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Abstract

The recursive Kalman filter as unbiased and minimum variance stochastic linear estimator
has been applied to a huge range of real-time applications and engineering domains since
its development in 1960. However, in practice the theory is mostly limited to small-scale
problems. The limitation is due to the necessary and computationally demanding solution
of the associated discrete algebraic Riccati equation. Many engineering problems nowadays
have a large-scale character with many states and outputs in a representative state-space
model. Challenges for example in the field of adaptive optics, (power) networks or traffic
systems could benefit from large-scale real-time Kalman filtering to improve the performance
of control algorithms.

A possible mathematical framework to lift the curse of dimensionality is to lift the problem
in higher dimensions with the use of tensors and then decompose it. The tensor-train de-
composition is an often chosen tool which can yield in combination with multilinear tensor
algebra a great decrease in computational complexity. An example for models which can be
used computationally effective in this framework are models consisting of sums of Kronecker
products.

A tensor Kalman filter for systems with exponentially large state vectors has been developed
in literature and been successfully applied to the system identification of nonlinear Volterra
systems. All variables within this filter are in tensor-train format and use a higher order
generalization of the matrix Kalman filter equation by means of multilinear algebra on single
tensor cores. However, this theory has two main limitations. First, if the system dynamics
in tensor-train format have the inherent property of high tensor-train ranks, the algorithmic
operations and therefore the complete filter becomes considerably slow. Second, the developed
theory does not provide a framework for Kalman filtering of Multiple-Input Multiple-Output
(MIMO) systems with exponentially large output vectors.

This thesis tries to cover both issues independently. For the first limitation a method is
developed to truncate the tensor-train rank of the covariances within the filter to lower values,
which yields fast and still highly accurate estimations. Furthermore, a possible framework
for a MIMO tensor Kalman filter based on specific properties of the system output equation
and a low measurement noise assumption is presented.
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Both methods combined have been tested on the application of adaptive optics. The next
generation of telescopes requires adaptive optics control systems and real-time estimation
algorithm for several tens of thousands of outputs and states at high sampling rates. The
developed theory has been shown to hold a new design paradigm between a high gain in terms
of computational time and a loss of accuracy.

With these methods the thesis provides a complete overview on tensor-train operations and
a rigorous introduction for future research in this direction. Many unsolved problems remain
such as a general fast inverse in tensor-train format or a square root tensor Kalman filter
implementation as numerically required for many practical applications.
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Chapter 1

Introduction

Filtering, state estimation and state propagation are crucial steps in the analysis and design
of complex control systems. Engineering solutions ask for optimal estimation algorithms.
The Kalman filter [18] yields an unbiased, minimum variance solution to this problem. The
filter requires a linear model of the system. Within this thesis autonomous discrete-time
state-space models are considered as visualized in Fig. 1-1 and given by

Xp+1 = ApXg + Wi

(1-1)

Vi = Cpxp + vy

with exponentially large state and output vector as x € R"d, Yy € RP" and with Gaussian
process and measurement noise wy ~ (0, Q) and v ~ (0, Ry), respectively. The theory can
straightforwardly be extended for non-autonomous system by including the input dynamics.
Note that the general time-varying system description is chosen.

. . "
Xk+1 Xk & Yk
A

Figure 1-1: Block diagram of autonomous time-varying discrete-time state-space description as
used for Kalman filtering

Nowadays the Kalman filter is the method of choice in multiple engineering problems and
domains. It is successfully applied in the field of signal processing, robotics, instrumentation,
sensorless control, i.e. in general industrial applications [1, 8] but also in the field of aerospace
[13] or finance [2]. One feature that all these applications have in common is the small-scale
property of the problem. This property is the inherent limitation of the Kalman filter. The
basis of the filter builds the associated Discrete Algebraic Riccati Equation (DARE) [17]
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2 Introduction

which is recursively solved. Computationally effective solutions are only obtained for small-
scale problems. Meaning a small number of states and outputs. There are two main problems
for large-scale systems:

1. Storage of system matrices: If the system is exponentially large, the storage of the
exponentially large system matrices may become prohibitive in the conventional matrix
format.

2. Computational complexity: The recursive computation of the covariance matrices (fil-
tered and predicted) requires an order of O (n3d) algebraic operations and the inverse

for the Kalman gain requires O <p3d> for the exponentially large system. Even for small
n, d this becomes easily infeasible to compute on-line in real-time.

The goal of this thesis is to design a Kalman filter for large-scale real-time problems. The
method of choice are tensor decompositions to lift the curse of dimensionality. These decom-
position allow to reduce the storage requirement and computational complexity for a certain
type of system descriptions such that computational complexity becomes linear in d instead of
exponential. The developed algorithm will be verified on the application of Adaptive Optics
(AO). For the next generation of telescopes, like the European Extremely Large Telescope
(E-ELT) with a primary mirror of about 40 [m] the number of measurements and states for
estimation will lie in the order of several tens of thousands [12]. Hence, large-scale Kalman
filters which are capable to estimate the states in real-time are required.

The main part of the thesis consists of two papers in chapter 4 and chapter 5, respectively.
The papers are printed in this thesis as accepted to the EUSIPCO conference and as a first
draft for the IEEE transactions on control systems technology journal. Both can be read
standalone. Therefore, note that the numbering of the references within the papers does not
necessarily match the ones within this thesis. In front of the printout of each paper, the main
points are summarized and some editorial information is provided in the dedicated chapters.
In order to simplify the understanding of the paper due to an extensive use of tensor calculus,
supplementary material for the introduction to tensors in presented in chapter 2. This includes
the mathematical background for tensor calculus, the used Tensor-Train (TT) decomposition
and several important algorithms. The tensor introduction may go in some points beyond
the used theory of this thesis but is beneficial for a reader to get familiar with the concepts
and to understand tensor calculus clearer. An introduction to AO that is more elaborate and
extensive than in the paper is given in chapter 3 such that the verification application within
the second paper can be understood in great detail. The thesis is concluded in chapter 6.
The main results are summarized and limitations are highlighted. This draws the way for
future developments and improvements of the developed theory. Supplementary material of
ideas to overcome the limitations are attached in Appendix A.
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Chapter 2

Introduction to Tensors

2-1 General

2-1-1 Definition

In this thesis a tensor is considered to be a multidimensional array as an extension to scalars,
vectors or matrices for higher orders. In a vector each entry has one index, in a matrix there
are two indices and in an order-d tensor each entry has d indices. Scalars are denoted as
Roman letters z € R , vectors as lower-case boldface letters x € Rt matrices as capital bold
letters X € R11*%2 Tensors of order-d are given as capital calligraphic letters X € RI1xx1a,
Note that also vectors or matrices can be written as order-1 or order-2 tensors. The size
of the dimension indices goes I, = i1,...,iy. In a sequence of tensors, the ith element is
denoted with a superscript in round letters, e.g. X®) is the third tensor in the sequence. Note
that the word index and mode of a tensor are interchangeable. Elaborate and highly useful
introductions to tensors are given in [9, 19]. In the following more necessary definitions are
given.

Kronecker Product [38] Take two matrices A € RI1*%2 and B € R/1*/2. Their Kronecker
product is given by

a1 B - a;,B
A®B= : .. . e RI1J1xI2J2 (2-1)

a1 B -+ a;,B

The Kronecker product is in multiple ways connected to tensor calculus. This is exploited in
more detail in the following subsections.

Fiber [9] A fiber is the higher order equivalent to column or row vectors within a matrix.
By fixing all indices but the nth index, the mode-n fiber is generated.

Master of Science Thesis Daniel Gedon



4 Introduction to Tensors

Vectorization [9] A rearrangement of all mode-1 fibers of an order-d tensor in a column
vector is performed. The operation is denoted by vec(X).

Matricification [9] A rearrangement of all mode-n fibers as column vectors of a matrix is
performed to obtain a mode-n matricification. This operation is also called unfolding. The
operation is denoted with subscripts in round brackets, for example the mode-2 matricification
of a tensor X is given by X(3). A visualization for the matricification with use of mode-n
fibers is visualized for an order-3 tensor in Fig. 2-1.

v
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(a) (b)

Figure 2-1: Tensor with fibers and different modes of matricization. (a) Representation of
order-3 tensor X € RI1*12xIs with [} = 3, I, = 2, I3 = 2 in a cubical representation. (b)
Top panel: mode-1 fibers and matricization X ;). Middle panel: mode-2 fibers and matricization
X (2)- Bottom panel: mode-3 fibers and matricization X 3).

Tensorization [9] This is the reverse operation of the vectorization or matricification. It uses
reshuffling and reshaping of the values and is given by Matlab notation reshape(X, [I1, ..., I4]).
Tensorization is not unique and specified for each operation.

Rank-1 Tensor [19] An order-d tensor X is said to be rank-1 if it can exactly be described
by an outer product of d vectors, mathematically given by

X=xWo...0x@ (2-2)

Tensor Rank [19] The tensor rank R is a generalization of the matrix rank to higher orders.
It is the minimum number of summations R of rank-1 tensors such that the order-d tensor X
is described exactly. This can be expressed as

R
X = Z xMo.. .o xﬁd) (2-3)
r=1
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2-1 General 5

TN Diagram A useful way to visualize and intuitively understand higher order tensors is by
means of Tensor Network (TN) diagrams. An introduction to TN theory and the visualization
in TN diagrams is given in [25] but also in [9]. These diagrams visualize a single tensor core
as circle with free lines connected to the core. The number of free lines indicates the order
of the tensor. Each line is indexed, representing the size in that dimension of the tensor. An
example for tensors of order-0 to order-3 is given in Fig. 2-2.

O Q Q[

Scalar Vector Matrix Tensor Order-3
z€eR x € RI X e RhixI2  x ¢ RhixIaxIs

Figure 2-2: Example of a scalar x, a vector x, a matrix X and an order-3 tensor X as TN
diagram representation.

2-1-2 Basic Multilinear Tensor Operations

Multilinear operations have to be defined. They depict higher order equivalents to vector and
matrix operations and are necessary in order to use higher order tensors mathematically.

Mode-n matrix product (contraction) [9, 19] This operation describes the higher order
multiplication of an order-d tensor with a matrix. The matrix can be multiplied in any mode
with the tensor, therefore the operator indicates which mode of the tensor is used. Take an
order-d tensor A € RI1<*la and a matrix B € R/1*/2 with common mode I,, = Jo. The
mode-n product will yield an order-d tensor which is formally given by

C = A X Bc R11><~--><]n71><J1><In+1><-~~><fd (2_4)

The operator denotes in its subscript the index or mode of contraction. Sizes in this mode
and the one of the associated matrix have to match. The entries of the new tensor are then
computed by element-wise summations as

I,
Cit st i1 via = D B esiimsoesiaDisin (2-5)

in

This equation yields that there are O (1115 ... 1) algebraic operations necessary for the com-
putation of the tensor-matrix contraction.

Remark: The mode-n product can equivalently be written with mode-n matricifications as

C(n) = BA(n) (2—6)

Mode-m,n tensor product (tensor contraction) [9] This is a generalization of the mode-n
matrix product for two tensors. Take two tensors of order-d A € R1**1a and of order-k
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6 Introduction to Tensors

B € R7*Jk with common mode I,, = Jy,,. The contraction yields an order-(d + k — 2)
tensor, formally given by

C=Ax™B (2-7)

The operator denotes that the nth mode of tensor A is contracted with the mth mode of
tensor B. The entries of the new tensor C are computed element-wise by

In
Cityessin—15Tn4 15 8d T Ly im—Todm+ 10k E : Qi yeorgin—1sinsin1seensiaOi oo 1o 1yeeesdi (2-8)
in=1
With this the computational complexity can be written as

O Iy Tyidpyy . Iy Ty Tt Tt - J) (2-9)

Note that the mode-m,n product is in general not associative or commutative [9]. In the
following several application of the mode-m,n tensor product which are distinct matrix-vector
operations for lower order are presented. This should yield a more intuitive understanding of
the multilinear operations.

Example: Inner product Take two vectors a € R’ and b € R/t of the same size. The
example is visualized in Fig. 2-3. The free indices of each vector can be visually connected
since they are of the same size. After connection, the resulting tensor with two cores can be
contracted to one single tensor core. This resulting core has zero free indices, i.e. a scalar.
Mathematically the operation is given with multilinear operations by

c=axib (2-10)

yielding in matrix notation

ni
c= Z a;, b, =a-b (2-11)

i1=1

This operation requires a total of O (I1) algebraic operations.

L 1
OO

©

Figure 2-3: TN diagram of inner product of two vectors resulting in a scalar
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2-1 General 7

Example: Outer product Take two vectors a € Rt and b € R’2 as visualized in Fig. 2-4.
However, in contrast to the inner product example the two cores cannot be connected since
the indices have different sizes. A simple trick is to extend the tensor cores with singular
additional indices resulting in a € RI1*1 b € R2X1. These singular indices can be connected
and in the next step contracted to a resulting matrix. In tensor notation this yields

C=ax3b (2-12)
or in matrix notation
C=ab' =aob (2-13)
or element-wise
1
Ciria = Y _ iy by, (2-14)
i=1

The latter yields the number of algebraic operations as O (I113) for the outer product of two

vectors.
1 1
o
, 1 ,
I I

v

I |1

Figure 2-4: TN diagram of outer product of two vectors resulting in a matrix

3]

~

Example: Tensor outer product Take two tensors of order-d A € R1**1a and of order-k
B € R7*Jk without common mode. An extension with a singular index is possible. The
contraction in this singular index is then given by

C=AxIB (2-15)
which yields an order-(d+ k) tensor. Note the similarity to the mode-m,n product in eq. (2-7).

Hence, the tensor outer product and the tensor contraction operation are closely related.

Example: Matrix product Take two matrices A € R"*%2 and B € R’2*%3, Their common
mode with size I can be connected and contracted to a single core. This is visualized in
Fig. 2-5 and mathematically given by

C=AxiB (2-16)

Master of Science Thesis Daniel Gedon



8 Introduction to Tensors

or in matrix notation

C=AB=AoB' (2-17)
or element-wise
Ip)
Ciy iz = Z ail,izbi2,i3 (2'18)
ia=1

This yields the number of algebraic operations as O (I11313) for the matrix product.

I |13

Figure 2-5: TN diagram of matrix product

As highlighted in all these examples the computational complexity of the operations by using
the mode-m,n product is equal to the one in matrix notation. No computational advantage
is obtained by simply using tensor notation and operations. However, special decompositions
of the tensors can yield an advantage and are introduced in the following.

2-2 TT Decomposition

2-2-1 Definition

TT-Decomposition The Tensor-Train (TT) decomposition is introduced in [26] after previ-
ous work in [28, 31, 32]. A Matlab toolbox is available in [30]. The decomposition takes one
order-d tensor and decomposes it in d order-3 tensor cores. These cores are connected in a
line network. An example is given in Fig. 2-6. It shows the reshaping of a vector a € R" in

an order-3 tensor A € R™™ "™ and its decomposition in a T'T where all TT-cores are of size
AW ¢ Rri-1Xnixri

Figure 2-6: TN diagram of a vector on the left, reshaping to an order-d tensor in the middle and
the result of its TT-decomposition on the right

The interconnecting indices 7; in mode-1 and mode-3 of each core are called TT-ranks, which
play a crucial role in the computational complexity. The maximum TT-rank over all rg

Daniel Gedon Master of Science Thesis



2-2 TT Decomposition 9

is defined as r = ttr (X). Note that the boundary conditions for the TT-decomposition is
rg = rq = 1. Mathematically the TT-decomposition of a tensor is given with multilinear
operations as

A=AWD 1. %l A@ (2-19)

This means as demonstrated in Fig. 2-6 that mode-3 of tensor core ¢ is connected and con-
tracted with mode-1 of tensor core i + 1.

TT-Matrix [32] The TT-decomposition can be extended to matrices. Take for example a
matrix A € R"*"" which can be reshaped in an order-6 tensor A € R™**"_ This tensor can
then be decomposed in a TT-matrix where each core has size A®) € Rri-1%nixnix7i  Hepce,
a TT-matrix is a decomposition of an order-2d tensor in d order-4 tensors. The described
example is visualized in Fig. 2-7. The decomposition is mathematically then given by

A= AN xl..ox) A (2-20)

Figure 2-7: TN diagram of the reshaping of a matrix in a tensor and its decomposition in a
TT-matrix.

Relation with Kronecker Models [37] A close relation exists between a TT-model and a
model of Kronecker products, mathematically given by

R
A=Y ADg...eAl (2-21)
r=1

where R is the Kronecker rank. This is equal to a TT-matrix if the Kronecker rank R is equal
to the TT-ranks r; and if the TT-ranks are equal for all tensor cores. Note the reversed order
of the subcores in the Kronecker model.

To make this connection clear, take a Kronecker model with Kronecker rank one and an
equivalent TT with TT-rank of one. If all tensor cores in the TT-matrix have TT-rank one,
then they can be squeezed to matrices. Hence, the mode-m,n product turns into its linear
equivalent, the outer product. The two models are equivalent. The latter results since for
two matrices A € RI1*2 and B € R/1*/2 the (matrix) outer product over a singular index
A o B € RIxI2xixJ2 gnd the Kronecker product A ® B € RI/1xB2 are interrelated by
reshuffling and permutations of the indices.

For higher Kronecker ranks and TT-ranks, this results in a concatenation of the single Kro-
necker submatrices in the tensor cores with the additional degree of freedom by the TT-rank,
see e.g. [26]. The demonstration of the Kronecker and TT-model connection also highlights
that the TT-model is more general than the Kronecker model since the latter is bounded to
uniform ranks over all cores, while the TT-model can have different TT-ranks.
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10 Introduction to Tensors

Orthogonality [16] The concept of orthogonality is important for the numeric stability of
multiple TT-algorithms; for numeric benefits see e.g. [22]. It is defined for each core of a TT
as left- or right-orthogonality. Take one TT core as XV e R -1X7ix7i Tt is defined to be
left-orthogonal if the transpose of its mode-3 matricification into X € R"-1"*"i yields

X'X =1, (2-22)

Furthermore it is said to be right orthogonal if its mode-1 matricification into X € R"i-1%"i"i
yields

XX =1 (2-23)

Ti—1

In practice orthogonalization of tensor cores is done core-wise by a QR-decomposition. There-
fore, core 7 is matricified; the orthogonal part is kept for core i and the non-orthogonal part is
merged with core i + 1 or ¢ — 1 depending on the direction of orthogonalization (left-to-right
or right-to-left).

2-2-2 Multilinear Operations on TTs

Multilinear operations can be executed on TTs. This is demonstrated in the following with
two examples.

Multidimensional contraction Take two T'Ts with tensor cores defined as A € R7i—1xmxnxr;
and B e Rri-1xnxmxri for ; — 1 ... d. The contraction is executed core-wise as

i) = AN X280 =1, .. .d (2-24)

The example is visualized in Fig.2-8 where the common indices of .A®) and B are connected
and contracted in the next step. The computational complexity of each core is given by
O (rznmz) assuming that all TT-ranks are equal to r. The complete complexity is given by
O (drzan). Note that the T'T-ranks multiply after contraction as indicated in Fig. 2-8.

Compare the TT contraction with an equivalent representation of matrix multiplication. Take
A € R and B € R*>™". The multiplication C = AB requires a total of O (ndm2d
algebraic operations. Hence, the operation in TT-format is more effective for low TT-ranks
since it is only linear in d instead of exponential. Low TT-rank models are obtained e.g. by
Kronecker models with low Kronecker rank, are separable systems and functions.

Addition [26] The addition of two TTs with the same number of tensor cores is a simple
concatenation of each tensor core. The TT-ranks are added. This additional size in the TT-
ranks is used to concatenate the two TTs. Take for example two TTs with cores of equal size
as AW B0 ¢ Rri-1%xnx7i  Then the addition will yield

4 (@)
- [Ao B%»] €R¥MI for =2, d—1 (2-25)
and for the border cores
d
c) — {A(l) B(l)} c RanX2Ti; cld — [“g((d))l € R2ri-1xnx1 (2-26)

Due to the concatenation no algebraic operations are needed.
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2-3 Basic algorithms 11

Figure 2-8: Contraction of two TTs over their common index.

2-3 Basic algorithms

In this section several algorithms which are given in literature for TTs are presented. They
are used in the development of the MIMO tensor Kalman filter. The section should give an
introduction to make the reader familiar with core-wise operations in TT-algorithms.

2-3-1 TT-Rounding

In the previous section it is shown that after contraction of two TTs their TT-ranks multiply
and after addition their TT-ranks add. Hence, in the result of multilinear operations the
TT-ranks can be suboptimal meaning that an equivalent representation of the TT regarding
a given accuracy can be achieved with lower TT-ranks. This truncation of the TT-ranks is
accomplished by the TT-rounding algorithm as presented in [26]. It is especially important
in recursive algorithms with recursive use of multilinear operations. If no TT-rounding is
performed, the TT-ranks grow in each operations and will slow done further multilinear
operations due to the dependency on the TT-ranks.

The TT-rounding algorithm is based on truncated SVDs of matricified tensor cores. All cores
have to be orthogonalized except the one, which is operated on. The algorithm consists of
two main parts

1. Right-to-left orthogonalization of cores:
Starting from core d until core 2 an economy-size QR-decomposition of the tensor core
X ¢ Rri-1XmiX7i mode-1 matricified to X € R7-1%""i is performed as QR =qr(X).
The orthogonal part Q is reshaped to Q € R"-1X%X"i for the new core X@. The
non-orthogonal part R is combined with the tensor core i.

2. — truncated SVD compression of orthogonalized cores:
The non-orthogonal core X() € R"~1*"X7i is matrizified with the transpose of the
mode-3 matricification to a new core X € R"i-1"*"i A j-truncated SVD of this core
is computed as USV' = svdg(X). The left-orthogonal matrix U is reshaped into
U € RTi-1%1iXTi 6 be the new core XD, The remaining part SV is merged with
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12 Introduction to Tensors

the 7 4+ 1th core. Then, the truncated SVD is computed for this next core. This process
is repeated from core 1 until core d until all cores are truncated.

The threshold for the truncation in the §-SVD is computed by the Frobenius norm of the
complete TT by

5 (2-27)

€
= |IX
—— Xl

where € is a prescribed accuracy of the TT.

2-3-2  Vector/Matrix Conversion to TT

Often data is given in matrix or vector format. In order to convert it to T'T-format a conversion
algorithm is necessary. Two main algorithms are used. The TT-cross approximation [31] and
the TT-SVD algorithm [26]. The latter is explained in the following.

Similar to the second step of the TT-rounding algorithm the TT-SVD is based on a sequence
of §-truncated SVDs. The truncation threshold is computed in the same way as for the TT-
rounding with Eq. (2-27). As input to the algorithm an order-d tensor is required which can
be obtained by reshaping of an exponentially large matrix or vector.

The algorithm initializes the first TT-rank with the boundary condition ro = 1. The input

numel(X)

tensor X € R > X"d jg first matricified into X € R ri-1m A §-truncated SVD of this
matricification is computed as USV'" = svds(X). The TT-rank r; is computed as d-truncated
rank of S. The left-orthogonal part U is reshaped to U € R"i-1%"%"i a5 core X0 The residual

part SV is then used for the next d-truncation in an SVD after appropriate reshaping into
numel(SVT)
Ti—1Mi X —/——/————=

SV' eR ri-1m - This operations are repeated for cores i = 1,...,d — 1. For the
last core the TT-rank is given by the boundary condition r; = 1. Hence, the remaining part
of the last d—truncated SVD SV is reshaped into X4 ¢ Rri-1xnix1,

Ti—1M; X

The algorithm yields an optimal conversion with respect to the given accuracy e due to the fact
that the conversion uses §-truncated SVDs in the same way as the TT-rounding algorithm.
All cores except from core d are inherently orthogonal, with the norm being completely in
core d.

2-3-3 Alternating Linear Scheme (ALS)

The TT-ALS scheme is presented in [16] and is an iterative and alternating optimization
algorithm in TT-format. One tensor core is optimized at a time. Hence, smaller subproblems
are solved iteratively instead of one large problem at once. The algorithm is based on orthog-
onality of all cores except the one which is optimized. This core does contain the complete
norm of the TT.

The defined optimization problem is solved for the non-orthogonal core i. The solution of the
optimization is a tensor of the same size as the optimized core 7. Next, an orthogonalization
step is performed to orthogonalize core ¢ and move its norm to core ¢+ 1. This step is done in
the same way as the first part of the TT-rounding algorithm by means of QR-decompositions.
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2-3 Basic algorithms 13

The ALS algorithm performs these core-wise optimizations for core i = 1,...,d — 1 as so
called forward sweep and for i = d,...,2 as backwards sweep. A combination of forward
and backward sweep is called a full sweep. Multiple sweeps are executed until a performance
criterion for the convergence is met. Often the core-wise optimization step can be executed
directly by TT-contractions without the use of extensive optimization algorithms.

The algorithm is suited for general optimization problems. It is successfully applied for
multiple applications. Among these are the solution of linear systems in general and the
solution of eigenvalue equations [16], the matrix-by-vector product directly in TT-format
[29], the solution of linear problems for inversion [27] and for the pseudoinverse [23] and the
identification of MIMO Volterra systems [4].

The described ALS algorithm is based on fixed TT-ranks. This means that the TT-ranks after
the optimization are a priori determined and are not changed dynamically. A modification
is presented in [16] to tackle this issue. This adapted algorithm is called modified ALS
(MALS). In a similar form it is previously presented in the area of quantum physics as
Density Matrix Renormalization Group (DMRG) [40]. The MALS can vary the TT-ranks
after the optimization for optimal TT-ranks according to a given accuracy. This is achieved
by optimizing a so called supercore consisting of two single cores at each iteration step.
After optimization this supercore is split up by an SVD, where the TT-ranks can be changed
dynamically according to a required accuracy e.

Limitations of the TT-ALS and TT-MALS are often given by the TT-ranks. The solution
TT-ranks or the ones to compute the solution of the optimization problem can in general be
high. Hence, contractions are slow and special optimization algorithms in matrix format may
be faster. These limitations are highly dependent on the problem.

2-3-4 TT-randomized SVD (TTrSVD)

The SVD is a powerful and often used tool. An equivalent in TT-format is presented as
randomized SVD (rSVD) in [6]. An overview on different rSVD algorithms in matrix format
is given in [14]. The rSVD is an approximate matrix factorization of the matrix X for large-
scale problems. The matrix X is multiplied by a random matrix (often taken as Gaussian)
which reduces the size of the decomposition problem. The intuitive idea is to obtain a random
sample of the range of X with this multiplication. Hence, a standard SVD of a smaller sized
problem can be performed.

The extension of this scheme to TT-format in [6] works in the same way. A prescribed number
of singular values is necessary. The result of the TTrSVD algorithm [/, S, V] = TTrSVD(X')
yields orthogonal TTs U,V and a matrix containing the singular values S. The tensor network
connects the first core of U with the matrix S which is also connected to the first core of V7.

Limitations of the algorithms are that the number of singular values has to be known a priori,
which is often not the case. Furthermore a contraction of the first ¢ cores of X is necessary
such that the mode-size is larger than the desired number of singular values. This is necessary
for the thin TT-QR decomposition within the TTrSVD algorithm.
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14 Introduction to Tensors

2-3-5 Tensor Network Kalman Filter

A generalization of the recursive Kalman filter equations [18] for systems with exponentially
large state vectors with the help of TTs is presented in [3, 5]. These references demonstrate
the Kalman filter for the system identification of MIMO Volterra systems. All variables in
the tensor networks Kalman filter are in TT-format and are operated on with multilinear
operations.

The basic idea to lift the curse of dimensionality is to distribute the exponentially large state
vector as modes over all TT-cores. Suitable prime-factorizations of the state vector size can be
used. Within the presented framework, all outputs are on one tensor core. Hence, the theory
is not suited for MIMO systems with exponentially large output vectors. Furthermore, large
TT-ranks in the system matrices in TT-format can slow down the computations significantly.
Approximations with lower T'T-ranks are often not possible without loss of important system
information.

A solution for the latter problem is presented in chapter 4 and the MIMO tensor Kalman
filter problem is addressed in chapter 5. Therefore no elaborate description of the tensor
Kalman filter is given here since the following chapters include a more detailed description of
the theory, its limitations and possible remedies.
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Chapter 3

Introduction to Adaptive Optics

3-1 General

Scientists in the field of optics rely on flat wavefronts in order to obtain a sharp image of point
sources that are studied. Take a collection of light rays over a 2D field. The wavefront is
considered to be flat if at any measurement plane rectangular to the direction of propagation
all light rays have the same phase information. For distant point sources this is in general
the case. However, disturbances cause aberrations in the wavefront, resulting in a non-
flat smooth wavefront. For example atmospheric turbulence causes local differences in the
refraction index. Therefore, the path length for light rays varies, meaning that the phase
information of all light rays is not aligned and a non-flat, smooth wavefront is obtained. This
distortion results in a blurred image, which is scientifically less valuable. [39]

An AO system is a compensation method to improve the image quality when disturbances
are blurring the image dynamically. The shape of the wavefront is measured with a wavefront
sensor, which is often a linear Shack-Hartmann sensor [34]. A deformable mirror consisting of
an array of lenses is used to actively add a phase correction to compensate for the measured
distortions. In order to obtain a flat wavefront, the inverse of the measured wavefront is
applied to the deformable mirror [15]. A schematic of the AO system is drawn in Fig. 3-1.
This method is equally applicable for astronomy [35], microscopy [7] or lithography [41].

Between measurement of the wavefront in the Shack-Hartmann sensor and the change of
the lenses in the deformable mirror there is a time-delay. This occurs mainly due to sensor
readout times, computation of the control law and the time for changing the deformable
mirror. However, within this time, the disturbance may have changed significantly and the
control signal is not of use any more. Therefore, a prediction of the wavefront is necessary.
The Kalman filter is a natural choice since it is an optimal predictor, which can minimize the
blurring of the image.

The problem that researchers and engineers are facing with this kind of system is the following.
For example in astronomy a higher accuracy in the images is demanded to research and study
even more faint and distant objects in greater detail. The diffraction limit is a measure
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16 Introduction to Adaptive Optics

Flat WF
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Figure 3-1: Schematic of an AO system including disturbance of the flat wavefront (WF), the
deformable mirror (DM), the wavefront sensor (WFS) with the control loop.

for the accuracy of the optical system and changes reciprocal to the lens size. Hence, larger
telescopes are build and also larger AO systems are necessary with more sensors and actuators
[39]. Therefore, the prediction problem becomes large-scale and a scalable and an accurate
large-scale Kalman filter is required to compensate in real-time for the distortions. For this
type of filter a linear model of the turbulence with its spatial and temporal dynamics but also
of the wavefront sensor and measurement process is necessary.

3-2 Turbulence Model

A 2D grid of the wavefront that reaches the optical system from the observed object is
considered. The turbulence changes this wavefront in two ways. In its spatial distribution
and temporally by dynamic changes. Both of these processes are analysed individually in the
following in order to obtain one combined turbulence model.

3-2-1 Spatial Turbulence

The spatial turbulence describes statistically the changes in the wavefront over the spatial
indices parallel to the measurement plane. It is based on first-principles with underlying phys-
ical equations. In general the Kolmogorov theory [20, 21] or Von Karman theory [10] is used.
In AO, the latter is often preferred [33]. The theory describes the spatial correlation between
points separated by a distance r dependent on two main weather dependent parameters. The
Fried parameter rg, which is an intuitive measure of the turbulence strength [11]. It defines
the effective size of a telescope lens under the effect of this turbulence. For example a Fried
parameter of 79 = 0.5 [m] means, that with this severity of turbulence the telescope is as
effective as a telescope of this lens diameter without any disturbances. The second parameter
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3-2 Turbulence Model 17

is the outer scale Ly, giving a measure for the size of the turbulent structures [24]. The spatial
correlation can be given by

cuo - 8 (B0 () P rf) o

where T'(+) is the gamma function and K(-) is the modified Bessel function of second kind.
This covariance function yields an analytic expression for the 2D distribution of the vectorized
wavefront field ¢ by Cy =E [gb;@ﬂ.

3-2-2 Temporal Turbulence

Contrary to the spatial dynamics, the temporal dynamics of turbulence are an open research
topic. Multiple choices of dynamic models are possible. For the linear Kalman predictor, a
linear model is necessary. A frequently chosen type of model is the discrete-time autoregressive
(AR) model. A first and second order model approach is presented hereafter [24].

AR-1 Model: This model considers one past value of the state. For the turbulence the
vectorized wavefront ¢ is chosen as state. Mathematically the model is given by

Or+1 = Apdp + Vi (3-2)

with Gaussian noise v ~ (0, Q). Note that the general time-varying case is chosen. This is
necessary since in AQO, the system matrices can be updated when new information is available.
The state transition matrix Ay is in practice often chosen as diagonal with Ay = aiI where
lak| < 1 for stability. The noise covariance Qy is to be computed consistently with the derived
spatial covariance C as

Qr = Cy — ArCyA[ (3-3)

This yields the process equation of a state-space system description.

AR-2 Model: For this model two past values of the state ¢, are considered. Mathematically
this yields

Grt1 = A1 Ok + Ao 1 + Vi (3-4)

this can be translated in the following state equation
Gr1| _ [Ark Ack| | Ok
Pk I 0 | |#k—1
Similarly to the AR-1 model the noise covariance has to be in line with the wavefront covari-
ance. Hence
0 Cor C; A, A Csr Czpl |A], 1
Qk _ C¢T>,k C¢>,k ALk Agg Cc_?,k C¢,k Lk (3-6)
0 0 ok Cok I 0 sk Cok| |Agr O

with Cyp = E [¢x0] | = E [¢x 10| and C5p = E 8], ].

I

o

Vi (3-5)
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18 Introduction to Adaptive Optics

3-3 Wavefront Sensor

The wavefront as a spatially distributed wave changes over time which needs to be measured
on a 2D grid at each sampling instance. Therefore, consider a regular grid of wavefront
samples ¢; ; collected in the following matrix obeying the spatial arrangement

P11 Ple
e (37)

Pe1l 0 Pec

From this matrix the state vector is obtain by vectorization vec(®]) = ¢5. The Shack-
Hartmann sensor [34] measures these samples by use of an ¢ x ¢ array of small lenses (or
lenslets) which concentrate the light of a bright reference source on a photon sensor. The
location on the sensor depends on the local slope of the wavefront. A flat wavefront results
in a central measurement; non-flat wavefronts have deviations from the centre on the photon
sensor. In fact slopes of the wavefront in z—direction s, and in y—direction s, are measured.
In a Fried geometry, four wavefront samples ¢ are used to generate one slope measurement
output. This is illustrated for a small, square example in Fig. 3-2.

1,1 @ 1.2 @ ©Y1,3 @

Sy,1 Sy,2
Sz,1 Sz,2

P21 @ Y22 @ ©23 @

Sy,3 Sy,4
Sx,3 Sx,4

31 @ P32 @ ¥3,3 @

Figure 3-2: lllustration of a Shack-Hartmann sensor for ¢ = 3. The black dots represent the
wavefront sampling points ¢; ; which are used to compute the slopes s, 1, Sy m.

To illustrate the computation of the slopes with wavefront samples take an example of ¢ = 2
lenslets. The following holds
(P22 + ¢12) — (11 + $21)

Szl _

Sy,1
-1 -1 1 1
-1 1 -1 1

For large systems, the slopes s are stacked in the measurement matrix G € R2(c=1)?x¢*  Thig
directly yields the number of outputs of the system with p = 2(c — 1)? and the number of
states with n = ¢2. As an example a visualization of a measurement matrix with ¢ = 5 is
given in Fig. 3-3. Note the size of matrix with p = 32 outputs and n = 25 states. Note also
the special block structure of the matrix. This yields the output equation of a state-space
system as

[@52,2 + ¢2.1) — (P11 + ¢1,2)]
(3-8)

N = N

vi = Gop + Wi (3—9)

Daniel Gedon Master of Science Thesis



3-4 Wavefront Estimation 19

with Gaussian output noise wy, ~ (0, Rg). The sensor noise can considered to be independent
for each channel, by R = o*?u 1. Note that the Shack-Hartmann sensor cannot distinguish two
modes, which may result as unobservable modes in the system. First, the piston mode with
©ii = @j,j, which is an offset. This mode is often not problematic in control problems since
it yields a flat wavefront. Second, the waffle mode with ¢;; = —@it1,; = —@iit1 = Qit1,i+1,
which depicts a chessboard pattern. Special measures have to be taken to only consider the
observable modes of the system.

Example for measurement matrix with c=5

Lenslets

5 10 15 20 25
Lenslets

Figure 3-3: Example for stacking of slopes in the measurement matrix G with ¢ = 5. Black
fields yield values with —0.5 and red fields with +0.5.

3-4 Wavefront Estimation

In the AO system a wavefront predictor for at least one time step is necessary to compensate
for the time-delay between the wavefront measurement and the correction with the deformable
mirror. Due to the derived state-space model one could use the process equation with its
result ¢4 for predictions. However, the spatial modelling is done on first principles and
the temporal model is based on an assumption about the temporal dynamics. Therefore, the
model may not be highly accurate. An optimal estimation that makes use of the current
wavefront measurements with statistical updates is necessary. The Kalman filter [18] does
have these properties as optimal propagator.

For telescopes nowadays like the ESO Very Large Telescope (VLT) [36] or of the next gener-
ation like the European Extremely Large Telescope (E-ELT) [12] the size of the AO systems
rise. The number of states to be estimates on-line reaches several tens of thousands with a
similar number of outputs. This puts a highly demanding requirement on the computational
complexity of the required wavefront real-time prediction algorithm. A second requirement
is given by the time-variance of the model. In general the system model can assumed to be
time-invariant. However, after some time the turbulence covariance can change significantly
such that updates of the model are necessary, making the system inherently time-variant.
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20 Introduction to Adaptive Optics

3-5 General Issues

Besides the large-scale and time-varying requirement, the AO system has more issues to face
with. This has to be considered in the design of the algorithm, especially since the choice is
to use tensor calculus for the large-scale predictor. These are in particular

1. The aperture of the AO system is round due to the system of lenses. In contrary the
TN Kalman filter is considered to be suited for Kronecker models which are square.
Special padding in the output equation is necessary for real-life simulations which will
inherently reduce the accuracy of the estimation especially at the edges of the round
aperture.

2. The MIMO TN Kalman filter as developed and presented in chapter 5 puts several
requirements on a special form for the output equation. The system equations as derived
here are not in this form. The derivation is given in dedicated chapter.
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Chapter 4

EUSIPCO Paper

This chapter contains in the following a printout of the final submission and accepted paper
for the 27th European Signal Processing Conference (EUSIPCO) 2019. This is the flagship
conference of the European Association for Signal Processing (EURASIP). The conference is
held in A Coruna, Spain from the 2nd to the 6th of September 2019.

The main contribution of the submitted paper is twofold. First, an extension and generaliza-
tion of the TN Kalman filter [3, 5] to LTI state-space systems is presented. Second, a method
based on TT-rank truncation of the covariance tensors Py, and Py is developed to speed
up the computational times for systems with TT-ranks higher than one in the system matri-
ces A, C,Q,R. This method is incorporated in the TT-rounding sequence [26] with a fixed
value. Hence, a combination of existing methods to enable the TN Kalman filter for more
general systems is presented. Simulation results for randomly generated systems underline
and support the chosen approach.

The first draft of the paper was handed in on the 18th of February 2019. Notification of accep-
tance was received on the 4th of June 2019. Three reviews are obtained and their comments
are included in the final submission. Quantitative feedback was given as the following

e Novelty and originality: 23/5
e Technical content and correctness: 23.67/5
e Relevance and Timeliness: @4/5

e Quality of presentation: 23.33/5

Qualitative and highly useful feedback regarded the accuracy in the simulation results, the
randomness of the Monte Carlo approach and to evaluate if the covariance tensors remain
symmetric, positive-definite after the truncation method. The final paper was submitted on
the 18th of June 2019.
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Tensor Network Kalman Filter for LTI Systems

Daniel Gedon', Pieter Piscaer!, Kim Batselier’, Carlas Smitht, Michel VerhaegenJr

Abstract—An extension of the Tensor Network (TN) Kalman
filter [2], [3] for large scale LTI systems is presented in this
paper. The TN Kalman filter can handle exponentially large
state vectors without constructing them explicitly. In order to
have efficient algebraic operations, a low TN rank is required.
We exploit the possibility to approximate the covariance matrix
as a TN with a low TN rank. This reduces the computational
complexity for general SISO and MIMO LTI systems with
TN rank greater than one significantly while obtaining an
accurate estimation. Improvements of this method in terms of
computational complexity compared to the conventional Kalman
filter are demonstrated in numerical simulations for large scale
systems.

Index Terms—Kalman filter, LTI systems, tensors, tensor train,
large scale systems, SISO, MIMO, curse of dimensionality.

I. INTRODUCTION

The Kalman filter [9] is a stochastic optimal filter for dy-
namic linear systems. Since its introduction, it is successfully
applied to a variety of different applications, see e.g. [1], [7].
For systems with exponentially large state size n? and output
size p assuming p < n?, the conventional Kalman filter is
infeasible. First, because the computational complexity scales
with order O (n3d). Second, the storage of exponentially large
system dynamics is in matrix form prohibitive. A more suitable
filter framework has to be developed.

One possibility for a large scale Kalman filter is the Tensor
Network (TN) Kalman filter as developed in [2], [3]. Both
concern the system identification of Multiple-Input Multiple-
Output (MIMO) Volterra systems using Kalman filter where
the latter one uses a batch of multiple measurements. The
Volterra systems are rewritten in LTI system form and there-
fore the described implementation can equally be used for
dynamic linear systems. Hence, in the remainder of the paper
the method in [2] will be denoted as Single-Input Single-
Output (SISO) and the method in [3] as MIMO TN Kalman
filter. This filter makes use of special TNs [12] in Tensor
Train (TT) format [13] without explicitly constructing the
underlying exponentially large matrices and vectors. Hence, a
reduction of computational complexity from O (n?) to O (dn)
is achieved. Fig. 1 highlights the computational advantage
of the TN Kalman filter for large LTI systems while still
obtaining accurate estimation results (see full and dashed line).
This holds for the special case where the system dynamics
in TT-format have the property that all TN ranks are equal
to one, denoted as ttr(-) =1 and formally introduced in the
preliminaries.

T Affiliated with Delft Center for Systems and Control, Delft University
of Technology, The Netherlands. E-mail addresses of corresponding authors:
d.gedon @student.tudelft.nl (Daniel Gedon), p.j.piscaer@tudelft.nl (Pieter Pis-
caer).
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Fig. 1. Computation time per time step of random stable LTI SISO system
for conventional and TN Kalman filter using rounding tolerance ¢ = 10~
and mean out of 15 Monte Carlo simulations (using varying initial conditions
and noise) over 25 time steps.

In general, the TN ranks can be high for large unstructured
systems and are only bounded by the canonical rank [16] of
an exact canonical decomposition of the underlying tensor [4],
[11]. The computational complexity of the TN Kalman filter is
polynomial dependent on the TN rank of the system dynamics
matrices A and C in TT-format and the TN rank of the internal
variables of the filter (covariance, Kalman gain, state estimate).
This results in longer computation times for larger TN ranks.
Additionally, the implementation of the MIMO TN Kalman
filter in [3] has a complexity of O (p?).

In this paper, a solution is proposed to tackle the problem
of large TN ranks in order to reduce computation time while
obtaining accurate results. This is especially of interest since
general system matrices do not have an optimal TN rank of
one. Fig. 1 shows the computation times in a comparison
for systems with TN rank at one and higher. The main
contributions of this paper can be summarized as:

o A possibility to reduce the effect of the TN ranks on
the computational complexity is derived. Therefore, the
covariance tensor in the TN Kalman filter is approximated
with low TN ranks, yielding a fast and accurate estima-
tion.

o Numeric simulation results are presented as comparison
between the conventional and TN Kalman filter. The latter
is shown with and without low TN rank approximation
of the covariance tensor to demonstrate the power of the
novel approach.

The paper is structured as follows. Section 2 introduces the
notion of tensors throughout the paper. It gives an overview on
TTs with multilinear operations and introduces the use of TTs
in the generalized TN Kalman filter. In section 3, the method
to identify the computational bottlenecks of the TN Kalman
filter is highlighted. Based on this analysis, the approach to



approximate the covariance tensor is derived. Using these
insights, numerical simulations of the novel approach are
presented in section 4. Finally, section 5 concludes with final
remarks and open research directions.

II. PRELIMINARIES

In this paper, a tensor is a multidimensional array as a
generalization of matrices to higher order. An order-d tensor
has d indices and is denoted with capital calligraphic letters
X € Rm>xna Matrices will be denoted by capital bold let-
ters X € R™*™2 and vectors by bold letters x € R™*. Scalars
are given as Roman letters € R. The ith tensor element of
a set of tensors is indicated by superscript in round brackets
X @ _ Introductions to tensors and their decompositions are
given in [6], [11], [12].

A. Tensor Train Theory

The Tensor Train (TT) decomposition is mathematically
introduced by [13] after previous work in [15], [17]. It decom-
poses an order-d tensor X € R™*""*"d in a series of d order-
3 tensors X1 ... XD with X ¢ R XXX
called TN cores. The parameter rx, are the TN ranks con-
necting the single TN cores in a line network. The border TN
cores are defined as rx, = rx, = 1. Throughout this paper,
the maximum TN rank over all TN ranks of a TT & will be
denoted as ttr(X) = max(rx,) = rx Vi.

An example for a graphical visualization of the TT decom-
position using TN diagrams [6], [12] is given for an order-
6 tensor X in Fig. 2. Each circle depicts a TN core; the
number of free lines is the order of the tensor; the size of the
interconnecting lines represent the TN ranks rx,. The example
decomposes the order-6 tensor X in six order-3 tensors X (@),
i1=1,...,6.

n

—TXo X, X, |, "Xs T Xe
n
n n n

Fig. 2. Graphical visualization of the TT decomposition of an order-6 tensor
X using TN diagrams.

The power of the TT decomposition is twofold. Storing
an exponentially large matrix X &€ R xn? requires storage
of O (nQd) entries. In TT-format storage of X" requires only
O (dn*r%) entries, i.e. linear in the exponent d, which is a
reduction if the TN ranks rx are small. Secondly, multilinear
algebra as a generalization of linear algebra to higher spaces
can be used to effectively apply basic mathematical operations
[8]. This is computationally effective since the operations
work on each single TN core, which are small compared
to the full matrix. An example of multilinear algebra is the
so called mode-n product as a higher order equivalent of
matrix multiplications for tensors [6], [11]. Often, the term
contraction along the mode n is used for this operation.

A problem with multilinear operations in TT-format is the
increase of the TN rank. For example, the contraction along the

second mode of the tensor .A with TN cores A() e R7a*Xnx74
with the tensor B with TN cores B(®) € R"BX"X"5 hag
resulting TN ranks r47rp. In [13], a procedure called round-
ing is described to decrease the TN ranks towards a given
rounding tolerance ¢. Two main steps are needed. First, an
orthogonalization of all TN cores using QR decompositions
and second, a d-truncated SVD.

Consider for example a tensor A in TT-format with or-
thogonal TN cores. The procedure computes the J-truncated
SVD of each matricified TN core X() ¢ R™i-1X"X7x;
The matricification is done such that the number of columns
is equal to the right TN rank XE?X_) € R™Xi-1"X"Xi  The
truncation threshold is given by '

€

Vd=1

using the rounding tolerance € and the number of TN cores d.

§=[IX]|r M

B. Tensor Kalman Filter

The TT theory can be used to define a Kalman filter and lift
the curse of dimensionality for large scale systems. Therefore,
the following LTI system is considered

Xp+1 = Axp + Wy,

@)
yi = Cxp + vi

with state x; € R”d, measurement y, € RP, A € R"dmd,
C € RP*"* and covariance matrices Qe R*>"" and R €
RP*P for the process noise wy and measurement noise vy,
respectively. The output is p = 1 for SISO and p = n? for
the MIMO case. The algebraic equations of the conventional
Kalman filter are split in two parts. The measurement update:

S=CP,;-1C"+R 3)
Ky =Py;_1C'S™! 4)
v =yr — CRyp_1 (%)
Xijk = Xpjp—1 + Kpv (6)
Prr = (I, — Ky C) Ppjp—1 @)

and the time update:

K1k = ARpp (8)
Pk =AP AT +Q 9)

When the system matrices A, C are large scale matrices,
the computation time rises exponentially as seen in Fig. 1. This
curse of dimensionality can be lifted by using the TN Kalman
filter. This is a generalization of the conventional Kalman filter
for higher order dimensions in TT format. It adapts the Kalman
filter equations to the required multilinear algebra. The TN
Kalman filter is introduced in [2] and [3].

In order to apply the TN Kalman filter to general LTI sys-
tems, the system dynamics in Eq. (2) have to be transformed in
TTs. Consequently, also the variables in the TN Kalman filter
are TTs. Use is made of the computational effective multilinear
algebra for TTs with this transformation. As an example, the
transformation of the state vector estimate X to TT-format is



explained intuitively. First, the vector X € R is reshaped into
an order-d tensor X' € R"Xxn, Second, the order-d tensor is
decomposed using the TT decomposition in d order-3 tensors
X0 ¢ R™Xi-1X"XTX:  The set counting index i goes from
1 to d and the border TN ranks are rx, = rx, = 1. This
decomposition step is visualized for d = 6 in Fig. 2 using
a TN diagram. The TN rank rx, connects the TN core x@
with X+D. For the state transition matrix A € R"**"* in
TT-format, there is one more mode of size n for each TN core
compared to the state vector X. These examples illustrate how
the following variables for the TN Kalman filter are defined
in TT-format

o A with A g RMi-yXnxnxra;

o C with C(l) G choxpxnxrcl and C( %) c R"Ci1 XnXrc,

. P( B) with P( 1) € R7Pi—1 XMXNXTE;

o Xpy with & |>; € R™Xi-1 Xmxrx;

e Ky with IC,(c €

R Ki—1 XNXTK;

o Q with Q) € R7Qi-1X"X"X7Q;
For completeness, the definition of the remaining matrices and
vectors are given as S € RP*P, R € RP*P and v € RP.
The specific implementation for the SISO and MIMO filter is
elaborated in [2] and [3] respectively.

RT‘K() XanX'I"Kl

and IC,(f) S

III. PROBLEM ANALYSIS AND IMPROVMENT

In this part, the problem of increasing computation time for
high TN ranks due to their polynomial complexity is tackled.
This is done for the SISO and MIMO case since both struggle
with this phenomenon. Stable LTI systems without specific
structure of the matrices are considered. Converting such
system dynamics in TT-format yields in general ttr(A) > 1,
ttr(C) > 1. This general case is taken into account for the
following analysis. Hence, this will reduce the computational
speed of the TN Kalman filter significantly as presented
in Fig. 1 for the SISO case. Previous results in [2] have
shown that a rounding tolerance greater than the machine
precision is sufficient for accurate results and can speed up
the computation time. This result is applied in the following
by choosing ¢ = 1075,

A. Analysis of State of the Art

To get insights on possible bottlenecks of the algorithm, the
computational complexity of the state of the art is analysed.
For the SISO tensor Kalman filter this can be found in Table 2
of [2] and summarized with O(dn%f )) where the last factor
indicates the polynomial complexity in several TN ranks. This
compares to O(n3?) for a comparable conventional SISO
Kalman filter. For the state of the art MIMO tensor KF, the
complexity analysis is given in Table L.

It can be seen that there are two computational bottlenecks.
(1) The computation of the Kalman gain with cubic complexity
in the outputs p, since the inverse of the result of the Riccati
equation S is necessary. (2) The polynomial dependency on
all TN ranks. This paper addresses point two, while the first
point is a topic for future research.

TABLE I
COMPUTATIONAL COMPLEXITY OF MIMO TN KALMAN FILTER.

Step Kalman filter TN Kalman filter
S O (pn??+p*nd)  O((d S 1)(n? T‘PT‘CQ-"- nTQPrc)—b—
+nprprc + np rprg)

K O(pn2¢ + p?ni4  O((d — 1)(n r3re) + n’prpro+
+p?) +np?rpre +p )

v @] (pn ) ((d - 1)anrC + inch)

Xklk O (pn4 O (npri,)

Prk (@] (pn2d +p2nd) O ((d —1)n? r + n2prf< + nper)

X1k O(nQd) O(dn rXrA)

Prre O (03 O (dn®r%rd)

The TN ranks of the system dynamics 74, rc are inher-
ently given and determine subsequently the TN ranks of the
variables in the filter. Fig. 3 shows the converged maximum
TN rank of TT variables in the MIMO TN Kalman filter
using p = n? for increasing sizes of random systems with
ttr(A) = ttr(C) = 5. The TN rank choice is made to ensure
a higher TN rank than unity for the system dynamics while
keeping it low enough to obtain feasible computation times.
The TN cores are generated randomly using the tt_rand (-)
command from [14]. Rounding tolerance is set to ¢ = 1076
using 5 Monte Carlo simulations with 50 time steps to ensure
convergence. The figure highlights that the TN ranks of the
measurement and time update covariance tensor are driving
since they grow exponentially with the system size. This yields
a tremendous increase in computation time for large systems
if no counter measure is done.

Maximum TN Rank of Filter Variables

108
102
TR
100 . \ \
10" 102 103
Outputs p, States n d [-]
Fig. 3. Maximum TN rank of variables in MIMO TN Kalman filter for

increasing system size with n = p using ttr(A) = ttr(C) = 5.

B. Extension for Reduction of Complexity

The variables in the analysis of Fig. 3 do have optimal TN
ranks according to the selected rounding tolerance €. The main
idea of this paper is to obtain low TN rank approximations
of the driving factors, the covariance tensors, by choosing
lower TN ranks. This decreases the effect of polynomial
computational complexity.

The truncation of TN ranks in the covariance tensor to
lower values is based on the idea of the rounding procedure
[13]. After the orthogonalization step, a d-truncated SVD
is executed which determines the TN rank. The truncation



threshold ¢ is computed with Eq. (1) using the rounding
tolerance €. However, the choice for the truncation threshold
is dependent on the distribution of the singular values. In
practice, it is often difficult to choose the tolerance e for the
SVD truncation [5]. One approach is to use a fixed truncation
value, see e.g. [10]. If the TN rank is truncated with a fixed
r < 4, only the r most dominant singular values of each
TN core are taken into account. Therefore, the TN rounding
function is adapted such that the SVD truncation threshold is
chosen as

min (7, )

in order to obtain the lowest possible truncation threshold.
The consequences of a low TN rank approximation in the TN
Kalman filter are in general:

e Reduction in computation time. This holds since a lower
TN rank of the covariance tensors will yield lower TN
ranks of subsequently computed variables and decreases
their influence on the computation time.

o Lower accuracy of the resulting estimation since a low
rank approximation is used.

Similar analysis as presented in Sec. IV has shown that in
case of truncating the TN rank of the second most driving
parameter, the Kalman gain, that the filter even tends to
diverge. Also, it is not useful to truncate the TN rank of
the estimated state since this is an output of the filter and
should be kept with the desired accuracy as chosen by the
rounding tolerance. Moreover, its influence is according to
Fig. 3 less driving than the covariance or Kalman gain. Note
that truncation of the covariances Py and Ppyq)p is done
online at each time step.

IV. SIMULATION RESULTS AND DISCUSSION

Both the SISO and the MIMO filter can easily be extended
with the proposed approach. The power of the truncation
method is shown in simulation. Different random stable LTI
systems are generated with the state vector size n¢ and output
size p = 1 for SISO and p = n¢ for MIMO systems. For
simplicity, a mode size of n = 2 is chosen as smallest prime
factor equally to [17]. The system dynamics are in TT-format
described with ttr(.4) = ttr(C) = 5, which is a generalization
compared to TN rank unity. The TN rank of the process noise
covariance tensor is given by ttr(Q) = 1. For the assumption
of the matrix Q being diagonal, this holds. The entries of
the diagonal process noise covariance are set to 0.1. The
measurement noise covariance matrix R is diagonal with all
entries at 0.5. The rounding tolerance is ¢ = 1076, and a total
of 15 Monte Carlo simulations are run over 25 time steps.

The simulation is run on Matlab version 9.3.0.713579
(R2017b) installed on Linux Ubuntu 16.04 LTS making use
of the TT toolbox [14], Tensorlab v3.0 [18] and functions
provided with the code of [2], [3]. The hardware consists of
an Intel core 15-7200 quad-core CPU running at 2.5 GHz with
7.7 GB RAM.

A. SISO Kalman Filter

A comparison between the conventional Kalman filter and
the SISO TN Kalman filter with the mentioned properties is
presented in Fig. 4. For the TN Kalman filter, three settings
are simulated: without truncation of the covariance tensor TN
ranks as well as with truncation at ttr(P.|.)) = {1,5}. The
figure shows the computation time per time step of each filter;
the mean computation time over 15 Monte Carlo simulations
is depicted. The variance of the computation time is negligible
with maximum magnitude of 1071

Computation Time per Time Step (SISO)
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Fig. 4. Computation time per time step of random stable LTI SISO system
for conventional and TN Kalman filter with TN rank ttr(A4) = ttr(C) = 5
using covariance TN rank truncation.

The results for the SISO filter yield two main points. First, a
comparison of the output estimation of the TN Kalman filter
with and without covariance TN truncation and the conven-
tional Kalman filter is done. The relative 2-Norm squared of
the outputs is used for this comparison defined as

[[vee(y) — vec(9)13
[[vec(y)l[3

)

where vec(y) is the vectorized output of the simulated LTI
system and vec(y) is the vectorized estimated output of the
respective Kalman filter. The difference between the relative
2-Norm squared of the conventional Kalman filter and the TN
Kalman filter is negligibly small and, therefore, the estimation
is accurate even with covariance TN rank truncation. This
yields that the approximation of the covariance tensor with
lower TN rank is still sufficiently accurate such that the overall
error stays small.

Second, the dash-dotted line with ‘+’ marker in Fig. 4
shows the computation time of the state of the art for systems
with ttr(A) > 1, ttr(C) > 1. The computation time grows
exponentially and is even more than two magnitudes higher
than for the conventional Kalman filter. Using the developed
approach to truncate the TN rank of the covariance tensor
yields a great improvement. With truncation at ttr(P) = 1,
the computation time becomes linear - similar to the results
for ttr(A) = ttr(C) = 1 in Fig. 1. For large scale systems
with n? > 600 states, this approach yields accurate and
significantly faster estimation results.



B. MIMO Kalman Filter

For the MIMO Kalman filter, simulations are run with the
same setting using p = n?, meaning the number of outputs
is equal to the number of states. The resulting computation
times per time step are depicted in Fig. 5 using the mean of
15 Monte Carlo simulations.

Computation Time per Time Step (MIMO)
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Fig. 5. Computation time per time step of random stable LTT MIMO system
for conventional and TN Kalman filter with TN rank ttr(A) = ttr(C) =5
using covariance TN rank truncation.

Similar to the results of the SISO filter, the MIMO TN
Kalman filter has the same relative 2-Norm of the output with
and without covariance TN rank truncation and even with the
conventional Kalman filter. This confirms the optimality of the
TN Kalman filter. Regarding the computation time, the state of
the art TN Kalman filter for ttr(A) > 1, ttr(C) > 1 is given
by the dash-dotted line in Fig. 5. This depicts an exponential
increase of computation time being at least two magnitudes
slower than the conventional Kalman filter. The TN Kalman
filter with ttr(P) = 1 truncation converges for large n? to
the one of the conventional Kalman filter. This is reasonable
since both filters have a complexity of O (p3) which is not
tackled in this paper. Hence, for the MIMO case the approach
of covariance TN rank truncation yields an improvement in
computation time over the TN Kalman filter without it.

Remark: Note that in all simulations the covariance matrix
remained symmetric with P.,. —’P.—"—. at machine precision level.
Moreover, Py 1)x remained postive definite, while Py, only
had the smallest eigenvalue larger than —eps.

V. CONCLUSION

The paper discusses the need for improvement of TN
Kalman filter for general LTI systems with TN rank ttr(.4) >
1, ttr(C) > 1 due to computation time issues. Therefore,
the concept of TNs in TTs and the TN Kalman filter for
the SISO and MIMO case is explained in detail. An analysis
of the state of the art shows a polynomial dependency on
the computational complexity of the TN ranks decreasing the
computational time for large TN ranks. The driving variable
with the highest TN ranks within the Kalman filter is identified
to be the covariance matrix. Truncating its TN ranks by
considering only the most dominant singular values is verified
in simulation to yield accurate and computationally fast results.
This approach is applied to both the SISO and MIMO case,
improving the computation time for general LTI systems.

The complexity analysis and results for the MIMO TN
Kalman filter highlights the output dependency of O (p3). This
limits the MIMO filter to the same speed as the conventional
Kalman filter. Future work concentrates on the reduction of
complexity in the number of outputs. Moreover, a square-root
implementation of the TN Kalman filter is desired for practical
and numerical problems. This requires the computation of a
Cholesky or QR factorization in TT format, which is to the
knowledge of the authors not yet efficiently solved.
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Chapter 5

IEEE Paper

The paper for EUSIPCO in chapter 4 mentions in the conclusion several open points for future
research. In this chapter a second paper is presented which addresses one of the main issues
for use of the tensor Kalman filter in applications. Namely to design a fast MIMO tensor
Kalman filter. This is specifically visible in the results of Fig. 5 of the EUSIPCO paper: The
method of covariance truncation does only yield a MIMO tensor Kalman filter which is for
extremely large systems as fast as the conventional Kalman filter and for small-scale systems
significantly slower.

The main contributions of this paper is to solve the MIMO tensor Kalman filter problem for a
specific class of large-scale systems. This class uses uncorrelated, low measurement noise and
has a TT-rank of one in the measurement matrix. If this holds and the method of covariance
truncation is applied, the inverse in the DARE can be solved extremely fast. Furthermore,
a method is developed for the conversion of vectors to TTs based on the TT-ALS scheme,
which outperforms the state-of-the-art TT-SVD conversion while obtaining machine precision
conversion. This is used for the recursive conversion of the measurement vector in TT-format
as it is used in the tensor Kalman filter. Finally, the novel MIMO tensor Kalman filter is
verified on the application of AOs. The system equations are rewritten for the required special
class of systems in the MIMO tensor Kalman filter. A derivation is given such that the Shack-
Hartmann sensor can be written as a TT with TT-rank of one for a square aperture. The
results show that the novel filter method outperforms multiple state-of-the-art algorithms by
several orders in means of computational time. This comes at the cost of a lower accuracy
due to the low TT-rank approximations.

The printout in the following is a first draft including first internal feedback as it will be
submitted to the IEEE transactions on control technology journal. This is one of top journals
of the IEEE control systems society which is published bimonthly with the goal to close the
gap between theory and applications in the domain of control engineering, which makes it
the top choice for the presented contribution.

Master of Science Thesis Daniel Gedon
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MIMO Tensor Network Kalman Filter
With Application to Adaptive Optics

Daniel Gedon, Pieter Piscaer, Kim Batselier, Michel Verhaegen

Abstract—The Kalman filter is an optimal observer for linear
dynamic systems which is in practice for many large-scale real-
time application infeasible due to its computational complexity.
This paper presents a Multiple-Input Multiple-Output (MIMO)
Tensor Network (TN) Kalman filter for large-scale linear dynamic
systems exploiting TNs to obtain a fast solution for state-space
system with a specific structure in the output equation. The
main point is to rewrite the Kalman filter equations in tensor
form using the Tensor Train (TT) decomposition. Approximation
methods are employed to obtain a computational complexity
that has a linear trend with increasing system size. The power
of the approach is demonstrated for the real-life example of
Adaptive Optics (AO), where the next generation of extremely
large telescopes have tens of thousands of measurements and
require real-time estimation of the same order of states.

Index Terms—Kalman filter, dynamic systems, tensors, tensor
train, large-scale systems, MIMO, curse of dimensionality, adap-
tive optics.

I. INTRODUCTION

ALMAN filtering yields an unbiased, minimum variance
estimation for linear dynamic systems [20]. This prop-
erty makes it the method of choice for various applications,
e.g. [1], [2], [8], [15]. In practice the theory is limited to small-
scale problems due to computational reasons. The solution of
the Kalman filtering problem requires to solve the associated
Discrete Algebraic Riccati Equation (DARE) [19]. Consider
an exponentially large system with state vector size n¢. The
solution of the DARE and the subsequent computation of
the Kalman gain require 81n3¢ algebraic operations [24]. For
time-invariant systems it is necessary to solve the DARE once
for the steady-state Kalman filter gain. In this paper, the
more general time-varying case is considered. Therefore, in
each time-step the DARE needs to be solved. For real-time
applications this becomes already for small n, d infeasible.
However, many large-scale problems [26] arise such as in the
field of AO [34], power grids [18] and traffic systems [22],
which can benefit from large-scale optimal estimation.
Different methods have been developed to address this issue.
Distributed Kalman filters [3], [25], sparse methods [7], [12],
Kalman filter based on an approximation approach of the
DARE [24] or ensemble Kalman filters [14], [35] are just a
few special algorithms. All these methods have the drawback
of having an exponential computational complexity and hence
suffer from the curse of dimensionality.

The authors are with the Delft Center for Systems and Con-
trol, Technische Universiteit Delft, Delft 2628, The Netherlands (e-
mails: daniel.gedon@gmx.de; p.j.piscaer@tudelft.nl; k.batselier@tudelft.nl;
m.verhaegen @tudelft.nl).

Manuscript received XX 2019; revised XX 201X.

Despite that limitation, the latter two methods are of special
interest. First, the Riccati approximation method, which is
a first-order Taylor approximation, has been shown to out-
perform several other methods [24] regarding its computa-
tional complexity. Theoretically, compared to the full DARE
a reduction of a factor of about 10 is achieved. However,
it is limited to a special block structure with invertability
condition. For the used AO example in [24] it is restricted
to a diagonal A—matrix and cannot work with more general
identified systems. The second method, the ensemble Kalman
filter does not use the covariance matrix but a random sample
of an extended state vector to m ensemble realizations. This
method has been effectively applied to AO and shown to
have a theoretical computational complexity in the order of
O (mn?*®) algebraic operations [14]. This is a reduction by one
exponential factor, however the number of ensembles has to
be chosen rather large, often in order of nd /2 for a reasonable
accuracy.

A mathematical method to lift the curse of dimensionality
for storage of the matrices and computational operations is
by use of tensors with the TT decomposition [29]. This can
be exploited for large-scale systems. A TN Kalman filter is
developed in [4], [5] for single output systems for the system
identification of MIMO Volterra systems. In [13] the tensor
Kalman filter is presented for LTI state-space systems. This
method is not free of limitations. It is only fast for a specific
class of systems, namely such with the property of low TT-
ranks. An approximation solution for a more general approach
than unity TT-rank is presented in [13].

This paper uses the methods of [13] and extends it to
provide a solution for the unsolved MIMO tensor Kalman filter
problem. The contribution of this paper can be separated in
two main points.

1) Extension of the framework of the tensor Kalman filter
for MIMO linear estimation. Methods are developed for
a super fast inversion in the Riccati equation under some
assumptions and for a fast transformation of measure-
ment vector to TT-format, outperforming the state-of-
the-art TT-SVD [29] algorithm.

2) The developed tensor Kalman filter is verified in a real-
life examples at the application of AO. Regarding the
computational complexity it exceeds the conventional
filter methods by about four orders for this specific
system.

The remainder of the paper is structured as follows. Sec-
tion II provides preliminary mathematical concepts of tensors
and the TT-decompositions. Focus lies on the visualization
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Fig. 1. TN diagram of a matrix and and order-4 tensor with TN core as circle
and free lines as indices.

in TN diagrams for intuitive understanding of tensor al-
gorithms. In section III the novel MIMO tensor Kalman
filter method is derived and demonstrated. An introduction
to AO with the derived linear dynamic model is given in
section IV for the comparison with a real-life application.
The results of the comparison are evaluated in section V and
concluding remarks about future research and open points is
given in section VI. An open-source Matlab implementation
of the algorithm is available from https://github.com/dgedon/
Tensor- Kalman-Filter.

II. PRELIMINARIES

Tensors are multidimensional arrays as a generalization of
vectors and matrices to higher order. Each entry of an order-
d tensor is given by d indices. Within this paper scalars
are denoted by Roman letters x € R, vectors as bold letters
x € R and matrices as capital bold letters X € R/1x/2,
Tensors of order-d are given as capital calligraphic letters
X € RIixxla_ Referring in the following to the ith mode
of a tensor is equal to referring to the ith index. For example,
mode one of the latter defined tensor X’ has size I;. Useful
introductions to tensors, tensor operations and their decompo-
sitions can be found in [9], [21].

A. Tensor Basics

A simple and intuitive visualization for higher order tensors
is by means of Tensor Network (TN) diagrams. An introduc-
tion to TNs and their visualization is given in [27]. These
diagrams consist of TN cores, depicted as circles and free
lines connected to the core. The number of free lines indicates
the order of the tensor; each line is indexed with its size in
that dimension. An example is given in Fig. 1 for a matrix X
and an order-4 tensor X. TN diagrams are specifically useful
to visualize multilinear operations. One of these is the higher
order equivalent to the multiplication, namely the mode-m,n
product.

Definition 2.1: Mode-m,n product (tensor contraction) [9].
Take two tensors A € RI1%xIa B e R %Ik of order-d
and order-k with common mode I,, = J,,,. Contracting them
in their common mode will yield an order-(d + k£ — 2) tensor
C. The contraction is given by

C=Ax"RB (1)

The operator indicates the contraction of mode-n of A4 with
mode-m of B. The entries of C are computed by element-wise

summations in the following way

Cin o151 BdJ 1 s fim— 1o dmt 1 dk

In
= @iy, in—1vinying1sesia O dmetsdnsdmitrdr (2
in=1

In a TN diagram this is visualized by connection of two free
lines indexed with the same size. Note that the mode-m,n prod-
uct is in general not associative or commutative [9]. Within this
paper in all cases of multiple tensor contractions, the operation
is associative. The tensor contraction alone does not lift the
curse of dimensionality. Specific tensor decompositions have
to be used in combination with multilinear algebra.

B. Tensor Train Decomposition

The Tensor Train (TT) decomposition [29] decomposes
an order-d tensor X in d order-3 TN cores X ... x(@
which are interconnected in a line network. Each TN core has
dimensions X'(?) € R™-1X" X7 The interconnecting indices
between the cores 7; are called TT-ranks and play a crucial
rule in the computational complexity. The maximum TT-rank
over all r; is defined as r = ttr (X). Boundary conditions are
defined as 19 = r4 = 1. Using the tensor contraction, the TT-
decomposition is mathematically described as

xX=xW SSREE xéX(d) 3)

This equation indicates the connection and possible con-
traction of mode-3 of TN core X'(¥) with mode-1 of TN
core X+ These modes are the TT-ranks. Based from
nomenclature in quantum physics a TT is often called Matrix
Product State (MPS). After full contraction of all TN cores
the order-d tensor X can be reshaped in an exponentially
large vector x € R, Similarly, an exponentially large matrix
Y € R™"*"" can be depicted in TT-format as TT-matrix with
d order-4 TN cores of size (¥ € R7-1XmXnx7i yielding

y:y(l) lei"' Xiy(d) @)

A TT-matrix is also called Matrix Product Operator (MPO).
The collection of TN cores is denoted by

TT(X) = {xW .. x@y
TT(Y) = {YV,.... ¥}

In the following it will be clear by the order of the TN cores
if it is a TT or a TT-matrix. Both, the TT and TT-matrix are
visualized as TN diagram in Fig. 2.

An important property for the numeric stability of numer-
ous TT algorithms is orthogonality which is defined in this
framework as left- or right-orthogonality of single TN cores.

Definition 2.2: Left- and Right-Orthogonal TN cores [17].
Take a TN core X" € R"=1X":X"i It is said to be left-
orthogonal if it can be reshaped in a matrix X € R"i—-17i %7
and it holds

&)

XX =1, (6)

Similarly, the TN core is said to be right-orthogonal if it can
be reshaped in a matrix X € R"i-1*"" and it holds

XX" =1, , @)
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Fig. 2. TN diagrams of vector to TT (top) and of matrix to TT-matrix
(bottom). Both with indication of mode numbering.

It is important to note that a TT-model is closely related to
models of Kronecker products.

Definition 2.3: Kronecker product [37]. Take two matrices
A € RIi*I2 and B € R71*/2, The Kronecker product is de-
fined as

a1,1B ay,;, B

C=A®B= e RIixl2l2 (g

ai1,1B a’il,izB
If all TT-ranks are equal to one then the TT-representation in
Eq. (3) is equal to a Kronecker model defined as

X=X"g.. . .oxW" 9)

This results because first, for a TT with TT-rank one, all TN
cores are of size X' € R'*™:*nix1 which can equally be
squeezed to matrices. Hence, the mode-m,n product becomes
its lower order equivalent, namely the outer product. Second,
The Kronecker product and the outer product are interrelated
by reshaping and permutations. Similar results hold for higher
TT-ranks and summation of Kronecker models. Note the
reversed order of the TN cores in Eq. (3) compared to the
Kronecker model. Note also, this only holds if all TT-ranks are
equal. Hence, the TT-format is more general than Kronecker
models. An extensive overview on Kronecker models for large-
scale systems is given in [36].

An example for the contraction of two TT-matrices will
highlight the advantage of the TT-decomposition. See Fig. 3
for a visualization of this contraction.

Example 2.1: Take two TT-matrices with TN cores as
AW g Rri-ixmxnxri and B ¢ Rri-1XnXmx7i The multi-
linear contraction is done core-wise according to

) = AW %2 B0 (10)

for i = 1,...,d. The computational complexity of this
operation is given by O (dnm?r?), meaning linear in d. See
Eq. (2) for each TN core to obtain the complexity.
These TT-matrices are equivalent rePresentations of expo-
nentially large matrices A € R xn’ B e R xm*, Hence,
a comparison with the matrix multiplication is drawn. The
multiplication C = AB requires O (ndmzd) algebraic opera-
tions. This highlights that there is a tremendous computational
advantage with TTs in case the TT-ranks are small, e.g. for
Kronecker models.

Fig. 3. Contraction of two TTs .A, B in their common modes to a new TT C

III. MIMO TENSOR KALMAN FILTER ALGORITHM

Consider a linear time-varying discrete-time state-space
system of the form

Xyt = ApXp + Vi (11

Yi = Crpxp + Wy,

with Gaussian noise covariances vy ~ (0, Qx), wi ~ (0, Rg).
All variables are exponentially large with state vector size
x € R" and output size y € RP”. For the following algorithm
all variables are considered to be in TT-format. This yields the
sizes of each TN cores as

o A} with X/Si) € R7Xi—1 XnXTX;

o Aj with A(i) € RV 4i—1 XnXnxXra,

o O with Q) € R7@i-1 Xnxnxro,

o Vi with y]gi) € R™i—1 XPXTY,

. Ck with C](Cl) € R"Ci—1 XPXNXTC,

e Ry with RS) € RTRi—1 XPXPXTR;
fori=1,...,d.

A. General Algorithm

The derived algorithm in the following is a generalization
and extension of [4], [5] to MIMO state-space systems by
distributing the output dimension over all TN cores to lift the
curse of dimensionality. Three main steps are necessary to
design a tensor Kalman filter algorithm

1) Convert the system matrices Ay, Ck, Qi, Ry in TT-
format.

2) Rewrite all variables in the Kalman filter in TT-format,
ie. )A((.‘.), P(.‘.), Kk, Yi.

3) Rewrite the conventional Kalman filter equations with
multilinear operations for TTs.

For the first step the TT-SVD [29] or TT-cross algorithm [31]
can be used. Step two is done for the state estimate and the
covariance by initialization with best guesses as zero vector
and diagonal matrix. The Kalman gain results by computations
as TT. The following sizes of the TTs are considered

Rrpifl XTLXTLXTpl

o Ki with £\ € RTi-1xnxpxri
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The recursive conversion of the measurement vector y to TT
in each time step is elaborated in subsection III-D. The third
step is split up for the measurement update

S =c x3 P, <3 + Ry (12)
T (sk) =TT (S)"" (13)
K =P, xey) <3 8 (14)

NORE0) (i SR o (i
Xlilk = X1§|k71 +K0) <3 (yli - %3 Xk\l)cfl)

(15)
Pk =Pk~ K0 3003 PG, a6)
and similarly for the time update
v _ @) 2 p@)
Xk =A,’ x3 Xk (17)
Pili = AL <3 Pl <3 AP + off (18)

All operations are core-wise for ¢ = 1,...,d. This set
of equation is a simple generalization of the Kalman filter
equations [20] to higher order spaces with the mode-m,n
product. An example will highlight this remark.

Example 3.1: Consider the first summand of Eq. (12) with
all TTs with TT-rank one. Then, the contractions reduce to
C,(Cl)Pg‘)k_l(Cg))T for all TN cores. This is equal to the
conventional Kalman filter when using Kronecker models of
the form of Eq. (9).

However, there are three main problems with the tensor
algorithm which prohibit a fast computation.

Problem 3.1: High TT-ranks: The computational complexity
of the tensor contraction is polynomially dependent on the TT-
ranks. These are an inherent property of the system matrices
and can easily grow high and slow down the computations.

Problem 3.2: Inversion of Sy in Eq. (13): For the TT-format
there is no general fast inversion algorithm available.

Problem 3.3: Recursive conversion of the measurement
vector to TT-format: The TT-SVD algorithm can be slow for
large vectors due to the repeated SVD. Using this in every
time step can be a driving factor.

Solutions to these problems are presented in following sub-
sections independently.

B. Method: Truncation of Covariance TT-Rank

This method gives a solution to problem 3.1 to reduce
the effect of the TT-ranks on the computational complexity.
The method is originally presented in [13] and hereafter
summarized.

The system matrices in TT-format can only be approximated
reliably up to certain degree with lower TT-ranks. Hence, the
variables with the highest TT-ranks within the Kalman filter
have to be identified as driving factors. This is determined
to be the covariance tensors. A low TT-rank approximation is
desired. The basis of the method is the TT-rounding algorithm
[29] where a truncation of singular values for each TN core
above a certain threshold is performed. Therefore, the TN
cores are matricified to X e Rri—1n X7 Similarly, in the
covariance truncation method only the first, most dominant
singular value is considered yielding a TT with TT-rank one.

It is shown that this approximation method reduces the effect
of large TT-ranks on the computational complexity and can
speed up more general systems than for system matrices with
TT-rank of one.

C. Method: Fast Inversion in Riccati Equation

This method yields a solution for a special case of Prob-
lem 3.2. For the efficiency of following contractions after the
inversion (e.g. to compute the Kalman gain) it is important to
have an idea about the TT-ranks of an inverted TT.

Theorem 3.1: Consider a nonsingular TT X with
ttr (X)) = 1. Then [32]

ttr (A1) = 1 (19)

This holds due to the relation of a TT with Kronecker models
and by [37]

Xi®0X) ' =X{'e-0X;! (0

For unstructured TTs with ttr (X) > 1 there is no such result,

meaning that the TT-rank of the inverse can grow large [32].
Multiple possibilities exist for the inversion of a TT. For

example one can solve of a linear system of the form

AX =1 2D

with X = A~! as solution of the system. Rewriting it in a
regularized minimization problem yields

min [|T — AX||7 + A |IX] |7 (22)

st. A>0

This optimization can be solved using the Alternating Linear
Scheme (ALS) for tensor optimization [17]. A modified ver-
sion of the ALS is originally developed in quantum physics
as Density Matrix Renormalization Group (DMRG) [38]. This
is an iterative optimization scheme where one TN core is
optimized at a time. Hence, smaller subproblems are solved
instead of one large problem. For numeric stability all cores
are orthogonalized except the one to be optimized. One sweep
is defined as going forward and backward over all TN cores.
The scheme applies multiple sweeps until convergence.

The ALS approach has been chosen in [28], [30]. In [23] it
is generalized for the pseudo-inverse of non-square matrices.
However, the ALS requires to know the TT-ranks of the
solution beforehand. According to Theorem 3.1 the solution
ranks are only known for ttr (A) = 1. The solution TT-ranks
could be initialized with high values and then truncated to the
optimal ones using the TT-rounding procedure [29]. However,
then contractions within the optimization are computationally
inefficient.

A second possibility is the use of randomized SVDs. The
idea is to use a multiplication with a random matrix to reduce
the size of the problem while obtaining a random sample of
the range of the matrix. An overview on different algorithms
is given in [16]. A TT implementation is proposed in [6].
Inversion is simply achieved by transposing the single matrices
and re-contracting them. However, this approach has two main
drawbacks. First, for a good approximation the distribution
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of the singular values has to be known which is in general
not the case. Second, The TT-ranks of the decomposed TTs
can be high which lead to inefficient re-contraction after
decomposition.

Hence, a general fast solution for the inversion of a TT
is not yet available. For the special case of ttr (C) =1 and
uncorrelated, low measurement noise, there exists a fast inver-
sion. Considering the result of [13] for covariance truncation to
ttr(P.|.y) = 1yields ttr (S) = 2 due to the summation of two
TT-rank one TTs [29] in Eq. (12). If the measurement noise
is sufficiently low, then the TT-rounding algorithm will only
consider the most dominant singular value, hence ttr (S) = 1.
Then, Eq. (20) states that each TN core can be inverted
independently.

Example 3.2: Consider a TT X with TT-rank one
and X() ¢ R1*7xnx1  The complete inversion requires
O (dn3) operations. For an equal matrix representation with
X € R *" there are O (n3?) algebraic operations necessary.
This shows the high computational advantage of this special
case.

D. Method: Recursive Conversion of Measurements in TT-
Format

This method yields a solution for problem 3.3. In gen-
eral one can use the reliable TT-SVD algorithm [29]. This
algorithm requires for each TN core to compute a SVD of
the vector y, reshaped to a r;_in; X %i(nyk) matrix. For
exponentially large systems with increasing TT-ranks this can
become limiting.

A novel method is developed. The idea is that the new
measurement yj is not completely independent of the last
one yx—1 due to their connection with past states xj_i.
The ALS optimization scheme can be used for the vector to
TT conversion with the TT of the previous measurement as
initialization. Take

min || R (yx) — X||7 (23)
with Xy = Vi—1 and the reshape operator R(-) to reshape the
argument in the required tensor. The algorithm follows the
general ALS scheme and is visualized in Fig. 4 for an example
with y; € RPP2Ps and d = 3 TN cores in TT-format for the
forward sweep. There are four main steps for each iteration
(independent of forward of backward sweep):

1) Reshaping of the vector yy to a tensor of order-d with
the same mode sizes as the desired TT using the reshape
operator R(-). Visualized in Fig. 4 as the left tensor core.

2) Contraction with all TN cores except the one to be op-
timized. See that the resulting TN core after contraction
has the same size as the one to be optimized. Visualized
in Fig. 4 by the dotted lines for the connected indices,
indicating contractions.

3) Replacing of the optimized TN core with the new
updated one. Visualized in Fig. 4 by the TN core on
the right which is of the same form as the dashed one.
That is optimized and replaced.

Fig. 4. ALS scheme for conversion of vector yj to TT-format. Example with
d = 3 TN cores for the forward sweep. The core which is optimized at step @
(dashed) is replaced in the next step with the optimized one (on the right after
equal sign).

4) Orthogonalization of the new core. A QR-decomposition
of the matricified core is performed and the non-
orthogonal part is merged with the next core. Not
visualized in Fig.4.

These steps are iteratively executed for all cores in the forward
and backward sweep until convergence. A numeric comparison
of the TT-SVD and TT-ALS conversion algorithm is attached
in appendix A.

An analysis for the computational complexity of the com-
plete algorithm with the presented methods compared to the
conventional matrix Kalman filter is attached in appendix B. It
can be summarized that the developed MIMO tensor Kalman
filter works under the following two assumptions.

Assumption 3.1: The TT-rank of the measurement matrix in
TT-format is or can reliably be approximated with ttr (C) = 1.

Assumption 3.2: (1) The measurement noise of the system
is sufficiently low such that its largest singular value of each
matricified TN core is smaller than the one of the expression
Cr X3 Prjk—1 X3 C. (2) The TT-rank of the measurement
noise covariance matrix in TT-format is ttr (R) = 1, meaning
uncorrelated noise.

IV. INTRODUCTION TO ADAPTIVE OPTICS

In order to improve the research impact e.g. in astronomy,
scientific communities asks for higher image resolution. The
limit for the angular resolution is given by the diffraction limit
which decreases with increasing lens diameter. Therefore the
size of telescopes nowadays increase. However, disturbances
such as atmospheric turbulence give this trend a limit. As a
countermeasure an AO system is employed.

Atmospheric turbulences distort the originally flat wavefront
to a non-flat smooth wavefront. This occurs due to spatially
and temporally varying refraction indices of the atmosphere
which the light passes. To measure this distortion a Shack-
Hartmann wavefront sensor (WFS) can be used [33]. The
distortion can then be compensated with the use of deformable
mirrors (DM), see Fig. 5.

Since there is a time delay between the wavefront mea-
surement and the change of the DM a predictor is necessary.
This can optimally be achieved by a Kalman filter. With the
increasing size of telescopes also the AO systems grow and
ask for large-scale real-time Kalman filtering.
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Fig. 5. Schematically drawing of an AO system including turbulence, WFS
and DM

A. Turbulence Model

For the Kalman filter a linear model of the turbulence is
necessary. A well established choice to describe the spatial
correlation of the wavefront on a 2D grid is the Von Karman
model [11]. The correlation of two points can be derived de-
pending on the distance between them and weather dependent
parameters for the severity of the turbulence. With this an
analytic equation for the covariance C, j of the vectorized
wavefront ¢, at time step k is given.

Contrary to the spatial correlation, the temporal relation for
the evolution of the wavefront in time is an open subject to
research. A simple, linear model that is often chosen is the
discrete-time AR-1 model, given as

i1 = Apdi + Vi (24)
with v, ~ (0,Qy) as Gaussian noise. This depicts the state
process equation of a state-space model. The transition matrix
A can be described by a simplified model using Ay = a1,
where |ax| <1 in order to be stable. For a more general
model various system identification methods can be used in a
data-driven approach to model the temporal behaviour more
precisely. The combined knowledge of spatial and temporal
correlation can be used to derive an expression for the process
noise covariance as

Qi = C¢>k—AkC¢kA

[vkvk ] (25)

B. Wavefront Sensing

For the output equation of the state-space system a model
of the Shack-Hartmann WES is derived. This sensor consists
of a grid of small lenses (lenslets) which deflect the incoming
light of a bright guide star to a photon sensor. The position
of the star on the sensor depends on the local gradient of the
wavefront. Using a Fried geometry means that the output of
the WES is the slope at the centre of a square of four sampled

P11 @ P12 @ 1,3 @

Sy,1 Sy,2

Sx,2

¥2,1 @ P22 @ P23 @

Sy,4

Sx.,4

Y31 @ Y32 @ P33 @

Fig. 6. Representation of Shack-Hartmann WEFS with Fried geometry for
¢ = 3 lenslets. The dots represent the centre of each lenslet for the wavefront
samples. The slopes of the wavefront are denoted by s;, sy in the specific
direction.

wavefront points, see Fig. 6. Define the sampled wavefront as
regular 2D grid

P11 P1,c

o = e R° (26)

Pe,1 Pe,c
with ¢ as the number of lenslets in each row and column.
Vectorizing this matrix by ¢, = vec(®]) € R yields the
state vector of Eq. (24).

Example 4.1: For ¢ = 2 the slopes in x—direction (s,) and
in y— direction (s,) are given with the notation as in Fig. 6
by

(f2,2 + ¢1,2) = (b1,1 + ¢2,1)
1 -1 1 1

[ 1 -1 1] ¢

For the general case the slopes s are stacked in the mea-

. 2, 2 )
surement matrix G, € R2(c=1)7x¢” 4 obtain the measurement
equation of the state-space model

[(tﬁz 2+ ¢21) — (P11 + 1, 2)} @7

1
T2
1
T2

vi = Goy, + wy, (28)

with Gaussian measurement noise wy ~ (0, Ry) which can
considered to be uncorrelated for each lenslet, yielding
R = 021. From this model one can infer that the number of
states is n = ¢? and the number of outputs is p = 2(c — 1)2.

Note that the system has two unobservable modes. The
piston mode for y;; = ¢, ; Vi,j which is an offset and the
waffle mode with Qii = —Pitl,i = —Pii+l = Pit1,i+1 Vi
that is a chessboard pattern.

C. Linear Model for Tensor Filter

The derived state-space model in Eq. (24) and (28) can not
directly be used in the tensor Kalman filter. It is necessary to
fulfil assumption 3.1 and assumption 3.2. The latter is justified
in [24]. In fact, the AO system can be assumed to be time-
invariant. Yet, updates of the system matrices can happen after
some time when new data is available, making the system
time-varying. In the following the time-invariant notation is
used.
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The process equation does not need adaptation for the tensor
filter. The matrices A, Q can a priori be transferred to TT-
format with the TT-SVD algorithm [29]. An approximation
with lower TT-ranks is possible.

For the measurement equation one can exploit the struc-
ture in G to fulfil assumption 3.1. First, the slopes in
z—direction (s;) and in y—direction (s,) are separated by
reshuffling. Then, one can derive one output equations for
each direction independently. In the following it is shown for
the z—direction; the y—direction follows the same approach.
Write

Sx.1
=GCy9 (29)
Sx,c—1
with
G -Gy 1 1
C, = G, -G . Gy = % 1 1

where C; € R(e=17x¢* and G; € R(e=Dxe_ This yields

Ci=E oG (30)

with
1 -1
E, = 1 —1 e]R(c—l)xc

to capture the structure and signs of G; in C;. Finally, two
distinct output equations can be written with this formulation
as

€1y
(32)

Yik = Ciop + Wi

Yor = Coop + Wa i,
Due to the Kronecker product in Eq. (30) this can be written
as a TT with TT-rank of one. Consequently, the tensor Kalman
filter has a sequential update with two measurement updates
for both output equations. Note that for the conventional
Kalman filter there is no requirement on the structure. Hence,
one can combine the output equation as

|Gy Wik
-G+ o]

V. RESULTS AND PERFORMANCE EVALUATION

|:YI,k (33)

Y2,k

A. Evaluation method

This section presents the performance of the developed
tensor Kalman filter for the AO application. The filtered
WF ¢, is compared to the real WF ¢;,. The evaluation
concentrates on two main points. First, the computation times
of different state-of-the-art algorithm are compared. Second,
as a measure of accuracy the relative 2-Norm squared is
considered

[[vee(o) — vee(d)| |

(34)
[|vec(9)][3

Where ¢ is a collection of ¢y, for all times and ng is a collection
of q3k| i for all times. This measure indicates how many digits
are correctly estimated.

Since updates of the system matrices are possible, the
general, time-varying case is considered. No steady-state as-
sumptions hold and the Kalman gain has to be recomputed in
every time step.

In the following a comparisons is drawn based on a basic
AO simulator. This is used to compare the presented tensor
Kalman filter algorithm with three state-of-the-art algorithms.
First, the conventional Kalman filter [20], second, a Kalman
filter based on first-order Tayler approximation of the Riccati
equation [24] and third a transformation ensemble Kalman
filter [14]. All filter are run over varying telescope sizes,
i.e. varying state and output vector size. The computational
advantage of the novel method and the relative accuracy are
demonstrated.

B. Basic AO Simulator

For this simulator a WES using a Shack-Hartmann sensor
with Fried geometry as derived in section IV-B is used. The
system size is varied for telescope sizes of D = 2 [m] to D =
35 [m] with a phase sampling distance of 0.5 [m]. Meaning
for a telescope of diameter D there will be a grid of 2D X
2D lenslets in the WFS. This corresponds to p = 2(2D — 1)2
outputs and n = 4D? states. The measurement noise is set to
R = 021, with 0, = 3.33 - 1073 [rad].

For the turbulence model the Von Kérmédn model is used
with a Fried parameter of rop = 0.5 [m] and an outer scale of
Ly = 25 [m]. A single layer of turbulence with wind speed
of v = 1 [lenslet/time step] is chosen. This yields that the
turbulence conditions are equal for all sizes of telescopes.
For the temporal correlation the derived AR-1 model of
Eq. (24) is used. The comparison approach [24] is restricted
to A = al, which is therefore used for all approaches. The
process covariance matrix is identified using Eq. (25).

Due to uninformative A —matrix, the two unobservable
modes of the WFS (waffle, piston) will remain unobservable.
A nonsingular state transformation matrix T is applied such
that

¢unobs.

-

where T is given by an SVD of the measurement matrix by
USV ' = C with the first n — 2 columns of V as transfor-
mation matrix T. Only the observable part of the wavefront
¢, is compared.

A total simulation time of k4, = 150 [steps] is simulated
in a Monte Carlo approach of N = 8 runs. The initial
conditions are set to ¢y ~ (0,I). An implementation of the
ensemble transformation Kalman filter without localization
methods is chosen. The number of ensemble members is
chosen in line with results in [14] as m = p/2. Choosing more
ensemble realizations will yield a more accurate result at the
expense of higher computational times. For the tensor Kalman
filter the TT-rounding tolerance is set to ¢ = 10~%. The process
noise covariance is approximated with ttr (Q) = 10. This
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Computation time per step

—A— Matrix Kalman filter
— % —Tensor Kalman filter
| —&— Riccati approx. filter
—-&-- Ensemble Kalman filter

time [sec/step]
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Diameter [m]

Fig. 7. Computational time for each time step of different Kalman filter
methods over varying telescope sizes. Mean value over N = 8 Monte
Carlo simulations. The dotted lines show extrapolations with power function
approximation (az? — ¢).

approximation yields for a telescope with D = 35 [m] a
relative accuracy of 2.82-1072 and is considered as sufficient.
This is seen as worst-case scenario since it is the largest
simulated system and therefore approximated with the relative
least amount of singular values. The A —matrix in TT-format
will yield ttr (A) = 1 due to its diagonal structure.

The simulations are run on a Matlab implementation with
version 9.3.0.713579 (R2017b) installed on Linux Ubuntu
16.04 LTS. The hardware consists of an Intel core i5-7200
quad-core CPU running at 2.5 GHz with 7.7 GB RAM.

The computational time for each time step of the four
Kalman filter algorithms is depicted in Fig. 7 as mean value
over the Monte Carlo runs. The variance is for all points
at least two magnitudes lower than the mean value and
not visualized. The difference of the Riccati approximation
method with the plots given in [24] lies in the fact that here
time-varying systems are assumed. Hence, the Kalman gain
computation is run in every time step and no precomputations
are possible.

The computational complexity of the matrix filter and the
Riccati approximation filter are in the order of O (p®) and
for the Ensemble filter of O (1/4p®). Since p > n for the
AO system, this results for all comparison methods in about
O (D"). For the tensor Kalman filter a complexity of O (D?)
is obtained because the largest mode size is 2D — 1 in the
output. The figure confirms this statement and shows empiri-
cally the high computational advantage of the tensor Kalman
filter over the exponential computational complexity of the
conventional filter, the Riccati approximation approach and the
ensemble filter. All three comparison methods are extrapolated
with power function of the form y = az® + ¢. The exponents
are by = 6.3 for the matrix filter, b,;,. = 5.7 for the
Riccati approximation filter and b.,s = 5.9 for the ensemble
transformation filter. The tensor Kalman filter can reliably
be approximated with a linear regression, were the slope is
8.2 - 10~*. Approximating it with a power function yields an
exponent of b;.,, = 1.7. This underlines quantitatively that the
tensor Kalman filter is of about four orders faster than the
matrix Kalman filter for this specific system.

As a measure of accuracy the relative 2-Norm squared of the
estimated, filtered wavefront QAS,C“C and the real one ¢y, as given

Relative 2-Norm of est. wavefront

10 0 _
al
&a* 3 %
1072 0&).9_;5_-;;
e -g:s-s‘ge;g:eﬁﬁ:?&*-l**‘u % 2 N N N g =X
5]
Z 10 4k —A— Matrix Kalman filter
« — % —Tensor Kalman filter
° --@-- Riccati approx. filter
108 ¢ —-&--Ensemble Kalman filter
LA AADDAAAALNO-O
108 . | | I | I |
5 10 15 20 25 30 35

Diameter [m]

Fig. 8. Relative 2-Norm of the estimated wavefront (ﬁk‘ 1 showing the
accuracy of the tensor Kalman filter and the comparison methods.

in Eq. (34) is considered. Results are given in Fig. 8 as mean
value over the Monte Carlo iterations. Again, the variance of
the points is at least two magnitudes lower and not depicted.
The matrix filter and Riccati approximation filter reach about
the same accuracy which is due to the extremely low measure-
ment noise assumption. For the ensemble and tensor Kalman
filter a loss of accuracy of up to four digits is obtained. For the
ensemble Kalman filter this is due to the number of ensembles
as trade-off between accuracy and computational time. For
the tensor Kalman filter this comparably lower accuracy is
mainly due to the approximation in the algorithm - namely the
covariance truncation. Without these approximations the same
accuracy as the matrix Kalman filter can be reached for the
cost of about the same computational complexity. Therefore,
a new filter design paradigm between an arguable loss of
accuracy and a tremendous increase of computational speed
is generated by the use of the tensor Kalman filter.

VI. CONCLUSION

This paper generalizes and extends the theory of tensor
Kalman filter for large-scale time-varying MIMO system in
state-space form. When applying the TT decomposition and
multilinear algebra to the Kalman filter, the curse of dimen-
sionality for a specific class of exponentially large systems is
lifted. Methods are developed to tackle the main problems of
the tensor Kalman filter for MIMO systems: (1) a specific class
of subsystems, namely with uncorrelated, low measurement
noise and with a TT-rank of one in the measurement matrix
is defined for which the inversion in the Riccati equation can
be computed extremely fast in TT-format. (2) a conversion
method from vector to TT-format based on the ALS algorithm
is presented that outperforms the state-of-the-art TT-SVD
algorithm.

The algorithm is verified for AO telescope systems of the
next generation. It is presented that the computational time
for the tensor Kalman filter rises approximately linear with
increasing system sizes while obtaining reasonably accurate
results. This outperforms the conventional Kalman filter by
several orders. Hence, in future AO systems the computa-
tionally driving factor is not the wavefront estimation and
propagation but rather factors like the sensor readout and the
transient times of the deformable mirrors will play a more
crucial role.
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Fig. 9. Computational times for conversion of a vector to a TT with TT-SVD
and novel TT-ALS algorithm. Mean time for 30 Monte Carlo simulations.

Points, which are not considered in this work are e.g.
a batch-wise measurement update and the identification of
the underlying system dynamics directly in TT-format. An
improvement in terms of numeric accuracy of the developed
filter can be obtained by a square root tensor Kalman filter
implementation. This is of particular interest for future practi-
cal applications. Furthermore, the class of applicable systems
for the fast MIMO filter can be extended if a more general
fast inversion method in TT-format is developed.

APPENDIX A
EVALUATION OF TT-ALS FOR VECTOR CONVERSION

A comparison of the conversion of vectors to TTs with
the TT-SVD and TT-ALS algorithm is presented. Take two
randomly generated vectors with y, ~ (0,1) for k = 0,1,
where y( is in TT-format. Note that the vectors are not
correlated by an underlying state-space system. Even for these
independent vectors a single forward sweep is sufficient to
achieve a conversion with machine precision.

The conversion time of the TT-SVD algorithm compared to
the TT-ALS with one forward sweep are depicted in Fig. 9.
In order to keep the connection to the AO application, the
converted vector has size y € R’ yielding three TN cores
with mode sizes (p, p, 2). The comparison shows the advantage
of the TT-ALS method for the vector conversion.

APPENDIX B
COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

An analysis for the computational complexity of the conven-
tional Kalman filter and the presented tensor Kalman filter un-
der the special condition such that all developed methods apply
is presented in Table I. The state vector is taken to be x € R"*
and the output vector as y € RP" with all modes sizes equal.
Note that here the TT-ranks are rp = rg =rg =rg-1 = 1 1is
applied. Note also that the TT conversion of the measurement
vector is still exponential in d since each optimization step
requires a contraction with the complete measurement vector.
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Chapter 6

Conclusion

6-1 Summary of work

The study of tensors and the T'T-decomposition for the application in a large-scale Kalman
filter is motivated by two main factors: The compression rate for systems with inherently
low TT-rank like Kronecker models and more importantly, its capability to lift the curse of
dimensionality. This mathematical framework can decrease the computational complexity
of exponentially large systems to enable optimal real-time estimation to a huge variety of
engineering problems.

This thesis provides an extensive overview and rigorous introduction to tensor calculus as
necessary tool for the understanding and development of a tensor Kalman filter. The existing
theory of the tensor Kalman filter for the system identification of MIMO Volterra systems in
[3, 5] is first rewritten for general time-varying state space systems. The scheme is analysed
in detail to identify limitations and computational bottlenecks. It has been shown that for
system dynamics with TT-ranks greater than one in the representative TT-format of the A—
and C-matrix, the tensor Kalman filter is significantly slower than the conventional matrix
Kalman filter. This decrease is theoretically due to the polynomially dependence of the TT-
ranks on the computational complexity. The effect of this issue is solved by truncating the
TT-ranks of the a priori and a posteriori covariance tensor to low TT-ranks, specifically to TT-
rank of one. Hence, the effect of large T'T-ranks in the system dynamics on the computational
complexity could be decreased significantly. An initial exponential trend of the computation
time for larger systems is decreased to an almost linear trend for SISO systems.

As a second bottleneck the computational complexity for MIMO systems is identified. The
tensor Kalman filter equations from [5] are rewritten to distribute possible exponentially large
output vectors over all tensor cores and therefore lift the curse of dimensionality for MIMO
systems. Following, the main problem for a MIMO tensor Kalman filter lies in the inversion
for computing the Kalman gain. This inversion has to be computed in TT-format. In case the
TT-ranks are unequal to unity, the inversion is in TT-format computationally not effective
solved. A special class of systems is defined for which a fast MIMO tensor Kalman filter

Master of Science Thesis Daniel Gedon



40 Conclusion

can be generated: The TT-ranks of the measurement matrix and the measurement noise are
equal to one and the measurement noise is sufficiently low.

An application which falls in this class of systems is found to be AO systems. The system
dynamics for the AO system are rewritten to fit in this framework. A comparison with
other state-of-the-art methods is performed. These methods are (1) the conventional matrix
Kalman filter, (2) an ensemble Kalman filter and (3) a Riccati approximation methods. It
is demonstrated that the MIMO tensor Kalman filter outperforms all methods in terms of
computational complexity by about four orders for this specific systems. This comes at a
cost of an approximation. Hence, a design paradigm as a trade-off between computational
complexity and accuracy is generated with this new type of Kalman filter.

The work of this thesis is presented and resulted in two papers. The first one is accepted
for the EUSIPCO conference in A Coruna, Spain. The second one is a first draft, which is
intended to be submitted in for the IEEE transactions on control systems technology journal.
However, limitations of the developed approach have been identified as addressed in the
following, which need to be solved for a second publication.

6-2 Limitation of Developed Method

The application of the designed filter algorithm for the defined class of system to AO has
demonstrated the following main drawbacks:

e The truncation of the TT-rank of the covariance tensor in the measurement and time
update has been shown in the AO example to be a rough approximation. A loss of
relative accuracy from about 1077 in the conventional Kalman filter to about 1073 for
the tensor Kalman filter is obtained in this specific example. A reason for this loss may
be the small number of used tensor cores. Truncating the covariance at TT-rank of one
preserves only the most dominant singular value of each matricified tensor core. Using
more tensor cores provides theoretically more information about the system. However,
the used AO example only uses two cores due to the specific modelling.

e The assumption of low measurement noise for the MIMO tensor Kalman filter corre-
sponds in the application of AO to an accuracy in the optical measurement components
of about A\/200. This is an unreachable accuracy in optical components nowadays.
Hence, the theory is in its current status not applicable to real physical AO systems.

e The results for the accuracy of the AO MIMO tensor Kalman filter indicate a change in
the Kalman filter between systems sizes of D = 13 [m]| and D = 14 [m], see Fig. 8 of the
IEEE paper in chapter 5. Analysis showed that from this system size and larger, the
prior in the time update is barely considered. Hence, a breakdown of the Kalman filter
equations happens. A more rigorous analysis and explanation is given in Appendix A.

Especially the last listed limitation is a mayor constraint of the developed algorithm. Several
ideas to solve this issues are presented in Appendix A.
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6-3 Future Work

All presented limitations of the MIMO tensor Kalman filter are the result of the absence of
a fast inversion method for the TT-format. Therefore, the goal to solve the MIMO tensor
Kalman filter in a more general manner is to develop a fast TT-inversion method for the
application in Kalman filters. This inversion method can open the door for MIMO tensor
Kalman filter theory of a more general class of systems than the one defined within this
thesis. A promising approach is to use a TT-randomized SVD as presented in this thesis [6].
However, the approach needs a generalization with a full TT-QR decomposition meaning that
the resulting @ and R are both T'Ts. This is currently not yet mathematically solved.

For practical implementations of the tensor Kalman filter it is of great interest to develop
a square root tensor Kalman filter. This ensures numeric stability for the symmetry and
positive definiteness of the covariance tensor. Since the square root Kalman filter method
is based on a factorization of the covariance matrix, e.g. a full TT-QR decomposition is
necessary.

Finally, for the development of new algorithms there should always a specific application
been kept in mind. During the work of this thesis the focus often lay on the development of
fundamental algorithms for any kind of system. However, this is often an ambitious challenge.
More suitable and tailored algorithms can be designed for the class of systems of a specific
application. E.g. in the case of this thesis the AO application can be written with TT-ranks
of one in the system matrices of the output equation. This property can be exploited to
design fast algorithms.
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Appendix A

Analysis and ldeas for MIMO Tensor
Kalman Filter Limitations

A-1 Analysis of Limitations

As highlighted in the conclusions, chapter 6, one of the main limitations of the MIMO tensor
Kalman filter is the change in accuracy for the specific AO example between system size with
D = 13 [m] and D = 14 [m] as shown in chapter 5, Fig. 8 of the IEEE paper draft. The
reasons for this change are analysed in the following.

The AO system is modelled in the state process equation with A = al. The temporal
dynamics which are not covered by this simple model have to be modelled in the process
noise covariance by Q = C, — AC¢AT, see section 3-2-2. With larger system sizes, the
modelling error of A increases and the norm of Q increases since the process noise covariance
has to capture this modelling error. For simplicity the time-varying index k is omitted here.

In the tensor Kalman filter the a priori and a posteriori covariance tensor are truncated with
TT-rank of one. This means that only the most dominant singular value of each matricified
tensor core is considered. At some point in the covariance time-update APk‘kAT + Q, the
largest singular value of the process noise covariance Q becomes larger than the one of the
product APy, wAT. This has two main reasons:

1. As a consequence of the modelling error of the A-matrix the norm of the noise covariance
Q rises. Therefore, the most dominant singular value of Q outnumbers the one of
AP AT,

2. In case the filter does not diverge, the confidence in the state estimations rises with
longer estimation times. The values of the state error covariance matrix Py, decrease

and therefore the most dominant singular value of APy, LA T decreases, as well.

As a consequence of these influences the prior Py, is barely considered in the time update
due to the truncation to TT-rank one. This means that the update of the filter is only based
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on noise covariances. Hence, from this point on, the designed filter is not a recursive Kalman
filter. This statement is supported by the plots in Fig. A-1. The plot on the left shows a
working tensor Kalman filter. The covariance tensor Py 1), underapproximates but converges
to the covariance of the conventional Kalman filter independent of the noise covariance. In
the right plot the prior Py is barely considered and the resulting norm of the covariance
tensor Ppyq); is almost equal to the norm of Q confirming the hypothesis above.

2-Norms for D=13[m] 2-Norms for D=14[m]

2-Norm
Y
2-Norm

’ Matrix Filter: ||P
= = =Tensor Filter ||P

ket N2
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0 50 100 150 0 50 100 150
time [step] time [step]

Figure A-1: 2-Norm of Matrix filter covariance Py, tensor filter covariance Py )5, and of
noise covariance Q for the specific AO example with sizes D = 13 [m] (left figure) and D = 14 [m]
(right figure).

A-2 Solution Proposals

The analysis above demonstrates that the truncation of the covariance tensor in the time
update causes the limitations of the MIMO tensor Kalman filter algorithm. However, this
truncation is necessary for the inversion in the computation of the Kalman gain. For TT-
ranks higher than one, the inversion slows the algorithms significantly down. Several ideas
have been tried to solve this issue, which are presented in the following.

Parallel Computing of Contractions An independent solution to improve the computational
speed is to use parallel computing for T'T contractions. Each core is contracted independently
from all other cores. This independence enables parallel computations. In Matlab the parallel
computing toolbox with the parallel for-loop function parfor can be used. Simulations of
contractions of two randomly generated TTs with the parallel computing contraction and the
conventional sequential contraction are performed. For different number of tensor cores with
all modes of size n = 10 the results for the timing as a ratio between the parallel computing
function and the conventional function are demonstrated in Fig. A-2. The mean value of
N = 250 Monte Carlo simulations is visualized.

The results show as expected a decreasing tend for larger number of tensor cores. More tensor
cores emphasize the advantages of parallel computing over sequential computing. However,
the figure clearly indicates that the ratio is always larger than one. This result means that
the overhead of the Matlab parallel computing function to copy data to and from the single
workers is too large to make this function useful. A possible explanation can be that on the
used hardware, only two parallel worker could be used in parallel. More workers might be
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Figure A-2: Ratio of contraction time of d tensor cores between parallel computing and sequential
computing over increasing number of tensor cores with mode size n = 10 and for N = 250 Monte
Carlo simulations.

advantageous. Using a mode size less than n = 10 or more results in a similar curve as in
Fig. A-2. Note that the results are obtained when the Matlab parallel computing pool is
pre-activated.

Imposing Structure on the Kalman Gain Using covariance truncation to TT-rank of one
ttr(Pry) = 1 and ttr (C) = 1 yields a fast inversion of the expression S = CPk‘k,lCT +R
due to ttr (S) = 1. In this case the inverse of S also has TT-rank of one. Hence, computing
the Kalman gain K = Pk‘k,lcTS_l in TT-format will yield a TT-rank of one ttr () = 1.

Since the filter with covariance TT-rank truncation is stable, one could impose structure on
the Kalman gain itself. Covariance TT-rank truncation is not necessary. However, simulations
with Kalman gain TT-rank truncation only result in an unstable filter. The reason for this
divergence is that the covariance tensors in the measurement and in the time update do not
remain symmetric, positive-definite with TT-rank truncation of ttr (C) = 1. The theoretical
background for this phenomenon is unclear and needs further research.

Approximating the Covariance Tensor with Higher TT-Ranks The limitation of the de-
signed tensor Kalman filter originates in the covariance TT-rank truncation. Higher TT-ranks
for the covariance truncation can counteract this limitation. However, ttr(P(.)) = 1 is nec-
essary for the inversion of S. Two possibilities are explored to combine both necessities:

1. Increase the truncation TT-rank and only truncate Pjq for the use in S. In the
remaining measurement and time update ttr(P(|)) > 1 can be used.

2. Increase ttr(Py;) in the measurement update and only use ttr(Ppyqx) = 1 in the
time update. The latter is necessary for the inversion with TT-rank of one. Since two
batch measurement updates are performed (for y— and x—direction of the measurement
slopes), then only for the second measurement update, the covariance TT-rank can be
increased.

Both approaches have been tested in simulation. Approach (1) yields similar results as pre-
sented in the original tensor Kalman filter, see chapter 5. A stable Kalman filter is obtained.
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However, also the same problem arises. Namely, that at a specific point, the prior is not con-
sidered in the time update and the update is only based on the noise covariance. Approach
(2) directly yields unstable filter results, blowing up the state estimates.

Batch-Wise Measurement Update In the current tensor filter design there are two measure-
ment update batches computed in sequence for the x—direction slopes and the y—direction
slopes. Increasing the number of batches decreases the individual batch output size p;. The
idea is to have a total number of p measurement updates with p; = 1. Hence, the inverse for
the Kalman gain becomes a scalar problem. Each batch measurement update is therefore a
SISO update with an exponentially large state-vector and one output. This approach does
not necessarily require ttr(P(.‘,)) = 1. Increasing the truncation TT-rank of the covariances,
then the limitation in the time update that the prior Py is not considered should not occur.

Simulations with this idea are performed. Each row of the measurement matrix from the
Shack-Hartmann sensor is considered for one individual batch measurement update. Two
tensor cores are chosen in order to be compliant with the time-update. The simulation is
performed with the same simulation constraints and system settings as in chapter 5. The
resulting time and relative accuracy of the filter are presented for a Monte Carlo iteration of
N =4 in Fig. A-3.

Computation time per step o Relative 2-Norm of est. wavefront
102
;-’:—’- e g =X M= K W K —=X— N H K —X
2
10 -9-9--0-
a FE0-0-0-00-0-60-0-0-0-0-0-0
Q 0 c
g 10 5
S Z10*
_& I\
) —A— Matrix Kalman filter @I
.g 1072 — # —Tensor Kalman filter
—o— Riccati approx. filter 1078 F
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Figure A-3: Results of different Kalman filter algorithms in simulation for varying AO system
sizes with SISO batch measurement update. Left: computational times, right: relative accuracy.

Regarding the computational complexity two statements can be made. First, the initial com-
putational demand increases for these SISO batch measurement updates significantly. Second,
again a power function of the form y = aa® + ¢ for the approximation of the computational
times yields the factors as given in Tab. A-1. This highlights quantitatively that the tensor
Kalman filter has a computational advantage in the exponent of about three orders for this
specific system.

For the relative accuracy of the filter also two statements are made. First, it is visible that
the relative accuracy decreases to a value of about 0.04, meaning that roughly two digits are
estimated correctly. Second, an analysis showed that the the prior is always considered in
the time update. Hence, the problem as identified in the previous section for the filter of
chapter 5 does not exist. Therefore, with this method a valid Kalman filter is designed which
outperforms computationally the state-of-the-art methods for super large systems.
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Table A-1: Factor values for approximation of computational times with power function of the
form y = az® + c.

Method a b c

Tensor filter 2.391-1073 2.761 1.330-10"1
Matrix filter 1.824-1077 6.135 —2.804-1072
Riccati approx. filter | 9.047-107% 6.032 2.893-1073
Ensemble filter 3.986-10"% 6.095 8.077-1073

It is important to note that the results are obtained with ttr(P(.)) = 1. Increasing this
truncation TT-rank should give a more accurate estimation with a constant increase of the
relative accuracy in Fig. A-3 for the tensor Kalman filter. However, first simulations with
higher truncation TT-ranks resulted in unstable estimations. Investigations in this direction
are necessary.

A second possibility which is not yet explored is to increase the number of tensor cores. In the
simulation two tensor cores are used, equally to the simulations in chapter 5. This number of
cores is necessary to obtain ttr (C) = 1. However, this condition is not necessary when using
SISO batch measurement updates. Prime factorizations of the modes for a larger number of
tensor cores are possible. The increase in tensor cores can possibly decrease the computational
time and increase the accuracy since with TT-rank truncation more information is preserved.
Research is this direction is necessary.
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