 0
 bxmax = 0
 bymax = 0
 lijn = Rhino.AddLine(midp, endpoint)
 Rhino.RotateObject lijn, midpoint, angle*p

A new loop will be gone through for all objects of the model which are stored in the
iAllObjects variable. For each object it will be checked if there is an intersection between the
object and the rotating line. The intersection between two lines can be found with the Rhino
command Rhino.CurveCurveIntersection. If there is an intersection, it will be stored in the
arrCCX array. The procedure for an intersection between the rotating line and a surface or
solid is scripted later.

 For i = 0 To UBound(iAllObjects)
 arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i))

If arrCCX is an array then one or more intersections are found. An intersection can exist of an
overlap or one single point. For all elements in the array it will be checked if the intersection
is one single point with the arrCCX(j,0) = 1 command. If so, then the distance in x-direction
and y-direction between the intersection point and the midpoint is determined. From these
two distances the total distance can be determined.

 If IsArray(arrCCX) Then
 For j = 0 To UBound(arrCCX)
 If arrCCX(j,0) = 1 Then
 arrCpoint = arrCCX(j,1)
 If IsArray(arrCPoint) Then
 dxc = arrCpoint(0) - midpoint(0)
 dyc = arrCpoint(1) - midpoint(1)
 cafst = sqr(dxc^2 + dyc^2)

Now it will be checked if the calculated distance between the intersection point and the
midpoint is larger than the specified maximum distance. Because this distance was first set to
zero, this will soon be the case. The maximum distance is then set to this new distance and
the x- and y-coordinates of that intersection point are stored. When the loop has gone
through all objects of the model for the concerning rotating line, the coordinates of the most
far away intersection point between the rotating line and other lines of the model are
obtained.

 If cafst > cmaxAfst Then
 cmaxAfst = cafst
 cxmax = arrCpoint(0)
 cymax = arrCpoint(1)
 End If
 End If
 End If
 Next
 End If

Master’s thesis

188

Because a building model usually not only consists of lines, but also of surfaces and solids,
the above procedure has to be repeated to determine the intersections between the rotating
line and the surfaces and solids. Such an intersection can be found with the Rhino command
Rhino.CurveBrepIntersect. If there is an intersection, it will be stored in the arrCBX array.
Unlike the Rhino.CurveCurveIntersection command, the Rhino.CurveBrepIntersect command
adds real points to the model at the intersection location. The Rhino.CurveCurveIntersection
command only returns the coordinates of the intersection. For each generated point the
coordinates have to be returned first.

 arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i))
 If IsArray(arrCBX) Then
 For Each b in arrCBX
 arrBpoint = Rhino.PointCoordinates(b)

Then the distances in x- and y-direction between the intersection point and the midpoint can
be determined. From these two distances the total distance can be determined. Again it will
be checked if this total distance is larger than the specified maximum distance. If so, then the
maximum distance is set to this new distance and the x and y-coordinates of that intersection
point are stored. Then the generated points are deleted from the model. The coordinates of
the most far away intersection point between the concerning rotating line and surfaces or
solids of the model are obtained when the loop has gone through all objects of the model.

 If IsArray(arrBpoint) Then
 dxb = arrBpoint(0) - midpoint(0)
 dyb = arrBpoint(1) - midpoint(1)
 bafst = sqr(dxb^2 + dyb^2)
 If bafst > bmaxAfst Then
 bmaxAfst = bafst
 bxmax = arrBpoint(0)
 bymax = arrBpoint(1)
 End If
 End If
 Rhino.DeleteObject(b)
 Next
 End If
 Next

For the concerning rotating line it will now be checked which distance is larger: the distance
between the intersection with a line of the distance between the intersection with a surface
or solid. If the distance between the midpoint and the intersection with a line is larger, then a
3D array is generated with the coordinates of this intersection location. A point is added to
the model then at that location with the layer Points.

 If cmaxAfst > bmaxAfst Then
 If cmaxAfst > 0 Then
 Rhino.CurrentLayer "Points"
 maxPoint = Array(cxmax, cymax, z)
 Rhino.AddPoint(maxPoint)

The identifier of the point is then added to the maxPnt array. In the beginning the length of
this array was re-declared at -1. Before the point is added to the array, the upper boundary
of the array is raised by 1. The point is then added to this location in the array.

 ReDim Preserve maxPnt(UBound(maxPnt) + 1)
 maxPnt(UBound(maxPnt)) = maxPoint
 Rhino.CurrentLayer "Building"
 End If
 End If

Master’s thesis

189

If the distance between the midpoint and the intersection with a surface or solid is larger, a
3D array is generated with the coordinates of this intersection location. A point is added to
the model with the layer Points and the identifier of the point is added to the maxPnt array.
After the most far away intersection location is determined for a certain rotating line, the line
is removed from the model.

 If bmaxAfst >= cmaxAfst Then
 If bmaxAfst > 0 Then
 Rhino.CurrentLayer "Points"
 maxPoint = Array(bxmax, bymax, z)
 Rhino.AddPoint(maxPoint)
 ReDim Preserve maxPnt(UBound(maxPnt) + 1)
 maxPnt(UBound(maxPnt)) = maxPoint
 Rhino.CurrentLayer "Building"
 End If
 End If
 Rhino.DeleteObject lijn
 Next

When for all parts the most far away intersection points are determined, a polyline can be
generated through these points. First it will be checked if the intersection distance is larger
than 0. If not, there is no intersection found and no polyline can be generated. If there are
intersections found, then a polyline with layer Surrounded is added through all points of the
maxPnt array.

 If cmaxAfst > 0 OR bmaxAfst > 0 Then
 Rhino.CurrentLayer("Surrounded")
 surround = Rhino.addPolyline(maxPnt)

The generated polyline is then added to the sur array. The length of this array was also
declared to -1 and has to be lengthened each time a polyline is added to the array. This is
because it is not known on forehand how many polylines have to be added to the array. The
upper boundary of the array is raised by 1 and the polyline is added to the array at this
location.

 ReDim Preserve sur(Ubound(sur) + 1)
 sur(UBound(sur)) = surround

Then all intersection points are selected that were added to the model. They will be deleted.

 selected = Rhino.ObjectsByLayer("Points")
 Rhino.DeleteObjects(selected)
 End If
 Rhino.CurrentLayer("Building")
Next

If this process is done for all height steps, the original building model can also be removed.
In the beginning, the layer of all model parts was changed to the layer Building. When all
objects in the Building layer are removed, the enclosing curves at the various height levels
remain.

delete = Rhino.ObjectsByLayer("Building")
Rhino.DeleteObjects(delete)

End Sub

Rotating_Lines_3D

Master’s thesis

190

Master’s thesis

191

Appendix F: Script Rectangle

In this appendix the script of the Rectangle method to find the outer points of a model and
generate the enclosing curves for several height levels is discussed in detail. The script starts
with the Option Explicit command and the definition of the subroutine. In the following steps
the variable and constant terms that will be used in the subroutine are declared. The osnap
mode is also set to zero again.

Option Explicit

Sub Rectangle_3D

Dim lijn, p, parts
Dim iAllObjects, i
Dim arrCCX, arrCBX, j, k
Dim lo, ro, lb, rb
Dim distx, disty
Dim startpoint, endpoint, startp, endp
Dim selected
Dim arrRect
Dim h, height, step, h_end, h_start, z
Dim cminAfst, cxmin, cymin, cmaxAfst, cxmax, cymax
Dim cpnt, arrCpoint
Dim dxb, dyb, bafst, bminAfst, bxmin, bymin, bmaxAfst, bxmax, bymax
Dim b, arrBpoint
Dim dxc, dyc
Dim cafst
Dim minPoint, Pnt(), maxPoint
Dim strID
Dim arrMin, arrSorted
Dim delete
Dim sur(), boundary()
Dim dist

Rhino.OsnapMode 0

In the next step some new layers are added to the model. The layers of all objects of the
model are changed to a new layer, called Building. The layer Surrounded will be used to store
the curves that will be generated through the outer points.

Rhino.AddLayer "Building"
Rhino.CurrentLayer("Building")
selected = Rhino.Command ("_SelAll")
Rhino.Command ("_ChangeToCurrentLayer " & selected)
Rhino.UnselectAllObjects
Rhino.AddLayer "Surrounded", RGB(190, 190, 190)

The user is then asked to draw a rectangle around the building model in top view. The
coordinates of the corners of the rectangle are stored in the arrRect array.

Rhino.MessageBox("Draw a rectangle around the model in Top-view.")
arrRect = Rhino.GetRectangle
If IsArray(arrRect) Then
 lo = arrRect(0)
 ro = arrRect(1)
 rb = arrRect(2)
 lb = arrRect(3)
End If

Master’s thesis

192

Then the user is asked for the distance between the line elements. For each distance the
outer points will be determined as the line elements will be moved over this distance each
time.

dist = Rhino.RealBox("Give distance between the line elements")

Finally the user is asked for the height of the building, the starting height from where the
script has to start and the step size. The starting height will usually be the bottom of the
model. The user always has to specify the full height of the building, even if the starting
height lies on a different level. The amount of loops h_end that the script has to do to
determine the outer points over the full height of the building can be derived from the height
of the building and the step size.

height = Rhino.RealBox("Give the height of the building")
h_start = Rhino.RealBox("Give starting height")
step = Rhino.RealBox("Give step size")
h_end = (height / step)

Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects.
The various objects can now be called on from here. The layer Building contains all model
parts. If there are no parts at all, the script will stop.

iAllObjects = Rhino.ObjectsByLayer("Building")
If IsNull(iAllObjects) Then Exit Sub

Finally the variable boundary that was declared already is re-declared. In this variable all
curves that will be generated through the outer points are stored. Because on forehand it is
not known how many curves will be stored, the length of the array is first set to -1.

ReDim boundary(-1)

Now the loop process to find all outer points for a certain height starts. The process will be
repeated for the amount of loops (h_end – h_start). In each loop the variables Pnt and sur
will be re-declared first. In the variable Pnt all outer points that are found will be stored.
These points however do not lie in the right sequence to directly draw the enclosing polyline.
To order the outer points, the variable sur will be used. The ordering process will be
explained later in detail. In each loop the level of concern z will also be defined first. This
level is derived from the level of the drawn rectangle, the starting height and the step size.

For h = 0 To (h_end - h_start)
 ReDim Pnt(-1)
 ReDim sur(-1)
 z = lo(2) + h_start + h*step

The process to search for the outer points is divided in two parts, as the lines will first move
from left to right and then from the bottom to the top. The script starts with lines moving
from left to right. First the distances in x- and y-direction between the boundaries of the
rectangle are determined. The distance in x-direction is the distance from the lower left
corner to the lower right corner. The distance from the lower left corner to the upper left
corner is the distance in y-direction. For lines moving from left to right, the amount of lines
that have to be drawn is the distance in x-direction divided by the user specified distance
between the line elements.

 'Left to right
 distx = Rhino.Distance(lo, ro)
 disty = Rhino.Distance(lo, lb)
 parts = distx / dist

Master’s thesis

193

The following loop is gone through for the amount of parts that were just determined. The
loop starts with the definition of the startpoint and the endpoint of the line. The x-coordinate
of the start- and endpoint is the coordinate of the lower left corner of the rectangle plus the
distance between the line elements. The y-coordinate of the startpoint is the y-coordinate of
the lower left corner of the rectangle. The y-coordinate of the lower left rectangle plus the
distance in y-direction between the lower and upper boundary of the rectangle is the y-
coordinate of the endpoint. The z-coordinate of the start- and endpoint is the z-coordinate of
the lower left corner of the drawn rectangle plus the starting height and the step size. Finally
a line is added between these points.

 For p = 0 To parts
 startpoint = Array((lo(0) + p*dist), lo(1), z)
 endpoint = Array((lo(0) + p*dist), (lo(1) + disty), z)
 lijn = Rhino.AddLine(startpoint, endpoint)

Because the lines will determine the closest and most far away outer points related to the
bottom of the rectangle in one step, some minimum and maximum distances are first
defined. The minimum distances are defined as the distance between the endpoint and the
startpoint of the line. If an outer point is found, the distance to the bottom of the rectangle is
always smaller then. The maximum distances are set to zero. If an outer point is found, the
distance to the bottom of the rectangle is always larger.

 cminAfst = endpoint(1)- startpoint(1)
 cxmin = endpoint(0) - startpoint(0)
 cymin = endpoint(1) - startpoint(1)
 cmaxAfst = 0
 cxmax = 0
 cymax = 0
 bminAfst = endpoint(1)- startpoint(1)
 bxmin = endpoint(0) - startpoint(0)
 bymin = endpoint(1) - startpoint(1)
 bmaxAfst = 0
 bxmax = 0
 bymax = 0

The following loop goes through all objects of the model, which are stored in the iAllObjects
variable. For each object it will be checked if there is an intersection between the object and
the line. The procedure for an intersection between the line and a surface or solid is scripted
later. The intersection between the line and other lines of the model is found with the
Rhino.CurveCurveIntersection command. If there is an intersection, it will be stored in the
arrCCX array. As in the script for the Rotating Lines method, it will be checked for all
elements in the array if the intersection is one single point or an overlap. For single point
intersections the distances in x- and y-direction between the intersection point and the
startpoint of the line are determined. From these two distances the total distance can be
derived.

 For i = 0 To UBound(iAllObjects)
 arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i))
 If IsArray(arrCCX) Then
 For j = 0 to UBound(arrCCX)
 If arrCCX(j,0) = 1 Then
 arrCpoint = arrCCX(j,1)
 If IsArray(arrCpoint) Then
 dxc = arrCpoint(0) - startpoint(0)
 dyc = arrCpoint(1) - startpoint(1)
 cafst = sqr(dxc^2 + dyc^2)

Master’s thesis

194

Now it will be checked if the calculated distance between the intersection point and the
startpoint of the line is smaller than the specified minimum distance. It will also be checked if
the distance is larger than the specified maximum distance. If one of these situations occurs,
the minimum or maximum distance is set to this new distance and the x- and y-coordinates
of that intersection point are stored. When the loop has gone through all objects of the model
for the concerning line, the coordinates of the closest and most far away intersection point
related to the bottom of the rectangle are obtained.

 If cafst < cminAfst Then
 cminAfst = cafst
 cxmin = arrCpoint(0)
 cymin = arrCpoint(1)
 End If
 If cafst > cmaxAfst Then
 cmaxAfst = cafst
 cxmax = arrCpoint(0)
 cymax = arrCpoint(1)
 End If
 End If
 End If
 Next
 End If

The discussed procedure can now be repeated to determine the intersections between the
line and surfaces or solids. Such an intersection can be found with the Rhino command
Rhino.CurveBrepIntersect. Because this command adds real points to the model in stead of
returning only the coordinates as the Rhino.CurveCurveIntersection command, the
coordinates of each generated point have to be returned first. Then the distances in x- and y-
direction between the intersection point and the startpoint of the line can be determined. The
rest of the procedure is the same as for the intersection between the line and other lines of
the model. In the end the coordinates of the closest and most far away intersection between
the line and a surface or solid related to the bottom of the rectangle are obtained.

 arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i))
 If IsArray(arrCBX) Then
 For Each b in arrCBX
 arrBpoint = Rhino.PointCoordinates(b)
 If IsArray(arrBpoint) Then
 dxb = arrBpoint(0) - startpoint(0)
 dyb = arrBpoint(1) - startpoint(1)
 bafst = sqr(dxb^2 + dyb^2)
 If bafst < bminAfst Then
 bminAfst = bafst
 bxmin = arrBpoint(0)
 bymin = arrBpoint(1)
 End If
 If bafst > bmaxAfst Then
 bmaxAfst = bafst
 bxmax = arrBpoint(0)
 bymax = arrBpoint(1)
 End If
 End If
 Rhino.DeleteObject(b)
 Next
 End If
 Next

Master’s thesis

195

For the concerning line it will now be checked which minimum and maximum distances that
are obtained by the two methods are normative. 3D arrays are generated with the
coordinates of the most minimum and maximum intersection locations. Points are added to
the model at these locations then. The identifiers of these points are added to the Pnt array.
Before a point is added to the array, the upper boundary of the array is raised by 1. The point
is then added to this location in the array. After the minimum and maximum points are
added, the line is removed from the model.

 If cminAfst < bminAfst Then
 If cminAfst < (endpoint(1) - startpoint(1)) Then
 minPoint = Array(cxmin, cymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If bminAfst <= cminAfst Then
 If bminAfst < (endpoint(1) - startpoint(1)) Then
 minPoint = Array(bxmin, bymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If cmaxAfst > bmaxAfst Then
 If cmaxAfst > 0 Then
 maxPoint = Array(cxmax, cymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If bmaxAfst >= cmaxAfst Then
 If bmaxAfst > 0 Then
 maxPoint = Array(bxmax, bymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 Rhino.DeleteObject lijn
 Next

When the line is finally moved from the left boundary of the rectangle to the right boundary,
the process can be repeated for lines moving from the bottom to the top of the rectangle.
The process is nearly the same, only the definition of the start- and endpoints of the line and
the definition of some distances differ. For lines moving from the bottom to the top, the
amount of lines that have to be drawn is the distance in y direction divided by the user
specified distance between the line elements. The x-coordinate of the startpoint is the
coordinate of the lower right corner of the rectangle. The x-coordinate of the lower right
corner minus the distance in x direction between the left and right boundary of the rectangle
is the x-coordinate of the endpoint. The y-coordinate of the start- and endpoint is the
coordinate of the lower right corner of the rectangle plus the distance between the line
elements. The z-coordinate of the start- and endpoint was already defined at the beginning of
the script. It is the z-coordinate of the lower left corner of the drawn rectangle plus the
starting height and the step size. Finally, the minimum distances are defined as the distance
between the startpoint and the endpoint of the line. Without further explanation, the script
for lines moving from the bottom to the top of the rectangle is given on the following pages.

Master’s thesis

196

 'Bottom to top
 distx = Rhino.Distance(lo, ro)
 disty = Rhino.Distance(lo, lb)
 parts = disty / dist
 For p = 0 To parts
 startpoint = Array(ro(0), (ro(1) + p*dist), z)
 endpoint = Array((ro(0) - distx), (ro(1) + p*dist), z)
 lijn = Rhino.AddLine(startpoint, endpoint)
 cminAfst = startpoint(0) - endpoint(0)
 cxmin = startpoint(0) - endpoint(0)
 cymin = startpoint(1) - endpoint(1)
 cmaxAfst = 0
 cxmax = 0
 cymax = 0
 bminAfst = startpoint(0) - endpoint(0)
 bxmin = startpoint(0) - endpoint(0)
 bymin = startpoint(1) - endpoint(1)
 bmaxAfst = 0
 bxmax = 0
 bymax = 0
 For i = 0 To UBound(iAllObjects)
 arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i))
 If IsArray(arrCCX) Then
 For j = 0 to UBound(arrCCX)
 If arrCCX(j,0) = 1 Then
 arrCpoint = arrCCX(j,1)
 If IsArray(arrCpoint) Then
 dxc = startpoint(0) - arrCpoint(0)
 dyc = startpoint(1) - arrCpoint(1)
 cafst = sqr(dxc^2 + dyc^2)
 If cafst < cminAfst Then
 cminAfst = cafst
 cxmin = arrCpoint(0)
 cymin = arrCpoint(1)
 End If
 If cafst > cmaxAfst Then
 cmaxAfst = cafst
 cxmax = arrCpoint(0)
 cymax = arrCpoint(1)
 End If
 End If
 End If
 Next
 End If
 arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i))
 If IsArray(arrCBX) Then
 For Each b in arrCBX
 arrBpoint = Rhino.PointCoordinates(b)
 If IsArray(arrBpoint) Then
 dxb = startpoint(0) - arrBpoint(0)
 dyb = startpoint(1) - arrBpoint(1)
 bafst = sqr(dxb^2 + dyb^2)
 If bafst < bminAfst Then
 bminAfst = bafst
 bxmin = arrBpoint(0)
 bymin = arrBpoint(1)
 End If

Master’s thesis

197

 If bafst > bmaxAfst Then
 bmaxAfst = bafst
 bxmax = arrBpoint(0)
 bymax = arrBpoint(1)
 End If
 End If
 Rhino.DeleteObject(b)
 Next
 End If
 Next
 If cminAfst < bminAfst Then
 If cminAfst < (startpoint(0) - endpoint(0)) Then
 minPoint = Array(cxmin, cymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If bminAfst <= cminAfst Then
 If bminAfst < (startpoint(0) - endpoint(0)) Then
 minPoint = Array(bxmin, bymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If cmaxAfst > bmaxAfst Then
 If cmaxAfst > 0 Then
 maxPoint = Array(cxmax, cymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 If bmaxAfst >= cmaxAfst Then
 If bmaxAfst > 0 Then
 maxPoint = Array(bxmax, bymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(Ubound(Pnt)) = strID
 End If
 End If
 Rhino.DeleteObject lijn
 Next

For all parts the outer points are determined now. The next step is to generate a polyline
through these points. As mentioned before, the outer points do not lie in the right sequence
in the Pnt array. Ordering of the array is required before the enclosing polyline can be
generated. The procedure of ordering the array of outer points is based on finding the closest
point for a certain outer point of the Pnt array. Starting from the first point of the array, the
distances from all other points in the array to this first point are calculated. When the closest
point is found, it is placed in the sur array. From this point the distances to all other points of
the Pnt array are determined again to find the closest point for this one. That point is again
placed in the sur array. When this procedure is done for all points of the Pnt array, the sur
array will contain all outer points in the right sequence. Neighboring points lie next to each
other in the array. Now a polyline can be generated through these points. On the next page
the script continues with the ordering of the points.

Master’s thesis

198

First some new variables are declared that will be used for the ordering process. There are
also three new layers added to the model. In the layer Surround the ordered points in the sur
array will be stored. The original points in the Pnt array that are copied to the sur array will
be stored in the layer Done. The script will not use them anymore for the determination of
the closest point. In the Boundary layer the enclosing polyline through the outer points will be
stored.

 'Curve through closest point
 Dim s, sx, sy, e, ex, ey, t, tx, ty
 Dim min
 Dim q, r, n
 Dim dx, dy, minx, miny
 Dim maxAfst, afst
 Dim layer
 Dim surrounding

 Rhino.AddLayer "Surround"
 Rhino.AddLayer "Done"
 Rhino.AddLayer "Boundary", RGB(190,190,190)

If the Pnt array is not empty, the x- and y-coordinates of the first point in the array are
stored in the new variables sx, sy, ex and ey. Sx and sy, together with the earlier defined
value z, will form the x-, y- and z-coordinates of the first point in the sur array. The point is
added to the model in the Surround layer. Ex and ey are the same as sx and sy and will form
the last point in the sur array. In the end this point will be added to the array and the first
and the last point will have the same coordinates then. This will give a closed curve when a
polyline is generated through these points. Before any point is added to the sur array and the
model, the layer Surround is turned on and set to the current layer. After adding the point,
the layer Surround is turned off, removing all objects in that layer temporarily from the
model. In this way the newly added points are not taken into account by the determination of
the closest points. This procedure is now first done for the first point of the Pnt array.

 If UBound(Pnt) > 0 Then
 s = Rhino.PointCoordinates(Pnt(0))
 sx = s(0)
 sy = s(1)
 ex = s(0)
 ey = s(1)
 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 min = Array(sx, sy, z)
 Rhino.AddPoint(min)
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = min
 Rhino.CurrentLayer "Building"
 Rhino.LayerMode "Surround",1

As the first point is now added to the sur array, the layer of the original point is changed to
the layer Done. When searching for the closest points, the points in the layer Done can be
ignored.

 Rhino.CurrentLayer "Done"
 Rhino.SelectObject(Pnt(0))
 Rhino.Command ("_ChangeToCurrentLayer")
 Rhino.CurrentLayer "Building"

Master’s thesis

199

Now the first point of the Pnt array is copied to the sur array and marked as done, the script
continues with the search for the closest point. Two loops have to be going through: for all
points in the Pnt array the closest point has to be found, and for finding the closest point, the
distances of all other points to the concerning point have to be calculated. For each point
where a closest point has to be searched for, a maximum distance is set.

 For q = 0 To UBound(Pnt)
 maxAfst = 10 * (Rhino.Distance(lo,ro))

For all other points of the Pnt array will then be checked if the layer of the point is Done.

 For r = 0 To UBound(Pnt)
 layer = Rhino.ObjectLayer(Pnt(r))
 If layer = "Done" Then
 Else

If this is the case, nothing is done with the point. Else the coordinates of the point are
returned and the distance in x- and y-direction to the concerning point are determined. A
total distance of zero means that there is another point with the same coordinates. This point
will be marked as Done then.

 t = Rhino.PointCoordinates(Pnt(r))
 tx = t(0)
 ty = t(1)
 dx = tx - sx
 dy = ty - sy
 afst = sqr(dx^2 + dy^2)
 If afst = 0 Then
 Rhino.CurrentLayer"Done"
 Rhino.SelectObject(Pnt(r))
 Rhino.Command("_ChangeToCurrentLayer")
 Rhino.UnselectAllObjects
 Rhino.CurrentLayer"Building"
 End If

If the total distance between the concerning point and another point in the Pnt array is
smaller than the defined maximum distance, the maximum distance is set to this new
distance and the x- and y-coordinates are stored. When the loop has gone through all points
of the Pnt array, the coordinates of the closest point are obtained.

 If afst < maxAfst Then
 maxAfst = afst
 minx = tx
 miny = ty
 n = r
 End If
 End If
 Next

A new point is now added to the model with the coordinates of this closest point. The point is
added in the Surround layer and also placed in the sur array.

 min = Array(minx, miny, z)
 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 Rhino.AddPoint(min)
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = min

Master’s thesis

200

The layer Surround is then turned off again and the layer of the concerning point is changed
to Done. The variables Sx and Sy are the coordinates of the concerning point and they are
set to the x- and y- coordinates of the just found closest point. This point now becomes the
new concerning point for which a closest point has to be found.

 Rhino.CurrentLayer "Done"
 Rhino.LayerMode "Surround",1
 Rhino.SelectObject(Pnt(n))
 Rhino.Command("_ChangeToCurrentLayer")
 Rhino.CurrentLayer "Building"
 sx = minx
 sy = miny
 Next

When all closest points are found and placed in the sur array, the array contains only points
that lie in sequence. Neighboring points in the model also lie next to each other in the array.
The last point that is added to the array is the point with the same coordinates as the first
point of the array. This will give a closed curve when creating a polyline through the points.

 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 e = Array(ex, ey, z)
 Rhino.AddPoint e
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = e

All points that are marked as Done can be deleted from the model now.

 delete = Rhino.ObjectsByLayer("Done")
 Rhino.DeleteObjects delete

Then a polyline can be added through the points of the sur array. The polyline is added to the
Boundary array.

 Rhino.CurrentLayer "Boundary"
 surrounding = Rhino.AddPolyline(sur)
 ReDim Preserve boundary(UBound(boundary) + 1)
 boundary(UBound(boundary)) = surrounding
 Rhino.CurrentLayer"Building"

Also the points of the sur array, which are placed in the Surround layer, can be deleted from
the model.

 delete = Rhino.ObjectsByLayer("Surround")
 Rhino.DeleteObjects delete
 Rhino.UnselectAllObjects
 End If
Next

If this process is done for all height steps and the various enclosing curves are created, the
original building model, which is placed in the Building layer, can be removed. What remain
are the enclosing curves at the various height levels.

delete = Rhino.ObjectsByLayer("Building")
Rhino.DeleteObjects(delete)

End Sub
Rectangle_3D

Master’s thesis

201

Appendix G: Script Rotated Square

In this appendix the script of the Rotated Square method to find the outer points of a model
and generate the enclosing curves for several height levels is discussed in detail. The script
starts with the Option Explicit command and the definition of the subroutine. In the following
steps the variable and constant terms that will be used in the subroutine are declared. The
osnap mode is also set to zero.

Option Explicit

Sub Rotated_Square_3D

Dim lijn, p, parts
Dim arrRect, lo, ro, rb, lb
Dim distx, disty
Dim startPx, startPy, startPz, startP, start, eindPx, eindPy, eindPz,
 eindP, eind, endPx, endPy, endPz
Dim rot(), rotated
Dim SPx, SPy, SPz, SP, EPx, EPy, EPz, EP
Dim dist, selected
Dim iAllObjects, i
Dim arrCCX, arrCBX, j
Dim cminAfst, cxmin, cymin, cmaxAfst, cxmax, cymax, cafst
Dim bminAfst, bxmin, bymin, bmaxAfst, bxmax, bymax, bafst
Dim cpnt, arrCpoint, b, arrBpoint
Dim dxc, dyc, dxb, dyb
Dim minPoint, Pnt(), maxPoint
Dim arrMin, arrSorted, strID
Dim h, height, step, h_end, h_start, z
Dim sur(), boundary()
Dim s, sx, sy, e, ex, ey, t, tx, ty
Dim min
Dim q, r, n
Dim dx, dy, minx, miny
Dim maxAfst, afst
Dim layer
Dim delete
Dim surrounding
Dim loft, crv

Rhino.OsnapMode 0

In the next step some new layers are added to the model. The layers of all objects of the
model are changed to a new layer, called Building. The layer Surround will be used to store
the ordered points. The layer Done will be used to mark the points that are ordered.

Rhino.AddLayer "Building"
Rhino.CurrentLayer "Building"
selected = Rhino.Command ("_SelAll")
Rhino.Command ("_ChangeToCurrentLayer " & selected)
Rhino.UnselectAllObjects
Rhino.AddLayer "Surround"
Rhino.AddLayer "Done"
Rhino.AddLayer "Boundary", RGB(190,190,190)

Master’s thesis

202

The user is then asked to draw a rectangle around the model in top view. The coordinates of
the corners of the rectangle are stored in the arrRect array.

Rhino.MessageBox("Draw a rectangle around the model in Top-view.")
arrRect = Rhino.GetRectangle
If IsArray(arrRect) Then
 lo = arrRect(0)
 ro = arrRect(1)
 rb = arrRect(2)
 lb = arrRect(3)
End If

From the corner coordinates the distance in x- and y-direction between the boundaries of the
rectangle are determined.

distx = Rhino.Distance(lo, ro)
disty = Rhino.Distance(lo, lb)

Now the user is asked for the distance between the line elements. From that distance the
amount of lines that have to be drawn can be calculated. Because the lines will move
between the boundaries of a rotated square, the amount of parts is the length of an edge of
the square divided by the user specified distance between the line elements.

dist = Rhino.RealBox("Give distance between the line elements")
parts = (sqr(2*(1/2*distx + 1/2*disty)^2))/dist

Finally the user is asked for the height of the building, the starting height from where the
script has to start and the step size. The amount of loops h_end that the script has to do to
determine the outer points over the full height of the building can be derived from the height
of the building and the step size.

height = Rhino.RealBox("Give the height of the building")
h_start = Rhino.RealBox("Give starting height")
step = Rhino.RealBox("Give step size")
h_end = (height / step)

Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects.
The various objects can now be called on from here. The layer Building contains all model
parts. If there are no parts at all, the script will stop.

iAllObjects = Rhino.ObjectsByLayer("Building")
If IsNull(iAllObjects) Then Exit Sub

Before the loop process to find the outer points starts, the variable boundary that was
declared already is re-declared. In this variable all curves that will be generated through the
outer points are stored. Because on forehand it is not known how many curves have to be
stored, the length of the array is first set to -1.

ReDim boundary(-1)

Master’s thesis

203

The loop process to find all outer points for a certain height will be repeated for the amount
of loops (h_end – h_start). In each loop the variables Pnt, sur and rot will be re-declared
first. In the variable Pnt all outer points that are found will be stored. These points however
do not lie in the right sequence to directly draw the enclosing polyline. To order the outer
points, the variable sur will be used. The variable rot will be used to store the corner points of
the rotated square. In each loop the level of concern z will also be defined first. This level is
derived from the level of the drawn rectangle, the starting height and the step size.

For h = 0 To (h_end - h_start)
 ReDim Pnt(-1)
 ReDim sur(-1)
 ReDim rot(-1)
 z = lo(2) + h_start + h*step

The loop process continues with the generation of the rotated square. For this the dimensions
of the user-specified rectangle are important. The corner points determine the final shape of
the rotated square. For the definition of the corner points of the square it must first be
determined if the width of the rectangle is larger than the length of the rectangle. If so, then
the x- and y-coordinates of the left corner of the square follow from the coordinates of the
lower left corner of the rectangle. The x-coordinate of the left square corner point is the x-
coordinate of the lower left rectangle corner point minus half the distance between the top
and bottom of the original rectangle. The y-coordinate of this point is the y-coordinate of the
lower left rectangle corner point plus half the distance between the top and bottom of the
rectangle. The z-coordinate follows from the z-coordinate of the rectangle, the starting height
and the step size. These three coordinates form the location of the left corner of the square.

 If distx > disty Then
 startPx = lo(0) - 1/2*disty
 startPy = lo(1) + 1/2*disty
 startPz = z
 startP = Array(startPx, startPy, startPz)

To form a closed square when a polyline is added through the corner points, the coordinates
of the end point of the square are taken from the startpoint. This point will be added later to
the array of corner points rot. The startpoint is the first point that is added to the array.

 endPx = startP(0)
 endPy = startP(1)
 endPz = z
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = startP

Then the next corner point of the rotated square is determined. The top corner point follows
from an addition of some distances in x- and y-direction to the coordinates of the starting
point. This second point is also added to the array of corner points then.

 eindPx = startP(0) + (1/2*distx + 1/2*disty)
 eindPy = startP(1) + (1/2*distx + 1/2*disty)
 eindPz = z
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP

Master’s thesis

204

The other two corner points can also be determined now. The coordinates for each of these
points follow from the previous determined point with some distances in x- and y-direction
added to or subtracted from these coordinates. The points are then added to the rot array.

 startP = eindP
 eindPx = startP(0) + (1/2*distx + 1/2*disty)
 eindPy = startP(1) - (1/2*distx + 1/2*disty)
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP
 startP = eindP
 eindPx = startP(0) - (1/2*distx + 1/2*disty)
 eindPy = startP(1) - (1/2*distx + 1/2*disty)
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP

Finally the endpoint, which has the same coordinates as the startpoint, is added to the array.
A polyline can be added through these points then, creating a rotated, closed square.

 eindP = Array(endPx, endPy, endPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP
 rotated = Rhino.AddPolyline(rot)
 End If

The same procedure works if the width of the user-specified rectangle is equal to or smaller
than the length of the rectangle. The first corner point that is determined now only is the top
corner of the square. From that point on all other corner points can be defined. Without
further explanation the script to create the rotated square in case of these conditions is given
below.

 If disty >= distx Then
 startPx = lb(0) + 1/2*distx
 startPy = lb(1) + 1/2*distx
 startPz = z
 startP = Array(startPx, startPy, startPz)
 endPx = startP(0)
 endPy = startP(1)
 endPz = z
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = startP
 eindPx = startP(0) + (1/2*distx + 1/2*disty)
 eindPy = startP(1) - (1/2*distx + 1/2*disty)
 eindPz = z
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP

 startP = eindP
 eindPx = startP(0) - (1/2*distx + 1/2*disty)
 eindPy = startP(1) - (1/2*distx + 1/2*disty)
 eindPz = z
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP

Master’s thesis

205

 startP = eindP
 eindPx = startP(0) - (1/2*distx + 1/2*disty)
 eindPy = startP(1) + (1/2*distx + 1/2*disty)
 eindPz = z
 eindP = Array(eindPx, eindPy, eindPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP
 eindP = Array(endPx, endPy, endPz)
 ReDim Preserve rot(UBound(rot) + 1)
 rot(UBound(rot)) = eindP
 rotated = Rhino.AddPolyline(rot)
 End If

Now the rotated square is generated, the process to search for the outer points can start.
The process is divided in two parts, as the lines will first move from the lower left edge of the
square to the upper right edge of the square. After that the lines will move from the upper
left edge of the square to the lower right edge of the square. The following loop is gone
through for the amount of parts that were already determined. The loop starts with the
definition of the startpoint and the endpoint of the line. Then a line is added between these
points.

 'Lower left to upper right edge
 For p = 0 To parts
 SPx = (lo(0) - 1/2*disty) + p*dist*0.707107
 SPy = (lo(1) + 1/2*disty) + p*dist*0.707107
 SPz = z
 SP = Array(SPx, SPy, SPz)
 EPx = SPx + (1/2*distx + 1/2*disty)
 EPy = SPy - (1/2*distx + 1/2*disty)
 EPz = z
 EP = Array(EPx, EPy, EPz)
 lijn = Rhino.AddLine(SP, EP)

Because the lines will determine the closest and most far away outer points related to the
startpoint of the line in one step, some minimum and maximum distances are first defined.

 cminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2)
 cxmin = EP(0) - SP(0)
 cymin = EP(1) - SP(1)
 cmaxAfst = 0
 cxmax = 0
 cymax = 0
 bminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2)
 bxmin = EP(0) - SP(0)
 bymin = EP(1) - SP(1)
 bmaxAfst = 0
 bxmax = 0
 bymax = 0

Master’s thesis

206

The following loop goes through all objects of the model, which are stored in the iAllObjects
variable. For each object it will be checked if there is an intersection between the object and
the line. The procedure for the intersection between the line and a surface or solid is scripted
later. If an intersection is found, the distances in x- and y-direction between the intersection
point and the startpoint of the line are determined. From these two distances the total
distance can be derived.

 For i = 0 To UBound(iAllObjects)
 arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i))
 If IsArray(arrCCX) Then
 For j = 0 to UBound(arrCCX)
 If arrCCX(j,0) = 1 Then
 arrCpoint = arrCCX(j,1)
 If IsArray(arrCpoint) Then
 dxc = arrCpoint(0) - SP(0)
 dyc = arrCpoint(1) - SP(1)
 cafst = sqr(dxc^2 + dyc^2)

Then it will be checked if the total distance between the intersection point and the startpoint
of the line is smaller than the specified minimum distance. It will also be checked if the
distance is lager than the specified maximum distance. If one of these situations occurs, the
minimum or maximum distance is set to this new distance and the x- and y-coordinates of
that intersection point are stored. When the loop has gone through all objects of the model
for the concerning line, the coordinates of the closest and most far away intersection point
related to the startpoint of the line are obtained.

 If cafst < cminAfst Then
 cminAfst = cafst
 cxmin = arrCpoint(0)
 cymin = arrCpoint(1)
 End If
 If cafst > cmaxAfst Then
 cmaxAfst = cafst
 cxmax = arrCpoint(0)
 cymax = arrCpoint(1)
 End If
 End If
 End If
 Next
 End If

This procedure can now be repeated to determine the intersections between the line and a
surface or solid. The procedure is already discussed for the script of the Rectangle method. In
the end the coordinates of the closest and most far away intersections between the line and a
surface or solid related to the startpoint of the line are obtained.

 arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i))
 If IsArray(arrCBX) Then
 For Each b in arrCBX
 arrBpoint = Rhino.PointCoordinates(b)
 If IsArray(arrBpoint) Then
 dxb = arrBpoint(0) - SP(0)
 dyb = arrBpoint(1) - SP(1)
 bafst = sqr(dxb^2 + dyb^2)
 If bafst < bminAfst Then
 bminAfst = bafst
 bxmin = arrBpoint(0)
 bymin = arrBpoint(1)
 End If

Master’s thesis

207

 If bafst > bmaxAfst Then
 bmaxAfst = bafst
 bxmax = arrBpoint(0)
 bymax = arrBpoint(1)
 End If
 End If
 Rhino.DeleteObject(b)
 Next
 End If
 Next

For the concerning line it will now be checked which minimum and maximum distances that
are obtained by the two methods are normative. Points are added at these locations then.
The identifiers of these points are added to the Pnt array. After the minimum and maximum
points are added to the model, the line is removed.

 If cminAfst < bminAfst Then
 If cminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then
 minPoint = Array(cxmin, cymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If bminAfst <= cminAfst Then
 If bminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then
 minPoint = Array(bxmin, bymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If cmaxAfst > bmaxAfst Then
 If cmaxAfst > 0 Then
 maxPoint = Array(cxmax, cymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If bmaxAfst >= cmaxAfst Then
 If bmaxAfst > 0 Then
 maxPoint = Array(bxmax, bymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 Rhino.DeleteObject lijn
 Next

When the line is finally moved from the lower left edge to the upper right edge of the square,
the process is repeated for lines moving from the upper left edge to the lower right edge of
the square. The process is nearly the same, only the definition of the start- and endpoints of
the line and the definition of some distances differ. Without further explanation, the script for
these lines is given on the following pages.

Master’s thesis

208

 'Upper left to lower right edge
 For p = 0 To parts
 SPx = (lb(0) + 1/2*distx) + p*dist*0.707107
 SPy = (lb(1) + 1/2*distx) - p*dist*0.707107
 SPz = z
 SP = Array(SPx, SPy, SPz)
 EPx = SPx - (1/2*distx + 1/2*disty)
 EPy = SPy - (1/2*distx + 1/2*disty)
 EPz = z
 EP = Array(EPx, EPy, EPz)
 lijn = Rhino.AddLine(SP, EP)
 cminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2)
 cxmin = EP(0) - SP(0)
 cymin = EP(1) - SP(1)
 cmaxAfst = 0
 cxmax = 0
 cymax = 0
 bminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2)
 bxmin = EP(0) - SP(0)
 bymin = EP(1) - SP(1)
 bmaxAfst = 0
 bxmax = 0
 bymax = 0
 For i = 0 To UBound(iAllObjects)
 arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i))
 If IsArray(arrCCX) Then
 For j = 0 To UBound(arrCCX)
 If arrCCX(j,0) = 1 Then
 arrCpoint = arrCCX(j,1)
 If IsArray(arrCpoint) Then
 dxc = arrCpoint(0) - SP(0)
 dyc = arrCpoint(1) - SP(1)
 cafst = sqr(dxc^2 + dyc^2)
 If cafst < cminAfst Then
 cminAfst = cafst
 cxmin = arrCpoint(0)
 cymin = arrCpoint(1)
 End If
 If cafst > cmaxAfst Then
 cmaxAfst = cafst
 cxmax = arrCpoint(0)
 cymax = arrCpoint(1)
 End If
 End If
 End If
 Next
 End If
 arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i))
 If IsArray(arrCBX) Then
 For Each b in arrCBX
 arrBpoint = Rhino.PointCoordinates(b)
 If IsArray(arrBpoint) Then
 dxb = arrBpoint(0) - SP(0)
 dyb = arrBpoint(1) - SP(1)
 bafst = sqr(dxb^2 + dyb^2)
 If bafst < bminAfst Then
 bminAfst = bafst
 bxmin = arrBpoint(0)
 bymin = arrBpoint(1)
 End If

Master’s thesis

209

 If bafst > bmaxAfst Then
 bmaxAfst = bafst
 bxmax = arrBpoint(0)
 bymax = arrBpoint(1)
 End If
 End If
 Rhino.DeleteObject(b)
 Next
 End If
 Next
 If cminAfst < bminAfst Then
 If cminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then
 minPoint = Array(cxmin, cymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If bminAfst <= cminAfst Then
 If bminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then
 minPoint = Array(bxmin, bymin, z)
 strID = Rhino.AddPoint(minPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If cmaxAfst > bmaxAfst Then
 If cmaxAfst > 0 Then
 maxPoint = Array(cxmax, cymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 If bmaxAfst >= cmaxAfst Then
 If bmaxAfst > 0 Then
 maxPoint = Array(bxmax, bymax, z)
 strID = Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = strID
 End If
 End If
 Rhino.DeleteObject lijn
 Next

For all parts the outer points are determined now. The next step is to generate a polyline
through these points. Just as the Rectangle method, the outer points do not lie in the right
sequence in the Pnt array. Ordering of the array is required before the enclosing polyline can
be generated. The procedure of ordering the array is already given for the script of the
Rectangle method. On the next pages the script for the ordering of the array is given without
further explanation.

Master’s thesis

210

 'Curve through closest point
 Rhino.DeleteObject rotated
 If UBound(Pnt) > 0 Then
 s = Rhino.PointCoordinates(Pnt(0))
 sx = s(0)
 sy = s(1)
 ex = s(0)
 ey = s(1)
 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 min = Array(sx, sy, z)
 Rhino.AddPoint(min)
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = min
 Rhino.CurrentLayer "Building"
 Rhino.LayerMode "Surround",1

 Rhino.CurrentLayer "Done"
 Rhino.SelectObject(Pnt(0))
 Rhino.Command ("_ChangeToCurrentLayer")
 Rhino.CurrentLayer "Building"

 For q = 0 To UBound(Pnt)
 maxAfst = 10 * (Rhino.Distance(lo,ro))
 For r = 0 To UBound(Pnt)
 layer = Rhino.ObjectLayer(Pnt(r))
 If layer = "Done" Then
 Else
 t = Rhino.PointCoordinates(Pnt(r))
 tx = t(0)
 ty = t(1)
 dx = tx - sx
 dy = ty - sy
 afst = sqr(dx^2 + dy^2)
 If afst = 0 Then
 Rhino.CurrentLayer"Done"
 Rhino.SelectObject(Pnt(r))
 Rhino.Command("_ChangeToCurrentLayer")
 Rhino.UnselectAllObjects
 Rhino.CurrentLayer"Building"
 End If
 If afst < maxAfst Then
 maxAfst = afst
 minx = tx
 miny = ty
 n = r
 End If
 End If
 Next
 min = Array(minx, miny, z)
 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 Rhino.AddPoint(min)
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = min
 Rhino.CurrentLayer "Done"
 Rhino.LayerMode "Surround",1
 Rhino.SelectObject(Pnt(n))
 Rhino.Command("_ChangeToCurrentLayer")
 Rhino.CurrentLayer "Building"

Master’s thesis

211

 sx = minx
 sy = miny
 Next
 Rhino.LayerMode "Surround",0
 Rhino.CurrentLayer "Surround"
 e = Array(ex, ey, z)
 Rhino.AddPoint e
 ReDim Preserve sur(UBound(sur) + 1)
 sur(UBound(sur)) = e
 delete = Rhino.ObjectsByLayer("Done")
 Rhino.DeleteObjects delete

After a new array sur is obtained with the outer points lying in the right sequence, a polyline
can be drawn through the points of the sur array. The polyline is then added to the Boundary
array.

 Rhino.CurrentLayer "Boundary"
 surrounding = Rhino.AddPolyline(sur)
 ReDim Preserve boundary(UBound(boundary) + 1)
 boundary(UBound(boundary)) = surrounding
 Rhino.CurrentLayer"Building"

Now the points of the sur array, which are placed in the Surround layer, can be deleted from
the model.

 delete = Rhino.ObjectsByLayer("Surround")
 Rhino.DeleteObjects delete
 Rhino.UnselectAllObjects
 End If
Next

If this process is done for all height steps and the various enclosing curves are created, the
original building model, which is placed in the Building layer, can be removed. The enclosing
curves at the various height levels remain.

delete = Rhino.ObjectsByLayer("Building")
Rhino.DeleteObjects delete

End Sub

Rotated_Square_3D

Master’s thesis

212

Master’s thesis

213

Appendix H: Script Preprocessing

In this appendix the script of the Preprocessing method to convert a mesh object into
surfaces is discussed in detail. The script starts with the Option Explicit command and the
definition of the subroutine. In the following steps the variable terms that will be used in the
subroutine are declared.

Option Explicit

Sub Preprocessing

Dim strTekst, arrOptions(3)
Dim arrMesh, arrCurve, arrBlock, arrSurface
Dim m, c, b, s, i, j
Dim blocks, meshes, curves, obj
Dim arrFaces, arrFace(3)

In the next step some constant terms are declared. In Rhinoceros, the several types of
geometry objects are numbered. Mesh objects have number 32, curve objects number 4,
block objects number 4096 and surface objects have number 8.

Const rhMesh = 32
Const rhCurve = 4
Const rhBlock = 4096
Const rhSurface = 8

The several options where the user can choose from will now be declared. With the first
option, the user can count the number of blocks, meshes, face curves and surfaces in the
model. With that information the user can check if the model contains elements which have
to be converted to surfaces. With the second option, all block instances of a model are
converted to mesh objects. The face curves of these mesh objects can be returned with the
third option. From these face curves the surfaces can be created with the fourth option.

arrOptions(0) = "1) Count number of Blocks, Meshes, Face Curves and

 Surfaces"
arrOptions(1) = "2) Split Block Instances into Meshes"
arrOptions(2) = "3) Split Meshes into Face Curves"
arrOptions(3) = "4) Create Surfaces from Face Curves"

Then a popup box with the list of options is placed on the screen.

strTekst = Rhino.ListBox(arrOptions, "Choose an option:")

If the user chooses for option 1, four arrays are created and filled with the various geometry
object types. Some variables that are used for the counting process are set to zero.

If strTekst = arrOptions(0) Then
 arrMesh = Rhino.ObjectsByType(rhMesh)
 arrCurve = Rhino.ObjectsByType(rhCurve)
 arrBlock = Rhino.ObjectsByType(rhBlock)
 arrSurface = Rhino.ObjectsByType(rhSurface)
 m = 0
 c = 0
 b = 0
 s = 0

Master’s thesis

214

Four loops will be gone through then for the various object types. In each loop the amount of
objects are counted and stored in a variable.

 If Not IsNull(arrMesh) Then
 For i = 0 To UBound(arrMesh)
 m = m + 1
 Next
 End If
 If Not IsNull(arrCurve) Then
 For i = 0 To UBound(arrCurve)
 c = c + 1
 Next
 End If
 If Not IsNull(arrBlock) Then
 For i = 0 To UBound(arrBlock)
 b = b + 1
 Next
 End If
 If Not IsNull(arrSurface) Then
 For i = 0 To UBound(arrSurface)
 s = s + 1
 Next
 End If

After all objects of the various geometry types are counted, a message box finally gives the
amount of the various objects to the user.

 Rhino.MessageBox("Number of Blocks: " & b & vbCrLf & "Number of
 Meshes: " & m & vbCrLf & "Number of Face Curves: "
 & c & vbCrLf & "Number of Surfaces: " & s)
End If

If the user chooses for option 2, all block instances in the model will be split in its underlying
meshes. Each block has to be exploded three times to return all its meshes. The explosion
process is looped three times for each block instance. In each loop all block instances of a
model are first placed in an array.

If StrTekst = arrOptions(1) Then
 b = 0
 For i = 0 To 2
 blocks = Rhino.ObjectsByType(rhBlock)

Each object in the array will then be exploded and the amount of explosions is counted. After
a block instance is exploded, it is directly deleted from the model.

 If IsArray(blocks) Then
 For Each obj in blocks
 If Rhino.IsBlockInstance(obj) Then
 Rhino.ExplodeBlockInstance obj
 b = b + 1
 Rhino.Print b
 End If
 Rhino.DeleteObject(obj)
 Next
 End If
 Next

Master’s thesis

215

After all objects are exploded the amount of generated meshes is finally given to the user. If
no block instances are exploded at all, the model did not contain any block instances and this
is reported to the user. Else the amount of generated meshes is reported.

 If b = 0 Then
 Rhino.MessageBox("The model contains no block instances")
 Else
 Rhino.MessageBox("Number of generated meshes: " & b)
 End If
End If

If the user chooses for option 3, all meshes will be split into its face curves. First all meshes
of the model are placed in an array.

If strTekst = arrOptions(2) Then
 m = 0
 meshes = Rhino.ObjectsByType(rhMesh)

For each mesh in the model the faces are returned then.

 If IsArray(meshes) Then
 For Each obj in meshes
 If Rhino.IsMesh(obj) Then
 arrFaces = Rhino.MeshFaces(obj, vbFalse)

Each face goes through a loop then to return the corner points of the triangle. Through the
corner points a face curves can be created then. The script counts each added curve. In the
end the original mesh object is deleted from the model.

 If IsArray(arrFaces) Then
 i = 0
 While i <= UBound(arrFaces)
 arrFace(0) = arrFaces(i)
 arrFace(1) = arrFaces(i+1)
 arrFace(2) = arrFaces(i+2)
 arrFace(3) = arrFaces(i)
 Rhino.AddPolyline(arrFace)
 i = i + 3
 m = m + 1
 Rhino.Print m
 Wend
 End If
 Rhino.DeleteObject(obj)
 End If
 Next
 End If

After all meshes are split into its face curves, the amount of generated face curves is given to
the user. If no meshes are split at all, the model did not contain any meshes and this is
reported to the user. Else the amount of generated face curves is reported.

 If m = 0 Then
 Rhino.MessageBox("The model contains no meshes")
 Else
 Rhino.MessageBox("Number of generated face curves: " & m)
 End If
End If

Master’s thesis

216

If the user chooses for option 4, planar surfaces will be created between the face curves that
are obtained from option 3. First all face curves of the model are placed in an array.

If strTekst = arrOptions(3) Then
 c = 0
 curves = Rhino.ObjectsByType(rhCurve)

For each curve a planar surface will be created then. The original face curve is deleted from
the model and the amount of planer surfaces is counted.

 If IsArray(curves) Then
 For Each obj in curves
 Rhino.SelectObject obj
 Rhino.Command "_PlanarSrf"
 Rhino.DeleteObject obj
 c = c + 1
 Rhino.Print c
 Next
 End If

Finally the amount of generated surfaces is given to the user. If no surfaces are generated at
all, the model did not contain any face curves and this is reported to the user. Else the
amount of generated surfaces is reported.

 If c = 0 Then
 Rhino.MessageBox("The model contains no face curves")
 Else
 Rhino.MessageBox("Number of generated surfaces: " & c)
 End If
End If

End Sub

Preprocessing

Master’s thesis

217

Appendix I: Script Rotating Lines for Meshes

In this appendix the script for the Rotating Lines method to find the outer points of a model
that is built up of meshes and generate the enclosing curves for several height levels is
discussed in detail. Most of the script is the same as the script of the original method for
buildings that are built up of lines, surfaces and solids. These parts of the script are given
without further explanation. Only the procedure to find an intersection with a mesh differs
from the original script. This procedure will be explained in detail then.

Option Explicit

RotatingLines_Mesh_3D
Sub RotatingLines_Mesh_3D

Dim idMesh, m, m_F
Dim P1, P2, rot
Dim xPt, i
Dim angle, parts, p
Dim midpoint, endpoint, point, maxPoint, Pnt()
Dim dx, dy, ex, ey
Dim endx, endy, endz
Dim midx, midy, midz, midp
Dim afst, maxAfst, xmax, ymax
Dim selected
Dim h, height, step, h_end, h_start
Dim surrounded, sur(), surround
Dim delete
Dim loft, crv

Rhino.OsnapMode 0

Rhino.AddLayer "Points"
Rhino.AddLayer "Surrounded", RGB(190,190,190)
Rhino.CurrentLayer "Points"

Rhino.MessageBox ("Pick center location of the building in Top-view")
midpoint = Rhino.GetPoint

parts = Rhino.IntegerBox("Give amount of parts",360)
angle = 360/parts

height = Rhino.RealBox("Give the height of the building")
h_start = Rhino.RealBox("Give starting height")
step = Rhino.RealBox("Give step size")
h_end = (height / step)

ReDim sur(-1)

With the following code all meshes of the model are placed in an array. If there are no
meshes at all, the script will stop.

idMesh = Rhino.ObjectsByType(32)
If IsNull(idMesh) Then Exit Sub

Master’s thesis

218

For h = 0 To (h_end – h_start)
 ReDim Pnt(-1)
 midx = midpoint(0)
 midy = midpoint(1)
 midz = midpoint(2) + h*step
 midp = Array(midx, midy, midz)
 endx = midpoint(0)
 endy = midpoint(1) + 2
 endz = midpoint(2) + h*step
 endpoint = Array(endx, endy, endz)
 For p = 0 To parts
 maxAfst = 0
 xmax = 0
 ymax = 0

In stead of lines that rotate around the center location of the model to determine the
intersection point, only the direction from the center location is needed to find an intersection
with the mesh. To specify the concerning direction, points are used that rotate around the
center location with a certain radius.

 P1 = midp
 point = Rhino.AddPoint(endpoint)
 rot = Rhino.RotateObject(point, midp, angle*p)
 P2 = Rhino.PointCoordinates(rot)

To find the intersection with a mesh, the mesh faces are used.

 For m = 0 To UBound(idMesh)
 m_F = Rhino.MeshFaces(idMesh(m), False)
 If IsNull(m_F) Then Exit Sub

The intersection is determined with a special function, called IntersectLineFace. The function
is scripted after the subroutine and called from here. The function depends on the concerning
direction and the mesh faces. For a certain direction each mesh face will be checked to see if
it lies through the direction of concern. If so, the intersection is added to the Xpt array. The
code of the function and some further explanation is given at the end of this script.

 For i = 0 To UBound(m_F) Step 3
 xPt = IntersectLineFace(P1, P2, m_F(i+0), m_F(i+1), m_F(i+2))

When the rotating point lies in a specific direction, the function does not only look for
intersections in the direction from the center location to the rotating point. It looks in the
lengthened direction, thus also in the direction from the center location to the point that is
mirrored in the center location. If, for example, the coordinates of the rotating point at a
specific moment are (-2, 2, 0), the function searches for all intersections that lie in the
lengthened directions of the imaginary line (-2, 2, 0) , (2, -2, 0). Or, in other words, if the
rotating point lies in the second quadrant of the axis system, the function searches for
intersections with a mesh in the second and fourth quadrant of the system. This introduces
errors for the determination of the most far away intersection point from the center location,
because it always lies in one of the two quadrants then. The most far away intersection point
in the opposite quadrant is skipped. To solve this problem the script will first check if the
intersection point lies in the same quadrant as the rotating point. If so, the intersection point
with the largest distance from the center location can be found out of all other intersections
that lie in the same quadrant.

Master’s thesis

219

 If IsArray(xPt) Then
 If (angle*p < 180) Then
 If (xPt(0) - P1(0)) < 0 Then
 dx = xPt(0) - P1(0)
 dy = xPt(1) - P1(1)
 afst = sqr(dx^2 + dy^2)
 If afst > maxAfst Then
 maxAfst = afst
 xmax = xPt(0)
 ymax = xPt(1)
 End If
 End If
 End If
 If (angle*p >= 180) AND (angle*p <= 360) Then
 If (xPt(0) - P1(0)) > 0 Then
 dx = xPt(0) - P1(0)
 dy = xPt(1) - P1(1)
 afst = sqr(dx^2 + dy^2)
 If afst > maxAfst Then
 maxAfst = afst
 xmax = xPt(0)
 ymax = xPt(1)
 End If
 End If
 End If
 End If
 Next
 Next
 If maxAfst > 0 Then
 maxPoint = Array(xmax, ymax, midz)
 Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = maxPoint
 End If
 Rhino.DeleteObject point
 Next

When for all directions the most far away intersections are found, the array Pnt is filled with
all outer points. The first point of the array is then copied and added to the end of the array,
so that a closed polyline can be created through the points.

 If IsArray(Pnt) AND UBound(Pnt) > 0 Then
 ex = Pnt(0)(0)
 ey = Pnt(0)(1)
 maxPoint = Array(ex, ey, midz)
 Rhino.AddPoint(maxPoint)
 ReDim Preserve Pnt(UBound(Pnt) + 1)
 Pnt(UBound(Pnt)) = maxPoint
 Rhino.CurrentLayer("Surrounded")
 surround = Rhino.AddPolyline(Pnt)
 ReDim Preserve sur(Ubound(sur) + 1)
 sur(UBound(sur)) = surround
 delete = Rhino.ObjectsByLayer("Points")
 Rhino.DeleteObjects delete
 Rhino.CurrentLayer"Points"
 End If
Next

Master’s thesis

220

As in the original script of the Rotating Lines method, the original building model can be
removed when for all height steps the enclosing curves are determined.

delete = Rhino.ObjectsByType(32)
Rhino.DeleteObjects delete

End Sub

After the subroutine the function IntersectLineFace is scripted. The function searches for the
intersection point between a line segment and the mesh triangles. It is dependent on the
coordinates of the center location P1, the rotating point P2 and the corner points Pa, Pb and
Pc of the triangles. The following figure shows the principle of the function.

Figure I.1: Principle of the IntersectLineFace function (Internet, [21])

The function searches for the intersection of the line on which the line segment (P1-P2) lies,
with the plane on which the triangle lies. It then checks if the intersection point lies along the
line segment and if it lies within the triangle. The intersection point can be found by
substituting the equation for the line P:

1 2 1()P P P Pμ= + ⋅ −

into the equation for the plane:

0x y zA B C D+ + + =

The values of A, B and C are the components of the normal to the plane, which can be found
by taking the cross product of two edge vectors of the triangle. The vector cross product
gives a vector which is perpendicular to both the vectors that are multiplied. In general, the
resulting vector (A * B) is defined by:

y z y z

z x z x

x y x y

x A B B A

y A B B A
z A B B A

= ⋅ − ⋅

= ⋅ − ⋅
= ⋅ − ⋅

Master’s thesis

221

Herein are x, y and z the components of the vector (A * B). When this theory is applied to
the vectors of the triangle in Figure I.1, it follows:

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

(, ,) () cross ()
() () () ()

() () () ()

() () () ()

b a c a

x b y a y c z a z b z a z c y a y

y b z a z c x a x b x a x c z a z

z b x a x c y a y b y a y c x a x

n A B C P P P P
n P P P P P P P P

n P P P P P P P P

n P P P P P P P P

= = − −
= − ⋅ − − − ⋅ −

= − ⋅ − − − ⋅ −

= − ⋅ − − − ⋅ −

The variable D in the equation of the plane follows from substituting one vertex into the
equation for the plane:

, , ,a x a y a zAP BP CP D+ + = −

Now the variable μ of the equation for the line P can be determined. From that value the
intersection point can be found using the equation of the line.

1, 1, 1,

1 2 1 2 1 2

()
() () ()

x y z

x x y y z z

D AP BP CP
A P P B P P C P P

μ
+ + +

=
− + − + −

If the line P is parallel to the plane, they will not intersect and the denominator in the
equation for μ is 0. The intersection point lies on the line segment if the value of μ is between
0 and 1.

Finally it must be checked if the intersection point between the line and the plane of the
triangle lies within the triangle that is bounded by the corner points Pa, Pb and Pc. If a point P
lies on the interior of the triangle, the sum of the internal angles of the point is 2Π. If a point
lies outside the triangle, the sum of the internal angles is smaller than 2Π. The following
picture shows this principle.

Figure I.2: Internal angles (Internet, [21])

Master’s thesis

222

If the point that is checked to see if it lies in the interior is P, than the unit vectors of the
point are:

,1 ,2 ,3 ; ; Pa b c
a a a

a b c

P P P P P PP P
P P P P P P
− − −

= = =
− − −

The angles are then:

1 1 2

2 2 3

3 3 1

cos()
cos()
cos()

a a

a a

a a

a a P P
a a P P
a a P P

=
=
=

The above explained procedure is implemented in the IntersectLineFace function. The script
of this function is given below. The function starts with the declaration of some variables.

Function IntersectLineFace(ByVal P1, ByVal P2, ByVal Pa, ByVal Pb,
 ByVal Pc)
 IntersectLineFace = Null
 Dim d
 Dim a1, a2, a3
 Dim total, denom, mu
 Dim n, p(2)

The components of the normal to the plane are found by taking the cross product of two
edge vectors of the triangle. In Rhinoceros the vector between two points is created with the
Rhino.VectorCreate command. The cross product of the two vectors is determined with the
Rhino.VectorCrossProduct command. With the Rhino.VectorUnitize command the vector n is
unitized, resulting in a 3D vector.

 n = Rhino.VectorCrossProduct(Rhino.VectorCreate(Pb, Pa),
 Rhino.VectorCreate(Pc, Pa))

 Rhino.VectorUnitize(n)

Then the variable d from the equation of the plane is defined.

 d = -n(0) * pa(0) - n(1) * pa(1) - n(2) * pa(2)

After that the position on the line that intersects the plane is calculated.

 denom = n(0) * (p2(0) - p1(0)) + n(1) * (p2(1) - p1(1)) + n(2) *
 (p2(2) - p1(2))

Then it will be checked if the line and the plane are parallel. If |P1 - P2| is very small, no
intersection will be returned and the function stops.

 If (Abs(denom) < 0.00001) Then Exit Function

If the line and the plane are not parallel, the value μ of the equation for the line P can be
derived:

 mu = -(d + n(0) * p1(0) + n(1) * p1(1) + n(2) * p1(2)) / denom

Master’s thesis

223

With the value for μ the equation of the line P can be defined:

 p(0) = p1(0) + mu * (p2(0) - p1(0))
 p(1) = p1(1) + mu * (p2(1) - p1(1))
 p(2) = p1(2) + mu * (p2(2) - p1(2))

Finally it is checked if the intersection point between the line and the plane of the triangle lies
within the triangle. To determine the internal angles of the intersection point another function
is used. This function is called ThreePointAngle and is scripted after the IntersectLineFace
function. The function uses the intersection point p and two corner points of the triangle.

 a1 = ThreePointAngle(p, Pa, Pb)
 a2 = ThreePointAngle(p, Pb, Pc)
 a3 = ThreePointAngle(p, Pc, Pa)
 total = a1 + a2 + a3

If the total of the internal angles is larger than 360, the corner points Pa, Pb and Pc do not
clearly indicate a triangle. The function stops then.

 If (Abs(total - 360) > 0.0001) Then Exit Function

If the intersection point is finally found, the result is applied to the function. The superior
Rotating Lines script uses this result then to determine the outer point for a certain location.

 IntersectLineFace = p

End Function

Finally the ThreePointAngle function is scripted. The function calculates the smallest angle in
degrees between two line segments. With the Rhino.Angle2 command, the angle between
two lines is measured. The values pBase, pLeft and pRight correspond to respectively p, Pa
and Pb that were defined when the ThreePointAngle function was called on in the
IntersectLineFace function.

Function ThreePointAngle(ByVal pBase, ByVal pLeft, ByVal pRight)

 Dim A
 A = Rhino.Angle2(Array(pBase, pLeft), Array(pBase, pRight))

The Rhino.Angle2 command returns an array containing the angle in degrees and the reflex
angle in degrees. The reflex angle is an angle of more than 180 but less than 360 degrees.
To make sure that the function is not set to a value that is larger then 360 degrees, the script
checks whether the angle is smaller or larger than the reflex angle. If the reflex angle is
larger then the function is set to this value, else the function is set to the normal angle.

 If A(0) < A(1) Then
 ThreePointAngle = A(0)
 Else
 ThreePointAngle = A(1)
 End If

End Function

Master’s thesis

224

Master’s thesis

225

Appendix J: Script Curve simplification

In this appendix the script of the Curve simplification method to simplify the enclosing curves
with the NURBS fitting technique is discussed in detail. The script starts with the Option
Explicit command and the definition of the subroutine. In the following steps the variable
terms are declared that will be used in the subroutine. All curves of the model are placed in
the arrCurves array. If there is no curve at all, the script gives a message to the user and the
process stops.

Option Explicit

Sub Curve_simplification

Dim arrCurves, crv, strObject, arrPoints, arrPoint
Dim ContrPoints(), p
Dim arrOptions(1), strTekst
Dim intDegree, intKnotCount, intCPCount
Dim arrKnots(), arrWeights(), weight
Dim k, w

arrCurves = Rhino.ObjectsByType(4)
If Not IsArray(arrCurves) Then
 Rhino.MessageBox("The model contains no curves.")
 Exit Sub
End If

The user is asked for the weight value that has to be given to the control points. Then a loop
starts that goes through all enclosing curves of the model. In each loop the length of
ContrPoints array is first set to -1. In this array the control points of the enclosing curves will
be stored. Because on forehand it is not known how many control points have to be stored in
the array, the length is first set to -1. Before a point is added, the array is lengthened by 1.
The point is then stored at this new location.

Weight = Rhino.RealBox("Give the weight value of the control
 points")
For Each strObject in arrCurves
 ReDim ContrPoints(-1)

For each curve the control points will be returned first. If some control points are found, they
are added to the ContrPoints array.

 If Rhino.IsCurve(strObject) Then
 arrPoints = Rhino.CurvePoints(strObject)
 If IsArray(arrPoints) Then
 For Each arrPoint in arrPoints
 ReDim Preserve ContrPoints(UBound(ContrPoints) + 1)
 ContrPoints(UBound(ContrPoints)) = arrPoint
 Next
 End If
 End If

Master’s thesis

226

The next step is to add a NURBS curve through the control points. Because a cubic curve is
the best option for fitting a smooth polynomial, the degree of the NURBS curve is set to 3.
The required number of knots is the number of control points plus the degree of the curve
minus 1. To determine the number of knots, first the number of control points is derived.
Then the number of knots is calculated.

 '---
 'Add NURBS curve
 '---
 intDegree = 3
 intCPCount = UBound(ContrPoints) + 1
 intKnotCount = intCPCount + intDegree - 1

The arrWeights array is then re-declared to a length that is equal to the number of control
points of the curve. The weight value for each control point will be stored in this array. The
weight values for the first and last control point are set to 1.0 by default. The other weight
values are set to the user-specified weight value.

 ReDim arrWeights(intCPCount-1)
 arrWeights(0) = 1.0
 arrWeights(UBound(arrWeights)) = 1.0
 For w = 1 To (UBound(arrWeights) - 1)
 arrWeights(w) = weight
 Next

Then the arrKnots array is re-declared to a length that is equal to the number of required
knots. This number depends on the amount of control points of the curve and was defined
already. Because the NURBS curve has to go through the first and last control point, full-
multiplicity is required there. This means that the first and last three knot values of the knot
list have to be equal. The first three knot values are therefore set to 0.

 ReDim arrKnots(intKnotCount-1)
 For k = 0 to 2
 arrKnots(k) = 0
 Next

Because the knot list may only contain knot values in increasing order, it has to be calculated
which value the last three knots have to obtain. Because the inner knots are all single knots,
the value of each knot can be raised by 1. From this fact the value of the last three knots can
be determined. First a value is assigned to all inner knots.

 For k = 3 To (UBound(arrKnots) - 3)
 arrKnots(k) = k - 2
 Next

Then the values to the last three knots are assigned. Because of the required full-multiplicity,
the value for these three knots is the same.

 For k = (UBound(arrKnots) - 2) To (UBound(arrKnots))
 arrKnots(k) = (UBound(arrKnots) - 4)
 Next

Master’s thesis

227

Finally the NURBS curve can be added through the control points. The curve depends on the
knot values, degree of the curve and the weight values. When for each enclosing curve a
NURBS curve is generated, the original curves are removed from the model.

 Rhino.AddNurbsCurve ContrPoints, arrKnots, intDegree, arrWeights
Next

For Each strObject in arrCurves
 Rhino.Deleteobject strObject
Next

End Sub

Curve_simplification

Master’s thesis

228

Master’s thesis

229

Appendix K: Script Loft

In this appendix the script of the Loft method to loft a surface through the enclosing curves
and create a planar surface through the topmost and bottom curves is discussed in detail.
The script starts with the Option Explicit command and the definition of the subroutine. In the
following steps the variable terms are declared that will be used in the subroutine. Then all
eventual selected objects will be unselected and all enclosing curves of the model are placed
in the arrCurves array. If the model contains no curves at all, the script gives a message to
the user and the process stops.

Option Explicit

Sub Loft

Dim strObject
Dim arrSurfaces, arrCurves, arrPoints, crvPoint
Dim arrSorted
Dim arrZ()
Dim i, crv, z_val
Dim coord, z, l
ReDim arrZ(-1)

Rhino.UnselectAllObjects

arrCurves = Rhino.ObjectsByType(4)
If Not IsArray(arrCurves) Then
 Rhino.MessageBox("The model contains no curves.")
 Exit Sub
End If

Then the script will determine the order of the curves. The lofting process has to start with
the lowest curve and end with the highest curve. The ordering starts with returning the
control points of the various curves. For each curve, the z-coordinate of the first control point
is returned and placed in the arrZ array. Because on forehand it is not know how many
curves have to be placed in the array, the array is lengthened each time before the value is
added to the array.

If UBound(arrCurves) > 0 Then
 For Each crv in arrCurves
 If Rhino.IsCurve(crv) Then
 arrPoints = Rhino.CurvePoints(crv)
 If IsArray(arrPoints) Then
 z = arrPoints(0)(2)
 ReDim Preserve arrZ(UBound(arrZ) + 1)
 arrZ(UBound(arrZ)) = z

Then the curve is named to its height level z. While lofting, the various curves can now be
called on in the right order.

 Rhino.ObjectName crv, z
 End If
 End If
 Next

Master’s thesis

230

The array with the z values of the various curves is ordered. The values are placed in a new
array, arrSorted.

 arrSorted = Rhino.SortNumbers(arrZ)

In the next loop the surfaces will be lofted through the enclosing curves. The arrSorted array
contains the height levels of the curves. Starting from the lowest value, this height level is
now first asked for. Because the corresponding curve has the same name as its height, this
value is now used to call the curve itself. The curve is then selected.

 For i = 0 To (UBound(arrSorted) - 1)
 z_val = arrSorted(i)
 crv = Rhino.ObjectsByName(z_val)
 Rhino.SelectObjects crv

Because the surface is lofted between two curves, the curve that lies one level higher is
selected in the same way. Then a straight surface is lofted through the curves. After that the
two curves are unselected again.

 z_val = arrSorted(i+1)
 crv = Rhino.ObjectsByName(z_val)
 Rhino.SelectObjects crv
 Rhino.Command("-loft enter type=straight enter")
 Rhino.UnselectAllObjects
 Next

The above explained process is looped until the final surface is lofted trough the two upmost
curves. To close the model, two planar surfaces have to be created through the bottom and
top curves. These curves are first selected.

 z_val = arrSorted(0)
 crv = Rhino.ObjectsByName(z_val)
 Rhino.SelectObjects crv
 z_val = arrSorted(UBound(arrSorted))
 crv = Rhino.ObjectsByName(z_val)
 Rhino.SelectObjects crv

Then the planar surfaces are added through the curves. The original curves are removed
from the model.

 Rhino.Command("_PlanarSrf")
 For Each crv in arrCurves
 Rhino.DeleteObject crv
 Next

Finally the lofted surface and the two planar surfaces are joined to form one single surface
model.

 arrSurfaces = Rhino.ObjectsByType(8 + 16, vbTrue)
 Rhino.Command"_Join"
 Rhino.UnselectAllObjects
End If

End Sub

Loft

Master’s thesis

231

Appendix L: Script to generate the journal file

In this appendix the Visual Basic macro script to generate the journal file for the creation of
the computational domain is discussed in detail. The macro is part of an excel sheet that
contains the user-specified maximum height and radius of the research area. The dimensions
of the computational domain are dependent on these values. The script starts with the
definition of the subroutine and the declaration of some variables.

Private Sub CommandButton1_Click()

Dim h As Double
Dim r As Double

With the following commands the journal file Domain.jou is created. The FileSystemObject
command is used to access the server’s file system. The journal file is saved on the D drive. If
the user wants to save the file on another drive, it has to be changed here.

Set fs = CreateObject("Scripting.FileSystemObject")
Set a = fs.CreateTextFile("d:\Domain.jou", True)

The maximum height of all buildings and the radius of the research area are derived from
cells C4 and C5 of the Excel sheet.

h = Range("C4").Value
r = Range("C5").Value

Gambit can be used to generate meshes for several CFD solvers. Because Fluent 6 is used to
solve the flow problems, the solver is set to Fluent 5/6.

a.Writeline (" solver select ""Fluent 5/6"" ")

Now the first four vertices of the domain are created. The vertices belong to the inlet
boundary and are located at -20h in x-direction from the origin. The two outer vertices have a
y-coordinate of -10h respectively +10h. The y-coordinate of the two inner vertices depend on
the radius of the research area. The y-coordinate of the vertices is the distance in y-direction
between the endpoint of a line with radius r and the origin when the line is drawn under 45
degrees. The y-coordinates are then – ((r^2)/2)^1/2 respectively + ((r^2)/2)^1/2. The z-
coordinate of all vertices is 0.

a.Writeline (" vertex create coordinates -" & 20 * h & " -" & 10 *
 h & " 0 ")
a.Writeline (" vertex create coordinates -" & 20 * h & " -" & ((r ^
 2) / 2) ^ (1 / 2) & " 0 ")
a.Writeline (" vertex create coordinates -" & 20 * h & " " & ((r ^
 2) / 2) ^ (1 / 2) & " 0 ")
a.Writeline (" vertex create coordinates -" & 20 * h & " " & 10 * h
 & " 0 ")

The four vertices are then copied three times in the positive x-direction. The vertices are first
copied to the negative x-coordinate with the same value as the y-coordinate of the inner two
vertices. Then the vertices are copied to the positive x-coordinate with the same value as the
y-coordinate of the inner vertices. Finally the vertices are copied to the positive x-coordinate
+20h.

Master’s thesis

232

a.Writeline (" vertex cmove ""vertex.1"" ""vertex.2"" ""vertex.3""
 ""vertex.4"" multiple 1 offset \ ")
a.Writeline (" " & (20 * h - ((r ^ 2) / 2) ^ (1 / 2)) & " 0 0 ")
a.Writeline (" vertex cmove ""vertex.5"" ""vertex.6"" ""vertex.7""
 ""vertex.8"" multiple 1 offset \ ")
a.Writeline (" " & 2 * ((r ^ 2) / 2) ^ (1 / 2) & " 0 0 ")
a.Writeline (" vertex cmove ""vertex.9"" ""vertex.10""
 ""vertex.11"" ""vertex.12"" multiple 1 offset \ ")
a.Writeline (" " & (20 * h - ((r ^ 2) / 2) ^ (1 / 2)) & " 0 0 ")

Then a vertex is created at the origin. This point is the center location of the domain.

a.Writeline (" vertex create coordinates 0 0 0 ")

Now edges are created between the vertices.

a.Writeline (" edge create straight ""vertex.1"" ""vertex.5"" ")
a.Writeline (" edge create straight ""vertex.5"" ""vertex.9"" ")
a.Writeline (" edge create straight ""vertex.9"" ""vertex.13"" ")
a.Writeline (" edge create straight ""vertex.13"" ""vertex.14""
 ""vertex.15"" ""vertex.16"" ")
a.Writeline (" edge create straight ""vertex.1"" ""vertex.2""
 ""vertex.3"" ""vertex.4"" ""vertex.8"" \ ")
a.Writeline (" ""vertex.12"" ""vertex.16"" ")
a.Writeline (" edge create straight ""vertex.5"" ""vertex.6"" ")
a.Writeline (" edge create straight ""vertex.9"" ""vertex.10"" ")
a.Writeline (" edge create straight ""vertex.7"" ""vertex.8"" ")
a.Writeline (" edge create straight ""vertex.11"" ""vertex.12"" ")
a.Writeline (" edge create straight ""vertex.2"" ""vertex.6"" ")
a.Writeline (" edge create straight ""vertex.10"" ""vertex.14"" ")
a.Writeline (" edge create straight ""vertex.3"" ""vertex.7"" ")
a.Writeline (" edge create straight ""vertex.11"" ""vertex.15"" ")

Around the center location of the domain, a circular edge is created through the four inner
vertices. The circle now automatically has the radius r. After the circle is created, the center
point is removed from the model.

a.Writeline (" edge create center2points ""vertex.17"" ""vertex.6""
 ""vertex.7"" circle ")
a.Writeline (" vertex delete ""vertex.17"" ")

Now faces are created by stitching the edges together.

a.Writeline (" face create wireframe ""edge.1"" ""edge.7""
 ""edge.13"" ""edge.17"" real ")
a.Writeline (" vertex create coordinates 0 0 0 ")
a.Writeline (" edge delete ""edge.21"" lowertopology ")
a.Writeline (" edge create center2points ""vertex.17"" ""vertex.6""
 ""vertex.7"" minarc arc ")
a.Writeline (" edge create center2points ""vertex.17"" ""vertex.7""
 ""vertex.11"" minarc arc ")
a.Writeline (" edge create center2points ""vertex.17""
 ""vertex.11"" ""vertex.10"" minarc arc ")
a.Writeline (" edge create center2points ""vertex.17""
 ""vertex.10"" ""vertex.6"" minarc arc ")
a.Writeline (" vertex delete ""vertex.17"" ")
a.Writeline (" face create wireframe ""edge.2"" ""edge.13""
 ""edge.14"" ""edge.24"" real ")

Master’s thesis

233

a.Writeline (" face create wireframe ""edge.3"" ""edge.4""
 ""edge.14"" ""edge.18"" real ")
a.Writeline (" face create wireframe ""edge.8"" ""edge.17""
 ""edge.19"" ""edge.21"" real ")
a.Writeline (" face create wireframe ""edge.21"" ""edge.22""
 ""edge.23"" ""edge.24"" real ")
a.Writeline (" face create wireframe ""edge.5"" ""edge.18""
 ""edge.20"" ""edge.23"" real ")
a.Writeline (" face create wireframe ""edge.9"" ""edge.10""
 ""edge.15"" ""edge.19"" real ")
a.Writeline (" face create wireframe ""edge.11"" ""edge.15""
 ""edge.16"" ""edge.22"" real ")
a.Writeline (" face create wireframe ""edge.6"" ""edge.12""
 ""edge.16"" ""edge.20"" real ")

This first phase of the script has created the vertices, edges and faces of the bottom of the
computational domain. The result is shown in the following picture.

The faces are now copied twice in z-direction. First over a distance 5h; then these new faces
are copied over a distance 15h.

a.Writeline (" face cmove ""face.1"" ""face.2"" ""face.3""
 ""face.4"" ""face.5"" ""face.6"" ""face.7"" \ ")
a.Writeline (" ""face.8"" ""face.9"" multiple 1 offset 0 0 " & 5
 * h & " ")
a.Writeline (" face cmove ""face.10"" ""face.11"" ""face.12""
 ""face.13"" ""face.14"" ""face.15"" \ ")
a.Writeline (" ""face.16"" ""face.17"" ""face.18"" multiple 1
 offset 0 0 " & 15 * h & " ")

Then all edges are selected and connected together.

a.Writeline (" edge connect ""edge.1"" ""edge.3"" ""edge.4""
 ""edge.5"" ""edge.6"" ""edge.7"" ""edge.8"" \ ")
a.Writeline (" ""edge.9"" ""edge.10"" ""edge.11"" ""edge.12""
 ""edge.13"" ""edge.14"" ""edge.15"" \ ")
a.Writeline (" ""edge.16"" ""edge.17"" ""edge.18"" ""edge.19""
 ""edge.20"" ""edge.21"" ""edge.22"" \ ")
a.Writeline (" ""edge.23"" ""edge.24"" ""edge.25"" ""edge.26""
 ""edge.27"" ""edge.28"" ""edge.29"" \ ")
a.Writeline (" ""edge.30"" ""edge.31"" ""edge.32"" ""edge.33""
 ""edge.34"" ""edge.35"" ""edge.36"" \ ")
a.Writeline (" ""edge.37"" ""edge.38"" ""edge.39"" ""edge.40""
 ""edge.41"" ""edge.42"" ""edge.43"" \ ")

Master’s thesis

234

a.Writeline (" ""edge.44"" ""edge.45"" ""edge.46"" ""edge.47""
 ""edge.48"" ""edge.49"" ""edge.50"" \ ")
a.Writeline (" ""edge.51"" ""edge.52"" ""edge.53"" ""edge.54""
 ""edge.55"" ""edge.56"" ""edge.57"" \ ")
a.Writeline (" ""edge.58"" ""edge.59"" ""edge.60"" ""edge.61""
 ""edge.62"" ""edge.63"" ""edge.64"" \ ")
a.Writeline (" ""edge.65"" ""edge.66"" ""edge.67"" ""edge.68""
 ""edge.69"" ""edge.70"" ""edge.71"" \ ")
a.Writeline (" ""edge.72"" ""edge.73"" ""edge.74"" ""edge.75""
 ""edge.76"" ""edge.77"" ""edge.78"" \ ")
a.Writeline (" ""edge.79"" ""edge.80"" ""edge.81"" ""edge.82""
 ""edge.83"" ""edge.84"" ""edge.85"" \ ")
a.Writeline (" ""edge.86"" ""edge.87"" ""edge.88"" ""edge.89""
 ""edge.90"" ""edge.91"" ""edge.92"" \ ")
a.Writeline (" ""edge.94"" ""edge.95"" ""edge.96"" ""edge.2""
 ""edge.93"" real ")

After that edges are drawn in vertical direction between the various vertices.

a.Writeline (" edge create straight ""vertex.1"" ""vertex.17"" ")
a.Writeline (" vertex modify ""vertex.1"" ""vertex.3"" ""vertex.4""
 ""vertex.5"" ""vertex.6"" \ ")
a.Writeline (" ""vertex.7"" ""vertex.8"" ""vertex.9""
 ""vertex.10"" ""vertex.11"" ""vertex.12"" \ ")
a.Writeline (" ""vertex.13"" ""vertex.14"" ""vertex.15""
 ""vertex.16"" ""vertex.2"" color ""green"" ")
a.Writeline (" edge create straight ""vertex.2"" ""vertex.20"" ")
a.Writeline (" edge create straight ""vertex.3"" ""vertex.30"" ")
a.Writeline (" edge create straight ""vertex.4"" ""vertex.42"" ")
a.Writeline (" edge create straight ""vertex.5"" ""vertex.18"" ")
a.Writeline (" edge create straight ""vertex.6"" ""vertex.19"" ")
a.Writeline (" edge create straight ""vertex.7"" ""vertex.31"" ")
a.Writeline (" edge create straight ""vertex.8"" ""vertex.43"" ")
a.Writeline (" edge create straight ""vertex.9"" ""vertex.22"" ")
a.Writeline (" edge create straight ""vertex.10"" ""vertex.23"" ")
a.Writeline (" edge create straight ""vertex.11"" ""vertex.35"" ")
a.Writeline (" edge create straight ""vertex.12"" ""vertex.46"" ")
a.Writeline (" edge create straight ""vertex.13"" ""vertex.26"" ")
a.Writeline (" edge create straight ""vertex.14"" ""vertex.27"" ")
a.Writeline (" edge create straight ""vertex.15"" ""vertex.38"" ")
a.Writeline (" edge create straight ""vertex.16"" ""vertex.50"" ")
a.Writeline (" edge create straight ""vertex.17"" ""vertex.53"" ")
a.Writeline (" edge create straight ""vertex.18"" ""vertex.54"" ")
a.Writeline (" edge create straight ""vertex.19"" ""vertex.55"" ")
a.Writeline (" edge create straight ""vertex.20"" ""vertex.56"" ")
a.Writeline (" edge create straight ""vertex.22"" ""vertex.58"" ")
a.Writeline (" edge create straight ""vertex.23"" ""vertex.59"" ")
a.Writeline (" edge create straight ""vertex.26"" ""vertex.62"" ")
a.Writeline (" edge create straight ""vertex.27"" ""vertex.63"" ")
a.Writeline (" edge create straight ""vertex.30"" ""vertex.66"" ")
a.Writeline (" edge create straight ""vertex.31"" ""vertex.67"" ")
a.Writeline (" edge create straight ""vertex.35"" ""vertex.71"" ")
a.Writeline (" edge create straight ""vertex.38"" ""vertex.74"" ")
a.Writeline (" edge create straight ""vertex.42"" ""vertex.78"" ")
a.Writeline (" edge create straight ""vertex.43"" ""vertex.79"" ")
a.Writeline (" edge create straight ""vertex.46"" ""vertex.82"" ")
a.Writeline (" edge create straight ""vertex.50"" ""vertex.86"" ")

Master’s thesis

235

Now faces are created by stitching the edges together.

a.Writeline (" face create wireframe ""edge.1"" ""edge.25""
 ""edge.95"" ""edge.99"" real ")
a.Writeline (" face create wireframe ""edge.99"" ""edge.103""
 ""edge.2"" ""edge.29"" real ")
a.Writeline (" face create wireframe ""edge.3"" ""edge.33""
 ""edge.103"" ""edge.107"" real ")
a.Writeline (" face create wireframe ""edge.107"" ""edge.108""
 ""edge.4"" ""edge.34"" real ")
a.Writeline (" face create wireframe ""edge.108"" ""edge.109""
 ""edge.5"" ""edge.45"" real ")
a.Writeline (" face create wireframe ""edge.6"" ""edge.57""
 ""edge.109"" ""edge.110"" real ")
a.Writeline (" face create wireframe ""edge.106"" ""edge.110""
 ""edge.12"" ""edge.58"" real ")
a.Writeline (" face create wireframe ""edge.102"" ""edge.106""
 ""edge.11"" ""edge.53"" real ")
a.Writeline (" face create wireframe ""edge.98"" ""edge.102""
 ""edge.10"" ""edge.50"" real ")
a.Writeline (" face create wireframe ""edge.97"" ""edge.98""
 ""edge.9"" ""edge.49"" real ")
a.Writeline (" face create wireframe ""edge.96"" ""edge.97""
 ""edge.8"" ""edge.37"" real ")
a.Writeline (" face create wireframe ""edge.95"" ""edge.96""
 ""edge.7"" ""edge.28"" real ")
a.Writeline (" face create wireframe ""edge.96"" ""edge.17""
 ""edge.100"" ""edge.27"" real ")
a.Writeline (" face create wireframe ""edge.19"" ""edge.38""
 ""edge.97"" ""edge.101"" real ")
a.Writeline (" face create wireframe ""edge.18"" ""edge.35""
 ""edge.104"" ""edge.108"" real ")
a.Writeline (" face create wireframe ""edge.20"" ""edge.46""
 ""edge.105"" ""edge.109"" real ")
a.Writeline (" face create wireframe ""edge.13"" ""edge.26""
 ""edge.99"" ""edge.100"" real ")
a.Writeline (" face create wireframe ""edge.14"" ""edge.30""
 ""edge.103"" ""edge.104"" real ")
a.Writeline (" face create wireframe ""edge.15"" ""edge.51""
 ""edge.101"" ""edge.102"" real ")
a.Writeline (" face create wireframe ""edge.16"" ""edge.54""
 ""edge.105"" ""edge.106"" real ")
a.Writeline (" face create wireframe ""edge.21"" ""edge.39""
 ""edge.100"" ""edge.101"" real ")
a.Writeline (" face create wireframe ""edge.22"" ""edge.42""
 ""edge.101"" ""edge.105"" real ")
a.Writeline (" face create wireframe ""edge.23"" ""edge.43""
 ""edge.104"" ""edge.105"" real ")
a.Writeline (" face create wireframe ""edge.24"" ""edge.31""
 ""edge.100"" ""edge.104"" real ")
a.Writeline (" face create wireframe ""edge.28"" ""edge.64""
 ""edge.111"" ""edge.114"" real ")
a.Writeline (" face create wireframe ""edge.37"" ""edge.73""
 ""edge.114"" ""edge.119"" real ")
a.Writeline (" face create wireframe ""edge.49"" ""edge.85""
 ""edge.119"" ""edge.123"" real ")
a.Writeline (" face create wireframe ""edge.25"" ""edge.61""
 ""edge.111"" ""edge.112"" real ")
a.Writeline (" face create wireframe ""edge.112"" ""edge.29""
 ""edge.65"" ""edge.115"" real ")

Master’s thesis

236

a.Writeline (" face create wireframe ""edge.115"" ""edge.33""
 ""edge.69"" ""edge.117"" real ")
a.Writeline (" face create wireframe ""edge.34"" ""edge.70""
 ""edge.117"" ""edge.118"" real ")
a.Writeline (" face create wireframe ""edge.45"" ""edge.81""
 ""edge.118"" ""edge.122"" real ")
a.Writeline (" face create wireframe ""edge.57"" ""edge.93""
 ""edge.122"" ""edge.126"" real ")
a.Writeline (" face create wireframe ""edge.123"" ""edge.124""
 ""edge.50"" ""edge.86"" real ")
a.Writeline (" face create wireframe ""edge.124"" ""edge.125""
 ""edge.53"" ""edge.89"" real ")
a.Writeline (" face create wireframe ""edge.125"" ""edge.126""
 ""edge.58"" ""edge.94"" real ")
a.Writeline (" face create wireframe ""edge.27"" ""edge.63""
 ""edge.114"" ""edge.113"" real ")
a.Writeline (" face create wireframe ""edge.38"" ""edge.74""
 ""edge.119"" ""edge.120"" real ")
a.Writeline (" face create wireframe ""edge.35"" ""edge.71""
 ""edge.116"" ""edge.118"" real ")
a.Writeline (" face create wireframe ""edge.46"" ""edge.82""
 ""edge.121"" ""edge.122"" real ")
a.Writeline (" face create wireframe ""edge.26"" ""edge.62""
 ""edge.112"" ""edge.113"" real ")
a.Writeline (" face create wireframe ""edge.30"" ""edge.66""
 ""edge.115"" ""edge.116"" real ")
a.Writeline (" face create wireframe ""edge.51"" ""edge.87""
 ""edge.120"" ""edge.124"" real ")
a.Writeline (" face create wireframe ""edge.54"" ""edge.90""
 ""edge.121"" ""edge.125"" real ")

After that all faces are selected and connected.

a.Writeline (" face connect ""face.1"" ""face.2"" ""face.3""
 ""face.4"" ""face.5"" ""face.6"" ""face.7"" \ ")
a.Writeline (" ""face.8"" ""face.9"" ""face.10"" ""face.19""
 ""face.11"" ""face.12"" ""face.13"" \ ")
a.Writeline (" ""face.14"" ""face.15"" ""face.16"" ""face.17""
 ""face.18"" ""face.20"" ""face.21"" \ ")
a.Writeline (" ""face.22"" ""face.23"" ""face.24"" ""face.25""
 ""face.26"" ""face.27"" ""face.28"" \ ")
a.Writeline (" ""face.29"" ""face.30"" ""face.31"" ""face.32""
 ""face.33"" ""face.34"" ""face.35"" \ ")
a.Writeline (" ""face.36"" ""face.37"" ""face.38"" ""face.39""
 ""face.40"" ""face.41"" ""face.42"" \ ")
a.Writeline (" ""face.43"" ""face.44"" ""face.45"" ""face.46""
 ""face.47"" ""face.48"" ""face.49"" \ ")
a.Writeline (" ""face.50"" ""face.51"" ""face.52"" ""face.53""
 ""face.54"" ""face.55"" ""face.56"" \ ")
a.Writeline (" ""face.57"" ""face.58"" ""face.59"" ""face.60""
 ""face.61"" ""face.62"" ""face.63"" \ ")
a.Writeline (" ""face.64"" ""face.65"" ""face.66"" ""face.67""
 ""face.68"" ""face.69"" ""face.70"" \ ")
a.Writeline (" ""face.71"" real ")
a.Writeline (" face create wireframe ""edge.39"" ""edge.75""
 ""edge.113"" ""edge.120"" real ")
a.Writeline (" face create wireframe ""edge.42"" ""edge.78""
 ""edge.120"" ""edge.121"" real ")
a.Writeline (" face create wireframe ""edge.43"" ""edge.79""
 ""edge.116"" ""edge.121"" real ")

Master’s thesis

237

a.Writeline (" face create wireframe ""edge.31"" ""edge.67""
 ""edge.113"" ""edge.116"" real ")
a.Writeline (" face connect ""face.1"" ""face.2"" ""face.3""
 ""face.4"" ""face.5"" ""face.6"" ""face.7"" \ ")
a.Writeline (" ""face.8"" ""face.9"" ""face.10"" ""face.19""
 ""face.11"" ""face.12"" ""face.13"" \ ")
a.Writeline (" ""face.14"" ""face.15"" ""face.16"" ""face.17""
 ""face.18"" ""face.20"" ""face.21"" \ ")
a.Writeline (" ""face.22"" ""face.23"" ""face.24"" ""face.25""
 ""face.26"" ""face.27"" ""face.28"" \ ")
a.Writeline (" ""face.29"" ""face.30"" ""face.31"" ""face.32""
 ""face.33"" ""face.34"" ""face.35"" \ ")
a.Writeline (" ""face.36"" ""face.37"" ""face.38"" ""face.39""
 ""face.40"" ""face.41"" ""face.42"" \ ")
a.Writeline (" ""face.43"" ""face.44"" ""face.45"" ""face.46""
 ""face.47"" ""face.48"" ""face.49"" \ ")
a.Writeline (" ""face.50"" ""face.51"" ""face.52"" ""face.53""
 ""face.54"" ""face.55"" ""face.56"" \ ")
a.Writeline (" ""face.57"" ""face.58"" ""face.59"" ""face.60""
 ""face.61"" ""face.62"" ""face.63"" \ ")
a.Writeline (" ""face.64"" ""face.65"" ""face.66"" ""face.67""
 ""face.68"" ""face.69"" ""face.70"" \ ")
a.Writeline (" ""face.71"" ""face.72"" ""face.73"" ""face.74""
 ""face.75"" real ")

When all faces are connected, the volumes of the wind environment and the top cylinder are
created by stitching the faces together.

a.Writeline (" volume create stitch ""face.1"" ""face.10""
 ""face.28"" ""face.39"" ""face.40"" \ ")
a.Writeline (" ""face.44"" real ")
a.Writeline (" volume create stitch ""face.4"" ""face.13""
 ""face.38"" ""face.40"" ""face.41"" \ ")
a.Writeline (" ""face.48"" real ")
a.Writeline (" volume create stitch ""face.7"" ""face.16""
 ""face.36"" ""face.37"" ""face.41"" \ ")
a.Writeline (" ""face.46"" real ")
a.Writeline (" volume create stitch ""face.2"" ""face.11""
 ""face.29"" ""face.44"" ""face.45"" \ ")
a.Writeline (" ""face.51"" real ")
a.Writeline (" volume create stitch ""face.5"" ""face.48""
 ""face.49"" ""face.50"" ""face.51"" \ ")
a.Writeline (" ""face.14"" real ")
a.Writeline (" volume create stitch ""face.8"" ""face.17""
 ""face.35"" ""face.46"" ""face.47"" \ ")
a.Writeline (" ""face.49"" real ")
a.Writeline (" volume create stitch ""face.3"" ""face.12""
 ""face.30"" ""face.31"" ""face.42"" \ ")
a.Writeline (" ""face.45"" real ")
a.Writeline (" volume create stitch ""face.6"" ""face.15""
 ""face.32"" ""face.42"" ""face.43"" \ ")
a.Writeline (" ""face.50"" real ")
a.Writeline (" volume create stitch ""face.9"" ""face.18""
 ""face.33"" ""face.34"" ""face.43"" \ ")
a.Writeline (" ""face.47"" real ")
a.Writeline (" volume create stitch ""face.10"" ""face.19""
 ""face.52"" ""face.55"" ""face.64"" \ ")
a.Writeline (" ""face.68"" real ")
a.Writeline (" volume create stitch ""face.13"" ""face.22""
 ""face.53"" ""face.65"" ""face.64"" \ ")

Master’s thesis

238

a.Writeline (" ""face.72"" real ")
a.Writeline (" volume create stitch ""face.16"" ""face.25""
 ""face.54"" ""face.61"" ""face.65"" \ ")
a.Writeline (" ""face.70"" real ")
a.Writeline (" volume create stitch ""face.11"" ""face.20""
 ""face.56"" ""face.68"" ""face.69"" \ ")
a.Writeline (" ""face.75"" real ")
a.Writeline (" volume create stitch ""face.14"" ""face.23""
 ""face.72"" ""face.73"" ""face.74"" \ ")
a.Writeline (" ""face.75"" real ")
a.Writeline (" volume create stitch ""face.17"" ""face.26""
 ""face.62"" ""face.70"" ""face.71"" \ ")
a.Writeline (" ""face.73"" real ")
a.Writeline (" volume create stitch ""face.12"" ""face.21""
 ""face.57"" ""face.58"" ""face.66"" \ ")
a.Writeline (" ""face.69"" real ")
a.Writeline (" volume create stitch ""face.15"" ""face.24""
 ""face.59"" ""face.66"" ""face.67"" \ ")
a.Writeline (" ""face.74"" real ")
a.Writeline (" volume create stitch ""face.18"" ""face.27""
 ""face.60"" ""face.63"" ""face.71"" \ ")
a.Writeline (" ""face.67"" real ")

This second phase of the script has created the frame of the computational domain. The
result is shown in the following picture.

The next step is to mesh the domain. First the circles are meshed with grading 1.0 and
interval count 36.

a.Writeline (" edge picklink ""edge.21"" ")
a.Writeline (" edge mesh ""edge.21"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge picklink ""edge.22"" ")
a.Writeline (" edge mesh ""edge.22"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge picklink ""edge.23"" ")
a.Writeline (" edge mesh ""edge.23"" successive ratio1 1 intervals
 36 ")

Master’s thesis

239

a.Writeline (" edge picklink ""edge.24"" ")
a.Writeline (" edge mesh ""edge.24"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.31"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.31"" ")
a.Writeline (" edge mesh ""edge.31"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.39"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.39"" ")
a.Writeline (" edge mesh ""edge.39"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.42"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.42"" ")
a.Writeline (" edge mesh ""edge.42"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.43"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.43"" ")
a.Writeline (" edge mesh ""edge.43"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.67"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.67"" ")
a.Writeline (" edge mesh ""edge.67"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.75"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.75"" ")
a.Writeline (" edge mesh ""edge.75"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.78"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.78"" ")
a.Writeline (" edge mesh ""edge.78"" successive ratio1 1 intervals
 36 ")
a.Writeline (" edge delete ""edge.79"" keepsettings onlymesh ")
a.Writeline (" edge picklink ""edge.79"" ")
a.Writeline (" edge mesh ""edge.79"" successive ratio1 1 intervals
 36 ")

Then the short horizontal edges, except the 12 short edges in the middle of the outside
edges, are meshed with first length (13/60)*h and interval count 16.

a.Writeline (" edge modify ""edge.64"" ""edge.28"" ""edge.7""
 ""edge.13"" ""edge.26"" ""edge.30"" \ ")
a.Writeline (" ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""
 ""edge.34"" ""edge.4"" backward ")
a.Writeline (" edge picklink ""edge.64"" ""edge.28"" ""edge.7""
 ""edge.13"" ""edge.26"" ""edge.30"" \ ")
a.Writeline (" ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""
 ""edge.34"" ""edge.4"" ")
a.Writeline (" edge mesh ""edge.64"" ""edge.28"" ""edge.7""
 ""edge.13"" ""edge.26"" ""edge.30"" \ ")
a.Writeline (" ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""
 ""edge.34"" ""edge.4"" firstlength \ ")
a.Writeline (" ratio1 " & (13 / 60) * h & " intervals 16")
a.Writeline (" edge picklink ""edge.93"" ""edge.57"" ""edge.6""
 ""edge.16"" ""edge.54"" ""edge.90"" \ ")
a.Writeline (" ""edge.87"" ""edge.51"" ""edge.15"" ""edge.9""
 ""edge.49"" ""edge.85"" ")
a.Writeline (" edge mesh ""edge.85"" ""edge.49"" ""edge.9""
 ""edge.15"" ""edge.51"" ""edge.87"" \ ")
a.Writeline (" ""edge.90"" ""edge.54"" ""edge.16"" ""edge.6""
 ""edge.57"" ""edge.93"" firstlength \ ")

Master’s thesis

240

a.Writeline (" ratio1 " & (13 / 60) * h & " intervals 16")

The long horizontal edges are meshed with first length (13/60)*h and interval count 23.

a.Writeline (" edge modify ""edge.1"" ""edge.25"" ""edge.61""
 backward ")
a.Writeline (" edge picklink ""edge.1"" ""edge.25"" ""edge.61"" ")
a.Writeline (" edge modify ""edge.17"" ""edge.27"" ""edge.63""
 backward ")
a.Writeline (" edge mesh ""edge.1"" ""edge.25"" ""edge.61""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge modify ""edge.19"" ""edge.38"" ""edge.74""
 backward ")
a.Writeline (" edge picklink ""edge.19"" ""edge.38"" ""edge.74"" ")
a.Writeline (" edge mesh ""edge.19"" ""edge.38"" ""edge.74""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge modify ""edge.10"" ""edge.50"" ""edge.86""
 backward ")
a.Writeline (" edge picklink ""edge.10"" ""edge.50"" ""edge.86"" ")
a.Writeline (" edge mesh ""edge.10"" ""edge.50"" ""edge.86""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge picklink ""edge.69"" ""edge.33"" ""edge.3"" ")
a.Writeline (" edge mesh ""edge.3"" ""edge.33"" ""edge.69""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge picklink ""edge.71"" ""edge.35"" ""edge.18"" ")
a.Writeline (" edge mesh ""edge.18"" ""edge.35"" ""edge.71""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge picklink ""edge.63"" ""edge.27"" ""edge.17"" ")
a.Writeline (" edge mesh ""edge.17"" ""edge.27"" ""edge.63""
 firstlength ratio1 " & (13 / 60) * h & " intervals 23")
a.Writeline (" edge picklink ""edge.94"" ""edge.58"" ""edge.12""
 ""edge.20"" ""edge.46"" ""edge.82"" ")
a.Writeline (" edge mesh ""edge.82"" ""edge.46"" ""edge.20""
 ""edge.12"" ""edge.58"" ""edge.94"" \ ")
a.Writeline (" firstlength ratio1 " & (13 / 60) * h & " intervals
 23")

The short vertical edges are meshed with interval size 0.1h and grading 1.0

a.Writeline (" edge picklink ""edge.95"" ")
a.Writeline (" edge mesh ""edge.95"" successive ratio1 1 size " &
 (6 / 60) * h)
a.Writeline (" edge picklink ""edge.110"" ""edge.109"" ""edge.108""
""edge.107"" ""edge.106"" \ ")
a.Writeline (" ""edge.102"" ""edge.101"" ""edge.105""
""edge.104"" ""edge.100"" ""edge.103"" ""edge.99"" \ ")
a.Writeline (" ""edge.98"" ""edge.97"" ""edge.96"" ")
a.Writeline (" edge mesh ""edge.96"" ""edge.97"" ""edge.98""
""edge.99"" ""edge.103"" ""edge.100"" \ ")
a.Writeline (" ""edge.104"" ""edge.105"" ""edge.101""
""edge.102"" ""edge.106"" ""edge.107"" \ ")
a.Writeline (" ""edge.108"" ""edge.109"" ""edge.110"" successive
ratio1 1 size " & 6 * h / 60)

The long vertical edges are meshed with first length 0.1h and interval count 24

a.Writeline (" edge picklink ""edge.111"" ""edge.114"" ""edge.119""
 ""edge.123"" ""edge.124"" \ ")
a.Writeline (" ""edge.125"" ""edge.120"" ""edge.121""
 ""edge.113"" ""edge.116"" ""edge.112"" \ ")

Master’s thesis

241

a.Writeline (" ""edge.115"" ""edge.117"" ""edge.118""
 ""edge.122"" ""edge.126"" ")
a.Writeline (" edge mesh ""edge.126"" ""edge.122"" ""edge.118""
 ""edge.117"" ""edge.115"" ""edge.112"" \ ")
a.Writeline (" ""edge.116"" ""edge.113"" ""edge.121""
 ""edge.120"" ""edge.125"" ""edge.124"" \ ")
a.Writeline (" ""edge.123"" ""edge.119"" ""edge.114""
 ""edge.111"" firstlength ratio1 " & 6 * h / 60 & "
 intervals \ ")
a.Writeline (" 24")

All edges of the computational domain are now meshed. The result is shown below.

The next step is to mesh the volumes of the domain. Apart from the cylinders, the volumes of
the computational domain are meshed with hexahedral elements with the map scheme.

a.Writeline (" volume mesh ""volume.1"" ""volume.2"" ""volume.3""
 ""volume.4"" ""volume.6"" ""volume.7"" \ ")
a.Writeline (" ""volume.8"" ""volume.9"" ""volume.10""
 ""volume.11"" ""volume.12"" ""volume.13"" \ ")
a.Writeline (" ""volume.15"" ""volume.16"" ""volume.17""
 ""volume.18"" map size 1")

Finally the boundary zones are assigned to the boundaries of the domain.

a.Writeline (" physics create ""Inlet"" btype ""VELOCITY_INLET""
face ""face.54"" ""face.53"" \ ")
a.Writeline (" ""face.52"" ""face.38"" ""face.39"" ""face.37"" ")
a.Writeline (" physics create ""Outlet"" btype ""PRESSURE_OUTLET""
 face ""face.58"" ""face.31"" \ ")
a.Writeline (" ""face.59"" ""face.32"" ""face.60"" ""face.33"" ")
a.Writeline (" physics create ""Right"" btype ""SYMMETRY"" face
 ""face.28"" ""face.29"" ""face.30"" \ ")
a.Writeline (" ""face.56"" ""face.57"" ""face.55"" ")
a.Writeline (" physics create ""Left"" btype ""SYMMETRY"" face
 ""face.61"" ""face.62"" \ ")
a.Writeline (" ""face.63"" ""face.36"" ""face.35"" ""face.34"" ")
a.Writeline (" physics create ""Ground_far"" btype ""WALL"" face
 ""face.1"" ""face.4"" ""face.7"" \ ")

Master’s thesis

242

a.Writeline (" ""face.8"" ""face.2"" ""face.3"" ""face.6""
 ""face.9"" ")
a.Writeline (" physics create ""Sky"" btype ""VELOCITY_INLET"" face
 ""face.25"" ""face.26"" \ ")
a.Writeline (" ""face.27"" ""face.24"" ""face.22"" ""face.19""
 ""face.21"" ""face.20"" ""face.23"" ")
a.Writeline (" window modify volume invisible mesh ")

a.Close

End Sub

The result of the journal file is shown in the following figure. The environment is meshed; the
two cylinders in the middle are not. In the bottom cylinder the research area will be placed,
after which the two cylinders can be meshed.

Master’s thesis

243

Appendix M: Steady calculation procedure in Fluent

In this appendix the procedure to setup a steady calculation in Fluent is given. Text and
pictures are derived from Van Nalta [16] and where necessary slightly adapted. At the end of
the appendix the script of the user-defined function is given that adds the turbulence
quantities and the logarithmic velocity profile to the calculation.

1. Read the mesh file from Gambit (File → Read → Case…).

2. Check the grid (Grid → Check).

Fluent automatically performs a number of
checks in connection with the integrity of the
grid. The user should check whether there are
no negative volumes (minimum volume > 0)
and faces (minimum face area > 0).

3. Display the grid and visually inspect the grid (Display → Grid…).

Check whether all boundaries are present and
of the appropriate type. Inspect the grid for
gaps and strangely distorted cells.

Step 1. Reading the mesh file.

Step 2. Checking the gird.

Step 3. Visually checking the gird.

Master’s thesis

244

4. Interpret the User-defined function (Define → User-Defined → Functions →

Interpreted…).

Place the UDF preferably in the same folder as
the mesh file.

5. Choose the solver (Define → Models → Solver…).

Segregated, Implicit, 3D, Steady, Absolute,
Cell-Based, Superficial Velocity. These are the
default values.

6. Define the turbulence model (Define → Models → Viscous…)

k-epsilon (2 eqn), Realizable, Standard Wall
Functions, Default Model Constants (1.9, 1,
1.2), User-Defined Functions: all none.

Step 4. The interpreted UDF panel.

Step 5. Setting the solver.

Step 6. Defining the turbulence model.

Master’s thesis

245

7. Define the boundary conditions (Define → Boundary Conditions…)

a. building: (Set… → Momentum)
Stationary wall, No slip, 0.8, 0.5.

For each building the roughness height
and the roughness constant have to be
defined. The roughness height
depends on the friction factor of the
façades.

b. inlet: (Set…) Components, Absolute,
Cartesian (X, Y, Z), udf ux, constant 0,
constant 0, K and Epsilon, udf k, udf
epsilon.

c. outlet: (Set…) constant 1, Normal to
Boundary, K and Epsilon, udf k, udf
epsilon.

d. sky: (Set…) Components, Absolute,
Cartesian (X, Y, Z), udf ux, constant 0,
constant 0, K and Epsilon, udf k, udf
epsilon.

Step 7a. Defining the boundary condition at
the front of the cube.

Step 7b. Defining the boundary condition at
the inlet of the virtual wind tunnel.

Step 7c. Defining the boundary condition at
the outlet of the virtual wind tunnel.

Step 7d. Defining the boundary condition at
the top of the virtual wind tunnel.

Master’s thesis

246

e. ground: (Set… → Momentum)

Stationary wall, No slip, 2.6, 0.75.

For unbuilt areas the roughness length
is 0.2, what gives a roughness height
of 2.6. If a built area is placed into the
domain, the roughness length and
roughness height have to be defined
again.

8. Set reference values (Report → Reference Values…)

Change the Pressure (pascal) to 1 and the
Velocity (m/s) to 31.23. Keep the default
values for the other parameters.

9. Create points (Surface → Point…)

These are the points that are used to monitor
convergence. Some stratetic points have to be
chosen to monitor the convergence:

- point just above the building
- point just behind the building

Step 7e. Defining the boundary condition at
the ground of the virtual wind tunnel.

Step 8. The Reference Values that have been
used for the calculations.

Step 9. Creating a point above the roof of the
cube, to be used to monitor convergence.

Master’s thesis

247

10. Choose the discretization schemes (Solve → Controls → Solution…).

Default Under-Relaxation Factors (0.3, 1, 1,
0.7, 0.8, 0.8, 1), Default discretization
schemes (Standard, SIMPLE, First Order
Upwind, First Order Upwind, First Order
Upwind).

11. Set the convergence monitors (Solve → Monitors →)

a. residuals (→ Residual…)
plot all residuals, scaled, with
convergence criterion 10e-9.

b. drag at back (→ Force…)
Plot, Write, Drag coefficient, cube
back, Force Vector
(1,0,0), File Name, Apply.

An extra monitor is added to monitor
the convergence of drag at the back of
the building

Step 10. The default settings for the solution
control panel.

Step 11a. Settings for monitoring the
convergence of the residuals. Convergence is
checked and the calculation is stopped when
the desired criterion is reached.

Step 11b. Settings for monitoring the
convergence of the drag at the back of the
cube.

Master’s thesis

248

c. velocity magnitude above roof and at the back
 (→ Surface…)

2 Surface Monitors, Plot, Write, Every
Iteration,

monitor-1: (Define…)

Velocity Magnitude, Vertex
Maximum, Iteration on X
Axis, monitor-point-back,
File Name.

monitor-2: (Define…)

Velocity Magnitude, Vertex
Maximum, Iteration on X
Axis, monitor-point-roof,
File Name.

12. Set the autosave option (File → Write → Autosave…)

13. Initialise the solution (Solve → Initialize → Initialize…)

Compute From inlet, Init.

Step 11b. Monitoring the convergence of the
velocity magnitude at two characteristic
points.

Step 12. Enable the autosave option, to
automatically save the case and data files at
a certain frequency.

Step 13. Initializing the solution.

Master’s thesis

249

14. Iterate (Solve → Iterate…)

1000 iterations, reporting interval 1, udf
update interval 1.

The screen during the iteration procedure.

Step 14. Starting the iteration procedure.

Master’s thesis

250

The user-defined function that adds the turbulence quantities and the logarithmic velocity
profile to the calculation is given by:

#include "udf.h"
#define z0 0.2
#define d 0
#define kappa 0.42
#define uster 2.3
#define cmu 0.09
#define visc 1.7894e-05
#define rho 1.225

DEFINE_PROFILE(ux,threadu,nvu)
{
 face_t f;
 real a[ND_ND];
 real x;
 real y;
 real z;

 begin_f_loop (f,threadu)
 {
 F_CENTROID(a,f,threadu);
 x=a[0];
 y=a[1];
 z=a[2];
 if (z<=d)
 {
 F_PROFILE(f,threadu,nvu)=0;
 }
 else
 F_PROFILE(f,threadu,nvu)=(uster/kappa)*log((z-d)/z0);
 }
 end_f_loop (f,threadu)
}

DEFINE_PROFILE(k,threadk,nvk)
{
 face_t f;
 real x[ND_ND];

 begin_f_loop (f,threadk)
 {
 F_CENTROID(x,f,threadk);
 F_PROFILE(f,threadk,nvk)=pow(uster,2)/sqrt(cmu);
 }
 end_f_loop (f,threadk)
}

Master’s thesis

251

DEFINE_PROFILE(epsilon,threade,nve)
{
 face_t f;
 real x[ND_ND];

 begin_f_loop (f,threade)
 {
 F_CENTROID(x,f,threade);
 if (x[2]<=d)
 F_PROFILE(f,threade,nve)=10;
 else
 F_PROFILE(f,threade,nve)=pow(uster,3)/(kappa*(x[2]-d));
 }
 end_f_loop (f,threade)
}

Master’s thesis

252

Master’s thesis

253

Appendix N: Step by step guide - grid generation methods

In this appendix a step by step guide is given to mesh the lower cylinder containing the
model of interest with one of the two developed grid generation methods. The first method
uses hexahedral elements and can be used to mesh simple, straight geometry with the same
layout from the bottom to the top of the building model. The second grid generation method
uses tetrahedral elements and can be used to mesh more complex geometry. Before one of
the methods is applied, the computational domain has to be generated first. Because the
dimensions of the domain depend on the height of the highest building in the domain and the
radius of the research area, the fourth design tool can be used to generate the required
domain. The domain is constructed around the origin, with the center of the cylinder’s bottom
at (0, 0, 0). After the model of interest is imported in the lower cylinder, it must be placed in
the middle of the cylinder, at the origin. It is recommended to move the building model to the
origin already in the CAD system where it is created. When it is exported to Gambit, the
model is automatically placed at the right position then. When the environment also has to be
taken into account, it can be generated with the developed design tools. The tools
automatically place the center of the research area at the origin. Before the research area is
imported into Gambit, the circular ground surface first has to be removed manually from the
model, for example in Rhinoceros. The plane was generated for visualization reasons, but the
Van Nalta domain uses its own ground surface. When the ground plane is removed and the
model is imported in Gambit, one of the two grid generation methods can be applied to mesh
the cylinders of the domain.

N.1 Hexahedral elements

1. Subtract the building model(s) from the lower cylinder

Geometry -> Volume -> Boolean Operations -> Subtract
Volume = volume lower cylinder (= volume 5)
Subtract volume(s) = volume(s) building model(s) (= from volume 19)

2. Find the shortest edge of the research area

Geometry -> Edge -> Connect/Disconnect -> Real and Virtual -> Highlight shortest edge

3. Attach size function to ground edges building model(s) and bottom of cylinder

Tools -> Sizing function -> Create
Type = fixed
Sources: bottom edges of building model(s)
Attachment: circular ground face of lower cylinder (= face 5)
Parameters: Start size: length of the shortest edge at maximum
 Growth rate: 1.02
 Size limit: height of the building model (this is ignored because the circle

 edge is already meshed)

4. Mesh ground face of bottom cylinder and top of the building model(s)

Mesh -> Face -> Mesh faces
Mesh the ground face of the bottom cylinder (= face.5) and the top face(s) of the
building(s) with Quad elements and the Pave scheme

Master’s thesis

254

5. Link mesh distribution on ground edges of building model(s) with top edges

Mesh -> Edge -> Link/Unlink
First select the ground edge; then select the top edge. Repeat the procedure for all edges

6. Mesh the vertical edges of the building model(s)

Mesh -> Edge -> Mesh edges
Mesh all vertical edges of the building model(s) with an interval size equal to the start
size of the size function

7. Mesh the volume of the lower cylinder

Mesh -> Volume -> Mesh volumes
Mesh the lower cylinder (= volume 5) with Hex/Wedge elements and the Cooper scheme

8. Mesh the volume of the upper cylinder

Mesh -> Volume -> Mesh volumes
Mesh the upper cylinder (= volume 14) with Hex/Wedge elements and the Cooper
scheme

9. Assign boundary zones on the building(s) faces and the nearby ground face

Zones -> Specify boundary types -> Add

Building of interest:

a. Front of building model -> “Building_front“ -> wall
b. Back of building model -> “Building_back“ -> wall
c. Left side of building model -> “Building_left“ -> wall
d. Right side of building model -> “Building_right“ -> wall
e. Top of building model -> “Building_top“ -> wall

Other buildings in the research area:

a. Front, back, left, right and top of building model -> “Building_name “ -> wall

Bottom of the lower cylinder
a. Circular ground face -> “Ground_near“ -> wall

10. Export the mesh

File -> Export -> Mesh

Master’s thesis

255

N.2 Tetrahedral elements – Automatic meshing

1. Subtract the building model(s) from the lower cylinder

Geometry -> Volume -> Boolean Operations -> Subtract
Volume = volume lower cylinder (= volume 5)
Subtract volume(s) = volume(s) building model(s) (= from volume 19)

2. Find the shortest edge of the research area

Geometry -> Edge -> Connect/Disconnect -> Real and Virtual -> Highlight shortest edge

3. Mesh all edges of the building model(s)

Mesh -> Edge -> Mesh edges
Mesh all edges of the building model(s) with an interval size equal to the length of the
shortest edge at maximum. That edge is meshed with at least one cell then. However, if
possible, it is preferred to choose a smaller interval size.

4. Mesh the volume of the lower cylinder

Mesh -> Volume -> Mesh volumes
Mesh the lower cylinder (= volume 5) with Tet/Hybrid elements and the TGrid scheme

5. Mesh the volume of the upper cylinder

Mesh -> Volume -> Mesh volumes
Mesh the upper cylinder (= volume 14) with Tet/Hybrid elements and the TGrid scheme

6. Assign boundary zones on the building(s) faces and the nearby ground face

Zones -> Specify boundary types -> Add

Building of interest:

a. Front of building model -> “Building_front“ -> wall
b. Back of building model -> “Building_back“ -> wall
c. Left side of building model -> “Building_left“ -> wall
d. Right side of building model -> “Building_right“ -> wall
e. Top of building model -> “Building_top“ -> wall

Other buildings in the research area:

a. Front, back, left, right and top of building model -> “Building_name “ -> wall

Bottom of the lower cylinder
a. Circular ground face -> “Ground_near“ -> wall

7. Export the mesh

File -> Export -> Mesh

Master’s thesis

256

Master’s thesis

257

Appendix O: Least Squares method

During this thesis two methods were proposed to simplify the enclosing curves that are
generated from the outer points of a building model. The NURBS fitting method is already
developed and seems to work properly. Another proposed method is the Least Squares
method. In this appendix the method is discussed extensively and examples are given to fit a
straight line and a parabola through a certain dataset. To simplify the enclosing curves with
the Least Squares method, a third degree polynomial at minimal is required as the enclosing
curves are closed curves. However, the method is not implemented yet for simplifying such
curves and additional research is required to develop the method further.

Least Squares method
The Least Squares method in general is a method to determine the best-fit curve through a
certain dataset. The Least Squares method is based on minimizing the squared error in
vertical direction between a data point and a parametric curve. The smaller the difference
between the original dataset and the proposed curve, the better the fit. Given a dataset with
n points (x1,y1), (x2,y2), …, (xn,yn), the polynomial that fits the dataset is given by:

1 2(: , ,...,)ky f x c c c= (O.1)

where the set of parameters c are the fitting parameters of the polynomial. By choosing the
right values for these parameters, the error between the points and the curve can be
minimized. The fitting polynomial can be expressed in the general linear form:

1 2 3() () () () ... ()ky x c x c x c x c x= + + + + (O.2)

In order to fit a straight line through the dataset, a first degree polynomial is required. Fitting
a parabola through the dataset requires a second degree polynomial. In case of n data
points, the errors between the curve and the data points are:

1 1 1 2 1 3 1 1 1

2 1 2 2 2 3 2 2 2

1 2 3

() () () ... ()
() () () ... ()

.

.
() () () ... ()

k

k

n n n n k n n

c x c x c x c x y
c x c x c x c x y

c x c x c x c x y

ε
ε

ε

= + + + + −
= + + + + −

= + + + + −

 (O.3)

The total squared error that has to be minimized for a set of n data points is:

2 2
1 1 2 2

1 1
[() () ... ()]

n n

i k i i
i i

S c x c x c x yε
= =

= = + + + −∑ ∑ (O.4)

Master’s thesis

258

The minimum value for S can be found by finding a set of parameters c that makes the errors
at the data points as small as possible. This minimum value is derived when all partial
derivatives of S are equal to zero. For a system of k parameters c it follows:

1

2

0

0

.

0
k

S
c
S
c

S
c

∂
=

∂
∂

=
∂

∂
=

∂

 (O.5)

With the obtained values for the parameters c the fitting polynomial that minimizes the
squared error for all data points can be formulated. On the following pages the least squares
method is explained with two examples. The first example fits a straight line through a
certain dataset; the second example fits a parabola through the dataset.

If a certain dataset contains the following eight points for example:

x 1 2 3 4 5 6 7 8
y 2 3 3 2 3 4 3 2

In order to fit a straight line through the dataset, a first degree polynomial y has to be found
that minimizes S:

1 2y c c x= + (O.6)

8

2
1 2

1
[]i i

i
S y c c x

=

= − −∑ (O.7)

The partial derivatives of S with respect to c1 and c2 are:

8

1 2
11

2 () 0i i
i

S y c c x
c =

∂
= − − − =

∂ ∑ (O.8)

8

1 2
12

2 () 0i i i
i

S x y c c x
c =

∂
= − − − =

∂ ∑ (O.9)

Some rearrangement results in:

8 8

1 2
1 1

8i i
i i

y c x c
= =

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

∑ ∑ (O.10)

8 8 8

2
1 2

1 1 1
i i i i

i i i

x y x c x c
= = =

⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ (O.11)

Master’s thesis

259

To obtain a solution for the parameters c1 and c2, the four sums Σxi, Σyi, Σ(xi)2 and Σxiyi have
to be inserted into Equations (O.10) and (O.11). The following table gives the values of the
different variables.

i 1 2 3 4 5 6 7 8 Σ
xi 1 2 3 4 5 6 7 8 36
yi 2 3 3 2 3 4 3 2 22
(xi)2 1 4 9 16 26 36 49 64 204
xiyi 2 6 9 8 15 24 21 16 101

Inserting these values into Equations (O.10) and (O.11) leads to the following equations:

1 222 8 36c c= ⋅ + ⋅ (O.12)

1 2101 36 204c c= ⋅ + ⋅ (O.13)

From these equations the values of c1 and c2 can be determined: c1 = 2,536
 c2 = 0,048

The equation for the fitting polynomial through the dataset now becomes:

1 2 2.536 0.048y c c x x= + ⋅ = + ⋅ (O.14)

The following figure gives the result of the straight line that is fitted through the data points.

Straight line

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 1 2 3 4 5 6 7 8 9

x-values

y-
va

lu
es

Master’s thesis

260

In the next example a parabola will be fitted through the dataset. In order to fit a parabola, a
second degree polynomial has to be found that minimizes S:

2
1 2 3y c c x c x= + + (O.15)

8

2 2
1 2 3

1

[]i i i
i

S y c c x c x
=

= − − −∑ (O.16)

The partial derivatives of S with respect to c1, c2 and c3 are:

8
2

1 2 3
11

2 () 0i i i
i

S y c c x c x
c =

∂
= − − − − =

∂ ∑ (O.17)

8

2
1 2 3

12

2 () 0i i i i
i

S x y c c x c x
c =

∂
= − − − − =

∂ ∑ (O.18)

8

2 2
1 2 3

13

2 () 0i i i i
i

S x y c c x c x
c =

∂
= − − − − =

∂ ∑ (O.19)

Some rearrangement results in:

8 8 8
2

1 2 3
1 1 1

8i i i
i i i

y c x c x c
= = =

⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ (O.20)

8 8 8 8

2 3
1 2 3

1 1 1 1
i i i i i

i i i i

x y x c x c x c
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ (O.21)

8 8 8 8

2 2 3 4
1 2 3

1 1 1 1
i i i i i

i i i i

x y x c x c x c
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ (O.22)

The following table gives the values for Σxi, Σyi, Σ(xi)2, Σxiyi, Σ(xi)2yi, Σ(xi)3 and Σ(xi)4.

i 1 2 3 4 5 6 7 8 Σ
xi 1 2 3 4 5 6 7 8 36
yi 2 3 3 2 3 4 3 2 22
(xi)2 1 4 9 16 26 36 49 64 204
xiyi 2 6 9 8 15 24 21 16 101
(xi)2yi 2 12 27 32 75 144 147 128 567
(xi)3 1 8 27 64 125 216 343 512 1296
(xi)4 1 16 81 256 625 1296 2401 4096 8772

Master’s thesis

261

To obtain a solution for the parameters c1, c2 and c3, the various sums have to be inserted
into Equations (O.20), (O.21) and (O.22). This leads to the following equations:

1 2 322 8 36 204c c c= ⋅ + ⋅ + ⋅ (O.23)

1 2 3101 36 204 1296c c c= ⋅ + ⋅ + ⋅ (O.24)

1 2 3567 204 1296 8772c c c= ⋅ + ⋅ + ⋅ (O.25)

From these equations the values of c1, c2 and c3 can be determined: c1 = 1,464
 c2 = 0,690

c3 = -0,071

The equation for the fitting parabola through the dataset now becomes:

2 2
1 2 3 1.464 0.690 0.071y c c x c x x x= + ⋅ + ⋅ = + ⋅ − ⋅ (O.26)

The following picture gives the result of the parabola that is fitted through the data points.

Parabola

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 1 2 3 4 5 6 7 8 9

x-values

y-
va

lu
es

Master’s thesis

262

