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Abstract 

Since the introduction of new and stronger materials in building engineering in the second 
half of the 20th century, wind load has become an important factor for the design of buildings. 
Since then methods are developed to take the effects of wind into account in the design 
process. The building code is an appropriate method to determine the wind load on standard, 
simple designs. For more complex designs one can rely on wind tunnel experiments to 
determine the wind load. However, as they are very expensive and time-consuming, wind 
tunnel studies are not suitable for the early stage of the design process. Computational 
methods have been introduced recently to determine the effects of wind using a technique 
called Computational Fluid Dynamics. At the Structural Design Lab of Delft University of 
Technology a Virtual Wind Tunnel has been proposed that enables structural engineers to 
predict wind loads in the early stage of the design process using CFD. The computational Van 
Nalta domain is developed in which CFD calculations on building models can be performed. 
 
CFD is a complex field that requires a thoroughly knowledge of fluid dynamics, numerical 
analysis and wind engineering. Performing a calculation is a difficult procedure that can be 
very time-consuming. The definition of geometry for CFD calculations is also complicated. To 
enable structural engineers to predict wind loads and compare alternative geometries in a 
relatively short time, the complex process of CFD has to be simplified.  
 
The purpose of this Master’s thesis is to develop a set of design tools that enables the 
structural engineer to setup the geometry for a CFD calculation. With this toolbox the wind 
load on a building or structure can be predicted and several geometries can be compared in a 
relatively short period without much interference of the user. This should make shape 
optimization with respect to wind loads possible. To predict the wind loads on a building that 
is placed in a built environment, design tools are developed to generate a 3D model of the 
environment. Other tools are developed to simplify the building of interest by reducing the 
input of the building design. This reduces the calculation time of the CFD software 
considerably. As the dimensions of the computational domain in which the calculations are 
performed depend on the dimensions of the research area, a final design tool is developed 
that generates the domain dependent on the dimensions of the research area. 
 
It is concluded that the developed design tools work for CFD applications. Many tests with the 
various tools have shown that in most cases promising results are obtained and the geometry 
that is generated by the tools is suitable for CFD analysis. For several test cases some CFD 
calculations are performed in the Van Nalta domain. It was not the intention to obtain very 
accurate results from the calculations, as there is still quite some uncertainty about the use of 
CFD in wind engineering. To a large extent the accuracy of CFD calculations depends on the 
available computer resources and further research is required to increase the accuracy. 
However, following the current trends in the development of computer resources, it will 
probably be possible in the nearby future to calculate the wind effects on complex building 
models that are placed in a built environment accurately. For wind engineering problems CFD 
can become a valuable tool for structural engineers then. 
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Glossary 

CFD: Computational Fluid Dynamics; the numerical calculation of flow problems using 
computational methods 
 
Virtual Wind Tunnel: proposed application to indicate the wind loads on a building or 
structure in the early stage of the design process using CFD 
 
Van Nalta domain: computational domain developed at the Structural Design Lab of Delft 
University of Technology in which CFD calculations can be performed 
 
Rhinoceros: CAD environment in which the several design tools of this thesis are developed 
using the Rhinoceros Visual Basic language 
 
GIS: Geographic Information Systems in which geographical information about the earth can 
be processed 
 
Top10Vector: GIS dataset containing a digital 2D map of the Netherlands 
 
Object-oriented models: building models that originate from object-oriented CAD systems. 
The models are constructed from objects that represent the elements from which a building is 
built of, like beams, columns, floor and walls. The models have sense for the computer 
 
AHN: Algemeen Hoogtebestand Nederland; GIS dataset containing an elevation model of the 
Netherlands 
 
Fluent: CFD software that is used in this thesis to solve numerical flow problems 
 
Gambit: Fluent’s pre-processor to setup the geometry and generate meshes for CFD analysis 
 
Grid/mesh: subdivision of the continuous domain into discrete control volumes where the 
variables of the partial differential equations describing the fluid flow are calculated 
 
Size function: function to smoothly control the growth in mesh size over a particular region 
of the geometry 
 
Map scheme: mesh method that generates a regular, structured grid on a surface 
 
Pave scheme: mesh method that generates an unstructured grid on a surface 
 
Interval size: mesh method that divides an edge in intervals of the specified size 
 
Cooper scheme: mesh method that extrudes the 2D grid on a surface to form a 3D grid 
 
Tecplot: Post-processing software to analyze the results of a CFD calculation 
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1. Introduction 

The goal of this thesis is to make a significant contribution to the creation of a set of design 
tools that enables the structural engineer to quickly setup a CFD calculation to predict the 
wind loads on a building or structure in the early design stage. The design tools must be able 
to compare several alternative geometries in a relatively short time to optimize the design 
with respect to wind loads. This chapter will give the problem definition and the research goal 
of the Master’s thesis project. 
 
1.1 Problem definition 

For a long time wind loads were not taken into account in the design of buildings. This was 
mainly because of the very large dead weight, low slenderness and still limited height of 
these structures. From the 1950’s new and stronger materials were introduced in building 
engineering. Structural elements became lighter and more slender, which decreases the 
permanent vertical load. As a consequence, wind loads became more important for the 
design of high-rise buildings. Research into wind loads on buildings resulted in various design 
codes to take the effects of wind into account. These codes were mainly based on standard, 
rectangular building shapes and supplied coefficients for estimating pressures on a structure. 
However, for more complex building shapes it is not possible to determine the wind load with 
the existing codes. Examples of such complex buildings are the Tenerife Opera House by 
Santiago Calatrava, given in the left picture of Figure 1.1, and the Guggenheim Museum in 
Bilbao by Frank O. Gehry, given in the right picture. Experimental methods like wind tunnel 
tests have been developed to gain insight in the flow pattern around complex building 
shapes. Nevertheless, these tests are very expensive and time-consuming. This discourages 
designers to perform such a test in the early stage of the design process. But it is just this 
stage of the process where very important design decisions are made. So, more insight in 
wind loads and the flow pattern around a building is desired in the early design process. 
 

 
Figure 1.1: It is difficult to predict wind loads on complex building shapes (Internet, [14]) 
 
Design codes and experimental methods are not fully adequate to provide complete insight in 
the wind effects on buildings. Another option to determine the wind loads on buildings is the 
use of Computational Fluid Dynamics. Within the framework of wind engineering, CFD can be 
described as the numerical calculation of the flow pattern using computational methods. CFD 
has become a very suitable tool for analyzing flows for which no analytical solutions are 
available. In theory CFD is able to solve the mathematical models up to a desired accuracy 
without the limitation of geometry. Changes in the physical model or shape of the object are 
relatively easy to perform, what can make CFD a very powerful tool to determine the wind 
effects on a building in the early design process. Analysis results can be used to optimize the 
design, leading to a more efficient shape or a better structure.  
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However, at this moment, CFD is not generally accepted yet for use in wind engineering. This 
is mainly because there is still contradiction on the use of CFD to predict wind effects on 
buildings and structures. Because there is no general approach for setting up a flow problem, 
results of CFD calculations are not widely accepted. 
 
To develop a general approach for CFD in wind engineering, a computational wind tunnel has 
been proposed at the Structural Design Lab of Delft University of Technology. The tunnel is 
named The Virtual Wind Tunnel (Nalta, [16]) and the goal is an application that can be used 
in the early stage of the design process to indicate the wind loads on a building or structure 
using CFD. The Virtual Wind Tunnel should enable the structural engineer without much 
knowledge of CFD and wind engineering to predict the wind loads and compare alternative 
geometries in a relatively short time. The complex process of setting up a CFD simulation has 
to be automated as much as possible to enable the structural engineer to perform some quick 
calculations. In recent graduation research at the Structural Design Lab a domain has been 
developed by Van Nalta [16] and Snijders [23]. The so-called Van Nalta domain shows 
promising results for the calculation of the pressure distribution on relatively simple shapes, 
like cubes and cylinders. Also the grid generation process is studied extensively, what has 
resulted in guidelines to create proper grids for various shapes. 
 
However, an important problem is the current capacity of desktop computers. As the Virtual 
Wind Tunnel is intended to be a design tool for structural engineers, most users will have a 
normal desktop computer to perform the calculations. Nevertheless, the computational 
demand for complex CFD calculations is very high and the limited power influences the ability 
to make accurate computations. Even for the relatively simple shapes that were investigated 
in the Van Nalta domain, the maximum number of cells that can be used to generate a grid 
was quickly consumed. However, following the current trend of the development in computer 
resources, increasing the computation processing speed and memory capacity continuously, 
these problems will certainly overcome in the nearby future. 
 
To simulate the flow pattern around complex objects and especially built environments, the 
computer power is still too small. Nevertheless, anticipating on future developments, methods 
to automate the process of CFD to enable engineers to quickly set up some calculations still 
have to be developed. In the other graduation studies, only the wind effects on single objects 
were investigated. But the flow pattern around a building highly depends on its surroundings. 
One of the goals of the Virtual Wind Tunnel could be to simulate the flow pattern around a 
building that is placed in a built environment. To create a realistic model of the surroundings 
of the building of interest, a method has to be developed that can generate a 3D model of 
the existing built environment. The actual situation of the surroundings can be obtained from 
GIS technology. However, modeling complex building geometry for CFD calculations is still a 
major bottleneck. CAD models of a building usually contain lots of little details, like door 
handles, casings and railings. They are not relevant to determine the global wind loads on a 
structure, but will increase the calculation time of the CFD software tremendously due to the 
grid complexity. A method that simplifies the geometry of a building and neglect small details 
would be very valuable. Nevertheless, CAD data is usually not directly suited for use in CFD 
and problems arise in the translation of information from CAD data to CFD software. Only the 
surfaces that come in direct contact with the flow are required for CFD analysis. Calculations 
of the flow pattern around a building require airtight building models. If edges, surfaces and 
solids do not meet and gaps are introduced, wind can flow through the model and problems 
will arise as the meshing algorithms require a perfect model description as input.  
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1.2 Research goal 

The complex process of CFD requires a thoroughly knowledge of wind engineering, fluid 
dynamics and numerical analysis of the user. Setting up the geometry for CFD calculations of 
complex buildings in a built environment is also a very difficult process. To enable structural 
engineers without much knowledge of fluid dynamics to predict wind loads and compare 
alternative geometries in a relatively short time, the process of CFD and the input of 
geometry has to be simplified as much as possible. With a manageable toolbox containing a 
set of design tools, the process of setting up the geometry and performing the simulations 
can be automated.  
 
Anticipating on future developments of computer resources, the goal of this Master’s thesis is 
to develop a set of design tools that enables the structural engineer to quickly setup a CFD 
calculation. With this toolbox the wind loads on a building or structure can be predicted and 
several geometries can be compared in a relatively short time without much interference of 
the user. The focus of the design tools lies on the creation and preparation of the geometry 
and the setup of the CFD calculations. To predict the wind loads on a building that is placed 
in a built environment, the first design tools will generate a 3D model of the built 
environment for a certain location using GIS technology. To limit the calculation time of the 
CFD software, another design tool will simplify the various CAD models of the building of 
interest by reducing the input of the building design. Because the inner geometry that is also 
modeled frequently is not relevant to determine the wind loads, the design tool will remove 
the eventual inner geometry. In case of eventual gaps in the model, the tool will also make 
the models airtight. After the simplified building model and the model of the built 
environment are joined, it can be translated to the CFD software. Possible problems that 
occur in this translation process will be investigated. The model of the research area is then 
placed in a computational domain that bounds the flow problem. As the dimensions of this 
domain depend on the dimensions of the research area, a final design tool will automatically 
create the right computational domain for a certain research area. After the geometry is 
setup in the CFD software, the complex process of meshing the geometry will be 
investigated. When a general method is developed to mesh the computational domain and 
the research area, finally some calculations will be performed for several test cases. 
 
Chapters 2, 3, 4 and 5 discuss the required theory about computational fluid dynamics, wind 
engineering, GIS technology and CAD. Additional information about these topics is included in 
Appendix A. Chapter 6 gives the strategy for using the design tools to setup the geometry for 
a CFD calculation. In Chapter 7 the development of the various tools is discussed extensively. 
All developed methods, procedures and scripts originate from own ideas and work, except 
where otherwise mentioned. In Chapter 8 several CFD calculations with various building 
models are discussed in detail and a comparison is made with the building codes. In Chapter 
9 an evaluation is given of this Master’s thesis and in Chapter 10 finally the conclusions and 
recommendations are discussed. 



Master’s thesis                                                                                                  

4 
 



Master’s thesis                                                                                                  

5 
 

 

2. Computational Fluid Dynamics 

2.1 Introduction 

In many branches of engineering there has to be an understanding of the motion of fluids. 
Examples are the aircraft and automobile industries, where the aerodynamics of airplanes 
and cars must be determined. One way to obtain this aerodynamic information is the use of 
wind tunnel tests. Such tests might consume many hours of preparation and wind tunnel time 
and are very expensive. Another method to solve fluid dynamic problems is the use of CFD. 
 
Computational Fluid Dynamics (CFD) can be described as the use of computers to produce 
information about the flow pattern in given situations (Shaw, [22]). It is in general a 
technique in which equations describing the fluid flow are solved numerically on a computer. 
The flow volume is divided in a finite amount of cells in which physical quantities like velocity 
and pressure are supposed to be constant. Subsequently the so-called Navier-Stokes 
equations are solved iteratively for each cell. To be useful, the results must be a realistic 
simulation of the fluid in motion. If the results are realistic depends on the problem being 
simulated, the software being used and the skill of the user. Users of CFD must be very 
familiar with the flow problem they wish to simulate. 
 
CFD is used in a variety of industrial sectors nowadays, including aerospace, defense, 
automotive, physics, engineering and computer science. For example, predictions can be 
made of the following: 
 Lift and drag of an aircraft 
 Flames in burners 
 Air flow inside internal combustion engines 
 Dispersion of pollutants into rivers and oceans 
 Flow of cooling air inside electrical equipment 

 
In this chapter the process of CFD is discussed extensively. In Appendix A.1 the theory 
behind fluids in motion is included as background information. Appendix A.2 includes some 
aspects of turbulence modeling. 
 

 
Figure 2.1: CFD simulation of a Formula 1 car in Fluent (Internet, [9]) 
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2.2 The process of CFD 

A fluid flow problem can be described by a series of partial differential equations that govern 
the flow. These partial differential equations can be discretized by replacing the derivates in 
the equations by discretized algebraic forms. In this way a numerical analogue of the partial 
differential equations is built that can be solved to obtain the flow variables at discrete points. 
The boundary conditions and the initial conditions that are applied determine the flow 
problem. To produce a solution from the numerical analogue many equations have to be 
calculated, which requires a broad number of calculations to be carried out. Computers are 
the ideal tool for this.  
 
The essential steps in a CFD analysis, which are formulated by Arif [3], are presented in 
Figure 2.2. The analysis starts with the description of the geometry. The geometry can be 
generated by a CAD program or with a pre-processor. This is a special program within the 
CFD software to generate geometry. The second step is the generation of a grid or mesh on 
the geometry on which the Navier-Stokes equations can be discretized. The third step is the 
discretization of the partial differential equations. These continuous equations can be 
approximated with a system of algebraic equations for the variables at discrete locations. In 
the following step a turbulence model has to be selected to takes turbulence into account. In 
the next steps the flow properties are specified. The boundary conditions, initial conditions 
and some fluid properties specify the flow problem that has to be solved. Once the calculation 
is setup, the numerical solution can be computed using a solver. The set of approximating 
equations is solved numerically for the flow field variables at each point or cell. Finding a 
solution is an iterative process. The calculation is repeated until a satisfactory solution is 
found. In the last step the results have to be analyzed to see if the solution is physically 
reasonable. Using graphs or contour plots, information about the flow parameters can be 
presented in a visual form. 
 

 
Figure 2.2: Essential steps in a CFD analysis 
 
In most CFD packages three main pieces of software are provided to assist the user in 
carrying out the analysis process. These pieces are: 
 A pre-processor 
 A solver 
 A post-processor 

 
All tasks that take place before the calculation of the numerical solution is started are called 
pre-processing. The most difficult task in the pre-processing phase is the generation of the 
grid or mesh. Before solving the numerical equations, all relevant data that has been defined 
by the pre-processor must be given to the solver. When the equations are finally solved, a 
large number of variables are calculated in the flow domain. Computer graphics is often the 
only way to analyze the data written by the solver program. The post-processing program is 
used to display the results.  
 
In the following paragraphs the process of CFD is discussed more extensively.

Geometry 
description 

Grid 
generation

 

Discretization Turbulence 
model 

Boundary 
conditions

Flow 
specification

Numerical 
solution 

Analysis of 
the results
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2.2.1 Geometry description 
 
To simulate the flow around an object a model has to be built of the object. This model can 
be drawn in a CAD program or with a pre-processor. For simple models the pre-processor can 
be used, but for complex geometries it is recommended to use a CAD program or object-
oriented and parametric modelers. The geometry is defined by the coordinates of the object 
as well as any outer boundaries. Only the exterior surfaces of the objects to be modeled are 
needed, because only these surfaces come in contact with the flow. Interior surfaces do not 
have to be drawn and can be deleted. The amount of desired detail will have consequences 
for the complexity and amount of computer power required to obtain reliable results.  
 
2.2.2 Grid generation 
 
One of the most important steps in the CFD process is the generation of a grid or mesh 
throughout the flow domain. When a partial differential equation is set to be solved, a 
subdivision of the continuous domain into discrete volumes where the variables are calculated 
is required. This discretization defines a computational grid and the process to perform this 
discretization is called grid generation. The results of the CFD analysis highly depend on the 
grid type and amount of cells used. The accuracy increases when more cells are used. 
However, more cells lead to longer computation time and computer resources limit the 
amount of available cells. The grid generation phase is the phase of the analysis process that 
determines the total time required to obtain results from a calculation too a large extent. 
(Thompson et all, [24]). The grid itself however will be influenced by the used discretization 
method.  
 
Grids can be divided into two types: structured grids and unstructured grids. In a structured 
grid all elements are similar in shape and placed in a regular way. The grid is relatively easy 
to generate and has a clear, transparent structure. For complex geometries it is however very 
difficult to generate a mesh using a structured grid. In an unstructured grid, the elements 
vary in topology and size. There is no global structure of the elements. It is more difficult to 
generate these grids, but as the complexity of the geometry increases, the grid quality 
remains high. However, the structure of the grid is less transparent than a structured grid 
and the computational demand is higher. Unstructured grids are more suitable for local mesh 
adaptation, where the grid is refined only where necessary. Figure 2.3 and Figure 2.4 give 
examples of structured and unstructured grids. 
 

 
Figure 2.3: Examples of structured grids (Apsley, [2]) 
 
 

 
Figure 2.4: Examples of unstructured grids (Apsley, [2]) 
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Grids are made of cells that can have any shape, but in practice the shape of the cell is 
similar to one of the basic shapes given in Figure 2.5.  
 

 
Figure 2.5: Common used cell shapes for meshing 3D geometry (Snijders, [23]) 
 
The grid should be more refined in those regions where high gradients of the flow occur. The 
difficulty now is to know where these regions are and how fine the grid should be. The 
positions of the critical areas can be assumed manually to build a grid taking this into 
account. Doing a simulation with such a grid may help to determine the actual positions of 
the regions of high flow gradients. This technique is known as adaptive meshing (Shaw, 
[22]). Depending on the software used, the grid refinement can also be done automatically, 
where the program decides where to refine the grid. 
 
2.2.3 Discretization 
 
To obtain a numerical solution of partial differential equations, discretization of the equations 
is required. The continuous partial differential equations describing the fluid flow (the Navier-
Stokes equations) are approximated by a system of discrete algebraic equations (Thompson 
et all, [24]). These equations are then solved numerically. In the continuous domain each 
flow variable is defined at every point in the domain. In the discrete domain each flow 
variable is defined only at discrete locations, which are determined by the applied grid. 
 
 

 
Figure 2.6: Continuous vs discrete domain (Internet, [9]) 
 
 
A variety of techniques can be used to perform the discretization. Three of the major 
methods are the finite difference method, the finite element method and the finite volume 
method. In this thesis the CFD software Fluent will be used. Fluent uses the finite volume 
method as discretization method. 
 
Finite Volume Method (FVM) 
The finite volume method is the most popular numerical discretization method used in CFD. 
The solution domain is subdivided into a finite number of small control volumes by a grid, 
which defines the boundaries of the control volumes. The governing partial differential 
equations are converted into a numerical form by integration over the control volume. The 
variability in the flow is balanced through the volume and considered to be constant in each 
volume. The solution variables of a volume are stored at the center of the volumes in so-
called computational nodes. The finite volume method is not limited to a grid type; both 
structured and unstructured grids can be used. The finite volume method is explained in 
Figure 2.7. 
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Figure 2.7: Discretization according to the Finite Volume Method (Apsley, [2]) 
 
2.2.4 Selection of a turbulence model 
 
Depending on the investigated flow problem and available computer capacity, an appropriate 
choice needs to be made for the turbulence model. Distinction is made between the Large 
Eddy Simulation (LES) method and the Reynolds Averaged Navier-Stokes (RANS) method 
with its Reynolds stress transport models and a large number of variants of the ĸ-ε models. 
RANS modeling is much faster than LES but it is assumed to be unfit when high accuracy is 
needed. Additional information about turbulence modeling is given in Appendix A.2. 
 
2.2.5 Boundary conditions and flow specification 
 
The next step in the CFD process is to setup the boundary conditions of the variables to be 
calculated. Examples of boundary conditions are inlet, outlet, wall and far-field conditions. 
Figure 2.8 shows an example of the boundary conditions for the two-dimensional flow over a 
block. At the inlet, fluid enters the domain and usually a prescribed velocity is used as 
boundary condition. At the outlet, fluid leaves the domain and a prescribed pressure is usually 
used as boundary condition. For viscous fluids, usually the no-slip boundary condition is used 
for walls, which means that there is no velocity right at the surface. Far away from the block 
the fluid flows with a free-stream velocity V∞. 
 

 
Figure 2.8: Boundary conditions for a 2D flow over a block (Nalta, [16]) 
 
The boundary conditions, together with the initial conditions and some fluid properties such 
as velocity, density and viscosity, specify the actual flow problem that is to be solved. The 
number and type of boundary conditions must accord with the governing equations of the 
flow. The initial conditions specify the number of iterations required to get a solution. 
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2.2.6 Calculation of the numerical solution 
 
In this step the set of approximating equations are solved numerically in an iterative process 
for the flow field variables at each point or cell. The calculation is repeated until a solution 
with a sufficient and user-defined accuracy is found. There are many methods available to 
calculate the numerical solution, ranging from fast and relatively inaccurate calculations to 
slow and very accurate calculations. 
 
2.2.7 Analysis of the results 
 
Huge amount of data are produced after the simulation. The results have to be checked to 
see if the solution is physically reasonable. To interpret the results, information about the 
flow parameters can be presented in a visual form like graphs or contour plots. 
 

  
Figure 2.9: Visual representation of CFD results (Snijders, [23]) 
 
 
2.3 Fluent 

There are several programs available for numerical flow calculations. They range from very 
specialized programs, which solve problems within strict boundaries, to extensive commercial 
packages that solve the complete Navier-Stokes equations in three dimensions. The CFD 
software that will be used during this Master’s thesis is Fluent. Fluent is a commercial CFD 
software package developed by Fluent, Inc. (Internet, [9]) that enables engineers and 
designers to simulate fluid flow, heat and mass transfer and lots of related phenomena like 
turbulence. 
 
As in most commercial CFD packages the finite volume method is used in Fluent to discretize 
the partial differential equations. The domain can be discretized with the structured as well as 
the unstructured grid technology. The grid can consist of elements in a variety of shapes, 
from 2D rectangles and triangles to 3D tetrahedrals, prisms and pyramids. These elements 
are created using a mesh generation module called Gambit, which is also included in Fluent. 
The pre-processor Gambit is based on ACIS geometrical libraries, which uses Non-Uniform 
Rational B-Splines (NURBS) to describe geometry. It can also be used to read CAD files and 
adapt the imported geometry for CFD analysis. Fluent’s post-processing tools can be used to 
generate meaningful graphics and animations.  
 
In Fluent the Reynolds stress transport models and several versions of the popular ĸ-ε model 
are available to deal with turbulence. Also the Large Eddy Simulation (LES) method is 
supported, what makes it a very powerful package for wind engineering in the nearby future 
considering the increasing computer power and decrease in computer cost.   
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3. Wind Engineering 

3.1 Introduction 

Wind is a natural motion of the air characterized by a direction and velocity. It originates from 
the irregular heating of the earth by the sun, which causes differences in air pressure. As a 
consequence, large areas with dimensions of some hundreds of kilometers can arise where 
the air pressure is relatively high or relatively low. These differences in pressure, together 
with the rotation of the earth and friction of the air with the earth’s surface, cause wind. The 
air flows from areas with a high air pressure to places with a low air pressure.  
 
Until the second half of the 20th century, wind loads were hardly taken into account in the 
structural design of buildings. Because of the very large dead weight of these structures at 
that time and the limited height and slenderness, wind loads did not have a significant 
influence on the structure. From the 1950’s new and stronger materials were introduced in 
building engineering. Structures became lighter and more slender, reducing the member sizes 
and their stiffness. Buildings and structures became higher and more sensitive for wind from 
now on, which led to more research in wind loads and finally resulted in several design codes 
for wind loads on buildings and structures. With these codes it is possible to determine the 
wind loads for common building shapes on the basis of various coefficients. 
 
For the simple shapes of the first high-rise buildings, the design codes to determine the wind 
load were sufficient. But for more complex building shapes it is not possible to determine the 
wind loads with the existing codes. Wind tunnel tests have been introduced to predict the 
flow pattern around buildings and structures by experiment. With these tests it is also 
possible to determine the wind loads on buildings with complex shapes. The latest technology 
to investigate the wind loads is the use of Computational Fluid Dynamics. CFD can form an 
alternative for the expensive and time consuming wind tunnel tests and could also be used to 
calculate flow problems for the built environment, like pollution dispersion and ventilation.  
 

 
Figure 3.1: Predicting wind loads on complex buildings can be very difficult (Internet, [8]) 
      Left picture: Turning Torso in Malmo, Sweden, by Santiago Calatrava 
      Right picture: Walt Disney Music Hall, Los Angeles, by Frank O. Gehry 
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When wind hits a building, a part of the kinetic energy will be transformed into forces and 
pressures on that building. Besides wind direction and velocity the pressure is determined by 
the shape of the building and type of landscape. For the calculation of the wind pressure on a 
structure the following equation can be used (Cauberg, [6]): 
 

2 21  [ / ]
2
ρ= ⋅ ⋅ ⋅w pp C U N m          (3.1) 

 
Where:   ρ = density of the air (1,2 kg/m3) 
  Cp = coefficient, depending on the shape of the object 
  U = wind velocity 
 
An obstacle like a building or structure in the flow domain influences the flow pattern in the 
domain. At the windward side of the building the air is slowed down and a part flows around 
and over the building. Because more air has to pass here in the same time, the velocity will 
increase. The other part of the incoming air flows down generating a vortex in front of the 
building. A lot of wind hindrance will occur in this area. At the top of the windward side of the 
building the air separates because of the sharp edge of the roof. This develops a wake at the 
leeward side of the building. The wind profile of the wake with high turbulence and velocity 
gradients is very divergent from the undisturbed profile. As a consequence of the flow pattern 
around a building an area with relatively high pressure will develop at the windward side of 
the building. At the leeward side of the building an area with relatively low pressure will 
develop where the air velocity is usually low. 
 

 
Figure 3.2: Flow pattern around a high-rise building (Cauberg, [6]) 
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The wind velocity varies in time. The Beaufort scale divides the wind velocity in 12 classes, 
varying from windless until hurricane velocities, and gives a relation between wind velocity 
and wind strength (Cauberg, [6]). In a wind rose the expected wind strength over a year is 
given for the various wind directions using charts. The length of a chart reflects the frequency 
in which the wind strength will occur. The frequency zones are given by circles with an 
increasing chance of occurrence. The thickness of a chart gives the wind force on Beaufort 
scale. Figure 3.3 gives the wind rose of Vlissingen for a year. It is to be expected that most of 
the wind comes from the south-west direction.  
 

 
Figure 3.3: Wind rose of Vlissingen for a year (Internet, [7]) 
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3.2 Wind standards 

Wind forces are very important for the structural design of high-rise buildings. The size of 
these forces grows exponentially with the height. Fluctuations in wind velocity result in a 
dynamic load on a building. Stiffness and mass determine the influence of the wind loads on 
the construction. Because of the development of light and flexible structural materials the 
influence of wind is increasing. Building codes have been the most commonly used design 
tool for structural engineers. The codes are based on wind studies, are easy to use and can 
be applied to a wide range of cases. Most countries have their own building code. However, 
the European Eurocode is being developed at the moment to replace several national codes. 
In this paragraph the procedure to calculate the wind load according to both the Dutch code 
and the Eurocode is summarized.  
 
3.2.1 Dutch code 
 
Wind is considered first as a load case in the ‘Technische Grondslagen voor bouwconstructies‘ 
(TGB) from 1955. In the TGB 1955 the wind loads are determined by multiplying a pressure 
with coefficients for under- or overpressure. TGB 1972 uses statistic variables for the first 
time. The pressure is derived from an hour-average wind velocity, exceeded once in five 
years with a chance of 50%. The current Dutch codes for the calculation of wind forces on 
buildings and structures are NEN 6700 and NEN 6702. The code NEN 6700 gives the basis 
demands for the structural safety of buildings and structures, during the construction phase 
as well as the utilization phase. The code NEN 6702 gives a calculation model and form 
factors to determine the wind loads. These form factors are derived from wind tunnel tests 
and relate the shape of a building with the amount of wind pressure. However, for complex 
building shapes the tables of NEN 6702 are often not valuable. For those cases wind tunnel 
tests will be necessary to determine the wind loads.  
 
Some important aspects of NEN 6702 towards wind loads are (Geurts, [10]): 
 The Netherlands are divided in three geographic areas with a representative, constant 

wind velocity, based on the variation of wind velocity and geographical differences; 
Distinction is made between built and unbuilt surroundings, leading to six standardized 
wind climates 

 The basis for the wind velocity is an extreme hour-average velocity that will be exceeded 
once in 12,5 years. On average only one of the four wind directions is important for a 
construction. Therefore the reference period for wind loads is shortened from 50 years 
according to the TGB 1972 to 12,5 years.  

 Figures are developed for the form factors, where distinction is made in form factors for 
an entire building and local form factors 

 
Figure 3.4: The Netherlands can be divided in three wind areas (NNI, [18]) 
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NEN 6702 prescribes the wind load on a building or structure with the following equations: 
 

1rep w dim indexp p C C φ= ⋅ ⋅ ⋅        (3.2) 

 
= ⋅index repF A p          (3.3) 

 
Where:  prep:  representative wind pressure 
  pw: extreme wind pressure, depending on the global and local wind  

climate 
Cdim: relation between wind gusts and building dimensions   
Cindex: form factor for pressure, suction and friction 

  Φ1:  dynamic factor 
  Findex: representative wind force on a surface 
  A: surface exposed to the representative wind pressure 
 
Global wind climate 
The extreme wind pressure pw in the above mentioned equation is influenced by the global 
wind climate. This climate can be described on the basis of observations of meteorological 
institutes. According to NEN 6702 [18] the Netherlands can be divided in three areas, where 
for each area an extreme hour-average wind velocity is determined with a reference period of 
12,5 years. 
 
Local wind climate 
The height of the layer in which the flow pattern is influenced by the roughness of the 
surface is called the atmospheric boundary layer. It is the layer in which the interaction 
between the wind and structures takes place. Above a smooth surface the atmospheric 
boundary layer will be smaller than above a city with many high-rise buildings. Within the 
boundary layer the wind velocity varies over the height. As can be seen in Figure 3.5, a 
different roughness of the terrain leads to a different profile of the boundary layer. The air 
velocity at pedestrian level for example will be smaller above a rough surface than above a 
smooth surface. As a consequence, higher wind loads will be measured on structures in an 
open country than on structures that are placed in a built environment. 
 

 
Figure 3.5: Wind velocity profile for different terrain roughness (Woudenberg, [29]) 
 
The wind pressure pw of Equation (3.2) is on local level influenced by the surroundings. High 
above the ground air can move freely due to differences in air pressure. Near the ground the 
air is slowed down by the local environment and turbulence is increasing. The influence of the 
surroundings on the average wind velocity can be described by the wind velocity profile. The 
profile describes the development of the wind velocity over the height. Obstacles on the 
surface influence the profile: above a rough surface the air is slowed down more and the 
atmospheric boundary layer will be higher.  
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Within the atmospheric boundary layer, the variation of the mean wind velocity with the 
height can be described by a logarithmic velocity profile. This profile is used in NEN 6702 as 
well and can be used up to 150 m. The profile is given by: 
 

( )
*

0
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        (3.4) 

 
Where:  u*: friction velocity 
  κ: Von Karman constant, which is 0.42 
  z: height above the ground 
  z0: roughness height of the terrain 
  d: displacement length 
 
The friction velocity u* is a measure for the exchange of the horizontal wind velocity from a 
high altitude to a low altitude. The roughness height z0 is a factor that represents the 
roughness of the ground surface and varies from 0.0002 above sea to 2.0 above cities. The 
displacement length d is only used for dense areas, like city centers. In such areas the flow 
pattern above buildings and other obstacles in the area has no relation with the flow pattern 
between the obstacles. The displacement length defines a fictive ground level from which the 
logarithmic profile is valid. In the layer below d the velocity field is undefined and very 
turbulent. Figure 3.6 gives the characteristics of the atmospheric boundary layer. 
 

 
Figure 3.6: Characteristics of the atmospheric boundary layer (Nalta, [16]) 
 
 
Roughness 
Obstacles on the earth determine the roughness of the surface. In wind engineering the 
various types of landscapes are usually classified in roughness classes. A high roughness class 
of 3 or 4 refers to landscapes with many trees and buildings, while a sea surface is classified 
as 0. In general it can be said that the rougher the surface, the larger the turbulence will be. 
Turbulence can be described as the mean deviance in wind velocity compared to the hour-
average wind velocity (Cauberg, [6]). The turbulence is largest near the surface and is 
decreasing with increasing height. In a built environment the wind loads on a specific height 
are lower than in an open area. But because of a larger turbulence the dynamic part of the 
wind load will be larger in a built environment. In norm tables the extreme wind pressures for 
several heights above the ground are prescribed. 
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Form factors 
To what extent the wind results in forces on a building depends on the shape and dimensions 
of the building. They determine the flow pattern around a building and as a consequence the 
pressure, suction and friction. NEN 6702 gives form factors for the response of the building. 
These factors give the relation between the shape of a building and the total amount of wind 
pressure and wind suction on a building. However, most buildings do not satisfy the given 
shapes in the norms. For buildings with a shape divergent from the code wind tunnel 
research remains the appropriate method to determine the form factors accurately. 
 
In the European norm Eurocode 1 tables are given to take the influence of rounded corners 
and the slenderness of a building into account. The slenderness is an important factor that is 
not considered for the form factors in the NEN 6702 code. However, the slenderness is very 
important for high buildings because it determines to what extent the wind will flow around a 
building (Woudenberg, [29]). For high buildings wind tunnel research is a very appropriate 
method to obtain wind form factors and wind loads. 
 

 
Figure 3.7: Form factors for pressure, suction and friction for buildings with a rectangular  
     floor plan (NNI, [18]) 
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3.2.2 Eurocode 
 
In 1990 the European committee initiated to develop a uniform, technical code for the design 
of buildings and infrastructures. This Eurocode will replace the several national codes of the 
EU member states. It provides common structural design rules for the design of structures 
and their components. The Eurocode is a collection of the following codes (NNI, [17]): 
 
 Eurocode 0: general rules for calculations according to the limit states method 
 Eurocode 1: gives design values for load, such as dead load, fire, snow and wind 

 
There are special codes for the various building materials: 
 
 Eurocode 2: concrete structures 
 Eurocode 3: steel structures 
 Eurocode 4: composite structures 
 Eurocode 5: timber structures 
 Eurocode 6: masonry structures 
 Eurocode 9: aluminium structures 

 
And finally there are two separate codes for: 
 
 Eurocode 7: soil mechanics 
 Eurocode 8: seismic loads 

 
In 2006 these Eurocode parts will be published and in 2010 they are expected to be fully 
implemented to replace all national codes. For the calculation of wind loads the Eurocode 1 
part 1-4 is used. The code includes design rules for whole structures, parts of a structure and 
elements attached to a structure. It is applicable to buildings and structures with heights up 
to 200 m.  
 
In the Eurocode, the wind action is represented by a simplified set of pressures and forces 
whose effects are equivalent to the extreme effects of the turbulent wind. The Eurocode 
prescribes the wind load on a building or structure with the following equation: 
 

( )w ref e e d f refF q c z c c A= ⋅ ⋅ ⋅ ⋅        (3.5) 

 
Where:  qref: The reference mean velocity pressure 
  ce: The exposure coefficient. This coefficient takes the wind profile into 
   account  
  ze: The reference height. Usually this is the height of the building or  
   structure 
  cd: This coefficient takes the dynamic effects of the response of the  

building or structure into account 
  cf: The force coefficient. This coefficient takes the geometry of the 
   building or structure into account 

Aref: The reference area of the building or structure that is subjected to 
the wind 

 
The several factors of this equation are discussed on the following pages. 
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The reference mean velocity pressure 
The wind velocity and the velocity pressure are in the Eurocode composed of a mean and a 
fluctuating component. The mean wind velocity is the characteristic 10 minutes mean wind 
velocity at 10m above the ground in the open field, irrespective of wind direction and time of 
the year. The wind forces are based on this mean wind profile and depend on the reference 
mean velocity pressure: 
 

2

2ref refq vρ
=          (3.6) 

 
Where:  ρ: the air density 
  vref: the reference wind velocity 
 
The reference wind velocity can be calculated from: 
 

,0ref dir season refv c c v= ⋅ ⋅         (3.7) 

 
Where:  cdir: the directional factor 
  cseason: the season factor 
  vref,0: the fundamental value of the reference wind velocity 
 
The reference wind velocity is calculated from a basic value multiplied by factors for the 
direction of the wind and the season. The season factor can be used for temporary 
structures.  
 
The exposure coefficient 
The wind velocity profile is taken into account with the exposure coefficient ce. The exposure 
coefficient is defined by a roughness coefficient and a topography coefficient, which all 
depend on the reference height ze: 
 

[ ]2 2( ) ( ) ( ) 1 2 ( )e e r e t e v ec z c z c z gI z= +       (3.8) 

 
Where:  g: the peak factor with value 3,5 
  Iv(ze): the turbulence intensity 
  cr(ze): a roughness coefficient 
  ct(ze): a topography coefficient 
 
The turbulence intensity is defined as the ratio of the maximum or minimum wind speed and 
the mean wind speed at a certain height. The influence of hills and cliffs for a certain mean 
wind speed is taken into account by the topography coefficient. The roughness coefficient 
takes the roughness of the terrain into account. 
 
Dynamic effects 
The effects of the vibrations of the structure due to turbulence are taken into account with 
the dynamic factor cd. It is obtained from the following expression: 
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Where:  kp: the peak factor defined as the ratio of the maximum value of the  
   fluctuating part of the response to its standard deviation 
  Iv: the turbulence intensity, which depends on the reference height 
  B2: the background factor; allows for the lack of full correlation of the  

pressure on the structure surface 
  R2: the response factor; allows for turbulence in resonance with vibration 
 
The force coefficient 
The force coefficient takes the geometry of a building into account. For a rectangular floor 
plan it is defined by: 
 

,0f f rc c λψ ψ= ⋅ ⋅         (3.10) 

 
Where:  cf,0: the force coefficient of rectangular sections with sharp corners 
  ψr: the reduction factor for square sections with rounded corners 
  ψλ: the end-effect factor for elements with free-end flow 
 
The various parameters are based on results of wind tunnel tests. 
 
The reference area 
The reference area depends on the length and width of the structural element being 
considered and can be determined with the following expression: 
 

refA l b= ⋅          (3.11) 
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3.3 Wind tunnel tests 

For complex buildings that are placed in a diverse built environment it is very hard to judge 
the flow pattern beforehand. Wind tunnel tests are therefore often necessary. The current 
form factors in NEN 6702 and the Eurocode are also based upon wind tunnel tests. The wind 
tunnel is essential for situations where the codes do not foresee. For buildings with a non-
rectangular plan, buildings with rounded edges, complex details and buildings in a complex 
environment, the standards do not foresee and wind tunnel research is necessary.   
 
With wind tunnel tests a complex built environment can be investigated by making a scaled 
model of the buildings and expose it to wind. The required wind is generated on scale with 
ventilators. To develop a velocity profile comparable to the atmospheric boundary layer, the 
air is led over a foreland before it reaches the scaled model. The foreland is an area where 
the roughness of the terrain in front is simulated. This terrain can be a flat landscape, open 
water or a built environment. The roughness of the terrain also influences the amount of 
turbulence. Turbulence is generated by blowing over a row of swords and a foreland of 
blocks. Figure 3.8 shows the setup of a wind tunnel test with the scaled model at a rotating 
platform, a foreland of blocks and a row of swords. 
 

 
Figure 3.8: Setup of a wind tunnel test (Van der Ven, [28]) 
 
In wind tunnel studies most often an area with a radius of 300 m around the building or 
region of interest is modeled. By placing the scaled model on a rotating platform all wind 
directions can be investigated. The amount of detail required in the model depends on the 
purpose of the wind tunnel research. For the determination of forces on the main structure, 
small details are less relevant than for the investigation of local forces at fasteners of façade 
elements for example.  
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During a wind tunnel test all forces have to be determined that can occur during the lifespan 
of a building. According to CUR Aanbeveling 103 [27], two measurements have to be carried 
out in order to cover future changes of the surroundings that can influence the wind loads on 
a building in a negative way. Such a situation can occur when some buildings of the 
environment are demolished for example. In the first measurement, all surrounding buildings 
are modeled according to the actual situation. In the second measurement, the surrounding 
buildings are chopped off to a maximum height of 15 m. The maximum values obtained from 
these two measurements are normative.   
 

 
Figure 3.9: In wind tunnel tests two measurements have to be carried out: one measurement 

where the surroundings are modeled as the actual situation and another 
measurement where the surrounding buildings are chopped off (Geurts, [11]) 

 
For wind tunnel tests the model of the reality must satisfy some modeling rules. In a wind 
tunnel, vortexes release at a different location from rounded buildings than in reality. This is 
caused by the small Reynolds numbers that are used in wind tunnel tests. Therefore results 
of tests with round buildings or rounded corners might not be representative. Another aspect 
is ’blocking’ in the wind tunnel. The projected surfaces of the buildings are limited in relation 
to the dimensions of the wind tunnel. When the model becomes too large, the velocity of the 
air will increase too much due to the smaller distance between the model and the ceiling of 
the wind tunnel. Therefore the profile of the tested object might be 5% of the tunnel profile 
at maximum. For the visualization of the flow pattern in wind tunnel tests, usage is made of 
smoke or fibers. With thermistors the average wind velocity can be determined in a certain 
measure point. The wind pressure on buildings and structures can finally be obtained by 
static pressure gauges on the model. 
 

 
Figure 3.10: Visualization of the flow pattern
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3.4 Computational Wind Engineering 

3.4.1 Introduction  
 
Computational Fluid Dynamics is in general a technique in which equations describing the 
fluid flow are solved numerically on a computer. Computational wind engineering (CWE) is 
the application of CFD in wind engineering. Topics of CWE are flows around off-shore 
structures, buildings, bridges, towers and effluents dispersion into the environment. Wind 
effects were traditionally investigated in wind tunnels. However, with the increasing computer 
capacity nowadays, the use of computational fluid mechanics to investigate the wind effects 
is growing.  
 
Computational wind engineering is a difficult process because the flow obstacles, the so-
called bluff bodies, often have sharp edges at their corners, where the flow separates. The 
flow field around bluff bodies is highly complicated compared to the flow fields traditionally 
treated in the field of CFD, such as channel or pipe flows. A very fine grid is required to 
analyze these flow fields with high precision.  
 
CWE can be used to investigate the interaction between the wind and a structure. Global 
forces and moments can be determined, as well as local forces considering the fastening of 
façade elements. The dynamic behaviour of a structure can also be investigated. Besides, 
predictions of pollution dispersion around buildings or in city blocks are also important 
subjects in CWE. Finally, pedestrian comfort around high-rise buildings can also be 
investigated. Strong wind is often observed near the ground around these buildings. Since 
pedestrians are hindered considerably by this wind, architectural design to avoid such strong 
winds is also an important subject of CWE.  
 
The use of CFD for wind engineering problems has some advantages over the use of wind 
tunnel tests. It is possible to calculate various model configurations in a relatively short 
amount of time and at low cost. The costs of a wind tunnel test are much higher, what 
discourages engineers to perform such a test in the early design phase. Wind tunnel tests are 
only performed at the final stage of the design process, to verify the calculations. With CFD 
simulations the wind effects on a building or structure can be investigated in an early stage of 
the design process. The results of these simulations can be used to optimize the design. 
Another advantage is that CFD programs determine all aspects of the fluid field. In every 
arbitrary point the velocity, fluid direction, turbulence and pressure can be calculated and 
visualized in various ways. An important disadvantage of CFD is that the user needs quite 
some much knowledge and insight of fluid dynamics, which the average structural engineer 
does not have. The user has to define a lot of parameters and make a lot of choices to setup 
a calculation. To verify the calculations it remains necessary to do some wind tunnel tests. 
 
The process of a CWE analysis is more or less the same as a CFD analysis. The process is 
only more aimed at buildings and structures. The computational domain is the volume in 
which the flow has to be computed. This domain has to be discretized by the computational 
mesh which defines the spatial resolution of the numerical solution. The solution of the 
discretized equations is gained by iteration. After analyzing the solution some steps might be 
repeated if necessary to adapt the solution. Some typical aspects of the CWE process are 
discussed further in the next paragraphs. 
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3.4.2 Computational domain 
 
Domain size 
To examine the wind effects on a building dependently of its surroundings, a CAD model of 
the built environment has to be generated. The size of the computational domain depends on 
the built area to be investigated and the boundary conditions. The Cost Action C14 
workgroup [8] gives recommendations for the size of the computational domain and on the 
use of CFD in wind engineering in general. Figure 3.11 gives the recommended size of the 
entire computational domain, depending on the maximum height Hmax of a building inside the 
built area. 
 

 
Figure 3.11: Recommended dimensions for a computational domain by the CAC14 workgroup  

      (Franke, [8]) 
 
The inlet and side boundaries of the domain should be 5 Hmax away from the area to be 
investigated. The outlet boundary should be 15 Hmax away to allow flow development, as a 
fully developed flow is normally used as a boundary condition at the outlet. The top of the 
computational domain should be at least 6 Hmax away from the tallest building to prevent an 
artificial acceleration of the flow over this building. The extent of the built area that is 
represented in the computational domain may be similar as the built environment in wind 
tunnel simulations (Franke, [8]). Most often an area with a radius of 300 m around the 
building or region of interest is modeled there.  
 
Details 
The central building at which the wind effects are of main interest requires the highest level 
of detail. The level of detail depends on the effects being studied. If for example pressures on 
the surface of a roof are of interest, details on the roof need to be presented. The level of 
detail may be limited by the computational mesh required to resolve the details. In general it 
can be said that features larger than 1 m should be presented (Franke, [9]). For individual 
buildings the level of detail required depends on the distance from the building of interest. 
Buildings further away may be presented as simple blocks.  
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Boundary conditions 
When investigating the flow over for example an airplane, car or building, the flow equations 
are the same. It is the boundary conditions that are defined in the model that determines the 
behaviour of the flow. When the further located surroundings of the region of interest are cut 
off by the computational domain, the boundary conditions represent the influence of these 
cut off surroundings.  
 
3.4.3 Computational grid 
 
The results of the calculations highly depend on the used grid to discretize the computational 
domain. The resolution of the grid should be fine enough to capture all important physical 
phenomena. In regions where high gradients occur in the flow, the grid should be more 
refined. With regard to the shape of the computational cells, hexahedrals are preferred over 
tetrahedrals as they lead to smaller errors and better convergence.  
 

 
Figure 3.12: Unstructured hexahedral meshes for typical building groups (Kim, [14]) 
 
3.4.4 Solving the system 
 
The system of algebraic equations is finally solved on a computer using iterative methods to 
reach a steady state solution. The solving process starts with an initial guess of the flow 
variables after which the variables are recalculated in every iteration. The user has to specify 
a permitted error and the iteration process continues until each equation is solved up to this 
error. Every solution depends on the grid that is used. The quality of the grid must be high, 
especially in the region of interest.  



Master’s thesis                                                                                                  

26 
 



Master’s thesis                                                                                                  

27 
 

 

4. Geographic Information Systems 

4.1 Introduction 

Geographic information is information about specific places and objects on the surface of the 
earth (Bernhardsen, [1]). This information can be obtained through measurements and 
observations or interpreted from data analysis. Geographic information is usually represented 
in the form of maps, photos and images. Such a map or image is an effective medium for 
presentations and storage of geographical data.  
 
A Geographical Information System (GIS) is a system which can process geographical 
information in various ways. It is a computer-based capability for saving, editing and 
analyzing geographical data. Compared to maps, GIS has the advantage that data storage 
and data presentation is separate. As a result, data may be presented and viewed in various 
ways. From a single data source many useful presentations can be created, for example of 
buildings, roads, the environment, utilities or property records. Many GIS systems can 
integrate data from a wide range of resources, including maps, images, statistical data and 
data from computer-aided design (CAD) systems.  
 
A primary purpose of GIS is to analyze the relationships among objects in space. That is why 
all data in a GIS are linked to a specific location on the earth’s surface through a system of 
coordinates. By using a GIS a wide variety of qualities and characteristics can be attached to 
the geographical locations. These characteristics are called attributes and they are the power 
of the GIS technology.  
 
GIS is used in many technologies nowadays, including: 
 Electronic navigation systems 
 Analysis and planning systems for the design of road and transport systems 
 Information systems for land ownership and building authority 
 Urban planning systems 

 
In this chapter some methods to convert the real world into a GIS model and some GIS 
datasets that are used in this thesis are discussed in detail. In Appendix A a historical 
overview and some recent developments in GIS technology are included as additional 
information.  
 

 
Figure 4.1: GIS application areas (Internet, [1]) 
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4.2 Creating a GIS model of the real world 

4.2.1 Introduction 
 
The real world is far too complex to model it completely, so only specific areas and 
characteristics of interest should be selected for a GIS application. Simplified models of the 
real world have to be used to bring it into a GIS. 
 

 
Figure 4.2: Transformation of the real world into GIS (Bernhardsen, [1]) 
 
Maps are graphic representations of the real world. Such a representation is always an 
abstraction of reality, as it is impossible to capture all complexity. Topographic maps for 
example abstract the real three-dimensional world at a reduced scale on a two-dimensional 
paper. Standard topographic maps can show a variety of information, for example roads, land 
use, elevation, rivers and boundaries. The objects represented on maps are called features. 
These features have a location, a representative shape and a symbol that represents one or 
more of its characteristics. With attributes, non-spatial information which describes the 
characteristics of a feature can be added to the features. In a GIS, attributes are stored in 
tables that can be viewed by selecting the object. There are standard attributes that indicate 
the position of the object and connections to other objects. There may also be specific 
attributes such as land use and population. Attributes can be used to select certain features 
or to perform mathematical calculations. 
 
There is a very wide range of techniques available to obtain the data for a GIS model. They 
vary from digitizers which extract spatial information from photographs and maps, to land 
survey instruments and very sophisticated global positioning systems (GPS) that use 
satellites. However, data collection is by far the most time consuming part of creating a GIS 
model and forms the bottleneck of the process. In the next paragraph some techniques to 
acquire data for GIS applications are discussed more in detail. 
 

 
 

Figure 4.3: Real world data acquisition using satellites (Internet, [4]) 
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4.2.2 Spatial data acquisition 
 
There are several methods available for entering spatial data into a GIS. Examples are: 
 Global Positioning Systems (GPS) 
 Remote sensing 
 3D laser scanning 

 
Global Positioning Systems (GPS) 
A GPS is a set of hardware and software to determine accurate locations on the earth using 
signals received from satellites. With GPS, location data and associated attribute data can be 
transferred to a GIS. GPS operate by measuring the distances from multiple satellites orbiting 
the earth to compute the x, y and z coordinates of the location of a GPS receiver. For an 
accurate determination of the receiver location, four satellites are required. The use of more 
satellites simply adds confirmation to the location of the receiver. There are 24 satellites in 
the total GPS system from which 21 are active. There are 3 reserve satellites in case of 
unexpected circumstances. At least five satellites are visible from any location on earth. As 
buildings, hills, trees and other objects may block the signal of a satellite, there is usually still 
a sufficient amount of satellites available to determine the location of the receiver. For each 
satellite the location in space is accurately known. The orbits are carefully planned and 
constantly updated by the satellites. For each satellite the receiver can see, the distance to 
the receiver is calculated by comparing the time the signal was sent with the time it was 
picked up by the receiver. When for four satellites at minimal these distances are known, the 
exact location of the receiver can be determined. Examples of GPS equipment that is 
currently available are car navigation systems, small hand-held units and mobile telephones. 
 
Remote sensing 
In the broadest sense, remote sensing is the measurement of information of an object by a 
recording device that is not in physical contact with the object (Internet, [20]). In the context 
of GIS technology, remote sensing is the utilization of for example aircrafts and satellites to 
gather information about the environment. Without direct contact between the recording 
device and the object, some means of transferring information through space must be 
utilised. Remote sensing instruments record information about an object by measuring the 
object’s transmission of electromagnetic energy from reflecting and radiating surfaces. 
Remote sensing is mainly used for earth observations. Using satellites, planes or balloons, 
information about the surface of the earth is acquired.  
 
3D laser scanning 
A 3D laser scanner is a device that analyzes a real-world object or environment to collect data 
of the shape of the object. The scanning device scans the surface of an object with a focused 
beam and records the reflected light. The collected data can then be used to construct digital, 
three dimensional models for a wide variety of applications. The purpose of the 3D laser 
scanner is to create a point cloud on the surface of the object. The points can then be used 
to reconstruct the shape of the object into a 3D surface model. For most situations, a single 
scan will not produce a complete model of the object. Multiple scans from different directions 
are required to obtain information about all sides of the object.  
 

 
Figure 4.4: Principle of 3D laser scanning (Internet, [4])
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4.3 GIS data structures 

In a GIS model the geographical data can be divided into spatial data and attribute data. The 
spatial data contain the objects representing the real world, such as buildings, roads and 
rivers, and gives the location of these objects. The attribute data contain the characteristics 
of these objects and indicate what the object is. The spatial data in GIS models can be 
presented in two ways: as raster data in the form of uniform cells, or as vector data in the 
form of points, lines and areas. These two data types will be discussed in the following 
paragraphs. 
 
4.3.1 Raster data models 
 
The raster model represents the real world through uniform, regular cells. Raster data can be 
visualized as a regular grid lying over the terrain, where the area is divided into rows and 
columns. The spatial data is therefore not continuous but divided into discrete units. The area 
which each cell represents varies from a few meters to kilometers and is known as the 
resolution of the grid. Each grid cell contains location coordinates and an attribute value, such 
as land use or terrain type. For the description of the terrain type several codes are used. For 
example a forest has code 1, a road has code 2 and a house has code 3. Within each cell the 
terrain is generalized to be a flat surface of constant elevation. 
 

 
Figure 4.5: Each grid cell has a code describing the terrain within that cell (Bernhardsen, [1]) 
 
The attribute values in a raster model can represent numerous phenomena, for example 
codes for topography, urban districts, land use or distances from a given object. Only one 
attribute value may be assigned to a single cell, so objects that have several attributes are 
therefore represented with a number of raster layers, one for each attribute. Raster 
databases may therefore contain hundreds of thematic layers. 
 

 
Figure 4.6: Objects with several attributes are represented with a number of layers, one for  

     each attribute (Bernhardsen, [1] ) 
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Raster data models are usually used in digital imaging, where just the color is recorded for 
each cell. There is no distinction between dots that are part of a note or dots that are part of 
a line segment for a geometric entity, such as a line or a circle. There are no X and Y values 
in the raster data that define where a line starts or where it ends. Files such as TIFF, GIF, 
JPEG and BMP are typically raster data formats.  
 
4.3.2 Vector data models 
 
In the vector data model the elements that represent the real world objects are described as 
points, lines or polygons. There is a mathematical definition for the parts of the drawing that 
represent the object. There are real X and Y values for the geometric entities. An object 
shape is represented by dots which are located where the shape of the object changes. The 
dots are joined by straight lines. Examples of vector elements are property boundaries for 
houses represented as polygons and locations represented as points. Attributes are assigned 
directly to the objects. For 3D vector data models, the Boundary representation is the most 
used representation. This method is discussed further in Paragraph 5.2.3. 
 
4.3.3 Raster VS vector data models 
 
Raster data models are less accurate than vector data models in defining the spatial location, 
as the smallest entity is always a cell, which represents an area and not a coordinate. But it is 
more expensive in terms of data storage and computing power (Delaney, [7]). 
 

 
Figure 4.7: From the Real World to Vector and Raster models (Internet, [5]) 
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4.4 GIS applications 

GIS is used in a wide variety of applications nowadays, varying from navigation systems to 
planning systems for the design of roads and urban districts. Many other disciplines can also 
benefit from GIS techniques. Two important GIS datasets that will be used during this thesis 
are the Top10vector and the Actueel Hoogtebestand Nederland (AHN). The Top10vector 
dataset is a digital 2D map of the Netherlands. The AHN is an elevation model of the 
Netherlands where the height of the surface and all kinds of objects like buildings and roads 
is stored. When these two datasets are linked, a 3D model of a certain region of the 
Netherlands can be generated. These models can be used in the Virtual Wind Tunnel to 
simulate the flow pattern around a building that is placed in a built environment. The 
Top10vector and AHN datasets will be discussed further in the following paragraphs. 
 
4.4.1 Top10vector 
 
As one of the first countries the Netherlands have a very detailed digital topographic map of 
the whole country in 2D. This Top10Vector dataset is based on air photography and terrain 
exploration and has a scale of 1:10.000 (Internet, [11]). The Top10Vector contains closed 
polygons that represent different elements on the earth’s surface, like buildings and roads. 
Out of the built-up area the individual buildings are visible. Within the built-up area only 
building blocks are visible. The Top10Vector contains the following topographic elements: 
 Buildings 
 Roads 
 Railways 
 Vegetation 
 Hydrographs 
 Relief 
 Boundaries between regions 

 
For the Netherlands the dataset is divided in 675 files that correspond to the size of real 
topographic maps. The files are available in different formats including DXF, which makes it 
very suitable for use in CAD applications.  
 

 
Figure 4.8: Top10Vector file for the area between Arnhem and Nijmegen (Internet, [12]) 
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4.4.2 Actueel Hoogtebestand Nederland (AHN) 
 
The Survey Department of the Dutch Ministry of Transport, Public Works and Water 
Management (Rijkswaterstaat) has built a detailed elevation model of the Netherlands. The 
project was initially meant to provide information for the management of coasts, dykes, 
polders and higher-level areas which seem to be drying out. But also for the construction of 
infrastructural works the data are of great importance (Internet, [13]). The heights of the 
dataset are stored in points that lie on a rectangular grid. The AHN has an average point 
density of 1 point per 16 m2 and contains next to information about the ground level, also 
elevation data of built areas, dykes and roads.  
 

 
Figure 4.9: Graphical representation of the AHN dataset (Internet, [13]) 
 
The technique used to obtain data for the AHN is called airborne laser altimetry. An airplane 
using a laser scanner flies across the area that must be scanned. The plane transmits pulses 
of laser light to the ground and measures the time of pulse return. The time span between 
transmission and return indicates the relative elevation of the measured point. To determine 

the absolute elevation of the plane relative to 
NAP, the position of the plane must be known. 
Via GPS the location of the plane is determined. 
The laser data are checked with reference 
measures on a flat surface of approximately one 
hectare, frequently a football field. From these 
measurements if follows that the height of the 
measured points differ 5 cm at average from the 
real heights with a standard deviation of 15 cm 
(Internet, [13]). The laser scanner does not 
measure only terrain surfaces but also objects 
like buildings, cars and vegetation. To produce 
digital maps of a surface from the scanned data 
it is necessary to classify the measured points 
and distinguish the points on the ground from 
the other points. This process is called filtering 
and the result is shown in Figure 4.9. Usually it is 
not possible to recognize the difference between 
small objects and little fluctuations in height of 
the surface automatically. These small objects 
have to be filtered manually then.  

Figure 4.10: Principle of Airborne Laser 
       Altimetry (Internet, [13]) 
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5. Computer-Aided Design 

5.1 Introduction 

Computer Aided Design (CAD) is the use of a wide range of computer-based tools that assist 
engineers, architects and designers in their design activities. It is used in a wide range of 
applications, from producing designs for buildings, roads and industrial prototypes to 
producing plans for electrical supplies.  CAD drawings can generally be categorized based on 
the engineering discipline they are related to. There are specialized CAD software packages 
that are aimed at specific disciplines, but many CAD packages can be used for a wide variety 
of disciplines.  
 
Before the computer era the use of paper drawings was the only means of documenting a 
design. These drawings took various forms ranging from small handmade sketches to large 
sheets of paper many meters long using drafting machines (Schoonmaker, [21]). The overall 
format was standardized across entire nations. First commercial applications of CAD were in 
automotive and aerospace industry. In those days CAD was limited to producing drawings 
similar to hand-drafted drawings. With the rise of computer technology, CAD systems to 
generate, edit and store drawings electronically have developed over a number of decades 
and they became the standard method for producing drawings. Adapting the design is an 
important advantage of CAD systems compared to handmade drawings. Designs can be 
scaled, moved or rotated without the need of generating a new drawing. Today CAD is not 
limited to drafting and rendering; it ventures into more intellectual areas of designer’s 
expertise. 
 
In this chapter various methods to describe geometry in general are dealt with. Several CAD 
systems are discussed that are especially developed for the design of buildings. The design 
tools that will be developed in this thesis must be able to work with the various types of CAD 
models that can be generated with these systems.  
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5.2 Form representation 

Geometric modeling deals with the mathematical representation of curves, surfaces and solids 
that is necessary in the definition of complex physical or engineering objects. The objects of 
concern in engineering range from simple mechanical parts to complex objects such as 
automobiles, ships, airplanes and buildings. These geometric shapes all have topology and 
geometry. Topology describes the relationship between faces, edges and vertices of an object 
that does not change when the object is deformed. Geometry describes the exact position of 
these faces, edges and vertices and gives shape to the topology.  
 

 
Figure 5.1: Topology contains the properties of geometric shapes that do not change when 
      the shape is deformed. It gives coherence between the points (Tolman, [25])   
 
There are several methods to represent the geometry and topology of an object. The 
common method is the use of traditional, technical 2D drawings with cross-sections and 
views from different sides. Although these drawings are sufficient, the geometry and topology 
can be represented in more advanced ways using 3D modeling: 
1) Wire Frame modeling 
2) Surface modeling 
3) Solid modeling: a. Constructive Solid Geometry 

b. Sweeping 
c. Boundary representation 

 
These methods will be discussed further in the following paragraphs. 
 
5.2.1 Wire Frame modeling 
 
Wire frame modeling is one of the earliest geometric modeling techniques and is the simplest 
way of representing 3D objects. It is constructed using points with 3D coordinates, connected 
with straight lines or curves. A wire frame model does not have surfaces; it contains only 
points and lines defining the edges of the modeled object. 
 

 
Figure 5.2: Wire frame representation (Internet, [10]) 



Master’s thesis                                                                                                  

37 
 

 
5.2.2 Surface modeling 
 
The first extension of the wire frame model is the surface model. It contains surfaces in stead 
of points and lines and is used for modeling the shape of curved surfaces, such as shell 
structures and terrain models. Complex, double curved surfaces can be represented using B-
Splines or NURBS (Tolman et al, [25]). These techniques will be discussed in Paragraph 5.3.  
 

 
Figure 5.3: Surface representation (Internet, [10]) 
 
Similar to surface modeling, an object can be described with meshes. A mesh is a collection 
of vertices and polygons forming faces, which define the shape of an object. The faces are 
arranged in such a way that they form the outside surface of the object. Meshes usually 
consist of triangles or other simple convex polygons.  
 
5.2.3 Solid modeling 
 
In a solid model the object is defined by a closed boundary. The boundary of the object 
separates the interior and exterior of the model. The object is defined by the volume space 
within the defined boundary. An advantage of solid modeling is that information like weight, 
volume or moment of inertia can be calculated for an object. A number of techniques are 
developed to form a solid model, like Constructive Solid Geometry, Sweeping and Boundary 
Representation.  
 
Constructive Solid Geometry 
The Constructive Solid Geometry (CSG) combines simple geometric primitives to form more 
complex solid objects using so-called Boolean operations. Typical geometric primitives are 
cones, cylinders, spheres and blocks. Using a Boolean operation, a new solid is constructed 
from two intersecting solids. Typical Boolean operations are union, intersection and 
difference. Given two sets A and B, its union consists of all points from either A and B. Its 
intersection consists of all points in both sets and its difference, for example written as A-B, 
consists of all points in A but not in B. 
 

 
Figure 5.4: Constructive solid representation as a result of subtraction (Internet, [10]) 

- =
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Sweeping 
The geometric shapes that can be built using the Boolean operations on the geometric 
primitives are limited. For complex objects it is more efficient to generate the shape using 
Sweeping. Sweeping can be carried out in different forms. The most commonly used are 
extrusion and revolving. With extrusion an object model can be generated from a 2D cross-
section, given the direction of extrusion and a certain depth. By revolving a 2D cross-section 
that is specified by a closed curve around the axis of symmetry, an axially symmetric object 
can be formed. The sweeping technique is most convenient for solids with translational or 
rotational symmetry.  
 

 
Figure 5.5: Some shapes are easier to create with sweeping techniques (Internet, 10)  
 
Boundary representation 
The most used representation in 3D modeling is the boundary representation. With this 
method, an object is represented as a collection of boundary surfaces. The boundary 
representation is an extension to the wire frame model by adding surface information to the 
model. Due to this surface information the method is very suitable for hidden surface removal 
and rendering.  

 
Figure 5.6: Boundary representation by joining the boundary surfaces (Internet, [10]) 
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5.3 Freeform curves and surfaces 

With Non Uniform Rational B-Splines (NURBS) a wide range of curves and surfaces can be 
parametrically represented, from straight lines and flat panels to precise circles and complex 
curved surfaces (Rogers, [19]). NURBS curves and surfaces are defined by a complex 
combination of mathematical equations, formulas and procedures. The development of 
NURBS began in the 1950’s when engineers needed a mathematical representation of 
freeform surfaces, like car bodies and aircraft wings. Pierre Bézier was one of the pioneers of 
the development of NURBS and invented the Bézier curves, the precursors of NURBS. They 
are used for curve representation, but are not suited for describing any curve. Bézier curves 
were followed by B-spline curves and finally by NURBS, which can be used to describe any 
curve. B-spline curves and NURBS are generalizations of the Bézier curves and have become 
the standard for describing, constructing and modeling free formed curves and surfaces in 
computer aided design and interactive graphics. In this thesis NURBS curves will be used to 
simplify a model of the building of interest. This procedure is discussed in Paragraph 7.3.7. 
 
5.3.1 Bézier Curves 
 
Bézier curves are the precursors of NURBS. They are used for curve representation, but are 
not suited for describing any curve. A Bézier curve is determined by a control polygon, such 
as shown in Figure 5.7. The control polygon is defined by four points, from which two are the 
endpoints of the Bézier curve. The point B0 is the origin endpoint. The point B3 is the 
destination endpoint. The points B1 and B2 are so called control points and control the path of 
the Bézier curve. The curve does not pass through any of the control points; it only passes 
through the endpoints with tangent vectors of the same direction as the first and last polygon 
spans. Bezier surfaces are surfaces which are described by a set of Bézier curves. 

 
Figure 5.7: A Bézier curve is defined by a control polygon of four points (Rogers, [19]) 
 
The parametric Bézier curve function is defined by: 
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Herein is n the degree of the curve and i the number of control points. The Bézier curves 
have at least one more control point than the degree of the curve. Point B=0 refers to the 
first point and B=n refers to the last point of the Bézier curve. The term Jn,i(t) in this function 
is called the blending function: 
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The blending function, also known as the basis function, influences the control points that 
form the Bézier curve.  
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In summary, the parametric Bézier curve function is built up of three different components: 
 Control points:  

The control points of a Bézier curve define the vertices of the control polygon and are 
given by Bi. The curve follows the shape of the control polygon. By moving the control 
points of the polygon, the shape of the Bézier curve can easily be changed. Usually, the 
first and the last point of the control polygon are the same as the first and the last point 
of the Bézier curve. 
 

 Basis Function: 
The basis or blending function Jn,i(t) indicate the influence each control point has on the 
shape of the curve on that point. Figure 5.8 gives some cubic Bézier curves with their 
blending function. With Bézier curves the blending functions are symmetrical. 
 

 Degree: 
Each Bézier curve has an associated degree that controls the smoothness of the curve. A 
degree of 1 will produce a straight line between the control points. A higher degree will 
result in a smoother curve. The higher the degree of the curve, the more points are 
needed to define it.  

 

 
Figure 5.8: Examples of cubic Bézier curves and their basis function (Rogers, [19]) 
 
 
5.3.2 B-Spline Curves 
 
B-Spline curves are a generalization of the Bézier curve. A spline curve is a sequence of 
Bézier curve segments that are connected together end to end to form a single continuous 
curve (Sederberg, [20]). The spline curve consists of several subintervals that correspond to 
the various Bézier curves of the spline. Each sub endpoint is called a knot. The set of sub 
endpoints is called a knot vector. Each subinterval of the spline is influenced by only d control 
points.  
 
B-Spline curves can be classified by uniform or non-uniform spacing of the knots. With 
uniform spacing B-spline curves the distance between the knots is equal. Non-uniform 
spacing B-spline curves have various distances between the knots. The shape of these curves 
can vary more than the shape of uniform B-spline curves. 
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5.3.3 NURBS 
 
A special form of B-spline curves are the Non-Uniform Rational B-Spline (NURBS) curves. The 
curves are non-uniform, so the distance between the knots can vary. Rational B-spline curves 
are specified as a ratio between two spline functions: 
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Herein is Bi the set of control points and wi the set of weight factors for each control point. 
The weighing factors determine the influence of the various control points. So, when the 
distance between the knots of a curve varies and the control points are weighted, the curve is 
a Non-Uniform Rational B-Spline curve. With NURBS, any shape from a simple line or circle to 
the most complex 3D surfaces or solids can accurately be described. By moving the control 
points of boundary curves or internal curves, almost any surface can be described. In CAD 
and CFD-programs, three-dimensional objects are generally described using NURBS. 
 

 
Figure 5.9: NURBS surface (Internet, [6]) 
 
 
5.4 Exchange of CAD Data Files 

Most CAD file types are binary data files. This means that one can not directly view and 
manipulate the data in the file. Files which one can directly view are known as ASCII files. 
Most CAD systems have their own file format, custom-made for the particular program. A 
major disadvantage is that the files have to be read, written and viewed with the same CAD-
system that created it. Therefore, CAD data files are not directly interchangeable from one 
CAD system to another. Neutral file formats have been developed to deal with this file 
incompatibility. The format is public domain to some degree and is almost always in ASCII 
format. The originating CAD system creates the neutral file after which it can be exchanged 
between two systems. The receiving CAD system reads or imports the neutral file. The most 
common neutral file formats are DXF, IGES and STEP (Schoonmaker, [21]). 
 
The exchange between a CAD system and Gambit, the Fluent pre-processor, is also based 
upon neutral file formats. Gambit is based on the ACIS geometrical libraries, but it can also 
import IGES and STEP data files. However, there are some bottlenecks when CAD models are 
translated to CFD systems. The ACIS modeling algorithms require a high degree of precision 
and accuracy of the model, but the inaccurate way in which most models are drawn leads to 
errors and inconsistencies. Therefore, the geometry often needs to be repaired after it is 
imported in Gambit.  
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5.5 Developments in CAD 

In the previous paragraphs the methodology how CAD is used in the traditional CAD systems 
is discussed. However, there are some important recent developments in CAD that deserve 
some attention. In this paragraph object-oriented and parametric modelers are discussed. In 
Appendix A.5 additional information about Industry Foundation Classes is included. The 
design tools that are developed in this thesis should support the different types of building 
models that originate from the various CAD systems and modelers.  
 
5.5.1 Object-Oriented Modelers 
 
A major disadvantage of the traditional CAD systems is that the models have no meaning for 
the computer. The drawings contain lines and points, but the interpretation is done by man. 
In the last decade a new technology is developed, called object-oriented modeling (Blaha, 
[5]). With this technology a model of the reality is described in terms of objects that are used 
in reality, such as walls, columns and girders. The model contains essential characteristics of 
these objects and also information about the relationships between the objects. If, for 
example, a wall is replaced in the model, the windows, doors and channels in that particular 
wall are also replaced automatically. This is very useful in the design process. 
 
The structure of the object-oriented models is based on so-called information models. With 
these models information can be modeled that can be interpret by man as well as the 
computer. Object-oriented models are a collection of objects that are organized into classes 
with common features like attributes and procedures. Attribute values, such as width, height, 
length or material, represent properties of the object itself or associations with other objects. 
Procedures are operations that the object can perform, such as move or stretch, and describe 
the behaviour of objects. The structure of object-oriented models can be represented using a 
graphical modeling language. In this case the Unified Modeling Language (UML) will be used 
(Internet, [17]).  
 

 
Figure 5.10: Objects in an object-oriented model 
 
In Figure 5.10 two examples of objects in an object-oriented model are given. The objects 
have attribute values, like width and height, and the object door also has two procedures; the 
door can be opened or closed. Objects are derived from so-called classes. A class describes 
the type of an object. Figure 5.11 gives an example of the class structural element. In a class 
the properties of the objects of a certain type are described. The object beam in Figure 5.10 
is an instance of the class structural element. Each object has its own value for each 
attribute, but shares the attribute names with other instances of the class. Other instances of 
the class structural element can be objects like columns or plates for example. 
 

 
Figure 5.11: Class in an object-oriented model 
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One of the powerful tools of object-oriented models is the ability of hierarchical classification 
and inheritance. Attributes and operations can be shared among classes based on a 
hierarchical relationship. A so-called superclass has general characteristics that subclasses 
inherit. Each subclass inherits all features of its superclass and adds its own unique features. 
Figure 5.12 gives an example of inheritance. The subclasses beam and column inherit the 
attributes width, height, length, weight and material of the superclass structural element. The 
subclasses can add their own attributes, like bending moment or axial force. 
 

  
Figure 5.12: The subclasses Beam and Column inherit attributes from a superclass  
 
 
The examples in the preceding pictures can be extended to form an entire room. Figure 5.13 
gives a model of a bathroom that is enclosed by walls, a ceiling and a floor. The bathroom 
contains a toilet, shower, bath tub and a wash basin. 
 

 
Figure 5.13: UML model of a bathroom (Kerklaan, [13]) 
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Figure 5.14 shows a class model of an entire house. The house can have several rooms, like 
a hall, kitchen and living room, and each room has its own orientation. The rooms are 
separated by one or more dividing elements, like floors, walls or a roof. The dividing elements 
can have cavities with a door or window. The house can also have a garden and it is built on 
a foundation. With this class model several instances for different house designs can be 
made. 
 

 
Figure 5.14: UML model of a house (Kerklaan, [13]) 
 
An important advantage of object-oriented modeling is the transparent structure and relative 
simplicity of the models. The above discussed method of object-oriented modeling, which is 
explained with the graphical modeling language UML, is often used in the next generation 
architectural and structural CAD systems. Figure 5.15 shows cross-sections of simple 
instances of the class model of the house, generated in ArchiCAD (Internet, [18]). All objects, 
structure or furniture, have sense for the computer; they are not only points and lines. The 
computer recognizes the various elements. By replacing an element, all accompanying 
elements are also replaced. 

 

 
Figure 5.15: Instances of the class House (Kerklaan, [13]) 
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5.5.2 Parametric modelers 
 
Some other modern CAD systems have the ability to create parametric models. In the original 
CAD systems, coordinate-based geometry is used to create graphic entities. Editing these 
entities is difficult and can easily lead to errors. In a parametric model, each entity, such as a 
line, arc or Boolean primitive, has parameters associated with it. These parameters control 
the geometric properties of the entity, such as the length, width and height or radius. They 
also control the location of the entities within the model. By changing some parameters, the 
model can quickly be adapted. Within some parametric modelers also equations can be added 
to the models. These equations can be used to construct relationships between the 
parameters. This is very useful when a certain parameter depends on the values of others.  
 
A parametric modeler is also aware of the characteristics of components and the association 
between them. It maintains constant relationships between elements as the model is 
manipulated. A door in a wall for example maintains its relationship with the wall when the 
wall is replaced. This is also the case in object-oriented modeling.  
 
Examples of parametric objects in Building Engineering are prefab elements, façade elements 
or hollow core slabs. Although the composition of these elements can be quite complicated, 
there are only a couple of parameters required to describe the element. Buildings are often 
unique products that are constructed with standard, serial manufactured elements. Because 
parametric modeling is very suitable for designing with standard elements, it is very useful for 
Building Engineering.  
 
5.6 Conclusion 

In this chapter various types of CAD models are discussed. The traditional CAD models 
consist of points, lines, surfaces and solids and have no meaning for the computer. The next 
generation CAD systems work with advanced object-oriented models and parametric models 
and do have sense for the computer. The design tools that are developed in this thesis should 
support the different types of building models that originate from the various CAD systems. 
For use in the Virtual Wind Tunnel, it also has to be possible to exchange the different CAD 
models with the CFD software. Chapter 7 deals with this problem.  
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6. Thesis approach 

The theory discussed in the previous chapters will be used to develop the various design tools 
to setup the geometry for CFD calculations. In this chapter an overview of the options to 
determine the wind loads will be given first, just as the current state of the Virtual Wind 
Tunnel. Then the purpose of the design tools and their contribution to the Virtual Wind 
Tunnel is given. Finally the strategy of the various tools to setup the geometry will be given.  
 
6.1 Wind load determination 

In Figure 6.1 an overview is given of the options to determine the wind loads on a building or 
structure. Calculations according to the building code and wind tunnel studies are generally 
applied methods and their results are widely accepted. As there is still contradiction on the 
use of CFD in wind engineering, CFD results are not generally accepted yet. The Virtual Wind 
Tunnel is therefore proposed to develop a general approach for setting up a flow problem. In 
recent graduation studies a computational domain is developed in which the CFD calculations 
can be performed. Some recommendations of these studies are used in this thesis to develop 
the various design tools. The scheme is discussed more extensively on the next page. 
 

 
Figure 6.1: Options to determine the wind loads and the purpose of the Virtual Wind Tunnel 
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Until now the structural engineer has to rely on the building code or real wind tunnel studies 
to determine the wind loads on a building or structure. As the Dutch building code NEN 6702 
and the Eurocode are limited to simple shapes, real wind tunnel tests are necessary to 
determine the wind effects on complex building shapes. Although these studies give reliable 
results for situations where the codes do not foresee, designers are discouraged to perform 
such a study in the early design process as they are very expensive and time-consuming. A 
third option to determine the wind loads on a building or structure could be the use of 
Computational Fluid Dynamics. In other industrial sectors CFD has become a very suitable 
tool for analyzing flow problems for which no analytical solution is available. CFD can solve 
the mathematical models up to a desired accuracy and changes in the geometry are relatively 
easy to perform. This can make CFD a very powerful tool to determine the wind effects in the 
early design process. Shape optimization with respect to wind loads could be possible then. 
 
However, as there is still contradiction on the use of CFD in wind engineering, results of CFD 
calculations are not widely accepted yet. To develop a general approach for CFD in wind 
engineering, a computational wind tunnel has been proposed at the Structural Design Lab of 
Delft University of Technology. The goal of the so-called Virtual Wind Tunnel is an application 
that can be used in the early stage of the design process to determine the wind loads. In the 
recent graduation studies by Van Nalta [16] and Snijders [23] a computational domain has 
been developed that shows promising results for the pressure distribution on simple shapes, 
like cubes and cylinders. However, for more complex building geometry the computational 
demand seems too high for the current desktop computers. Nevertheless, anticipating on 
future developments of computer resources, there are still some fields that require further 
research. From the recent graduation studies it is concluded that the definition of geometry 
has to be improved. The conversion of a detailed CAD model of a building to a useful CFD 
model seems to be a major problem that seriously affects the applicability of the Virtual Wind 
Tunnel. To perform parameter studies and to improve the design, alternative geometries 
must be compared. Methods that are able to automatically create the geometry could save 
valuable time. Finally it is concluded that the computational domain should be tested for more 
complex geometry and for an environment that contains a number of buildings. In the recent 
studies only single objects of a simple shape were studied. The consequences of placing more 
complex or several building shapes in the domain should be examined. 
 
From the conclusions and recommendations of the recent graduation studies it appears that 
certain tools to setup the geometry for CFD calculations are desired. The design tools that are 
developed in this thesis are to a large extent able to automatically generate the building 
geometry. With the toolbox it will be possible to setup a CFD calculation and compare several 
alternative geometries in a relatively short time. This makes shape optimization with respect 
to wind loads possible. As less interference of the structural engineer is required, valuable 
time will be saved as well. The purpose of the various design tools and their order in the 
geometry generating process is discussed in the next paragraphs. 
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6.2 Approach for the generation of geometry 

During this Master’s thesis several design tools will be developed to generate the geometry 
for CFD calculations. Looking at the entire CFD process, the tools concentrate on the first 
step, the description of geometry. In the previous graduation studies by Van Nalta [16] and 
Snijders [23] some other steps of the CFD process are investigated and the results of these 
studies will be used in this thesis to perform some CFD calculations. In Chapter 8 the results 
of some calculations for several test cases will be discussed. 
 

 
Figure 6.2: The design tools concentrate on the first step of the CFD process 
 
In Figure 6.3 a general approach for the generation of building geometry for CFD calculations 
is given. The straight orange boxes represent the models or datasets from which the required 
geometry can be generated. The blue diamonds represent the procedures that have to be 
carried out to adapt the various models. The yellow straight boxes finally represent the 
results that follow from the various procedures. As the flow pattern around a building is 
influenced by its surroundings, it can be desired to take the environment into account in the 
calculations. Next to a model of the building of interest, a 3D model of the environment is 
required then as well. However, at the moment there are hardly any useable 3D models of a 
certain area available and a method has to be developed to generate such models. Examples 
of data from which the 3D models of the environment can be constructed are GIS datasets, 
separate building models or 3D scans of a certain area or building. Next to a model of the 
environment, a 3D CAD model of the building of interest is required as well. As calculations 
for global wind load determination do not require highly detailed building models, the CAD 
models can be simplified by neglecting small details to quicken the calculation process. The 
simplified model of the building of interest can then be joined with the 3D model of the 
environment to create an integrated model of the research area. The next step is to mesh the 
model to be able to perform a CFD calculation. In Paragraph 6.3 the strategy of the various 
design tools and their position in the geometry generation approach is discussed in detail. 
 

 
 

Figure 6.3: General approach for the generation of building geometry 
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6.3 Strategy of the design tools 

With the design tools that will be developed in this thesis, three types of geometry can be 
generated. The first design tools can be used to generate a 3D model of the environment for 
a certain area. Another design tool can be used to simplify the geometry of the building of 
interest and to remove little details. Joining the results of these tools gives an integrated 
model of the research area with a simplified model of the building of interest, surrounded by 
the buildings of the environment. A final design tool can be used to create the computational 
domain in which the CFD calculations are performed. In Figure 6.4 the strategy of the various 
design tools to generate the geometry for a CFD calculation is given, according to the general 
approach as discussed in Paragraph 6.2. The rounded green boxes represent the various 
tools and give their order in the total process. With the design tools the calculations to predict 
the wind loads on a building or structure can be setup in a relatively short time and 
alternative geometries can be compared without much interference of the user. This would 
make shape optimization with respect to wind loads possible. The purpose of the various 
tools is discussed more extensively in the rest of this paragraph; the development process of 
the tools is discussed in Chapter 7. 
 
 

 
 

Figure 6.4: Strategy of the various design tools to setup the geometry for CFD calculations 
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Modeling the environment 
GIS technology offers two datasets for the Netherlands that can be used to generate a 3D 
model of a certain area. The Top10Vector dataset provides a digital topographic map of the 
Netherlands in 2D which is composed of closed polygons that represent various objects on 
the earth’s surface. Such objects are for example buildings, roads, water and vegetation. The 
other dataset is the Actueel Hoogtebestand Nederland (AHN), which provides an elevation 
model of the Netherlands. In this dataset the height of the country is stored on a regular grid 
with a density of one point per 16 m2, where each point represents the height of that 
particular location. Joining the two datasets gives a 2D digital topographic map for a certain 
area with the accompanying height information. 
 
Because the amount of built environment that has to be taken into account for the CFD 
calculations is limited, the first design tool can be used to create a restricted 2D research area 
from the Top10Vector dataset. For real wind tunnel studies a research area with a radius of 
300 m around the building of interest seems sufficient. Buildings further away do not have a 
significant influence anymore on the flow pattern around the central building. For the CFD 
calculations the extent of built area that is represented will initially be similar as for real wind 
tunnel studies. By assigning the center location of the building of interest and the radius of 
the research area, the first design tool will be able to create a bounded 2D research area with 
height information that originates from the AHN dataset. 
 
With the second design tool a 3D model of the environment can be generated by extruding 
the various elements of the 2D research area over their concerning height. The extrusion 
heights are derived from the AHN dataset for that particular area. Within the generated 3D 
model of the environment, the model of the building of interest can be placed to create an 
integrated 3D model of the research area. With this model it is possible to take the influence 
of the surroundings into account in the calculation of the wind loads on the building of 
interest.  
 
 
Simplification of the building of interest 
To determine the wind loads on the building of interest, a CAD model of the building is 
required. Nowadays these models usually originate from traditional CAD or object-oriented 
systems. However, CAD models of a certain building often contain lots of information that are 
not relevant to determine the global wind loads. Little details have hardly any influence on 
the wind effects, but a very complex grid is required to mesh all these small details. This 
increases the calculation time of the CFD software considerably. Inner geometry is also not 
relevant as only the surfaces that come in direct contact with the flow are necessary for CFD 
analysis. Nevertheless, deriving just the exterior surfaces of a building model is very hard as 
façades for example are usually constructed from several elements, like bricks, window-
frames, glass and awnings. It is not possible to subtract a single surface from the façade 
then. A final aspect is that building models have to be fully airtight for CFD analysis. Drawing 
inaccuracies can introduce small gaps through which air can flow into the building, which is 
off course not permitted. 
 
The purpose of the third design tool is to simplify the building of interest by wrapping an 
airtight, fitting surface around the model. The wrapped surface replaces all internal and 
external geometry and excludes small details. It is only this wrapped surface model that will 
be used for the CFD calculations. The procedure to wrap a surface around the building model 
consists of several steps. First enclosing curves are generated around the model at different 
height levels. Several methods will be developed to create these curves. Detailed façades can 
result in highly fluctuating enclosing curves, which can be simplified by fitting a NURBS curve 
through it. Finally a surface can be lofted through the curves that wraps the original building 
model. 
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As discussed in Paragraph 5.5, recent developments in CAD have resulted in new 
technologies, like object-oriented and parametric modeling systems. As architects and 
structural engineers work with these various systems nowadays, the design tool to simplify 
the building of interest must support the different models that originate from the various CAD 
systems. To quicken the simplification process, the CAD building models can be filtered first 
by manually deleting some inner geometry that is not relevant to determine the global wind 
loads. One can filter a building model on element size or on element type for example. As 
most models are constructed in several layers to distinguish the various building elements, 
the irrelevant parts can be removed by manually deleting the elements of a specific layer. 
 
The simplified model of the building of interest and the 3D model of the surrounding buildings 
together will form an integrated 3D model of the research area. All procedures to setup this 
area with the various design tools will be executed in the 3D CAD environment Rhinoceros 
(Internet, [1]). As both the model of the environment and the simplified building model are 
generated in Rhinoceros, it is the intention to manually place the building model in the 3D 
model of the environment. However, the Top10Vector and AHN datasets originate from GIS 
technology and all data correspond to the global coordinate system. As building models are 
usually generated in a local coordinate system, both models use different systems to define 
the coordinates. When the models are joined, they are placed at different locations and some 
operations are required to move the building model to the right place in the model of the 
environment. Although it will not be developed in this thesis, an additional design tool could 
be generated that links the local coordinate system with the global coordinate system. When 
the user knows the global coordinates in the model of the environment where the building of 
interest has to arise, a design tool should be able to place the building model with the right 
orientation at the desired location.  
 
 
Generation of the computational domain 
The last design tool that will be developed can be used to generate the computational domain 
in which the calculations are performed. The domain must be large enough to avoid that the 
flow pattern at the boundaries of the domain is influenced by the buildings in the research 
area. The Van Nalta domain (Nalta, [16]), which is developed at the Structural Design Lab of 
Delft University of Technology, forms the base for the computational domain that is used in 
this thesis. The Van Nalta domain was developed to investigate the wind effects on a cube 
with dimensions of 60x60x60 m3. However, for calculations with a research area containing 
several building models, the dimensions of the original domain are not sufficient. For each 
calculation the domain has to be adapted, as the dimensions depend on the maximum height 
of the buildings in the research area and the radius of the research area. 
 
The purpose of the fourth design tool is to create the computational domain, depending on 
the dimensions of the research area. The domain is divided in two parts, a wind environment 
and a building environment. In the building environment the model of the research area will 
be placed and this part of the domain has to be meshed manually. The wind environment 
contains the regions around the building environment and will be meshed automatically 
during the generation of the domain. The structure of the Van Nalta domain is discussed 
more extensively in Paragraph 7.4. After the entire domain is meshed and boundary zones 
are defined, the calculation can be setup in Fluent. The guidelines that were developed in the 
previous graduation studies will be used for this procedure. The results of some calculations 
with models that are generated with the various design tools are discussed in Chapter 8. By 
going through the entire CFD process it will be investigated if the various design tools work 
for CFD applications. Comparing the results of a CFD calculation with the Dutch building code 
or the Eurocode would be very interesting then. 
 
 
 



Master’s thesis                                                                                                  

53 
 

 

7. Tools to setup the geometry for CFD calculations 

In this chapter the design tools to setup the geometry for CFD calculations are discussed in 
detail. The first and second tools to generate a 3D model for a certain area are demonstrated 
for a part of the Delft University of Technology district. For the third tool that simplifies the 
model of interest, several methods are developed. These methods are discussed extensively 
and explained on the basis of some simple models. The fourth tool can be used to generate 
the computational domain for a certain research area, depending on the dimensions of that 
area. The Van Nalta domain, which was already developed at the Structural Design Lab, 
forms the base for the generation of the domain. All developed procedures, methods and 
scripts originate from own ideas and work. Only the method that directly finds an intersection 
between a mesh object and a line is developed with some outer help. This method is then 
implemented in the own developed methods that are discussed in Paragraph 7.3. 
 
7.1 Tool 1: Generation of the 2D research area 

7.1.1 Purpose 
 
The flow pattern around a building is strongly influenced by its surroundings. That is why the 
surroundings are of great importance for the CFD calculation. The amount of built 
environment that has to be taken into account can be limited. In real wind tunnel studies a 
circular area with a radius of 300 m around the building of interest is usually modeled 
(Franke, [8]). Buildings further away have no influence of concern on the flow pattern around 
the region of interest. In accordance to real wind tunnel tests, the extent of built area that is 
represented in the CFD calculations will initially be similar.  
 
Information about the built environment can be obtained from GIS technology. But until now 
there are no useable 3D models of certain regions of the Netherlands available. However, as 
mentioned in Chapter 4, research is done to create a digital topographic map of the whole 
country in 2D. Besides, a detailed elevation model of the Netherlands is built where the 
height of the ground level, built areas, dykes, rivers and roads are modeled. With these two 
models it should be possible to create a 3D model of the built environment for a certain area. 
 
The purpose of the first design tool is to generate a 2D research area from the Top10Vector 
dataset for use in the Virtual Wind Tunnel. When the user specifies a certain location of the 
building of interest, the design tool should be able to automatically create a circular research 
area with a certain radius around the central building. All objects outside this area can be 
removed, only the inner objects will remain. The 3D CAD environment Rhinoceros is applied 
to create the tool. Rhinoceros is able to read both the digital map of the Netherlands and the 
elevation model of the country. Furthermore, it is possible to script with Rhinoceros, what 
makes it a very suitable environment to create the design tool. For scripting, Rhinoceros uses 
a specialized version of Microsoft’s Visual Basic language, called Rhinoceros Visual Basic. This 
version adds over 200 methods to the native Visual Basic language, which enables the 
programmer to work with specialized geometry, like meshes and NURBS curves and surfaces. 
 
7.1.2 GIS data 
 
The datasets that are used to generate the 3D model of the built environment are the 
Top10Vector and the AHN. These datasets are obtained in DXF format from research institute 
OTB in Delft. The Top10Vector dataset contains a map of the southern part of Delft at scale 
1:10.000. The AHN dataset contains the heights of the surface and all kind of objects for a 
part of the Delft University of Technology district. The heights are stored in points that lie on 
a regular grid with a point density of 1 point per 16 m2.  
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A 2D model of the university district, where the two datasets are joined together, is shown in 
Figure 7.1. Figure 7.2 gives a closer view of the district to show the rectangular grid of points 
of the AHN that lies over the Top10Vector dataset. 
 

 
Figure 7.1: 2D model of the University of Delft district; Top10Vector and AHN together 
 

 
Figure 7.2: Close-up of the district near the faculty of Electrical Engineering  
 
The points itself of the AHN dataset have no height, they all lie on a plane with zero elevation 
in z-direction. The height of the area they represent is stored in the layer of the points. Each 
point has its own layer, where the name of the layer corresponds to the concerned height. 
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The Top10Vector is a vector data model that is composed of only closed polygons that 
represent the various elements on the earth’s surface. To distinguish these elements there is 
a distinction in layers of the polygons. Every element type has its own layer with a unique 
code, wherein all polygons are subdivided. There are for example separate layers for roads, 
buildings and vegetation. The several layers can be turned on and off separately. Appendix B 
gives a list of all layers in the Top10Vector dataset, the so-called TDN code (Internet, [2]). 
 
7.1.3 Explanation of the tool 
 
Before running the script, the user has to open both the Top10Vector and AHN datasets in 
Rhinoceros. When the script is loaded, the user is asked for the radius of the research area. 
This is 300 m by default, but the user is able to give any radius. After entering the desired 
radius the user is asked to pick the center location where the building of interest will arise. 
The user can do this by simply mouse clicking on a certain location in the map. After this the 
script will first turn off all layers in the Top10Vector dataset that do not represent any 
building type. The purpose is to create a 3D model of the buildings inside the research area 
only. Elements like roads, rivers or vegetation are not modeled, because this would 
complicate the grid generation process considerably. In a further phase of the script a flat 
ground surface will therefore be created that corresponds to the size of the research area.  
 
When the script has turned off the various layers, a circular area around the center location 
of the building of interest will be created with the entered radius. The script will now check 
which polygons representing the built environment and which height points lie at the outside 
of the circular area. These will be deleted then. When a polygon crosses the boundary of the 
area, the polygon will be kept. Initially it was intended to trim the polygons at the boundary, 
where the part at the outside of the circular area would be deleted. However, scripting this 
procedure appeared to be very complicated. Besides, when a polygon is trimmed at the 
boundary, only a part of the building would be modeled then. This does not correspond with 
the reality and it also involves an abrupt change of the built environment at the boundary. 
Therefore it is decided to keep the complete building when it is located at the boundary of 
the circular area. To check if a polygon lies outside the research area, a Rhinoceros command 
is used that returns all control points of a polygon. For each control point it will be checked if 
its distance to the center location of the research area is larger or smaller than the user-
defined radius of the research area. The mathematics for this procedure are: 
 

2 2

(  ) (  )
(  ) (  )

( ) ( )

x x

y y

x control point center location
y control point center location

distance x y radius

Δ = −
Δ = −

= Δ + Δ <

     (7.1)  

 
If the distance for one or more control points of the polygon is smaller than the radius, the 
polygon lies completely or partly in the research area. This polygon must remain then. When 
the distance of all control points is larger than the radius, the polygon lies completely outside 
the research area. Subsequently, the script checks which height points that lie in the research 
area also lie in a building polygon. A special plug-in for Rhinoceros is used for this procedure, 
which automatically finds all points that are enclosed by a certain polygon. All height points 
that lie in the research area and are enclosed by a building polygon are kept; the remaining 
points are deleted. Because the polygons that cross the boundary of the circular area are 
kept, the actual research area is larger than the original area. That is why the script finally 
deletes the original circle and creates a new circle that fits all polygons. Figure 7.3 gives the 
result of the first tool for a part of the Delft University of Technology district. All polygons and 
height points at the outside of the research area are deleted. Within the research area, only 
the points that contain the height of the remaining building polygons are kept. 
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The variables which the user has to specify are summarized in Table 7.1. 
 
Variable User specified value 
Radius of the research area  
Center location of the building of interest  

Table 7.1: Variables to specify when running the script of the first design tool 
 

 
Figure 7.3: Result of the first tool: A 2D model of the research area with the necessary 
                height points lying at the inside of the polygons 
 
As can be seen in Figure 7.3, there are no height points at the top side of the upper 
polygons. This is caused by the relatively small amount of available height data of the 
university district. However, the method seems to work properly. When in the nearby future 
the Top10Vector and AHN datasets are available for other areas, the method will also be 
suitable to generate a research area from these datasets. This of course on condition that the 
datasets are received in the same format; that means the heights in the AHN dataset have to 
be stored in the layer of the various points. Because all polygons that cross the boundary of 
the research area are kept, the actual research area is larger. The script draws a new circle 
with a larger radius that fits all polygons. The center location of this new research area 
corresponds to the user-specified center location of the building of interest. In this way the 
center location of the building remains the center of the research area. The whole model is 
then moved from the center location of the research area to the origin of the coordinate 
system. As the computational domain that will be constructed around the research area to 
perform the CFD calculations is also generated around the origin, the model of the research 
area is directly in the right place when it is imported in the domain. Finally the radius of the 
research area is given to the user. The radius is required to determine the dimensions of the 
domain. In Appendix C the first tool is discussed extensively on the basis of the written script. 
 

 
Figure 7.4: The tool finally gives the radius of the research area 
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7.2 Tool 2: Extrusion of buildings inside the research area 

7.2.1 Purpose 
 
With the first design tool a 2D model of the region of interest is generated. The buildings 
inside the research area are represented as polygons. These polygons enclose several height 
points that contain information about the elevation height of the building that is represented 
by the polygon. For use in the Virtual Wind Tunnel a 3D model of the region of interest is 
required. So, the purpose of the second design tool is to generate an elevated model from 
the 2D model that is created by the first design tool. The script of the second design tool is 
again written in the Rhinoceros Visual Basic language. 
 
As mentioned in Chapter 3 two measurements have to be carried out during a real wind 
tunnel test: one measurement where the surrounding buildings are modeled as the actual 
situation and a second measurement where the surrounding buildings are chopped off to a 
maximum height of 15 m. The maximum values obtained from these measurements are 
normative. The user of the Virtual Wind Tunnel must also be able to do these two 
measurements. The second design tool will therefore be able to extrude the buildings inside 
the research area over both the actual height and, if a building is higher than 15 m, over the 
truncated height. 
 
7.2.2 Explanation of the tool 
 
Before running the script of the second design tool, the user first has to open the 2D model 
of the research area in Rhinoceros. When the script is loaded, the user is asked to choose the 
extrusion height of the surroundings. The buildings can be extruded over their full height, 
over a truncated height if a building is higher than 15 m and over no height at all. With the 
last option the user is also able to simulate the flow pattern around a building without 
modeling the built environment. After an extrusion method is chosen, the script checks for all 
polygons in the model which height points are located in the area surrounded by a polygon. A 
special Rhinoceros plug-in is used to automatically determine which points are enclosed by 
the polygon. The layers of these points contain the height over which the concerned polygon 
has to be extruded. The script determines then the average height of all points that are 
enclosed by the polygon and extrudes the polygon over this averaged height. However, due 
to inaccuracies in the AHN dataset, some height points differ considerably from the real 
height. The divergences originate from for example inaccuracies of the laser scanning 
equipment. The dataset also contains blunders that are caused by disturbing objects on the 
earth’s surface, like vegetation, water and mobile objects. Figure 7.5 shows some correct and 
divergent height points that lie in the polygon of the faculty of Electrical Engineering.  
 

 
Figure 7.5: Correct and divergent height points in the faculty of Electrical Engineering polygon
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The correct height of the building is about 89 m, but there are points of 9,39 m and even      
-0,62 m. By taking the median height of all points as extrusion height in stead of the average 
height, the divergent height points can be neglected. As the median is the middle of a 
distribution, the list of height values for a certain polygon has to be arranged first from the 
lowest value to the highest value. Sorting the list is easily done in Rhinoceros with one simple 
command. If a certain polygon contains an uneven number of height values, the median is 
just the middle value of the sorted list. If there is an even number of height values of a 
certain polygon, the median is the average of the two middle values of the list. In Figure 7.6 
the values of all height points in the faculty of Electrical Engineering polygon are sorted and 
represented in a graph. The median of the values is 88 m and corresponds to the middle 
point of the sorted height points.   
 

 
Figure 7.6: Median of the height values of the faculty of Electrical Engineering polygon 
 
When the polygon is extruded over the median height, the result is a closed solid with the 
shape of the underlying polygon. If the user has chosen the option to chop off the buildings 
that are higher than 15 m, the script checks if the averaged height of the points is larger than 
15 m. If so, the concerned polygon is extruded over 15 m. Smaller buildings are just extruded 
over their actual height.  
 
When all buildings are extruded, the script finally extrudes the circular ground plane that was 
created by the first design tool. The circle is extruded over a constant height and forms a flat 
ground surface that corresponds to the size of the research area. Finally the script informs 
the user about the maximum height over which a polygon is extruded. This corresponds to 
the highest surrounding building in the research area. The maximum height of surrounding 
buildings and the building of interest determines the size of the computational domain that 
will be used for the CFD calculations. In Paragraph 7.4 the generation of the computational 
domain is discussed further. Figure 7.8 on the next page shows the result of the second 
design tool for a part of the Delft University of Technology district.  
 

 
Figure 7.7: The tool finally gives the maximum height of the surrounding buildings in the  
      research area 
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Figure 7.8: Result of the second design tool: A 3D model of the research area with a flat,  

     circular ground surface 
 
The 3D model of the research area can be saved in a wide variety of formats, so it can be 
used in many applications.  To investigate the wind forces and pressures on a new building, 
the user can manually add a 3D CAD model of the building of interest into the model of the 
research area. This can be done in Rhinoceros, but when the modeled area is saved in the 
right format, it should be possible to do it in other CAD environments as well. Adding a new 
building to the research area is not definitely necessary. The model could also be used to 
investigate the wind effects on an existing built environment, for example to determine the 
most suitable location for a specific new building. The user could also use the 3D model to 
investigate the effects for the surrounding buildings when a particular building in the research 
area is removed. Finally, the model could also be used as input for scaled model 
manufacturers to create a real scaled model of a certain area. These models could for 
example be used for real wind tunnel research.  
 
In Appendix D the second design tool is discussed extensively on the basis of the written 
script. The variables which the user has to specify are summarized in Table 7.2. 
 
Variable User specified value 
Extrusion method: 
  - Extrusion over the full height 
  - Extrusion over the truncated height 
  - No extrusion at all 

 

Table 7.2: Variables to specify when running the script of the second design tool 
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7.2.3 Points of concern 
 
Although the second design tool seems to work properly, there are some points of concern. 
The first problem is that an entire building is represented by only one polygon. When a 
building consists of several building parts with a different height, the polygon is extruded over 
one height, which is the average of all building parts. The left picture of Figure 7.9 shows the 
extruded faculty of Civil Engineering. In reality the building consists of several parts with their 
own height. The lecture halls for example are about 9 m high, the Stevin labs about 12 m and 
the main building about 33 m. However, because the building is represented as one polygon, 
it is extruded over the average height of all building parts, which is 12,5 m.  
 
 

 
Figure 7.9: all building parts of Civil Engineering extruded over the average height (left)  
           all building parts of Civil Engineering extruded over their concerning height (right) 
 
There seems to be methods available that solve these problems. For the points of the AHN 
dataset a very complicated algorithm can recognize a large change in height. It seems 
possible to create a new polygon automatically around the divergent height points. These 
new polygons could be extruded over the corresponding height then. However, due to the 
relative coarse point density of the AHN dataset, the shape of these new polygons will 
probably not exactly match the real shape of the building parts. With more height points per 
m2 a more accurate result could be obtained. A better method seems to manually create 
polygons in the Top10Vector dataset for areas with divergent height points and separate 
these from the original polygons. The different building parts could then be extruded over 
their concerning height. In the right picture of Figure 7.9 this method is implemented for the 
faculty of Civil Engineering. As all building parts are extruded over different heights, the 
model describes reality much better. However, a thoroughly knowledge of the buildings in the 
environment is necessary for this method, which is usually not the case. 
 
Another aspect is that only the polygons that represent buildings are extruded. All other 
polygons are turned off, so roads, water and vegetation for example are not modeled. In 
stead of these elements, a flat ground surface is modeled to simplify the grid generation 
process. A complex surface with lots of small height differences would cause a very complex 
grid, which results in less cells being available for modeling the primary buildings. For use in a 
design application a very high accuracy of the ground surface might not be that necessary. 
However, trees for example could still be modeled. If for example a certain tree form is 
modeled, it can be placed in the model of the research area at the concerning locations that 
follow from the tree layers in the Top10Vector dataset. With the elevation data that follow 
from the AHN dataset for these locations, the tree models could be scaled to the right 
dimensions. In this way the influence of large vegetation can be taken into account in the 
model of the research area. This option could be a useful extension of the second design tool. 

Main building Stevin labs 

Lecture halls 
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A final point of concern is that still no slope surfaces like roofs can be modeled. All polygons 
are extruded straight up and have a flat top side. Other surfaces, like for example the slope 
underside of the Aula Congress Centre of the Delft University of Technology can not be 
modeled as well. The building is represented as a solid block with straight walls. However, as 
the models of the environment are used in a design application, it might not be that 
necessary for now to have a very high accuracy of the surrounding buildings. At GIS 
technology, research is done at the moment to develop more accurate and airtight 3D models 
of certain environments. If these methods come widely available in the future, more accurate 
models of the built environment can be generated for use in the Virtual Wind Tunnel. 
However, one must keep in mind that the purpose of the Virtual Wind Tunnel is a design 
application with which the global wind forces can be calculated as an indication. Highly 
detailed models of the environment are therefore not that necessary.  
 

 
Figure 7.10: Slope surfaces can not be modeled with the current design tools (Internet, [15]) 
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7.3 Tool 3: Simplification of the building of interest 

7.3.1 Purpose 
 
CAD models of a building usually contain lots of information that are not relevant to 
determine the global wind loads on a structure. Modeling all little details, like window frames, 
door handles and railings will cause a very complex grid that increases the calculation time of 
the CFD software tremendously. For CFD analysis only the surfaces that come in direct 
contact with the flow are necessary. But most building models also contain the interior 
structures and several furniture objects in high detail. These objects are certainly not relevant 
to determine the wind loads. A method that automatically removes the interior geometry and 
simplifies the external geometry to a certain degree by neglecting small details would be very 
valuable as this can save a lot of calculation time. For meshing, also a lot of cells can be 
saved when not all little details are modeled.  This is also valuable, as the amount of cells 
that can be used is limited due to the actual computer capacities. Meshing large building 
models that are placed in a built environment can therefore be very difficult. 

 

 
Figure 7.11: Highly detailed external and internal geometry in CAD models (Internet, [18]) 
 
For CFD analysis the provided input models have to be airtight, meaning that all lines and 
surfaces have to connect exactly. However, this is not always the case as edges, surfaces and 
solids do not always meet in a CAD model of a building design. These gaps are generally 
introduced by inaccuracies of the drawers and give problems with the grid generation as the 
meshing algorithms require a perfect model description as input. Gaps in a model could also 
cause air flowing through the building, which is of course not permitted. By wrapping a 
surface around the building model an airtight model could be created that is very suitable for 
CFD simulations. If the shape of the model is followed to some degree by the wrapped 
surface, a simplified building model can be generated that excludes all little details.  
 
The purpose of the third design tool is to simplify the external geometry of the building of 
interest by wrapping a fitting surface around the model. The wrapped surface heals eventual 
gaps, which makes the model airtight, and replaces the external and internal geometry of the 
building. It is only this wrapped surface that will be used for the CFD analysis. The following 
paragraphs discuss four methods that have been developed to create the wrapped surface. 
The methods are again scripted in the Rhino Visual Basic language and are based on finding 
the most outer points of the model for different height levels. If for a certain level the outer 
points are found, a polygon can be generated through the points, which encloses the model 
at that level. If this process is repeated for the full height of the building, where the level of 
concern is elevated each time over a certain distance, the model is enclosed by an amount of 
polygons. A surface can then be generated through these polygons, which wraps the model. 
For all three methods the process is divided in several parts. First the enclosing polygons for 
the several height levels are generated. When the model is highly detailed this will lead to 
very fluctuating polygons. To simplify these curves and get rid of little details, a smooth 
NURBS curve can be fitted through the fluctuating curve. Finally a surface can be generated 
through the enclosing curves that wraps the model.  
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7.3.2 Rotating Lines method 
 
The first method to generate the enclosing curves around a model is called Rotating Lines. 
The method is based on finding the outer points of the model. The method is first developed 
in 2D and later extended to 3D. When the building model is opened in Rhinoceros and the 
script is loaded, the user is asked to pick the center location of the model with the mouse. 
From this location, lines will be drawn with a user-specified length. For each line it will be 
checked if there is an intersection with the various elements of the model. The script 
recognizes intersections with lines, surfaces and solids. If there is more than one intersection 
for a certain line, the script will search for the intersection point with the largest distance 
from the center location of the model. At this location the script adds a point to the model. 
This procedure is now repeated for the next line, where each new line will be rotated over a 
certain angle around the center location of the model. The user has to specify an amount of 
parts from which the rotation angle can be calculated. If, for example, the amount of parts is 
90, the angle over which the lines will be rotated is 360/90 = 4 degrees. The following 
pictures explain the method on the basis of a very simple 2D model. 
 

 
Figure 7.12: Rotating Lines method; 2D example 
 
In Figure 7.12 a simple model that consists of rectangular shapes is given. The method starts 
with drawing a line from the user-specified center location of the model, with a user-specified 
length in the north direction. The length of the line must be higher than the largest distance 
between any point of the model and the center location. Else the line won’t reach these 
points. The script uses some Rhinoceros commands that automatically determine the 
intersection between a line element and other lines, surfaces or solids. The distance between 
the intersection point and the user-defined center location of the building is then calculated. 
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For a certain line element, a point is added to the model at the intersection with the largest 
distance to the center location of the building. The procedure is repeated for the next line, 
which is rotated around the center location. In this example the amount of parts that is 
specified is 360, what means that the rotation angle is 1 degree. So, for each degree the 
most outer point of the model will be found. When the lines are finally rotated over 360 
degrees, the outer points in all directions are found. By adding a polyline through these 
points and removing the inner geometry, the model is enclosed by a surrounded curve. The 
result is shown in the right picture of Figure 7.12.  
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The procedure can now be extended to the third dimension. The level at which the outer 
points are determined is raised each time in order to generate the enclosing curves at 
different heights. When this is done for the full height of the building, a surface can be lofted 
through the various curves. The lofting process however is a separate method and will be 
discussed in Paragraph 7.3.8. Figure 7.13 explains the Rotating Lines method for a simple 3D 
model. 
 

 
Figure 7.13: Rotating Lines method; 3D example 
 
In Figure 7.13 a 3D model is given, based on the 2D model of Figure 7.12. The model 
consists of surfaces and solids. After loading the script, the user is again asked to pick the 
center location of the model. He is also asked for the length of the rotating lines and the 
amount of parts for which the outer points have to be determined. Because the script now 
works in three dimensions, the user is also asked for the height of the building and the step 
size over which the concerning level has to be elevated. Finally the user is asked for the 
height where the script has to start. Usually this is the bottom of the model. In the middle 
picture of Figure 7.13 some already generated enclosing curves can be seen. The total height 
of the model is four units; the step size is 0.25 units. When for all steps the outer points are 
found and the curves are generated, a lofted surface can finally be generated with the Loft 
method that is discussed later. The result is shown in the right picture. All underlying model 
parts are removed, what is left is a hollow surface model. The variables which the user has to 
specify are summarized in Table 7.3. 
 
Variable User specified value 
Center location of the model of interest  
Length of the rotating lines  
Amount of parts to determine the outer points for  
Height of the model  
Step size to elevate the level of concern  
Starting height of the script  

Table 7.3: Variables to specify when running the script of the Rotating Lines method 
 
The method also seems to work properly on more complicated models. However, complex 
building models will also contain more detail. As a consequence, the enclosing curves are not 
smooth anymore. To simplify the fluctuating curves and get rid of the little details, special 
fitting algorithms can be used. In Paragraph 7.3.7 the NURBS fitting technique is discussed 
that can be used to simplify the enclosing curves. 
 
In Appendix E the Rotating Lines method for 3D models is discussed extensively on the basis 
of the written script. 
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7.3.3 Rectangle method 
 
Another method that is developed to find the outer points of a model is a method called 
Rectangle. A disadvantage of the Rotating Lines method is that the distance between the 
outer points increases as the distance between the boundaries of the model and the center 
location of the model increases. For very large models with a rectangular shape, the shape of 
the enclosing curve will differ from the real shape. This phenomenon can best be 
demonstrated with an example. 
 

 
Figure 7.14: Disadvantage of the Rotating Lines method for large models: when a curve is  
        generated through the points, the curve differs from the original model 
 
As a consequence of the rotation of the line, the distance between the outer points increases 
when the intersection locations are further away from the center location. When a polyline is 
created through these outer points, the enclosing curve will differ at the corner points from 
the original model. A method that deals with this problem is the Rectangle method. 
 
The Rectangle method is also based on finding the outer points of a model by the intersection 
of a line with the various elements of the model. In stead of lines that rotate around a center 
location, a rectangle that is drawn by the user and encloses the model will now be used as 
basis for the lines. Starting from the lower left corner of the rectangle, a line will be created 
to the upper left corner of the drawn rectangle. After having checked if there is an 
intersection with the model elements, the line will be moved to the right over a user-specified 
distance. For this new location of the line it will again be checked if there is an intersection 
with the various elements. For all intersection points of a certain line element the distances 
are compared and the minimum and maximum values are derived. At these locations points 
are added to the model then. This process is repeated until the line element is finally arrived 
at the right side of the rectangle. The procedure now continues with a line that is created 
from the lower left to the lower right corner of the drawn rectangle. After having checked if 
there are intersections with the model elements, the line is moved upwards over the same 
user-specified distance. This process continues until the line is finally arrived at the top side 
of the rectangle. The method is explained with pictures on the following page on the basis of 
the simple 2D model.  
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Figure 7.15: Rectangle method; 2D example 
 
In Figure 7.15 the simple 2D model is given again. When the script is loaded, the user is first 
asked to draw a rectangle around the model. Then a line is created from the lower left corner 
of the rectangle to the upper left corner. The script checks if there are intersections between 
the line and the model parts and, in case of several intersections, automatically places a point 
at the nearest and most far away intersection location from the bottom of the rectangle. The 
next line that is drawn is moved to the right over the user-specified distance. When the line is 
finally arrived at the right side of the drawn rectangle, the process is repeated, but now in 
vertical direction. Starting from the lower left to the lower right, lines are drawn and moved 
upwards over the user-specified distance. The process ends when the line is arrived at the 
top side of the rectangle. All outer points are found now. 
 
The next step is to draw the enclosing polyline through the outer points. However, this 
procedure is more complicated in comparison with the Rotating Lines method. For the 
Rotating Lines method, all outer points lie in the right sequence in the outer points array 
because of the rotation of the lines. The neighbouring outer points lie next to each other in 
the array. With the Rectangle method, the outer points do not lie in the right sequence in the 
array. The nearest and most far away intersection points for a certain location of the line are 
placed next to each other in the array. When directly creating a polyline through the points of 
the array, a zigzagging curve would arise. So, the points in the array have to be ordered first 
before the enclosing curve can be drawn through it.   
 
The procedure of ordering the array of outer points is based on finding the closest point for a 
certain outer point. Starting from the first point of the array, the distances from all other 
points in the array to this first point are calculated. The closest point is now placed in a new 
array. From this point the distances to all other points are calculated again to find the closest 
point for that one. The closest point that is found now is again placed in the new array. 
Points that are already placed in this new array are ignored by the determination of the 
closest points. The reason is that it could else be possible for a certain point that the distance 
to a point in the new array is smaller than the distance to a point that is not already placed in 
this array. When all points are gone through, a new array is originated with the outer points 
lying in the right sequence. Neighbouring outer points now lie next to each other in the array. 
After adding a polyline through these points and removing the inner geometry, the model is 
enclosed by a surrounded curve. The result is shown in the lower right picture of Figure 7.15. 
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The procedure can again be extended to the third dimension. The level at which the outer 
points are determined is raised each time to generate the enclosing curves at different 
heights. Figure 7.16 demonstrates the method for the simple 3D model. 
 

 
Figure 7.16: Rectangle method; 3D example 
 
The model in Figure 7.16 consists of surfaces and solids. After loading the script, the user is 
asked to draw a rectangle around the model. The script uses the dimensions of this rectangle 
to determine the length of the curves and the boundaries between which the curves will 
move. The user is also asked for the distance between the line elements over which the lines 
have to be moved. If the user wants a very accurate enclosing of the model, the distance 
between the line elements must be small. However, a small distance between the line 
elements will lead to more outer points and the process of finding the closest nearby point to 
generate a polyline will take longer. The user is also asked for the height of the building and 
the step size over which the rectangle has to be elevated each time. Finally the user is asked 
for the height where the script has to start. The total height of the model in Figure 7.16 is 
four units. The step size is 0.25 units. The distance between the line elements is set to 0.1. 
With the Loft method, a lofted surface can finally be created between the curves when for all 
steps the enclosing curves are generated. After removing all underlying model parts, a hollow 
surface model will remain. The variables which the user has to specify are summarized in 
Table 7.4. 
 
Variable User specified value 
Rectangle around the model of interest  
Distance between the line elements  
Height of the model  
Step size to elevate the level of concern  
Starting height of the script  

Table 7.4: Variables to specify when running the script of the Rectangle method 
  
Some results of the Rectangle method for some more complicated models are discussed in 
Paragraph 7.3.9. A method to simplify the enclosing curves is discussed in Paragraph 7.3.7. 
In Appendix F the Rectangle method for 3D models is discussed extensively on the basis of 
the written script. 
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7.3.4 Rotated Square method 
 
The third method that is developed to find the outer points of a model is a method called 
Rotated Square. The method is based on the Rectangle method that is discussed in 
Paragraph 7.3.3. The method is developed to find the outer points in case of in-built surfaces. 
The original Rectangle and the Rotating Lines method do not give proper results for such 
situations. The following pictures demonstrate the problem. 
 

 
Figure 7.17: Limitations of the Rotating Lines and Rectangle method: outer points at in-built  
       façades are not completely found 
 
If, for example, the floor plan of a model has a shape like the left picture of Figure 7.17. The 
middle picture gives the result of finding the outer points with the Rotating Lines method. 
The right picture gives the result for the Rectangle method. As can be seen, most outer 
points on the in-built façades are not found. Creating the enclosing polyline through these 
points will certainly give a divergent curve. This is especially the case for the Rotating Lines 
method.  
 
The developed Rotated Square method deals with this problem. In this method, the user is 
still asked to draw a rectangle around the model of interest. The corner points of this 
rectangle are now used to generate a square that is rotated over 45 degrees. The square fits 
the original rectangle exactly. Figure 7.18 demonstrates the principle. 
 

 
Figure 7.18: The Rotated Square method: the square fits the drawn rectangle exactly 
 
The left picture of Figure 7.18 shows a user-defined rectangle that can be drawn around the 
model of interest. The corner points of this rectangle are used to define a square that is 
rotated over 45 degrees and fits the rectangle exactly. The rotated square will now be used 
as basis for the lines that will search for intersections with the various elements of the model. 
Starting from the lower left edge of the square, a line will be drawn and moved to the upper 
right edge of the square over user-specified intervals. For each interval it will be checked if 
there is an intersection between the line and the various model elements. In case of more 
than one intersection for a certain location of the line, the script will search for the closest 
and most far away intersection related to the startpoint of the line. At these locations points 
will be added to the model. If the line has finally arrived at the upper right edge of the 
square, the procedure continues with lines moving from the upper left edge of the square to 
the lower right edge of the square. The method is explained more extensively on the basis of 
a 2D model on the following page. 
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Figure 7.19: Rotated Square method; 2D example 
 
In Figure 7.19 the model with the in-built façades is given again. When the script is loaded, 
the user is first asked to draw a rectangle around the model. A rotated square is created from 
the corner points of the original rectangle. Then a line is drawn from the bottom corner of the 
square to the left corner of the square. The script checks if there are intersections between 
the line and the model parts and, in case of several intersections, places a point at the 
nearest and most far away intersection location related to the startpoint of the line. The next 
line that is drawn is moved diagonally in upwards and right direction over a user-specified 
distance. When the line is finally arrived at the upper right edge of the square, the process is 
repeated, but now with lines moving from the upper left edge to the lower right edge of the 
square. Then all outer points of the model are found. 
 
The next step is to draw the enclosing polyline through the outer points. As in the Rectangle 
method, the outer points do not lie in the right sequence in the array. Before the polyline can 
be created, the outer points have to be ordered first. The procedure of ordering the array is 
again based on finding the closest point for a certain outer point. Another consequence of 
this method is that some outer points are placed twice in the array, because for both 
directions wherein the lines move, the same outer point can be found. While ordering the 
array it will also be checked if a certain point is placed twice in the array. The procedure of 
ordering the array is already discussed in Paragraph 7.3.3.  
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The procedure of finding the outer points with the Rotated Square method can again be 
extended to the third dimension. The level at which the outer points are determined is raised 
each time to generate the enclosing curves at different heights. The following pictures 
demonstrate the method for a simple 3D model. 
 

 
Figure 7.20: Rotated Square method; 3D example 
 
After loading the script, the user is asked to draw a rectangle around the model. The script 
again uses the corner points of the rectangle to create the rotated square. Then the user is 
asked for the distance between the line elements over which the lines will be moved. He is 
also asked for the height of the building and the step size over which the rotated square has 
to be elevated each time. Finally the user is asked for the height where the script has to start. 
When for all steps the outer points are found and the curves are generated, a lofted surface 
can finally be generated with the Loft method that is discussed in Paragraph 7.3.8. After 
removing all underlying model parts, a hollow surface model remains. The variables which the 
user has to specify are summarized in Table 7.5. 
 
Variable User specified value 
Rectangle around the model of interest  
Distance between the line elements  
Height of the model  
Step size to elevate the level of concern  
Starting height of the script  

Table 7.5: Variables to specify when running the script of the Rotated Square method 
  
Results of the Rotated Square method for some more complicated models are discussed in 
Paragraph 7.3.9. A method to simplify the enclosing curves is discussed in Paragraph 7.3.7. 
In Appendix G the Rotated Square method for 3D models is discussed extensively on the 
basis of the written script.  
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7.3.5 Integrated method 
 
The discussed methods to find the outer points and generate the enclosing curves seem to 
work properly for rectangular building models. However, additional tests showed that the 
methods sometimes fail in finding all outer points of a model, especially for multiple curved 
models. Figure 7.21 gives an example of a freeform, organic shape. Such organic shapes are 

very popular in the actual Blob architecture and it is 
desired that the various tools support such models as 
well. However, none of the developed methods to 
generate the enclosing curves succeeded in finding all 
outer points of the given model. If the Rotating Lines 
method for example gave the outer points for a certain 
location of the model, it failed in finding the outer points 
at other locations. Those points were found then with 
the Rectangle method, but this method failed in finding 
the points at other locations again. Joining the several 
methods to one integrated method appeared to be the 
solution. Several tests with various curved models 
showed that the integrated method succeeded each 
time in finding all outer points of the various models. 

Figure 7.21: Freeform organic shape 
 
A rectangle that has to be drawn around the model forms the base of the integrated method. 
From this rectangle the rotated square can be constructed and the middle of the rectangle 
forms the centre point of the rotating lines method. The coordinates of the centre point are 
calculated from the coordinates of the corners of the drawn rectangle: 
 

( ) ( ) ( )( )  1 2   -   
x x x

x lower left corner lower right corner lower left corner= + ⋅  (7.3) 

( ) ( ) ( )( )  1 2   -   
y y y

y lower left corner upper left corner lower left corner= + ⋅  (7.4) 

 
After the rectangle is drawn around the building model, the user is asked for the distance 
between the line elements for the Rectangle and Rotated Square method and for the amount 
of parts for the Rotating Lines method. From the amount of parts the angle over which the 
lines are rotated can be calculated. The process of finding all outer points then starts with the 
Rectangle method and is directly followed by the Rotating Lines method. The length of the 
rotating lines is equal to the length of the diagonal between the lower left and upper right 
corner of the rectangle. In this way the lines are always long enough to reach all model parts. 
The process to find the outer points is then finished with the Rotated Square method. The 
final step is to draw a polyline through the points that encloses the model. However, as a 
result of the execution of the three methods in one continuous process, quite a lot of points 
are found that do not lie in the right sequence. Before the enclosing curve can be generated, 
the array that contains the outer points has to be ordered first. This procedure is again based 
on finding the closest point for a certain outer point. On the next page the results of the 
three separate methods and the integrated method are given for the organic shape of Figure 
7.21. Because the script of the integrated method is very long as it is just a sequence of the 
various separate methods with only some small adaptations, it is not given in this report. 
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In Figure 7.22 the results of the Rotating Lines method (left) and the Rectangle method 
(right) are given for the freeform shape. Both methods are not able to find all outer points on 
the boundary of the model. Generating the enclosing curve through the points will give a 
curve that reasonably differs from the original model.  
 

 
Figure 7.22: Results of the Rotating Lines and the Rectangle method for the given shape 
 
In the left picture of Figure 7.23 the result of the Rotated Square method is given for the 
freeform shape. Comparing the results of the three methods, it can be concluded that each 
method finds certain points that are not found with the other methods. Joining the methods 
together gives an integrated method that is able to find all outer points on the model. The 
result of the integrated method is given in the right picture of Figure 7.23. As all outer points 
of the model are found, the enclosing curve will perfectly match the original model. 
 

 
Figure 7.23: Results of the Rotated Square and integrated method for the given shape 
 
Additional tests with other complex, multiple curved models showed that for each model the 
integrated method was able to find all outer points. When the original methods fail in finding 
those points on a certain model, the integrated method seems to be a proper alternative. 
However, as three procedures have to be executed in this method, it will take quite some 
time before all points are found and the enclosing curves are generated. This is especially the 
case for extended building models with many elements and a considerable height. A method 
that quickens the process to some extent would therefore be very valuable. 
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7.3.6 Meshes 
 
As architects and structural engineers work with various CAD systems nowadays, the purpose 
of the design tool to simplify the geometry is to support the diverse model types. When 
traditional models, originating from systems like AutoCAD, are imported in Rhinoceros, the 
models are still constructed from lines, surfaces and solids. The various developed tools work 
very well on these models. However, as mentioned in Paragraph 5.5, recent developments in 
CAD have resulted in technologies like object-oriented modeling and parametric modeling. 
Models that are created with these technologies are not constructed from lines or surfaces 
anymore, but of objects with attributes and procedures. The several objects represent the 
elements from which a building or structure is built of, like walls, floors, beams and columns. 
The objects have sense for the computer; they are not only points and lines. When such 
models, made in systems like ArchiCAD or Autodesk Revit, are imported in Rhinoceros, the 
model contains no lines, surfaces or solids anymore. Because Rhinoceros is not an object-
oriented or parametric environment, the objects are converted to meshes. A mesh is basically 
a collection of vertices and faces connected together to represent a surface.  
 

 
Figure 7.24: Object-oriented models imported in Rhinoceros are constructed from meshes 
 
In Figure 7.24 an example is given of an object-oriented model of an office building that is 
imported in Rhinoceros. The original model is made in ArchiCAD (Internet, [18]). In 
Rhinoceros, the meshes are built up from vertices and faces, forming triangles. The problem 
that arises here is that the current version of Rhinoceros is not able to determine the 
intersections with meshes. The developed tools to find the outer points of a model appear not 
to work for these models. However, two methods are developed to deal with meshes and 
which are able to find the intersection points. The first method converts the meshes to 
surfaces by deriving the vertices and faces from which the mesh is built. Through these 
entities a surface can be created, for which it is possible to determine the intersection point. 
Another method makes use of a new version of Rhinoceros, which is however still in 
development. With the newest beta edition it seems possible to directly determine the 
intersection with a mesh. On the following pages these methods are discussed further. 
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The first method that deals with meshes is based on returning the face vertices of a mesh 
object. Through these vertices a surface can be created, for which it is possible to determine 
the intersection point with a line element. When this is done for all meshes of the model, a 
model is obtained that is constructed from only surfaces. For these surfaces it is possible to 
determine the outer points and generate the enclosing curves with the developed methods. 
The principle is explained in Figure 7.25. 
 

 
Figure 7.25: Conversion of meshes to surfaces 
 
In the left picture of Figure 7.25 a mesh of a mechanical device is given. The mesh is 
constructed from vertices forming triangles. The method returns the vertices of the triangles 
and uses these as boundaries between which surfaces can be created. In the middle picture 
all mesh triangles of the model are conversed to surfaces. The right picture finally shows a 
rendered picture of the model. 
 
Because the above discussed method has to be carried out before one of the methods to find 
the outer points is applied, the method to convert the meshes into surfaces is called 
Preprocessing. The preprocessing process can be seen as a method to prepare the models for 
the methods to generate the enclosing curves. Next to meshes, a model can also contain 
block instances. These instances are some kind of superiors of meshes. For block instances it 
is not possible to determine the intersection between a line element and the instance as well. 
Exploding a block instance gives the meshes from which the instance is built of. For cases 
where a model contains block instances, the Preprocessing method also gives an option to 
derive meshes from the instance.  
 
The Preprocessing method gives the user four options. First the number of blocks, meshes, 
face curves and surfaces can be count, to control if the model contains one of these entities. 
Then the user has the option to split the block instances into meshes. The next option is to 
split the meshes into face curves and finally surfaces can be created from the face curves. 
The user interface of the method is given in Figure 7.26. 
 

 
Figure 7.26: Preprocessing method 
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Figure 7.27 demonstrates the process of converting a mesh to surfaces with the 
Preprocessing method and generating the enclosing curves with the Rotating Lines method 
for a chess pawn. Finally a surface is lofted through the curves with the Loft method, which is 
discussed in Paragraph 7.3.8. 
 

 
Figure 7.27: The process of wrapping a surface around a mesh object 
 
The first picture of Figure 7.27 gives the mesh model of a pawn. The second picture shows 
the result of converting the mesh model to a surface model. For an object that is built up 
from surfaces, the outer points over the height of the model can be found with the Rotating 
Lines method. The third picture shows this procedure. After lofting a surface trough the 
curves, a hollow surface model of the pawn is generated that replaces the original geometry. 
The result is shown in the fourth picture. The method also seems to work properly on more 
complicated models. The results of some test cases are discussed in Paragraph 7.3.9. In 
Appendix H the Preprocessing method is discussed extensively on the basis of the written 
script. 
 
Another way of finding the intersection point with a mesh object is using the newest Beta 
release of Rhinoceros 4. For all previous scripts and methods, Rhinoceros 3 is used. This is 
also the version that is installed on the computers of the faculty of Civil Engineering of Delft 
University of Technology. Rhinoceros 3 is not able to determine the intersection between a 
line element and a mesh, but Rhinoceros 4 is. In this latest version, some commands and 
functions are implemented that are not supported by Rhinoceros 3. With these commands it 
is possible to directly determine the intersections. However, Rhinoceros 4 is still in 
development and no final versions are available yet. Although Beta releases are free to 
download with the license key of Rhinoceros 3, it is not allowed to install Beta software on 
the faculty’s computers. Nevertheless, with some help of David Rutten (Internet, [3]) a 
method is developed for Rhinoceros 4 to find the intersection with a mesh. This method is 
then implemented in the Rotating Lines, Rectangle and Rotated Square methods, leading to 
two variants of each method: one variant to determine the outer points for a model that is 
built up of lines, surfaces and solids, and another variant to determine the outer points for a 
model that is built up of meshes. Both variants give the same results, but with the meshes 
variant for Rhinoceros 4 the whole Preprocessing process can be skipped. This saves time, 
especially when the model contains hundreds of meshes. The scripts were tested on an 
ouster system where Rhinoceros 4 was installed and they all seem to work properly. Appendix 
I gives the implementation of the method to find intersections with a mesh, in the Rotating 
Lines method. The implementation in the Rectangle and Rotated Square method is also 
performed, but as the procedure is the same, the implementation for these methods is not 
given in this report.   
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7.3.7 Curve simplification 
 
Applying one of the three methods to determine the outer points of a model give the 
enclosing curves of the model for several height steps. The smaller the distance between the 
line elements is chosen, the more outer points are found. When the model is highly detailed, 
the enclosing curves will fluctuate considerably. To simplify the curves and get rid of the little 
details, special fitting algorithms can be used. In this paragraph the NURBS fitting technique 
is discussed to simplify the enclosing curves. However, it must be said that it is not always 
necessary to simplify the enclosing curves. When a building model has smooth façades for 
example without much detail, the enclosing curves perhaps do not have to be simplified. The 
user must choose for himself if he wants to simplify the curves or not.  
 
The NURBS fitting technique will use the outer points of the model where the enclosing 
curves are constructed from, as control points to fit a simplified curve through it. By assigning 
parameter values to the control points, a curve can be created that fits the points at the 
given parameters. Depending on the parameter values, the curve can follow the control 
points exactly or more approximately. As the original enclosing curves are constructed from 
the outer points of the model, they automatically form the control points of the enclosing 
curves. The enclosing curves go straight through the control points; no parameter values are 
defined to fit the curve through the points. Here lies the difference with the NURBS fitting 
technique as the fitting curves do not go exactly through the outer points. The method uses 
the outer points as control points to fit a smooth curve through the points dependent on the 
given parameter values. 
 
NURBS fitting 
NURBS curves are curves that are parametrically represented. The curve is defined by its 
degree, the control points, knots and weight values. The degree of the curve can be any 
positive whole number, but it is usually 1, 2 or 3. If the degree is 1, the curve is linear and it 
will consist of straight sections. Quadratic curves have degree 2 and cubic curves have 
degree 3. For fitting a smooth curve through the control points, degree 3 is recommended. 
Another factor that defines a NURBS curve is the knots. The knots determine the smoothness 
of the curve. The amount of knots on a curve is the degree of the curve plus the number of 
control points minus 1. For a NURBS curve of degree 3 and with 11 control points, the list of 
knots can be for example: 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8. The knot values in the list must 
be of increasing order. The number of times a knot value is duplicated in the list is called the 
knot’s multiplicity. In this example the knot values 0 and 8 have multiplicity 3 and the knot 
values 1 to 7 have multiplicity 1. If a knot value is duplicated by the degree of the curve it is 
said to be a full-multiplicity knot. With a degree 3 curve, the knot values 0 and 8 have full-
multiplicity for this example. A knot value that appears only once is called a simple knot. 
Duplicate knot values in the middle of the knot list make a NURBS curve less smooth. A full-
multiplicity knot in the middle of the knot list means that the curve is bent into a sharp kink 
there. When the knot list starts and ends with a full-multiplicity knot, the curve starts exactly 
in the first control point and ends in the last control point. If not, the curve can start or end 
at a different location to construct the best fit. So, a knot list that starts and ends with a full-
multiplicity knot and has simple knots between them, results in a smooth curve that goes 
exactly through the first and last control point and fits the other control points. The last factor 
that defines a NURBS curve is the weight of the control points. The weight values determine 
the influence of the control points and can be seen as variables that indicate the accuracy of 
the fitting process. In general the first and last weight should be set to 1. If the weight value 
of the control points is larger than 1, the points are closer approximated by the curve. If the 
weight values are smaller than 1, the points are less approximated. On the next page some 
examples are given of the construction of NURBS curves. 
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Coordinates and weight 
factors of the control points: 
 

 X Y Z W 
1 0 0 0 1.0 
2 1 2 0 1.0 
3 5 8 0 1.0 
4 4 7 0 1.0 
5 8 5 0 1.0 
6 9 5 0 1.0 
7 5 3 0 1.0 
8 6 2 0 1.0 
9 8 1 0 1.0 
10 10 1 0 1.0 

 
Knot vector: 
0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5 
 

Figure 7.28: Kinked NURBS curve due to full-multiplicity at the 6th control point 
 
In Figure 7.28 a NURBS curve with its control points is given. The coordinates of the control 
points, together with the weight factors of the points, are given in the table next to the 
figure. Also the knot vector for this curve is given. The knot list has a full-multiplicity knot at 
the beginning and end, resulting in a curve that starts and ends exactly in the first and last 
control point. The knot list also contains a full-multiplicity knot in the middle, what results in 
the sharp kink in the middle of the NURBS curve. The curve goes exactly through the control 
point there. In Figure 7.29 the same curve is given again, only the knot vector is changed. 
The list only has full-multiplicity knots at the beginning and end of the list; all other knot 
values are single knots. This results in a smooth curve that goes exactly through the start and 
endpoint and fits all other control points. 
 

 
Coordinates and weight 
factors of the control points: 
 

 X Y Z W 
1 0 0 0 1.0 
2 1 2 0 1.0 
3 5 8 0 1.0 
4 4 7 0 1.0 
5 8 5 0 1.0 
6 9 5 0 1.0 
7 5 3 0 1.0 
8 6 2 0 1.0 
9 8 1 0 1.0 
10 10 1 0 1.0 

 
Knot vector: 
0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7 
 

Figure 7.29: Smooth NURBS curve 
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Figure 7.30 shows two curves with various weight factors for the control points. 
 

 
 
 
Weight factors of the 
control points: 
 

 W1 W2 

1 1.0 1.0 
2 1.0 0.3 
3 1.0 0.3 
4 1.0 0.3 
5 1.0 0.3 
6 1.0 0.3 
7 1.0 0.3 
8 1.0 0.3 
9 1.0 0.3 
10 1.0 1.0 

 
 
 
 

Figure 7.30: Weight factors determine the influence of the control points 
 
The influence of the weight factors is small for the curve in the given example. For the black 
NURBS curve in Figure 7.30 the weight factors for the control points are set to 0.3. For the 
original grey curve the weight factors were set to 1.0. The lower weight values result in a 
smaller approximation of the control points. Only at the end of the curve a small difference 
can be seen between the two NURBS curves. However, as follows from the given figures, the 
NURBS curve is very smooth in relation to its original curve that is drawn directly through the 
control points. Simplifying the enclosing curves by fitting a NURBS curve using its control 
points looks very promising.  
 
The script that is developed for the NURBS fitting method returns the control points of the 
enclosing curves. The first and last control points get a full-multiplicity knot; the rest of the 
knot list is filled with single knot values. This results in a NURBS curve that starts and ends 
exactly in the first and last control point. The user must specify a certain weight value that is 
set to all control points, except the first and last one. The weight value for these control 
points is set to 1 by default. Then the script is able to create a NURBS curve from the derived 
control points. The process is repeated for all enclosing curves in the model, after which the 
original curves are deleted. The result is a model that contains only NURBS curves. With the 
Loft method that is explained Paragraph 7.3.8, finally a surface can be generated through the 
curves. The script of the NURBS fitting method is given in Appendix J. 
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7.3.8 Lofting 
 
After the enclosing curves for several height levels are generated and eventually simplified, a 
lofted surface can be created through the curves to form a closed surface model. The lofting 
process has become a separate procedure and is not directly implemented in the methods to 
find the outer points and generate the enclosing curves. By separating these procedures, the 
user has the possibility to adapt or eventually remove some enclosing curves that do not fully 
satisfy. This could be desired if the methods to find the outer points do not give a satisfactory 
result for a certain height level. For the models that are tested and discussed in Paragraph 
7.3.9 this was not the case and the methods returned accurate curves. However, if for a 
certain model the methods somehow do not give a satisfying result, the user just has the 
opportunity to intervene. By returning the control points of a curve it can be adapted 
manually to the desired result, or it can be removed from the model. 
 
After the enclosing curves are checked by the user, the script to loft a surface through the 
curves can be loaded. The script searches for the lowest curve and from there it creates a 
straight surface to the curve that lies one level higher. From there on, the next surface is 
lofted to the curve that lies one level higher again. The procedure continues until through all 
curves the surfaces are lofted. In vertical direction the model is now closed by the surfaces. 
However, the bottom and top of the model are still open. To close the model completely, a 
planar surface is generated through the lowest and topmost enclosing curve. The lofted 
surfaces and the planar surfaces at the bottom and topside of the model are finally joined 
together, to form one single surface model. The procedure is explained with the following 
pictures on the basis of a 3D example. 
 
 

 
Figure 7.31: Lofting method to loft surfaces between the enclosing curves 
 
 
In Appendix K the lofting method is discussed extensively on the basis of the written script.
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7.3.9 Results 
 
After all methods are gone through for a certain building model, a lofted surface that has 
wrapped the model is left. All inner and outer geometry of the original building model are 
removed, what remains is a closed, hollow surface model. This simplified model of the 
building of interest can manually be placed in a 3D model of the research area then. In this 
paragraph some results are discussed of the various methods to create a wrapped surface 
around a building model. The several building models originate from various CAD systems, 
like SketchUp and ArchiCAD. 
 
Dream and Realization (SketchUp) 
The first building model that is used to test the various methods is obtained from students of 
the faculty of Architecture of Delft University of Technology. The model is the result of a 
design exercise called Dream and Realization. It is a design of an office building that consists 
of three separate blocks that are connected through atria. The model was generated in 
SketchUp and exported to Rhinoceros in the dwg file format. When opened in Rhinoceros, the 
model contained only block instances. Because the intersection between the line elements 
and a block instance can not be determined in Rhinoceros, the block instances were first 
converted to meshes with the Preprocessing tool. The same tool is then used to return the 
face curves of the meshes and create surfaces through these face curves. From now on it 
was possible to determine the intersection between the line elements and the model parts. As 
the building had a nice, rectangular shape, the Rectangle method was used to determine the 
outer points and generate the enclosing curves over the full height of the building. No curve 
simplification was applied, as the enclosing curves were quite smooth. The facades of the 
building model did not contain small details. 
 
The variables that were specified when running the Rectangle method are summarized in 
Table 7.6. As a result of the conversion from meshes to triangular surfaces, the amount of 
elements that the script had to go trough to determine the outer points was large. Where the 
original model contained about 1.200 elements, the conversed model contained 18.599 
elements. As for each line of the method all elements have to be checked if it has an 
intersection with the line, it takes quite some time before all outer points are found. To 
quicken the process, a larger distance between the line elements or a larger step size to 
elevate the level of concern can be chosen. Less line elements have to be gone through then. 
However, this is only permitted when the model is relatively straight and when it does not 
contain many details. Another method to quicken the process is to manually delete all inner 
geometry before the script is executed. Most architects work with several layers to distinguish 
the various building elements. When for example all objects in the various furniture or 
internal structure layers are removed, the model contains far less elements. As the script has 
to go through fewer objects then, the process can be quickened considerably. Finally it is also 
possible to use the Rectangle method variant that is adapted for Rhinoceros 4. With this 
version it is directly possible to determine the intersection between a line element and a 
mesh. It is not needed to convert the meshes to surfaces what results in less elements. This 
saves time twice: the process of converting the meshes can be skipped and the script has to 
check fewer elements. 
 
Variable User specified value 
Rectangle around the model of interest - 
Distance between the line elements 1.000 mm 
Height of the model 42.000 mm 
Step size to elevate the level of concern 500 mm 
Starting height of the script 0 mm 

Table 7.6: Specified variables for the Rectangle method 
  
On the next page the results of the Rectangle method are given for the office building. 
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Figure 7.32: Design of the office building 
 

 
Figure 7.33: Enclosing curves over the full height of the building 
 
 
 

 
Figure 7.34: Result of the methods: a wrapped, hollow surface model of the office building 

Original building model: 
 
 18.599 elements 

 
 Model contains 

internal and external 
geometry 

 
 

Enclosing curves model: 
 
 85 curves 

 
 Distance between 

curves = 500 mm 
 
 Original geometry is 

removed 
 
 

Lofted model: 
 
 1 single polysurface 

 
 Model is empty 

 
 Surface model 

replaces internal and 
external geometry 
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The figures on the previous page show the original building model, a model containing the 
enclosing curves and finally the wrapped surface model of the office building. Before the 
scripts were executed, some internal geometry was deleted to quicken the process. Especially 
the stairs with all its steps contained a lot of elements. After the Rectangle method was 
executed for the building model, 85 enclosing curves were generated. Through these curves 
a surface is lofted that wraps the original model. The result that is shown in Figure 7.34 
matches the original building model accurately. If there were any gaps in the model, they are 
now closed. All inner and outer geometry is removed; what remains is a single, hollow 
surface model that consists of one part. The next step is to eventually place the model in a 
3D model of the environment and export it to the CFD software. 
 
Office building (ArchiCAD) 
 
The next building model that is used to test the various methods is an office building that is 
drawn with ArchiCAD. The model was placed as an example on the ArchiCAD installation CD. 
As ArchiCAD is an object-oriented CAD system, the model elements are converted to meshes 
when imported in Rhinoceros. As the building model had a rectangular shape, the Rectangle 
method was used again to find the outer points of the model. In stead of converting the 
meshes to triangular surfaces, the Rhinoceros 4 variant of the Rectangle method was used. 
With this variant it is possible to directly determine the intersection between the line elements 
and the meshes, so no preprocessing was needed. The building model contained office rooms 
at the front side of the model. The offices were fully furnished with desks, chairs, computers 
and carpets. The backside of the model contained a large hall with some structural elements. 
To quicken the process, all furniture and internal structures were manually removed from the 
model before the scripts were executed.  
 
The variables that were specified when running the script are summarized in Table 7.7. As 
the façades of the building model were straight without much detail, the chosen distance 
between the line elements was relatively large. The step size was chosen smaller, as the 
office building contained some canopies with a limited thickness that had to be modeled. In 
the figures on the following page the result of the Rectangle and Loft methods are given for 
the office building. The surface model looks a little strange because the facades and roof do 
not contain any texture, but it reflects the form of the original model accurately. 
 
Variable User specified value 
Rectangle around the model of interest - 
Distance between the line elements 1.000 mm 
Height of the model 13.000 mm 
Step size to elevate the level of concern 500 mm 
Starting height of the script 0 mm 

Table 7.7: Specified variables for the Rectangle method 
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Figure 7.35: Design of the office building 
 

 
Figure 7.36: Enclosing curves over the full height of the building 
 

 
Figure 7.37: Result of the methods: a wrapped, hollow surface model of the office building 
 

Original building model: 
 
 2.059 meshes 

(= 11.860 surfaces) 
 

 Model contains 
internal and external 
geometry 

 
 

Lofted model: 
 
 1 single polysurface 

 
 Model is empty 

 
 Surface model 

replaces internal and 
external geometry 

Enclosing curves model: 
 
 27 curves 

 
 Distance between 

curves = 500 mm 
 
 Original geometry is 

removed 
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Apartment complex (ArchiCAD) 
 
Another building model that is used to test the various methods is an apartment complex that 
is again modeled in ArchiCAD. Because the building is modeled in an object-oriented system, 
the various elements were again converted to meshes when imported in Rhinoceros. As the 
building model contains in-built façades, like the glass staircase in the middle of the building, 
the Rotated Square method is used to find the outer points of the model. To quicken the 
process, the Rhinoceros 4 variant of the script is used that directly finds the intersection 
between a line element and a mesh. Some furniture, inner structures and window screens 
were deleted to decrease the amount of elements. This also shortened the process. The 
variables that were specified when running the script are summarized in Table 7.8. 
 
Variable User specified value 
Rectangle around the model of interest - 
Distance between the line elements 1.000 mm 
Height of the model 19.000 mm 
Step size to elevate the level of concern 500 mm 
Starting height of the script 0 mm 

Table 7.8: Specified variables for the Rotated Square method 
 
The figures on the next page give the result of the Rotated Square method and the Loft 
method to generate a lofted surface around the building model. Again the shape of the 
original building model is reflected accurately. Only the balconies are not modeled precisely. 
Due to the operating procedure of the methods, horizontal surfaces that are placed behind 
standing surfaces are not found. Because the outer points are determined on a horizontal 
plane that is leveled each time, the border of the balconies prevent that the floors behind are 
modeled. The balconies in the surface model are just represented as box volumes. However, 
for the determination of the global wind loads, this would probably be not a major bottleneck.  



Master’s thesis                                                                                                  

85 
 

 

 
 

Figure 7.38: Design of the apartment complex 
 

 
Figure 7.39: Enclosing curves over the full height of the building 
 

 
Figure 7.40: Result of the methods: a wrapped surface model of the apartment building 

Original building model: 
 
 6.331 meshes 

(= 37.765 surfaces) 
 

 Model contains 
internal and external 
geometry 

 
 

Enclosing curves model: 
 
 39 curves 

 
 Distance between 

curves = 500 mm 
 
 Original geometry is 

removed 
 
 

Lofted model: 
 
 1 single polysurface 

 
 Model is empty 

 
 Surface model 

replaces internal and 
external geometry 
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7.3.10   Restrictions 
 
Building parts of different height 
The results of the tests in the previous paragraph show that the developed methods work 
and give good results for the given building models. Especially for rectangular and circular 
models the three methods work very well. If a building model has multiple curved façades the 
original methods might fail, but several tests with the integrated method showed that this 
method is capable of finding the outer points for such models. Although it takes some time 
then to generate the enclosing curves, accurate results are obtained. However, there still are 
some restrictions on the various methods to find the outer points and to create the enclosing 
curves. The principle of the methods is to create a curve from the first outer point that is 
found, through all next outer points, to the last outer point. As the last outer point is the 
same as the first outer point, the result is a closed curve. Problems arise when a building 
model consists of various parts with different heights. In Figure 7.41 an example is given of a 

Blob model that consists of two higher parts at 
the outside and a lower part in the middle of 
the model. When the level of concern of the 
various methods is raised above the height of 
the middle part, only points at the outer model 
parts are found. As one single enclosing curve is 
generated through these points, the curve also 
passes the lower middle part of the model. 

Figure 7.41: Blob model (Toussaint, [26]) 
 
In Figure 7.42 this principle is explained further. The figure gives a side view of the model 
with the enclosing curves that are generated with the Rotated Square method. At a certain 
level the left and right model parts are just separated by air as there is no construction in 
between. At that level only the outer points at the outside model parts are found. As for each 
level only one curve is created through all points, the curve crosses the middle area. 
 

 
Figure 7.42: Side view of the model with the generated enclosing curves 
 
In Figure 7.43 a 3D view of the enclosing curves of the Blob model is given. When a surface 
is lofted through the curves, the air in the middle would be modeled as a building part, which 
is off course not desired. Ultimately the method should recognize building parts of different 
heights. In stead of creating one single enclosing curve, it should create multiple enclosing 
curves at a certain height level in case of several building parts. Joining the separate lofted 
building parts would give a single building model again. At the moment the various methods 
are only able to find the outer points in a 
horizontal plane and the level of concern is 
raised each time to create the curves at several 
heights. The methods should be adapted to find 
the outer points on a vertical plane as well. In 
addition to a horizontal plane that is raised each 
time, a vertical plane that moves in a horizontal 
direction along the model could be used to find 
some other outer points. This can help to find 
the various building parts of different height. 

Figure 7.43: Enclosing curves of the model 
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When the methods to find the outer points would be adapted to use a vertical plane as well 
that moves in horizontal direction, it is not recommended to create enclosing curves through 
the points. It will be difficult to automatically create a surface through the various horizontal 
and vertical curves then. However, using both a horizontal and a vertical plane to find the 
outer points results in a point cloud on the boundaries of the model. For a point cloud it is 
possible to directly construct a surface through the points that will enclose the model.  
 
Processing time 
Another restriction of the various methods to simplify the building of interest is the time 
required to find the outer points of the model. Especially when the Integrated method is used 
it takes quite some time before all enclosing curves are generated, as the Rotating Lines 
method, the Rectangle method and the Rotated Square method are all executed in a 
continuous process. The total time required to wrap the building model with a surface can 
increase up to several hours then. The Rhinoceros Visual Basic language in which the various 
methods are scripted appears to be the reason of the moderate processing speed. The script 
is gone through step by step and only one task can be performed at the same time. Although 
the Visual Basic language is reasonably simple to learn and very suitable for those who are 
not that familiar with programming, the methodology is a disadvantage of the language. To 
quicken the process of the various methods, the scripts should be translated to more 
advanced programming languages. Rhinoceros supports DotNET plug-ins and the C++ 
programming language as well, which are able to script the methods with more advanced 
techniques. Using these advanced languages could quicken the procedures considerably. 
However, the Rhino Visual Basic language uses special commands that are able to directly 
determine the intersection between lines, surfaces and solids. DotNET plug-ins and the C++ 
language do not support these commands and the programmer should construct these 
algorithms by himself then, which could be difficult.  
 
Nevertheless, as a first study to the development of a tool that simplifies a building model, 
the developed methods seem to work properly for most cases. From the results of the tested 
models it can be concluded that the methods have potential. To optimize the process, further 
research is required to translate the scripts of the methods to more advanced programming 
languages. As Rhinoceros also supports DotNET plug-ins and the C++ language, it remains a 
very suitable environment in which the tools could be implemented. 
 
 
7.3.11   Suggestions for additional methods 
 
Only for building models that consist of several parts which are separated by air, the 
developed methods seem not capable of wrapping a fitting surface around the model. In this 
paragraph two suggestions for additional methods to simplify such models are discussed. 
 
Shrinking sphere 
Simplification of a certain building model by wrapping a hollow surface around the model 
could be realized by using a shrinking sphere. Suppose a user-defined sphere that encloses 
the building model completely. When the sphere is able to deform due to a certain elasticity 
and if it is prohibited to perforate the sphere, the model could be wrapped by shrinking the 
sphere. In fact some kind of vacuum will be generated then that creates a surface around the 
model of interest from the sphere. If one is able to script this procedure and to ascribe an 
elasticity to the sphere, it could be a very suitable method to enclose all kinds of models. 



Master’s thesis                                                                                                  

88 
 

 
Laser scanning approach 
Another option to wrap a surface around a building model is a method that works similar to 
laser scanning equipment. Figure 7.44 gives the procedure of scanning an object using laser 
devices. If a certain script is able to imitate this equipment, a certain building model could be 
scanned to find the outer points of the model. The source of the scanner should be able then 
to circle around the model in all possible directions. A single line could be generated then 
from the scanner to the model and for each position of the scanner, the intersection with the 

boundary of the model could be determined. A single 
point can be added to the model at that location then. 
Repeating this procedure for all possible positions of the 
scanner should result in a point cloud on the boundaries 
of the model. With a technique called reconstruction the 
point cloud could be converted into a 3D surface model 
then. Reconstruction involves finding and connecting 
adjacent points in order to create a continuous surface. 
Rhinoceros should be very suitable for the development of 
such a method. 

Figure 7.44: Laser scanning 
 
If other methods to simplify a building model are developed in future research, the user of 
the Virtual Wind Tunnel will have a variety of design tools at his disposal. The user must 
decide for himself then which available tool is the most appropriate for a certain case. 
 
 
7.3.12   Evaluation 
 
In the previous paragraphs various methods of the third design tool that simplifies the 
building of interest are discussed. With these methods it is possible to wrap a surface around 
the model that replaces the external and internal geometry of the original building design. 
The total process consists of creating the enclosing curves for several height levels with the 
Rotating Lines, Rectangle, Rotated Square or Integrated method, eventually simplifying the 
enclosing curves with the NURBS fitting method and finally lofting a surface through the 
curves. The original geometry is deleted automatically then. The result of the various 
methods is a single, hollow surface model that can be used for CFD analysis. Calculations to 
determine the wind loads can be performed for only the surface model itself, or it can be 
placed in a 3D model of the environment that can be generated with the first and second 
design tools. In this way the influence of the surrounding buildings can be taken into account 
in the calculation of the wind loads. The surface model of the building of interest has to be 
placed manually in the 3D model of the environment then. 
 
To find the outer points and generate the enclosing curve for a certain model, the user must 
choose the most appropriate method. In general it can be said that the Rotating Lines 
method is most suitable for building models with a more or less circular floor plan. When the 
center location of the model is taken as the location from where the rotating lines are 
constructed, it must be possible to accurately generate the enclosing curves at various height 
levels. For buildings with a rectangular or extended ground plan the Rectangle method is the 
appropriate method to find the outer points and generate the enclosing curves. The Rotated 
Square method, which is based on the Rectangle method, is the most suitable method for 
buildings with in-built façades. For building models where the previous methods fail, the 
Integrated method that combines all other methods should be used in order to create the 
enclosing curves.  
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For each method to find the outer points and generate the enclosing curves, two variants are 
developed. The first variant determines the intersection between the rotating or moving line 
element of the methods and the line elements, surfaces and solids of the model. However, 
when a model is converted to meshes when it is imported in Rhinoceros, it is not possible to 
directly find the outer points of the model with the first variant. The meshes can be converted 
to triangular surfaces then with the Preprocessing method, after which it is possible to use 
the first variant of the methods. However, this is an extra step in the process and takes some 
time. Another possibility to determine the intersection between the line elements and a mesh 
is using the second variant of the methods. For this second variant, Rhinoceros Beta 4 is 
required as the script uses some commands and methods that are only supported by the 
newest version. With these commands it is possible to directly determine the intersection with 
a mesh, without the need of converting it to its triangular surfaces. However, as Rhinoceros 4 
is still in development, no final releases are available yet. It is therefore not allowed to use it 
on the faculty of Civil Engineering’s computers, so only on outer computer systems these 
scripts can be used. 
 
The total procedure of generating the enclosing curves, simplifying the curves with the 
NURBS fitting method and lofting a surface through the curves is performed several times for 
various building models. In the object-oriented models, the designer is free to present 
moveable objects like doors and windows opened or closed. If front doors and windows are 
still open when executing the methods to find the outer points, no point will be found at the 
locations of these doors and windows. In stead, the most outer point for that cross-section 
will be found on a wall or object inside the model. Therefore it is important to close all doors 
and windows of the model before the methods are applied.  
 
Complex models contain lots of elements. Especially when the meshes are converted to 
surfaces, the amount of elements quickly increases. The amount of elements in the model 
has a significant influence on the time required to find all outer points. For each line of the 
method, all model elements have to be checked if there is an intersection with the line. 
Reducing the amount of elements will certainly decrease the amount of time required. Before 
the methods to find the outer points are executed, it is recommended to delete all inner 
geometry. In most models, the various building element types are constructed in several 
layers. If the elements of the layers that represent for example furniture and inner structures 
are removed from the model, significant time can be saved. Just turning off these layers is 
not sufficient, as the elements are still part of the model then. They are hidden, but the script 
still goes through all these elements. They really have to be removed from the model. 
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7.4 Tool 4: Generation of the computational domain 

7.4.1 Introduction 
 
To obtain reliable results from the CFD calculations, a computational domain with sufficient 
dimensions has to be generated around the research area. The domain must be large enough 
to avoid that the flow pattern at the boundaries of the domain is influenced by the buildings 
in the research area. At the location where the domain ends, a boundary condition has to be 
defined that determines the nature of the flow problem. Distances from the research area to 
the boundaries of the domain are usually related to the maximum height of the buildings that 
are exposed to the flow. As already mentioned in Chapter 3, the Cost Action C14 workgroup 
gives recommendations for the size of the computational domain. In Figure 7.45 this 
recommended domain size is reproduced from Figure 3.11. 
 

 
Figure 7.45: Recommended dimensions for a computational domain by the CAC14 workgroup  
       (Franke, [8]) 
 
The inlet and side boundaries of the domain should be 5 Hmax away from the area to be 
investigated. To allow a full development of the flow, the outlet boundary should be 15 Hmax 
away from the research area. The top of the computational domain should be at least 6 Hmax 
away from the tallest building to prevent an artificial acceleration of the flow over this 
building. However, according to Van Nalta [16], a survey of recent literature shows that a 
wide range of different domain sizes is used in practice. In his Master’s thesis at the 
Structural Design Lab of Delft University of Technology, Van Nalta developed his own domain, 
the Van Nalta domain, which encloses all other domain sizes. Figure 7.46 shows the 
dimension of the Van Nalta domain. 

 
Figure 7.46: Top and side view with the dimensions of the Van Nalta domain (Nalta, [16]) 
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The inlet and outlet boundaries are 20 Hmax away from the research area, the side boundaries 
are 10 Hmax away. The top of the computational domain is even 20 Hmax away. This is very far 
in comparison with the recommendations of the Cost Action C14 workgroup. Calculations with 
the Van Nalta domain show that the dimensions of this domain are more than sufficient 
(Nalta, [16]). Velocity profiles at the upstream, side and top boundaries are unaffected by 
objects in the research area. The large size surely has an influence on the grid size. However, 
the influence is considered to be small, because cells are larger near the boundaries and the 
largest amount of cells is located near the center of the domain.  
 
Because the Van Nalta domain is developed at the Structural Design Lab and quite some 
research is done with the domain recently, it will also be used in this thesis to perform the 
simulations. In the next paragraph, some more details about the domain are given. 
 
7.4.2 The Van Nalta domain 
 
Figure 7.47 shows the unmeshed structure of the Van Nalta domain. The size of the domain 
is related to the height h of the object placed inside the central cylinder. The coordinate 
system that is used is placed at ground level, in the center of the cylinder and has the x-axis 
in the flow direction, the y-axis in the cross-direction and the z-axis in the height direction. 
The total length of the domain is 40h (x-direction), the total width is 20h (y-direction) and the 
total height is 20h (z-direction). The domain contains three horizontal planes at z=0, z=5h 
and z=20h. The cylinder has a diameter of 5h. 
 

 
Figure 7.47: Structure of the Van Nalta domain (Nalta, [16]) 
 
The domain can be divided into control volumes using a mesh. Cells far away from the center 
can be larger, because the gradients of the flow parameters are generally small there. A 
uniform grid for these areas will reduce computing time. The mesh around the object itself 
should be unstructured to be able to input any shape. These demands require a hybrid grid.  
 
In the domain of Figure 7.47, the object is placed in the lower part of the central cylinder. 
This part is called the building environment and the mesh should be unstructured here. To 
decrease the number of cells and the total computing time, a structured hexahedral grid is 
applied in the regions outside of the cylinder. These regions are called the wind environment. 
In order to automatically create the mesh of the wind environment, regardless of the object 
to be studied, the mesh outside this environment should not be affected by the object inside 
the cylinder. This demand is met in the Van Nalta domain. Figure 7.48 shows the mesh of the 
domain and some boundary conditions. 
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Figure 7.48: Mesh and some boundary conditions of the Van Nalta domain (Nalta, [16]) 
 
The topmost pictures of Figure 7.48 show the mesh on the ground floor of the wind 
environment and the side boundary. The bottom pictures show the mesh of the outer 
boundaries and the boundary conditions for the domain. As can be seen, the cell size 
increases as the distance to the central object increases. The mesh near the object is the 
most important part of the mesh, since the largest gradients in the flow will be located here. 
For 3D unstructured meshes, the tetrahedron cell types are most suitable as they are flexible 
and as they can be used for automated meshing of complex geometries (Snijders, [23]). That 
is why the cylinder of the domain can best be meshed using an unstructured grid with small 
tetrahedral cells.  
 
To solve a flow problem, boundary conditions are required. The Van Nalta domain has a 
velocity inlet boundary at the front, where the velocity is defined as a logarithmic profile by 
using a user-defined function. The parameters of the logarithmic profile are based on the 
Dutch building code. The outlet of the domain is defined as a pressure outlet boundary, 
where the pressure is set to be the atmospheric pressure. At the outlet, the studied object is 
supposed to have no effect anymore on the flow. The Van Nalta domain has symmetry walls 
on the sides, which can be seen as very smooth walls. At a symmetry boundary, the 
components normal to the boundary are all set to zero. This means that no energy can leave 
the domain through the boundary. The top of the domain is also modeled as a velocity inlet. 
The bottom of the domain finally has a wall boundary condition. Here the no-slip condition is 
applied, meaning that the flow velocity in all directions at the wall is set to zero.  
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7.4.3 Purpose 
 
The purpose of the fourth design tool is to create the Van Nalta domain, depending on the 
radius of the research area and the maximum height of a building in the research area. The 
radius and the height of the largest building in the environment follow from the tools to 
generate the 3D research area. Together with the height of the building of interest, the 
maximum height of the building in the research area can be determined. Until now, the Van 
Nalta domain was only used to simulate the wind effects on single objects. These objects 
were placed in the bottom cylinder of the domain. To simulate the wind effects on complex 
building models that are placed in a built environment, it is desired to also use this domain. 
The built environment, that has a circular ground surface, will be placed in the bottom 
cylinder then. The next pictures again show the dimensions of the original Van Nalta domain. 

 
 

Figure 7.49: Dimensions of the Van Nalta domain (Nalta, [16]) 
 
Originally, the dimensions of the domain were only dependent on the height of the object of 
concern. From now on, the radius of the research area will also determine the dimensions of 
the domain. The total length and width of the domain remain 40h respectively 20h, but the 
radius of the cylinder will become the radius of the research area that is generated with the 
first design tools. This means that the building environment of the domain increases and the 
wind environment decreases. However, as the dimensions of the domain are still more than 
sufficient in comparison with several other domains that are used in practice, it is likely that 
this will not affect the results.  
 
Gambit, the Fluent pre-processor, will be used to generate and mesh the computational 
domain. An advantage of Gambit is that it can run so-called journal files. In a journal file, text 
based commands, arranged as they would be typed into the program or entered through a 
graphical user interface, can be scripted. When running the journal file, Gambit will work over 
the commands given in the file, building the model that is scripted.  
 
The purpose of the fourth design tool now is to create the journal file with which the 
computational domain can be generated in Gambit, depending on the maximum height and 
radius of the research area. The generation of the meshes for the wind environment will also 
be scripted in the journal, just as the definition of some boundaries. After the domain is 
generated, it is the intention that the user itself places the model of the research area into 
the lower cylinder of the domain. Only the objects in the research area and the cylinder itself 
have to be meshed manually then. Finally the boundaries of these objects have to be defined.  
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The journal file can be generated using a Visual Basic macro that is run in Microsoft Excel. 
Figure 7.50 shows the interface of this macro in Excel. It is important to set the regional 
settings in Windows to English (UK) to prevent errors with dots and commas. 
 

 
Figure 7.50: Macro to generate the journal file with which the domain can be created 
 
When the journal file is generated and run in Gambit, the computational domain including the 
mesh of the wind environment can be created. The result is given in Figure 7.51. The length 
and width in this example are 2400 m respectively 1200 m; the radius is 300 m. The next 
step is to manually import the research area with the building of interest into the lower 
cylinder of the domain. The user only has to mesh the buildings of the research area and the 
lower and upper cylinder then. The Visual Basic script to generate the journal file is given in 
Appendix L. 
 

 
Figure 7.51: Result of the journal file to generate the computational domain 
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7.5 Conclusion 

In this chapter the various design tools to setup the geometry for a CFD calculation are 
discussed extensively. The purpose of these tools is to assist the user of the Virtual Wind 
Tunnel to predict the wind loads on a building or structure and compare alternative 
geometries in a relatively short time without much interference of the user. Because the wind 
around a building is influenced by its surroundings, tools are developed to create a restricted 
3D environment for a certain area. Information about the environment is obtained from GIS 
technology. Another tool is developed to simplify the building model of interest. Usually these 
building models contain lots of detail and inner geometry that are not relevant to determine 
the wind loads on a building. Several methods are developed that determine the outer points 
and generate the enclosing curves for several height levels of the model. With a special fitting 
technique these curves can be simplified if necessary to reduce the amount of detail. Finally a 
surface can be generated through the enclosing curves that wraps the model. It is just this 
hollow surface model that will be used by the CFD software to calculate the wind loads on the 
building. If the influence of the environment has to be taken into account, the surface model 
of the building can be placed in the 3D model of the environment. Such an integrated model 
of the research area is given in Figure 7.52. The result of the methods to simplify a building 
model is placed in the 3D model of a part of the Delft University of Technology district. The 
model of concern is the SketchUp model of an office building. 
 

 
Figure 7.52: Integrated model of the research area that can be used for CFD calculations 
 
The office building forms the central building of the research area. The simulations to predict 
the wind loads are performed in a computational domain where the model of the research 
area is imported. To obtain reliable results, the domain must be large enough to avoid 
influencing of the flow pattern. The dimensions of the domain depend on the maximum 
height of the buildings in the area and the radius of the research area. These values are 
returned when the design tools to generate the research area are executed. With the height 
and radius, the fourth design tool that is developed can finally be used to create the Van 
Nalta domain with the required dimensions. The 3D model of the research area has to be 
placed manually in the domain then. After meshing the area and setting up the calculation, 
the CFD software is able to predict the wind loads. 
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The design tools to simplify the building model of interest and generate the 3D model of the 
research area are developed in Rhinoceros. Because several methods are developed to find 
the outer points of the model of interest, quite some scripts are written for the various tools. 
A special toolbar for Rhinoceros is therefore developed that enables the user to quickly load 
the various scripts. The toolbar is called Virtual Wind Tunnel and the interface is given in 
Figure 7.53. 
 

 
Figure 7.53: Toolbar for Rhinoceros that supports the written scripts of the design tools 
 
With the toolbar it is possible to perform all processes that are needed to generate a 3D 
model of the research area with a simplified surface model of the building of interest. The 
toolbar is divided in four rows. In the top row, the A and E toolbar buttons refer to the Area 
script and the Extrusion script. With the Area script the restricted 2D research area can be 
generated from the Top10Vector dataset. With the Extrusion script the generated 2D 
research area can be extruded to a 3D model on the basis of the AHN dataset. 
 
The second row of the toolbar contains three buttons that refer to the scripts to find the 
outer points of a 2D model. The first button refers to the Rotating Lines method, the second 
button refers to the Rectangle method and the third button refers to the Rotated Square 
method. Each method has two variants. The first variant determines the intersection between 
the line element of the method and the lines, surfaces and solids of the model. The second 
variant determines the intersection between the line element and a mesh element. This 
second variant can only be used in Rhinoceros 4. The two variants of each method are 
supported by the toolbar. Clicking with the left mouse button on the toolbar button will load 
the first variant of the method; the second variant will be loaded when clicking with the right 
mouse button on the toolbar button. 
 
The third row of the toolbar contains the buttons that refer to the scripts to find the outer 
points of a 3D model. The methods are the same as in the second row, but the scripts are 
extended to determine the outer points for several height levels. When running these scripts, 
the user also has to enter the height of the model, the starting height of the method and the 
step size. 
 
The fourth row finally contains another three buttons. The P toolbar button refers to the 
Preprocessing script to convert block instances or meshes into the triangular surfaces. The S 
button refers to the Curve Simplification method that simplifies the enclosing curves with the 
NURBS fitting method. The L button finally refers to the Loft script that lofts surfaces between 
the enclosing curves and creates the wrapped surface. 
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8. CFD Calculations 

To finish the thesis project some CFD calculations are performed for several test cases that 
are generated with the various developed design tools. It is not the intention to obtain very 
accurate results from the calculations, as there is still quite some uncertainty about the use of 
CFD in wind engineering. The calculations are just performed to test if the various design 
tools work for CFD applications. Additional research is required to investigate the accuracy of 
the results, especially for the calculations with more complex building models.  
 
Two conceptual grid generation methods will be discussed in this chapter, but they are still 
not optimal. Meshing complex geometry requires lots of cells, but the capacity of the current 
desktop computers is the limiting factor for the amount of cells that can be used. With the 
actual hardware it is very hard to develop a proper grid that simulates the flow pattern on all 
places of the research area accurately. The simulations that are discussed in this chapter and 
the recommendations that are given must therefore be seen as a first step to the 
development of a proper grid generation method for meshing complex geometry. Additional 
research is required to develop the methods further. However, for simple geometry it is 
already difficult to obtain reliable results with the actual computer resources, as the amount 
of cells that can be used is quickly consumed. It might take some years before the wind 
effects on entire built areas can be simulated accurately. 
 
The simulations that will be discussed in this chapter are executed in the Van Nalta domain, 
where the models are placed in the lower part of the central cylinder. The domain itself is 
already meshed during the generation of the domain. After the model of interest is imported 
in the domain, only the cylinder containing the research area has to be meshed manually. In 
the graduation studies of Van Nalta [16] and Snijders [23], a grid generation method is 
developed to mesh the cylinder containing simple geometry, like a cube. This method is used 
as a starting-point for the development of a more general grid generation method that can be 
used to mesh more complicated geometry. However, verifying the results of the calculations 
is difficult as there is hardly any reference information available for the discussed test cases. 
Especially for complex building geometry it is very hard to judge the results. The only way of 
verifying them is to compare the results with real wind tunnel studies.  
 
In the next paragraphs two grid generation methods will be discussed that are developed for 
meshing the several test cases. The first method uses hexahedral elements and can be used 
to mesh simple geometry. The second method uses tetrahedral elements and is able to mesh 
more complicated geometry. For the simple building models the results of the CFD calculation 
can be compared with a calculation according to the Dutch building code or the Eurocode. In 
Paragraph 8.6 such a comparison will be made for a building model of the faculty of Electrical 
Engineering of Delft University of Technology. In additional studies the results of the CFD 
calculations with more complex building geometry should be compared with real wind tunnel 
tests to verify the results of these calculations. As for this thesis no reference information is 
available for the performed CFD calculations with the more complex geometry, the 
calculations are just executed to demonstrate the potential of the grid generation methods. 
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8.1 Single cube: 60 x 60 x 60 m 

8.1.1 Grid generation 
 
The first object that is used to generate the geometry for the CFD calculations with the 
various design tools is the cube that is used in the previous graduations studies of Van Nalta 
[16] and Snijders [23]. The cube has dimensions of 60 x 60 x 60 m3. With the Rectangle and 
Loft methods a surface is wrapped around the model that fits the original cube accurately. 
 

 
Figure 8.1: Wrapped surface model (right) of the original cube (left) 
 
The surface model of the cube is placed in the lower cylinder of the Van Nalta domain. Only 
the lower and upper cylinders of the domain have to be meshed manually, as the rest of the 
domain is already meshed during the generation of the domain. The regions of the domain 
outside the cylinders are meshed with structured hexahedral elements as they give best 
results in computing time and reduce the numerical error. Cells far away from the central 
object are larger as the gradients of the flow parameters are generally small there. This also 
has a positive influence on the required amount of cells to mesh the domain. The 
computational domain is divided in two levels. In the lower part of the domain the mesh is 
denser and the cells have the same height everywhere. The height of the lower part of the 
domain is 5 times the height of the highest object in the research area. The height of the 
upper part of the domain is 15 times the height of the highest object in the area.  
 

  
Figure 8.2: Surface model of the cube placed in the unmeshed lower cylinder of the domain 
 
In his graduation study, Van Nalta developed a method to mesh the lower cylinder containing 
a cube with a high quality grid. To limit the amount of cells, hexahedral elements were used 
to mesh the cylinder. As an introduction to the grid generation process, this method is now 
used to mesh the lower cylinder containing the surface model of the cube. After the model is 
placed in the cylinder, a size function is attached to the ground edges of the cube and the 
bottom of the cylinder. With this function the growth in cell size from the cube’s bottom to 
the edge of the circular ground face is controlled smoothly. As only a small growth factor is 
used, the grid quality remains high. To facilitate a smooth transition from the cylinder mesh 
to the mesh outside the cylinder, the growth in cell size by the size function is restricted by 
attaching the mesh distribution on the circular edge of the cylinder, defined by the outside 
mesh, to the function. After the size function is attached to the ground face, it is meshed with 
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quadrilateral elements using the pave scheme. This creates an unstructured grid on the 
bottom of the cylinder with small cells at the edges of the cube that grow smoothly over the 
ground surface to the edge of the cylinder. The mesh distribution on the ground edges of the 
cube is then linked to the top edges of the cube. With this procedure, the mesh nodes on the 
ground edges are in fact copied to the top edges of the cube to retain the same cell size. 
Then the roof is meshed with quadrilateral elements using the map scheme. This creates a 
regular, structured grid on the roof of the cube. The vertical side edges of the cube are then 
meshed using an interval size. This divides the edges in intervals of the specified size. Finally 
the lower cylinder is meshed with hexahedral elements using the Cooper scheme. By 
specifying the bottom face of the cylinder and the roof of the cube as source faces, the 
Cooper scheme projects the mesh on these faces with a uniform grading to the top of the 
cylinder, forming 3D elements. In fact, the scheme just extrudes the 2D grid on the faces to 
form a 3D grid. The height of the elements is defined by the size of the intervals on the 
vertical edges of the cube. As the chosen interval size is equal to the start size of the size 
function, hexahedral cells of more ore less equal width, length and height are the result. The 
process is then repeated for the upper cylinder, where the mesh distribution on top of the 
bottom cylinder is used to project the mesh through the upper cylinder. 
 

 
Figure 8.3: Ground mesh of the cylinder and a summary of the grid generation method 
 
In Figure 8.3 the mesh on the ground surface of the lower cylinder and a part of the ground 
mesh around the cylinder is given. Starting from the ground edges of the cube, the cell size 
increases smoothly to a maximum size at the edge of the cylinder. This is due to the size 
function. The cells outside the cylinder determine the maximum cell size of the cells inside the 
cylinder. Because the cells have to connect perpendicular to the cube and the cylinder, a 
transition in cell direction occurs at a certain distance from the cube. This transition should 
not be located to close to the central object. The ground mesh, together with the mesh on 
top of the cube, is then projected to the top of the cylinder with a uniform grading. The 
grading is determined by the interval size on the vertical edges of the cube. The grid 
generation method is summarized in the textbox next to Figure 8.3. The variables that are 
used to mesh the lower cylinder are specified in Table 8.1. 
 
Size function attached to the ground 
edges of the cube and the circular 
ground face of the bottom cylinder 

Start size 6 (= 0.1 x h) 
Growth rate 1.02 
Size limit 60 (= h) 

Side edges of the cube Interval size 6 (= 0.1 x h) 
Table 8.1: Variables used to mesh the lower cylinder containing a cube 
 
 

 Attach a size function to ground edges of 
the cube and the bottom of the cylinder 

- Start size = 0.1*h 
- Growth rate = 1.02 
- Size limit = h 

 Mesh the ground surface with 
quadrilaterals using the pave scheme 

 Link the mesh on the ground edges of the 
cube to the top edges of the cube 

 Mesh the top surface of the cube with 
quadrilaterals using the map scheme 

 Mesh the vertical side edges of the cube 
with interval size 0.1*h 

 Mesh the cylinder with hexahedral 
elements using the Cooper scheme 
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A see-through of the mesh of the lower cylinder is given in the left picture of Figure 8.4. The 
inner cylinder mesh is not given, but must be imagined as volume elements with dimensions 
corresponding to the cylinder’s bottom and the cube’s roof mesh elements, with a uniform 
height. The height of the elements is defined by the interval size on the vertical edges of the 
cube. The volume elements are then projected through the cylinder to the top of the cylinder. 
The right picture of Figure 8.4 gives a cross-section of the cylinder mesh. With this grid 
generation method applied to the cube volume, the amount of cells in the lower cylinder is 
177.640. The upper cylinder contains 56.856 cells and the domain around the cylinder 
contains 316.720 cells. The total amount of cells in the computational domain is 491.226. 
 

 
 

Figure 8.4: See-through of the cylinder mesh and cross-section of the mesh near the cube 
 
The next step is to define the remaining boundaries of the domain. Most boundaries are 
already defined during the generation of the domain with the fourth design tool. For all 
objects that are placed in the lower cylinder and for the ground surface of the cylinder, the 
boundaries have to be defined manually. The ground surface and the objects will be defined 
as wall elements with the no-slip condition, meaning that the flow velocity in all directions at 
the wall is set to zero. The parameters of all boundaries of the domain are defined in Fluent 
during the setup of the calculation. 
 
8.1.2 Setting up the calculation in Fluent 
 
Once the entire computational domain is meshed and the boundary zones are defined, the 
calculation can be setup in Fluent. The calculation will be steady-state, meaning that the 
governing equations do not contain time-dependent terms. The guidelines that are used to 
setup the calculation are formulated by Van Nalta and are with some small adaptations given 
in Appendix M. In this paragraph some essential steps of the setup procedure are discussed 
more extensively.  
 
Boundary conditions 
 
The boundary zones of the domain that were defined during the grid generation process are 
specified by assigning physical conditions to the zones. The quality of the solution largely 
depends on the quality of the boundary conditions. The following conditions need to be 
applied. They can be defined as constant values or by using a user-defined function. 
 Flow inlet and outlet parameters 
 Wall parameters 
 Side parameters 
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Flow inlet and outlet parameters 
The velocity inlet boundary condition is used to define the velocity profile at the inlet 
boundary. The logarithmic velocity profile that is prescribed in the Dutch building code NEN 
6702 is used to define the inlet conditions. The profile is characteristic for the wind climate in 
Zuid-Holland for unbuilt areas and is given in Figure 8.5. 
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Figure 8.5: The logarithmic velocity profile is used as the inlet boundary condition 
 
The figure gives the velocity profile at the inlet boundary of the computational domain in 
Fluent. In the equation that describes the profile is U(z) the mean wind speed, u* the friction 
velocity, z0 the roughness height, d the displacement length and κ the Von Karman constant. 
According to the Dutch building code NEN 6702, the roughness height for the unbuilt area of 
the characteristic wind climate is z0 = 0.2 m. At the inlet boundary also a value for the 
turbulence quantities needs to be defined. As the realizable ĸ-ε turbulence model will be used 
for the calculations, the turbulent kinetic energy ĸ and the turbulent dissipation rate ε have to 
be defined. A user-defined function is used to add the turbulence quantities and the 
logarithmic velocity profile to the calculation. It is given in Appendix M. 
 
The top of the computational domain is also defined as a velocity inlet with the same function 
as the real inlet. In this way a constant horizontal velocity umax is defined at the top of the 
domain. At the outlet of the domain a pressure outlet condition is used where the pressure is 
equal to the atmospheric pressure.  
 
Wall parameters 
Wall boundary conditions need to be defined for the ground surfaces of the domain and for 
the surfaces of the building. With these boundary conditions a roughness is given to the 
ground and the cube to model the environment and the façades. The parameters that need 
to be defined to give the walls a certain roughness are the roughness length Ks and a 
roughness constant Cs. According to Van Nalta [16] the wall parameters can be determined 
with: 
 
Roughness length: Ks = 13 Z0 for non-uniform roughness 
   Ks = 20 Z0 for uniform roughness 
 
Roughness constant: Cs = 0.75 for non-uniform roughness 
   Cs = 0.50 for uniform roughness 
 
As the ground roughness is usually considered as non-uniformly distributed, the roughness 
constant of 0.75 is attached to the bottom of the domain in Fluent. With a roughness height 
of z0 = 0.2 m for the unbuilt area, the roughness length that will be attached to the ground 
surfaces becomes 2.6. The surfaces of the cube are also defined as wall boundaries. For the 
façades of the cube, the roughness is considered to be uniformly distributed and a roughness 
constant of 0.5 is attached to the sides of the cube. The Eurocode gives friction coefficients 
for three types of façades. These friction coefficients are 0.01 for smooth surfaces, 0.02 for 
rough surfaces and 0.04 for very rough surfaces. As the façades of the cube are modeled as 
very rough surfaces, the roughness length that will be attached to the cube becomes 0.8. 
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Sides 
At the sides of the domain the symmetry condition is applied to the boundaries. This means 
that no energy can leave the domain through the boundary, as the components normal to the 
boundary are all set to zero. 
 
Convergence 
 
When running a CFD simulation, the set of equations are solved numerically in an iterative 
process. The calculation is repeated until a solution with a sufficient and user-specified 
accuracy is found. For any given conservation equation, an approximate solution is obtained 
at each iteration that results in a small imbalance in the conservation statement. When the 
flow problem is setup correctly, the imbalance in each cell decreases as the iteration process 
continues. This imbalance is called the residual. The total residual for each variable across the 
entire domain is the sum of the absolute values of the individual cell residuals. Convergence 
criteria for the residuals indicate that a certain level of convergence has been achieved. 
Before a simulation is run it is important to wonder what accuracy is needed. For 
aerodynamic applications for example, deep convergence is required if the lift and drag 
coefficients are predicted. If one is simply looking for some approximating flow features, 
rough convergence is probably acceptable. According to Fluent (Internet, [9]) the default 
convergence criterion of 10-3 is sufficient for most problems. However, for computational wind 
engineering this criterion seems to be insufficient. For a calculation that is initialized from the 
velocity inlet, leading to a constant wind speed in the entire domain, Van Nalta recommends 
a convergence criterion of 10-9. 
 
When a solution is fully converged, the values of the residuals have leveled out to some value 
and then stopped changing as the iteration process continues. If the convergence criteria are 
set too strictly, no solution is found and the iteration process continues until a specified 
maximum number of iterations. An example is given in the left picture of Figure 8.6. The 
solution is fully converged to a value of about 10-18 at minimum, but the convergence criteria 
are not met as the iteration process continues. Another possibility is that the residuals for all 
variables fall below the convergence criteria, but are still decreasing. The solution is still 
changing, but the desired accuracy is reached. An example is given in the right picture of 
Figure 8.6, where the iteration process stops after 2750 iterations. Although the solution is 
not fully converged, the convergence criteria for all variables are met. 
 

 
Figure 8.6: Examples of the convergence paths of the residuals during the iteration process 
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8.1.3 Results 
 
The flow problem discussed in the previous paragraphs is solved iteratively with a maximum 
of 1000 iterations and convergence criteria of 10e-9. With a mesh consisting of 491.226 cells, 
the simulation took about 3½ hours. In the left picture of Figure 8.7 the residuals of the 
variables are plot. During the simulation the continuity, x-, y- and z-velocity and the 
turbulence variables ĸ and ε are monitored. The solution is fully converged, but the 
convergent criteria are not met. The criteria of 10-9 are probably too high.  
 

 
Figure 8.7: Convergence of the residuals (left) and surface monitor above the roof (right) 
 
Monitoring the residuals is not the only option to judge the convergence of a solution. Also 
surface and force monitors can be applied to examine the convergence. A surface monitor 
can be a plane or a point and can for example be placed above the roof of the object and in 
the wake behind the object. Monitoring the velocity magnitude in those points for example 
during the iteration process helps to judge the solution. When they level out to a certain 
value, the solution is considered to be converged. The right picture of Figure 8.7 gives the 
convergence history of the velocity magnitude just above the roof of the cube. The left 
picture of Figure 8.8 gives the convergence history of the velocity magnitude in the wake 
behind the cube. Force monitors can finally be used to monitor the forces on a certain 
surface. The right picture of Figure 8.8 gives the monitored drag at the back of the cube. 
 
 

 
Figure 8.8: Surface monitor in the wake (left) and force monitor of drag at the back (right) 
 
The convergence of the residuals in combination with surface or force monitors provides a 
much better idea of the convergence of a solution. From the figures on this page it can be 
concluded that the solution of the calculation with the cube is fully converged. As was to be 
expected, the results are the same as Van Nalta got from his calculations. The results can be 
presented further with colorful plots or derived in absolute quantities, such as maximum 
force, pressure or momentum. On the following page some results are presented in a visual 
way. 
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When the simulation process is finished and the flow field variables are found, information 
about the flow parameters can be presented in a visual form to check if the solution is 
physically reasonable. With isometric views insight into the pressure distribution on the 
façades of a model can be provided. Important or critical places are easy to identify. An 
example is given in the left picture of Figure 8.9. Also the turbulent kinetic energy can be 
displayed on the model to show the critical turbulent zones for example.  
 

 
Figure 8.9: Isometric views of pressure distribution and turbulent kinetic energy distribution 
 
With contours of velocity magnitude and pathlines a visualization of the flow around the 
model can be given. In the left picture of Figure 8.10 the velocity contours around the cube 
are displayed. Near the ground and at the back of the cube the air velocity is small. Due to 
the logarithmic wind profile that is used, the air velocity increases with the height. Also the 
wake structure and size of the wake at the back of the cube are shown. The results seem to 
be physically reasonable. In the right picture of Figure 8.10 pathlines colored by the velocity 
magnitude are displayed around the cube. Pathlines represent the track that particles will 
travel when they are released in the fluid motion. Especially for the visualization of complex 
three-dimensional flows they are an excellent tool.  
 

 
Figure 8.10: Contours of velocity magnitude and pathlines to visualize the flow 
 
There are many ways of representing and analyzing the solution of a simulation. When CFD 
results are compared with experiments a problem arises, as for experiments only a limited 

amount of data can be obtained or visualized. The 
best way to compare results with experiments is the 
use of pressure coefficients. The pressure coefficient 
is related to the wind speed at building height. For 
the front façade of the cube an example is given in 
Figure 8.11. At 45 m, or at ¾ of the height, a 
maximum pressure coefficient of 0.8 is found. This 
corresponds to the Dutch building code, where the 
wind load is also calculated with a coefficient of 0.8 
for pressure and a coefficient of 0.4 for suction. 

 

Figure 8.11: Pressure coefficients at the 
       middle of the front façade 
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8.2 Two cubes 

 
As a first step to the development of a grid generation method 
for models containing several buildings, a second cube is added 
to the research area. The cubes are placed at the x=0 axis with 
a distance between them corresponding to the distance between 
a cube and the edge of the cylinder. Nevertheless, problems 
aroused immediately when the model was meshed. The grid 
generation method discussed in the previous paragraph seemed 
not suitable for meshing a cylinder containing multiple objects. 
The method also did not work for a single cube that was moved 
from the center of the cylinder. The structured mesh that is 
applied on the roof of the cube using the map scheme appeared 

to be the cause of the method’s failure. After the ground surface of the cylinder is meshed 
using the size function, the mesh distribution on the ground edges of the cube is copied to 
the top edges. This distribution is then used to mesh the roof of the cube. However, when 
the cube is not placed in the middle of the cylinder, the distribution of the mesh on the 
ground edges of the cube is not equal for all edges. The mesh distribution on the top edges 
of the cube is therefore also not equal. When the roof of the cube was meshed with the map 
scheme, the cylinder could not be meshed with the Cooper scheme. Using the pave scheme 
to mesh the roof of the cube with an unstructured mesh appeared to be the solution.  
 
After adapting the grid generation method it was possible to mesh the cylinder containing the 
two cubes. First a size function is attached to the ground edges of the cubes and the bottom 
of the cylinder to smoothly control the growth in cell size. Then the ground surface and the 
roof of the cubes are all meshed with quadrilateral elements using the pave scheme. This 
results in an unstructured grid on both the bottom of the cylinder and the roof of the cubes. 
Then the vertical edges of the cubes are meshed using an interval size between the mesh 
nodes. Finally both cylinders are meshed with hexahedral elements using the Cooper scheme. 
After the resulting boundary zones are defined, the calculation is setup in Fluent. The same 
procedure is used as discussed in Paragraph 8.1.2. In Figure 8.12 the ground mesh of the 
cylinder and the grid generation method is given. In Table 8.2 the variables are summarized 
that were used to mesh the cylinder. 
 

 
Figure 8.12: Ground mesh of the cylinder and a summary of the grid generation method 
 
Size function attached to the ground 
edges of the cube and the circular 
ground face of the bottom cylinder 

Start size 6 (= 0.1 x h) 
Growth rate 1.02 
Size limit 60 (= h) 

Side edges of the cube Interval size 6 (= 0.1 x h) 
Table 8.2: Variables used to mesh the lower cylinder containing two cubes 

 Attach a size function to ground edges of  
the cubes and the bottom of the cylinder 

- Start size = 0.1*h 
- Growth rate = 1.02 
- Size limit = h 

 Mesh the ground surface with 
quadrilaterals using the pave scheme 

 Link the mesh on the ground edges of the 
cubes to the top edges of the cubes 

 Mesh the top surfaces with quadrilaterals 
using the pave scheme 

 Mesh the vertical side edges of the cubes 
with interval size 0.1*h 

 Mesh the cylinder with hexahedral 
elements using the Cooper scheme 
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In the next figure the convergence of the residuals is given. The solution appears to be fully 
converged as the residuals have leveled out to some value and stopped changing as the 
iteration process continued.  
 

 
Figure 8.13: Convergence of the residuals 
 
In Figure 8.14 some other results of the simulation are given. In the left picture streamtraces 
are displayed together with the turbulent kinetic energy on the ground and the surfaces of 
the cubes. The picture is generated in Tecplot (Internet, [24]), another CFD post-processor. 
The streamtraces show the flow pattern around the obstacles and are similar to the pathline 
rakes of Fluent. The right picture shows the flow pattern in top-view using pathlines in Fluent. 
 

 
Figure 8.14: Streamtraces and pathline rakes show the flow pattern around the two cubes 
 
To test the adapted grid generation method further, some other models are used to 
investigate the possibilities and shortcomings of the method. In the next paragraph a 
calculation with the building of the faculty of Electrical Engineer is discussed. The building 
model is derived from the 3D model of the Delft University of Technology district that was 
generated with the first design tools. 
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8.3 Faculty of Electrical Engineering 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.15: Faculty of 
    Electrical Engineering 
 
corners Gambit automatically adapts the shape and size of the cells if necessary to connect all 
cells on the model correctly. The growth in cell size is again restricted by attaching the mesh 
distribution on the circular edge of the cylinder, defined by the outside mesh, to the size 
function. The height of the cells is determined by the mesh distribution on the vertical edges. 
It is recommended to mesh all vertical edges using an interval size equal to the start size of 
the size function. This results in mesh elements of more or less the same length, width and 
height. It is also possible to mesh the vertical edges with an interval count. This divides the 
edge in a user-specified amount of intervals. If all vertical edges have the same length it is 
possible to create intervals of the desired size with this method, as long as the interval count 
is chosen correctly. However, if there are vertical edges of different length, it is not 
recommended to use an interval count to mesh the edges. This would result in various 
interval sizes on the different vertical edges, which is not preferred. For the Electrical 
Engineering building, all vertical side edges are meshed using an interval size equal to the 
start size of the size function. In Table 8.3 the variables that are used to mesh the cylinder 
are summarized.  
 
Size function attached to the ground 
edges of the cube and the circular 
ground face of the bottom cylinder 

Start size 3 
Growth rate 1.02 
Size limit 88 

Side edges of the cube Interval size 3 
Table 8.3: Variables to mesh the lower cylinder containing the Electrical Engineering building 
 
Figure 8.16 on the next page shows some results of the simulation. The left picture gives the 
pressure distribution on the building; the right picture gives the contours of velocity around 
the building. 
 

Another model that is used to test the adapted grid generation
method is the building of the faculty of Electrical Engineering of
Delft University of Technology. Unlike the cube model that is used
in the previous graduation studies, the various edges of the
Electrical Engineering building are not equal in length. The longest
horizontal edge is about 71 m, the shortest edge 7 m. All vertical
edges have a length equal to the height of the building, which is 88
m. For the cube, the length of all edges was 60 m. The size
function that was used to control the growth in cell size from the
cube’s bottom to the edge of the circular ground face uses a start
size for the cells of 0.1 times the height of the cube. Adapting this
relation for the Electrical Engineering building gives a start size of
8.8 m for the cells. However, as the shortest horizontal edge is only
7 m, it is recommended to decrease the start size to the length of
the shortest edge at maximum. This results in at least one cell at
that edge. As the width of the building is 21 m, a startsize of 7 m
results in three cells over the width of the building. This is probably
too less to obtain reliable results. Therefore a start size of 3 m is
applied, what results in 7 cells over the width of the building. In
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Figure 8.16: Pressure distribution and contours of velocity around the faculty’s building 
 
Some more tests with the adapted grid generation method showed that the method works for 
straight buildings where the ground and the roof have the same layout. The method starts 
with the attachment of a size function to the ground edges of the building model and the 
ground surface of the lower cylinder. It is recommended to use the shortest edge of the 
building model at maximum as the start size for the size function. The shortest edge of the 
model and its length are easy to find using a special tool in Gambit. After the size function is 
attached to the bottom of the cylinder, it is meshed using the pave scheme, resulting in an 
unstructured grid on the ground surface. The mesh distribution on the ground edges of the 
building model is then copied to the top edges of the model. The top surface is meshed using 
the pave scheme, creating an unstructured grid on the roof of the model. The next step is to 
mesh the vertical side edges. It is recommended to use an interval size in stead of an interval 
count, in order to create the same mesh distribution on vertical edges of different length. For 
meshing the vertical edges, it is recommended to use an interval size equal to the start size 
of the start function. Finally the lower and upper cylinders are meshed with hexahedral 
elements using the Cooper scheme. In Appendix N a detailed step by step guide is given of 
this first grid generation method.  
 
Although the method works fine for the discussed geometry, the applicability is very limited. 
If the layout of the ground and the top of the building is not the same, the method does not 
work anymore. Linking the mesh distribution on the ground edges of the model to the top 
edges is not possible for such models. When the model is not straight because it contains 
balconies for example, the method also does not work. For the apartment building for 
example that was used to test the various design tools, it is not possible to use the developed 

grid generation method to mesh the model as the 
mesh on the ground edges can not be copied to the 
top edges. Another disadvantage of the method 
appears to be the use of hexahedral elements to 
mesh the cylinder. The cells have to connect 
perpendicular to the building model and the round 
edge of the cylinder. For complex building models or 
models containing several buildings, this is very 
difficult or even impossible to achieve with 
rectangular cells. 
 

Figure 8.17: The first grid generation method does not work for complex building geometry 
 
In the next paragraph another grid generation method is discussed that uses tetrahedral cells 
in stead of hexahedral cells. This method seems suitable to mesh the cylinder containing one 
or more complex building models. 
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8.4 Tetrahedral cells 

In general, the advantage of using hexahedral meshes is that it requires fewer cells and 
usually gives a more accurate and earlier converged solution. However, the number of shapes 
that can be described with hexahedral cells is limited, what makes it unfit for meshing 
complex building models. Tetrahedral cells offer the most flexibility and theoretically it is even 
possible to mesh any shape with tetrahedral cells. A drawback of tetrahedrons is that it may 
require two or three times as many cells to get the same solution as with hexahedral cells. 
The large amount of tetrahedral cells is quite often too many for the available computer 
resources. The computer for example that is used for the calculations of this thesis has an 
Intel Pentium IV processor with 1.0 gB of RAM memory. If the total amount of cells remains 
under approximately 1.2 million, a reasonably calculation speed is achieved. When more cells 
are used, the amount of RAM becomes insufficient and data has to be written and read to 
and from the hard drive. This slows down the calculation speed considerably. As the Van 
Nalta domain without the inner cylinders already contains about 317.000 cells, only 883.000 
cells remain to mesh the cylinder containing the research area. This is certainly too less to 
obtain very accurate results for complex models. However, with the current development of 
computer resources this problem will probably overcome in the nearby future. 
 
Anticipating on these developments, the second grid generation method that is developed for 
this Master’s thesis does use tetrahedral cells as they are still the most suitable type for 
meshing complex geometries and as they can be used for automated meshing. With 
automated meshing it is possible to mesh an entire area by only defining a mesh distribution 
on the edges of the models within the area. Gambit is capable of creating the total mesh for 
that area automatically then. However, this method does not always result in the best grid by 
definition and meshing the domain manually sometimes gives more accurate results. 
Nevertheless, meshing complex geometry by hand is very time-consuming when the model 
contains lots of edges and surfaces and errors are easy to make. Therefore automatic 
meshing with tetrahedral cells seems to be the most appropriate method that is universally 
applicable. At the moment it is not expected to obtain very accurate results from the method 
for complex building models, due to the limited computer resources. Nevertheless, as will be 
demonstrated in the rest of this chapter, it appears to be a potential method to generate a 
grid for complex building geometry.  
 
The first step of this second grid generation method is to mesh all edges of the model inside 
the cylinder with a certain interval size. It is recommended to use an interval size that is 
equal to the length of the shortest edge of the model at maximum. The result is an equal 
mesh distribution on all edges of the model with at least one cell at the shortest edge. If the 
model contains only large edges or if there are enough resources available, it is of course 
recommended to use a smaller interval size. When all edges of the models are meshed, the 
cylinder can be meshed with tetrahedral elements using the TGrid scheme. The cylinder is 
automatically filled with a grid then. In Appendix N a detailed step by step guide is given of 
this second grid generation method.  
 
In the next paragraphs some results of the grid generation method are discussed. The 
method is applied to the models of an apartment building and an office building, which were 
used to test the design tools, and to a model of the faculty of Architecture of Delft University 
of Technology. Due to the limited amount of cells, the results are probably not very accurate. 
However, the results must be seen as a proof of concept that the models can be meshed, 
simulations can be performed and output is obtained. 
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8.4.1 Apartment building 
 

 
 
 
 
 
 
 
 
 
  
 

Figure 8.18: Apartment building model 
 
can not be linked. With hexahedral elements it is also very difficult to mesh the complex 
geometry and to connect the cells perpendicular to the building model and the round edge of 
the cylinder. Using tetrahedral elements is the only way of meshing such complex building 
models.  
 
The shortest edge of the building is 1.4 m. This length is used as interval size for meshing all 
edges of the building. Meshing the cylinder with tetrahedral elements results in 646.252 cells 
in the lower cylinder and 1.033.375 cells in the total computational domain. The mesh is far 
too coarse as the balconies for example just have two cells over the height. An accurate 
simulation of the flow pattern around the balconies is therefore not possible. However, as the 
maximum amount of cells of 1.2 million is almost reached, refinement of the mesh is not an 
option at the moment. In Figure 8.19 the mesh on the apartment building and the 
convergence of the residuals during the simulation are given. 
 

 
Figure 8.19: Mesh of the apartment building and convergence of the residuals 
 
Looking at the path of the residuals it can be concluded that the residuals are converged. The 
variables have leveled out to some value and then stopped changing. As discussed in one of 
the previous paragraphs, monitoring the residuals is not the only way to judge the 
convergence of a solution. Also surface and force monitors can be applied to examine the 
convergence. Another option to evaluate the solution is to perform a grid convergence study. 
With this method the quality of the grid is judged. The method is discussed in Paragraph 
8.7.2. As the maximum amount of cells that can be used is already reached for this model, 
such a study is not an option at the moment. 

The first model that is used to generate a grid with
the second grid generation method is the relatively
complex model of an apartment building. The
model was first used to test the various developed
design tools to create a wrapped surface around
the model. This hollow surface model of the
building is very suitable for CFD calculations as all
original internal and external geometry is replaced.
Only the surfaces that come in direct contact with
the flow are modeled. Due to the balconies and
divergent roof layout in comparison with the
ground, it was not possible to use the first grid
generation method as the ground and top edges
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In Figure 8.20 an impression is given of the pressure distribution on the façades of the 
apartment building. Verifying the results is difficult as there is no reference information 
available for this model. For the moment, real wind tunnel studies will be the only option to 
verify the results of CFD calculations with such models. 
  

 
Figure 8.20: Static pressure distribution on the façades of the apartment building  
 
In Figure 8.21 a part of the flow pattern around the building is given. The global pattern is 
perhaps reasonably approximated. However, the pattern around the balconies for example is 
probably not very accurate as they are meshed with only two cells over the height. For an 
accurate description of the flow pattern at those locations a lot more cells are required. 
 

 
Figure 8.21: Flow pattern around the apartment building 
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8.4.2 Faculty of Architecture 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.22: Faculty of Architecture  
 
magnitude above the roof of the main building and in the wake behind the building. In Figure 
8.24 the convergence history of the monitored variables is given. The convergence of the 
residuals in combination with the surface monitors provides a much better idea of the 
convergence of a solution. As all variables have leveled out to a certain value, the solution is 
considered to be fully converged. 
 
 

 
Figure 8.23: Mesh on the faculty of Architecture and the convergence path of the residuals 
 
 

 
Figure 8.24: Surface monitor above the roof (left) and in the wake (right): Velocity Magnitude 

A second model that is used to generate a grid with the
second grid generation method is the model of the
faculty of Architecture of Delft University of Technology.
The model is derived from the 3D model of the
university district that was generated with the first
design tools. The shortest edge of the model is 1.2 m.
The edges are all meshed using an interval size of 1 m,
resulting in 641.501 cells in the cylinder and 1.128.951
cells in the total domain. As the amount of 1.2 million
cells is almost reached, further refinement is not useful.
In Figure 8.23 the mesh on the faculty’s building and the
convergence of the residuals are given. As the residuals
have leveled out to some value, it can be concluded that
the residuals have converged. For this calculation, also
surface monitors have been used to monitor the velocity
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In Figure 8.25 some results of the simulation are presented in a visual form. In the left 
picture the static pressure distribution on the façades of the building are given. The right 
picture gives the velocity vectors around the centre of the building. With velocity vectors a 
clear visualization of the flow pattern around the building can be provided. The vectors are 
colored by their velocity magnitude. 
 

 
Figure 8.25: Static pressure distribution and velocity vectors around the centre of the building 
 
In Figure 8.26 the flow pattern around the building is given. The pathlines are released at 
two different height levels; at 10 m and at 20 m above ground level. In this way the flow 
pattern around and above the lower parts of the faculty’s building can be clearly visualized. 
 

 
Figure 8.26: Pathlines show the flow pattern around the faculty of Architecture 
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8.4.3 Office building 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8.27: Model of the office building 
 
convergence of the residuals are given. As the variables have more or less leveled out to 
some value, it can be concluded that the residuals have converged. However, the paths are 
not very smooth and better results are possible. Refining the grid further will certainly give a 
more converged solution.  
 

 
Figure 8.28: Mesh of the office building and the convergence path of the residuals 
 
In Figure 8.29 the static pressure distribution on the façades of the office building and the 
flow pattern around the building are given. Due to the limited amount of available cells, the 
results are probably not very accurate. However, the simulations with the apartment building, 
the faculty of Architecture and the office building show that the grid generation method 
works and results can be obtained. This proves that the various developed design tools to 
setup the geometry work for CFD applications. With the discussed grid generation methods it 
is possible to mesh simple as well as complex building geometry. Especially for complex 
geometry the results are probably not accurate enough yet to determine the global wind 
loads on a building. However, taking the constant developments in computer resources into 
account, it will be possible in the nearby future to determine the wind loads on complex 
building geometry accurately.  
 

 
Figure 8.29: Static pressure distribution on the façades and flow pattern around the building 

Another building model that is used to test the
second grid generation method is the model of
an office building. This model is also used to
create a wrapped surface around the model
with the various developed design tools. The
shortest edge of the hollow surface model is
1.5 m. Using an interval size of 1 m to mesh
the edges appeared to be the minimum, as this
size resulted in 709.391 cells in the cylinder
and 1.116.989 cells in the total domain.
Further refinement is not useful as the amount
of 1.2 million cells is almost reached. In Figure
8.28 the mesh on the office building and the
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8.5 Part of the Delft University of Technology district 

A final test for the developed grid generation method is the model of a part of the university 
district. For the single building models discussed in the previous paragraphs, the limited 
amount of cells that can be used with the available hardware resulted in a coarse grid on the 
models. As the model of the university district contains several buildings, the grid will be even 
coarser. To give a first impression of the flow pattern around the several buildings, the grid is 
perhaps suitable. However, to determine the flow pattern at specific locations accurately the 
grid is far too coarse. The goal of this test is just to show that the grid generation method 
also works for a model containing several buildings. 
 
The model that is discussed in this paragraph is derived from the larger 3D model of the 
university district that was generated with the first design tools. For this case, only the 
buildings of the faculty of Electrical Engineering, Civil Engineering and Architecture and the 
sport centre are modeled. The model is manually adapted a little to remove some very short 
edges and to improve the ability to mesh the model. The building model of the faculty of Civil 
Engineering is also adapted. In the GIS datasets, the total building was presented with only 
one polygon. Extruding the polygon gave a single model with the same height everywhere. 
However, in reality the building consists of several parts with their own height. The original 
polygon is therefore manually split in several polygons that represent the various building 
parts. Extruding these polygons over various heights gives a building model that represents 
reality much better. The model of the research area is given in Figure 8.30. The radius of the 
total area is 500 m, which is quite large in comparison with the smallest area that would fit 
around the building models. The radius of this smallest area is 250 m and the design tools to 
generate a 3D model of the environment also give this radius as output. However, to provide 
a smooth transition between the mesh on the building models and the edge of the cylinder, a 
certain distance between the buildings and the cylinder edge is required. The radius of the 
actual research area is for this example two times the radius of the original area. The 
computational domain is therefore also generated with a radius of 500 m for the central 
cylinder. 
 

 
Figure 8.30: Model of the research area: part of the Delft University of Technology district 
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The shortest edge of the model is 7.4 m. Using an interval size of 3.7 m to mesh the edges of 
all buildings models results in at least 2 cells at the shortest edge. After meshing the cylinder 
with tetrahedral elements, the amount of cells in the lower cylinder is 620.112. The total 
amount of cells in the computational domain is 1.009.571. Further refinement is therefore not 
very valuable. In Figure 8.31 the mesh on the several building models and a part of the mesh 
on the ground surface is given. Although the grid is considerably coarse, it can be concluded 
that the grid generation method also works for models with several buildings.  
 

 
Figure 8.31: Mesh on the several building models and the ground surface 
 

In Figure 8.32 the convergence of the residuals is 
given. As the residuals have more or less leveled 
out to some value, it can be concluded they have 
converged. Force and surface monitors are not 
applied. In Figure 8.33 the static pressure 
distribution on the façades of the building model 
are given. It is difficult to judge the accuracy of the 
solution, as the grid is reasonably coarse. However, 
the results look physically reasonable. At the 
façade of the Civil Engineering building right behind 
the high-rise of the faculty of Electrical Engineering 
for example, less pressure is measured.  

Figure 8.32: Convergence of the residuals 
 

 
Figure 8.33: Static pressure distribution on the façades of the various building models 
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In Figure 8.34 the flow pattern around the several buildings is represented with pathlines. 
The particles are released at 150 m in front of the research area and 5 m above ground level. 
The pathlines are colored by the velocity magnitude of the particles. The blue color indicates 
a low velocity; green and yellow indicate a higher velocity. In the figure it is nicely visualized 
how the air is forced between the faculty of Civil Engineering and the faculty of Architecture; 
these are the top buildings in the model. The color of the lines show how the velocity 
increases as the air is squeezed between the buildings. This pattern differs somewhat from 
reality as no vegetation is modeled. However, the results look reasonable.  
 

 
Figure 8.34: Pathlines colored by velocity magnitude; front view 
 
In Figure 8.35 the pathlines are given from another point of view. The large wake behind the 
faculty of Architecture is nicely visible. Behind the high-rise building of Electrical Engineering, 
a large whirl arises as the air collides with the faculty of Civil Engineering. Pathlines are a very 
powerful tool to visualize such phenomena. However, one must keep in mind that only the 
pathlines that are released at 5 m above ground level are visualized. For different heights the 
flow pattern will differ and divergent phenomena might occur at different heights. 
 

 
Figure 8.35: Pathlines colored by velocity magnitude; back view 
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The flow pattern in the research area can also be visualized using Tecplot, another CFD post-
processor. The streamtraces in Figure 8.36 are all released at 150 m in front of the research 
area, but at different heights. Using Tecplot it is also possible to make animations of the flow 
pattern, what improves the insight in the pattern further. Because the research area was 
meshed with a considerably coarse grid, the quantitative pressure distribution for example is 
not very accurate. However, the streamtraces and pathlines probably give a reasonable 
indication of the flow pattern in the research area. These results can for example be used to 
determine the most suitable location for a certain wind turbine or to find a sheltered place for 
a terrace or tram stop. 
 

 
Figure 8.36: Streamtraces visualize the flow pattern in the research area 
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8.6 Comparison with the building codes 

The results of the CFD calculations that are discussed in this chapter have demonstrated that 
the design tools work for CFD applications. With the developed grid generation methods the 
models can be meshed and results can be obtained. As the amount of cells that can be used 
to mesh the domain is limited, the grid is too coarse to simulate the flow pattern through the 
research area accurately. However, for a first indication of the global wind loads on a 
building, the coarse grid is perhaps sufficient. Comparing the results of a CFD calculation for a 
simple case with the building codes would therefore be very valuable.  
 
The building model of the faculty of Electrical Engineering of Delft University of Technology is 
selected for the comparison, as the building has a simple, rectangular shape. With both the 
Dutch building code NEN 6702 and the Eurocode it should be possible to determine the wind 
load on this shape. Figure 8.37 gives the façade of the Electrical Engineering building on 
which the wind load will be calculated. The dimensions of the façade are b x h = 71 x 88 m2. 
 

 
Figure 8.37: Façade of concern for the calculation of the wind load 
 
 
8.6.1 Calculation of the wind load according to the Dutch building code  
 
According to NEN 6702 [18] the wind loads on a structure or building can be calculated from: 
 

1rep w dim indexp p C C φ= ⋅ ⋅ ⋅        (8.2) 

 
= ⋅index repF A p          (8.3) 

 
Where:   prep:  representative wind pressure that follows from the most  

unfavourable combination of forces that occur at the same time 
  pw: extreme wind pressure, depending on the global and local wind  

climate 
Cdim: relation between wind gusts and building dimensions   
Cindex: form factor for pressure, suction and friction 

  Φ1:  dynamic factor 
  Findex: representative wind force on a surface 
  A: surface exposed to the representative wind pressure 
 
The determination of the various factors is given on the next pages. 

Façade dimensions: b x h = 71 x 88 m2
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Extreme wind pressure 
The Netherlands are divided in three wind areas based on geographical differences, with a 
representative, constant wind velocity. For each area the code gives an extreme wind 
pressure pw for built and unbuilt regions as a function of the height above the terrain. Figure 
8.38 gives the three wind areas in which the Netherlands are divided with the extreme wind 
pressure pw near the height of the Electrical Engineering building. As the building has a height 
of 88 m and is located in the built region of area II, the extreme wind pressure is 1,64 kN/m2. 
 

 
Figure 8.38: The three wind areas with their representative wind pressures (NNI, [18]) 
 
According to NEN 6702 [18], the extreme wind pressure pw can also be calculated with: 
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   (8.4) 

 
Where:  u*: friction velocity 

z0: roughness height of the terrain 
  z: reference height 
  dw: displacement length 
  k: specific factor 
  ρ: air density 
 
In Table 8.4 the characteristics to determine the extreme wind pressure are summarized for 
the three wind areas. For a building height of 88 m the wind pressure pw is: 
 

2
20,9 1 88 3,51 7 1,225 2,5 2,82 ln 1,64 kN/m

4,79 2 0,7wp
⎡ ⎤−⎡ ⎤ ⎛ ⎞= + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 (8.5) 

 
 unbuilt built 
 I II III I II III 
u* 2.25 2.3 2.25 3.08 2.82 2.6 
z0 0.1 0.2 0.3 0.7 0.7 0.7 
d 0 0 0 3.5 3.5 3.5 
k 1.0 1.0 1.0 0,9 0,9 0,9 

Table 8.4: Characteristics for the wind climate according to NEN 6702 [18] 
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Dimension factor 
The factor Cdim is a factor that takes the relation between wind gusts and the dimensions of a 
building into account. The factor is introduced as large surfaces do not experience the effects 
of wind gusts at the same time everywhere. For buildings with a rectangular projection to the 
wind direction, the dimension factor can be calculated from: 
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Where:  I(h): turbulence intensity at height h 
  B: effective width 
  h: height of the building part where the wind acts upon  
  b:  width of the building part where the wind acts upon  
 
For the turbulence intensity and the effective width of the building it follows: 
 

( )
1( ) 0,16

ln 440
I h = =   ;  2/3 2 /3

1 0,54
0,94 0,021 88 0,029 71

B = =
+ ⋅ + ⋅

 (8.9) 

 
For the dimension factor it follows: 
 

1 7 ( ) 1 7 0,16 0,54 0,86
1 7 ( ) 1 7 0,16dim
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Form factor for pressure, friction and suction 
For façades of buildings with a rectangular floor plan, the form factor Cindex follows from 
Figure 8.39. For pressure the form factor is 0,8. 
 

 
Figure 8.39: Form factors for façades of buildings with a rectangular floor plan (NNI, [18]) 
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Dynamic factor 
The effects of vibrations of the structure are taken into account with the dynamic factor Φ1. 
As dynamic behaviour is not considered in this thesis, a factor of 1 can be used. 
 
Representative wind pressure 
With the derived variables it follows for the representative wind pressure: 
 

2
1 1,64 0,86 0,8 1 1,13 kN/mrep w dim indexp p C C φ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =    (8.11) 

 
Reference area 
The reference area of the façade of the Electrical Engineering building that is subjected to 
wind is: 
 

271 88 6.284 A b h m= ⋅ = ⋅ =        (8.12) 
 
Representative wind force 
The representative wind force on the concerning façade can finally be calculated from: 
 

6.284 1,13 7.101 kNindex repF A p= ⋅ = ⋅ =      (8.13) 
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8.6.2 Calculation of the wind load according to the Eurocode 
 
In Paragraph 3.2.2 the process to calculate the wind load according to the Eurocode is 
summarized. This procedure will now be used to determine the forces on the building of the 
faculty of Electrical Engineering. The Eurocode prescribes the wind load with the following 
equation: 
 

( )w ref e e d f refF q c z c c A= ⋅ ⋅ ⋅ ⋅         (8.14)  

 
Where:  qref: The reference mean velocity pressure 
  ce: The exposure coefficient. This coefficient takes the wind profile into 
   account  
  ze: The reference height. Usually this is the height of the building or  
   structure 
  cd: This coefficient takes the dynamic effects of the response of the  

building or structure into account 
  cf: The force coefficient. This coefficient takes the geometry of the 
   building or structure into account 

Aref: The reference area of the building or structure that is subjected to 
the wind 

 
Reference mean velocity pressure 
In the CFD calculations the logarithmic velocity profile that is prescribed in the Dutch building 
code is used, which is characteristic for the wind climate in a built area in Zuid-Holland. For a 
proper comparison, the reference wind velocity in the Eurocode calculation is therefore 
derived from the characteristics defined in the Dutch building code. The logarithmic velocity 
profile is given by: 
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Where:  u*: friction velocity 
  κ: Von Karman constant, which is 0.42 
  z: reference height 
  z0: roughness height of the terrain 
  d: displacement length 
 
In Table 8.4 the characteristics of the wind climate for three wind areas were summarized. As 
the building of the faculty of Electrical Engineering is located in a built region of area II, the 
reference wind velocity can be calculated from: 
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With an air density of 1,225 kg/m3, the reference mean velocity pressure follows from: 
 

( )( )2 2 21, 225 32,18 634,45 N/m
2 2refq U zρ

= ⋅ = ⋅ =     (8.17) 
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Exposure coefficient 
The exposure coefficient takes the wind profile into account and is defined by the turbulence 
intensity, a roughness coefficient and a topography coefficient. The exposure coefficient can 
be calculated from: 
 

[ ]2 2( ) ( ) ( ) 1 2 ( )e e r e t e v ec z c z c z gI z= +       (8.18) 

 
Where:  g: the peak factor with value 3,5 
  Iv(ze): the turbulence intensity 
  cr(ze): a roughness coefficient 
  ct(ze): a topography coefficient 
 
The topography coefficient ct takes the increase of the mean wind velocity over isolated hills 
and cliffs into account. As there are no cliffs or hills in the research area, the coefficient is 1. 
The roughness coefficient takes the roughness of the terrain into account and is given by: 
 

0
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zc z k
z

= ⋅         (8.19) 

 
Where:  kT: terrain factor 
  zmin: minimum reference height 
  z0: roughness length 
 
The terrain factor can be determined with: 
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Where:  z0: roughness length 

z0,II: the roughness length for terrain category II, which is 0,05 
 
The minimum reference height zmin depends on the terrain category and is 10 for built regions 
of area II. The roughness coefficient can now be calculated from: 
 

0

10( ) ln 0,23 ln 0,61
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r e T

zc z k
z

= ⋅ = ⋅ =      (8.21) 

 
The final variable that defines the exposure coefficient is the turbulence intensity. The 
turbulence intensity is defined as the ratio between the maximum or minimum wind speed 
and the mean wind speed at a certain height. It can be calculated from: 
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      (8.22) 

 
From the calculated variables the exposure coefficient follows from: 
 

[ ] [ ]2 2 2 2( ) ( ) ( ) 1 2 ( ) 0,61 1 1 2 3,5 0,38 1,35e e r e t e v ec z c z c z gI z= + = ⋅ ⋅ + ⋅ ⋅ =   (8.23) 
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Dynamic factor 
The effects of vibrations of the structure are taken into account with the dynamic factor cd. 
As dynamic behaviour is not considered in this thesis, the factor is 1. 
 
Force coefficient 
The force coefficient takes the geometry of a building into account. It is defined by: 
 

,0f f rc c λψ ψ= ⋅ ⋅         (8.24) 

 
Where:  cf,0: the force coefficient of rectangular sections with sharp corners 
  ψr: the reduction factor for square sections with rounded corners 
  ψλ: the end-effect factor for elements with free-end flow 
 
The various parameters are based on results of wind tunnel tests. The force coefficient cf,0 
depends on the width and depth of the building. For rectangular buildings the coefficient can 
be derived from Figure 8.40. The width b of the façade of the Electrical Engineering building 
is 71 m; the depth d of the building is 21 m. The ratio between the depth and width is 0.296. 
This gives a force coefficient cf,0 of 2,1.  
 

 
Figure 8.40: Force coefficients cf,0 of a rectangular section (NNI, [17]) 
 
The reduction factor ψr is a coefficient that takes the effect of rounded corners into account. 
As the building has no rounded corners, the coefficient is 1. The end-effect factor ψλ takes 
the reduced resistance of the structure due to the wind flow around the end of the building 
into account. It depends on the slenderness of the structure and a solidity parameter and can 
be derived from Figure 8.41. The solidity takes the effect of openings in the structure into 
account, but is 1 for the closed building of the faculty of Electrical Engineering. According to 
the Eurocode, the effective slenderness for rectangular buildings higher than 50 m is: 
 

Minimum of 1,4  ; 70l
b

λ λ⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

      (8.25) 
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Figure 8.41 gives the variables l and b to determine the effective slenderness for wind normal 
to the plane of the picture. For the faculty of Electrical Engineering the effective slenderness 
is 1,4 x 88/71 = 1,735. The end-effect factor becomes 0,62.  
 

 
Figure 8.41: End-effect factor as a function of the solidity parameter and the slenderness  

      (NNI, [17]) 
 
For the force coefficient it follows: 
 

,0 2,1 1 0,62 1,302f f rc c λψ ψ= ⋅ ⋅ = ⋅ ⋅ =      (8.26) 

 
Reference area 
The final variable that is required to calculate the wind load is the reference area of the 
building that is subjected to wind. For the faculty of Electrical Engineering, the reference area 
of the concerning façade can be determined with the following expression: 
 

271 88 6.284 refA b h m= ⋅ = ⋅ =       (8.27) 

 
Total wind load 
From the calculated variables the total wind load according to the Eurocode on the façade of 
concern can finally be determined: 
 

( ) 634,45 1,35 1 1,302 6.284 7.015.963 w ref e e d f refF q c z c c A N= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =   (8.28)  
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8.6.3 Wind load according to CFD calculations 
 
To compare the wind load according to the building codes an additional CFD calculation is 
performed with the building of the faculty of Electrical Engineering. In stead of the calculation 
that is discussed in Paragraph 8.3, the building is now meshed with tetrahedral cells as this 
element type will be used most often in practice. The edges of the model are meshed with an 
interval size of 1, what resulted in approximately 1.1 million cells. Further refinement is not 
possible, but as the shortest edge of the building model was 7 m, the mesh is perhaps fine 
enough already for the determination of global wind loads. In the previous CFD calculations 
that are performed in this thesis, the boundary conditions were all taken from the conditions 
for the single cube. However, to simulate reality and to be able to make a fair comparison 
with the building codes, some boundary conditions have to be adapted.  
 
Ground surfaces 
For the CFD calculation with the single cube an unbuilt area was considered with a roughness 
height of z0 = 0.2 m. However, the faculty of Electrical Engineering is located in an urban 
area and in the calculations according to the Eurocode a roughness height of z0 = 1 m was 
used. Fluent uses two parameters to define the roughness of a boundary: the roughness 
length Ks and the roughness constant Cs. The parameters can be determined with: 
 
Roughness length: Ks = 13.Z0 for non-uniform roughness 
   Ks = 20.Z0 for uniform roughness 
Roughness constant: Cs = 0.75 for non-uniform roughness 
   Cs = 0.50 for uniform roughness 
 
As the roughness of the ground surface is considered to be non-uniform, a roughness 
constant of 0.75 is attached to the ground surface in Fluent. With a roughness height of       
z0 = 1 m, the roughness length Ks becomes 13. This differs considerably with the roughness 
length of 2.6 that was used for the calculations with the cube.  
 
Building façades 
For the calculations with the cube, the roughness of the walls was considered to be uniformly 
distributed and a roughness constant of Cs = 0.50 was attached to the sides of the cube. As 
the roughness of the façades of the faculty of Electrical Engineering can also be considered 
as uniformly distributed, the same value is attached to these façades. The Eurocode gives in 
addition friction coefficients for three façade types. These coefficients are 0.01 for smooth 
surfaces, 0.02 for rough surfaces and 0.04 for very rough surfaces. The sides of the cube 
were modeled as very rough surfaces, what resulted in a roughness length of 0.8 However, 
the façades of the faculty of Electrical Engineering can be considered as smooth. This gives a 
roughness length of 20 x 0.01 = 0.2.  
 
Velocity profile 
In the previous CFD calculations of this thesis a User-Defined Function (UDF) was used to 
add the logarithmic velocity profile to the calculations. In this function the characteristics of 
the profile were all defined for the unbuilt regions of area II. However, as the building of the 
faculty of Electrical Engineering is located in the built region of area II, some characteristics 
have to be changed in the function. Table 8.5 gives the original and adapted values of the 
characteristics that define the logarithmic velocity profile that is used in the calculations. The 
values originate from the Dutch building code NEN 6702 [18]. 
 
 Original values (unbuilt region) Adapted values (built region) 
Friction velocity u* 2,3 2,82 
Von Karman constant κ 0,42 0,42 
Displacement length d 0 3,5 
Roughness height z0 0,2 0,7 

Table 8.5: Characteristics of the logarithmic velocity profile for the unbuilt and built area II
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Results 
After 1000 iterations the solution appeared to be fully converged, as the residuals had leveled 
out to some value and then stopped changing. To determine the forces on the concerning 
façade of the Electrical Engineering building, the Force Reports option in Fluent is used. This 
option allows the user to report the total forces or moments on a certain boundary of the 
model. Figure 8.42 gives the report of the forces on the concerning façade. The total force 
consists of a pressure force and a viscous force. The viscous force is the force due to the 
shear stress on the surface and is defined as: 
 

duviscosity
dy

τ = ⋅         (8.29) 

 
Herein is y the direction perpendicular to the surface and u the velocity parallel to the 
surface. As there is hardly any gradient du/dy on the surface perpendicular to the flow 
direction, the viscous force at the front façade of the building is nearly zero. 
 

  
Figure 8.42: Force Report of the concerning façade of the faculty of Electrical Engineering 
 
8.6.4 Comparison 
 
The results of the various calculations are summarized in Table 8.6. According to the Dutch 
building code, the total pressure force on the concerning façade is 7.101 kN. Forces caused 
by suction or friction are not considered in the comparison. With the Eurocode, a total 
pressure force of 7.016 kN is calculated. The results of both codes are nearly the same. 
However, according to the CFD calculation the pressure force on the façade is only 2.055 kN, 
which differs a factor 3,5 with the building codes. Assuming that the calculations according to 
the building codes and the CFD calculation are performed correctly according to the various 
guidelines, the difference is quite large.  
 

 Dutch building code Eurocode CFD results 
Total force on the concerning façade 7.101 kN 7.016 kN 2.055 kN 

Table 8.6: Total force according to the Dutch building code, Eurocode and CFD results 
 
8.6.5 Conclusion 
 
The results of the CFD calculation and the calculations according to the building codes differ 
considerably and it is very hard to give an explanation for the large difference. The results of 
the calculations according to the building codes are nearly the same and the values for the 
extreme wind pressure pw, which are used in the Dutch code NEN 6702, are derived from real 
wind tunnel studies. Although the correction factors that are used in the building codes are 
on the safe side, a difference between the CFD calculation and the codes of factor 3,5 is too 
large to have full confidence in the CFD results. All CFD calculations that are performed in this 
thesis are setup according to the guidelines given by Van Nalta [16]. The parameters that 
describe the logarithmic velocity profile are all derived from the Dutch building code. It is 
therefore difficult to explain the large difference between both methods. When the results of 
a calculation with the 60 x 60 x 60 m3 cube, performed by Snijders [23] in his Master’s thesis, 
are analyzed, the Force Report gives a total force of 1.205 kN on the surface that is directed 
to the flow. According to the Dutch building code, a total force of 3.758 kN is to be expected 
on that surface. So, in the previous graduation studies the resulting forces already differed a 
factor 3 as well.  
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A first explanation of the large difference could be an incorrect setup of the CFD calculation. 
The parameters of the logarithmic velocity profile or other boundary conditions are perhaps 
not defined correctly. However, as two graduation studies are already performed on this 
topic, errors are not expected here. On the other hand, Van Nalta has validated the current 
approach to perform a CFD calculation by comparing the pressure coefficients on a cube as a 
result of real wind tunnel studies, with pressure coefficients on a cube that follow from CFD 
calculations. These coefficients were the only wind tunnel results available; forces for 
example are not compared. As pressure coefficients do not give information about the real 
pressure that acts on a surface, incorrect conclusions can be drawn from such a comparison. 
The pressure coefficients for the concerning surface of the cube can for example be the same 
for both the CFD calculation and the wind tunnel test. It is however possible that the real 
pressure that acts on the surface differs considerably. In further studies the real pressure 
distribution on simple models have to be compared between CFD calculations and real wind 
tunnel studies to exclude eventual errors in the current approach to perform a calculation.  
 
It is also possible that the large difference between the CFD results and the building codes 
originate from the quality of the grid. Although the residuals were converged considerably 
after the calculation, the grid quality still can cause some errors. Although a grid convergence 
study can not be performed at the moment due to the actual computer resources, a grid 
independent solution is desired since it eliminates any errors that originate from the 
coarseness of a grid. However, refining the grid further is not an option as the maximum 
amount of cells was almost reached in the calculation.  
 
Another explanation of the poor results could be the modeling of turbulence. At the moment 
the realizable k-ε model is the only possible way of calculating turbulence, due to the limited 
computer resources. Modeling the separation of air from the building with the k-ε model is 
difficult and an incorrect modeling of turbulence can have a significant influence on the 
accuracy of a solution. However, as the faculty of Electrical Engineering has straight corners 
and as there are hardly any viscous forces at the façade of concern, the poor turbulence 
model can not explain the large difference. Using other turbulence models is therefore not 
very valuable in this case. Only for rounded corners the k-ε model becomes inferior to model 
the air separation accurately and large differences in the results can occur then. The 
Reynolds stress model for example can deliver more accurate results. However, this model 
requires 50-60% more calculation time per iteration compared to the k-ε model (Nalta, [16]). 
In addition, 20% extra memory is required and more iterations are needed to obtain a 
converged solution. Nevertheless, really accurate results can only be obtained using Large 
Eddy Simulation. As the computational demand is very high for this modeling type, LES will 
just come into reach in the far future.  
 
A final explanation of the large difference could be an imperfection of the building codes. In 
the CFD calculation the pressure distribution on the façade is determined by the logarithmic 

velocity profile. As the wind velocity is increasing with 
the height, the forces on the building near the ground 
will be smaller than at a larger height. In the building 
codes an extreme wind pressure is calculated for a 
certain height. As this peak pressure is just multiplied by 
the area of the surface of concern, it is considered to 
act everywhere on the surface. In Figure 8.43 the 
contours of static pressure on the façade of concern 
according to the CFD calculation are given. The pressure 
distribution differs considerably with the distribution 
according to the building codes. There are areas of low 
pressure and at the boundaries of the façade even 
suction occurs. 

Figure 8.43: Static pressure contours 
                on the concerning façade 
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In comparison with the building codes, the total force according to the CFD calculation that 
acts on the façade will be smaller due to the more realistic pressure distribution. A difference 
in the results of factor 3,5 is still quite large, but the current approach of the building codes 
with a poor pressure distribution and correction factors that are on the safe side will result in 
an overestimated total force on a structure. However, from the pressure distribution given in 
Figure 8.43, it can be derived that the maximum pressure on the façade is 610 N/m2. 
Comparing this value with the extreme wind pressure of 1640 N/m2 that is used in the 
calculation according to the Dutch building code NEN 6702, it can be concluded that a large 
difference occurs here as well. The most plausible explanation for the large difference 
between CFD and the building codes is therefore an incorrect approach to setup a CFD 
calculation. 
 
In additional research lots of comparisons should be made between real wind tunnel studies 
and CFD calculations to judge the accuracy of the CFD results. When an explanation for the 
large difference between CFD and the building codes is found, the current approach of the 
Virtual Wind Tunnel can be validated. First comparisons should be made for simple models 
with both straight and rounded corners. In addition some more complex models could be 
used. Then comparisons should be made for a research area containing several simple 
shapes. Finally a more complex building that is placed in a built environment should be used 
to compare the results between wind tunnel studies and CFD calculations. If the accuracy of 
the CFD results is determined, the different methods to predict the wind loads can be judged. 
When in the end the CFD results are profitable in comparison with the codes, smaller forces 
can be obtained from the wind calculations. More efficient structures can be designed that 
will reduce the costs considerably. Especially for complex building models the Virtual Wind 
Tunnel could become a very valuable design application then.  
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8.7 Conclusions 

8.7.1 General 
 
In this chapter the results of some CFD calculations are discussed that were performed on 
several models which were generated with the various developed design tools. The goal of 
the calculations was to proof that the tools work for CFD applications and to demonstrate that 
calculations can be performed with the generated models. Two grid generation methods are 
developed that are able to mesh both simple and complex building geometry. Especially for 
meshing complex geometry, a lot of cells are required to obtain accurate results. However, 
the computer resources are still the limiting factor for the amount of cells that can be used. 
With the hardware used for this thesis it was therefore not possible to obtain very accurate 
results for complex building geometry. However, from the simulations discussed in this 
chapter it can be concluded that the developed design tools work for CFD applications, that 
the grid generation methods are able to mesh the various geometry and that results can be 
obtained. 
 
The Van Nalta domain was used to perform the calculations, with the building models placed 
in the lower part of the central cylinder. As the domain itself was automatically meshed 
during the generation of the domain, only the cylinder containing the model of interest had to 
be meshed manually. Two grid generation methods are discussed to mesh the central 
cylinder. The first method is based on a grid generation method developed by Van Nalta and 
uses hexahedral cells to mesh the cylinder. This method can only be used to mesh simple 
geometry with the same layout from the bottom to the top of the building model. The second 
grid generation method uses tetrahedral elements and can be used to mesh more complex 
geometry. However, meshing a model with tetrahedrons requires a lot more cells, quite often 
too many for the available resources. At the moment it is therefore impossible to obtain very 
accurate results and it will be very hard to simulate the flow pattern around specific small 
building parts precisely. The comparison between a CFD calculation and the building codes 
for the faculty of Electrical Engineering showed a large difference between both methods. At 
the moment there is no sure explanation for the different results, but it is possibly caused by 
an incorrect approach to setup a CFD calculation. An analysis of the results of a calculation 
performed by Snijders [23] with the 60 x 60 x 60 m3 cube showed a difference of factor 3 as 
well in comparison with the building codes. As the same approach is used for the calculations, 
it is plausible that the current approach to setup a CFD calculation is inferior. Further research 
is therefore required to validate the current approach by comparing the results from CFD 
calculations with results from real wind tunnel studies. From these comparisons a certain 
trend can perhaps be derived that can be used to outweigh the large difference between CFD 
and the building codes. If the CFD results are considered to be accurate finally, a major 
advantage of using CFD to determine the wind loads in stead of the building codes is that the 
CFD results give a lot more insight in the flow pattern. As the results can be presented in 
various visual forms, lots of phenomena can be investigated and critical places are easy to 
find.  
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8.7.2 Convergence 
 
The convergence of a solution can be judged in several ways. One way is to monitor the 
convergence of the residuals during the iteration process. Other ways are using surface and 
force monitors to examine the convergence of specific quantities in the domain. When the 
monitored variables level out to a certain value, the solution is considered to be fully 
converged. The quality of the grid has a large influence on the convergence of a solution. 
One of the most reliable methods to investigate if a grid is appropriate or not is performing a 
grid convergence study. The method involves performing a simulation on two or more 
successively finer grids. 
 
When a grid is refined, the cells become smaller and the number of cells in the flow domain 
increases. As the numerical error becomes smaller, the solution approaches the ‘exact’ 
solution. Suppose a model that is meshed with 50.000 cells for example. By refining the grid 
to 100.000 cells and 200.000 cells, the numerical error decreases for each refinement. The 
decrease in error after each refinement will be smaller as the grid becomes smaller. If the 
solution does not change considerably anymore, the solution is called the grid independent 
solution. If the computer resources allow such a study, a grid independent solution is desired 
in the end since it eliminates any errors that originate from the coarseness of a grid. The grid 
independent solution should be used for the comparison with real wind tunnel results to show 
what the error of the CFD calculation is. However, with the actual capacity of the desktop 
computers it is usually not possible to perform a grid convergence study as refinement of a 
grid is generally not an option. 
 
8.7.3 Grid quality 
 
The quality of the grid influences the results of a CFD calculation considerably. A poor quality 
can cause inaccurate solutions or a poor convergence. One option to judge the grid quality is 
to perform a grid convergence study. Another characteristic that defines the quality of a grid 
can be derived in Gambit as well. 
 
Skewness 
Skewness is defined as the difference between the shape of a cell and the shape of an 
equilateral cell of equivalent volume (Internet, [9]). Highly skewed cells should be avoided, 
since it negatively affects the accuracy and convergence of a solution. For triangular cells the 
angles between the cell edges should be close to 60 degrees and never larger than 90 
degrees. Figure 8.44 gives an example of a triangular cell with a low and high skewness.  
 

 
Figure 8.44: Cells with low skewness (left) and high skewness (right); (Internet, [9]) 
 
The skewness of a cell can be calculated from: 
 

max minSkewness = max ,
180

e e

e e

θ θ θ θ
θ θ

⎡ ⎤− −
⎢ ⎥−⎣ ⎦

     (8.30) 

 
Where:  θmax: largest angle in cell 
  θmin:  smallest angle in cell 

θe:  angle for equiangular cell (triangle: 60 degrees; square: 90 degrees) 
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A general guideline for judging a cell’s quality based on the skewness is given in Table 8.7. 
 
Cell quality Excellent Good Acceptable Poor Sliver Degenerate 
Skewness 0.00-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.99 0.99-1.00 

Table 8.7: Guidelines to judge the cell quality based on skewness 
 
In any case the skewness of hexahedral, triangular and tetrahedral cells must be lower than: 
 Hexahedrals: < 0.85 
 Triangles:  < 0.85 
 Tetrahedrals: < 0.90 

 
For the CFD calculation for the faculty of Architecture of Delft University of Technology, the 
grid quality is examined in Gambit using the skewness of the cells. In Figure 8.45 the 
skewness of all cells of the central cylinder and a part of the domain around the cylinder is 
indicated with colors. Blue cells have a very low skewness and are therefore of high quality. 
Light purple and especially red cells have a higher skewness and their quality considerably 
decreases. In the central cylinder the quality of the tetrahedral cells is smallest near the edge 
of the cylinder. The quality of the hexahedral cells is smallest near the corner points of the 
parts of the domain outside the cylinder. The worst element of the domain is located in the 
central cylinder and has a skewness of 0.74. It can be concluded that the quality of the cells 
of the computational domain is acceptable. 
 

 
Figure 8.45: Examination of the mesh using the skewness of the cells 
 
The green histogram at the right of the mesh window represents the quality distribution of 
the mesh elements. Each vertical bar on the histogram corresponds to a unique set of upper 
and lower quality limits. Ideally the first bar of the histogram should contain most cells, as 
this would give a grid of the highest quality. However, for the calculations that are performed 
in this thesis it is impossible to receive such a high quality. For the amount of cells that can 
be used to mesh the complex geometry, the presented quality is reasonably. Without refining 
the grid considerably, it is not possible to improve the quality of the grid at the moment. 
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8.7.4 Local grid adaption 
 
Due to the limited computer resources, the building models discussed in this chapter are 
meshed with a considerably coarse grid. However, in some cases there are regions where 
smaller cells are required. To investigate smoke dispersion or wind hindrance problems for 
example, or to determine local forces for the connection of façade elements, a lot more cells 
are required. To provide a more accurate solution, the resolution of the grid at such 
interesting areas can be refined by local grid adaption. As the maximum amount of available 
cells was already consumed for most cases of this thesis, grid adaption is not considered in 
the calculations. However, to determine the exact flow around the balconies of the apartment 
building for example, the grid at those locations certainly has to be refined.  
 
8.7.5 Boundary conditions 
 
The boundary conditions that are applied on the building models and the ground surface are 
derived from the conditions formulated by Van Nalta. With wall parameters a certain 
roughness is given to the ground surface and the façades of the buildings. The surfaces of 
the original cube were modeled with a uniform roughness, but for building models with 
balconies or partial glass façades for example, the roughness is not uniform. However, as the 
accuracy of the simulations was of minor importance, all building façades are modeled with 
the same uniform roughness as the cube. To describe the reality accurately, all façades have 
to be modeled with a corresponding roughness off course. The Eurocode offers friction 
coefficients for three types of façades. However, not all existing façade variants can be 
divided in those three types, so further research is required to translate a certain façade 
structure in a specific roughness value. For all calculations, the boundary conditions for the 
ground surface were defined for an unbuilt area. However, when the environment is also 
modeled, the boundary conditions must be adapted and another roughness factor must be 
ascribed to the ground. The Dutch building code provides various roughness heights for 
several area types. Research is required to choose the right roughness height for a certain 
ground surface. 
 
8.7.6 Wind direction 
 
For all calculations that are discussed in this chapter, only one wind direction is considered. 
The building models are all placed with their longest side perpendicular to the flow, which 
results in the maximum possible pressure on those sides. However, in reality wind comes 
from different directions and just as for ordinary wind tunnels, at least the governing 
directions that follow from the wind rose should be investigated. As the Van Nalta domain is 
developed for wind coming from one direction, the only way to investigate other wind 
directions is to rotate the model of interest in the domain. One option is to rotate the model 
itself to the desired direction before it is meshed. This can be done in Rhinoceros for 
example, but many other CAD packages will be able to read and adapt the models as well. 
Also Gambit is able to rotate the model. A disadvantage of this method is that for each 
rotation the model has to be meshed again and an entire new calculation has to be 
performed, which takes quite some time. Another method to investigate different wind 
directions is proposed by Snijders [23] and implies a rotation of the total inner cylinder, 
including the mesh. When the inner cylinder is rotated over a small angle, the flow gradients 
will generally not change very much. Results from a previous calculation can then be used as 
a starting point for new calculations. This will certainly quicken the convergence process and 
shortens the time required to obtain a solution. However, the method is not applied yet and 
additional research is necessary to develop the method further. 
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8.7.7 Van Nalta domain 
 
All calculations that are discussed in this chapter are performed in the Van Nalta domain. 
Although there is no confidence about the accuracy of the results, the domain seemed 
suitable of performing the calculations. However, the domain is very large in comparison with 
other domain sizes that are used in practice. According to Van Nalta [16] the dimensions are 
even more than sufficient. Although the cells are larger near the boundaries of the domain, 
still quite a lot of cells are required to mesh the domain outside the cylinder. To be able to 
refine the grid in the cylinder, it is perhaps possible to reduce the size of the computational 
domain. The velocity profiles at the boundaries will possibly be unaffected as well for a 
smaller domain. 
 
Another way to save cells is to remove the smallest elements from the research area. 
Especially for simulations with several buildings this can be valuable as such models require 
lots of cells. When the buildings with the smallest influence on the flow pattern are removed, 
cells can be saved to refine the grid on the remaining other buildings. 
 
A final point of attention is the radius of the central cylinder. A certain distance between the 
buildings and the edge of the cylinder is required to provide a smooth transition between the 
mesh on the building models and the cylinder edge. For the calculations with the single 
building models a radius of 212 m is used, which resulted in a sufficient distance between the 
building model and the edge of the cylinder. The radius of 212 m originates from the 
calculations with the cube in the previous graduation studies. The ratio between the distances 
from the origin to the most far away corner of the cube and the ground edge of the cylinder 
is 1:5. This ratio is given in the left picture of Figure 8.46. For the calculation with a part of 
the university district, the ratio between the radius of the smallest circle around the model 
(250 m) and the radius of the cylinder (500 m) is only 1:2. Although the results of the 
simulation seemed reasonable, it is unknown if this ratio is sufficient. However, a ratio of 1:5 
appears to be useless for this case as it results in a radius for the research area of 1250 m. 
Further research is required to investigate the effects of the radius of the central cylinder on 
the results of a calculation. 

 

 
Figure 8.46: Ratio between the distances to the edges of the research area and the cylinder 
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9. Thesis Evaluation 

In this chapter an evaluation is given of the Master’s thesis project. The purpose of the thesis 
and its contribution to the Virtual Wind Tunnel is summarized. A review of the development 
process of the various design tools and a vision for the future of the Virtual Wind Tunnel is 
given in this chapter as well. 
 
9.1 The Virtual Wind Tunnel 

Until the second half of the 20th century, wind loads were hardly taken into account in the 
structural design of buildings. With the introduction of new and stronger materials in building 
engineering around the 1950’s, structural elements became lighter and more slender. As the 
permanent vertical load decreased, wind loads became more important for the design of 
high-rise buildings. Research into wind loads resulted in various design codes to take the 
effects of wind on common building shapes into account. For centuries these codes were the 
only way to estimate the pressure on a building. However, for complex building shapes the 
codes seemed not sufficient and wind tunnel tests have been introduced to determine the 
wind loads on these buildings by experiment. Although wind tunnel studies give reliable 
results for situations where the codes do not foresee, they are very expensive and time-
consuming. This discourages designers to perform such a test in the early stage of the design 
process. However, as it is just this stage where very important design decisions are made, 
more insight in the wind loads and flow pattern is desired. As a solution, computational 
methods are proposed to calculate the wind effects numerically using a technique referred to 
as Computational Fluid Dynamics (CFD). In theory CFD is able to solve the mathematical 
models up to a desired accuracy without the limitation of geometry. As changes in the 
physical model are relatively easy to perform, CFD seems very suitable for shape optimization 
with respect to wind loads.  
 
However, for use in wind engineering CFD is not generally accepted yet. As there is still 
contradiction on the use of CFD to predict the wind effects on buildings and structures, 
results of CFD calculations are not widely accepted. To develop a general approach for CFD in 
wind engineering, a computational wind tunnel has been proposed at the Structural Design 
Lab of Delft University of Technology. The goal of this Virtual Wind Tunnel is an application 
that can be used in the early stage of the design process to indicate the wind loads on a 
building or structure using CFD. Ultimately, this structural design tool should enable structural 
engineers without any specific knowledge on wind engineering to perform reliable wind load 
calculations. The possibility of comparing several alternative geometries in a relatively short 
period should make shape optimization with respect to wind loads possible.  
 
By now a computational domain is developed at the Structural Design Lab by Van Nalta [16] 
and Snijders [23], which showed promising results for the calculation of the pressure 
distribution on a 60x60x60 m3 cube. However, for CFD simulations on complex building 
geometry the computational demand is very high and the limited power of the current 
desktop computers influences the ability to make accurate calculations. Only with very 
powerful machines or with a cluster of computers it will be possible to obtain accurate results 
for complex geometry. Nevertheless, as most structural engineers will only have a normal 
desktop computer at their disposal, the Virtual Wind Tunnel is not suited yet for final wind 
load determination. However, as the computer resources are developed continuously, it could 
be possible in the nearby future to simulate the wind effects on complex buildings accurately. 
Research into smoke dispersion, wind hindrance, heating or ventilation problems will also 
come into reach then. 
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To predict the wind loads on a building or structure and compare alternative geometries in a 
relatively short period, the process of setting up a CFD calculation has to be automated. 
When the building geometry is generated as much as possible automatically, less interference 
of the structural engineer is required and valuable time can be saved. Anticipating on the 
future developments in computer resources, several design tools are developed in this thesis 
to generate the building geometry for CFD calculations. With this toolbox it is possible to 
setup a CFD calculation and compare several alternative geometries in a relatively short time.  
 
9.2 Design Tools 

During this Master’s thesis several design tools are developed to generate the geometry for 
CFD calculations. The purpose of the tools is to quickly setup a CFD calculation without much 
interference of the user. As alternative geometries can be generated in a relatively short time, 
the tools are very suitable for shape optimization with respect to wind loads. With the design 
tools three different types of geometry can be generated. The first and second design tools 
can be used to generate a 3D model of the environment for a certain area. The third design 
tool can be used to simplify the geometry of the building of interest and get rid of little 
details. The fourth design tool can finally be used to generate the computational domain for 
the CFD calculations. In this paragraph the possibilities and restrictions of the various design 
tools are discussed extensively.  
 
9.2.1 Modeling the environment 
 
As the flow pattern around a building is influenced by its surroundings, it can be very useful 
to take the environment into account in the calculations. Besides a model of the building of 
interest, also a 3D model of the environment is required then. The difficulty here is that there 
are hardly any useable 3D models of a certain area available. However, GIS technology offers 
two information models that can be used to generate a 3D model of a certain area in the 
Netherlands. The first dataset is the Top10Vector, which provides a digital topographic map 
of the whole country in 2D. The dataset is composed of closed polygons that represent 
various elements on the earth’s surface, like buildings, roads and vegetation. The second 
dataset that originates from GIS technology is the Actueel Hoogtebestand Nederland (AHN). 
The AHN dataset provides an elevation model of the Netherlands where the height is stored 
for each 16 m2 of the country. The height points are placed on a regular grid where each 
point represents the height for that particular location. The dataset contains height 
information of the ground surface, buildings, roads and water for example.  
 
The first design tools that are developed during this thesis are able to link the two discussed 
datasets in order to generate a realistic 3D model of the environment for a certain location. 
The amount of built environment that has to be taken into account for the CFD calculations 
can be limited. For real wind tunnel studies, a research area with a radius of 300 m around 
the building of interest seems sufficient. Buildings further away do not have a significant 
influence on the flow pattern around the central building anymore. For the CFD applications 
the extent of built area that is represented in the calculations will initially be similar as for real 
wind tunnel studies. The process to generate a 3D model of the environment is divided in two 
parts. The first design tool can be used to create a restricted 2D research area from the 
Top10Vector dataset. By assigning the center location of the building of interest and the 
radius of the research area, a circular region with limited dimensions is extracted from the 
digital topographic map. With the second design tool all polygons in this area can be extruded 
to create a 3D model of the environment. The extrusion heights are derived from the AHN 
dataset for that particular area. As one single polygon will contain several height points, the 
design tool calculates the average of all height values and extrudes the polygon over the 
concerning height.  
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The Top10Vector dataset that was used for this thesis only contained information about the 
southern part of Delft. The AHN dataset provided even less information as it only contained 
height values for a part of the Delft University of Technology district. However, the design 
tools showed promising results and if the Top10Vector and AHN datasets become available 
for other areas, the tools will also be capable of generating 3D models for these locations. 
 

 
Figure 9.1: Result of the first design tools: a 3D model of the environment 
 
Restrictions  
Although the design tools work properly, there are some restrictions of the methods. First of 
all, the buildings in the Top10Vector dataset are represented by only one polygon. When the 
polygon is extruded over the average of all height values inside the polygon, the building has 
the same height everywhere. However, in reality buildings often consist of several parts with 
their own heights. For an accurate representation of the environment it is therefore desired to 
split the original polygon into several polygons that represent the various building parts. 
Extruding these parts over the different heights gives a building model that represents reality 
much better. Nevertheless, as a total building is represented as only one polygon at the 
moment, it is extruded over the average of all building parts. Complex methods are available 
that can recognize a large variation between neighbouring height points. With these methods 
it could be possible to generate a new polygon around the divergent height points. The 
original polygon that represents the total building can be divided in smaller polygons then 
that represent the various building parts. However, the point density of the AHN dataset is 
only one point per 16 m2. This is very coarse and a polygon that is generated around some 
divergent points will certainly not represent the shape of the real building part. The various 
polygons will also not connect properly then. Only when the density of the AHN dataset is 
increased considerably, the method can work. Another option is to manually split the 
polygons in several parts and extrude the various building elements over the concerning 
height then. However, a thoroughly knowledge of the buildings in the research area is 
necessary for this method. It is therefore not widely applicable. 
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Another aspect is that no slope surfaces can be modeled with the developed methods. All 
polygons are extruded straight ahead and have a flat top side. If a building has a slope roof 
in reality, it is modeled as a flat building with the average of all height values as extrusion 
height. However, a very accurate description of the surrounding buildings is not necessary. 
Most detail is required for the building of concern. Only for a very accurate prediction of the 
flow pattern at specific locations in the environment, more detailed models of the surrounding 
buildings are required. At the moment GIS technologists investigate the possibilities to 
develop more accurate 3D models of a certain environment. If these methods become widely 
available in the future, more detailed models of the surrounding buildings can be generated 
for use in the Virtual Wind Tunnel. However, for global wind load determination on buildings 
that are placed in a built environment, the accuracy of the surroundings is sufficient. 
 
A final point of concern is that only the buildings in the environment are modeled. All other 
elements, like roads, vegetation and water are not represented in the 3D model. A complex 
ground surface with differences in height would cause a very complex grid on the bottom of 
the research area, which results in less cells being available for meshing the building models. 
In stead of those various elements, the environment is modeled with a flat ground surface. 
However, for mountainous areas or areas with dikes or elevated roads for example that will 
influence the flow pattern considerably, it is important to model these elements. Some small 
adaptations of the developed scripts will make this possible already. Each element type has a 
separate layer in the Top10Vector dataset. The scripts remove all polygons from the model 
that do not represent a building by turning off their layers. Adapting the scripts so that a 
certain element is not removed will give a more detailed model of the environment.  
 
9.2.2 Simplification of the building of interest 
 
To determine the wind loads with computational methods, a CAD model of the building of 
interest is required. When such models are obtained from architects or structural engineers 
for example, they usually contain lots of information that are not relevant to determine the 
global wind loads. Little details have hardly any influence on the flow pattern, but they will 
cause a very complex grid that increases the calculation time tremendously. Another aspect is 
that only the surfaces that come in direct contact with the flow are necessary for CFD 
analysis. However, most building models contain internal geometry as well, like interior 
structures and furniture objects. Removing all unnecessary geometry by hand to remain only 
the exterior surfaces of the building model is very hard as there is not always a strict 
distinction between internal and external geometry. Façades for example can be constructed 
from various separate elements, from which some are part of internal structures as well. 
Deriving only the exterior surfaces of the building model is very complicated then. A final 
aspect is that for CFD analysis the building models have to be fully airtight. Small drawing 
inaccuracies can introduce gaps through which air can flow into the building, which is off 
course not permitted. To cover these problems, a third design tool is developed that excludes 
little details and replaces all internal and external geometry by wrapping an airtight surface 
around the building model of interest. It is only this wrapped surface that is used for CFD 
analysis.  
 
Several methods are developed to create the wrapped surface around a certain building 
model. The methods are based on creating enclosing curves around the model at several 
height levels. By generating a surface through these curves then, the model can be wrapped. 
The various methods are briefly discussed in the rest of this paragraph. 



Master’s thesis                                                                                                  

141 
 

 
Rotating Lines method 
The first method to create the enclosing curves around the model of interest is the Rotating 
Lines method. The method is based on finding the outer points of the model at a certain 
height level. When all outer points are found, a curve can be generated through the points 
that encloses the model at that level. Repeating this procedure for the full height of the 
building, where the level of concern is elevated over a certain distance each time, gives 
various enclosing curves over the height of the building. A surface can be generated through 
the curves then that wraps the model and replaces the internal and external geometry. 
 
With the Rotating Lines method the user is first asked to pick the center location of the 
building model. From this location a line is drawn in north direction with a user-specified 
length. For that line it is checked if there is an intersection with the various elements of the 
model. If so, the script determines the intersection point for that line with the largest distance 
from the center location of the model. At this location a point is added to the model then. The 
procedure is repeated for a second line that is rotated over a user-specified angle around the 
center location of the model. The script continues until the line is rotated over 360 degrees, 
giving the outer points for all directions. By adding a polyline through these points, the model 
is surrounded by an enclosing curve. The method is explained in Figure 9.2 for a simple 
building model.  
 

 
 

 
Figure 9.2: Rotating Lines method for a simple building model 
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Rectangle method 
The second method that is developed to create the enclosing curves around the model of 
interest is the Rectangle method. The method is especially developed for large models with a 
rectangular shape, as the Rotating Lines method seemed not very suitable for such models. 
As a consequence of the rotation of the line, the distance between the outer points increases 
as the distance between the boundaries of the model and the center location of the model 
increases. Especially at corners the enclosing curve will differ from the original model then. A 
method that deals with this problem is the Rectangle method. The method is also based on 
finding the outer points of a model by the intersection of a line with the various elements of 
the model. A rectangle that has to be drawn around the model is now used to define the 
movement and length of the lines. Starting from the lower left corner of the rectangle, a 
vertical line will be created to the upper left corner of the rectangle. The line is then moved to 
the right over a user-specified distance. For each line it is checked if there is an intersection 
between the line and the various model elements. The distances between the various 
intersection locations and the start point of the line are then calculated. At the closest and 
most far away intersections a point is added to the model. The process is repeated until the 
line element is finally arrived at the right side of the rectangle. The procedure now continues 
with a horizontal line moving from the bottom of the rectangle to the top of the rectangle. 
When all outer points are found, a polyline is added through the points to generate the 
enclosing curve. The method is explained in Figure 9.3 for the simple building model. 
 

 
 

 
Figure 9.3: Rectangle method for a simple building model 
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Rotated Square method 
The third method that is developed to create the enclosing curves around the model of 
interest is the Rotated Square method. The method is developed to find the outer points in 
case of in-built façades. The Rotating Lines method and the Rectangle method do not give 
proper results for such building models, as most outer points on the in-built façades are not 
found. The Rotated Square method, which is based on the Rectangle method, deals with this 
problem. The user still has to draw a rectangle around the model of interest. The corner 
points of this rectangle are now used to generate a square that is rotated over 45 degrees. 
The rotated square fits the original rectangle exactly and forms the basis for the lines that will 
find the intersections with the various model elements. Starting from the lower left edge of 
the square, lines will move to the upper right edge of the square over user-specified intervals. 
For each interval it will be checked if there is an intersection between the line and the various 
model elements. If the line has finally arrived at the upper right edge of the square, the 
procedure continues with lines moving from the upper left edge of the square to the lower 
right edge of the square. In Figure 9.4 a simple building model with in-built façades is given. 
A rectangle that has to be drawn around the model forms the base for the rotated square. 
Lines will then move from the lower left edge of the square to the upper right edge to find 
the outer points of the model. 
 

 
Figure 9.4: Rotated Square method for a building model with in-built façades 
 
In Figure 9.5 the process continues. When the line has arrived at the upper right edge of the 
square, the procedure is repeated, but now with lines moving from the upper left edge to the 
lower right edge of the square. When all outer points are found, the enclosing polyline is 
generated through the points. 
 
 

 
Figure 9.5: Rotated Square method for a building model with in-built façades 
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Integrated method 
The discussed methods to generate the enclosing curves seem to work properly for circular 
and rectangular building models. However, especially for multiple curved models the methods 
sometimes fail in finding all outer points. Several tests showed that the three methods are all 
capable of finding certain outer points of such models, but not all points. Additionally, each 
method found some points that were not found with the other methods. To find all outer 
points on a complex, multiple curved surface, the three separate methods are joined in the 
Integrated method. Various tests with multiple curved models showed that the Integrated 
method succeeded each time to find all outer points of the models. A rectangle that has to be 
drawn around the model forms the base again of the method. The procedure to find all outer 
points starts with the Rectangle method and is directly followed by the Rotating Lines 
method. The middle of the rectangle forms the centre point of the rotating lines method. The 
lines with a length equal to diagonal between the lower left and upper right corner of the 
rectangle will rotate around the centre point to find the outer points of the model. Finally the 
Rotated Square method is executed, where the rotated square is constructed from the drawn 
rectangle. As a result of the execution of the three methods in one continuous process, the 
outer points do not lie in the right sequence in the array and it is not possible to directly 
generate the enclosing curve through the points. The array containing the outer points will be 
ordered first by a procedure that is based on finding the closest point for a certain outer 
point. Then the enclosing curve is generated through the points. 
 
Extension to the third dimension 
The methods that are discussed in this paragraph can be extended to the third dimension by 
elevating the level at which the outer points are determined. Starting from the bottom of the 
model, the level of concern is raised each time over a user-defined distance to generate the 
enclosing curves at several height levels. The procedure is repeated until over the full height 
of the building the enclosing curves are generated. 
 
Restrictions of the methods to generate the enclosing curves 
With the discussed methods it is for many cases possible to find the outer points on a two 
dimensional plane and to generate an enclosing curve that fits the original shape accurately. 
However, when the methods are applied in three dimensions, problems arise when a building 
model consists of various parts with a different height that are separated by air. As only one 
enclosing curve is generated through the outer points at a certain height level, the curve can 
also cross areas where no points are found, for example the air between separate building 
parts. When a surface is lofted through the curves, the air would be modeled as a building 
part then. It is suggested to adapt the methods to find the outer points on both a horizontal 
and a vertical plane that moves through the model. On the boundaries of the model a point 
cloud will arise then, through which a surface can be constructed. 
 
Another restriction of the various methods is the time required to find the outer points of 
large building models. The limited processing speed is caused by the huge amount of 
elements of such models and the Rhinoceros Visual Basic language in which the methods are 
scripted. Although the process of the methods is very clear as all procedures are visualized on 
the screen, it takes quite some time before all enclosing curves of an entire model are 
generated. It is suggested to translate the various scripts to more advanced programming 
languages. As these languages are more complicated, some experience in programming is 
certainly required then. However, it could speed up the process considerably. 
 
For additional research some suggestions are given for other methods to simplify the model 
of the building of interest. By using a shrinking sphere with a certain elasticity, the model 
could be wrapped when it is prohibited to perforate the sphere. A vacuum could be generated 
then that creates a fitting surface around the model of interest. Another method could be 
developed that works similar to laser scanning equipment. When a script is able to imitate the 
laser scanner, a point cloud on the boundaries of the model could be generated. This point 
cloud can be converted to a 3D surface model then that wraps the original model accurately.
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Curve simplification 
Applying the discussed methods to find the outer points of a model give the enclosing curves 
for several height steps. When the model is highly detailed or when it does not have smooth 
façades, the curves will fluctuate considerably. To simplify the enclosing curves and get rid of 
little details, a NURBS curve can be fitted through the enclosing curves. This technique uses 
the outer points through which the enclosing curves are constructed as control points to fit a 
NURBS curve through it. By assigning parameter values to the control points, a curve can be 
created that fits the points exactly or more approximately, dependent on the given parameter 
values. In Figure 9.6 an example is given of the NURBS fitting method. The dots in the figure 
represent the outer points that could be found for a certain façade. If the enclosing curve is 
generated through the points, a reasonably rough and fluctuating curve originates, which is 
represented by the dotted line in the figure. To simplify the curve and get rid of those 
fluctuations, a NURBS curve can be fitted through the outer points. Weight factors that are 
assigned to the outer points determine the influence of the points. They are the parameters 
that indicate the accuracy of the fitting process. If the weight value of the control points is 
larger than one, the points are closer approximated by the NURBS curve. If the weight values 
are smaller than one, the points are less approximated. In this way it is possible to create a 
straight NURBS curve that replaces the fluctuating enclosing curve and neglects small details.  
 

 
 

Figure 9.6: Enclosing curve simplification by fitting a NURBS curve through the outer points 
 
However, it is not always necessary to simplify the enclosing curves. When a building has 
smooth façades for example without much detail, the enclosing curves will not fluctuate very 
much and perhaps they do not have to be simplified. It is up to the user of the design tools if 
the enclosing curves have to be simplified or not. In addition to the NURBS fitting method, 
another method to simplify the enclosing curves was proposed in this thesis. In theory, the 
least squares method should also be capable of simplifying the enclosing curves. The least 
squares method is in general a method to determine the best-fit curve through a certain 
dataset. It is based on minimizing the squared error in vertical direction between a data point 
and a parametric curve. The smaller the difference between the original dataset and the 
proposed curve, the better the fit. In Appendix O the method is discussed extensively and 
examples are given to fit a straight line and a parabola through a certain dataset. In order to 
fit a straight line through the dataset, a first degree polynomial is required that minimizes the 
total error. To fit a parabola through the dataset, a second degree polynomial is required. 
The first and second degree polynomials are a function of x, with only one solution for a 
certain x value. However, as the enclosing curves of the building models are closed curves, at 
least two solutions have to be found for a certain x value. Third degree curves at minimal are 
therefore required to formulate the fitting polynomials. It was suggested to use an ellipsoidal 
or circular equation to fit a curve through the outer points, but some tests showed that the 
result is always an elliptical curve. As this does not represent the reality, curves of a higher 
degree are necessary to generate a best-fit curve through the outer points. Nevertheless, the 
use of only the NURBS fitting method to simplify the enclosing curves is probably sufficient. If 
it is desired to use another method as well, the least squares method seems to be an 
appropriate method. Additional research is required then to develop the method further. 
 

 
Figure 9.7: Least squares method: fitting a straight line and a parabola through a dataset 
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Lofting method 
In this chapter several methods are discussed to generate the enclosing curves around a 
building model. The methods can be extended to the third dimension to create the curves at 
different height levels. Starting from the bottom of the building model, the level at which the 
outer points are determined is raised each time to generate the enclosing curves over the full 
height of the building. After the curves are created, the original building geometry is removed 
from the model. Then a surface can be lofted between the enclosing curves to form a closed 
surface model. It is just this hollow model that is used for the CFD calculations. The surface 
model replaces all inner and outer geometry of the original building model and reduces the 
amount of data for the CFD software considerably. When the surroundings also have to be 
taken into account for the calculations, the simplified building model can manually be placed 
in the 3D model of the environment. In Figure 9.8 the lofting method is given for the model 
of an office building. A hollow surface model is generated from the enclosing curves. 
 

 
Figure 9.8: Lofting method to create a hollow surface model from the enclosing curves 
 
Preprocessing 
A final method that is developed for the simplification of the building of interest is a method 
called Preprocessing. As architects and structural engineers work with various CAD systems 
nowadays, the various tools to simplify the building of interest must support the different 
model types. In traditional CAD systems the models are generated from lines, surfaces and 
solids and those entities remain when the model is imported in Rhinoceros. The developed 
methods to generate the enclosing curves use specific Rhino commands that are able to find 
the intersections with lines, surfaces and solids directly. However, when building models are 
created with modern CAD systems, like object-oriented modellers, the models are not 
constructed from lines, surfaces or solids anymore. These models are constructed from 
objects that represent the elements from which a building or structure is built of, like beams, 
columns, floors and walls. As Rhinoceros is not an object-oriented CAD system, the objects 
are converted to meshes when such models are imported in Rhinoceros. A mesh is basically a 
collection of vertices and faces connected together to represent a surface. Unfortunately, the 
current version of Rhinoceros is not capable of determining the intersection between a line 
element and a mesh object. However, with the Preprocessing method the mesh objects can 
be converted to surfaces by deriving the vertices and faces from which the mesh is built. 
Through these entities a surface can be created, which makes it possible to determine the 
intersections with the line element. Nevertheless, converting the meshes to surfaces results in 
a significant growth of model elements. For large building models it can take quite some time 
then to find all outer points, as for each line it has to be checked if there is an intersection 
with one of the elements. Manually deleting some inner geometry before the methods are 
executed will quicken the process considerably, as less elements have to be checked.  
 
Another option to determine the intersection with the line element and a mesh object is using 
the newest Beta release of Rhinoceros 4. Some additional commands and functions are 
implemented in this release that are able to determine the intersection with a mesh object 
directly. For each method to find the outer points of a model and create the enclosing curves, 
a variant is developed that supports these new commands. Together with those variants of 
the various methods it is possible to find the intersections for models that are constructed 
from lines, surfaces and solids as well as models that are constructed from meshes. 
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9.2.3 Generation of the computational domain 
 
The final design tool that is developed in this thesis is a tool to generate the computational 
domain in which the CFD calculations are performed. To obtain reliable results from the 
calculations, a domain with sufficient dimensions around the research area is required. The 
domain must be large enough to avoid that the flow pattern at the boundaries of the domain 
is influenced by the buildings in the research area. The Van Nalta domain that is developed in 
recent graduation studies by Van Nalta [16] and Snijders [23] forms the base for the domain 
that is used in this thesis. The Van Nalta domain was developed to investigate the wind 
effects on simple objects, like cubes and cylinders. The size of the original domain depends 
on the height of the object placed in the central cylinder of the domain. In this thesis the 
domain is used to perform calculations on entire buildings and even areas containing multiple 
building models. The cylinder of the original domain is therefore too small and the structure 
of the domain had to be adapted. For calculations with a research area that consists of 
several buildings, the dimensions of the domain must depend on the radius of the research 
area and the maximum height of a building in the research area. A final design tool is 
developed that automatically creates the domain for a certain research area, depending on 
the dimensions of the area. 
 
The Fluent pre-processor Gambit is used to generate and mesh the computational domain. 
Gambit can run so-called journal files in which text based commands can be scripted. When 
the journal file is run, Gambit works over the commands given in the file to generate the 
model that is scripted. The developed final design tool can be used to create the journal file 
with which the computational domain can be generated in Gambit, depending on the 
maximum height and radius of the research area. The journal file is generated using a Visual 
Basic macro that is run in Microsoft Excel. The file also contains commands to mesh the 
regions of the domain outside the central cylinder. After the domain is generated, the user 
can place the model of the research area into the cylinder. It is only this cylinder that has to 
be meshed manually then. 
 

 
Figure 9.9: Macro to generate the journal file
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9.3 CFD calculations 

9.3.1 Introduction 
 
For several building models that were generated with the various developed design tools, 
some CFD calculations are performed to investigate the potential of the tools. The purpose of 
the calculations was to proof that the tools work for CFD applications and to demonstrate that 
calculations can be performed with the generated models. Two grid generation methods are 
developed that are able to mesh both simple and complex building geometry. Looking at the 
entire CFD process, the activities of this thesis concentrate on the first, second and last step: 
the description of geometry, the generation of a grid and the analysis of the calculation 
results. In the previous graduation studies by Van Nalta [16] and Snijders [23] the other 
steps of the CFD process are investigated and the results from these studies are used in this 
thesis to setup the CFD calculations. As there are still quite some uncertainties about the use 
of CFD in wind engineering, it was not the intention to obtain very accurate results from the 
calculations. Meshing complex building geometry also requires lots of cells, but the capacity 
of the current desktop computers is the limiting factor for the amount of cells that can be 
used. With the available hardware for this thesis it was therefore not possible to obtain very 
accurate results for complex models.  
 

 
Figure 9.10: This thesis concentrates on the first, second and last step of the CFD process 
 
9.3.2 Results 
 
The CFD calculations that are performed in this thesis have demonstrated that the developed 
design tools work for CFD applications. The grid generation methods are able to mesh the 
various building geometry and results are obtained from the calculations. However, it is very 
hard to judge the accuracy of the results, especially for complex building models. The limited 
amount of cells to mesh the computational domain seriously influences the ability to obtain 
accurate results. The only way to verify the CFD results is to compare them with results from 
real wind tunnel tests or, in case of simple geometry, a calculation according to the building 
codes. For the simple shape of the faculty of Electrical Engineering of Delft University of 
Technology, a comparison is made between the codes and a CFD calculation. The comparison 
showed that the CFD results for the total wind load on the front façade are at the moment a 
factor 3,5 smaller than the results that are obtained from calculations according to the 
building codes. A comparison of the maximum pressure in N/m2 on the façade showed a large 
difference of factor 2,7 between the methods as well. The reason of these large differences is 
not certain, but they are probably caused by an incorrect approach to setup a CFD 
calculation. An analysis of the results of a calculation performed by Snijders [23] for the 
original cube showed a difference of factor 3 as well in comparison with the building codes. 
As the same approach is used for the calculations, it is plausible that the current approach to 
setup a CFD calculation is inferior. Further research is therefore required to verify the results 
from a large number of CFD calculations with results from real wind tunnel studies in order to 
validate the current approach of the Virtual Wind Tunnel. If a certain trend can be derived 
from these comparisons, it could be used to outweigh the large difference between CFD and 
the building codes. The CFD results for the various forces in combination with the pressure 
distribution would be very valuable then for a first indication of the global wind loads in the 
early stage of the design process. 

Geometry 
description 

Grid 
generation

 

Discretization Turbulence 
model 

Boundary 
conditions

Flow 
specification

Numerical 
solution 

Analysis of 
the results



Master’s thesis                                                                                                  

149 
 

 
In this thesis several design tools are developed to create the geometry for CFD calculations. 
The design tools will assist the user of the Virtual Wind Tunnel to setup a simulation in order 
to predict the wind loads on a building or structure. Various tests with the design tools have 
shown that for many cases the tools succeed in generating the geometry. However, from the 
calculations that are performed in this thesis it can be concluded that a major bottleneck of 
the entire process to predict the wind loads is the CFD itself. The design tools are able to 
setup the geometry for the calculations, but the CFD technique is not able at the moment to 
obtain very accurate results from the calculations. To a large extent this has to do with the 
computer resources and it will probably take years before the wind effects on complex 
building models that are placed in a built environment can be simulated accurately. 
 
 
9.4 Future of the Virtual Wind Tunnel 

At the moment the structural engineer has to rely on the building codes or real wind tunnel 
studies to determine the wind loads on a building or structure. At the Structural Design Lab of 
Delft University of Technology, computational methods are proposed to calculate the wind 
effects numerically using CFD. The result of previous graduation studies by Van Nalta [16] 
and Snijders [23] and this Master’s thesis is a computational domain in which the CFD 
calculations can be performed, a set of design tools to setup the building geometry for the 
calculations and some potential grid generation methods that are able to mesh both simple 
and complex building geometry. The actual status of the Virtual Wind Tunnel and its 
accompanying design tools is an application with which the wind effects on a single building 
or a built environment can be investigated, but the accuracy of the results is uncertain. Due 
to the limited computer resources, the amount of cells that can be used to mesh the research 
area is restricted. This seriously influences the ability to make accurate calculations. Further 
research is required to validate the results of a large amount of CFD calculations with results 
from real wind tunnel tests and the building codes. If reliable results can be obtained in the 
end, the accuracy of the CFD calculations should be superior over the building codes. If this 
can be achieved, the Virtual Wind Tunnel would be a very valuable tool for structural 
engineers to indicate the wind loads on a building or structure in the early stage of the design 
process. As it is this stage of the process where important design decisions are made, the 
increased insight in the wind effects can help the engineer to design more efficient structures. 
Shape optimization with respect to wind load is possible then.  
 
The design tools that are developed in this thesis to setup the geometry for CFD calculations 
give promising results for many cases. The amount of detail of a 3D model of the surrounding 
buildings, that can be generated with the first design tools, is reasonable. As all buildings are 
modeled as straight blocks with a flat top surface, the accuracy of the model is not very high, 
but for global wind load determination the amount of detail of the environment is sufficient. 
The model of the building of interest requires more detail, but there is an ongoing battle 
between the amount of detail that is represented and the calculation speed of the CFD 
software. Very small details are not relevant to determine the global wind loads, but they will 
increase the calculation time considerably. Design tools are developed in this thesis to 
simplify highly detailed building models. A surface that is wrapped around the model replaces 
all internal and external geometry and heals eventual gaps in the model. For many cases the 
design tools seem to work properly, but there are also models imaginable where the methods 
fail. The time required to simplify very complex building model is also a point of concern. For 
an optimal use in the Virtual Wind Tunnel, the design tools should be developed further to 
support more complex shapes and to quicken the process to setup the geometry. 
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The solution of a CFD calculation is to a large extent influenced by the grid that is applied. 
For the calculations with the building models in this thesis, it was only possible to generate a 
coarse grid on the models. An accurate prediction of the flow pattern at specific locations is 
therefore difficult. Local grid adaption to refine the mesh in specific regions is possible, but 
this has to be done very carefully in order to retain a high grid quality. Further research is 
required to investigate the effects of local grid adaption for the results of the calculation and 
the quality of the grid. In the end, a grid independent solution is desired since it eliminates 
any errors that originate from the coarseness of a grid. 
 
The Virtual Wind Tunnel has the possibility to become a valuable tool for structural engineers 
in the nearby future. With the actual capacity of desktop computers it is not possible yet to 
obtain accurate results for complex building models, but following the current trends in 
computer resources it can be concluded that the use of CFD for wind engineering problems is 
on the verge of being applicable. This off course under the condition that the large difference 
between CFD and the codes is solved. For final wind load determination the Virtual Wind 
Tunnel is not suitable yet and real wind tunnel studies remain necessary for the time being. 
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10. Conclusions and recommendations 

10.1 Introduction 

In this Master’s thesis several design tools are developed to generate the geometry for CFD 
analysis. The purpose of the tools is to quickly setup a CFD calculation to determine the wind 
loads on a building or structure, without much interference of the user. The tools can be used 
to generate a 3D model of the environment and to simplify the geometry of the building of 
interest. A final tool can be used to generate the computational domain in which the 
calculations are executed. Many tests are performed with the various design tools to 
investigate the possibilities and restrictions of the tools. 
 
For several models that were generated with the design tools, some CFD calculations are 
performed to test if the tools work for CFD applications. The results are promising, but the 
accuracy is still moderate. The capacity of the current desktop computers seems to be the 
limiting factor to obtain very accurate results. 
 
10.2 Conclusions 

10.2.1   Developed Design Tools 
 
 Under the restrictions of the various methods, the developed design tools are very well 

able to generate the geometry for CFD calculations. A sufficient detailed 3D model of the 
environment can be created and complex building geometry can be simplified and 
eventually closed by wrapping a fitting surface around the model. For each case a 
computational domain with sufficient dimensions around the research area can be 
generated in which the calculations can be performed.  

 The design tools assist the user of the Virtual Wind Tunnel to setup the geometry for the 
CFD calculations and can save valuable time. As physical changes in the building models 
are easy to perform, alternative geometries can be compared in a relatively short period. 
This makes shape optimization with respect to wind load possible. 

 With the design tools to generate a 3D model of the environment it is not possible to 
model building parts of different height. In the Top10Vector dataset all objects are 
represented with only one polygon that encloses the entire object. If a building for 
example consists of several parts of different height, the polygon is extruded over a 
height that is the average of all separate building parts.  

 The design tools to generate the 3D model of the environment are not able to model 
slope surfaces as well. All polygons are extruded straight up and have a flat top side. 
However, for a first indication of the global wind loads, the amount of detail of the 
surrounding buildings is sufficient. Most detail is required for the building of interest.  

 The third design tool to simplify the building of interest contains four methods to create 
the enclosing curves. The Rotating Lines method, the Rectangle method, the Rotated 
Square method and the Integrated method all have their advantages in comparison with 
the other methods. The user must decide which method is the most appropriate for a 
certain building model. 

 With the third design tool various building models that originate from different CAD 
systems can be simplified. The tool supports both traditional CAD systems and advanced 
object-oriented systems. When a model that originates from object-oriented systems is 
converted to meshes when imported in Rhinoceros 3, the meshes can be converted to 
surfaces with the Preprocessing method. Another option is to use the Rhinoceros 4 
variant of the tool that is able to directly determine the intersection with a mesh element. 

 The third design tool fails in generating the enclosing curves when a building consists of 
several parts with a different height that are just separated by air. As only one curve is 
generated at a certain height level, the air between the building parts will be modeled as 
a building element when a surface is lofted through the curves. 
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 The design tools to generate the geometry are scripted in the Rhinoceros Visual Basic 

language. As the tools work visually, the procedure of the tools is very clear. However, as 
only one task can be performed at the same time, the process to simplify the building of 
interest takes quite some time for complex building models that contain lots of elements. 
This is especially the case when meshes that originate from object-oriented modelers are 
converted to surfaces, as the amount of elements considerably increases then. 

 For the simplification of the building of interest, valuable time can be saved by using the 
Rhinoceros Beta 4 variant of the methods in case the model is constructed from meshes. 
As this variant is capable of finding the intersections between a line element and a mesh 
directly, the meshes do not have to be converted to surfaces. As less elements have to 
be checked then, time will be saved. 

 Significant time can be saved as well by manually filtering the various building models. 
When all irrelevant geometry, like furniture and internal structures, is removed from the 
model before the design tool is executed, the process can be quickened considerably. 

 
10.2.2   CFD calculations 
 
 The developed design tools work for CFD applications. The wrapped surface model of a 

building replaces all internal and external geometry and reduces the amount of data for 
the CFD calculations considerably. Models of the environment are easy to make, which 
makes it possible to take the surrounding buildings into account in the calculations. The 
models that are generated by the design tools can be meshed by the CFD software and 
results can be obtained from the calculations. 

 The grid generation methods that are developed are able to mesh both simple and 
complex building geometry. However, the amount of cells that can be used is limited by 
the computer resources. The capacity of the current desktop computers influences the 
ability to make accurate calculations considerably. Only with the best available work 
stations or with a cluster of computers it could be possible to obtain very accurate results.  

 Judging the results of the CFD calculations that are performed in this thesis is difficult as 
there was no reference information available. The only way to verify the results is to 
compare them with results from real wind tunnel studies. Judging the grid quality is also 
difficult as grid convergence studies can not be performed with the actual desktop 
computers.  

 To obtain a solution with the highest accuracy that is possible with the current resources, 
the grid must be refined until a mesh is obtained with an amount of cells just below 1.2 
million. Further refinement is not recommended as the calculation speed is slowed down 
considerably then.  

 A comparison between the building codes and a CFD calculation for the simple shape of 
the Electrical Engineering building resulted in a large difference between the methods. 
The reason of the difference is not certain, but it is probably caused by an incorrect 
approach to setup a CFD calculation.  

 In comparison with the building codes, a CFD calculation offers considerable advantages. 
Although the current accuracy is moderate, the CFD results can give lots of insight in the 
wind effects. The visualization of the flow pattern gives very useful information that can 
never be obtained with calculations according to the building codes. 

 In the total process to predict the wind loads on a building or structure using CFD, the 
largest bottleneck still seems to be the CFD itself at the moment. The design tools are 
able to setup the geometry, but very accurate results can not be obtained yet from the 
calculations. To a large extent this has to do with the computer resources. 

 For final wind load determination the Virtual Wind Tunnel is not suited yet because the 
accuracy is not high enough. Following the current trends in the development of 
computer resources, it will probably be possible in the nearby future to investigate the 
wind effects on entire built areas accurately. For the time being, real wind tunnel tests 
remain necessary. 
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10.3 Recommendations 

10.3.1   Design Tools 
 
 In order to generate more detailed models of the environment, it is recommended for 

further research to split the polygons that represent the buildings in smaller parts if a 
building consists of several building elements. The various building parts could then be 
extruded over different heights, what results in a more realistic description of the 
buildings in the environment. The generation of slope surfaces from the GIS datasets 
should also be investigated to simulate the flow pattern in the research area more 
accurately. 

 In the 3D model of the environment the ground is modeled as a flat surface to save cells 
when meshing the domain. When the computer resources are sufficient, other elements 
in the environment, like roads, water, dykes and vegetation, should be modeled as well 
by adapting the script of the first design tool. This will result in a more complex ground 
surface and more cells are required to mesh the surface. However, especially for large 
differences in height between the various elements, reality will be described much better. 

 The various methods of the design tool to simplify the building model of interest fail when 
a building model consists of elements of different height that are separated by air. It is 
recommended to develop other methods to solve the restrictions of the current methods. 
Adapting the methods to find the outer points on a vertical plane as well that moves in 
horizontal direction through the model could help to find the outer points on all 
boundaries of the model. Through the resulting point cloud on the boundary a surface 
can be created then. 

 Other methods to wrap a surface around a building model are imaginable as well. It is 
suggested to use a shrinking sphere that has to be constructed around the model, with a 
certain elasticity. When it is not permitted to perforate the sphere, the building model 
could be wrapped by shrinking the sphere to create a vacuum. Another method is 
suggested that works similar to laser scanning equipment, generating a point cloud on 
the boundary of the model. Further research is required to develop these methods. 

 At the moment, the only way to simplify the enclosing curves and get rid of little details is 
to fit a NURBS curve through the original curve. It is recommended to develop other 
methods as well to remove small details from a building model. The least squares method 
seems to be an appropriate method to simplify the enclosing curves, but a complete 
different approach of simplifying a building model could be valuable as well. 

 The design tools are developed in Rhinoceros and written in the Microsoft’s Visual Basic 
language. As the tools work visually and as only one task can be performed at the same 
time in Visual Basic, the process to generate the enclosing curves around a complex 
building model can take quite some time. It is recommended to convert the script of the 
tools to more advanced programming languages, like C++ or DotNET, in order to quicken 
the process. 

 When a 3D model of the environment and a surface model of the building of interest are 
developed with the various design tools, the models have to be joined together manually 
at the moment. As the model of the environment uses a global coordinate system and 
the building model of interest a local coordinate system, some work is required to place 
both models at the right place when they are joined. An additional design tool could be 
developed that links the local coordinate system with the global coordinate system. The 
design tool should be able then to place the building of interest with the right orientation 
and at the desired location in the model of the environment. 
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10.3.2   CFD calculations 
 
 It is very hard to judge the results of the various CFD calculations that are performed in 

this thesis as no reference information from real wind tunnel studies was available. For 
additional research it is recommended to compare the CFD results with real wind tunnel 
studies to verify the CFD calculations. 

 The results of a CFD calculation are to a large extent influenced by the amount of cells 
that is used to mesh the domain. Due to memory restrictions of the available hardware, 
only a coarse grid could be used. If the computer resources allow, it is recommended to 
investigate the influence of the grid on the solution by performing a grid convergence 
study. In the end a grid independent solution is desired as it eliminates any errors that 
originate from the coarseness of the grid. 

 The comparison between the building codes and a CFD calculation for the faculty of 
Electrical Engineering showed a large difference between the methods. The reason of this 
difference should be investigated, but it is possibly caused by an incorrect approach to 
setup a CFD calculation. Many comparisons should be made between real wind tunnel 
studies and CFD calculations for both simple and more complex geometry, in order to 
validate the current approach of the Virtual Wind Tunnel. Perhaps a certain trend can be 
derived that can be used to outweigh the large difference between CFD and the building 
codes. In the end one should proof that the results of a CFD calculation are profitable in 
comparison with the codes. 

 The boundary conditions that are applied in this thesis on the building models and the 
ground surface are derived from the boundary conditions for the cube model, which were 
formulated by Van Nalta. With wall parameters a certain roughness can be given to the 
ground surface and the façades of the buildings. To model the reality accurately, further 
research is required to translate the structure of the real ground surface and the building 
façades into roughness parameters. The influence of different roughness parameters on 
the flow pattern around a building should be investigated as well. 

 To simulate the flow pattern around specific small building parts accurately or to 
determine local forces, the computer capacity is too small as many cells are required for 
such calculations. It is recommended to adapt the grid locally in order to refine the mesh 
at critical places. Where possible, cells could be removed to obtain more cells for meshing 
certain important regions. However, one must be careful with local grid adaption in order 
to prevent large transitions between the local fine grid and the adjacent coarse grid. 
Large changes in cell size will have a negative influence on the accuracy of the solution, 
which can be larger than the profits of a locally finer grid. Other possibilities to save cells 
could be the reduction of the dimensions of the computational domain and the removal of 
the smallest objects in the research area. 

 Additional research is required to investigate the influence of the radius of the central 
cylinder of the domain for the results of a CFD calculation. For single objects the distance 
between the object and the edge of the cylinder seems sufficient. However, when an 
entire built environment is placed in the cylinder, the radius of the cylinder must be 
increased considerably in order to provide a smooth transition between the mesh on the 
buildings and the edge of the cylinder. It is currently not known which ratio should be 
used between the radius of the research area and the radius of the central cylinder.  
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Appendix A: Additional information 

In this appendix some additional information on the theory about CFD, GIS and CAD is given.  
 
A.1 Fluids in motion 

The basic equations describing fluid flow are derived from the mass, momentum and energy 
balance on a fluid element (Shaw, [22]). Three fundamental physical principles to solve the 
basic equations were already formulated in the 18th century by the well-known scientist 
Leonhard Euler:  
 
 Mass is conserved;   No mass is created or destroyed in a fluid flow 

This principle is referred to as the Continuity equation 
 
 Momentum is conserved; Momentum is defined as the mass of a particle multiplied by  

its velocity. The amount of momentum is constant in a flow 
This principle is referred to as the Momentum equation 

 
 Energy is conserved; No energy is created or destroyed in a fluid flow 

This principle is referred to as the Energy equation 
 
Combining these equations leads to the governing equations for fluid motion. According to 
Anderson [1] there are two main approaches for fluid modeling, with their own form of the 
governing equations: 
 
 The Langragian approach:  the fluid motion is analyzed using an infinitesimal fluid  

element or control volume that is moving along a streamline 
 

 The Eulerian approach: the fluid motion is analyzed using a finite control volume V  
that is fixed in space. The volume is bounded by control 
surface S and the fluid is moving through the volume 

 
On the next pages the three fundamental principles are evaluated inside a fixed control 
volume using the Eulerian approach, as in most CFD software packages the flow fields are 
computed in the Eulerian reference system (Jiang et all, [12]). 
 

 
Figure A.1: Control volume fixed in space with the fluid moving through it, Eulerian approach 
      (Anderson, [1]) 
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Conservation of mass 
The conservation law of mass is based upon the principle that the net mass flow out of the 
control volume through the surface is equal to the time rate of mass decrease inside the 
control volume. When this condition is satisfied, mass is conserved. The net mass flow out of 
the control volume is the product of the fluid density, the component of fluid perpendicular to 
the surface and the area of the surface and is given by the following equation: 
 
 

ρ ⋅∫∫
S

V dS          (A.1) 

 
The dot product of V and dS indicates that the velocity is taken perpendicular to the control 
surface. The total mass inside the control volume is: 
 

ρ∫∫∫
V

dV          (A.2) 

 
Because the size of the control volume remains constant in time, the mass decrease inside 
the volume is equal to the time-derived density, integrated over the volume: 
 

ρ∂
−
∂ ∫∫∫

V

dV
t

         (A.3) 

 
The net mass flow out of the control volume must be equal to the mass decrease inside the 
volume. Combining these two equations leads to the following equation for the conservation 
of mass: 
 

0ρ ρ∂
⋅ + =

∂∫∫ ∫∫∫
S V

V dS dV
t

       (A.4) 

 
This equation is also known as the continuity equation. 
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Conservation of momentum 
To create a change in momentum of a single particle, a force is required. As momentum is 
defined as the mass of a particle multiplied by its velocity, it follows from the conservation 
law of mass that a change in velocity is needed to change the momentum, as mass is 
constant. A change in velocity leads to an acceleration or deceleration of the particle. The 
required force to create a change in momentum is equal to the mass of a particle multiplied 
by its acceleration or deceleration and can be written as F = m·a. This equation is also known 
as Newton’s second law. The equation F = m·a is a vector relation and can be split in three 
directions along the x, y and z-axis. In the following the expression for F in x-direction will be 
derived using the forces and pressures on the infinitesimal fluid element shown in Figure A.2. 
 

 
Figure A.2: Shear forces and pressures in x-direction on an infinitesimal fluid element  

    (Anderson, [1]) 
 
It follows that the total force in x-direction is given by: 
 

ττ τ ρ
∂⎛ ⎞∂ ∂∂

= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
yxxx zx

x x
pF dxdydz f dxdydz
x x y z

   (A.5) 

 
Herein is fx the x-component of the body force per unit mass acting on the fluid element. 
 
From Newton’s second law it follows that the net force exerted on the control volume is equal 
to the mass of a particle times its acceleration. Acceleration is the time rate of change of the 
velocity and is in x-direction given by: 
 

/=xa Du Dt          (A.6) 
 
The mass of an infinitesimal fluid element is constant and given by: 
 

ρ=m dxdydz          (A.7) 
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From Equations (A.6) and (A.7) it follows for the product of mass and acceleration: 
 

ρ=x
Duma dxdydz
Dt

        (A.8) 

 
Combining Equations (A.5) and (A.8) results in the x-component of the momentum equation: 
 

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
x

Du p f
Dt x x y z

     (A.9) 

 
The y and z-components can be derived in a similar way: 
 

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
y

Du p f
Dt x x y z

     (A.10) 

ττ τρ ρ
∂∂ ∂∂

= − + + + +
∂ ∂ ∂ ∂

yxxx zx
z

Du p f
Dt x x y z

     (A.11) 

 
These momentum equations are called Navier-Stokes equations. However, in CFD literature, 
the Navier-Stokes equations usually refer to the complete set of mass, momentum and 
energy equations. Finally the magnitude of the shear stresses on the fluid element of Figure 
A.2 can be defined. In Newtonian fluids, such as air, the shear stress is proportional to the 
rate of deformation. Herein is the viscosity μ the proportion factor: 
 

τ μ ∂
=

∂x
u
y

         (A.12) 

 
The shear stresses for Newtonian fluids are defined as: 
 

2τ λ μ ∂
= ∇ ⋅ +

∂xx
uV
x

        (A.13) 

2τ λ μ ∂
= ∇ ⋅ +

∂yy
vV
y

        (A.14) 

2τ λ μ ∂
= ∇ ⋅ +

∂zz
wV
z

        (A.15) 

τ τ μ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
xy yx

v u
x y

       (A.16) 

τ τ μ ∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂⎝ ⎠
xz zx

u w
z x

       (A.17) 

τ τ μ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
yz zy

w v
y z

       (A.18) 

 
The stresses , , , , ,xy xz yx yz zx zyτ τ τ τ τ τ  are called the viscous shear stresses and the stresses 

, ,xx yy zzτ τ τ  are called the viscous bulk stresses. Bulk stresses cause compression or extension 

of the fluid. The bulk viscosity coefficient is given by: 
2
3

λ μ= −          (A.19) 
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Conservation of energy 
The conservation law of energy is based upon the principle that energy can only change in 
form; it can not be created or destroyed. Every change in energy over time inside the control 
volume must result from an amount of heat added to the flow from the surroundings and an 
amount of work that is performed on the fluid inside the control volume. The energy, heat 
and work flux have to be in equilibrium: 
 
∂ ∂ ∂

= +
∂ ∂ ∂
E Q W
t t t

        (A.20) 

 
The rate of heat addition is determined by the rate of volumetric heating and the rate of heat 
addition to the control volume due to viscous effects: 
 

ρ ∂∂ ∂
= +

∂ ∂ ∂∫∫∫ viscous

V

QQ q dV
t t t

       (A.21) 

 
Herein is q the rate of heat addition per unit mass and Qviscous the total of viscous effects. The 
amount of work that is performed is determined by the amount of work due to pressure, 
body forces and shear stress on the control surface: 
 

( )ρ ∂∂
= ⋅ − ⋅ +

∂ ∂∫∫∫ ∫∫ viscous

V S

WW f U dV pU dS
t t

    (A.22) 

 
Herein is Wviscous the total of viscous effects. The rate of change of total energy is the rate of 
energy flow across the control surface and the time rate of change of energy in the volume: 
 

( )
2 2

2 2
ρ ρ
⎛ ⎞ ⎛ ⎞∂ ∂

= + + ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
∫∫∫ ∫∫

V S

E U Ue dV U dS e
t t

    (A.23) 

 
When Equations (A.21), (A.22) and (A.23) are combined, the following energy equation is 
obtained: 
 

2 2

2 2
ρ ρ ρ
⎛ ⎞ ⎛ ⎞ ∂∂ ∂

+ + + ⋅ = + − ⋅⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫∫∫ ∫∫ ∫∫∫ ∫∫viscous

V S V S

QU Ue dV e U dS q dV pU dS
t t t

 

 

 ( )ρ ∂
+ ⋅ +

∂∫∫∫ viscous

V

Wf U dV
t

   (A.24) 
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Navier-Stokes equations 
The continuity, momentum and energy equation are the basic equations of fluid dynamics. 
For wind engineering, the fluid is considered incompressible due to the relatively low speed of 
wind. As a consequence of the incompressibility the density ρ and viscosity μ of the fluid are 
constant and the equations describing the flow can be simplified. With constant mass and 
density, the change of volume of a fluid element in time is zero. Another consequence of the 
incompressibility and constant density is that the continuity and momentum equations are 
sufficient to describe the flow. The energy equation does not have to be taken into account. 
The simplified set equations describing the flow are known as the Navier-Stokes equations. 
When Equations (A.13), (A.16) and (A.17) for the stresses are substituted in the momentum 
Equation (A.9), it follows for the momentum equation in x-direction: 
 

2 2 2 2

2 2( ) 2ρ λ μ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= − + ∇⋅ + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
x

Du p u u v wV f
Dt x x x z x y x z

  (A.25) 

 
The Continuity Equation (A.4) can be written as: 
 

0ρ ρ+ ∇⋅ =
D V
Dt

        (A.26) 

 
As a consequence of the constant density, the continuity equation can be simplified to: 
 

0∂ ∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂
u v wV
x y z

       (A.27) 

 

0⎛ ⎞∂ ∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

u v w
x x y z

       (A.28) 

 
From Equations (A.25), (A.27) and (A.28) it follows that the momentum equation in x, y and 
z-direction can be simplified to: 
 

2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

x
Du p u u u f
Dt x x y z

     (A.29) 

 
2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

y
Dv p v v v f
Dt y x y z

     (A.30) 

 
2 2 2

2 2 2

1 μ
ρ

⎛ ⎞∂ ∂ ∂ ∂
= − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

z
Dw p w w w f
Dt z x y z

     (A.31) 

 
These three equations are known as the Navier-Stokes equations for an incompressible fluid. 
 
In the theory about fluids in motion, no attention was paid to turbulence so far. Turbulence 
however leads to rapid velocity fluctuations in both space and time. Unfortunately, the 
amount of calculation effort required to capture both time and space variations of the 
variables is extremely large. This has led to the concept of turbulence modeling. The subject 
of turbulence modeling is further discussed on the next page. 
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A.2 Turbulence Modeling 

Turbulence can be described as the variation of the wind speed around its mean. Due to this 
unsteadiness the flow hardly remains at equilibrium. To model the turbulence behaviour of 
the flow a turbulence model is needed. With a turbulence model the Navier-Stokes equations 
are simplified with a new set of equations that model the unsteadiness of the flow. There are 
several turbulence models available ranging from simple algebraic models to highly 
sophisticated models like Reynolds-stress transport models (RSTM). The reliability of CFD 
solutions for turbulent flows depends on the turbulence model used. The most important 
methods to deal with turbulence behaviour are: 
 
Direct Numerical Simulation (DNS) 
The most accurate method to deal with turbulence is DNS. All scales in a turbulent flow are 
simulated without any modeling of turbulence. The grid must be fine enough to solve the 
smallest scales. However, as the flows encountered in urban areas involve scales ranging 
from small gusts to vortices comparable to the scale of the building or structure itself, the 
computational demand for this method is too high for use in wind engineering (Franke, [9]). 
 
Large Eddy Simulation (LES) 
To reduce the computational demands the Navier-Stokes equations can be simplified by 
filtering the small eddies. This filtering is also knows as time averaging and leads to the LES 
method. By using a grid that is too coarse to capture the small scales of the flow, only the 
large eddies are taken into account. The result of filtering the small eddies is a modified set 
of Navier-Stokes equations forming a turbulence model, which are computationally less 
expensive to solve. The LES method gives good results comparable with experimental data, 
but the computational effort is still too high for use in a design application. However, rapid 
evolution of CPU hardware will surely overcome this restriction in the near future. 
 
Reynolds Averaged Navier-Stokes (RANS) 
The generally used method for the computation of turbulent flow is the Reynolds Averaged 
Navier-Stokes (RANS) method. All scales of turbulence are modeled in this method. The RANS 
equations are derived by splitting the velocity into a mean and a fluctuating component. The 
Navier-Stokes equations are then averaged in time over all scales of turbulence to directly 
produce the solution of the flow variables. Averaging results in an additional set of six 
unknown terms in the momentum conservation equations that are known as Reynold stresses 
(Arif, [3]). The additional equations that are derived to determine the Reynold stresses are 
known as the turbulence model. If these six terms are ignored, the time-averaged 
momentum equations are the same as the original momentum equations. RANS modeling is 
much faster than LES and DNS but it is assumed to be unfit when high accuracy is required. 
 
The derivation of the additional equations requires an approximation due to the complexities 
of the turbulence. This has resulted in a variety of turbulence models for the RANS equations. 
The available RANS turbulence models range from a large number of variants of the ĸ-ε 
models to Reynolds stress transport models. The original ĸ-ε model seems to be the most 
widely used turbulence model in building aerodynamics for their simplicity. However, the 
conventional ĸ-ε models have some drawbacks. Analysis of the flow field around a bluff body 
with the standard ĸ-ε model results in the overproduction of turbulence energy around the 
frontal corners of the bluff body. As a result, the predicted values of velocity or pressure 
differ from the experimental results. Many attempts have been made to revise the ĸ-ε model 
and several new models have been proposed, under which the realizable ĸ-ε model and the 
RNG ĸ-ε model. The prediction accuracy of these new models has significantly improved. 
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A.3 Historical overview of GIS 

GIS has evolved out of a long tradition of map making. The earliest known maps were drawn 
on parchment to show the gold mines at Coptes (1292-1225 B.C.). Around 300 B.C. the 
Greeks acquired cartographic skills and made the first realistic maps. These maps were drawn 
almost exclusively to facilitate commercial sea voyages. 
 
Around 1400 A.D. several developments in cartography were made in Europe. The invention 
of the printing press made maps more widely available. In stead of copying by hand, many 
identical copies could be produced now. Besides, more and more exploration voyages were 
undertaken, which increased knowledge of the world and the interest in map making. During 
the 16th century, many maps were produced from the ever-increasing information brought 
back by navigators and explorers. From now on, the accuracy of the maps was greatly 
increased by more precise determinations of the size and shape of the earth.  
 

 
Figure A.3: Ptolemy’s map of the world (Internet, [1]) 
 
As in the 18th century the prosperous countries evolved to more organized societies, the 
needs for geographic information increased. Because maps became also important in military 
operations, military agencies became the leading makers for all civilian and military maps.  
 
In history, geographical information was usually used for trade and exploration expeditions. 
When in the 19th century new infrastructures were evolved, such as roads, railways and gas 
and water supplies, the demand for geographical information arose. The exact location of 
cities, mountains, lakes and rivers became very important.  
 
With the technological innovations in the 20th century the progress of map making became 
also more developed. Especially the development of satellites with photographic equipment 
increased the speed and accuracy of map making. With the introduction of the computer 
geographical data could now also be automatically processed. This has led to a wide variety 
of Geographic Information Systems. 
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A.4 Recent developments in GIS 

Nowadays GIS is used in many technologies. Compared with a couple of years ago, acquiring 
data for use in a GIS is no longer a major problem. Trends in GIS data show that remote 
sensing will become an important source of GIS data in the nearby future. In the broadest 
sense, remote sensing is the measurement of information of an object by a recording device 
that is not in direct contact with the object (Internet, [20]). In practice, remote sensing is the 
measurement of any device for gathering information about the environment. The devices 
used for GIS applications are usually aircrafts and satellites. Another trend shows that the 
exchange of GIS data will become more common and has been facilitated by exchange 
standards.  
 
Another major development of the last two years is the growing awareness of GIS in the 
general public. The tsunami in South Asia in 2004 and hurricane Katrina in the United States 
in 2005 showed how important GIS is in order to protect lives. When viewing satellite imagery 
and comparing the changes of land cover before and after the disasters, very important 
information can be obtained about nature’s behaviour. Also rescue efforts are heavily relying 
on GIS technology.  
 
The integration of GIS and the internet is another recent development. In the past, static 
pictures were used to present maps of a certain area on the internet. Nowadays it is possible 
to use dynamic pictures where the user itself can decide what has to be mapped and how it 
must be presented. It is possible to chart neighbourhoods on the basis of population, real 
estate, income distribution and busyness. Other applications are websites where a whole 
environment can be mapped on the basis of a specified address or postal code. The most 
famous integration of GIS and internet is Google Earth. With this technology it is possible to 
take a look at each arbitrary place on earth by means of satellite and air photos. An additional 
option is the possibility to plot certain data on a map, to chart crime numbers for example. 
Another option is to construct 3D buildings with a special plug-in, to create a 3D environment 
of a certain area. GIS is also integrated in mobile internet nowadays. With this technology, 
actual traffic information can be asked for and it is even possible to search for the nearest 
parking garage with a free place for example. When a route planner is integrated, the driver 
can be guided to the garage also.   
 
In the nearby future, other applications of GIS are expected to be introduced. An example is 
the registration of property. Until recently, maps were only presented in two dimensions. 
Because multiple usage of space is often necessary nowadays, flat maps are not sufficient 
anymore. The registration of property demands a three dimensional approach when 
properties of various owners are placed on each other. If for example a tunnel is built 
underneath a certain district with another owner, the properties can not be registered under 
the same owner. Research is done at the moment to separate the several properties and its 
various owners by registering property in three dimensions. 
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A.5 Industry Foundation Classes 

Standardization of information models and information exchange is very important to provide 
interchangeability between the software used by all building project participants. In 1995 
Bentley and Autodesk formed the International Alliance for Interoperability (IAI) to develop a 
method to exchange a complete, accurate building data model from one computer application 
to another, with no loss of information (Tolman et al, [25]). The IAI developed the Industry 
Foundation Classes (IFC), which are data elements that represent the parts of a building or 
elements of the building process and contain relevant information about those parts. IFC’s are 
used by computer applications to provide a computer readable project model that contains all 
the information of the building parts and process elements and their relationships. The goal is 
that all project participants exchange information with this project model, not with each 
other. The project model provides an object-oriented database of the information shared 
among project participants and continues to grow as the project goes through all phases, 
from design and construction to operation.  
 

 
Figure A.4: Exchange of information in the past and future (Tolman et al, [25]) 
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Appendix B: TDN-Code 

The Top10Vector dataset that is used to generate a 3D model of the environment is 
composed of closed polygons that represent the various elements on the earth’s surface. 
Every element type has its own layer with a unique code, wherein all polygons are 
subdivided. The several layers can be turned on and off separately. This appendix gives a list 
of all layers in the Top10Vector dataset, the so-called TDN code. 
  
1 Bebouwing 

1.1 Gebouw, huis      1003 
1.2 Bebouwd gebied     1013 
1.3 Hoogbouw      1033 
1.4 Muur       1043 
1.5 Kassen       1073 
1.6 Opslagtank      1083 
1.7 Politiebureau      1103 
1.8 Postkantoor      1113 
1.9 Gemeentehuis      1123 
1.10 Hospitaal      1213 
1.11 Markant Object      1303 
1.12 Jaknikker      1313 
1.13 Zuiveringsinstallatie     1373 
1.14 Paal       1413 
1.15 Vlampijp      1423 
1.16 Schietbaan      1453 
1.17 Seinmast      1463 
1.18 Energiemolen      1503 
1.19 Windmolen      1513 
1.20 Watermolen      1533 
1.21 Windmolentje      1543 
1.22 Gemaal       1553 
1.23 Religieus gebouw     1703 
1.24 Kapel       1753 
1.25 Kruis       1763 
1.26 Hunebed      1773 
1.27 Gedenkteken      1783 
1.28 Toren       1803 
1.29 Watertoren      1823 
1.30 Vuurtoren      1853 

 
2 Wegen cat 2 

2.1 Autosnelweg      2003 
2.2 Lokale autoweg      2083 
2.3 Autoweg als verbindingsroute    2103 
2.4 Verbindingsroute met gescheiden rijbanen  2203 
2.5 Verbindingsroute > 7 m     2303 
2.6 Autoweg met gescheiden rijbanen als verbindingsroute 2343 
2.7 Verbindingsroute > 4 m     2403 
2.8 Lokale autoweg met gescheiden rijbanen  2443 
2.9 Verbindingsroute > 2 m     2503 
2.10 Autoweg met gescheiden rijbanen als overig aanbev. r. 2803 
2.11 Lokale weg met gescheiden rijbanen   2873 
2.12 Autoweg als overig aanbevolen route   2903 
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3 Wegen cat 3 

3.1 Overig aanbevolen route met gescheiden rijbanen 3003 
3.2 Overig aanbevolen route > 7 m    3103 
3.3 Lokale weg > 7 m     3143 
3.4 Overig aanbevolen route > 4 m    3203 
3.5 Lokale weg > 4 m     3243 
3.6 Overig aanbevolen route > 2 m    3303 
3.7 Lokale weg > 2 m     3343 
3.8 Overige weg > 2 m     3403 
3.9 Gedeeltelijk verhard > 2 m    3413 
3.10 Onverharde weg > 2 meter    3433 
3.11 Overkluizing      3453 
3.12 Passage       3463 
3.13 Voetgangersgebied     3473 
3.14 Voetpad < 2 m      3523 
3.15 Straat       3533 
3.16 Fietspad > 2 m      3603 
3.17 Fietspad < 2 m      3623 
3.18 Met fietspad      3633 
3.19 Pad       3643 
3.20 Pontveer      3663 
3.21 Voetveer      3673 
3.22 Veerdienst      3683 
3.23 Brug       3713 
3.24 Pijlers van een brug     3733 
3.25 Vonder       3743 
3.26 Beweegbaar brugdeel     3763 
3.27 Tankstation      3813 
3.28 Parkeerfaciliteit      3833 
3.29 Wegafsluiting      3853 
3.30 Kilometerpaal      3863 
3.31 Wegwijzer      3873 
3.32 Afritnummerblok     3893 
3.33 Parkeerterrein      3903 
3.34 Wegnummerblok A-route    3913 
3.35 Wegnummerblok N-route    3923 
3.36 Wegnummerblok E-route    3933 
3.37 Rijstrookcirkel      3953 

 
4 Spoor 

4.1 Enkelspoor      4003 
4.2 Dubbelspoor      4043 
4.3 Driespoor      4103 
4.4 Vierspoor      4143 
4.5 Tramroute      4233 
4.6 Smalspoor      4253 
4.7 Metro bovengronds     4263 
4.8 Station       4303 
4.9 Metro / sneltramstation     4333 
4.10 Laadperron      4353 
4.11 Kilometerpaal spoorweg     4393 
4.12 Kabelbaanmast      4403 
4.13 Kabelbaan      4413 
4.14 Zend- / ontvangstmast     4733 
4.15 Hoogspanningsmast     4803 
4.16 Hoogspanningsleiding     4813 
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5 Vegetatie 

5.1 Boom       5003 
5.2 Loofbos       5023 
5.3 Naaldbos      5053 
5.4 Gemengd bos      5063 
5.5 Griend       5073 
5.6 Populierenopstand     5083 
5.7 Heg       5113 
5.8 Bomenrij      5123 
5.9 Bouwland      5203 
5.10 Grasland      5213 
5.11 Boomgaard      5223 
5.12 Kwekerij      5233 
5.13 Heide       5243 
5.14 Zand       5253 
5.15 Overig bodemgebruik     5263 
5.16 Begraafplaats      5303 
5.17 Fruitkwekerij      5313 
5.18 Contour tbv erven     5333 
5.19 Hulplijn (afsluiter)     5393 
5.20 Contour       5403 
5.21 Damlijn       5453 
5.22 Hulplijn (eilandverbinder)    5463 

 
6 Hydrografie 

6.1 Greppel       6003 
6.2 Sloot < 3 m      6013 
6.3 Sloot tussen 3 en 6 m     6023 
6.4 Water       6103 
6.5 Oeverlijn      6113 
6.6 Hoogwaterlijn      6203 
6.7 Laagwaterlijn      6213 
6.8 Dieptelijn      6223 
6.9 Dieptepunt      6233 
6.10 Steenglooiing      6293 
6.11 Draslanden      6303 
6.12 Riet       6313 
6.13 Paalwerk      6393 
6.14 Aanlegsteiger > 2 m     6513 
6.15 Aanlegsteiger < 2 m     6523 
6.16 Dok       6543 
6.17 Dukdalf       6573 
6.18 Kilometerraaipaal     6613 
6.19 Kilometerraaibord     6623 
6.20 Peilschaal      6633 
6.21 Baak       6643 
6.22 Lichtopstand      6653 
6.23 Lichttoren      6673 
6.24 Sluisdeur      6723 
6.25 Stuw       6743 
6.26 Duiker       6763 
6.27 Grondduiker      6773 
6.28 Dam       6793 
6.29 Stroompijl groot      6813 
6.30 Stroompijl klein      6823 
6.31 Eb en vloedpijl      6833 
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7 Relief 

7.1 Dijk > 2,5 m      7103 
7.2 Dijk 1 – 2,5 m      7113 
7.3 Boezemkade      7143 
7.4 Wal       7153 
7.5 Geluidswering      7163 
7.6 Ingraving      7203 
7.7 Hoogteverschil      7223 
7.8 Aardrand      7253 
7.9 Recht omhoog      7263 
7.10 Recht omlaag      7273 
7.11 Schuin omhoog      7283 
7.12 Schuin omlaag      7293 

 
8 Grenzen 

8.1 Grenspunt      8123 
8.2 Hek       8193 
8.3 Camping      8783 
8.4 Sportcomplex      8893 
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Appendix C: Script to generate the 2D research area 

In this appendix the script that generates the 2D research area from the Top10Vector and 
AHN datasets is discussed in detail. The script uses an external plug-in for Rhinoceros that 
automatically select the points that lie in any closed curve. The plug-in is called RegionSelect 
and can be downloaded from http://www.reconstructivism.net/. The plug-in is a so-called 
DotNET plug-in, what means that it is written on the VisualBasic.NET platform. In order to 
run these RhinoDotNET plug-ins, at least V1.1 of the Microsoft.NET framework has to be 
installed. This is free downloadable from the Microsoft website: http://www.microsoft.com/. 
Once the .NET framework is installed, the RhinoDotNetManager that runs DotNET plug-ins 
needs yet to be installed. This in itself is a plug-in for Rhinoceros that can be downloaded 
from http://www2.rhino3d.com/wip_plugins/. Once the DotNetManager is installed, it can be 
run by entering _DotNetManager inside the Rhinoceros command line. The manager can add 
the RegionSelect plug-in to Rhino.  
 

 
 
Before running the script to generate the research area, the user has to import both the 
Top10Vector and AHN datasets for a certain location in Rhinoceros. The script can be loaded 
by entering LoadScript in the command line. A new window is opened with which the scripts 
can be loaded. With the Add… button the various script files can be added to the program.  
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On the basis of the script code, the tool will now extensively be discussed. The script starts 
with the Option Explicit command. With this command Rhino or any other program that runs 
the script, will check if all variables are properly defined. If this command is not added, it will 
be very hard to find errors in the script. Before the script can do anything, it needs a 
subroutine. The subroutine controls all the code that is needed to perform the tasks of the 
script. In this case the subroutine is called Area. In the following step the variable and 
constant terms are declared that will be used in the subroutine. 
 
Option Explicit 
 
Sub Area() 
 
Dim radius, r 
Dim arrCenter, arrEnd(2) 
Dim arrLayers 
Dim strLayer 
Dim iAllObj, i 
Dim arrPoints, arrPoint 
Dim arrPnts, arrPnt 
Dim dx, dy, d, dx2, dy2, d2, dmax 
Dim x1, x2, y1, y2 
Dim xmin, xmax, ymin, ymax 
Dim allBuildings, building 
Dim arrObjects, Obj 
Dim Circ, Crc 
Dim invert 
Dim extrPolygons, p 
Dim rectangle, Rect 
 
Const extHeight = -2 
 
Because the height layers of the AHN dataset contain points in stead of comma’s to separate 
the decimals, the Visual Basic script can give errors when it is not set to the right region 
settings. With the setLocale command the local ID is set to English – United Kingdom. 
 
setLocale(2057) 
 
After defining the variables and local settings, the script starts with unselecting all eventually 
selected objects. Then it asks the user to give a radius of the research area in meters. The 
radius is 300 m by default, but the user can enter any radius. After that the user is asked to 
pick a location in the research area where the building of interest will arise. He can do this by 
simply mouse-clicking in the model. 
 
Rhino.UnselectAllObjects 
radius = Rhino.Realbox("Give radius of the research area  
                       (meters)",300.0) 
Rhino.MessageBox ("Pick center location of the new building") 
arrCenter = Rhino.GetPoint 
 
When the user has picked a center location, the script will add a new layer to the model 
called Center_point and makes it current. Now a new point will be created with the 
coordinates of the center location that was given by the user. Other tools that will use this 
model now always can find the center location of the new building. After the point is created, 
its layer is turned off so it cannot be accidentally removed anymore. The current layer is set 
back to default. 
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Rhino.AddLayer("Center_point") 
Rhino.CurrentLayer("Center_point") 
If IsArray(arrCenter) Then 
  Rhino.AddPoint arrCenter 
End If 
Rhino.CurrentLayer "Default" 
Rhino.Layermode ("Center_point") ,1 
 
Because only the polygons that represent buildings will be extruded, the layers that contain 
other elements, like roads, water and vegetation will be turned off. Nevertheless, if one also 
wants to model other elements, the numbers of the layers that are turned off have to be 
changed here. 
 
arrLayers = Rhino.LayerNames 
If IsArray(arrLayers) Then 
  For strLayer = 2000 to 7000 
  Rhino.LayerMode strLayer , 1 
  Next 
End If 
 
For the remaining polygons is checked if it lies at the in- or outside of the circular research 
area. With the Rhino.CurvePoints command the control points that lie on all corners of a 
polygon are obtained. For each control point will now be checked if its distance to the new 
building’s center location is larger or smaller than the user-defined radius of the research 
area. If the distance of one or more control points of the polygon is smaller than the radius, 
the polygon lies completely or partly in the research area. The polygon must remain and it 
will be selected. If for all control points of a polygon the distance to the center location is 
larger than the radius, the polygon will not be selected. So, in conclusion, all polygons that 
are located at the boundary of the research area are selected, just as the polygons that lie 
completely in the research area. 
 
allBuildings = Rhino.NormalObjects 
If IsArray(allBuildings) Then 
  For Each building in allBuildings 
    If Rhino.IsCurve(building) Then 
      arrPoints = Rhino.CurvePoints(building) 
      If IsArray(arrPoints) Then 
        For Each arrPoint in arrPoints 
          dx = arrPoint(0) - arrCenter(0) 
          dy = arrPoint(1) - arrCenter(1) 
          d = Sqr((dx)^2 + (dy)^2) 
          If d < radius Then 
            Rhino.SelectObject(building) 
          End If 
        Next 
      End If 
    End If 
  Next 
End If 
 
Subsequently a new layer is added to the model, called ExtrPolygons. The layers of the 
selected polygons are changed to this new layer. The polygons stay selected.  
 
Rhino.AddLayer("ExtrPolygons") 
Rhino.CurrentLayer("ExtrPolygons") 
Rhino.Command("_ChangeToCurrentLayer") 
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For each polygon of the new layer, the script will select all height points that are surrounded 
by the polygons, using the Region_Select plug-in. So, all polygons that must remain and the 
necessary height points are now selected. With the Rhino.InvertSelectedObjects the selection 
can be inverted. So all points that are not surrounded by a polygon and all polygons that do 
not lie partly or completely in the research area, are now selected. The selected objects are 
then deleted. 
 
extrPolygons = Rhino.ObjectsByLayer("ExtrPolygons") 
For p = 0 to UBound(extrPolygons) 
  Rhino.Command "_RegionSelect '_SelID " & extrPolygons(p) 
Next 
Rhino.SelectObjects(extrPolygons) 
invert = Rhino.InvertSelectedObjects 
Rhino.DeleteObjects invert 
 
What remains are the polygons with their height points that lie in the region of interest. 
Because some polygons lie at the boundary of the circular research area, the circular area can 
not be taken as basis for the ground surface anymore. The actual area is larger, so a new 
plane has to be created. With the Rhino.CurvePoints command the control points at the 
corners are again obtained for the remaining polygons. The minimum and maximum x and y 
value of all control points are then determined. 
 
Rhino.SelectObjects(extrPolygons) 
If IsArray(extrPolygons) Then 
  dmax = 0 
  xmin = 0 
  xmax = 0 
  ymin = 0 
  ymax = 0 
  For Each Obj in extrPolygons 
    If Rhino.IsCurve(Obj) Then 
      arrPnts = Rhino.CurvePoints(Obj) 
      If IsArray(arrPnts) Then 
        For Each arrPnt in arrPnts 
          dx2 = arrPnt(0) - arrCenter(0) 
          dy2 = arrPnt(1) - arrCenter(1) 
          If dx2 < 0 Then 
            If dx2 < x1 Then 
              x1 = dx2 
              xmin = arrPnt(0) 
            End If 
          End If 
          If dx2 > 0 Then 
            If dx2 > x2 Then 
              x2 = dx2 
              xmax = arrPnt(0) 
            End If 
          End If 
          If dy2 < 0 Then 
            If dy2 < y1 Then 
              y1 = dy2 
              ymin = arrPnt(1) 
            End If 
          End If 
          If dy2 > 0 Then 
            If dy2 > y2 Then 
              y2 = dy2 
              ymax = arrPnt(1) 
            End If 
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          End If 
        Next 
      End If 
    End If 
  Next 
End If 
 
From the minimum and maximum x and y values of the control points the radius of a new 
circle can be calculated that fits all polygons. First a new layer is added to the model, Circle. 
The new layer is made current and the circle is created. If some polygons are then still 
selected, they are unselected with the Rhino.UnselectAllObjects command. 
 
Rhino.AddLayer "Circle", RGB(105, 105, 105) 
Rhino.CurrentLayer("Circle") 
r = 1/2*(sqr((CStr(xmax)-CStr(xmin))^2 + (CStr(ymax)-CStr(ymin))^2)) 
Rhino.AddCircle arrCenter, r 
Rhino.UnselectAllObjects 
 
The circular research area is then moved to the origin of the coordinate system. Because the 
computational domain that will be constructed around the research area to perform the CFD 
calculations is also generated around the origin, the area is directly placed right when 
imported in the domain. First all objects of the model are placed in the iAllObj array. Then the 
point is defined where the model has to be moved to. Finally the model is moved from the 
center location of the circular area to the origin of the coordinate system. 
 
iallObj = Rhino.NormalObjects 
arrEnd(0) = 0 
arrEnd(1) = 0 
arrEnd(2) = 0 
Rhino.MoveObjects iAllObj, arrCenter, arrEnd 
 
Because the model will be disappeared from the current view now, the window is zoomed to 
the extents of the visible objects. 
 
strView = Rhino.CurrentView 
Rhino.ZoomExtents strView 
 
Then the radius of the research area is given to the user. This radius is needed in a later 
stage to create the computational domain. 
 
Rhino.MessageBox ("Radius (m) of the research area for use in the  
                  Virtual Wind Tunnel: " & CInt(r)) 
 
The subroutine is finally finished by using the End Sub code. With the Area command 
Rhinoceros is told to run the subroutine. 
 
End Sub 
 
Area 
 
The result of the script is a 2D model of the research area with polygons that represent the 
buildings in the research area. The polygons contain several height points that hold 
information about the elevation level of the buildings. The research area is bounded by a 
circular polygon. 
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Appendix D: Script to generate the 3D model 

In this appendix the script that generates a 3D model from the 2D research area created by 
the first tool, is discussed in detail. This script also uses the Region_Select plug-in, so it has 
to be installed first if it is not already done. Before running the script that generates the 3D 
model, the user has to open the 2D model of the research area in Rhinoceros first.  
 
Again the script starts with the Option Explicit command and the definition of the subroutine. 
In the following step the variable and constant terms are declared that will be used in the 
subroutine. The local settings are then again set at English – United Kingdom. 
 
Option Explicit 
 
Sub Extrude() 
 
Dim iallObjects, iPoints, i 
Dim layName, arrLayers, strLayer 
Dim strTekst 
Dim maxHeight, extHeight, height 
Dim Pnt, Crv 
Dim selPolygon 
Dim arrHeight(), arrSorted, median, m, u 
Dim arrOptions(2) 
 
Const circHeight = -2 
 
setLocale(2057) 
 
The script now sets the current layer to Default and turns off the layer that contains the 
circle, which forms the ground surface. Else the circle would also be extruded if the script 
goes through all polygons of the model to extrude them. 
 
Rhino.CurrentLayer "Default" 
Rhino.LayerMode "Circle" , 1 
 
The script will now ask the user over which height the polygons have to be extruded. The 
polygons can be extruded over the actual height, over a truncated height if a building is 
higher than 15 m or over no height at all. 
 
arrOptions(0) = "1) Full height" 
arrOptions(1) = "2) Truncated height" 
arrOptions(2) = "3) No height" 
 
strTekst = Rhino.ListBox (arrOptions, "Choose extrusion height of the  
                          surroundings:" ) 
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If the user chooses the first option the script will go through an extensive procedure for each 
polygon. First the maximum height is set to zero. Then all polygons of the model are placed 
in an array. The script will then loop through all these polygons. The first step in the loop is 
to set the length of the arrHeight array to -1. In this array, all heights of the points of a 
certain polygon will be stored and sorted. Because on forehand it is not known how many 
values have to be stored in the array, the length of it is first set to -1. Before a height is 
added to the array, the array is lengthened by 1 and the height is stored at this new location. 
 
If strTekst = "1) Truncated height" Then 
  maxHeight = 0 
  iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons") 
  If IsNull(iAllObjects) Then Exit Sub 
  For i = 0 to UBound(iAllObjects) 
    Rhino.UnselectAllObjects 
    ReDim arrHeight(-1) 
    median = 0 
 
Then all points that lie in a certain polygon are selected with the RegionSelect command. The 
polygon is given a name to be able to call it later. 
  
    If Rhino.IsCurve(iAllObjects(i)) Then 
      If Rhino.IsCurveClosed(iAllObjects(i)) Then 
        Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i) 
        Rhino.ObjectName iAllObjects(i), i 
 
For each point that is selected the height is derived from the accompanying layer. The height 
is then stored in the arrHeight array. 
 
        iPoints = Rhino.SelectedObjects 
        If IsArray(iPoints) Then 
          For Each Pnt in iPoints 
            layName = Rhino.ObjectLayer(Pnt) 
            If IsNumeric(layName) Then 
              height = CDbl(layName) 
              ReDim Preserve arrHeight(UBound(arrHeight) + 1) 
              arrHeight(UBound(arrHeight)) = height 
            End If 
          Next 
 
The height of each point is derived from the accompanying layers and added up: 
 
        If IsArray(iPoints) Then 
          For Each Pnt in iPoints 
            layName = Rhino.ObjectLayer(Pnt) 
            If IsNumeric(layName) Then 
              height = CDbl(layName) 
              totHeight = totHeight + height 
            End If 
          Next 
 
After this is done for all points, the arrHeight array contains all height information for the 
polygon. Due to the inaccuracies of the AHN dataset, some points differ considerably from 
the real height. Taking the mean height of all points will lead to a lower height than reality 
because of these inaccuracies. The problem can be solved by taking the median height in 
stead of the mean height. As the median is the middle of a distribution, the array containing 
the height information has to be sorted first. Sorting the array is easy in Rhinoceros because 
of the Rhino.SortNumbers command. 
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After the array is sorted it will be checked if the amount of values in the array is even or 
uneven. When the amount is uneven, the median height is simply the middle value of the 
array. With an even amount of values, the median height is the mean of the middle two 
values in the array. 
 
          arrSorted = Rhino.SortNumbers(arrHeight, vbTrue) 
          u = UBound(arrSorted) 
          If u MOD 2 = 0 Then 
            median = arrSorted(u/2) 
          Else 
            m = arrSorted(u/2 - 1/2) + arrSorted(u/2 + 1/2) 
            median = m/2 
          End If 
 
To be able to give the user the maximum height all buildings in the environment, it must be 
checked for each polygon if the median height is larger than the maximum height that was 
already defined. If so, the maximum height is set to this new value. 
 
          If median > maxHeight Then 
            maxHeight = median 
          End If 
 
Then the concerning polygon is called and extruded over the median height. The polygon 
itself is deleted then. What remains is a solid. 
 
          Rhino.UnselectAllObjects 
          Rhino.Command "SelName " & i 
          selPolygon = Rhino.SelectedObjects 
          Rhino.Command ("_extrudeCrv c=yes " & median) 
          For Each Crv in selPolygon 
            Rhino.DeleteObject(Crv) 
          Next 
        End If 
      End If 
    End If 
  Next 
End If 
 
If the user chooses the second option that extrudes the polygons over a maximum height of 
15 m, the script will go through almost the same procedure as for the first option. 
 
If strTekst = "2) Truncated height" Then 
  maxHeight = 0 
  ReDim arrHeight(-1) 
  iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons") 
  If IsNull(iAllObjects) Then Exit Sub 
  For i = 0 to UBound(iAllObjects) 
    Rhino.UnselectAllObjects 
    median = 0 
    If Rhino.IsCurve(iAllObjects(i)) Then 
      If Rhino.IsCurveClosed(iAllObjects(i)) Then 
        Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i) 
        Rhino.ObjectName iAllObjects(i), i 
        iPoints = Rhino.SelectedObjects 
        If IsArray(iPoints) Then 
          For Each Pnt in iPoints 
            layName = Rhino.ObjectLayer(Pnt) 
            If IsNumeric(layName) Then 
              height = CDbl(layName) 
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              ReDim Preserve arrHeight(UBound(arrHeight) + 1) 
              arrHeight(UBound(arrHeight)) = height 
            End If 
          Next 
          arrSorted = Rhino.SortNumbers(arrHeight, vbTrue) 
          u = UBound(arrSorted) 
          If u MOD 2 = 0 Then 
            median = arrSorted(u/2) 
          Else 
            m = arrSorted(u/2 - 1/2) + arrSorted(u/2 + 1/2) 
            median = m/2 
          End If 
 
The only difference is that the extrusion height is set to 15 m if the median height of all 
points for a polygon is higher than 15 m.  
 
          If median > 15 Then 
            extHeight = 15 
            If extHeight > maxHeight Then 
              maxHeight = extHeight 
            End If 
          End If 
          Rhino.UnselectAllObjects 
          Rhino.Command "SelName " & i 
          selPolygon = Rhino.SelectedObjects 
          Rhino.Command ("_extrudeCrv c=yes " & extHeight) 
          For Each Crv in selPolygon 
            Rhino.DeleteObject(Crv) 
          Next 
        End If 
      End If 
    End If 
  Next 
End If 
 
Also for the third option the script will go through a more or less same procedure. 
 
If strTekst = "3) No height" Then 
  maxHeight = 0 
  iAllObjects = Rhino.ObjectsByLayer("ExtrPolygons") 
  If IsNull(iAllObjects) Then Exit Sub 
  For i = 0 to UBound(iAllObjects) 
    Rhino.UnselectAllObjects 
    If Rhino.IsCurve(iAllObjects(i)) Then 
      If Rhino.IsCurveClosed(iAllObjects(i)) Then 
        Rhino.Command "_RegionSelect '_SelID " & iAllObjects(i) 
        Rhino.ObjectName iAllObjects(i), i 
 
The extrusion height is only not determined anymore, but it is permanently set to zero. If for 
some reason one wants to extrude all buildings in the research area over a certain equal 
height that is not zero, only the value for the extrusion height has to be changed here then. 
 
        extHeight = 0 
        If extHeight > maxHeight Then 
          maxHeight = extHeight 
        End If 
        Rhino.UnselectAllObjects 
        Rhino.Command "SelName " & i 
        selPolygon = Rhino.SelectedObjects 
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        Rhino.Command ("_extrudeCrv c=yes " & extHeight) 
        For Each Crv in selPolygon 
          Rhino.DeleteObject(Crv) 
        Next 
      End If 
    End If 
  Next 
End If 
 
The following final procedures are run through for all three options. First the layer that 
contains the circle for the ground plan is turned on again and made current. With the 
RegionSelect command, all points that are enclosed by the circle are selected. Differently 
said, all height points that lie in the polygons are selected, as the circle encloses all polygons. 
The selected height points are then deleted as they are not useful for the CFD software. 
 
Rhino.LayerMode "Circle" , 0 
Rhino.CurrentLayer("Circle") 
circ = Rhino.ObjectsByLayer("Circle") 
For c = 0 to Ubound(circ) 
  Rhino.Command "_RegionSelect '_SelID " & circ(c) 
Next 
iPoints = Rhino.SelectedObjects 
Rhino.DeleteObjects iPoints 
 
The circle is then extruded over a constant height to generate the ground surface.  
 
Rhino.SelectObjects(circ) 
Rhino.Command ("_extrudeCrv " & circHeight) 
Crv = Rhino.SelectedObjects 
Rhino.DeleteObjects Crv 
 
Rhino.UnselectAllObjects 
 
Finally the script returns the maximum extrusion height of all buildings in the research area. 
The largest value of the height of the building of interest and the maximum extrusion height 
determines the dimensions of the computational domain. The script ends with finishing the 
subroutine and the command that tells Rhinoceros to run the subroutine. 
 
Rhino.MessageBox("The maximum height of the surrounding buildings is  
                 " & CInt(maxHeight) & " m.") 
 
End Sub 
 
Extrude 
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Appendix E: Script Rotating Lines 

In this appendix the script of the Rotating Lines method to find the outer points of a model 
and generate the enclosing curves for several height levels is discussed in detail. The script 
starts with the Option Explicit command and the definition of the subroutine. In the following 
steps the variable and constant terms are declared that will be used in the subroutine. 
 
Option Explicit 
 
Sub Rotating_Lines_3D 
 
Dim lijn, length 
Dim angle, parts 
Dim midpoint, midp, endpoint, point(), maxPoint, maxPnt() 
Dim cpnt, arrCpoint, bpnt, arrBpoint 
Dim dxc, dyc, dxb, dyb 
Dim mx, my, mz, x, y, z 
Dim cafst, cmaxAfst, bafst, bmaxAfst 
Dim cxmax, cymax, bxmax, bymax 
Dim selected 
Dim iAllObjects, i 
Dim arrCCX, j, arrCBX, b 
Dim p, h, height, step, h_end, h_start 
Dim surrounded, sur(), surround 
Dim delete 
 
With the following code the osnap mode is set to zero. This means that it is no longer 
possible to snap to for example endpoints, center points or midpoints of the model parts in 
Rhinoceros. Else this could give problems when picking the center location of the model with 
the mouse. 
  
Rhino.OsnapMode 0 
 
In the next step some new layers are added to the model. The layers of all objects of the 
model are changed to a new layer, called Building. The layer Points will be used to store all 
outer points of the model. The enclosing curves that will be generated through these points 
will be stored in the Surrounded layer.  
 
Rhino.AddLayer "Building" 
Rhino.CurrentLayer("Building") 
selected = Rhino.Command ("_SelAll") 
Rhino.Command ("_ChangeToCurrentLayer " & selected) 
Rhino.UnselectAllObjects 
Rhino.AddLayer "Points" 
Rhino.AddLayer "Surrounded", RGB(190,190,190) 
 
The user is then asked to pick the center location of the building in top view, from where the 
rotating lines can be generated. The coordinates of this location are stored in the midpoint 
variable. 
 
Rhino.MessageBox ("Pick center location of the building in Top-view") 
midpoint = Rhino.GetPoint 
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Then the user is asked for the length of the rotating lines and the amount of parts for which 
the outer points have to be determined. From this amount the rotation angle of the lines can 
be calculated. The amount of parts is 360 by default. 
 
length = Rhino.RealBox("Give the length of the rotating lines") 
parts = Rhino.IntegerBox("Give amount of parts",360) 
angle = 360/parts 
 
Finally the user is asked for the height of the building, the starting height from where the 
script has to start and the step size. The starting height will usually be the bottom of the 
model. The user always has to specify the full height of the building, even if the starting 
height lies on a different level. The amount of loops h_end that the script has to do to 
determine the outer points over the full height of the building can be derived from the height 
of the building and the step size. 
 
height = Rhino.RealBox("Give the height of the building") 
h_start = Rhino.RealBox("Give starting height") 
step = Rhino.RealBox("Give step size") 
h_end = (height / step) 
 
Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects. 
The various objects can now be called on from here. The layer Building contains all model 
parts. If there are no parts at all the script will stop.  
 
iAllObjects = Rhino.ObjectsByLayer("Building") 
If IsNull(iAllObjects) Then Exit Sub 
 
Before the loop process to find all outer points starts, the variable sur that was declared 
already will be re-declared now. In this variable all the curves that will be generated through 
the outer points are stored. Because on forehand it is not known how many curves will be 
stored in this array, the length of the array is first set to -1. When the first curve is 
generated, the length of the array will be redefined and the curve will be stored at that 
position in the array then. 
 
ReDim sur(-1) 
 
The process to find all outer points for a certain height will be repeated for the amount of 
loops (h_end – h_start). In each loop the variable maxPnt will also be re-declared first. In this 
variable all outer points that are found will be stored. Because it is again not known on 
forehand how many outer points will be found, the length of the array is first set to -1. Then 
the x, y and z coordinates of the starting point of the rotating lines are defined and stored in 
an array. These values follow from the user-given center location, where the z-value is raised 
for each loop with the step size. 
 
For h = 0 To (h_end – h_start) 
  ReDim maxPnt(-1) 
  x = midpoint(0) 
  y = midpoint(1) 
  z = midpoint(2) + h_start + (h*step) 
  midp = Array(x, y, z) 
 
Then the endpoint of the lines is defined. The x-coordinate of the endpoint is the same as the 
x-coordinate of the start point. The y-coordinate is increased with the user-specified length of 
the line. The z-coordinate of the endpoint is raised for each loop with the step size. 
  mx = midpoint(0) 
  my = midpoint(1) + length 
  mz = midpoint(2) + h_start + (h*step) 
  endpoint = Array(mx, my, mz) 
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Now the following loop is gone through for all parts that are defined by the user. Some 
maximum distances are first set to zero. Then a line will be added to the model from the just 
defined midpoint to the endpoint. The line is then rotated around the midpoint with an angle 
that is derived from the user-defined parts for which the outer points have to be determined. 
 
  For p = 0 To parts 
    cmaxAfst = 0 
    bmaxAfst = 0 
    cxmax = 0 
    cymax = 0 
    bxmax = 0 
    bymax = 0 
    lijn = Rhino.AddLine(midp, endpoint) 
    Rhino.RotateObject lijn, midpoint, angle*p 
 
A new loop will be gone through for all objects of the model which are stored in the 
iAllObjects variable. For each object it will be checked if there is an intersection between the 
object and the rotating line. The intersection between two lines can be found with the Rhino 
command Rhino.CurveCurveIntersection. If there is an intersection, it will be stored in the 
arrCCX array. The procedure for an intersection between the rotating line and a surface or 
solid is scripted later.  
 
    For i = 0 To UBound(iAllObjects) 
      arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i)) 
 
If arrCCX is an array then one or more intersections are found. An intersection can exist of an 
overlap or one single point. For all elements in the array it will be checked if the intersection 
is one single point with the arrCCX(j,0) = 1 command. If so, then the distance in x-direction 
and y-direction between the intersection point and the midpoint is determined. From these 
two distances the total distance can be determined. 
 
      If IsArray(arrCCX) Then 
        For j = 0 To UBound(arrCCX) 
          If arrCCX(j,0) = 1 Then 
          arrCpoint = arrCCX(j,1) 
          If IsArray(arrCPoint) Then 
              dxc = arrCpoint(0) - midpoint(0) 
              dyc = arrCpoint(1) - midpoint(1) 
              cafst = sqr(dxc^2 + dyc^2) 
 
Now it will be checked if the calculated distance between the intersection point and the 
midpoint is larger than the specified maximum distance. Because this distance was first set to 
zero, this will soon be the case. The maximum distance is then set to this new distance and 
the x- and y-coordinates of that intersection point are stored. When the loop has gone 
through all objects of the model for the concerning rotating line, the coordinates of the most 
far away intersection point between the rotating line and other lines of the model are 
obtained. 
 
              If cafst > cmaxAfst Then 
                cmaxAfst = cafst 
                cxmax = arrCpoint(0) 
                cymax = arrCpoint(1) 
              End If 
            End If 
          End If 
        Next 
      End If 
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Because a building model usually not only consists of lines, but also of surfaces and solids, 
the above procedure has to be repeated to determine the intersections between the rotating 
line and the surfaces and solids. Such an intersection can be found with the Rhino command 
Rhino.CurveBrepIntersect. If there is an intersection, it will be stored in the arrCBX array. 
Unlike the Rhino.CurveCurveIntersection command, the Rhino.CurveBrepIntersect command 
adds real points to the model at the intersection location. The Rhino.CurveCurveIntersection 
command only returns the coordinates of the intersection. For each generated point the 
coordinates have to be returned first. 
 
      arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i)) 
      If IsArray(arrCBX) Then 
        For Each b in arrCBX 
          arrBpoint = Rhino.PointCoordinates(b) 
 
Then the distances in x- and y-direction between the intersection point and the midpoint can 
be determined. From these two distances the total distance can be determined. Again it will 
be checked if this total distance is larger than the specified maximum distance. If so, then the 
maximum distance is set to this new distance and the x and y-coordinates of that intersection 
point are stored. Then the generated points are deleted from the model. The coordinates of 
the most far away intersection point between the concerning rotating line and surfaces or 
solids of the model are obtained when the loop has gone through all objects of the model. 
 
          If IsArray(arrBpoint) Then 
            dxb = arrBpoint(0) - midpoint(0) 
            dyb = arrBpoint(1) - midpoint(1) 
            bafst = sqr(dxb^2 + dyb^2) 
            If bafst > bmaxAfst Then 
              bmaxAfst = bafst 
              bxmax = arrBpoint(0) 
              bymax = arrBpoint(1) 
            End If 
          End If 
          Rhino.DeleteObject(b) 
        Next 
      End If 
    Next 
 
For the concerning rotating line it will now be checked which distance is larger: the distance 
between the intersection with a line of the distance between the intersection with a surface 
or solid. If the distance between the midpoint and the intersection with a line is larger, then a 
3D array is generated with the coordinates of this intersection location. A point is added to 
the model then at that location with the layer Points.  
 
    If cmaxAfst > bmaxAfst Then 
      If cmaxAfst > 0 Then 
        Rhino.CurrentLayer "Points" 
        maxPoint = Array(cxmax, cymax, z) 
        Rhino.AddPoint(maxPoint) 
 
The identifier of the point is then added to the maxPnt array. In the beginning the length of 
this array was re-declared at -1. Before the point is added to the array, the upper boundary 
of the array is raised by 1. The point is then added to this location in the array.  
 
        ReDim Preserve maxPnt(UBound(maxPnt) + 1) 
        maxPnt(UBound(maxPnt)) = maxPoint 
        Rhino.CurrentLayer "Building" 
      End If 
    End If 
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If the distance between the midpoint and the intersection with a surface or solid is larger, a 
3D array is generated with the coordinates of this intersection location. A point is added to 
the model with the layer Points and the identifier of the point is added to the maxPnt array. 
After the most far away intersection location is determined for a certain rotating line, the line 
is removed from the model. 
 
    If bmaxAfst >= cmaxAfst Then 
      If bmaxAfst > 0 Then 
        Rhino.CurrentLayer "Points" 
        maxPoint = Array(bxmax, bymax, z) 
        Rhino.AddPoint(maxPoint) 
        ReDim Preserve maxPnt(UBound(maxPnt) + 1) 
        maxPnt(UBound(maxPnt)) = maxPoint 
        Rhino.CurrentLayer "Building" 
      End If 
    End If 
    Rhino.DeleteObject lijn 
  Next 
 
When for all parts the most far away intersection points are determined, a polyline can be 
generated through these points. First it will be checked if the intersection distance is larger 
than 0. If not, there is no intersection found and no polyline can be generated. If there are 
intersections found, then a polyline with layer Surrounded is added through all points of the 
maxPnt array.  
 
  If cmaxAfst > 0 OR bmaxAfst > 0 Then 
    Rhino.CurrentLayer("Surrounded") 
    surround = Rhino.addPolyline(maxPnt) 
 
The generated polyline is then added to the sur array. The length of this array was also 
declared to -1 and has to be lengthened each time a polyline is added to the array. This is 
because it is not known on forehand how many polylines have to be added to the array. The 
upper boundary of the array is raised by 1 and the polyline is added to the array at this 
location. 
 
    ReDim Preserve sur(Ubound(sur) + 1) 
    sur(UBound(sur)) = surround 
 
Then all intersection points are selected that were added to the model. They will be deleted. 
 
    selected = Rhino.ObjectsByLayer("Points") 
    Rhino.DeleteObjects(selected) 
  End If 
  Rhino.CurrentLayer("Building") 
Next 
 
If this process is done for all height steps, the original building model can also be removed. 
In the beginning, the layer of all model parts was changed to the layer Building. When all 
objects in the Building layer are removed, the enclosing curves at the various height levels 
remain. 
 
delete = Rhino.ObjectsByLayer("Building") 
Rhino.DeleteObjects(delete) 
 
End Sub 
 
Rotating_Lines_3D 
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Appendix F: Script Rectangle 

In this appendix the script of the Rectangle method to find the outer points of a model and 
generate the enclosing curves for several height levels is discussed in detail. The script starts 
with the Option Explicit command and the definition of the subroutine. In the following steps 
the variable and constant terms that will be used in the subroutine are declared. The osnap 
mode is also set to zero again.  
 
Option Explicit 
 
Sub Rectangle_3D 
 
Dim lijn, p, parts 
Dim iAllObjects, i 
Dim arrCCX, arrCBX, j, k 
Dim lo, ro, lb, rb 
Dim distx, disty 
Dim startpoint, endpoint, startp, endp 
Dim selected 
Dim arrRect 
Dim h, height, step, h_end, h_start, z 
Dim cminAfst, cxmin, cymin, cmaxAfst, cxmax, cymax 
Dim cpnt, arrCpoint 
Dim dxb, dyb, bafst, bminAfst, bxmin, bymin, bmaxAfst, bxmax, bymax 
Dim b, arrBpoint 
Dim dxc, dyc 
Dim cafst 
Dim minPoint, Pnt(), maxPoint 
Dim strID 
Dim arrMin, arrSorted 
Dim delete 
Dim sur(), boundary() 
Dim dist 
 
Rhino.OsnapMode 0 
 
In the next step some new layers are added to the model. The layers of all objects of the 
model are changed to a new layer, called Building. The layer Surrounded will be used to store 
the curves that will be generated through the outer points. 
 
Rhino.AddLayer "Building" 
Rhino.CurrentLayer("Building") 
selected = Rhino.Command ("_SelAll") 
Rhino.Command ("_ChangeToCurrentLayer " & selected) 
Rhino.UnselectAllObjects 
Rhino.AddLayer "Surrounded", RGB(190, 190, 190) 
 
The user is then asked to draw a rectangle around the building model in top view. The 
coordinates of the corners of the rectangle are stored in the arrRect array. 
 
Rhino.MessageBox("Draw a rectangle around the model in Top-view.") 
arrRect = Rhino.GetRectangle 
If IsArray(arrRect) Then 
  lo = arrRect(0) 
  ro = arrRect(1) 
  rb = arrRect(2) 
  lb = arrRect(3) 
End If 
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Then the user is asked for the distance between the line elements. For each distance the 
outer points will be determined as the line elements will be moved over this distance each 
time.  
 
dist = Rhino.RealBox("Give distance between the line elements") 
 
Finally the user is asked for the height of the building, the starting height from where the 
script has to start and the step size. The starting height will usually be the bottom of the 
model. The user always has to specify the full height of the building, even if the starting 
height lies on a different level. The amount of loops h_end that the script has to do to 
determine the outer points over the full height of the building can be derived from the height 
of the building and the step size. 
 
height = Rhino.RealBox("Give the height of the building") 
h_start = Rhino.RealBox("Give starting height") 
step = Rhino.RealBox("Give step size") 
h_end = (height / step) 
 
Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects. 
The various objects can now be called on from here. The layer Building contains all model 
parts. If there are no parts at all, the script will stop. 
 
iAllObjects = Rhino.ObjectsByLayer("Building") 
If IsNull(iAllObjects) Then Exit Sub 
 
Finally the variable boundary that was declared already is re-declared. In this variable all 
curves that will be generated through the outer points are stored. Because on forehand it is 
not known how many curves will be stored, the length of the array is first set to -1. 
 
ReDim boundary(-1) 
 
Now the loop process to find all outer points for a certain height starts. The process will be 
repeated for the amount of loops (h_end – h_start). In each loop the variables Pnt and sur 
will be re-declared first. In the variable Pnt all outer points that are found will be stored. 
These points however do not lie in the right sequence to directly draw the enclosing polyline. 
To order the outer points, the variable sur will be used. The ordering process will be 
explained later in detail. In each loop the level of concern z will also be defined first. This 
level is derived from the level of the drawn rectangle, the starting height and the step size. 
 
For h = 0 To (h_end - h_start) 
  ReDim Pnt(-1) 
  ReDim sur(-1) 
  z = lo(2) + h_start + h*step 
 
The process to search for the outer points is divided in two parts, as the lines will first move 
from left to right and then from the bottom to the top. The script starts with lines moving 
from left to right. First the distances in x- and y-direction between the boundaries of the 
rectangle are determined. The distance in x-direction is the distance from the lower left 
corner to the lower right corner. The distance from the lower left corner to the upper left 
corner is the distance in y-direction. For lines moving from left to right, the amount of lines 
that have to be drawn is the distance in x-direction divided by the user specified distance 
between the line elements. 
 
  'Left to right 
  distx = Rhino.Distance(lo, ro) 
  disty = Rhino.Distance(lo, lb) 
  parts = distx / dist 
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The following loop is gone through for the amount of parts that were just determined. The 
loop starts with the definition of the startpoint and the endpoint of the line. The x-coordinate 
of the start- and endpoint is the coordinate of the lower left corner of the rectangle plus the 
distance between the line elements. The y-coordinate of the startpoint is the y-coordinate of 
the lower left corner of the rectangle. The y-coordinate of the lower left rectangle plus the 
distance in y-direction between the lower and upper boundary of the rectangle is the y-
coordinate of the endpoint. The z-coordinate of the start- and endpoint is the z-coordinate of 
the lower left corner of the drawn rectangle plus the starting height and the step size. Finally 
a line is added between these points. 
 
  For p = 0 To parts 
    startpoint = Array((lo(0) + p*dist), lo(1), z) 
    endpoint = Array((lo(0) + p*dist), (lo(1) + disty), z) 
    lijn = Rhino.AddLine(startpoint, endpoint) 
 
Because the lines will determine the closest and most far away outer points related to the 
bottom of the rectangle in one step, some minimum and maximum distances are first 
defined. The minimum distances are defined as the distance between the endpoint and the 
startpoint of the line. If an outer point is found, the distance to the bottom of the rectangle is 
always smaller then. The maximum distances are set to zero. If an outer point is found, the 
distance to the bottom of the rectangle is always larger. 
 
    cminAfst = endpoint(1)- startpoint(1) 
    cxmin = endpoint(0) - startpoint(0) 
    cymin = endpoint(1) - startpoint(1) 
    cmaxAfst = 0 
    cxmax = 0 
    cymax = 0 
    bminAfst = endpoint(1)- startpoint(1) 
    bxmin = endpoint(0) - startpoint(0) 
    bymin = endpoint(1) - startpoint(1) 
    bmaxAfst = 0 
    bxmax = 0 
    bymax = 0 
 
The following loop goes through all objects of the model, which are stored in the iAllObjects 
variable. For each object it will be checked if there is an intersection between the object and 
the line. The procedure for an intersection between the line and a surface or solid is scripted 
later. The intersection between the line and other lines of the model is found with the 
Rhino.CurveCurveIntersection command. If there is an intersection, it will be stored in the 
arrCCX array. As in the script for the Rotating Lines method, it will be checked for all 
elements in the array if the intersection is one single point or an overlap. For single point 
intersections the distances in x- and y-direction between the intersection point and the 
startpoint of the line are determined. From these two distances the total distance can be 
derived. 
 
    For i = 0 To UBound(iAllObjects) 
      arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i)) 
      If IsArray(arrCCX) Then 
        For j = 0 to UBound(arrCCX) 
          If arrCCX(j,0) = 1 Then 
            arrCpoint = arrCCX(j,1) 
            If IsArray(arrCpoint) Then 
              dxc = arrCpoint(0) - startpoint(0) 
              dyc = arrCpoint(1) - startpoint(1) 
              cafst = sqr(dxc^2 + dyc^2) 
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Now it will be checked if the calculated distance between the intersection point and the 
startpoint of the line is smaller than the specified minimum distance. It will also be checked if 
the distance is larger than the specified maximum distance. If one of these situations occurs, 
the minimum or maximum distance is set to this new distance and the x- and y-coordinates 
of that intersection point are stored. When the loop has gone through all objects of the model 
for the concerning line, the coordinates of the closest and most far away intersection point 
related to the bottom of the rectangle are obtained. 
 
              If cafst < cminAfst Then 
                cminAfst = cafst 
                cxmin = arrCpoint(0) 
                cymin = arrCpoint(1) 
              End If 
              If cafst > cmaxAfst Then 
                cmaxAfst = cafst 
                cxmax = arrCpoint(0) 
                cymax = arrCpoint(1) 
              End If 
            End If 
          End If 
        Next 
      End If 
 
The discussed procedure can now be repeated to determine the intersections between the 
line and surfaces or solids. Such an intersection can be found with the Rhino command 
Rhino.CurveBrepIntersect. Because this command adds real points to the model in stead of 
returning only the coordinates as the Rhino.CurveCurveIntersection command, the 
coordinates of each generated point have to be returned first. Then the distances in x- and y- 
direction between the intersection point and the startpoint of the line can be determined. The 
rest of the procedure is the same as for the intersection between the line and other lines of 
the model. In the end the coordinates of the closest and most far away intersection between 
the line and a surface or solid related to the bottom of the rectangle are obtained. 
 
      arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i)) 
      If IsArray(arrCBX) Then 
        For Each b in arrCBX 
          arrBpoint = Rhino.PointCoordinates(b) 
          If IsArray(arrBpoint) Then 
            dxb = arrBpoint(0) - startpoint(0) 
            dyb = arrBpoint(1) - startpoint(1) 
            bafst = sqr(dxb^2 + dyb^2) 
            If bafst < bminAfst Then 
              bminAfst = bafst 
              bxmin = arrBpoint(0) 
              bymin = arrBpoint(1) 
            End If 
            If bafst > bmaxAfst Then 
              bmaxAfst = bafst 
              bxmax = arrBpoint(0) 
              bymax = arrBpoint(1) 
            End If 
          End If 
          Rhino.DeleteObject(b) 
        Next 
      End If 
    Next 
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For the concerning line it will now be checked which minimum and maximum distances that 
are obtained by the two methods are normative. 3D arrays are generated with the 
coordinates of the most minimum and maximum intersection locations. Points are added to 
the model at these locations then. The identifiers of these points are added to the Pnt array. 
Before a point is added to the array, the upper boundary of the array is raised by 1. The point 
is then added to this location in the array. After the minimum and maximum points are 
added, the line is removed from the model. 
 
    If cminAfst < bminAfst Then 
      If cminAfst < (endpoint(1) - startpoint(1)) Then 
        minPoint = Array(cxmin, cymin, z) 
        strID = Rhino.AddPoint(minPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If bminAfst <= cminAfst Then 
      If bminAfst < (endpoint(1) - startpoint(1)) Then 
        minPoint = Array(bxmin, bymin, z) 
        strID = Rhino.AddPoint(minPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If cmaxAfst > bmaxAfst Then 
      If cmaxAfst > 0 Then 
        maxPoint = Array(cxmax, cymax, z) 
        strID = Rhino.AddPoint(maxPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If bmaxAfst >= cmaxAfst Then 
      If bmaxAfst > 0 Then 
        maxPoint = Array(bxmax, bymax, z) 
        strID = Rhino.AddPoint(maxPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    Rhino.DeleteObject lijn 
  Next 
 
When the line is finally moved from the left boundary of the rectangle to the right boundary, 
the process can be repeated for lines moving from the bottom to the top of the rectangle. 
The process is nearly the same, only the definition of the start- and endpoints of the line and 
the definition of some distances differ. For lines moving from the bottom to the top, the 
amount of lines that have to be drawn is the distance in y direction divided by the user 
specified distance between the line elements. The x-coordinate of the startpoint is the 
coordinate of the lower right corner of the rectangle. The x-coordinate of the lower right 
corner minus the distance in x direction between the left and right boundary of the rectangle 
is the x-coordinate of the endpoint. The y-coordinate of the start- and endpoint is the 
coordinate of the lower right corner of the rectangle plus the distance between the line 
elements. The z-coordinate of the start- and endpoint was already defined at the beginning of 
the script. It is the z-coordinate of the lower left corner of the drawn rectangle plus the 
starting height and the step size. Finally, the minimum distances are defined as the distance 
between the startpoint and the endpoint of the line. Without further explanation, the script 
for lines moving from the bottom to the top of the rectangle is given on the following pages. 
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  'Bottom to top 
  distx = Rhino.Distance(lo, ro) 
  disty = Rhino.Distance(lo, lb) 
  parts = disty / dist 
  For p = 0 To parts 
    startpoint = Array(ro(0), (ro(1) + p*dist), z) 
    endpoint = Array((ro(0) - distx), (ro(1) + p*dist), z) 
    lijn = Rhino.AddLine(startpoint, endpoint) 
    cminAfst = startpoint(0) - endpoint(0) 
    cxmin = startpoint(0) - endpoint(0) 
    cymin = startpoint(1) - endpoint(1) 
    cmaxAfst = 0 
    cxmax = 0 
    cymax = 0 
    bminAfst = startpoint(0) - endpoint(0) 
    bxmin = startpoint(0) - endpoint(0) 
    bymin = startpoint(1) - endpoint(1) 
    bmaxAfst = 0 
    bxmax = 0 
    bymax = 0 
    For i = 0 To UBound(iAllObjects) 
      arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i)) 
      If IsArray(arrCCX) Then 
        For j = 0 to UBound(arrCCX) 
          If arrCCX(j,0) = 1 Then 
            arrCpoint = arrCCX(j,1) 
            If IsArray(arrCpoint) Then 
              dxc = startpoint(0) - arrCpoint(0) 
              dyc = startpoint(1) - arrCpoint(1) 
              cafst = sqr(dxc^2 + dyc^2) 
              If cafst < cminAfst Then 
                cminAfst = cafst 
                cxmin = arrCpoint(0) 
                cymin = arrCpoint(1) 
              End If 
              If cafst > cmaxAfst Then 
                cmaxAfst = cafst 
                cxmax = arrCpoint(0) 
                cymax = arrCpoint(1) 
              End If 
            End If 
          End If 
        Next 
      End If 
      arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i)) 
      If IsArray(arrCBX) Then 
        For Each b in arrCBX 
          arrBpoint = Rhino.PointCoordinates(b) 
          If IsArray(arrBpoint) Then 
            dxb = startpoint(0) - arrBpoint(0) 
            dyb = startpoint(1) - arrBpoint(1) 
            bafst = sqr(dxb^2 + dyb^2) 
            If bafst < bminAfst Then 
              bminAfst = bafst 
              bxmin = arrBpoint(0) 
              bymin = arrBpoint(1) 
            End If 
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            If bafst > bmaxAfst Then 
              bmaxAfst = bafst 
              bxmax = arrBpoint(0) 
              bymax = arrBpoint(1) 
            End If 
          End If 
          Rhino.DeleteObject(b) 
        Next 
      End If 
    Next 
    If cminAfst < bminAfst Then 
      If cminAfst < (startpoint(0) - endpoint(0)) Then 
        minPoint = Array(cxmin, cymin, z) 
        strID = Rhino.AddPoint(minPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If bminAfst <= cminAfst Then 
      If bminAfst < (startpoint(0) - endpoint(0)) Then 
        minPoint = Array(bxmin, bymin, z) 
        strID = Rhino.AddPoint(minPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If cmaxAfst > bmaxAfst Then 
      If cmaxAfst > 0 Then 
        maxPoint = Array(cxmax, cymax, z) 
        strID = Rhino.AddPoint(maxPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    If bmaxAfst >= cmaxAfst Then 
      If bmaxAfst > 0 Then 
        maxPoint = Array(bxmax, bymax, z) 
        strID = Rhino.AddPoint(maxPoint) 
        ReDim Preserve Pnt(UBound(Pnt) + 1) 
        Pnt(Ubound(Pnt)) = strID 
      End If 
    End If 
    Rhino.DeleteObject lijn 
  Next 
 
For all parts the outer points are determined now. The next step is to generate a polyline 
through these points. As mentioned before, the outer points do not lie in the right sequence 
in the Pnt array. Ordering of the array is required before the enclosing polyline can be 
generated. The procedure of ordering the array of outer points is based on finding the closest 
point for a certain outer point of the Pnt array. Starting from the first point of the array, the 
distances from all other points in the array to this first point are calculated. When the closest 
point is found, it is placed in the sur array. From this point the distances to all other points of 
the Pnt array are determined again to find the closest point for this one. That point is again 
placed in the sur array. When this procedure is done for all points of the Pnt array, the sur 
array will contain all outer points in the right sequence. Neighboring points lie next to each 
other in the array. Now a polyline can be generated through these points. On the next page 
the script continues with the ordering of the points. 
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First some new variables are declared that will be used for the ordering process. There are 
also three new layers added to the model. In the layer Surround the ordered points in the sur 
array will be stored. The original points in the Pnt array that are copied to the sur array will 
be stored in the layer Done. The script will not use them anymore for the determination of 
the closest point. In the Boundary layer the enclosing polyline through the outer points will be 
stored.  
 
  'Curve through closest point 
  Dim s, sx, sy, e, ex, ey, t, tx, ty 
  Dim min 
  Dim q, r, n 
  Dim dx, dy, minx, miny 
  Dim maxAfst, afst 
  Dim layer 
  Dim surrounding 
 
  Rhino.AddLayer "Surround" 
  Rhino.AddLayer "Done" 
  Rhino.AddLayer "Boundary", RGB(190,190,190) 
 
If the Pnt array is not empty, the x- and y-coordinates of the first point in the array are 
stored in the new variables sx, sy, ex and ey.  Sx and sy, together with the earlier defined 
value z, will form the x-, y- and z-coordinates of the first point in the sur array. The point is 
added to the model in the Surround layer. Ex and ey are the same as sx and sy and will form 
the last point in the sur array. In the end this point will be added to the array and the first 
and the last point will have the same coordinates then. This will give a closed curve when a 
polyline is generated through these points. Before any point is added to the sur array and the 
model, the layer Surround is turned on and set to the current layer. After adding the point, 
the layer Surround is turned off, removing all objects in that layer temporarily from the 
model. In this way the newly added points are not taken into account by the determination of 
the closest points. This procedure is now first done for the first point of the Pnt array.  
 
  If UBound(Pnt) > 0 Then 
    s = Rhino.PointCoordinates(Pnt(0)) 
    sx = s(0) 
    sy = s(1) 
    ex = s(0) 
    ey = s(1) 
    Rhino.LayerMode "Surround",0 
    Rhino.CurrentLayer "Surround" 
    min = Array(sx, sy, z) 
    Rhino.AddPoint(min) 
    ReDim Preserve sur(UBound(sur) + 1) 
    sur(UBound(sur)) = min 
    Rhino.CurrentLayer "Building" 
    Rhino.LayerMode "Surround",1 
 
As the first point is now added to the sur array, the layer of the original point is changed to 
the layer Done. When searching for the closest points, the points in the layer Done can be 
ignored.  
 
    Rhino.CurrentLayer "Done" 
    Rhino.SelectObject(Pnt(0)) 
    Rhino.Command ("_ChangeToCurrentLayer") 
    Rhino.CurrentLayer "Building" 
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Now the first point of the Pnt array is copied to the sur array and marked as done, the script 
continues with the search for the closest point. Two loops have to be going through: for all 
points in the Pnt array the closest point has to be found, and for finding the closest point, the 
distances of all other points to the concerning point have to be calculated. For each point 
where a closest point has to be searched for, a maximum distance is set. 
 
    For q = 0 To UBound(Pnt) 
      maxAfst = 10 * (Rhino.Distance(lo,ro)) 
 
For all other points of the Pnt array will then be checked if the layer of the point is Done. 
 
      For r = 0 To UBound(Pnt) 
        layer = Rhino.ObjectLayer(Pnt(r)) 
        If layer = "Done" Then 
        Else 
 
If this is the case, nothing is done with the point. Else the coordinates of the point are 
returned and the distance in x- and y-direction to the concerning point are determined. A 
total distance of zero means that there is another point with the same coordinates. This point 
will be marked as Done then. 
 
          t = Rhino.PointCoordinates(Pnt(r)) 
          tx = t(0) 
          ty = t(1) 
          dx = tx - sx 
          dy = ty - sy 
          afst = sqr(dx^2 + dy^2) 
          If afst = 0 Then 
            Rhino.CurrentLayer"Done" 
            Rhino.SelectObject(Pnt(r)) 
            Rhino.Command("_ChangeToCurrentLayer") 
            Rhino.UnselectAllObjects 
            Rhino.CurrentLayer"Building" 
          End If 
 
If the total distance between the concerning point and another point in the Pnt array is 
smaller than the defined maximum distance, the maximum distance is set to this new 
distance and the x- and y-coordinates are stored. When the loop has gone through all points 
of the Pnt array, the coordinates of the closest point are obtained. 
 
          If afst < maxAfst Then 
            maxAfst = afst 
            minx = tx 
            miny = ty 
            n = r 
          End If 
        End If 
      Next 
 
A new point is now added to the model with the coordinates of this closest point. The point is 
added in the Surround layer and also placed in the sur array. 
 
      min = Array(minx, miny, z) 
      Rhino.LayerMode "Surround",0 
      Rhino.CurrentLayer "Surround" 
      Rhino.AddPoint(min) 
      ReDim Preserve sur(UBound(sur) + 1) 
      sur(UBound(sur)) = min 
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The layer Surround is then turned off again and the layer of the concerning point is changed 
to Done. The variables Sx and Sy are the coordinates of the concerning point and they are 
set to the x- and y- coordinates of the just found closest point. This point now becomes the 
new concerning point for which a closest point has to be found. 
 
      Rhino.CurrentLayer "Done" 
      Rhino.LayerMode "Surround",1 
      Rhino.SelectObject(Pnt(n)) 
      Rhino.Command("_ChangeToCurrentLayer") 
      Rhino.CurrentLayer "Building" 
      sx = minx 
      sy = miny 
    Next 
 
When all closest points are found and placed in the sur array, the array contains only points 
that lie in sequence. Neighboring points in the model also lie next to each other in the array. 
The last point that is added to the array is the point with the same coordinates as the first 
point of the array. This will give a closed curve when creating a polyline through the points. 
 
    Rhino.LayerMode "Surround",0 
    Rhino.CurrentLayer "Surround" 
    e = Array(ex, ey, z) 
    Rhino.AddPoint e 
    ReDim Preserve sur(UBound(sur) + 1) 
    sur(UBound(sur)) = e 
 
All points that are marked as Done can be deleted from the model now. 
 
    delete = Rhino.ObjectsByLayer("Done") 
    Rhino.DeleteObjects delete 
 
Then a polyline can be added through the points of the sur array. The polyline is added to the 
Boundary array. 
 
    Rhino.CurrentLayer "Boundary" 
    surrounding = Rhino.AddPolyline(sur) 
    ReDim Preserve boundary(UBound(boundary) + 1) 
    boundary(UBound(boundary)) = surrounding 
    Rhino.CurrentLayer"Building" 
 
Also the points of the sur array, which are placed in the Surround layer, can be deleted from 
the model. 
 
    delete = Rhino.ObjectsByLayer("Surround") 
    Rhino.DeleteObjects delete 
    Rhino.UnselectAllObjects 
  End If 
Next 
 
If this process is done for all height steps and the various enclosing curves are created, the 
original building model, which is placed in the Building layer, can be removed. What remain 
are the enclosing curves at the various height levels. 
 
delete = Rhino.ObjectsByLayer("Building") 
Rhino.DeleteObjects(delete) 
 
End Sub 
Rectangle_3D 
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Appendix G: Script Rotated Square 

In this appendix the script of the Rotated Square method to find the outer points of a model 
and generate the enclosing curves for several height levels is discussed in detail. The script 
starts with the Option Explicit command and the definition of the subroutine. In the following 
steps the variable and constant terms that will be used in the subroutine are declared. The 
osnap mode is also set to zero. 
 
Option Explicit 
 
Sub Rotated_Square_3D 
 
Dim lijn, p, parts 
Dim arrRect, lo, ro, rb, lb 
Dim distx, disty 
Dim startPx, startPy, startPz, startP, start, eindPx, eindPy, eindPz,  
    eindP, eind, endPx, endPy, endPz 
Dim rot(), rotated 
Dim SPx, SPy, SPz, SP, EPx, EPy, EPz, EP 
Dim dist, selected 
Dim iAllObjects, i 
Dim arrCCX, arrCBX, j 
Dim cminAfst, cxmin, cymin, cmaxAfst, cxmax, cymax, cafst 
Dim bminAfst, bxmin, bymin, bmaxAfst, bxmax, bymax, bafst 
Dim cpnt, arrCpoint, b, arrBpoint 
Dim dxc, dyc, dxb, dyb 
Dim minPoint, Pnt(), maxPoint 
Dim arrMin, arrSorted, strID 
Dim h, height, step, h_end, h_start, z 
Dim sur(), boundary() 
Dim s, sx, sy, e, ex, ey, t, tx, ty 
Dim min 
Dim q, r, n 
Dim dx, dy, minx, miny 
Dim maxAfst, afst 
Dim layer 
Dim delete 
Dim surrounding 
Dim loft, crv 
 
Rhino.OsnapMode 0 
 
In the next step some new layers are added to the model. The layers of all objects of the 
model are changed to a new layer, called Building. The layer Surround will be used to store 
the ordered points. The layer Done will be used to mark the points that are ordered. 
 
Rhino.AddLayer "Building" 
Rhino.CurrentLayer "Building" 
selected = Rhino.Command ("_SelAll") 
Rhino.Command ("_ChangeToCurrentLayer " & selected) 
Rhino.UnselectAllObjects 
Rhino.AddLayer "Surround" 
Rhino.AddLayer "Done" 
Rhino.AddLayer "Boundary", RGB(190,190,190) 



Master’s thesis                                                                                                  

202 
 

 
The user is then asked to draw a rectangle around the model in top view. The coordinates of 
the corners of the rectangle are stored in the arrRect array. 
 
Rhino.MessageBox("Draw a rectangle around the model in Top-view.") 
arrRect = Rhino.GetRectangle 
If IsArray(arrRect) Then 
  lo = arrRect(0) 
  ro = arrRect(1) 
  rb = arrRect(2) 
  lb = arrRect(3) 
End If 
 
From the corner coordinates the distance in x- and y-direction between the boundaries of the 
rectangle are determined. 
 
distx = Rhino.Distance(lo, ro) 
disty = Rhino.Distance(lo, lb) 
 
Now the user is asked for the distance between the line elements. From that distance the 
amount of lines that have to be drawn can be calculated. Because the lines will move 
between the boundaries of a rotated square, the amount of parts is the length of an edge of 
the square divided by the user specified distance between the line elements. 
 
dist = Rhino.RealBox("Give distance between the line elements") 
parts = (sqr(2*(1/2*distx + 1/2*disty)^2))/dist 
 
Finally the user is asked for the height of the building, the starting height from where the 
script has to start and the step size. The amount of loops h_end that the script has to do to 
determine the outer points over the full height of the building can be derived from the height 
of the building and the step size. 
 
height = Rhino.RealBox("Give the height of the building") 
h_start = Rhino.RealBox("Give starting height") 
step = Rhino.RealBox("Give step size") 
h_end = (height / step) 
 
Then the identifiers of all objects in the layer Building are stored in the variable iAllObjects. 
The various objects can now be called on from here. The layer Building contains all model 
parts. If there are no parts at all, the script will stop. 
 
iAllObjects = Rhino.ObjectsByLayer("Building") 
If IsNull(iAllObjects) Then Exit Sub 
 
Before the loop process to find the outer points starts, the variable boundary that was 
declared already is re-declared. In this variable all curves that will be generated through the 
outer points are stored. Because on forehand it is not known how many curves have to be 
stored, the length of the array is first set to -1. 
 
ReDim boundary(-1) 
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The loop process to find all outer points for a certain height will be repeated for the amount 
of loops (h_end – h_start). In each loop the variables Pnt, sur and rot will be re-declared 
first. In the variable Pnt all outer points that are found will be stored. These points however 
do not lie in the right sequence to directly draw the enclosing polyline. To order the outer 
points, the variable sur will be used. The variable rot will be used to store the corner points of 
the rotated square. In each loop the level of concern z will also be defined first. This level is 
derived from the level of the drawn rectangle, the starting height and the step size. 
 
For h = 0 To (h_end - h_start) 
  ReDim Pnt(-1) 
  ReDim sur(-1) 
  ReDim rot(-1) 
  z = lo(2) + h_start + h*step 
 
The loop process continues with the generation of the rotated square. For this the dimensions 
of the user-specified rectangle are important.  The corner points determine the final shape of 
the rotated square. For the definition of the corner points of the square it must first be 
determined if the width of the rectangle is larger than the length of the rectangle. If so, then 
the x- and y-coordinates of the left corner of the square follow from the coordinates of the 
lower left corner of the rectangle. The x-coordinate of the left square corner point is the x-
coordinate of the lower left rectangle corner point minus half the distance between the top 
and bottom of the original rectangle. The y-coordinate of this point is the y-coordinate of the 
lower left rectangle corner point plus half the distance between the top and bottom of the 
rectangle. The z-coordinate follows from the z-coordinate of the rectangle, the starting height 
and the step size. These three coordinates form the location of the left corner of the square. 
 
  If distx > disty Then 
    startPx = lo(0) - 1/2*disty 
    startPy = lo(1) + 1/2*disty 
    startPz = z 
    startP = Array(startPx, startPy, startPz) 
 
To form a closed square when a polyline is added through the corner points, the coordinates 
of the end point of the square are taken from the startpoint. This point will be added later to 
the array of corner points rot. The startpoint is the first point that is added to the array. 
 
    endPx = startP(0) 
    endPy = startP(1) 
    endPz = z 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = startP 
 
Then the next corner point of the rotated square is determined. The top corner point follows 
from an addition of some distances in x- and y-direction to the coordinates of the starting 
point. This second point is also added to the array of corner points then. 
 
    eindPx = startP(0) + (1/2*distx + 1/2*disty) 
    eindPy = startP(1) + (1/2*distx + 1/2*disty) 
    eindPz = z 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
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The other two corner points can also be determined now. The coordinates for each of these 
points follow from the previous determined point with some distances in x- and y-direction 
added to or subtracted from these coordinates. The points are then added to the rot array. 
 
    startP = eindP 
    eindPx = startP(0) + (1/2*distx + 1/2*disty) 
    eindPy = startP(1) - (1/2*distx + 1/2*disty) 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
    startP = eindP 
    eindPx = startP(0) - (1/2*distx + 1/2*disty) 
    eindPy = startP(1) - (1/2*distx + 1/2*disty) 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
 
Finally the endpoint, which has the same coordinates as the startpoint, is added to the array. 
A polyline can be added through these points then, creating a rotated, closed square. 
 
    eindP = Array(endPx, endPy, endPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
    rotated = Rhino.AddPolyline(rot) 
  End If 
 
The same procedure works if the width of the user-specified rectangle is equal to or smaller 
than the length of the rectangle. The first corner point that is determined now only is the top 
corner of the square. From that point on all other corner points can be defined. Without 
further explanation the script to create the rotated square in case of these conditions is given 
below. 
 
  If disty >= distx Then 
    startPx = lb(0) + 1/2*distx 
    startPy = lb(1) + 1/2*distx 
    startPz = z 
    startP = Array(startPx, startPy, startPz) 
    endPx = startP(0) 
    endPy = startP(1) 
    endPz = z 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = startP 
    eindPx = startP(0) + (1/2*distx + 1/2*disty) 
    eindPy = startP(1) - (1/2*distx + 1/2*disty) 
    eindPz = z 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
    
    startP = eindP 
    eindPx = startP(0) - (1/2*distx + 1/2*disty) 
    eindPy = startP(1) - (1/2*distx + 1/2*disty) 
    eindPz = z 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
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    startP = eindP 
    eindPx = startP(0) - (1/2*distx + 1/2*disty) 
    eindPy = startP(1) + (1/2*distx + 1/2*disty) 
    eindPz = z 
    eindP = Array(eindPx, eindPy, eindPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
    eindP = Array(endPx, endPy, endPz) 
    ReDim Preserve rot(UBound(rot) + 1) 
    rot(UBound(rot)) = eindP 
    rotated = Rhino.AddPolyline(rot) 
  End If 
  
Now the rotated square is generated, the process to search for the outer points can start. 
The process is divided in two parts, as the lines will first move from the lower left edge of the 
square to the upper right edge of the square. After that the lines will move from the upper 
left edge of the square to the lower right edge of the square. The following loop is gone 
through for the amount of parts that were already determined. The loop starts with the 
definition of the startpoint and the endpoint of the line. Then a line is added between these 
points. 
 
    'Lower left to upper right edge 
    For p = 0 To parts 
      SPx = (lo(0) - 1/2*disty) + p*dist*0.707107 
      SPy = (lo(1) + 1/2*disty) + p*dist*0.707107 
      SPz = z 
      SP = Array(SPx, SPy, SPz) 
      EPx = SPx + (1/2*distx + 1/2*disty) 
      EPy = SPy - (1/2*distx + 1/2*disty) 
      EPz = z 
      EP = Array(EPx, EPy, EPz) 
      lijn = Rhino.AddLine(SP, EP) 
 
Because the lines will determine the closest and most far away outer points related to the 
startpoint of the line in one step, some minimum and maximum distances are first defined. 
 
      cminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) 
      cxmin = EP(0) - SP(0) 
      cymin = EP(1) - SP(1) 
      cmaxAfst = 0 
      cxmax = 0 
      cymax = 0 
      bminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) 
      bxmin = EP(0) - SP(0) 
      bymin = EP(1) - SP(1) 
      bmaxAfst = 0 
      bxmax = 0 
      bymax = 0 
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The following loop goes through all objects of the model, which are stored in the iAllObjects 
variable. For each object it will be checked if there is an intersection between the object and 
the line. The procedure for the intersection between the line and a surface or solid is scripted 
later. If an intersection is found, the distances in x- and y-direction between the intersection 
point and the startpoint of the line are determined. From these two distances the total 
distance can be derived. 
 
      For i = 0 To UBound(iAllObjects) 
        arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i)) 
        If IsArray(arrCCX) Then 
          For j = 0 to UBound(arrCCX) 
            If arrCCX(j,0) = 1 Then 
              arrCpoint = arrCCX(j,1) 
              If IsArray(arrCpoint) Then 
                dxc = arrCpoint(0) - SP(0) 
                dyc = arrCpoint(1) - SP(1) 
                cafst = sqr(dxc^2 + dyc^2) 
 
Then it will be checked if the total distance between the intersection point and the startpoint 
of the line is smaller than the specified minimum distance. It will also be checked if the 
distance is lager than the specified maximum distance. If one of these situations occurs, the 
minimum or maximum distance is set to this new distance and the x- and y-coordinates of 
that intersection point are stored. When the loop has gone through all objects of the model 
for the concerning line, the coordinates of the closest and most far away intersection point 
related to the startpoint of the line are obtained. 
 
                If cafst < cminAfst Then 
                  cminAfst = cafst 
                  cxmin = arrCpoint(0) 
                  cymin = arrCpoint(1) 
                End If 
                If cafst > cmaxAfst Then 
                  cmaxAfst = cafst 
                  cxmax = arrCpoint(0) 
                  cymax = arrCpoint(1) 
                End If 
              End If 
            End If 
          Next 
        End If 
 
This procedure can now be repeated to determine the intersections between the line and a 
surface or solid. The procedure is already discussed for the script of the Rectangle method. In 
the end the coordinates of the closest and most far away intersections between the line and a 
surface or solid related to the startpoint of the line are obtained. 
 
        arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i)) 
        If IsArray(arrCBX) Then 
          For Each b in arrCBX 
            arrBpoint = Rhino.PointCoordinates(b) 
            If IsArray(arrBpoint) Then 
              dxb = arrBpoint(0) - SP(0) 
              dyb = arrBpoint(1) - SP(1) 
              bafst = sqr(dxb^2 + dyb^2) 
              If bafst < bminAfst Then 
                bminAfst = bafst 
                bxmin = arrBpoint(0) 
                bymin = arrBpoint(1) 
              End If 
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              If bafst > bmaxAfst Then 
                bmaxAfst = bafst 
                bxmax = arrBpoint(0) 
                bymax = arrBpoint(1) 
              End If 
            End If 
            Rhino.DeleteObject(b) 
          Next 
        End If 
      Next 
 
For the concerning line it will now be checked which minimum and maximum distances that 
are obtained by the two methods are normative. Points are added at these locations then. 
The identifiers of these points are added to the Pnt array. After the minimum and maximum 
points are added to the model, the line is removed. 
 
      If cminAfst < bminAfst Then 
        If cminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then 
          minPoint = Array(cxmin, cymin, z) 
          strID = Rhino.AddPoint(minPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If bminAfst <= cminAfst Then 
        If bminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then 
          minPoint = Array(bxmin, bymin, z) 
          strID = Rhino.AddPoint(minPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If cmaxAfst > bmaxAfst Then 
        If cmaxAfst > 0 Then 
          maxPoint = Array(cxmax, cymax, z) 
          strID = Rhino.AddPoint(maxPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If bmaxAfst >= cmaxAfst Then 
        If bmaxAfst > 0 Then 
          maxPoint = Array(bxmax, bymax, z) 
          strID = Rhino.AddPoint(maxPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      Rhino.DeleteObject lijn 
    Next 
 
When the line is finally moved from the lower left edge to the upper right edge of the square, 
the process is repeated for lines moving from the upper left edge to the lower right edge of 
the square. The process is nearly the same, only the definition of the start- and endpoints of 
the line and the definition of some distances differ. Without further explanation, the script for 
these lines is given on the following pages. 
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    'Upper left to lower right edge 
    For p = 0 To parts 
      SPx = (lb(0) + 1/2*distx) + p*dist*0.707107 
      SPy = (lb(1) + 1/2*distx) - p*dist*0.707107 
      SPz = z 
      SP = Array(SPx, SPy, SPz) 
      EPx = SPx - (1/2*distx + 1/2*disty) 
      EPy = SPy - (1/2*distx + 1/2*disty) 
      EPz = z 
      EP = Array(EPx, EPy, EPz) 
      lijn = Rhino.AddLine(SP, EP) 
      cminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) 
      cxmin = EP(0) - SP(0) 
      cymin = EP(1) - SP(1) 
      cmaxAfst = 0 
      cxmax = 0 
      cymax = 0 
      bminAfst = sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) 
      bxmin = EP(0) - SP(0) 
      bymin = EP(1) - SP(1) 
      bmaxAfst = 0 
      bxmax = 0 
      bymax = 0 
      For i = 0 To UBound(iAllObjects) 
        arrCCX = Rhino.CurveCurveIntersection(lijn, iAllObjects(i)) 
        If IsArray(arrCCX) Then 
          For j = 0 To UBound(arrCCX) 
            If arrCCX(j,0) = 1 Then 
              arrCpoint = arrCCX(j,1) 
              If IsArray(arrCpoint) Then 
                dxc = arrCpoint(0) - SP(0) 
                dyc = arrCpoint(1) - SP(1) 
                cafst = sqr(dxc^2 + dyc^2) 
                If cafst < cminAfst Then 
                  cminAfst = cafst 
                  cxmin = arrCpoint(0) 
                  cymin = arrCpoint(1) 
                End If 
                If cafst > cmaxAfst Then 
                  cmaxAfst = cafst 
                  cxmax = arrCpoint(0) 
                  cymax = arrCpoint(1) 
                End If 
              End If 
            End If 
          Next 
        End If 
        arrCBX = Rhino.CurveBrepIntersect(lijn, iAllObjects(i)) 
        If IsArray(arrCBX) Then 
          For Each b in arrCBX 
            arrBpoint = Rhino.PointCoordinates(b) 
            If IsArray(arrBpoint) Then 
              dxb = arrBpoint(0) - SP(0) 
              dyb = arrBpoint(1) - SP(1) 
              bafst = sqr(dxb^2 + dyb^2) 
              If bafst < bminAfst Then 
                bminAfst = bafst 
                bxmin = arrBpoint(0) 
                bymin = arrBpoint(1) 
              End If 
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              If bafst > bmaxAfst Then 
                bmaxAfst = bafst 
                bxmax = arrBpoint(0) 
                bymax = arrBpoint(1) 
              End If 
            End If 
            Rhino.DeleteObject(b) 
          Next 
        End If 
      Next 
      If cminAfst < bminAfst Then 
        If cminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then 
          minPoint = Array(cxmin, cymin, z) 
          strID = Rhino.AddPoint(minPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If bminAfst <= cminAfst Then 
        If bminAfst < sqr((EP(0) - SP(0))^2 + (EP(1) - SP(1))^2) Then 
          minPoint = Array(bxmin, bymin, z) 
          strID = Rhino.AddPoint(minPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If cmaxAfst > bmaxAfst Then 
        If cmaxAfst > 0 Then 
          maxPoint = Array(cxmax, cymax, z) 
          strID = Rhino.AddPoint(maxPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      If bmaxAfst >= cmaxAfst Then 
        If bmaxAfst > 0 Then 
          maxPoint = Array(bxmax, bymax, z) 
          strID = Rhino.AddPoint(maxPoint) 
          ReDim Preserve Pnt(UBound(Pnt) + 1) 
          Pnt(UBound(Pnt)) = strID 
        End If 
      End If 
      Rhino.DeleteObject lijn 
    Next 
   
For all parts the outer points are determined now. The next step is to generate a polyline 
through these points. Just as the Rectangle method, the outer points do not lie in the right 
sequence in the Pnt array. Ordering of the array is required before the enclosing polyline can 
be generated. The procedure of ordering the array is already given for the script of the 
Rectangle method. On the next pages the script for the ordering of the array is given without 
further explanation. 
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  'Curve through closest point 
  Rhino.DeleteObject rotated 
  If UBound(Pnt) > 0 Then 
    s = Rhino.PointCoordinates(Pnt(0)) 
    sx = s(0) 
    sy = s(1) 
    ex = s(0) 
    ey = s(1) 
    Rhino.LayerMode "Surround",0 
    Rhino.CurrentLayer "Surround" 
    min = Array(sx, sy, z) 
    Rhino.AddPoint(min) 
    ReDim Preserve sur(UBound(sur) + 1) 
    sur(UBound(sur)) = min 
    Rhino.CurrentLayer "Building" 
    Rhino.LayerMode "Surround",1 
 
    Rhino.CurrentLayer "Done" 
    Rhino.SelectObject(Pnt(0)) 
    Rhino.Command ("_ChangeToCurrentLayer") 
    Rhino.CurrentLayer "Building" 
 
    For q = 0 To UBound(Pnt) 
      maxAfst = 10 * (Rhino.Distance(lo,ro)) 
      For r = 0 To UBound(Pnt) 
        layer = Rhino.ObjectLayer(Pnt(r)) 
        If layer = "Done" Then 
        Else 
          t = Rhino.PointCoordinates(Pnt(r)) 
          tx = t(0) 
          ty = t(1) 
          dx = tx - sx 
          dy = ty - sy 
          afst = sqr(dx^2 + dy^2) 
          If afst = 0 Then 
            Rhino.CurrentLayer"Done" 
            Rhino.SelectObject(Pnt(r)) 
            Rhino.Command("_ChangeToCurrentLayer") 
            Rhino.UnselectAllObjects 
            Rhino.CurrentLayer"Building" 
          End If 
          If afst < maxAfst Then 
            maxAfst = afst 
            minx = tx 
            miny = ty 
            n = r 
          End If 
        End If 
      Next 
      min = Array(minx, miny, z) 
      Rhino.LayerMode "Surround",0 
      Rhino.CurrentLayer "Surround" 
      Rhino.AddPoint(min) 
      ReDim Preserve sur(UBound(sur) + 1) 
      sur(UBound(sur)) = min 
      Rhino.CurrentLayer "Done" 
      Rhino.LayerMode "Surround",1 
      Rhino.SelectObject(Pnt(n)) 
      Rhino.Command("_ChangeToCurrentLayer") 
      Rhino.CurrentLayer "Building" 
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      sx = minx 
      sy = miny 
    Next 
    Rhino.LayerMode "Surround",0 
    Rhino.CurrentLayer "Surround" 
    e = Array(ex, ey, z) 
    Rhino.AddPoint e 
    ReDim Preserve sur(UBound(sur) + 1) 
    sur(UBound(sur)) = e 
    delete = Rhino.ObjectsByLayer("Done") 
    Rhino.DeleteObjects delete 
 
After a new array sur is obtained with the outer points lying in the right sequence, a polyline 
can be drawn through the points of the sur array. The polyline is then added to the Boundary 
array. 
 
    Rhino.CurrentLayer "Boundary" 
    surrounding = Rhino.AddPolyline(sur) 
    ReDim Preserve boundary(UBound(boundary) + 1) 
    boundary(UBound(boundary)) = surrounding 
    Rhino.CurrentLayer"Building" 
 
Now the points of the sur array, which are placed in the Surround layer, can be deleted from 
the model. 
 
    delete = Rhino.ObjectsByLayer("Surround") 
    Rhino.DeleteObjects delete 
    Rhino.UnselectAllObjects 
  End If 
Next 
 
If this process is done for all height steps and the various enclosing curves are created, the 
original building model, which is placed in the Building layer, can be removed. The enclosing 
curves at the various height levels remain. 
  
delete = Rhino.ObjectsByLayer("Building") 
Rhino.DeleteObjects delete 
 
End Sub 
 
Rotated_Square_3D
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Appendix H: Script Preprocessing 

In this appendix the script of the Preprocessing method to convert a mesh object into 
surfaces is discussed in detail.  The script starts with the Option Explicit command and the 
definition of the subroutine. In the following steps the variable terms that will be used in the 
subroutine are declared.  
 
Option Explicit 
 
Sub Preprocessing 
 
Dim strTekst, arrOptions(3) 
Dim arrMesh, arrCurve, arrBlock, arrSurface 
Dim m, c, b, s, i, j 
Dim blocks, meshes, curves, obj 
Dim arrFaces, arrFace(3) 
 
In the next step some constant terms are declared. In Rhinoceros, the several types of 
geometry objects are numbered. Mesh objects have number 32, curve objects number 4, 
block objects number 4096 and surface objects have number 8. 
 
Const rhMesh = 32 
Const rhCurve = 4 
Const rhBlock = 4096 
Const rhSurface = 8 
 
The several options where the user can choose from will now be declared. With the first 
option, the user can count the number of blocks, meshes, face curves and surfaces in the 
model. With that information the user can check if the model contains elements which have 
to be converted to surfaces. With the second option, all block instances of a model are 
converted to mesh objects. The face curves of these mesh objects can be returned with the 
third option. From these face curves the surfaces can be created with the fourth option. 
 
arrOptions(0) = "1) Count number of Blocks, Meshes, Face Curves and  

  Surfaces" 
arrOptions(1) = "2) Split Block Instances into Meshes" 
arrOptions(2) = "3) Split Meshes into Face Curves" 
arrOptions(3) = "4) Create Surfaces from Face Curves" 
 
Then a popup box with the list of options is placed on the screen. 
 
strTekst = Rhino.ListBox(arrOptions, "Choose an option:") 
 
If the user chooses for option 1, four arrays are created and filled with the various geometry 
object types. Some variables that are used for the counting process are set to zero. 
 
If strTekst = arrOptions(0) Then 
  arrMesh = Rhino.ObjectsByType(rhMesh) 
  arrCurve = Rhino.ObjectsByType(rhCurve) 
  arrBlock = Rhino.ObjectsByType(rhBlock) 
  arrSurface = Rhino.ObjectsByType(rhSurface) 
  m = 0 
  c = 0 
  b = 0 
  s = 0 
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Four loops will be gone through then for the various object types. In each loop the amount of 
objects are counted and stored in a variable. 
 
  If Not IsNull(arrMesh) Then 
    For i = 0 To UBound(arrMesh) 
      m = m + 1 
    Next 
  End If 
  If Not IsNull(arrCurve) Then 
    For i = 0 To UBound(arrCurve) 
      c = c + 1 
    Next 
  End If 
  If Not IsNull(arrBlock) Then 
    For i = 0 To UBound(arrBlock) 
      b = b + 1 
    Next 
  End If 
  If Not IsNull(arrSurface) Then 
    For i = 0 To UBound(arrSurface) 
      s = s + 1 
    Next 
  End If 
 
After all objects of the various geometry types are counted, a message box finally gives the 
amount of the various objects to the user. 
 
  Rhino.MessageBox("Number of Blocks: " & b & vbCrLf & "Number of 
                   Meshes: " & m & vbCrLf & "Number of Face Curves: "  
                   & c & vbCrLf & "Number of Surfaces: " & s) 
End If 
 
If the user chooses for option 2, all block instances in the model will be split in its underlying 
meshes.  Each block has to be exploded three times to return all its meshes. The explosion 
process is looped three times for each block instance.  In each loop all block instances of a 
model are first placed in an array. 
 
If StrTekst = arrOptions(1) Then 
  b = 0 
  For i = 0 To 2 
    blocks = Rhino.ObjectsByType(rhBlock) 
 
Each object in the array will then be exploded and the amount of explosions is counted. After 
a block instance is exploded, it is directly deleted from the model. 
 
    If IsArray(blocks) Then 
      For Each obj in blocks 
        If Rhino.IsBlockInstance(obj) Then 
          Rhino.ExplodeBlockInstance obj 
          b = b + 1 
          Rhino.Print b 
        End If 
        Rhino.DeleteObject(obj) 
      Next 
    End If 
  Next 
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After all objects are exploded the amount of generated meshes is finally given to the user. If 
no block instances are exploded at all, the model did not contain any block instances and this 
is reported to the user. Else the amount of generated meshes is reported. 
 
  If b = 0 Then 
    Rhino.MessageBox("The model contains no block instances") 
  Else 
    Rhino.MessageBox("Number of generated meshes: " & b) 
  End If 
End If 
 
If the user chooses for option 3, all meshes will be split into its face curves. First all meshes 
of the model are placed in an array. 
 
If strTekst = arrOptions(2) Then 
  m = 0 
  meshes = Rhino.ObjectsByType(rhMesh) 
 
For each mesh in the model the faces are returned then. 
 
  If IsArray(meshes) Then 
    For Each obj in meshes 
      If Rhino.IsMesh(obj) Then 
        arrFaces = Rhino.MeshFaces(obj, vbFalse) 
 
Each face goes through a loop then to return the corner points of the triangle. Through the 
corner points a face curves can be created then. The script counts each added curve. In the 
end the original mesh object is deleted from the model. 
 
        If IsArray(arrFaces) Then 
          i = 0 
          While i <= UBound(arrFaces) 
            arrFace(0) = arrFaces(i) 
            arrFace(1) = arrFaces(i+1) 
            arrFace(2) = arrFaces(i+2) 
            arrFace(3) = arrFaces(i) 
            Rhino.AddPolyline(arrFace) 
            i = i + 3 
            m = m + 1 
            Rhino.Print m 
          Wend 
        End If 
        Rhino.DeleteObject(obj) 
      End If 
    Next 
  End If 
 
After all meshes are split into its face curves, the amount of generated face curves is given to 
the user. If no meshes are split at all, the model did not contain any meshes and this is 
reported to the user. Else the amount of generated face curves is reported. 
 
  If m = 0 Then 
    Rhino.MessageBox("The model contains no meshes") 
  Else 
    Rhino.MessageBox("Number of generated face curves: " & m) 
  End If 
End If 
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If the user chooses for option 4, planar surfaces will be created between the face curves that 
are obtained from option 3. First all face curves of the model are placed in an array. 
 
If strTekst = arrOptions(3) Then 
  c = 0 
  curves = Rhino.ObjectsByType(rhCurve) 
 
For each curve a planar surface will be created then. The original face curve is deleted from 
the model and the amount of planer surfaces is counted. 
 
  If IsArray(curves) Then 
    For Each obj in curves 
      Rhino.SelectObject obj 
      Rhino.Command "_PlanarSrf" 
      Rhino.DeleteObject obj 
      c = c + 1 
      Rhino.Print c 
    Next 
  End If 
 
Finally the amount of generated surfaces is given to the user. If no surfaces are generated at 
all, the model did not contain any face curves and this is reported to the user. Else the 
amount of generated surfaces is reported. 
 
  If c = 0 Then 
    Rhino.MessageBox("The model contains no face curves") 
  Else 
    Rhino.MessageBox("Number of generated surfaces: " & c) 
  End If 
End If 
 
End Sub 
 
Preprocessing 
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Appendix I: Script Rotating Lines for Meshes 

In this appendix the script for the Rotating Lines method to find the outer points of a model 
that is built up of meshes and generate the enclosing curves for several height levels is 
discussed in detail. Most of the script is the same as the script of the original method for 
buildings that are built up of lines, surfaces and solids. These parts of the script are given 
without further explanation. Only the procedure to find an intersection with a mesh differs 
from the original script. This procedure will be explained in detail then. 
 
Option Explicit 
 
RotatingLines_Mesh_3D 
Sub RotatingLines_Mesh_3D 
 
Dim idMesh, m, m_F 
Dim P1, P2, rot 
Dim xPt, i 
Dim angle, parts, p 
Dim midpoint, endpoint, point, maxPoint, Pnt() 
Dim dx, dy, ex, ey 
Dim endx, endy, endz 
Dim midx, midy, midz, midp 
Dim afst, maxAfst, xmax, ymax 
Dim selected 
Dim h, height, step, h_end, h_start 
Dim surrounded, sur(), surround 
Dim delete 
Dim loft, crv 
 
Rhino.OsnapMode 0 
 
Rhino.AddLayer "Points" 
Rhino.AddLayer "Surrounded", RGB(190,190,190) 
Rhino.CurrentLayer "Points" 
 
Rhino.MessageBox ("Pick center location of the building in Top-view") 
midpoint = Rhino.GetPoint 
 
parts = Rhino.IntegerBox("Give amount of parts",360) 
angle = 360/parts 
 
height = Rhino.RealBox("Give the height of the building") 
h_start = Rhino.RealBox("Give starting height") 
step = Rhino.RealBox("Give step size") 
h_end = (height / step) 
 
ReDim sur(-1) 
 
With the following code all meshes of the model are placed in an array. If there are no 
meshes at all, the script will stop. 
 
idMesh = Rhino.ObjectsByType(32) 
If IsNull(idMesh) Then Exit Sub 
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For h = 0 To (h_end – h_start) 
  ReDim Pnt(-1) 
  midx = midpoint(0) 
  midy = midpoint(1) 
  midz = midpoint(2) + h*step 
  midp = Array(midx, midy, midz) 
  endx = midpoint(0) 
  endy = midpoint(1) + 2 
  endz = midpoint(2) + h*step 
  endpoint = Array(endx, endy, endz) 
  For p = 0 To parts 
    maxAfst = 0 
    xmax = 0 
    ymax = 0 
 
In stead of lines that rotate around the center location of the model to determine the 
intersection point, only the direction from the center location is needed to find an intersection 
with the mesh. To specify the concerning direction, points are used that rotate around the 
center location with a certain radius. 
 
    P1 = midp 
    point = Rhino.AddPoint(endpoint) 
    rot = Rhino.RotateObject(point, midp, angle*p) 
    P2 = Rhino.PointCoordinates(rot) 
 
To find the intersection with a mesh, the mesh faces are used.  
 
    For m = 0 To UBound(idMesh) 
      m_F = Rhino.MeshFaces(idMesh(m), False) 
      If IsNull(m_F) Then Exit Sub 
 
The intersection is determined with a special function, called IntersectLineFace. The function 
is scripted after the subroutine and called from here. The function depends on the concerning 
direction and the mesh faces. For a certain direction each mesh face will be checked to see if 
it lies through the direction of concern. If so, the intersection is added to the Xpt array. The 
code of the function and some further explanation is given at the end of this script. 
 
      For i = 0 To UBound(m_F) Step 3 
        xPt = IntersectLineFace(P1, P2, m_F(i+0), m_F(i+1), m_F(i+2)) 
 
When the rotating point lies in a specific direction, the function does not only look for 
intersections in the direction from the center location to the rotating point. It looks in the 
lengthened direction, thus also in the direction from the center location to the point that is 
mirrored in the center location. If, for example, the coordinates of the rotating point at a 
specific moment are (-2, 2, 0), the function searches for all intersections that lie in the 
lengthened directions of the imaginary line (-2, 2, 0) , (2, -2, 0). Or, in other words, if the 
rotating point lies in the second quadrant of the axis system, the function searches for 
intersections with a mesh in the second and fourth quadrant of the system. This introduces 
errors for the determination of the most far away intersection point from the center location, 
because it always lies in one of the two quadrants then. The most far away intersection point 
in the opposite quadrant is skipped. To solve this problem the script will first check if the 
intersection point lies in the same quadrant as the rotating point. If so, the intersection point 
with the largest distance from the center location can be found out of all other intersections 
that lie in the same quadrant. 
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        If IsArray(xPt) Then 
          If (angle*p < 180) Then 
            If (xPt(0) - P1(0)) < 0 Then 
              dx = xPt(0) - P1(0) 
              dy = xPt(1) - P1(1) 
              afst = sqr(dx^2 + dy^2) 
              If afst > maxAfst Then 
                maxAfst = afst 
                xmax = xPt(0) 
                ymax = xPt(1) 
              End If 
            End If 
          End If 
          If (angle*p >= 180) AND (angle*p <= 360) Then 
            If (xPt(0) - P1(0)) > 0 Then 
              dx = xPt(0) - P1(0) 
              dy = xPt(1) - P1(1) 
              afst = sqr(dx^2 + dy^2) 
              If afst > maxAfst Then 
                maxAfst = afst 
                xmax = xPt(0) 
                ymax = xPt(1) 
              End If 
            End If 
          End If 
        End If 
      Next 
    Next 
    If maxAfst > 0 Then 
      maxPoint = Array(xmax, ymax, midz) 
      Rhino.AddPoint(maxPoint) 
      ReDim Preserve Pnt(UBound(Pnt) + 1) 
      Pnt(UBound(Pnt)) = maxPoint 
    End If 
    Rhino.DeleteObject point 
  Next 
 
When for all directions the most far away intersections are found, the array Pnt is filled with 
all outer points. The first point of the array is then copied and added to the end of the array, 
so that a closed polyline can be created through the points.  
 
  If IsArray(Pnt) AND UBound(Pnt) > 0 Then 
    ex = Pnt(0)(0) 
    ey = Pnt(0)(1) 
    maxPoint = Array(ex, ey, midz) 
    Rhino.AddPoint(maxPoint) 
    ReDim Preserve Pnt(UBound(Pnt) + 1) 
    Pnt(UBound(Pnt)) = maxPoint 
    Rhino.CurrentLayer("Surrounded") 
    surround = Rhino.AddPolyline(Pnt) 
    ReDim Preserve sur(Ubound(sur) + 1) 
    sur(UBound(sur)) = surround 
    delete = Rhino.ObjectsByLayer("Points") 
    Rhino.DeleteObjects delete 
    Rhino.CurrentLayer"Points" 
  End If 
Next 
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As in the original script of the Rotating Lines method, the original building model can be 
removed when for all height steps the enclosing curves are determined.  
 
delete = Rhino.ObjectsByType(32) 
Rhino.DeleteObjects delete 
 
End Sub 
 
After the subroutine the function IntersectLineFace is scripted. The function searches for the 
intersection point between a line segment and the mesh triangles. It is dependent on the 
coordinates of the center location P1, the rotating point P2 and the corner points Pa, Pb and 
Pc of the triangles. The following figure shows the principle of the function. 
 

 
Figure I.1: Principle of the IntersectLineFace function (Internet, [21]) 
 
The function searches for the intersection of the line on which the line segment (P1-P2) lies, 
with the plane on which the triangle lies. It then checks if the intersection point lies along the 
line segment and if it lies within the triangle. The intersection point can be found by 
substituting the equation for the line P: 
 

1 2 1( )P P P Pμ= + ⋅ −  

 
into the equation for the plane: 
 

0x y zA B C D+ + + =  

 
The values of A, B and C are the components of the normal to the plane, which can be found 
by taking the cross product of two edge vectors of the triangle. The vector cross product 
gives a vector which is perpendicular to both the vectors that are multiplied. In general, the 
resulting vector (A * B) is defined by: 
 

y z y z

z x z x

x y x y

x A B B A

y A B B A
z A B B A

= ⋅ − ⋅

= ⋅ − ⋅
= ⋅ − ⋅
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Herein are x, y and z the components of the vector (A * B). When this theory is applied to 
the vectors of the triangle in Figure I.1, it follows: 
 

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

( , , ) ( ) cross ( )
( ) ( )  ( ) ( )

( ) ( )  ( ) ( )

( ) ( )  ( ) ( )

b a c a

x b y a y c z a z b z a z c y a y

y b z a z c x a x b x a x c z a z

z b x a x c y a y b y a y c x a x

n A B C P P P P
n P P P P P P P P

n P P P P P P P P

n P P P P P P P P

= = − −
= − ⋅ − − − ⋅ −

= − ⋅ − − − ⋅ −

= − ⋅ − − − ⋅ −

 

 
The variable D in the equation of the plane follows from substituting one vertex into the 
equation for the plane: 
 

, , ,a x a y a zAP BP CP D+ + = −  

 
Now the variable μ of the equation for the line P can be determined. From that value the 
intersection point can be found using the equation of the line. 
 

1, 1, 1,

1 2 1 2 1 2

( )
( ) ( ) ( )

x y z

x x y y z z

D AP BP CP
A P P B P P C P P

μ
+ + +

=
− + − + −

 

 
If the line P is parallel to the plane, they will not intersect and the denominator in the 
equation for μ is 0. The intersection point lies on the line segment if the value of μ is between 
0 and 1. 
 
Finally it must be checked if the intersection point between the line and the plane of the 
triangle lies within the triangle that is bounded by the corner points Pa, Pb and Pc. If a point P 
lies on the interior of the triangle, the sum of the internal angles of the point is 2Π. If a point 
lies outside the triangle, the sum of the internal angles is smaller than 2Π. The following 
picture shows this principle. 
 

 
Figure I.2: Internal angles (Internet, [21]) 
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If the point that is checked to see if it lies in the interior is P, than the unit vectors of the 
point are: 
 

,1 ,2 ,3     ;          ;     Pa b c
a a a

a b c

P P P P P PP P
P P P P P P
− − −

= = =
− − −

 

 
The angles are then: 
  

1 1 2

2 2 3

3 3 1

cos( )
cos( )
cos( )

a a

a a

a a

a a P P
a a P P
a a P P

=
=
=

 

 
The above explained procedure is implemented in the IntersectLineFace function. The script 
of this function is given below. The function starts with the declaration of some variables. 
 
Function IntersectLineFace(ByVal P1, ByVal P2, ByVal Pa, ByVal Pb,  
                           ByVal Pc) 
  IntersectLineFace = Null 
  Dim d 
  Dim a1, a2, a3 
  Dim total, denom, mu 
  Dim n, p(2) 
 
The components of the normal to the plane are found by taking the cross product of two 
edge vectors of the triangle. In Rhinoceros the vector between two points is created with the 
Rhino.VectorCreate command. The cross product of the two vectors is determined with the 
Rhino.VectorCrossProduct command. With the Rhino.VectorUnitize command the vector n is 
unitized, resulting in a 3D vector. 
 
  n = Rhino.VectorCrossProduct(Rhino.VectorCreate(Pb, Pa),  
                               Rhino.VectorCreate(Pc, Pa)) 
 
  Rhino.VectorUnitize(n) 
 
Then the variable d from the equation of the plane is defined. 
 
  d = -n(0) * pa(0) - n(1) * pa(1) - n(2) * pa(2) 
 
After that the position on the line that intersects the plane is calculated. 
 
  denom = n(0) * (p2(0) - p1(0)) + n(1) * (p2(1) - p1(1)) + n(2) *  
          (p2(2) - p1(2)) 
 
Then it will be checked if the line and the plane are parallel. If |P1 - P2| is very small, no 
intersection will be returned and the function stops. 
 
  If (Abs(denom) < 0.00001) Then Exit Function 
 
If the line and the plane are not parallel, the value μ of the equation for the line P can be 
derived: 
 
  mu = -(d + n(0) * p1(0) + n(1) * p1(1) + n(2) * p1(2)) / denom 
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With the value for μ the equation of the line P can be defined: 
 
  p(0) = p1(0) + mu * (p2(0) - p1(0)) 
  p(1) = p1(1) + mu * (p2(1) - p1(1)) 
  p(2) = p1(2) + mu * (p2(2) - p1(2)) 
 
Finally it is checked if the intersection point between the line and the plane of the triangle lies 
within the triangle. To determine the internal angles of the intersection point another function 
is used. This function is called ThreePointAngle and is scripted after the IntersectLineFace 
function. The function uses the intersection point p and two corner points of the triangle. 
 
  a1 = ThreePointAngle(p, Pa, Pb) 
  a2 = ThreePointAngle(p, Pb, Pc) 
  a3 = ThreePointAngle(p, Pc, Pa) 
  total = a1 +  a2 + a3 
 
If the total of the internal angles is larger than 360, the corner points Pa, Pb and Pc do not 
clearly indicate a triangle. The function stops then. 
 
  If (Abs(total - 360) > 0.0001) Then Exit Function 
 
If the intersection point is finally found, the result is applied to the function. The superior 
Rotating Lines script uses this result then to determine the outer point for a certain location. 
 
  IntersectLineFace = p 
 
End Function 
 
Finally the ThreePointAngle function is scripted. The function calculates the smallest angle in 
degrees between two line segments. With the Rhino.Angle2 command, the angle between 
two lines is measured. The values pBase, pLeft and pRight correspond to respectively p, Pa 
and Pb that were defined when the ThreePointAngle function was called on in the 
IntersectLineFace function. 
 
Function ThreePointAngle(ByVal pBase, ByVal pLeft, ByVal pRight) 
 
  Dim A 
  A = Rhino.Angle2(Array(pBase, pLeft), Array(pBase, pRight)) 
 
The Rhino.Angle2 command returns an array containing the angle in degrees and the reflex 
angle in degrees. The reflex angle is an angle of more than 180 but less than 360 degrees. 
To make sure that the function is not set to a value that is larger then 360 degrees, the script 
checks whether the angle is smaller or larger than the reflex angle. If the reflex angle is 
larger then the function is set to this value, else the function is set to the normal angle. 
 
  If A(0) < A(1) Then 
    ThreePointAngle = A(0) 
  Else 
    ThreePointAngle = A(1) 
  End If 
 
End Function 
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Appendix J: Script Curve simplification 

In this appendix the script of the Curve simplification method to simplify the enclosing curves 
with the NURBS fitting technique is discussed in detail. The script starts with the Option 
Explicit command and the definition of the subroutine. In the following steps the variable 
terms are declared that will be used in the subroutine. All curves of the model are placed in 
the arrCurves array. If there is no curve at all, the script gives a message to the user and the 
process stops. 
 
Option Explicit 
 
Sub Curve_simplification 
 
Dim arrCurves, crv, strObject, arrPoints, arrPoint 
Dim ContrPoints(), p 
Dim arrOptions(1), strTekst 
Dim intDegree, intKnotCount, intCPCount 
Dim arrKnots(), arrWeights(), weight 
Dim k, w 
 
arrCurves = Rhino.ObjectsByType(4) 
If Not IsArray(arrCurves) Then 
  Rhino.MessageBox("The model contains no curves.") 
  Exit Sub 
End If 
 
The user is asked for the weight value that has to be given to the control points. Then a loop 
starts that goes through all enclosing curves of the model. In each loop the length of 
ContrPoints array is first set to -1. In this array the control points of the enclosing curves will 
be stored. Because on forehand it is not known how many control points have to be stored in 
the array, the length is first set to -1. Before a point is added, the array is lengthened by 1. 
The point is then stored at this new location. 
 
Weight = Rhino.RealBox("Give the weight value of the control  
                       points") 
For Each strObject in arrCurves 
  ReDim ContrPoints(-1) 
 
For each curve the control points will be returned first. If some control points are found, they 
are added to the ContrPoints array. 
 
  If Rhino.IsCurve(strObject) Then 
    arrPoints = Rhino.CurvePoints(strObject) 
    If IsArray(arrPoints) Then 
      For Each arrPoint in arrPoints 
        ReDim Preserve ContrPoints(UBound(ContrPoints) + 1) 
        ContrPoints(UBound(ContrPoints)) = arrPoint 
      Next 
    End If 
  End If 
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The next step is to add a NURBS curve through the control points. Because a cubic curve is 
the best option for fitting a smooth polynomial, the degree of the NURBS curve is set to 3. 
The required number of knots is the number of control points plus the degree of the curve 
minus 1. To determine the number of knots, first the number of control points is derived. 
Then the number of knots is calculated. 
 
  '------------------------------------------------------- 
  'Add NURBS curve 
  '------------------------------------------------------- 
  intDegree = 3 
  intCPCount = UBound(ContrPoints) + 1 
  intKnotCount = intCPCount + intDegree - 1 
 
The arrWeights array is then re-declared to a length that is equal to the number of control 
points of the curve. The weight value for each control point will be stored in this array. The 
weight values for the first and last control point are set to 1.0 by default. The other weight 
values are set to the user-specified weight value. 
 
  ReDim arrWeights(intCPCount-1) 
  arrWeights(0) = 1.0 
  arrWeights(UBound(arrWeights)) = 1.0 
  For w = 1 To (UBound(arrWeights) - 1) 
    arrWeights(w) = weight 
  Next 
 
Then the arrKnots array is re-declared to a length that is equal to the number of required 
knots. This number depends on the amount of control points of the curve and was defined 
already. Because the NURBS curve has to go through the first and last control point, full-
multiplicity is required there. This means that the first and last three knot values of the knot 
list have to be equal. The first three knot values are therefore set to 0. 
 
  ReDim arrKnots(intKnotCount-1) 
  For k = 0 to 2 
    arrKnots(k) = 0 
  Next 
 
Because the knot list may only contain knot values in increasing order, it has to be calculated 
which value the last three knots have to obtain. Because the inner knots are all single knots, 
the value of each knot can be raised by 1. From this fact the value of the last three knots can 
be determined. First a value is assigned to all inner knots. 
 
  For k = 3 To (UBound(arrKnots) - 3) 
    arrKnots(k) = k - 2 
  Next 
 
Then the values to the last three knots are assigned. Because of the required full-multiplicity, 
the value for these three knots is the same. 
 
  For k = (UBound(arrKnots) - 2) To (UBound(arrKnots)) 
    arrKnots(k) = (UBound(arrKnots) - 4) 
  Next 
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Finally the NURBS curve can be added through the control points. The curve depends on the 
knot values, degree of the curve and the weight values. When for each enclosing curve a 
NURBS curve is generated, the original curves are removed from the model. 
 
  Rhino.AddNurbsCurve ContrPoints, arrKnots, intDegree, arrWeights 
Next 
 
For Each strObject in arrCurves 
  Rhino.Deleteobject strObject 
Next 
 
End Sub 
 
Curve_simplification 
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Appendix K: Script Loft 

In this appendix the script of the Loft method to loft a surface through the enclosing curves 
and create a planar surface through the topmost and bottom curves is discussed in detail. 
The script starts with the Option Explicit command and the definition of the subroutine. In the 
following steps the variable terms are declared that will be used in the subroutine. Then all 
eventual selected objects will be unselected and all enclosing curves of the model are placed 
in the arrCurves array. If the model contains no curves at all, the script gives a message to 
the user and the process stops. 
 
Option Explicit 
 
Sub Loft 
 
Dim strObject 
Dim arrSurfaces, arrCurves, arrPoints, crvPoint 
Dim arrSorted 
Dim arrZ() 
Dim i, crv, z_val 
Dim coord, z, l 
ReDim arrZ(-1) 
 
Rhino.UnselectAllObjects 
 
arrCurves = Rhino.ObjectsByType(4) 
If Not IsArray(arrCurves) Then 
  Rhino.MessageBox("The model contains no curves.") 
  Exit Sub 
End If 
 
Then the script will determine the order of the curves. The lofting process has to start with 
the lowest curve and end with the highest curve. The ordering starts with returning the 
control points of the various curves. For each curve, the z-coordinate of the first control point 
is returned and placed in the arrZ array. Because on forehand it is not know how many 
curves have to be placed in the array, the array is lengthened each time before the value is 
added to the array.  
 
If UBound(arrCurves) > 0 Then 
  For Each crv in arrCurves 
    If Rhino.IsCurve(crv) Then 
      arrPoints = Rhino.CurvePoints(crv) 
      If IsArray(arrPoints) Then 
        z = arrPoints(0)(2) 
        ReDim Preserve arrZ(UBound(arrZ) + 1) 
        arrZ(UBound(arrZ)) = z 
 
Then the curve is named to its height level z. While lofting, the various curves can now be 
called on in the right order. 
 
        Rhino.ObjectName crv, z 
      End If 
    End If 
  Next 
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The array with the z values of the various curves is ordered. The values are placed in a new 
array, arrSorted.  
 
  arrSorted = Rhino.SortNumbers(arrZ) 
 
In the next loop the surfaces will be lofted through the enclosing curves. The arrSorted array 
contains the height levels of the curves. Starting from the lowest value, this height level is 
now first asked for. Because the corresponding curve has the same name as its height, this 
value is now used to call the curve itself. The curve is then selected. 
 
  For i = 0 To (UBound(arrSorted) - 1) 
    z_val = arrSorted(i) 
    crv = Rhino.ObjectsByName(z_val) 
    Rhino.SelectObjects crv 
 
Because the surface is lofted between two curves, the curve that lies one level higher is 
selected in the same way. Then a straight surface is lofted through the curves. After that the 
two curves are unselected again. 
 
    z_val = arrSorted(i+1) 
    crv = Rhino.ObjectsByName(z_val) 
    Rhino.SelectObjects crv 
    Rhino.Command("-loft enter type=straight enter") 
    Rhino.UnselectAllObjects 
  Next 
 
The above explained process is looped until the final surface is lofted trough the two upmost 
curves. To close the model, two planar surfaces have to be created through the bottom and 
top curves. These curves are first selected. 
 
  z_val = arrSorted(0) 
  crv = Rhino.ObjectsByName(z_val) 
  Rhino.SelectObjects crv 
  z_val = arrSorted(UBound(arrSorted)) 
  crv = Rhino.ObjectsByName(z_val) 
  Rhino.SelectObjects crv 
 
Then the planar surfaces are added through the curves. The original curves are removed 
from the model. 
 
  Rhino.Command("_PlanarSrf") 
  For Each crv in arrCurves 
    Rhino.DeleteObject crv 
  Next 
 
Finally the lofted surface and the two planar surfaces are joined to form one single surface 
model. 
 
  arrSurfaces = Rhino.ObjectsByType(8 + 16, vbTrue) 
  Rhino.Command"_Join" 
  Rhino.UnselectAllObjects 
End If 
 
End Sub 
 
Loft 
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Appendix L: Script to generate the journal file 

In this appendix the Visual Basic macro script to generate the journal file for the creation of 
the computational domain is discussed in detail. The macro is part of an excel sheet that 
contains the user-specified maximum height and radius of the research area. The dimensions 
of the computational domain are dependent on these values. The script starts with the 
definition of the subroutine and the declaration of some variables. 
 
Private Sub CommandButton1_Click() 
 
Dim h As Double 
Dim r As Double 
 
With the following commands the journal file Domain.jou is created. The FileSystemObject 
command is used to access the server’s file system. The journal file is saved on the D drive. If 
the user wants to save the file on another drive, it has to be changed here.  
 
Set fs = CreateObject("Scripting.FileSystemObject") 
Set a = fs.CreateTextFile("d:\Domain.jou", True) 
 
The maximum height of all buildings and the radius of the research area are derived from 
cells C4 and C5 of the Excel sheet. 
 
h = Range("C4").Value 
r = Range("C5").Value 
 
Gambit can be used to generate meshes for several CFD solvers. Because Fluent 6 is used to 
solve the flow problems, the solver is set to Fluent 5/6. 
 
a.Writeline ("   solver select ""Fluent 5/6""   ") 
 
Now the first four vertices of the domain are created. The vertices belong to the inlet 
boundary and are located at -20h in x-direction from the origin. The two outer vertices have a 
y-coordinate of -10h respectively +10h. The y-coordinate of the two inner vertices depend on 
the radius of the research area. The y-coordinate of the vertices is the distance in y-direction 
between the endpoint of a line with radius r and the origin when the line is drawn under 45 
degrees. The y-coordinates are then – ((r^2)/2)^1/2 respectively + ((r^2)/2)^1/2. The z-
coordinate of all vertices is 0. 
 
a.Writeline ("   vertex create coordinates -" & 20 * h & " -" & 10 *  
             h & " 0  ") 
a.Writeline ("   vertex create coordinates -" & 20 * h & " -" & ((r ^  
             2) / 2) ^ (1 / 2) & " 0  ") 
a.Writeline ("   vertex create coordinates -" & 20 * h & " " & ((r ^  
             2) / 2) ^ (1 / 2) & " 0   ") 
a.Writeline ("   vertex create coordinates -" & 20 * h & " " & 10 * h  
             & " 0   ") 
 
The four vertices are then copied three times in the positive x-direction. The vertices are first 
copied to the negative x-coordinate with the same value as the y-coordinate of the inner two 
vertices. Then the vertices are copied to the positive x-coordinate with the same value as the 
y-coordinate of the inner vertices. Finally the vertices are copied to the positive x-coordinate 
+20h. 
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a.Writeline ("   vertex cmove ""vertex.1"" ""vertex.2"" ""vertex.3""  
             ""vertex.4"" multiple 1 offset \    ") 
a.Writeline ("     " & (20 * h - ((r ^ 2) / 2) ^ (1 / 2)) & " 0 0  ") 
a.Writeline ("   vertex cmove ""vertex.5"" ""vertex.6"" ""vertex.7""  
             ""vertex.8"" multiple 1 offset \    ") 
a.Writeline ("     " & 2 * ((r ^ 2) / 2) ^ (1 / 2) & " 0 0   ") 
a.Writeline ("   vertex cmove ""vertex.9"" ""vertex.10""  
             ""vertex.11"" ""vertex.12"" multiple 1 offset \ ") 
a.Writeline ("     " & (20 * h - ((r ^ 2) / 2) ^ (1 / 2)) & " 0 0  ") 
 
Then a vertex is created at the origin. This point is the center location of the domain. 
 
a.Writeline ("   vertex create coordinates 0 0 0 ") 
 
Now edges are created between the vertices. 
 
a.Writeline ("   edge create straight ""vertex.1"" ""vertex.5""  ") 
a.Writeline ("   edge create straight ""vertex.5"" ""vertex.9""  ") 
a.Writeline ("   edge create straight ""vertex.9"" ""vertex.13"" ") 
a.Writeline ("   edge create straight ""vertex.13"" ""vertex.14""  
             ""vertex.15"" ""vertex.16""    ") 
a.Writeline ("   edge create straight ""vertex.1"" ""vertex.2""  
             ""vertex.3"" ""vertex.4"" ""vertex.8"" \ ") 
a.Writeline ("     ""vertex.12"" ""vertex.16""   ") 
a.Writeline ("   edge create straight ""vertex.5"" ""vertex.6""  ") 
a.Writeline ("   edge create straight ""vertex.9"" ""vertex.10"" ") 
a.Writeline ("   edge create straight ""vertex.7"" ""vertex.8""  ") 
a.Writeline ("   edge create straight ""vertex.11"" ""vertex.12""  ") 
a.Writeline ("   edge create straight ""vertex.2"" ""vertex.6""  ") 
a.Writeline ("   edge create straight ""vertex.10"" ""vertex.14""  ") 
a.Writeline ("   edge create straight ""vertex.3"" ""vertex.7""  ") 
a.Writeline ("   edge create straight ""vertex.11"" ""vertex.15""  ") 
 
Around the center location of the domain, a circular edge is created through the four inner 
vertices. The circle now automatically has the radius r. After the circle is created, the center 
point is removed from the model. 
 
a.Writeline ("   edge create center2points ""vertex.17"" ""vertex.6""  
             ""vertex.7"" circle    ") 
a.Writeline ("   vertex delete ""vertex.17"" ") 
 
Now faces are created by stitching the edges together. 
 
a.Writeline ("   face create wireframe ""edge.1"" ""edge.7""  
             ""edge.13"" ""edge.17"" real    ") 
a.Writeline ("   vertex create coordinates 0 0 0 ") 
a.Writeline ("   edge delete ""edge.21"" lowertopology   ") 
a.Writeline ("   edge create center2points ""vertex.17"" ""vertex.6""  
             ""vertex.7"" minarc arc    ") 
a.Writeline ("   edge create center2points ""vertex.17"" ""vertex.7""  
             ""vertex.11"" minarc arc   ") 
a.Writeline ("   edge create center2points ""vertex.17""  
             ""vertex.11"" ""vertex.10"" minarc arc  ") 
a.Writeline ("   edge create center2points ""vertex.17""  
             ""vertex.10"" ""vertex.6"" minarc arc   ") 
a.Writeline ("   vertex delete ""vertex.17"" ") 
a.Writeline ("   face create wireframe ""edge.2"" ""edge.13""  
             ""edge.14"" ""edge.24"" real   ") 
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a.Writeline ("   face create wireframe ""edge.3"" ""edge.4""  
             ""edge.14"" ""edge.18"" real    ") 
a.Writeline ("   face create wireframe ""edge.8"" ""edge.17""  
             ""edge.19"" ""edge.21"" real   ") 
a.Writeline ("   face create wireframe ""edge.21"" ""edge.22""  
             ""edge.23"" ""edge.24"" real  ") 
a.Writeline ("   face create wireframe ""edge.5"" ""edge.18""  
             ""edge.20"" ""edge.23"" real   ") 
a.Writeline ("   face create wireframe ""edge.9"" ""edge.10""  
             ""edge.15"" ""edge.19"" real   ") 
a.Writeline ("   face create wireframe ""edge.11"" ""edge.15""  
             ""edge.16"" ""edge.22"" real  ") 
a.Writeline ("   face create wireframe ""edge.6"" ""edge.12""  
             ""edge.16"" ""edge.20"" real   ") 
 
This first phase of the script has created the vertices, edges and faces of the bottom of the 
computational domain. The result is shown in the following picture. 
 

 
 
The faces are now copied twice in z-direction. First over a distance 5h; then these new faces 
are copied over a distance 15h. 
 
a.Writeline ("   face cmove ""face.1"" ""face.2"" ""face.3""  
             ""face.4"" ""face.5"" ""face.6"" ""face.7"" \   ") 
a.Writeline ("     ""face.8"" ""face.9"" multiple 1 offset 0 0 " & 5  
             * h & "   ") 
a.Writeline ("   face cmove ""face.10"" ""face.11"" ""face.12""  
             ""face.13"" ""face.14"" ""face.15"" \    ") 
a.Writeline ("     ""face.16"" ""face.17"" ""face.18"" multiple 1  
             offset 0 0 " & 15 * h & " ") 
 
Then all edges are selected and connected together. 
 
a.Writeline ("   edge connect ""edge.1"" ""edge.3"" ""edge.4""  
             ""edge.5"" ""edge.6"" ""edge.7"" ""edge.8"" \ ") 
a.Writeline ("     ""edge.9"" ""edge.10"" ""edge.11"" ""edge.12""  
             ""edge.13"" ""edge.14"" ""edge.15"" \  ") 
a.Writeline ("     ""edge.16"" ""edge.17"" ""edge.18"" ""edge.19""  
             ""edge.20"" ""edge.21"" ""edge.22"" \ ") 
a.Writeline ("     ""edge.23"" ""edge.24"" ""edge.25"" ""edge.26""  
             ""edge.27"" ""edge.28"" ""edge.29"" \ ") 
a.Writeline ("     ""edge.30"" ""edge.31"" ""edge.32"" ""edge.33""  
             ""edge.34"" ""edge.35"" ""edge.36"" \ ") 
a.Writeline ("     ""edge.37"" ""edge.38"" ""edge.39"" ""edge.40""  
             ""edge.41"" ""edge.42"" ""edge.43"" \ ") 
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a.Writeline ("     ""edge.44"" ""edge.45"" ""edge.46"" ""edge.47""  
             ""edge.48"" ""edge.49"" ""edge.50"" \ ") 
a.Writeline ("     ""edge.51"" ""edge.52"" ""edge.53"" ""edge.54""  
             ""edge.55"" ""edge.56"" ""edge.57"" \ ") 
a.Writeline ("     ""edge.58"" ""edge.59"" ""edge.60"" ""edge.61""  
             ""edge.62"" ""edge.63"" ""edge.64"" \ ") 
a.Writeline ("     ""edge.65"" ""edge.66"" ""edge.67"" ""edge.68""  
             ""edge.69"" ""edge.70"" ""edge.71"" \ ") 
a.Writeline ("     ""edge.72"" ""edge.73"" ""edge.74"" ""edge.75""  
             ""edge.76"" ""edge.77"" ""edge.78"" \ ") 
a.Writeline ("     ""edge.79"" ""edge.80"" ""edge.81"" ""edge.82""  
             ""edge.83"" ""edge.84"" ""edge.85"" \ ") 
a.Writeline ("     ""edge.86"" ""edge.87"" ""edge.88"" ""edge.89""  
             ""edge.90"" ""edge.91"" ""edge.92"" \ ") 
a.Writeline ("     ""edge.94"" ""edge.95"" ""edge.96"" ""edge.2""  
             ""edge.93"" real   ") 
 
After that edges are drawn in vertical direction between the various vertices. 
 
a.Writeline ("   edge create straight ""vertex.1"" ""vertex.17"" ") 
a.Writeline ("   vertex modify ""vertex.1"" ""vertex.3"" ""vertex.4""  
             ""vertex.5"" ""vertex.6"" \    ") 
a.Writeline ("     ""vertex.7"" ""vertex.8"" ""vertex.9""  
             ""vertex.10"" ""vertex.11"" ""vertex.12"" \    ") 
a.Writeline ("     ""vertex.13"" ""vertex.14"" ""vertex.15""  
             ""vertex.16"" ""vertex.2"" color ""green""  ") 
a.Writeline ("   edge create straight ""vertex.2"" ""vertex.20"" ") 
a.Writeline ("   edge create straight ""vertex.3"" ""vertex.30"" ") 
a.Writeline ("   edge create straight ""vertex.4"" ""vertex.42"" ") 
a.Writeline ("   edge create straight ""vertex.5"" ""vertex.18"" ") 
a.Writeline ("   edge create straight ""vertex.6"" ""vertex.19"" ") 
a.Writeline ("   edge create straight ""vertex.7"" ""vertex.31"" ") 
a.Writeline ("   edge create straight ""vertex.8"" ""vertex.43"" ") 
a.Writeline ("   edge create straight ""vertex.9"" ""vertex.22"" ") 
a.Writeline ("   edge create straight ""vertex.10"" ""vertex.23""  ") 
a.Writeline ("   edge create straight ""vertex.11"" ""vertex.35""  ") 
a.Writeline ("   edge create straight ""vertex.12"" ""vertex.46""  ") 
a.Writeline ("   edge create straight ""vertex.13"" ""vertex.26""  ") 
a.Writeline ("   edge create straight ""vertex.14"" ""vertex.27""  ") 
a.Writeline ("   edge create straight ""vertex.15"" ""vertex.38""  ") 
a.Writeline ("   edge create straight ""vertex.16"" ""vertex.50""  ") 
a.Writeline ("   edge create straight ""vertex.17"" ""vertex.53""  ") 
a.Writeline ("   edge create straight ""vertex.18"" ""vertex.54""  ") 
a.Writeline ("   edge create straight ""vertex.19"" ""vertex.55""  ") 
a.Writeline ("   edge create straight ""vertex.20"" ""vertex.56""  ") 
a.Writeline ("   edge create straight ""vertex.22"" ""vertex.58""  ") 
a.Writeline ("   edge create straight ""vertex.23"" ""vertex.59""  ") 
a.Writeline ("   edge create straight ""vertex.26"" ""vertex.62""  ") 
a.Writeline ("   edge create straight ""vertex.27"" ""vertex.63""  ") 
a.Writeline ("   edge create straight ""vertex.30"" ""vertex.66""  ") 
a.Writeline ("   edge create straight ""vertex.31"" ""vertex.67""  ") 
a.Writeline ("   edge create straight ""vertex.35"" ""vertex.71""  ") 
a.Writeline ("   edge create straight ""vertex.38"" ""vertex.74""  ") 
a.Writeline ("   edge create straight ""vertex.42"" ""vertex.78""  ") 
a.Writeline ("   edge create straight ""vertex.43"" ""vertex.79""  ") 
a.Writeline ("   edge create straight ""vertex.46"" ""vertex.82""  ") 
a.Writeline ("   edge create straight ""vertex.50"" ""vertex.86""  ") 
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Now faces are created by stitching the edges together. 
 
a.Writeline ("   face create wireframe ""edge.1"" ""edge.25""  
             ""edge.95"" ""edge.99"" real   ") 
a.Writeline ("   face create wireframe ""edge.99"" ""edge.103""  
             ""edge.2"" ""edge.29"" real  ") 
a.Writeline ("   face create wireframe ""edge.3"" ""edge.33""  
             ""edge.103"" ""edge.107"" real ") 
a.Writeline ("   face create wireframe ""edge.107"" ""edge.108""  
             ""edge.4"" ""edge.34"" real ") 
a.Writeline ("   face create wireframe ""edge.108"" ""edge.109""  
             ""edge.5"" ""edge.45"" real ") 
a.Writeline ("   face create wireframe ""edge.6"" ""edge.57""  
             ""edge.109"" ""edge.110"" real ") 
a.Writeline ("   face create wireframe ""edge.106"" ""edge.110""  
             ""edge.12"" ""edge.58"" real    ") 
a.Writeline ("   face create wireframe ""edge.102"" ""edge.106""  
             ""edge.11"" ""edge.53"" real    ") 
a.Writeline ("   face create wireframe ""edge.98"" ""edge.102""  
             ""edge.10"" ""edge.50"" real ") 
a.Writeline ("   face create wireframe ""edge.97"" ""edge.98""  
             ""edge.9"" ""edge.49"" real   ") 
a.Writeline ("   face create wireframe ""edge.96"" ""edge.97""  
             ""edge.8"" ""edge.37"" real   ") 
a.Writeline ("   face create wireframe ""edge.95"" ""edge.96""  
             ""edge.7"" ""edge.28"" real   ") 
a.Writeline ("   face create wireframe ""edge.96"" ""edge.17""  
             ""edge.100"" ""edge.27"" real ") 
a.Writeline ("   face create wireframe ""edge.19"" ""edge.38""  
             ""edge.97"" ""edge.101"" real ") 
a.Writeline ("   face create wireframe ""edge.18"" ""edge.35""  
             ""edge.104"" ""edge.108"" real    ") 
a.Writeline ("   face create wireframe ""edge.20"" ""edge.46""  
             ""edge.105"" ""edge.109"" real    ") 
a.Writeline ("   face create wireframe ""edge.13"" ""edge.26""  
             ""edge.99"" ""edge.100"" real ") 
a.Writeline ("   face create wireframe ""edge.14"" ""edge.30""  
             ""edge.103"" ""edge.104"" real    ") 
a.Writeline ("   face create wireframe ""edge.15"" ""edge.51""  
             ""edge.101"" ""edge.102"" real    ") 
a.Writeline ("   face create wireframe ""edge.16"" ""edge.54""  
             ""edge.105"" ""edge.106"" real    ") 
a.Writeline ("   face create wireframe ""edge.21"" ""edge.39""  
             ""edge.100"" ""edge.101"" real    ") 
a.Writeline ("   face create wireframe ""edge.22"" ""edge.42""  
             ""edge.101"" ""edge.105"" real    ") 
a.Writeline ("   face create wireframe ""edge.23"" ""edge.43""  
             ""edge.104"" ""edge.105"" real    ") 
a.Writeline ("   face create wireframe ""edge.24"" ""edge.31""  
             ""edge.100"" ""edge.104"" real    ") 
a.Writeline ("   face create wireframe ""edge.28"" ""edge.64""  
             ""edge.111"" ""edge.114"" real    ") 
a.Writeline ("   face create wireframe ""edge.37"" ""edge.73""  
             ""edge.114"" ""edge.119"" real    ") 
a.Writeline ("   face create wireframe ""edge.49"" ""edge.85""  
             ""edge.119"" ""edge.123"" real    ") 
a.Writeline ("   face create wireframe ""edge.25"" ""edge.61""  
             ""edge.111"" ""edge.112"" real    ") 
a.Writeline ("   face create wireframe ""edge.112"" ""edge.29""  
             ""edge.65"" ""edge.115"" real    ") 
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a.Writeline ("   face create wireframe ""edge.115"" ""edge.33""  
             ""edge.69"" ""edge.117"" real    ") 
a.Writeline ("   face create wireframe ""edge.34"" ""edge.70""  
             ""edge.117"" ""edge.118"" real    ") 
a.Writeline ("   face create wireframe ""edge.45"" ""edge.81""  
             ""edge.118"" ""edge.122"" real    ") 
a.Writeline ("   face create wireframe ""edge.57"" ""edge.93""  
             ""edge.122"" ""edge.126"" real    ") 
a.Writeline ("   face create wireframe ""edge.123"" ""edge.124""  
             ""edge.50"" ""edge.86"" real    ") 
a.Writeline ("   face create wireframe ""edge.124"" ""edge.125""  
             ""edge.53"" ""edge.89"" real    ") 
a.Writeline ("   face create wireframe ""edge.125"" ""edge.126""  
             ""edge.58"" ""edge.94"" real    ") 
a.Writeline ("   face create wireframe ""edge.27"" ""edge.63""  
             ""edge.114"" ""edge.113"" real    ") 
a.Writeline ("   face create wireframe ""edge.38"" ""edge.74""  
             ""edge.119"" ""edge.120"" real    ") 
a.Writeline ("   face create wireframe ""edge.35"" ""edge.71""   
             ""edge.116"" ""edge.118"" real    ") 
a.Writeline ("   face create wireframe ""edge.46"" ""edge.82""  
             ""edge.121"" ""edge.122"" real    ") 
a.Writeline ("   face create wireframe ""edge.26"" ""edge.62""  
             ""edge.112"" ""edge.113"" real    ") 
a.Writeline ("   face create wireframe ""edge.30"" ""edge.66""  
             ""edge.115"" ""edge.116"" real    ") 
a.Writeline ("   face create wireframe ""edge.51"" ""edge.87""  
             ""edge.120"" ""edge.124"" real    ") 
a.Writeline ("   face create wireframe ""edge.54"" ""edge.90""  
             ""edge.121"" ""edge.125"" real    ") 
 
After that all faces are selected and connected.  
 
a.Writeline ("   face connect ""face.1"" ""face.2"" ""face.3""  
             ""face.4"" ""face.5"" ""face.6"" ""face.7"" \ ") 
a.Writeline ("     ""face.8"" ""face.9"" ""face.10"" ""face.19""  
             ""face.11"" ""face.12"" ""face.13"" \   ") 
a.Writeline ("     ""face.14"" ""face.15"" ""face.16"" ""face.17""  
             ""face.18"" ""face.20"" ""face.21"" \ ") 
a.Writeline ("     ""face.22"" ""face.23"" ""face.24"" ""face.25""  
             ""face.26"" ""face.27"" ""face.28"" \ ") 
a.Writeline ("     ""face.29"" ""face.30"" ""face.31"" ""face.32""  
             ""face.33"" ""face.34"" ""face.35"" \ ") 
a.Writeline ("     ""face.36"" ""face.37"" ""face.38"" ""face.39""  
             ""face.40"" ""face.41"" ""face.42"" \ ") 
a.Writeline ("     ""face.43"" ""face.44"" ""face.45"" ""face.46""  
             ""face.47"" ""face.48"" ""face.49"" \ ") 
a.Writeline ("     ""face.50"" ""face.51"" ""face.52"" ""face.53""  
             ""face.54"" ""face.55"" ""face.56"" \ ") 
a.Writeline ("     ""face.57"" ""face.58"" ""face.59"" ""face.60""  
             ""face.61"" ""face.62"" ""face.63"" \ ") 
a.Writeline ("     ""face.64"" ""face.65"" ""face.66"" ""face.67""  
             ""face.68"" ""face.69"" ""face.70"" \ ") 
a.Writeline ("     ""face.71"" real  ") 
a.Writeline ("   face create wireframe ""edge.39"" ""edge.75""  
             ""edge.113"" ""edge.120"" real    ") 
a.Writeline ("   face create wireframe ""edge.42"" ""edge.78""  
             ""edge.120"" ""edge.121"" real    ") 
a.Writeline ("   face create wireframe ""edge.43"" ""edge.79""  
             ""edge.116"" ""edge.121"" real    ") 
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a.Writeline ("   face create wireframe ""edge.31"" ""edge.67""  
             ""edge.113"" ""edge.116"" real    ") 
a.Writeline ("   face connect ""face.1"" ""face.2"" ""face.3""  
             ""face.4"" ""face.5"" ""face.6"" ""face.7"" \ ") 
a.Writeline ("     ""face.8"" ""face.9"" ""face.10"" ""face.19""  
             ""face.11"" ""face.12"" ""face.13"" \   ") 
a.Writeline ("     ""face.14"" ""face.15"" ""face.16"" ""face.17""  
             ""face.18"" ""face.20"" ""face.21"" \ ") 
a.Writeline ("     ""face.22"" ""face.23"" ""face.24"" ""face.25""  
             ""face.26"" ""face.27"" ""face.28"" \ ") 
a.Writeline ("     ""face.29"" ""face.30"" ""face.31"" ""face.32""  
             ""face.33"" ""face.34"" ""face.35"" \ ") 
a.Writeline ("     ""face.36"" ""face.37"" ""face.38"" ""face.39""  
             ""face.40"" ""face.41"" ""face.42"" \ ") 
a.Writeline ("     ""face.43"" ""face.44"" ""face.45"" ""face.46""  
             ""face.47"" ""face.48"" ""face.49"" \ ") 
a.Writeline ("     ""face.50"" ""face.51"" ""face.52"" ""face.53""  
             ""face.54"" ""face.55"" ""face.56"" \ ") 
a.Writeline ("     ""face.57"" ""face.58"" ""face.59"" ""face.60""  
             ""face.61"" ""face.62"" ""face.63"" \ ") 
a.Writeline ("     ""face.64"" ""face.65"" ""face.66"" ""face.67""  
             ""face.68"" ""face.69"" ""face.70"" \ ") 
a.Writeline ("     ""face.71"" ""face.72"" ""face.73"" ""face.74""  
             ""face.75"" real  ") 
 
When all faces are connected, the volumes of the wind environment and the top cylinder are 
created by stitching the faces together. 
 
a.Writeline ("   volume create stitch ""face.1"" ""face.10""  
             ""face.28"" ""face.39"" ""face.40"" \   ") 
a.Writeline ("     ""face.44"" real  ") 
a.Writeline ("   volume create stitch ""face.4"" ""face.13""  
             ""face.38"" ""face.40"" ""face.41"" \   ") 
a.Writeline ("     ""face.48"" real  ") 
a.Writeline ("   volume create stitch ""face.7"" ""face.16""   
             ""face.36"" ""face.37"" ""face.41"" \   ") 
a.Writeline ("     ""face.46"" real  ") 
a.Writeline ("   volume create stitch ""face.2"" ""face.11""  
             ""face.29"" ""face.44"" ""face.45"" \   ") 
a.Writeline ("     ""face.51"" real  ") 
a.Writeline ("   volume create stitch ""face.5"" ""face.48""  
             ""face.49"" ""face.50"" ""face.51"" \   ") 
a.Writeline ("     ""face.14"" real  ") 
a.Writeline ("   volume create stitch ""face.8"" ""face.17""  
             ""face.35"" ""face.46"" ""face.47"" \   ") 
a.Writeline ("     ""face.49"" real  ") 
a.Writeline ("   volume create stitch ""face.3"" ""face.12""  
             ""face.30"" ""face.31"" ""face.42"" \   ") 
a.Writeline ("     ""face.45"" real  ") 
a.Writeline ("   volume create stitch ""face.6"" ""face.15""  
             ""face.32"" ""face.42"" ""face.43"" \   ") 
a.Writeline ("     ""face.50"" real  ") 
a.Writeline ("   volume create stitch ""face.9"" ""face.18""  
             ""face.33"" ""face.34"" ""face.43"" \   ") 
a.Writeline ("     ""face.47"" real  ") 
a.Writeline ("   volume create stitch ""face.10"" ""face.19""  
             ""face.52"" ""face.55"" ""face.64"" \  ") 
a.Writeline ("     ""face.68"" real  ") 
a.Writeline ("   volume create stitch ""face.13"" ""face.22""  
             ""face.53"" ""face.65"" ""face.64"" \  ") 
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a.Writeline ("     ""face.72"" real  ") 
a.Writeline ("   volume create stitch ""face.16"" ""face.25""  
             ""face.54"" ""face.61"" ""face.65"" \  ") 
a.Writeline ("     ""face.70"" real  ") 
a.Writeline ("   volume create stitch ""face.11"" ""face.20""  
             ""face.56"" ""face.68"" ""face.69"" \  ") 
a.Writeline ("     ""face.75"" real  ") 
a.Writeline ("   volume create stitch ""face.14"" ""face.23""  
             ""face.72"" ""face.73"" ""face.74"" \  ") 
a.Writeline ("     ""face.75"" real  ") 
a.Writeline ("   volume create stitch ""face.17"" ""face.26""  
             ""face.62"" ""face.70"" ""face.71"" \  ") 
a.Writeline ("     ""face.73"" real  ") 
a.Writeline ("   volume create stitch ""face.12"" ""face.21""   
             ""face.57"" ""face.58"" ""face.66"" \  ") 
a.Writeline ("     ""face.69"" real  ") 
a.Writeline ("   volume create stitch ""face.15"" ""face.24""  
             ""face.59"" ""face.66"" ""face.67"" \  ") 
a.Writeline ("     ""face.74"" real  ") 
a.Writeline ("   volume create stitch ""face.18"" ""face.27""  
             ""face.60"" ""face.63"" ""face.71"" \  ") 
a.Writeline ("     ""face.67"" real  ") 
 
This second phase of the script has created the frame of the computational domain. The 
result is shown in the following picture. 
 

 
 
The next step is to mesh the domain. First the circles are meshed with grading 1.0 and 
interval count 36.  
 
a.Writeline ("   edge picklink ""edge.21""   ") 
a.Writeline ("   edge mesh ""edge.21"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge picklink ""edge.22""   ") 
a.Writeline ("   edge mesh ""edge.22"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge picklink ""edge.23""   ") 
a.Writeline ("   edge mesh ""edge.23"" successive ratio1 1 intervals  
             36  ") 
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a.Writeline ("   edge picklink ""edge.24""   ") 
a.Writeline ("   edge mesh ""edge.24"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.31"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.31""   ") 
a.Writeline ("   edge mesh ""edge.31"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.39"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.39""   ") 
a.Writeline ("   edge mesh ""edge.39"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.42"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.42""   ") 
a.Writeline ("   edge mesh ""edge.42"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.43"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.43""   ") 
a.Writeline ("   edge mesh ""edge.43"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.67"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.67""   ") 
a.Writeline ("   edge mesh ""edge.67"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.75"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.75""   ") 
a.Writeline ("   edge mesh ""edge.75"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.78"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.78""   ") 
a.Writeline ("   edge mesh ""edge.78"" successive ratio1 1 intervals  
             36  ") 
a.Writeline ("   edge delete ""edge.79"" keepsettings onlymesh   ") 
a.Writeline ("   edge picklink ""edge.79""   ") 
a.Writeline ("   edge mesh ""edge.79"" successive ratio1 1 intervals  
             36  ") 
 
Then the short horizontal edges, except the 12 short edges in the middle of the outside 
edges, are meshed with first length (13/60)*h and interval count 16. 
 
a.Writeline ("   edge modify ""edge.64"" ""edge.28"" ""edge.7""  
             ""edge.13"" ""edge.26"" ""edge.30"" \    ") 
a.Writeline ("     ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""  
             ""edge.34"" ""edge.4"" backward   ") 
a.Writeline ("   edge picklink ""edge.64"" ""edge.28"" ""edge.7""  
             ""edge.13"" ""edge.26"" ""edge.30"" \  ") 
a.Writeline ("     ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""  
             ""edge.34"" ""edge.4""    ") 
a.Writeline ("   edge mesh ""edge.64"" ""edge.28"" ""edge.7""  
             ""edge.13"" ""edge.26"" ""edge.30"" \  ") 
a.Writeline ("     ""edge.14"" ""edge.62"" ""edge.66"" ""edge.70""   
             ""edge.34"" ""edge.4"" firstlength \  ") 
a.Writeline ("     ratio1 " & (13 / 60) * h & " intervals 16") 
a.Writeline ("   edge picklink ""edge.93"" ""edge.57"" ""edge.6""  
             ""edge.16"" ""edge.54"" ""edge.90"" \  ") 
a.Writeline ("     ""edge.87"" ""edge.51"" ""edge.15"" ""edge.9""  
             ""edge.49"" ""edge.85""    ") 
a.Writeline ("   edge mesh ""edge.85"" ""edge.49"" ""edge.9""  
             ""edge.15"" ""edge.51"" ""edge.87"" \  ") 
a.Writeline ("     ""edge.90"" ""edge.54"" ""edge.16"" ""edge.6""  
             ""edge.57"" ""edge.93"" firstlength \  ") 
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a.Writeline ("     ratio1 " & (13 / 60) * h & " intervals 16") 
 
The long horizontal edges are meshed with first length (13/60)*h and interval count 23. 
 
a.Writeline ("   edge modify ""edge.1"" ""edge.25"" ""edge.61""  
             backward ") 
a.Writeline ("   edge picklink ""edge.1"" ""edge.25"" ""edge.61""  ") 
a.Writeline ("   edge modify ""edge.17"" ""edge.27"" ""edge.63""  
             backward    ") 
a.Writeline ("   edge mesh ""edge.1"" ""edge.25"" ""edge.61""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge modify ""edge.19"" ""edge.38"" ""edge.74""  
             backward    ") 
a.Writeline ("   edge picklink ""edge.19"" ""edge.38"" ""edge.74"" ") 
a.Writeline ("   edge mesh ""edge.19"" ""edge.38"" ""edge.74""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge modify ""edge.10"" ""edge.50"" ""edge.86""  
             backward    ") 
a.Writeline ("   edge picklink ""edge.10"" ""edge.50"" ""edge.86"" ") 
a.Writeline ("   edge mesh ""edge.10"" ""edge.50"" ""edge.86""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge picklink ""edge.69"" ""edge.33"" ""edge.3""  ") 
a.Writeline ("   edge mesh ""edge.3"" ""edge.33"" ""edge.69""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge picklink ""edge.71"" ""edge.35"" ""edge.18"" ") 
a.Writeline ("   edge mesh ""edge.18"" ""edge.35"" ""edge.71""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge picklink ""edge.63"" ""edge.27"" ""edge.17"" ") 
a.Writeline ("   edge mesh ""edge.17"" ""edge.27"" ""edge.63""  
             firstlength ratio1 " & (13 / 60) * h & " intervals 23") 
a.Writeline ("   edge picklink ""edge.94"" ""edge.58"" ""edge.12""  
             ""edge.20"" ""edge.46"" ""edge.82""   ") 
a.Writeline ("   edge mesh ""edge.82"" ""edge.46"" ""edge.20""  
             ""edge.12"" ""edge.58"" ""edge.94"" \ ") 
a.Writeline ("     firstlength ratio1 " & (13 / 60) * h & " intervals  
             23") 
 
The short vertical edges are meshed with interval size 0.1h and grading 1.0 
 
a.Writeline ("   edge picklink ""edge.95""   ") 
a.Writeline ("   edge mesh ""edge.95"" successive ratio1 1 size " &  
             (6 / 60) * h) 
a.Writeline ("   edge picklink ""edge.110"" ""edge.109"" ""edge.108"" 
""edge.107"" ""edge.106"" \    ") 
a.Writeline ("     ""edge.102"" ""edge.101"" ""edge.105"" 
""edge.104"" ""edge.100"" ""edge.103"" ""edge.99"" \   ") 
a.Writeline ("     ""edge.98"" ""edge.97"" ""edge.96""   ") 
a.Writeline ("   edge mesh ""edge.96"" ""edge.97"" ""edge.98"" 
""edge.99"" ""edge.103"" ""edge.100"" \   ") 
a.Writeline ("     ""edge.104"" ""edge.105"" ""edge.101"" 
""edge.102"" ""edge.106"" ""edge.107"" \   ") 
a.Writeline ("     ""edge.108"" ""edge.109"" ""edge.110"" successive 
ratio1 1 size " & 6 * h / 60) 
 
The long vertical edges are meshed with first length 0.1h and interval count 24 
 
a.Writeline ("   edge picklink ""edge.111"" ""edge.114"" ""edge.119""  
             ""edge.123"" ""edge.124"" \    ") 
a.Writeline ("     ""edge.125"" ""edge.120"" ""edge.121""  
             ""edge.113"" ""edge.116"" ""edge.112"" \   ") 
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a.Writeline ("     ""edge.115"" ""edge.117"" ""edge.118""  
             ""edge.122"" ""edge.126""  ") 
a.Writeline ("   edge mesh ""edge.126"" ""edge.122"" ""edge.118""  
             ""edge.117"" ""edge.115"" ""edge.112"" \   ") 
a.Writeline ("     ""edge.116"" ""edge.113"" ""edge.121""  
             ""edge.120"" ""edge.125"" ""edge.124"" \   ") 
a.Writeline ("     ""edge.123"" ""edge.119"" ""edge.114""  
             ""edge.111"" firstlength ratio1 " & 6 * h / 60 & "  
             intervals \  ") 
a.Writeline ("   24") 
 
All edges of the computational domain are now meshed. The result is shown below. 
 

 
 

The next step is to mesh the volumes of the domain. Apart from the cylinders, the volumes of 
the computational domain are meshed with hexahedral elements with the map scheme. 
 
a.Writeline ("   volume mesh ""volume.1"" ""volume.2"" ""volume.3""  
             ""volume.4"" ""volume.6"" ""volume.7"" \    ") 
a.Writeline ("     ""volume.8"" ""volume.9"" ""volume.10""  
             ""volume.11"" ""volume.12"" ""volume.13"" \    ") 
a.Writeline ("       ""volume.15"" ""volume.16"" ""volume.17""  
             ""volume.18"" map size 1") 
 
Finally the boundary zones are assigned to the boundaries of the domain. 
 
a.Writeline ("   physics create ""Inlet"" btype ""VELOCITY_INLET"" 
face ""face.54"" ""face.53"" \    ") 
a.Writeline ("     ""face.52"" ""face.38"" ""face.39"" ""face.37"" ") 
a.Writeline ("   physics create ""Outlet"" btype ""PRESSURE_OUTLET""  
             face ""face.58"" ""face.31"" \  ") 
a.Writeline ("     ""face.59"" ""face.32"" ""face.60"" ""face.33"" ") 
a.Writeline ("   physics create ""Right"" btype ""SYMMETRY"" face  
             ""face.28"" ""face.29"" ""face.30"" \  ") 
a.Writeline ("     ""face.56"" ""face.57"" ""face.55""   ") 
a.Writeline ("   physics create ""Left"" btype ""SYMMETRY"" face  
             ""face.61"" ""face.62"" \   ") 
a.Writeline ("     ""face.63"" ""face.36"" ""face.35"" ""face.34"" ") 
a.Writeline ("   physics create ""Ground_far"" btype ""WALL"" face  
             ""face.1"" ""face.4"" ""face.7"" \    ") 
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a.Writeline ("     ""face.8"" ""face.2"" ""face.3"" ""face.6""  
             ""face.9""    ") 
a.Writeline ("   physics create ""Sky"" btype ""VELOCITY_INLET"" face  
             ""face.25"" ""face.26"" \  ") 
a.Writeline ("     ""face.27"" ""face.24"" ""face.22"" ""face.19""  
             ""face.21"" ""face.20"" ""face.23""   ") 
a.Writeline ("   window modify volume invisible mesh ") 
 
a.Close 
 
End Sub 
 
The result of the journal file is shown in the following figure. The environment is meshed; the 
two cylinders in the middle are not. In the bottom cylinder the research area will be placed, 
after which the two cylinders can be meshed. 
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Appendix M: Steady calculation procedure in Fluent 

In this appendix the procedure to setup a steady calculation in Fluent is given. Text and 
pictures are derived from Van Nalta [16] and where necessary slightly adapted. At the end of 
the appendix the script of the user-defined function is given that adds the turbulence 
quantities and the logarithmic velocity profile to the calculation. 
 
1. Read the mesh file from Gambit (File → Read → Case…). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Check the grid (Grid → Check). 

 
Fluent automatically performs a number of 
checks in connection with the integrity of the 
grid. The user should check whether there are 
no negative volumes (minimum volume > 0) 
and faces (minimum face area > 0). 

 
 
 
 
 
 
 
 
 
 
3. Display the grid and visually inspect the grid (Display → Grid…). 

 
Check whether all boundaries are present and 
of the appropriate type. Inspect the grid for 
gaps and strangely distorted cells. 

 
 

Step 1. Reading the mesh file. 

Step 2. Checking the gird.

Step 3. Visually checking the gird. 
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4. Interpret the User-defined function (Define → User-Defined → Functions → 

Interpreted…). 
 
Place the UDF preferably in the same folder as 
the mesh file. 

 
 
 
 
 
 
 
 
 
 
 
5. Choose the solver (Define → Models → Solver…). 

 
Segregated, Implicit, 3D, Steady, Absolute, 
Cell-Based, Superficial Velocity. These are the 
default values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Define the turbulence model (Define → Models → Viscous…) 

 
k-epsilon (2 eqn), Realizable, Standard Wall 
Functions, Default Model Constants (1.9, 1, 
1.2), User-Defined Functions: all none. 

Step 4. The interpreted UDF panel. 

Step 5. Setting the solver. 

Step 6. Defining the turbulence model. 
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7. Define the boundary conditions (Define → Boundary Conditions…) 
 

a. building: (Set… → Momentum) 
Stationary wall, No slip, 0.8, 0.5. 

 
For each building the roughness height 
and the roughness constant have to be 
defined. The roughness height 
depends on the friction factor of the 
façades. 

 
 
 
 
 
 
 
 
 
 
 

b. inlet: (Set…) Components, Absolute, 
Cartesian (X, Y, Z), udf ux, constant 0, 
constant 0, K and Epsilon, udf k, udf 
epsilon. 

 
 
 
 
 
 
 
 
 
 

c. outlet: (Set…) constant 1, Normal to 
Boundary, K and Epsilon, udf k, udf 
epsilon.  

 
 
 
 
 
 
 
 

d. sky: (Set…) Components, Absolute, 
Cartesian (X, Y, Z), udf ux, constant 0, 
constant 0, K and Epsilon, udf k, udf 
epsilon. 

 
 
 
 
 
 
 

Step 7a. Defining the boundary condition at 
the front of the cube. 

Step 7b. Defining the boundary condition at 
the inlet of the virtual wind tunnel. 

Step 7c. Defining the boundary condition at 
the outlet of the virtual wind tunnel. 

Step 7d. Defining the boundary condition at 
the top of the virtual wind tunnel. 
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e. ground: (Set… → Momentum) 

Stationary wall, No slip, 2.6, 0.75. 
 

For unbuilt areas the roughness length 
is 0.2, what gives a roughness height 
of 2.6. If a built area is placed into the 
domain, the roughness length and 
roughness height have to be defined 
again. 
 

 
 
 
 
 
 
 
 
 
8. Set reference values (Report → Reference Values…) 
 

Change the Pressure (pascal) to 1 and the 
Velocity (m/s) to 31.23. Keep the default 
values for the other parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. Create points (Surface → Point…) 

 
These are the points that are used to monitor 
convergence. Some stratetic points have to be 
chosen to monitor the convergence: 
 

- point just above the building 
- point just behind the building 

 
 
 
 
 

Step 7e. Defining the boundary condition at 
the ground of the virtual wind tunnel. 

Step 8. The Reference Values that have been 
used for the calculations. 

Step 9. Creating a point above the roof of the 
cube, to be used to monitor convergence. 
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10. Choose the discretization schemes (Solve → Controls → Solution…). 
 

Default Under-Relaxation Factors (0.3, 1, 1, 
0.7, 0.8, 0.8, 1), Default discretization 
schemes (Standard, SIMPLE, First Order 
Upwind, First Order Upwind, First Order 
Upwind). 

 
 
 
 
 
 
 
11. Set the convergence monitors (Solve → Monitors →) 
 

a. residuals (→ Residual…) 
plot all residuals, scaled, with 
convergence criterion 10e-9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. drag at back (→ Force…) 
Plot, Write, Drag coefficient, cube  
back, Force Vector    
(1,0,0), File Name, Apply. 
 
An extra monitor is added to monitor 
the convergence of drag at the back of 
the building 

 
   
 
 
 
 
 
 
 

Step 10. The default settings for the solution 
control panel. 

Step 11a. Settings for monitoring the 
convergence of the residuals. Convergence is 
checked and the calculation is stopped when 
the desired criterion is reached. 

Step 11b. Settings for monitoring the 
convergence of the drag at the back of the 
cube. 
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c. velocity magnitude above roof and at the back  
      (→ Surface…) 
 

2 Surface Monitors, Plot, Write, Every  
Iteration,  
 
monitor-1:  (Define…)  

Velocity Magnitude, Vertex 
Maximum, Iteration on X 
Axis, monitor-point-back, 
File Name. 

 
 
 
monitor-2:  (Define…) 

Velocity Magnitude, Vertex 
Maximum, Iteration on X 
Axis, monitor-point-roof, 
File Name. 

 
 
 
 
 
 
 
 
12. Set the autosave option (File → Write → Autosave…) 
 
 
 
 
 
 
 
 
 
 
 
 
 
13. Initialise the solution (Solve → Initialize → Initialize…) 

 
Compute From inlet, Init. 

 
 
 
 
 
 
 
 
 
 

Step 11b. Monitoring the convergence of the 
velocity magnitude at two characteristic 
points.

Step 12. Enable the autosave option, to 
automatically save the case and data files  at 
a certain frequency.

Step 13. Initializing the solution. 
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14. Iterate (Solve → Iterate…) 

 
1000 iterations, reporting interval 1, udf 
update interval 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The screen during the iteration procedure. 
 
 
 
 
 

Step 14. Starting the iteration procedure. 
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The user-defined function that adds the turbulence quantities and the logarithmic velocity 
profile to the calculation is given by: 
 
#include "udf.h" 
#define z0 0.2 
#define d 0 
#define kappa 0.42 
#define uster 2.3 
#define cmu 0.09 
#define visc 1.7894e-05 
#define rho 1.225 
 
DEFINE_PROFILE(ux,threadu,nvu) 
{ 
 face_t f; 
 real a[ND_ND]; 
 real x; 
 real y; 
 real z; 
 
 begin_f_loop (f,threadu) 
 { 
  F_CENTROID(a,f,threadu); 
  x=a[0]; 
  y=a[1]; 
  z=a[2]; 
  if (z<=d)   
  { 
   F_PROFILE(f,threadu,nvu)=0;  
  } 
  else   
   F_PROFILE(f,threadu,nvu)=(uster/kappa)*log((z-d)/z0); 
 } 
 end_f_loop (f,threadu) 
} 
 
DEFINE_PROFILE(k,threadk,nvk) 
{ 
 face_t f; 
 real x[ND_ND]; 
  
 begin_f_loop (f,threadk) 
 { 
  F_CENTROID(x,f,threadk); 
  F_PROFILE(f,threadk,nvk)=pow(uster,2)/sqrt(cmu); 
 } 
 end_f_loop (f,threadk) 
} 
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DEFINE_PROFILE(epsilon,threade,nve) 
{ 
 face_t f; 
 real x[ND_ND]; 
 
 begin_f_loop (f,threade) 
 { 
  F_CENTROID(x,f,threade); 
  if (x[2]<=d)   
   F_PROFILE(f,threade,nve)=10;  
  else 
   F_PROFILE(f,threade,nve)=pow(uster,3)/(kappa*(x[2]-d)); 
 } 
 end_f_loop (f,threade) 
} 
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Appendix N: Step by step guide - grid generation methods 

In this appendix a step by step guide is given to mesh the lower cylinder containing the 
model of interest with one of the two developed grid generation methods. The first method 
uses hexahedral elements and can be used to mesh simple, straight geometry with the same 
layout from the bottom to the top of the building model. The second grid generation method 
uses tetrahedral elements and can be used to mesh more complex geometry. Before one of 
the methods is applied, the computational domain has to be generated first. Because the 
dimensions of the domain depend on the height of the highest building in the domain and the 
radius of the research area, the fourth design tool can be used to generate the required 
domain. The domain is constructed around the origin, with the center of the cylinder’s bottom 
at (0, 0, 0). After the model of interest is imported in the lower cylinder, it must be placed in 
the middle of the cylinder, at the origin. It is recommended to move the building model to the 
origin already in the CAD system where it is created. When it is exported to Gambit, the 
model is automatically placed at the right position then. When the environment also has to be 
taken into account, it can be generated with the developed design tools. The tools 
automatically place the center of the research area at the origin. Before the research area is 
imported into Gambit, the circular ground surface first has to be removed manually from the 
model, for example in Rhinoceros. The plane was generated for visualization reasons, but the 
Van Nalta domain uses its own ground surface. When the ground plane is removed and the 
model is imported in Gambit, one of the two grid generation methods can be applied to mesh 
the cylinders of the domain. 
 
N.1 Hexahedral elements 

1. Subtract the building model(s) from the lower cylinder 
 
Geometry -> Volume -> Boolean Operations -> Subtract 
Volume = volume lower cylinder (= volume 5) 
Subtract volume(s) = volume(s) building model(s) (= from volume 19) 

 
2. Find the shortest edge of the research area 
 

Geometry -> Edge -> Connect/Disconnect -> Real and Virtual -> Highlight shortest edge 
 
3. Attach size function to ground edges building model(s) and bottom of cylinder 
 

Tools -> Sizing function -> Create 
Type = fixed 
Sources: bottom edges of building model(s) 
Attachment: circular ground face of lower cylinder (= face 5) 
Parameters:  Start size: length of the shortest edge at maximum 
   Growth rate: 1.02 
   Size limit: height of the building model  (this is ignored because the circle  

  edge is already meshed) 
 
4. Mesh ground face of bottom cylinder and top of the building model(s) 
 

Mesh -> Face -> Mesh faces 
Mesh the ground face of the bottom cylinder (= face.5) and the top face(s) of the 
building(s) with Quad elements and the Pave scheme 
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5. Link mesh distribution on ground edges of building model(s) with top edges 
 

Mesh -> Edge -> Link/Unlink 
First select the ground edge; then select the top edge. Repeat the procedure for all edges 

 
6. Mesh the vertical edges of the building model(s) 
 

Mesh -> Edge -> Mesh edges 
Mesh all vertical edges of the building model(s) with an interval size equal to the start 
size of the size function 

 
7. Mesh the volume of the lower cylinder 
 

Mesh -> Volume -> Mesh volumes 
Mesh the lower cylinder (= volume 5) with Hex/Wedge elements and the Cooper scheme 

 
8. Mesh the volume of the upper cylinder 
 

Mesh -> Volume -> Mesh volumes 
Mesh the upper cylinder (= volume 14) with Hex/Wedge elements and the Cooper 
scheme 

 
9. Assign boundary zones on the building(s) faces and the nearby ground face 

 
Zones -> Specify boundary types -> Add 
 
Building of interest: 

a. Front of building model -> “Building_front“ -> wall 
b. Back of building model -> “Building_back“ -> wall 
c. Left side of building model -> “Building_left“ -> wall 
d. Right side of building model -> “Building_right“ -> wall 
e. Top of building model -> “Building_top“ -> wall 

 
Other buildings in the research area: 

a. Front, back, left, right and top of building model -> “Building_name “ -> wall 
 

Bottom of the lower cylinder 
a. Circular ground face -> “Ground_near“ -> wall 

 
10. Export the mesh 
 

File -> Export -> Mesh 
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N.2 Tetrahedral elements – Automatic meshing 

1. Subtract the building model(s) from the lower cylinder 
 
Geometry -> Volume -> Boolean Operations -> Subtract 
Volume = volume lower cylinder (= volume 5) 
Subtract volume(s) = volume(s) building model(s) (= from volume 19) 

 
2. Find the shortest edge of the research area 
 

Geometry -> Edge -> Connect/Disconnect -> Real and Virtual -> Highlight shortest edge 
 
3. Mesh all edges of the building model(s) 
 

Mesh -> Edge -> Mesh edges 
Mesh all edges of the building model(s) with an interval size equal to the length of the 
shortest edge at maximum. That edge is meshed with at least one cell then. However, if 
possible, it is preferred to choose a smaller interval size. 

 
4. Mesh the volume of the lower cylinder 
 

Mesh -> Volume -> Mesh volumes 
Mesh the lower cylinder (= volume 5) with Tet/Hybrid elements and the TGrid scheme 

 
5. Mesh the volume of the upper cylinder 
 

Mesh -> Volume -> Mesh volumes 
Mesh the upper cylinder (= volume 14) with Tet/Hybrid elements and the TGrid scheme  

 
6. Assign boundary zones on the building(s) faces and the nearby ground face 

 
Zones -> Specify boundary types -> Add 
 
Building of interest: 

a. Front of building model -> “Building_front“ -> wall 
b. Back of building model -> “Building_back“ -> wall 
c. Left side of building model -> “Building_left“ -> wall 
d. Right side of building model -> “Building_right“ -> wall 
e. Top of building model -> “Building_top“ -> wall 

 
Other buildings in the research area: 

a. Front, back, left, right and top of building model -> “Building_name “ -> wall 
 

Bottom of the lower cylinder 
a. Circular ground face -> “Ground_near“ -> wall 

 
7. Export the mesh 
 

File -> Export -> Mesh 
 
 



Master’s thesis                                                                                                  

256 
 



Master’s thesis                                                                                                  

257 
 

 

Appendix O: Least Squares method 

During this thesis two methods were proposed to simplify the enclosing curves that are 
generated from the outer points of a building model. The NURBS fitting method is already 
developed and seems to work properly. Another proposed method is the Least Squares 
method. In this appendix the method is discussed extensively and examples are given to fit a 
straight line and a parabola through a certain dataset. To simplify the enclosing curves with 
the Least Squares method, a third degree polynomial at minimal is required as the enclosing 
curves are closed curves. However, the method is not implemented yet for simplifying such 
curves and additional research is required to develop the method further.  
 
Least Squares method 
The Least Squares method in general is a method to determine the best-fit curve through a 
certain dataset. The Least Squares method is based on minimizing the squared error in 
vertical direction between a data point and a parametric curve. The smaller the difference 
between the original dataset and the proposed curve, the better the fit. Given a dataset with 
n points (x1,y1), (x2,y2), …, (xn,yn), the polynomial that fits the dataset is given by: 
 

1 2( : , ,..., )ky f x c c c=         (O.1)  

 
where the set of parameters c are the fitting parameters of the polynomial. By choosing the 
right values for these parameters, the error between the points and the curve can be 
minimized. The fitting polynomial can be expressed in the general linear form: 
 

1 2 3( ) ( ) ( ) ( ) ... ( )ky x c x c x c x c x= + + + +      (O.2)  

 
In order to fit a straight line through the dataset, a first degree polynomial is required. Fitting 
a parabola through the dataset requires a second degree polynomial. In case of n data 
points, the errors between the curve and the data points are: 
 

1 1 1 2 1 3 1 1 1

2 1 2 2 2 3 2 2 2

1 2 3

( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( )

.

.
( ) ( ) ( ) ... ( )

k

k

n n n n k n n

c x c x c x c x y
c x c x c x c x y

c x c x c x c x y

ε
ε

ε

= + + + + −
= + + + + −

= + + + + −

     (O.3) 

 
The total squared error that has to be minimized for a set of n data points is: 
 

2 2
1 1 2 2

1 1
[ ( ) ( ) ... ( ) ]

n n

i k i i
i i

S c x c x c x yε
= =

= = + + + −∑ ∑     (O.4) 
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The minimum value for S can be found by finding a set of parameters c that makes the errors 
at the data points as small as possible. This minimum value is derived when all partial 
derivatives of S are equal to zero. For a system of k parameters c it follows: 
 

1

2

0

0

.

0
k

S
c
S
c

S
c

∂
=

∂
∂

=
∂

∂
=

∂

         (O.5)  

 
With the obtained values for the parameters c the fitting polynomial that minimizes the 
squared error for all data points can be formulated. On the following pages the least squares 
method is explained with two examples. The first example fits a straight line through a 
certain dataset; the second example fits a parabola through the dataset. 
 
If a certain dataset contains the following eight points for example: 
 

x 1 2 3 4 5 6 7 8 
y 2 3 3 2 3 4 3 2 

 
In order to fit a straight line through the dataset, a first degree polynomial y has to be found 
that minimizes S: 
 

1 2y c c x= +          (O.6) 

 
8

2
1 2

1
[ ]i i

i
S y c c x

=

= − −∑         (O.7) 

 
The partial derivatives of S with respect to c1 and c2 are: 
 

8

1 2
11

2 ( ) 0i i
i

S y c c x
c =

∂
= − − − =

∂ ∑        (O.8) 

   
8

1 2
12

2 ( ) 0i i i
i

S x y c c x
c =

∂
= − − − =

∂ ∑       (O.9) 

 
Some rearrangement results in: 
 

8 8

1 2
1 1

8i i
i i

y c x c
= =

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

∑ ∑        (O.10) 

 
8 8 8

2
1 2

1 1 1
i i i i

i i i

x y x c x c
= = =

⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑       (O.11) 
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To obtain a solution for the parameters c1 and c2, the four sums Σxi, Σyi, Σ(xi)2 and Σxiyi have 
to be inserted into Equations (O.10) and (O.11). The following table gives the values of the 
different variables. 
 
i 1 2 3 4 5 6 7 8 Σ
xi 1 2 3 4 5 6 7 8 36
yi 2 3 3 2 3 4 3 2 22
(xi)2 1 4 9 16 26 36 49 64 204
xiyi  2 6 9 8 15 24 21 16 101

 
Inserting these values into Equations (O.10) and (O.11) leads to the following equations: 
 

1 222 8 36c c= ⋅ + ⋅         (O.12)  

 

1 2101 36 204c c= ⋅ + ⋅         (O.13)  

 
From these equations the values of c1 and c2 can be determined:  c1 = 2,536 
         c2 = 0,048 
 
The equation for the fitting polynomial through the dataset now becomes: 
  

1 2 2.536 0.048y c c x x= + ⋅ = + ⋅       (O.14)  

 
The following figure gives the result of the straight line that is fitted through the data points. 
 

Straight line

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 1 2 3 4 5 6 7 8 9

x-values

y-
va

lu
es

  
 



Master’s thesis                                                                                                  

260 
 

 
In the next example a parabola will be fitted through the dataset. In order to fit a parabola, a 
second degree polynomial has to be found that minimizes S: 
 

2
1 2 3y c c x c x= + +         (O.15) 

 
8

2 2
1 2 3

1

[ ]i i i
i

S y c c x c x
=

= − − −∑        (O.16) 

 
The partial derivatives of S with respect to c1, c2 and c3 are: 
 

8
2

1 2 3
11

2 ( ) 0i i i
i

S y c c x c x
c =

∂
= − − − − =

∂ ∑       (O.17) 

 
8

2
1 2 3

12

2 ( ) 0i i i i
i

S x y c c x c x
c =

∂
= − − − − =

∂ ∑      (O.18) 

 
8

2 2
1 2 3

13

2 ( ) 0i i i i
i

S x y c c x c x
c =

∂
= − − − − =

∂ ∑      (O.19) 

 
Some rearrangement results in: 
 

8 8 8
2

1 2 3
1 1 1

8i i i
i i i

y c x c x c
= = =

⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑       (O.20) 

 
8 8 8 8

2 3
1 2 3

1 1 1 1
i i i i i

i i i i

x y x c x c x c
= = = =
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8 8 8 8

2 2 3 4
1 2 3

1 1 1 1
i i i i i

i i i i

x y x c x c x c
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑     (O.22)  

 
The following table gives the values for Σxi, Σyi, Σ(xi)2, Σxiyi, Σ(xi)2yi, Σ(xi)3 and Σ(xi)4. 
 
i 1 2 3 4 5 6 7 8 Σ
xi 1 2 3 4 5 6 7 8 36
yi 2 3 3 2 3 4 3 2 22
(xi)2 1 4 9 16 26 36 49 64 204
xiyi  2 6 9 8 15 24 21 16 101
(xi)2yi 2 12 27 32 75 144 147 128 567
(xi)3 1 8 27 64 125 216 343 512 1296
(xi)4 1 16 81 256 625 1296 2401 4096 8772
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To obtain a solution for the parameters c1, c2 and c3, the various sums have to be inserted 
into Equations (O.20), (O.21) and (O.22). This leads to the following equations: 
  

1 2 322 8 36 204c c c= ⋅ + ⋅ + ⋅        (O.23) 

 

1 2 3101 36 204 1296c c c= ⋅ + ⋅ + ⋅       (O.24) 

 

1 2 3567 204 1296 8772c c c= ⋅ + ⋅ + ⋅       (O.25) 

 
From these equations the values of c1, c2 and c3 can be determined:  c1 = 1,464 
         c2 = 0,690 

c3 = -0,071 
 
The equation for the fitting parabola through the dataset now becomes: 
 

2 2
1 2 3 1.464 0.690 0.071y c c x c x x x= + ⋅ + ⋅ = + ⋅ − ⋅     (O.26) 

 
The following picture gives the result of the parabola that is fitted through the data points. 
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