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Abstract. There have been significant developments in the area of vibration-
based bridge scour monitoring in recent years. Traditional scour monitoring 
using either visual assessment or diving inspections are now recognised to 
be very unreliable and highly subjective. There has been a concerted effort to 
move towards reliable systems capable of either direct measurement of scour 
or indirect measurement, based on monitoring the response of the structure to 
damage. The developments have unearthed new challenges and problems. This 
paper describes some recent developments in the field. In addition, remaining 
challenges that act as a barrier to the successful wide-scale deployment of the 
methodologies are discussed. In particular, it addresses issues related to how 
to measure key performance indicators (such as the vibration response of the 
structure) and the potential of these approaches in real-world applications.
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Introduction

Scour is the term given to describe the excavation and removal 
of material from around foundation systems of structures located in 
harsh hydraulic conditions. There are three main terms used to classify 
scour, namely general scour, contraction scour and local scour. General 
scour includes the natural processes of aggradation and degradation 
of streambeds that occur as a result of changing hydraulic parameters 
governing channel form such as changes in flow rate or sediment 
supply (Forde, McCann, Clark, Broughton, Fenning, & Brown, 1999). 
General scour results in the natural evolution of the waterway and 
is associated with the progression of scour erosion and deposition in 
the absence of obstacles to the flow (Federico, Silvagni, & Volpi, 2003). 
Contraction scour occurs due to sudden changes in channel geometry 
introducing a constriction to flow areas such as at the location of a 
hydraulic structure such as a bridge pier or abutments. The decrease 
in flow area leads to an increase in flow velocity and an associated 
increase in bed shear stresses. When the shear stresses imposed by the 
flow on the bed increase above the threshold shear stress of the bed 
material, the sediments mobilise enabling scour to occur (Briaud, Ting, 
Chen, Gudavalli, Perugu, & Wei, 1999). The term “local scour” is given to 
describe erosion that occurs around hydraulic structures such as bridge 
piers and abutments. When the flow meets an obstacle such as a bridge 
pier, downward flow is induced at the upstream end leading to localised 
erosion around the structure (Hamill, 2014). The amalgamation of the 
three forms of scour described may lead to significant losses in soil from 
around foundation elements, that prove detrimental to the stability and 
safety of structures in operation.

Scour erosion of bridge foundation soil is the number one cause of 
bridge failure in bridges located over waterways (Forde, McCann, Clark, 
Broughton, Fenning, & Brown, 1999; Melville & Coleman, 2000; Shirole 
& Holt, 1991). One study found that 53 percent of 500 bridge failures 
occurring between 1989 and 2000 in the United States occurred as a 
result of flooding and scour problems (Wardhana & Hadipriono, 2003). 
This issue presents a significant cost burden on bridge owners and 
managers worldwide between inspections, scour protection installation 
and repairing damage caused by the occurrence of scour (Prendergast 
& Gavin, 2014). In the United States, the average cost for flood damage 
repair of highways is estimated at $50 (EUR 42) million per year 
(Lagasse, Zevenbergen, Spitz, & Arneson, 2012). Scour failures typically 
occur quite suddenly and generally, without warning, potentially leading 
to loss of life. Figure 1 shows the Malahide Viaduct, in North Dublin, 
Ireland, that failed suddenly after a train had passed over it (Maddison, 
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2012). Fortunately there were no casualties in this event; however, this 
section of the TEN-T railway between linebetween Dublin and Belfast, 
was closed for several months as a result of the collapse. 

There are two primary methods of combatting the effects of scour, 
i.e., the use of hydraulic and structural countermeasures. Both of these 
methods are outlined briefly below in the paper. In tandem with the 
provision of scour countermeasures, it is useful to monitor the presence 
and severity of scouring so that effective scour mitigation regimes can  
be employed as part of a bridge management scheme. The current article 
is concerned with the discussion of ongoing challenges in this area; 
therefore, more attention is focussed on describing the current state-of-
the-art in the next section:

 • Hydraulic countermeasures. These primarily involve maintaining 
larger bridge openings at the bridge design stage by reducing the 
size of piers or by streamlining structural elements to avoid rapid 
flow expansion or contraction (May, Ackers, & Kirby, 2002);

 • Structural countermeasures. At the design stage, this involves 
ensuring that spread footings are located below the maximum 
design scour depth (May, Ackers, & Kirby, 2002). Heidarpour, 
Afzalimehr, & Izadinia, (2010) highlight that the addition of riprap, 
rock armour or collars around bridge piers also helps to mitigate 
the effects of scour. Note, this countermeasure is only as accurate 
as existing design calculations of scour depths, which are subject 
to some uncertainty.

Figure 1. Malahide Bridge Collapse (21st of August 2009)
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1. Bridge scour monitoring using a Structural Health 
Monitoring (SHM) techniques

1.1. Direct monitoring
The accurate assessment and monitoring of existing structures to 

progressive scour has come to the fore of research in recent years (De 
Falco & Mele, 2002; Forde, McCann, Clark, Broughton, Fenning, & Brown, 
1999). Methodologies developed can broadly be categorised as follows:

 • methods, which directly measure the scour depth using 
instrumentation, and

 • indirect methods, which infer scour severity by tracking changes 
in bridge modal properties, e.g., natural frequency. This has thus 
been identified as a key performance indicator for the scour 
assessment in the work of WG2 in TU1406.

A range of sensors and methods for direct scour monitoring have 
been developed (Prendergast & Gavin, 2014). Simple systems such as 
Float-Out Devices and Tethered Buried Switches (Briaud, Hurlebaus, 
Chang, Yao, Sharma, Yu, ... & Price, 2011; Hunt, 2009) float out of the 
soil when scour reaches their installed depth, triggering a signal. These 
are the simplest type of mechanical device. However, they must be 
reset when they float out, being maintenance intensive. Time-Domain 
Reflectometry (TDR) systems use changes in dielectric permittivity 
to monitor the location of the soil-water interface relative to a fixed 
probe (Fisher, Chowdhury, Khan, & Atamturktur, 2013; Yu & Yu, 2009). 
Similarly, Ground Penetrating Radar (GPR) can be used to detecting 
the scour holes using high-frequency electromagnetic waves, which 
are partially reflected as they pass through different media (Anderson, 
Ismael, & Thitimakorn, 2007; Forde, McCann, Clark, Broughton, Fenning, 
& Brown, 1999). These types of systems are prone to interference by 
external factors such as scour the whole shape, which can induce false 
reflections. Soundwave devices such as Sonic Fathometers (Fisher, 
Chowdhury, Khan, & Atamturktur, 2013; Nassif, Ertekin, & Davis, 2002; 
Prendergast & Gavin, 2014), Reflection Seismic Profilers (Anderson, 
Ismael, & Thitimakorn, 2007; Prendergast & Gavin, 2014) and Echo 
Sounders (Anderson, Ismael, & Thitimakorn, 2007) emit sonic pulses 
to locate the soil-water interface, and hence the scour depth, using a 
similar approach to the radar methods. A variety of methods relies 
on the installation of rods into the soil near a foundation. Magnetic 
Sliding Collars (MSC) (Hunt, 2009; Prendergast & Gavin, 2014) involve 
monitoring the movement of a gravity-controlled sensor which sits 
on the streambed surrounding a rod. The sensor falls with increasing 
scour depth relative to the rod and closes magnetic switches along the 
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rod, which then indicates its depth. The Wallingford “Tell-Tail” Device 
(De Falco & Mele, 2002) consists of motion sensors tethered to a rod 
that detect bed movements as sediments are scoured to their level. 
Zarafshan, Iranmanesh, & Ansari (2012) developed a system, which uses 
changes in the vibration frequency of a driven rod to detect scour, as 
measured using a Fibre-Bragg Grating (FBG) sensor.

1.2. Indirect monitoring
Indirect monitoring methods broadly refer to the use of the response 

of the structure to scour to detect the presence of scour. Most of these 
methods involve measuring the dynamic response of a bridge or bridge 
element using an accelerometer or otherwise, and observing how modal 
properties change when the foundation stiffness is compromised by 
scour. A variety of authors have investigated various aspects of the 
potential applicability of these approaches, in (Briaud et al. , 2011; Chen, 
et al., 2014; Elsaid & Seracino, 2014; Foti & Sabia, 2010; Klinga & Alipour, 
2015; Prendergast, et al 2013, 2016 and 2017).

2. Effective sensor placement for adequate modal 
analysis and detection

One of the more pressing and less investigated problems with 
vibration-based scour monitoring is where to place sensors to ensure 
the desired modal characteristics of the structure under investigation 
are detected. A recent study by Prendergast et al. (2017) postulated 
that various sub-structural bridge elements (piers, abutment, and piles) 
act locally when affected by scour. This implies  that a mode of vibration 

Figure 2. Sensor locations to locate the scour holes on the two-span integral 
bridge (Prendergast, Gavin, & Hester, 2017)
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local to the pier, is only affected by scour at the pier (and other elements 
are unaffected). Using this information it is possible to design a sensor 
scheme that ensures the desired effects will be captured. For real 
systems, there are two main ways to conduct this:

 • a full modal study of the structure of interest whereby the 
structure is mapped for its dynamic behaviour;

 • the development of a numerical reference model of the 
test system, and the extraction of the modal effects from a 
mathematical representation of the real system.

For example, Figure 2 shows the sensor placement scheme to allow 
scour be captured for a two-span integral bridge, as was derived from a 
numerical reference model of the structure.

3. Incorporation of geotechnical uncertainty

One common omission from existing works is the fact that soil is 
a heterogeneous material. As a result, the frequency response will be 
affected by the natural variability in the stiffness of the soil deposit and 
ignoring this effect can lead to significant errors. The operational soil 
stiffness relevant to a study of the vibration response of a bridge is the 
small strain stiffness, G0. In practice, this quantity can be inferred from 
the soil strength profile (Gavin, Adekunte, & O'Kelly, 2009). In sand 

Figure 3. Example of Cone Penetration Test data and inherent variability 
across a site
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deposits that are affected by scour the Cone Penetration Test (CPT) 
end resistance, qc is a reliable tool for determination of the strength 
profile. A typical example of the variation of qc that results from natural 
variability of soil is shown in Figure 3. The impact of this  variability on 
the determination of key performance indicators is considered through a 
numerical analysis in the following section.

Figure 4 shows an example of the impact of variability in the 
expected soil stiffness on the predicted frequency of a piled structure as 
the scour depth increases from zero (no scour) to 10 m of scour. Because 
of the uncertainty with regard to the soil stiffness a distribution of 
possible output frequencies for a given scour depth is obtained, instead 
of deterministic (fixed) values. The apparent problem is the crossover 
in frequencies for each scour depth due to the shared values among 
distributions. The problem is excarebated as the scour depth increases. 
This highlights the significant uncertainty that can potentially exist 
in these types of analysis. Thus it indicates that more accurate ground 
models are required for direct scour depth inference from these 
vibration based approaches. 

Conclusions
Remote scour monitoring is a form of structural health monitoring 

that offers many benefits over traditional techniques for scour 
detection. The principles of the approach have been demonstrated 
in laboratory and numerical studies and is now reaching a stage of 
high Technology Readiness Level. However, before the widespread 

Figure 4. Distribution of Natural Frequency values when soil uncertainty  
is incorporated
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deployment of accelerometer networks to bridges is undertaken several 
issues should be resolved. 

Placement of sensors to capture desired motion is a topic not well 
investigated to date. Most studies superficially mention the placement of 
sensors, for example, at the top of a bridge pier. However, this may not 
be the most effective place to capture the requisite modal information. 
Recent studies have touched on this issue; however, it broadly remains 
an unresolved problem. 

Geotechnical uncertainty has received almost no attention in 
previous studies, postulating the use of vibration measurements to 
infer scour presence and even quantifying depths. Ignoring the impact 
of heterogeneity may lead to incorrect predictions of scour depth. 
This issue will become a significant barrier to the success of both the 
methodology itself and the accuracy of key performance indicators if not 
explored in detail, as the reliance of the measured frequency on a known 
stiffness profile is paramount.
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