
 
 

Delft University of Technology

Asymmetric cupula displacement due to endolymph vortex in the human semicircular
canal

Goyens, J.; Pourquie, M. J.B.M.; Poelma, C.; Westerweel, J.

DOI
10.1007/s10237-019-01160-2
Publication date
2019
Document Version
Final published version
Published in
Biomechanics and Modeling in Mechanobiology

Citation (APA)
Goyens, J., Pourquie, M. J. B. M., Poelma, C., & Westerweel, J. (2019). Asymmetric cupula displacement
due to endolymph vortex in the human semicircular canal. Biomechanics and Modeling in Mechanobiology,
18(6), 1577-1590. https://doi.org/10.1007/s10237-019-01160-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10237-019-01160-2
https://doi.org/10.1007/s10237-019-01160-2


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


Vol.:(0123456789)1 3

Biomechanics and Modeling in Mechanobiology 
https://doi.org/10.1007/s10237-019-01160-2

ORIGINAL PAPER

Asymmetric cupula displacement due to endolymph vortex 
in the human semicircular canal

J. Goyens1  · M. J. B. M. Pourquie2 · C. Poelma2 · J. Westerweel2

Received: 26 July 2018 / Accepted: 26 April 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The vestibular system in the inner ear senses angular head manoeuvres by endolymph fluid which deforms a gelatinous 
sensory structure (the cupula). We constructed computer models that include both the endolymph flow (using CFD model-
ling), the cupula deformation (using FEM modelling), and the interaction between both (using fluid–structure interaction 
modelling). In the wide utricle, we observe an endolymph vortex. In the initial time steps, both the displacement of the cupula 
and its restorative forces are still small. As a result, the endolymph vortex causes the cupula to deform asymmetrically in an 
S-shape. The asymmetric deflection increases the cupula strain near the crista and, as a result, enhances the sensitivity of the 
vestibular system. Throughout the head manoeuvre, the maximal cupula strain is located at the centre of the crista. The hair 
cells at the crista centre supply irregularly spiking afferents, which are more sensitive than the afferents from the periphery. 
Hence, the location of the maximal strain at the crista may also increase the sensitivity of the semicircular canal, but this 
remains to be tested. The cupula overshoots its relaxed position in a simulation of the Dix-Hallpike head manoeuvre (3 s in 
total). A much faster head manoeuvre of 0.222 s showed to be too short to cause substantial cupula overshoot, because the 
cupula time scale of both models (estimated to be 3.3 s) is an order of magnitude larger than the duration of this manoeuvre.

Keywords Vestibular system · Fluid–structure interaction · Computational fluid dynamics · Time constant · Navier–Stokes 
equations · Balance · Finite element model

1 Introduction

The vestibular system in the inner ear senses linear and 
angular accelerations of the head. Therefore, it plays a cru-
cial role in motor coordination and balance control, spatial 
awareness and navigation (Kandel et al. 1991; Latash 2008; 
Squire et al. 2013). The vestibular system is comprised of 
three interconnected semicircular tunnels in the temporal 
bone of the skull (the bony labyrinth, see Fig. 1). This bony 
labyrinth is filled with perilymph (a water-based fluid). 

Three interconnected ducts with membranous walls (the 
membranous labyrinth) float within the bony labyrinth. The 
ducts of the membranous labyrinth follow the semicircular 
shape of the bony labyrinth (see Fig. 1) and are also filled 
with a water-like fluid (called endolymph) (Kandel et al. 
1991; Rabbitt et al. 2004; Latash 2008; Squire et al. 2013; 
Ekdale 2016). It is generally thought that the endolymph 
fluid lags behind due to its inertia when the head accelerates 
angularly. This causes flow of the (slower) fluid, relative 
to the (faster) membranous wall (Kandel et al. 1991; Mul-
ler and Verhagen 2002; Rabbitt et al. 2004, 2009; Angelaki 
and Cullen 2008; Latash 2008; Ekdale 2016; Grohé et al. 
2016; Djukic and Filipovic 2017). The relative endolymph 
flow deflects sensory hairs, resulting in a neural signal to 
the brain. The sensory hairs originate from sensory epithe-
lia on crest-like ridges (crista) in the labyrinth walls. The 
sensory hair bundles are embedded in gelatinous structures, 
the cupulae, which are located in widened parts of the semi-
circular canals (called ampullae), at each end of the semi-
circular ducts (see Fig. 1). The cupulae are attached to the 
ampulla walls along their entire perimeter, like a diaphragm 
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(McLaren and Hillman 1979; Rabbitt et al. 2004, 2009; Cul-
len 2012; Ekdale 2016). The three ampullas open in the utri-
cle, a single larger chamber that hosts linear accelerometers 
(maculas with otolith crystals) (Kandel et al. 1991; Latash 
2008; Squire et al. 2013).

The deflection of the cupula—and, therefore, also the 
neural signal—in response to head rotation is determined 
by the fluid dynamics of the endolymph. Numerous authors 
have developed mathematical descriptions of the macro-
mechanical fluid properties of the vestibular system using 
differential equations (overdamped, second order). Starting 
with Lorente de Nó (1927), the fluid dynamics were inves-
tigated for a single toroidal duct with uniform cross section 
without the cupula. Later, the cupula was included (Stein-
hausen 1933; Van Buskirk et al. 1976), and the semicircular 
duct was modelled with a non-uniform cross section (Oman 
et al. 1987). Other authors succeeded in modelling intercon-
nected ducts (Muller and Verhagen 1988), obtaining ana-
lytical solutions (Muller and Verhagen 2002; Obrist 2008) 
and included inertial-viscoelastic behaviour of the cupula 
(Rabbitt et al. 1995; Rabbitt 1999). Important information 
on factors influencing the sensitivity, response time, time 
constants, and endolymph flow was gained from these ana-
lytical models with a (relatively) simple anatomy.

The development of numerical simulation software (and 
affordable fast computers) subsequently enabled much 

more complicated and realistic geometries of semicircular 
ducts and cupulae to be investigated. These models were 
mainly developed to gain a better understanding of vestibular 
pathologies and clinical practices (e.g. Kassemi et al. 2005; 
Boselli et al. 2014; Grieser et al. 2016; Djukic and Filipovic 
2017). For example, the computational model by Boselli 
et al. (2014) of the fluid-particle dynamics of a semicircular 
canal with benign paroxysmal positional vertigo (BPPV) 
showed the particle displacement within the canal after a 
provocative head manoeuvre. The model output may explain 
BPPV fatigue during a consecutive head manoeuvre. The 
2D simulations of endolymph and cupula by Kassemi et al. 
(2005) helped us to understand the caloric irrigation test, and 
the computer model of the endolymph and the wall of the 
membranous labyrinth by Grieser et al. (2016) showed how 
pathogenic wall deformations due to sound stimuli cause 
endolymph flow and cupula oscillations during the so-called 
Tullio phenomenon. Similar to most analytical models, the 
cupula is only implicitly modelled in many numerical simu-
lation models, for example, by introducing a pressure dif-
ference in response to the volume of displaced endolymph 
(Obrist 2011; Boselli et al. 2013, 2014, Grieser et al. 2013, 
2016). In these models, endolymph flow through the ampulla 
remains possible. This is an unnatural situation, however, 
because in reality, the cupula fills the entire cross section 
of the endolymph such that endolymph flow is blocked 
(McLaren and Hillman 1979; Yamauchi et al. 2002; Rabbitt 
et al. 2004, 2009). Recently, some authors have resolved this 
issue by combining 3D fluid simulations of the endolymph 
with a 3D finite element model of the cupula in a single 
model (Djukic and Filipovic 2017; Santos et al. 2017a). 
Kassemi et al. (2005) and Wu et al. (2011) previously did 
the same in 2D. Such fluid–structure interaction (FSI) mod-
els couple a fluid simulation and a structural simulation of 
the endolymph and the cupula, respectively. These models 
take into account the forces that are exerted by the fluid on 
the cupula, as well as the incremental displacement of the 
cupula that displaces fluid. However, the communication 
between the fluid and the structural parts of the FSI model 
is notoriously a technical challenge, which is further com-
plicated by the very low elasticity of the cupula [which has 
a Young’s modulus of only approximately 5 Pa (Selva et al. 
2009; Wu et al. 2011; Santos et al. 2017a)].

1.1  Aims of the present study

The current study rigorously investigates this new 3D 
fluid–structure interaction modelling of the vestibular sys-
tem. It includes the endolymph, modelled by computational 
fluid dynamics (CFD); the cupula, modelled by finite ele-
ment modelling (FEM) and the interaction between both. 
This will give us the possibility to investigate, in detail, 
the cupula displacement during head manoeuvres, and in 

Fig. 1  Schematic drawing of the vestibular system. Sizes and colours 
for illustration purposes only. The membranous labyrinth (ML, blue) 
consists of three semicircular ducts (the lateral semicircular canal, 
LSC; the posterior semicircular canal, PSC; the anterior semicircu-
lar canal, ASC). They run entirely within the bony labyrinth (BL, 
brown), which is only depicted at three places. Each duct ends in an 
ampulla (A), in which a cupula (light green, C) with crista (yellow) is 
located. All ampullas end in the utricle (U), which houses a macula 
(turquoise, M)
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particular, the effect of the endolymph vortex in the utricle 
which was first described by Boselli et al. (2013). While the 
existing 3D FSI models in the literature have a very simpli-
fied, toroidal geometry (Djukic and Filipovic 2017; Santos 
et al. 2017b), we constructed a realistic geometry of the 
human lateral semicircular canal and utricle, based on the 
anatomical literature. A further novel aspect of the current 
study is the analysis of the relative magnitude of the terms in 
the Navier–Stokes (NS) equations. The NS equations deter-
mine the movement of fluid; hence, calculating the terms of 
these equations enables us to obtain an in-depth evaluation 
of the relative importance of viscosity, the pressure gradi-
ent, inertia, and advection within the vestibular system, sup-
plemented with fictitious forces (Coriolis, centrifugal, and 
Euler) in the case of a relative frame of reference (Batchelor 
2007).

1.2  Organization of this paper

We built a series of models of increasing complexity. Com-
parison of models with a torus geometry (model T) and a 
human geometry (model H) revealed the effect of the wid-
ened utricle and ampulla on the endolymph dynamics. Com-
parison of model H and a model with an open ampulla (i.e. 
without cupula, model O) showed the effect of continuous 
endolymph flow through the ampulla. Next, we added a 
deformable cupula (model F) and compared this with model 
H, which has an extremely stiff cupula. On models T, H, O, 
and F, we imposed a head manoeuvre with a ramp veloc-
ity profile, which facilitates interpretation because of the 
constant acceleration during spinup and spindown and the 
clear onset and end of both. Finally, we simulated two mod-
els with a smooth and realistic head manoeuvre. In the first 
(model S), we imposed a natural, fast head rotation; while 
in the second (model DH), we imposed a clinical, slow, Dix-
Hallpike manoeuvre.

In the results section, we first describe the endolymph 
flow and pressure (Sect. 3.1). We then take model S as a ref-
erence and compare its outcome to the other models. Like-
wise, we report the cupula deformation and strain in model S 
in Sect. 3.2. Results Sect. 3.3 is devoted to the Dix-Hallpike 
manoeuvre and how this compares to model S and the model 

by Boselli et al. (2013). Finally, in Sect. 3.4, we describe the 
NS terms for models T, H, O, F, and S (see Table 1).

2  Materials and methods

2.1  3D morphology and mesh

In the first model (model T, see Table 1), we used a torus 
as a very simplified geometry of a horizontal semicircular 
duct. This torus was constructed in Ansys DesignModeler 
(version 17.2, Pittsburgh, USA) and had a major radius 
of 3.2 × 10−3 m and a minor radius of 5.75 × 10−4 m (see 
Fig. 2a). These dimensions are based on the ampullar dimen-
sions in Obrist (2011). A disc-shaped cupula was included 
with a thickness of 4.03 × 10−4 m [cf. (Kassemi et al. 2005; 
Selva et al. 2009)]. In Ansys Meshing (version 17.2, Pitts-
burgh, USA), we converted the torus model into a tetrahe-
dral mesh with a maximal edge length of 5 × 10−5 m, which 
contained 1454 k elements.

For the other models (models H, O, F, S, and DH; see 
Table 1), we used the geometry of the human lateral semi-
circular canal, based on the measurements of the membra-
nous labyrinth by Curthoys and Oman (1987) (see Fig. 2b). 
In Ansys DesignModeler, we converted the 2D measure-
ments (heights and widths of cross sections of the membra-
nous labyrinth) into a smooth 3D geometry using sweeps 
between ellipses. In models H, F, S, and DH, we inserted 
a cupula with a uniform thickness of 4.03 × 10−4 m [cf. 
(Kassemi et al. 2005; Selva et al. 2009)] and subtracted 
a crista with a height of 5 × 10−7 m from the geometry in 
the ampulla (Curthoys and Oman 1987). In model O, the 
ampulla remained open (i.e. there is no cupula, and as a 
result there is a continuous loop of endolymph, see Fig. S2A, 
B). We created a tetrahedral mesh in Ansys Meshing with a 
maximal edge length of 5 × 10−5 m in the fluid (endolymph) 
part and 6.88 × 10−5 m in the cupula. We refined the mesh 
in the narrow part of the semicircular duct. This resulted 
in 13 k elements in the cupula and 946 k elements in the 
endolymph. The composite element quality metric (provided 
by Ansys Meshing) was 0.82 ± 0.13 and 0.84 ± 0.10 in the 
cupula and the endolymph, respectively. The element aspect 

Table 1  Overview of simulation 
models

CFD stands for computational fluid dynamics, FSI stands for fluid–structure interaction model

Model Geometry Simulation type Velocity profile

T Torus (see Fig. 2a) CFD only Ramp, alarm turn (see Fig. 3b)
H Human (see Fig. 2b) CFD only Ramp, alarm turn (see Fig. 3b)
O Human (open ampulla) CFD only Ramp, alarm turn (see Fig. 3b)
F Human (see Fig. 2b) FSI Ramp, alarm turn (see Fig. 3b)
S Human (see Fig. 2b) FSI Smooth, alarm turn (see Fig. 3a)
DH Human (see Fig. 2b) FSI Smooth, Dix-Hallpike (see Fig. 3c)
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ratio was 2.1 ± 0.2 and 1.8 ± 0.4 in the cupula and the endo-
lymph, respectively. The number of elements used in our 
model reflects a compromise between computation time and 
accuracy. A simulation of model S with twice the number of 
elements yielded almost identical results, showing that the 
chosen number of elements is sufficient (percentage of pres-
sure difference over cupula between finer and coarser grid: 
0.25 ± 0.49%; of volume swept by cupula: -0.54 ± 0.60%; of 
Navier–Stokes terms: -0.014 ± 0.45%).

2.2  Head manoeuvre

To simulate a realistic head manoeuvre, we measured the 
head rotation of six healthy adults (two women and four 
men) who were asked to suddenly look sidewards (as in the 
case of hearing an unexpected noise behind their shoulder). 

We will call this head manoeuvre the “alarm turn manoeu-
vre”. Top view high-speed video recordings were made 
in spring 2016 in the context of research performed in the 
 M2OCEAN laboratory regarding the evaluation of postural 
control and locomotion (approved by the local ethics com-
mittee, registration number B300201316320). These record-
ings were used to deduce head rotations. The test subjects 
turned their head in 0.222 s ± 0.064 s over 80.0° ± 11.5° in 
the XY-plane (the plane of the horizontal semicircular canal) 
(see Fig. 3a). We fitted a polynomial through the average 
angular velocity (ω) in order to impose it on the computa-
tional fluid dynamics and finite element analysis models.

In models T, H, O, and F, we used a simplified version 
of this velocity profile, in which the angular velocity first 
increased linearly to the maximal velocity of the polynomial 
(ω = 11.4 rad/s, “ramp up”) over 0.111 s and subsequently 

Fig. 2  3D geometry of the torus (a) and human lateral semicircular 
canal (b). The borders of the ampulla (A′), utricle (U) and narrow 
duct (ND) zones used in the results section are shown by red lines. 
‘Cr’ denotes the crista. The cupula (Cu) walls are depicted with a red 

dashed line in A. The rotation direction of the angular velocity (ω) is 
shown in grey. The insets show a detail of the mesh in the ampulla in 
an oblique view

Fig. 3  Prescribed angular velocity of the relative reference frame. a 
Average (± standard deviation) of measured alarm turn head manoeu-
vre and polynomial fit. b Ramp profile of angular velocity. c Dix-

Hallpike head manoeuvre, calculated with the polynomial described 
by Obrist et al. (2010). The scale of the Y-axis differs between sub-
plots
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linearly decreased back to 0 rad/s in 0.111 s (“ramp down”) 
(see Fig. 3b).

To enable us to make a comparison with the numerical 
simulation model of the human lateral semicircular canal 
by Boselli et al. (2013), we additionally imposed the “Dix-
Hallpike” head manoeuvre on an FSI model (model DH) 
that was, for the rest, identical to model S. This is a clinical 
head manoeuvre that is often used in experiments and simu-
lations, in which the head is rotated in 3 s over 120° in the 
plane of the canal (see Fig. 3c). Hence, it is a much slower 
manoeuvre than the fast alarm turn that we used in the other 
simulations.

2.3  Computational fluid dynamics of the 
endolymph

We modelled the endolymph flow in Ansys Fluent (version 
18.0, Pittsburgh, USA). Due to the low Reynolds number, 
we used a laminar viscous model. We used a pressure-based 
solver with second-order spatial discretization and first-
order implicit time integration for the temporal discretiza-
tion (Ansys Fluent Theory Guide section 21.3.2). The pres-
sure–velocity coupling scheme was “simple”. The material 
properties of the endolymph resemble those of water, so we 
used a density of 998.2 kg/m3 and a viscosity of 0.001 Pa s 
(Steer et al. 1967; Rabbitt et al. 2004; Kassemi et al. 2005; 
Boselli et al. 2013; Grieser et al. 2013). We allowed density 
fluctuations in the FSI simulations (“compressible liquid” 
setting in models F, S, and DH; Ansys Fluent User Manual 
section 7.3.4). This avoided errors in cases of slight fluid 
volume changes due to cupula displacements; this was 
necessary because the model contains no inlets or outlets. 
The fluid density at the end of the time step proved to be 
almost constant, with hardly any variation in space or time 
(< 1e−5). The membranous walls were modelled as ‘no slip’ 
walls.

We inserted the head manoeuvre with a user-defined 
function for frame motion into Fluent in models F, S, and 
DH. The “Define Zone Motion” macro in Fluent allows for 
rotation of the reference frame and causes the walls of the 
geometry to move together with this reference frame. When 
we refer to the “absolute reference frame”, we refer to the 
earthbound frame. In this reference frame, the walls are 
rotating. When we refer to the “relative reference frame”, 
we refer to the reference frame that is moving together 
with the rotating walls. Hence, in the latter case, the walls 
stand still and fluid flow is defined as movement relative to 
these walls. In a rotating and accelerating reference frame, 
we needed to include additional fictitious terms in the NS 
equation, the so-called Coriolis terms, centrifugal terms 
and Euler terms (Batchelor 2007, see also Sect. 2.6). The 
origin of both reference frames is located in the centre of 
the semicircular duct (see Fig. 2). Both the simulation with 

the smooth acceleration profile (model S) and those with 
the ramp velocity profile (models T, H, O and F) were fur-
ther run after the end of the head manoeuvre (from 0.222 to 
0.3 s) at an angular velocity of zero rad/s in order to allow 
the fluid flow and cupula deformations to come to rest. We 
always used a time step size of 0.001 s and 100 iterations per 
time step, which typically resulted in residuals for continuity 
and x-, y-, and z-velocity of 1e−5, 1e−7, 1e−7, and 1e−8, 
respectively.

2.4  Finite element analysis of the cupula

The finite element model of the cupula was constructed in 
Ansys transient structural (version 18.0, Pittsburgh, USA) 
for models F, S, and DH. (In models T and H, the cupula 
walls are modelled as rigid walls; model O does not have a 
cupula.) Consistent with values cited in the literature, we 
used a Young’s modulus of 5.4 Pa and a Poisson ratio of 
0.3 (Kassemi et al. 2005; Selva et al. 2009; Wu et al. 2011; 
Santos et al. 2017a). A fixed support boundary condition 
was used for the cupula elements that touched the walls of 
the membranous labyrinth and crista. The movement of this 
cupula edge as a result of the head manoeuvre was included 
as a “rotational velocity” boundary condition.

2.5  Fluid–structure interaction of endolymph 
and cupula

The fluid–structure interaction of the endolymph (fluid) and 
the (solid) cupula in the F, S, and DH models was performed 
using the system coupling module of ANSYS Workbench 
(version 18.0, Pittsburgh, USA). We transferred the force, 
which was calculated for every fluid element by Fluent, to 
the neighbouring cupula element. Next, we calculated the 
cupula deformation caused by this force in transient Struc-
tural, and we moved the neighbouring fluid elements accord-
ingly. This cycle was repeated seven times for each time 
step of 0.001 s. (This number of repetitions was determined 
after a manual optimization based on the average pressure 
difference over the cupula). Following the FSI manual by 
Ansys, we enabled dynamic remeshing in Fluent, which 
changes the fluid mesh when the fluid elements have to 
move and reshape because of cupula deformations. Further, 
we applied a coefficient-based solution stabilization factor 
of 1.5, which was necessary because FSI simulations that 
include structural materials with a low Young’s modulus 
are often unstable. A slight overestimation of the structural 
deformation would lead to oscillating fluid pressures and 
structural deformations, causing the model to diverge. Solu-
tion stabilization enables a slower increase or decrease in 
the fluid pressure during the iteration process, causing the 
simulation to converge gradually towards the equilibrium 
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between the fluid force and the structural deformation with-
out oscillating around it. This does not influence the final 
outcome of the Fluent calculations (see Ansys Fluent User 
Manual section 10.6.8.7) (Berg 2011).

2.6  Time constants

Two time scales describe the frequency range of head rota-
tions in which the volume displacement of the cupula is 
proportional to the angular velocity of the head (Rabbitt 
et al. 2004). We calculated the short time scale (the viscous 
time constant) as the time lag between head acceleration 
and endolymph velocity in models S and DH (Grieser et al. 
2013). When a head manoeuvre is faster than this constant, 
the vestibular response is attenuated by the inertia of the 
endolymph in the narrow duct (Rabbitt et al. 2004). Addi-
tionally, the long time scale (the cupula time constant) was 
calculated in MATLAB as the relaxation time of the volume 
swept by the cupula in models S and DH (Njeugna et al. 
1992; Obrist et al. 2010; Boselli et al. 2013; Grieser et al. 
2016), i.e. the time lag between the end of the head move-
ment and the instant the volume swept by the cupula reaches 
zero. The cupula did not reach its relaxed shape by the end 
of the simulations, but the volume swept by the cupula did 
decrease towards the end (period indicated with a yellow box 
in Fig. 5b). Hence, we estimated the long time scale using 
a linear regression of the volume swept in this period. As 
previous simulation models suggest that the cupula relaxa-
tion may slow down over time (Obrist 2011; Boselli et al. 
2013), our approach may lead to an underestimation of the 
long time scale. The vestibular response to rotations that 
are slower than the long time scale that is attenuated by the 
stiffness of the cupula (Rabbitt et al. 2004).

2.7  Navier–Stokes terms

To evaluate the relative importance of viscosity, inertia, 
advection, and pressure in our models, we calculated the 
Navier–Stokes terms for all fluid elements with a user-
defined function in Fluent. We used the “Execute At End” 
macro for this purpose, which was run once at the end of 
each time step. Median values were calculated for the zones 
indicated in Fig. 2.

In the absolute (earthbound) reference frame, the 
Navier–Stokes equations for an incompressible fluid without 
external forces are (Batchelor 2007):

with u the fluid velocity vector, P the static pressure, ρ the 
fluid density (998.2 kg/m3), and µ the dynamic viscosity 
(0.001 Pa s).

(1)�
�u

�t
+ �(u ⋅ ∇)u = −∇P + �∇2

u

We also calculated the Navier–Stokes terms in the relative 
(head-bound) reference frame. In this case, we added the 
Coriolis, centrifugal, and Euler terms to the Navier–Stokes 
equations (Batchelor 2007):

with v the fluid velocity vector relative to the velocity of the 
moving reference frame, Ω = (0, 0, ω) the angular velocity 
vector of the moving reference frame, and r the radial coor-
dinate of the endolymph element.

3  Results

3.1  Endolymph flow and pressure

Model S is (together with model DH) the most realistic 
model, including a deformable cupula in a human-shaped 
SCC that is smoothly rotated in anticlockwise direction. 
While the walls accelerate angularly, the fluid near the walls 
is dragged along because of the non-slip condition. As a 
result, the absolute fluid velocity is higher at the outer bor-
der than at the inner border (see Fig. 4a, c), and the relative 
fluid velocity is zero at both borders (see Fig. 4b, d). The 
relative velocity inside the lumen of the SCC stays an order 
of magnitude lower than the velocity of the walls (maximum 
velocity of, respectively, 3.7 × 10−3 m/s and 3.4 × 10−2 m/s). 
Nevertheless, it is instructive to investigate the velocity in 
the relative frame of reference because this is the reference 
frame of the cupula.

The relative velocity is elevated in both the narrow duct 
and the utricle (see Fig. 4b). The elevated relative velocity 
in the narrow duct is caused by the deflecting cupula, which 
allows relative fluid flow towards the concave side of the 
cupula during acceleration (i.e. in clockwise direction; from 
low towards high pressure; see Fig. 4b). In the model with 
a rigid cupula (model H), the cupula does not deform and 
hence, hardly any flow velocity exists in the narrow duct 
relative to the walls. The elevated relative velocity in the 
utricle is present as a vortex that flows in clockwise direction 
during acceleration and suddenly changes direction when the 
walls start decelerating (see Fig. 4e, f). This vortex results 
from the widened shape of the utricle. Hence, it does not 
appear in the model of a torus (model T, see Fig. 4g), while 
it is present in all models with a human geometry (models 
H, F, and S). The vortex still develops in a simulation in 
which the endolymph is modelled as an inviscid fluid (see 
Fig. S2). It has to be noted that this is a purely hypothetical 
situation, in which the relative flow velocities are different 
from those in reality.

(2)
�
�v

�t
+ �(v ⋅ ∇)v = −∇P + �∇2

v − 2� × v −� × (� × r) −
��

�t
× r
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Fig. 4  Endolymph velocity 
in the XY-plane at t = 0.08 s 
(except for F:t = 0.16 s). a and 
c: absolute velocity. b and d–h: 
relative velocity. The colour 
scale is the same for all relative 
velocity plots. Grey arrows 
show the rotation direction of 
the head manoeuvre; black 
arrows schematically show 
the endolymph flow direction 
and have an arbitrary size. It is 
important to note that the rela-
tive flow velocities are very low, 
hence, any given fluid particle 
does not flow entirely from the 
utricle into the ampulla or vice 
versa. c and d show the velocity 
magnitude of the cross sections 
that are indicated with white 
lines in a and b 
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The angular acceleration of the walls causes an endo-
lymph pressure difference over the cupula (see Fig. 5a, b). 
The SCC is accelerated in anticlockwise direction, which 
causes the fluid pressure to increase at the ‘upstream’ 
ampulla halve (positive Y-coordinates) and to decrease at the 
‘downstream’ ampulla halve (negative Y-coordinates) due to 
the inertia of the fluid. This is more clearly visible in model 
H with a rigid cupula (see Fig. 5c), because the deforming 
cupula of model S also influences the pressure distribution 
which complicates the interpretation (see Fig. 5a). This is 
probably the effect of the fluid flow, relative to the rotating 
walls, which is possible when the cupula is deformable. The 
profile of the average pressure difference over the cupula 
is smooth in model S because of its smooth acceleration 
profile and its deformable cupula (see Fig. 5b). In the mod-
els with a ramp velocity profile and a rigid cupula (models 
T and H), the step-like acceleration pattern of the SCC is 
reflected in the pressure velocity profile (rather than having 
a smooth profile, see Fig. 5d, f). For example, in model T, 
the average pressure difference over the cupula is 6.44 Pa 
during the entire acceleration phase and − 6.44 Pa during 
the entire deceleration phase. This equals the theoretically 
predicted average pressure difference of 6.44 Pa based on 
P = F/A = (m × a)/A (with m the endolymph mass, a the lin-
ear acceleration of the walls and A the cross-sectional area of 
the cupula). In model F, a deformable cupula is introduced 
and, as a result, the pressure difference over the cupula rises 
gradually instead of immediately attaining a constant value 
while the walls are accelerating (see Fig. 5g). The average 
pressure difference also remains much lower in models F 
and S with deformable cupulas than in model H with a rigid 
cupula (see Fig. 5b, d, g). Because of the abrupt changes in 
velocity that are imposed on the SCC in model F, numeric 
artefacts arise in the pressure difference over the cupula 
at the onset and end of acceleration and deceleration (see 
Fig. 5g). This is the downside of the simple ramp veloc-
ity profile, which we used in model T and H for ease of 
interpretation.

3.2  Cupula deformation and strain

The finite element analysis part of the fluid–structure inter-
action model shows how the cupula deforms during the 
head manoeuvre. Initially, the cupula deforms asymmetri-
cally: at the outer side of the ampulla (near the crista), it 
bulges in clockwise direction; while at the inner side of the 

ampulla, it bulges in anticlockwise direction (see Fig. 6a, 
b, supplementary movie S12). The velocity profile of the 
cupula resembles the fluid velocity profile at the same 
location in the model with an open ampulla in these initial 
time steps (model O; see Fig. 6b), but the amplitude of the 
cupula velocity is lower (47.6% of the maximal fluid veloc-
ity in model O). Gradually, the deformation at the outside 
increases at the expense of the bulge in anticlockwise direc-
tion until the latter disappears at 0.05 s. The cupula shape 
remains more or less symmetrical until 0.034 s before the 
end of the head manoeuvre, when the cupula starts bulging 
in anticlockwise direction near the crista (see Fig. 6a). This 
gradually increases and eventually becomes larger than the 
bulge in clockwise direction at the inner side of the ampulla. 
After the end of the head manoeuvre, this overshoot in anti-
clockwise direction fades away in 3.33 s; which defines the 
long time scale of the system.

While the cupula displacement increases during head 
acceleration, the maximal strain at the crista surface rises 
(see Fig. 6c). During deceleration, the cupula displace-
ment and strain decrease, until the cupula overshoot leads 
to a small increase in cupula strain at the end of the head 
manoeuvre (see Fig. 6c). During the entire head manoeuvre 
(also when the cupula deforms asymmetrically), the elas-
tic equivalent strain (Von-Mises strain) is the highest at the 
centre of the crista and decreases towards the periphery (see 
Fig. 6e). In a hypothetical simulation of a cupula without 
crista (i.e. an oval, disc-shaped cupula), on the other hand, 
the strain at the cupula attachment surface is the highest at 
the edges and minimal in the centre (see Fig. 6f).

3.3  Dix‑Hallpike manoeuvre

Due to the lower head acceleration (angular head velocity up 
to, respectively, 87°/s and 653°/s), the cupula displacement 
is smaller during the Dix-Hallpike manoeuvre than dur-
ing the alarm turn manoeuvre (volume displacement up to, 
respectively, 2.7 × 10−12 m3 and 2.2 × 10−11 m3, see Fig. 5b, 
h). While the cupula hardly overshoots its relaxed position 
in the alarm turn head manoeuvre, there is a pronounced 
cupula overshoot in the slower Dix-Hallpike manoeuvre. 
The overshoot in the Dix-Hallpike simulation is larger than 
found in the numerical simulation model with an implicitly 
modelled cupula by Boselli et al. (2013). Further, the gen-
eral shape of the volume displacement profile is similar, the 
maximal values lie close together (respectively, 2.7e−12 m3 
and 2.4e−12 m3) and the overshoot starts at approximately 
the same time (at 2.3 s and 2.5 s, respectively).

3.4  Navier–Stokes terms

In the relative reference frame (which is perhaps the most 
relevant reference frame because the cupula is attached to 

Fig. 5  Endolymph pressure and cupula volume displacement. a, 
c and e: Contours plots of the endolymph pressure in the XY-plane 
at t = 0.08  s. Grey arrows show the rotation direction of the head 
manoeuvre. b, d, f, g and h: Time profile of the pressure difference 
over the cupula (averaged across its surface) and of the volume swept 
by the cupula

◂
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Fig. 6  Cupula displacement 
and strain in model S. a Cupula 
displacement through time. The 
total displacement is scaled to 
the same magnitude for all time 
steps. b Velocity of the cupula 
interaction surface in model S 
and endolymph velocity at the 
same location in model O at 
t = 0.002 s. c Maximal cupula 
strain at the crista surface (blue 
solid line) and the angular 
velocity of the head manoeuvre 
(orange dashed line) through 
time. d XY-view (top view) of 
the cupula displacement. e YZ-
view (view from the crista into 
the cupula) of the cupula strain. 
The line graph shows the strain 
of the crista surface cross sec-
tion shown by the dotted line. f 
Displacement in XY-view (left) 
and strain in YZ-view (right) of 
a cupula without crista (i.e. an 
oval shaped disc) under a static 
pressure of 0.26 Pa. The colour 
scales are the same as in c and 
d. The cupula displacement in 
d–f is enlarged by a factor of 
15 for visualization purposes. 
Cl Clockwise direction, ACl 
anticlockwise direction, I inner 
side of the cupula, O outer side 
of the cupula (where the crista 
is located)
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it), the determining NS terms for model T are the pressure 
gradient, the centrifugal term, and the Euler term (see Fig. 
S3), which all have a similar order of magnitude. Due to 
the spinup/spindown of the model, the magnitude of the 
Euler term ( ��

�t
× r ) becomes important, and this is bal-

anced by the pressure gradient. The result is a gradual 
increase in endolymph pressure from the ‘lower’ side of 
the cupula (with negative Y-coordinate) to the ‘upper’ side 
of the cupula (see Fig. 5e). This causes the pressure dif-
ference over the cupula (which, in turn, deforms when 
it is modelled as a flexible material). In the perpendic-
ular direction (see, e.g. Fig. S3A), the centrifugal term 
( � × (� × r) ) is high. Because the centrifugal force is 
oriented perpendicular to the force caused by the Euler 
term, the isobars are skewed, rather than being oriented 
radially (see Fig. 5e). In the absolute reference frame, the 
advective and inertial terms balance the pressure gradient, 

instead of the centrifugal and Euler terms (see Figs. S3 and 
S4). The importance of the absolute inertial term is caused 
by the increase in absolute velocity through time, i.e. the 
velocity in the absolute frame of reference and not relative 
to the walls of the model (see Fig. 4).

Model H has a human geometry, rather than a simple 
toroidal shape. Nevertheless, the time profiles of the NS 
terms are very similar to those of model T, both in the rela-
tive and in the absolute frames of reference (see Figs. S5 
and S6). In models F and O, the viscous and inertial terms 
are elevated in the narrow duct due to the fluid flow at this 
location (see Figs. S7–S10).

In model S, a realistic smooth angular acceleration is 
imposed on the reference frame, rather than a stepwise ramp 
function as in model F (see Fig. 3). The resulting time pro-
files of the NS terms are also smooth, but apart from this 
shape difference, the patterns are very similar to those of 

Fig. 7  Navier–Stokes terms 
in the relative reference frame 
of model S in X-direction (a, 
c, e) and Y-direction (b, d, f). 
Median values are given for the 
ampulla (a, b), narrow duct (c, 
d), and utricle (e, f). For the 
definition of these zones, see 
Fig. 2
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model F (see relative importance of NS terms in Fig. 7 and 
S9). In summary, the Euler and centrifugal terms rise due to 
the spinup of the reference frame, and these terms are bal-
anced by a pressure gradient. The resulting pressure differ-
ence over the cupula deforms this flexible sensory structure 
(see Fig. 5a, b, 6 and S1). In turn, this leads to relative flow 
in the narrow duct (see Fig. 4b, S1), causing elevated vis-
cous and inertial terms at this location.

4  Discussion

4.1  Effect of the endolymph vortex on cupula 
displacement

During head rotation, a vortex develops in the utricle which 
flows in the opposite direction of the imposed acceleration, 
but only in the relative frame of reference. This vortex is 
probably caused by fictitious forces (the Euler and centrifu-
gal forces), rather than by turbulence or vortex shedding (see 
Fig. 7). Hence, the vortex still appears in a (purely hypotheti-
cal) inviscid simulation (see Fig. S2). Boselli et al. (2013) 
were the first to describe this vortex, and they predicted that 
it may increase cupula displacement and shear strain near 
the crista of the cupula. In the numeric fluid simulation of 
Boselli et al. (2013) and in our model with an open ampulla 
(model O), the vortex causes flow in a clockwise direction 
in the outer half of the ampulla (near the crista) and flow in 
an anticlockwise direction in the inner half of the ampulla 
(see Fig. 4h). In our FSI simulations, the finite element 
model of the cupula blocks the endolymph flow. However, 
at the onset of the head manoeuvre, the restorative elastic 
forces in the cupula are still low. As a result, the velocity 
profile of the cupula strongly resembles the endolymph 
velocity profile of a model with an open ampulla (model 
O, albeit with a lower amplitude), deflecting in clockwise 
direction at the outer halve of the ampulla (near the crista) 
and flowing in anticlockwise direction at the inner halve of 
the ampulla (see Fig. 4h, 6b). This asymmetric, S-shaped 
cupula displacement increases the deflection of the hair cells 
that are embedded in the cupula, as suggested by Boselli 
et al. (2013). For the same maximal cupula displacement, 
the angular deflection at the crista would be much smaller 
when the cupula deformed symmetrically. Hence, the asym-
metric cupula displacement enhances the sensitivity of the 
system, and this happens when it is most needed: at the onset 
(and end) of the head manoeuvre, when the accelerations to 
be sensed are small.

4.2  Cupula strain

Head rotations are sensed by the vestibular system when 
sensory hair bundles on the crista surface in the cupula 

are deflected. The amount of shear strain between the hair 
bundles in the cupula determines the amount of stimula-
tion of the hair cells in the crista (Rabbitt et al. 2004). 
We found the highest strain in the cupula is exactly at the 
location where the hair bundles are embedded. The same 
was reported by Selva et al. (2009) for a human cupula, 
based on FEM simulations (without FSI). They found a 
maximal cupula displacement of 8.5 µm for a pressure 
difference over the cupula of 0.05 Pa. We found a maximal 
cupula displacement of 44.2 µm in model S (which is 5.20 
times more than Selva). Because the maximal pressure 
difference in our model (0.27 Pa) is 5.37 times more than 
simulated by Selva et al., the results can be considered as 
highly similar. The maximal strain is located at the centre 
of the crista due to the geometry of the cupula and in par-
ticular due to the convex shape of the crista that protrudes 
into the cupula. The small part of the cupula that attaches 
to the flanks of the crista, can hardly deflect under the 
imposed fluid pressure. It is mainly the rest of the cupula, 
which extends from the top of the crista to the roof of 
the ampulla, that deforms during the head manoeuvre (see 
Fig. 6d). As this main body of the cupula stretches over 
the top of the crista, strain accumulates at this location.

The location with the highest strain (the central part of 
the crista) is also the zone with the most sensitive neu-
ral afferents (Eatock and Songer 2011). These irregularly 
spiking afferents are most probably specialized in fast and 
reliable signal transmission (Goldberg and Fernández 
1977; Goldberg 2000). They are also more sensitive to 
velocity changes than the regularly spiking afferents from 
the periphery of the crista (Goldberg 2000). Together, the 
geometry of the crista, the discussed flow patterns, and the 
transmission characteristics of the afferents in the central 
zone seem optimally adapted for sensing short and small 
cupula displacements and make the vestibular system very 
sensitive to even the finest head manoeuvres.

4.3  Time scales and cupula overshoot

The calculated short and long time scales in the most real-
istic model (i.e. in model S; time scales of, respectively, 
0.014 s and 3.33 s) agree with values reported in the lit-
erature based on both models and experiments (Muller 
1990; Dai et al. 1999; Obrist 2011). The long time scale 
reflects the time required for the cupula to return from its 
overshot deformed state to its relaxed state after the end 
of the head manoeuvre. The overshoot occurs because the 
cupula already starts relaxing during the head manoeuvre. 
Combined with its backward movement during head decel-
eration, this causes the cupula to overshoot its relaxed 
position (Obrist et al. 2010). Since the long time scale is 
in the order of a couple of seconds, it is logical that the 
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overshoot is very small and occurs only at the very end of 
the short alarm turn head manoeuvre.

4.4  Vestibular system mechanics interpreted 
in the relative reference frame

The vestibular system senses head manoeuvres because, 
when the endolymph fluid lags behind due to inertia, endo-
lymph flow deforms the cupula (Kandel et al. 1991; Muller 
and Verhagen 2002; Rabbitt et al. 2004, 2009; Angelaki 
and Cullen 2008; Latash 2008; Ekdale 2016; Grohé et al. 
2016; Djukic and Filipovic 2017). This is a reasoning in 
the absolute frame of reference. The cupulas are attached 
to vestibular system walls, and, therefore, they are attached 
to a relative (co-rotating) frame of reference. The pres-
sure distribution, which causes the cupula to deflect, is 
the same in both the relative and the absolute frame of 
reference. However, the NS equations show that the inter-
pretation of the mechanical cause of the pressure distri-
bution depends on the reference frame that is taken into 
consideration. In the absolute frame of reference, it is the 
inertial term (related to the high absolute endolymph flow 
velocity) that balances the pressure distribution in Y-direc-
tion in the ampulla (see Fig. S11B). In the relative frame 
of reference, on the other hand, the endolymph velocity 
stays very low in the ampulla (see Fig. 4b). Here, it is the 
Euler term, rather than the inertial term, that balances the 
pressure distribution in Y-direction (see Fig. 7b). Since the 
Euler term does not depend on the flow velocity relative to 
the (rotating) labyrinth wall, no high relative endolymph 
flow is necessary for the cupula to deflect.

4.5  Usefulness of simplified models

Given the technical challenge of creating a fluid–structure 
interaction model, it is worth questioning when it is really 
necessary to construct such a detailed simulation model. 
Obviously, only an FSI model provides the detailed strain 
distribution in the cupula in response to the endolymph 
dynamics. However, we also found that simplified models, 
with a stylized geometry and/or a rigid cupula yield very 
similar NS terms and endolymph flow as more realistic 
models with a deformable cupula and smooth velocity 
profile.
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