Energizing investment

A financial analysis of individual vs, collective sustainable energy technologies in housing at a neighbourhood level

Name: Jasper Koopman Mentor 1: Paul Chan Mentor 2: Michael Peeters Mentor 3: Alex Fernández Course: Graduation Laboratory Date: 28-10-2024 **P5**

Table of content

- Theoretical underpinning
- Methodology

Discussion, conclusion and limitations

Introduction

MATE

impact of the built environment on climate char and of climate change on the built environmen⁻

Why is the built environment important to climate change? We all live and work in buildings, and they provide us with shelter and warmth, belonging and protection. However the built environment is responsible for a huge 39% of all global carbon emissions, far higher than any other individual sector. This 39% can be divided into two distinct impacts: operational carbon, which is from heating, lighting and cooling our existing buildings, which is responsible for 28% of our emissions; and embodied

SCRIBE FOR CO.50/WEEK

carbon, which is from the materials our new buildings ar their transport and construction processes, and also fro materials and components over the life of the building a demolition and end of life processes - this is responsible emissions.

The New Hork Times

Climate Change Is Speeding Toward Catastrophe. The Next Decade Is Crucial, U.N. Panel Savs.

A new report says it is still possible to hold global warming to relatively safe levels, but doing so will require global cooperation, billions of dollars and big changes.

🖀 Share full article 🔗 🗍 🖵 1.9K

National Oceanic and NOAF Atmospheric Administration U.S. Department of Commerce Home / Education / Resource collections / Climate Education home About NOAA Resources Opportunities Education

Climate change impacts

Focus areas: Education Topics: climate literacy, climate impacts, education

Though we often think about human-induced climate change as something that will happen in the future, it is an ongoing process. Ecosystems and communities in the United States and around the world are being impacted today.

As the Climate Changes, Pressure Is Growing to Make **Buildings More Efficient**

Governments are weighing both regulations and incentives to cut emissions and energy use in new construction.

Share full article 24 S

Search NOAA sites

DATABASE //

 ∇

Keep exploring! Find even more resources on climate change impacts in our

searchable resource database.

LESSON PLANS & ACTIVITIES //

activity book (ES, MS, HS) >

hazards collection 🗷

Data in the Classroom (MS/HS) >

Climate Resilience in Your Community

HEART Force: Colorado environmental

Sea level rise learning module (MS/HS) >

ust Stop Oi rrested af overspend' of \$42m before climate projects

overnance as division's ve Just Ston deputy secretary tells inquir f 'no clear checks and

Floods linke Global carbon emission deaths from from electric power may disease. Austr peak this year, report says research show

ustralia new Australian Antarctic Division admits to 'extraordinary

halted

balances' h ago

Greenhouse gas

isrupting performan ondon - vi Greens blast 'dysfunctional'

© marketoonist.com

Problem statement

There has been a recent **surge of interest in integrating sustainable technology** into the built environment. Existing studies have primarily **focused on the financial value of** <u>individual</u> technologies in retrofitting of existing buildings. However, there is a significant gap in knowledge regarding the strategies that can be employed individually or collectively to enhance the financial value of sustainable technologies in the retrofitting of existing buildings.

Research aim

This study aims to examine the **optimal financial value** for implementing **Sustainable Energy Technologies** (**SETs**) at the **neighborhood level** and will analyze whether implementing SETs on a building-by-building basis or at the neighborhood level, or a combination of both, is preferable.

Research question

"How can investment in individual and/ or collective Sustainable Energy Technologies (SETS) generate financial value for the investors in retrofit of housing at a neighbourhood level?"

Sub questions:

SQ1	What sustainable energy technologies (SETS) can be used in the housing sector for individual and collective purposes?
SQ2	What factors determine whether individual or collective Sustainable Energy Technologies (SETS) should be implemented in housing?
SQ3	What method can be used to determine the financial value of individual and collective Sustainable Energy Technologies (SETS)?
SQ4	What are the specific advantages and disadvantages of individual compared to collective Sustainable Energy Technologies (SETS) in financial terms?
SQ5	Based on the evaluation, what are the recommendations for achieving optimal financial value?

Theoretical underpinnings

Financial value

The measurable benefits and returns generated by a monetary investment. It includes benefits such as reduced costs, increased property value and potential income from energy savings or generation.

Economic viability of energy efficiency

Significant increase in importance over recent decades (Copiello & Donati, 2021)

Price premiums for energy efficiency -> There is a additional amount buyers are willing to pay for energy-efficient properties

- Padua, Italy: EPC labels A and B command 61.7% and 61.1% higher prices than label G (Copiello & Donati, 2021)

The magnitude of the price premium is contingent upon a number of variables, including:

- Location: Higher premiums in urban areas
- **EPC Labels:** Higher ratings lead to higher premiums
- House Characteristics: Size, location, maintenance state
- Market Conditions: Mortgage rates, credit availability

Economic viability of energy efficiency

The economic viability of energy efficiency investments is contingent upon the relationship between the cost and price premiums (Copiello & Donati, 2021).

Marginal Cost (MK): Increases with energy performance improvements

Marginal Benefits (MB): Decrease with higher energy labels

MB = MK; investments beyond this point are not economically justifiable

Sustainable energy technologies (SETs)

SETS encompass a diverse range of innovative solutions and systems designed to generate, store, and utilize energy in environmentally friendly and renewable ways. These technologies aim to reduce dependence on traditional fossil fuels, mitigate climate change, and promote energy efficiency.

SETs landscape

Out of the literature the SETS can be categorised into three categories:

- 1. Supply-side,
- 2. Demand-side
- 3. Changing consumption

Heating and cooling demand reduction – Demand side management	Human factors – Energy consumption patterns
 Building fabric insulation (i.e. roof, wall, etc.) Windows retrofits (i.e. multiple glazing, low-E coatings, shading systems, etc.) Cool roof and cool coatings Air tightness, etc. 	 Comfort requirements Occupancy regimes Management and maintenance Occupant activities Access to controls, etc.
 Control upgrade Natural ventilation Lighting upgrade Thermal storage Energy efficient equipment and appliances Heat recovery, etc. Energy efficient equipment and low energy	 Solar thermal systems Solar PV/PVT systems Wind power systems Biomass systems Geothermal power systems Electric system retrofits, etc. Renewable energy technologies and electrical

Main categories of building retrofit technologies. (Ma et al., 2012)

SETs Intervention levels

Individual and collective technologies

Source: https://www.sciencedirect.com/science/article/pii/S2214629624002354

Framework

Methodology

Research sequence

Case selection: UT Enschede

Calslaan Oud

Campus Avenue High

10 student complex at the UT Enschede.

Diverse Sustainable Technologies:	\checkmark
Individual and Collective Purposes:	~
Regional Dynamics (Netherlands)	\checkmark
Duration Variation	\checkmark

viac

hypotheses

Hypothesis 1: posits that the integration of sustainable technologies will have a financial impact.

Hypothesis 2: Financial value differences between individual building level innervations SETs and collective SETs at the neighbourhood level.

Data analysis

ICO energy system heating individual versus collective									
roject								/	
ute								10	\frown
							· · · ·		
ersion									
		Calslaan			Campuslaan he	02		Collectief	
	Individual data	d loss such as	and heat summ	Technisteen	alared been one	the second based	Collection de	and loss such	and been survey
Definition	individual close	(GHP)	mai near pump	Individua	pump (GHP)	ulerina nea	Conective cio	(GHP)	erman near pump
N 1 7			2.00			207			
Number of properties			240			205			44
Buildings			7			3			1
Comparison of	energy consumption b	used on estima	ted energy de	mand and ef	ficiencies				
	GHP in	ndividual (Cal	slaan)	GHP i	idividual (Cam	puslaan)		GHP collectiv	e
	Heat	Yield	On the meter	Heat	Yield	On the meter	Heat	Yield	On the meter
		#COB			#C008		in Land	# COB	
	in kWh	(SCOP)		in kWh	(SCOP)		in sWh	(SCOP)	-
Verview of heat requirements + tap water (circulation pipe 22 mm. maintained)	Ag	Wb [kWh/m7	Tapwater	Ag	Wb /kWh/m7	Tapwater	.4g	Wb [kWh/m?]	Tapwater
teat consumption Catstaan 3A	1.747	64,0	31.408 KWh				1.747	64,0	31.408 kW
ten consumption Calstan 38	1.747	51,0	31.408 EWE				1.747	31,0	31.408 KW
tea consumption Carstan SC	1.747	86,0	31.408 EWE				1.747	00,0	31.408 KW
ten consumption Carselan 3-401	307	78,0	11.799 KWR	2.262		36.643.683	309	18,5	11.799 KW
text consumption Camplustaan 49				2.262	71.0	35.547 KWB	2.202	71.0	33.347 KW
tea consumption Campusitan 51	244.041	10	96 725 1445	2.559	1.0	33.347 KWB	681 236	/1.0	170 224 MW
kaning (outce interact in A-W cardinaton)	42.3%		17 292 1445	71.094	4,0	79 429 1445	177.116	2.6	70 846 14
foral Electricity betting but water and cooling	40.200	4.7	103 519 1 34	11.074	2,5	112 524 1-344			265 209 1.33
Total Heat W installations off-take district bearing			100.010 8 111			112.004 8 010			200.270 8 11
Estimation of household consumption			100.964 kWh			86.417 kWh			187.398 kW
Total electricity after aging PV			204.482 kWh			198.941 kWh			452.696 kW
	Energy costs on avera	ge for installat	ion (resident o	osts)					
lumber of homes in project	240			205			445		
Electrical energy for heating and hot water	103.518 kWh	0,38 € / kWh	€ 39.336,78	112.524 kWh	0,38 € / kWh	€ 42.759,13	265.298 kWh	0,38 € / kWb	€ 100.813,3
Electricity for ventilation, lighting and domestic consumption	100.964 kWh	0,38 € / kWh	€ 38.366,41	86.417 kWh	0,38 € / kWh	€ 32.838,62	187.398 kWh	0,38 € / kWb	€ 71.211,2
fotal energy costs for household for Electricity (excl. fixed costs)			€ 77.703,19			€ 75.597,75			€ 172.024,5
Cost per household			€ 323,76			€ 368,77			€ 386,5
fotal energy costs for household Heat network + Electricity			€ 77.703,19			€ 75.597,75			€ 172.024,5
fotal cost per household			€ 323,76			€ 368,77			€ 386,5
	Maintena	nce and replac	ement	CUB	adhaldaad (Cam			CHR	
Kosten per jaar per onderdeel incl. BTW	GHP	number	Costs/home	GAP	number	Costs/home		number	Costs/home
v i w inci cen ante c.o.		240	£ 43.431,45		205	t 37.097,70		445	E 80.529,
associa teor og wanneponp op poarnisystem " Vænteremeliet og hviterhelst		29,19	£ 11 222 05		24,80	£ 6.943.55		<u></u>	E 15.750,0
hidehoad en vervanoine van technische installaties in SV minte		40,41	F 203.28		40,27	£ 203.28	+		£ 26.703,0
hderhoud en vervanging van centrale warmteromren		29.19	€ 10.548.58		24.80	€ 8.961.81		56.25	€ 20.328.0
Aonitoring gesloten bodemenergiesysteem		1	€ 500,00		1	€ 500,00		1	€ 500,0
nschatting kosten voor inlezen warmtemeters en watermeters		25,95	€ 871,78		13,23	€ 444,39		39,70	€ 1.333,
W panelen per stuk		0	€ 0,00		0	€ 0.00		(€ 0,
			C 7/ 070 13			C / 2 / 26 //			6 147 147
stad yoor orderbond on version order			t 76.950,12			t 67.630,46	1		t 145.347,3
dan tou databas ta tarangang									

Estimation of investment costs					
	GHP individual (Calslaan)	GHP individual (Campuslaan)	GHP collective		
Cost per part excl. VAT	number Costs/home	number Costs/home	number Costs/home		
Collective Ground Source Heat pump (closed source)	0 € 0.0	0 € 0.00	445 € 3.917.832,50		
BAK Warmtenet Ennatuurlijk collective connection for nos 49+51					
Determined based on €480,000 for WEQ = €1034.48 per WEQ.	0 € 0,0	0 € 0,00	0 € 0,00		
Indirectly fired boiler (1 per house number) incl. central heating connections	0 € 0,0	0 € 0,00	0 € 0,00		
Individual Ground Source Heat pump (closed source)	240 € 5.260.726,0	205 € 4.493.536,86	0 € 0,00		
HB-107 combiletel	0 € 0.0	0 £ 0.00	0 € 0.00		
PV-panelen monokristallijn (225Wp/m², 435Wp/paneel)	0 € 0,0	0 € 0,00	0 € 0,00		
Total estimate cost excl. VAT	€ 5.260.72	€ 4.493.537	€ 3.917.833		
Total estimate cost incl. VAT spread over 15 years	€ 424.36	€ 362.479	€ 316.038		

Total overview					
	GHP individual (Calslaan)	GHP individual (Campuslaan)	GHP collective		
Energy charges incl. (ind. VAT)	€ 77.710	€ 75.600	€ 172.030		
Total before maintenance and replacement (incl. VAT)	€ 76.960	€ 67.640	€ 145.350		
Total before investment costs for heat generation (1/15th part) (incl. VAT)	€ 424.370	€ 362.480	€ 316.040		
Total investment cost (ind. BTW)	€ 5.260.730	€ 4.493.540	€ 3.917.840		
Total simplified TCO costs per year	€ 579.040	€ 505.720	€ 633.420		

Project/ technology info

Energy consumption Source: VIAC- Vabi

Energy cost Source: Based on existing contract

Operational expenses Source: VIAC based on references

Initial investment **Sosts**e: RVO and Arcadis

Overview costs

Make use of the Total cost of ownership (TCO) model

Adapted from VIAC a installation advice company

Data analysis: formula

Data analysis – formula + data

Research findings

The case – Campus UT Enschede

Calslaan Oud

Campus Avenue High

Name	Gaslaan Oud
Number	7 buildings (total 240 rooms)
Addresses	Calslaan 1t/m 13 (3 groups per building +1 penthouse)
Surface	23 square metres
Heat demand	45-90 kWh/m2
Total	248400 - 496800 kWh

Name	Campuslaan hoog
Number	3 buildings (total 205 rooms)
Addresses	Campus Avenue 21-21, 45-51, 59-65
Surface	22 square metres
Heat demand	45 kWh/m2
Total	202950 kWh

SETs sources out of the theory

Sustainable Energy Technologies (SETs) sources. Adapted from: Beccali et al, 1998; Krukanont & Tezuka, 2007; Dicorato et al, 2008; Tsoutsos et al, 2009

SETs longlist

SQ 1: What sustainable energy technologies (SETS) can be used in the housing sector for individual and collective purposes?

Individual Sustainable Energy Technologies (SETS)

Energy source	Technology	Techniques	Energy carrier
Solar energy	Photovoltaics (PV)	 Monocrys tall ine sol ar panels: Use single-crystal si licon for high efficiency. Polycrystalline solar panels: Made from multiple silicon crystals, are less efficient but cheaper. Thin-film sol ar panels: Use layers of semiconductor materials applied to a substrate, offering a flexible solution with varying efficiencies. Building-integrated photovoltaics (BIPV): Incorporate PV materials into building structures, like windows or facades. 	Electricity
	Solar water heating systems	Flat-plate collectors: Insulated, weatherproofed boxes containing a dark absorber plate under one or more transparent or translucent covers. Evacuated tube collectors: Use transparent tubes that encase absorber plates, providing insulation and higher efficiencies. Thermosiphon systems: Utilize the tendency of water to circulate as it is heated, without the need for pumps.	Heat
Wind energy	Wind turbines (small-scale) / Horizontal-axis wind turbines (HAWTs)	• Pitch control: Adjusting the angle of the blades to control the rotor speed.	Electricity
	Vertical-axis wind turbines (VAWTs) • Yaw control: Rotating the turbine around a vertical axis to align with the wind direction. • Active stall control: Adjusting the blade pitch to reduce the aerodynamic force on the blade.		Electricity
Geothermal	Open-loop WKO system s	Direct use systems: Use the geothermal water directly for heating without a heat numn	Heat
	Closed-loop WKO s ystem s	Ground source heat pumps: Use the stable ground temperature to heat in winter and cool in summer.	Heat
Biomass	Biomass boilers	 Combustion: Burning biomass to heat water and create steam for turbines or heating. Gasi fication: Converting biomass into a combustible gas mixture for more efficient energy recovery. Anaerobic digestion: Breaking down biomass in the absence of oxygen to produce biogas. 	Electricity
Water	Micro-hydro power systems	 Impulse turbines: Use the velocity of water to move the turbine and are used in high head, low flow situations. Reaction turbines: Use the pressure of water to generate energy and are typically used in low head, high flow settings. 	Electricity
Other	Air-to-Air heat pump	• Air-Source Heat Pumps: extract heat from the outdoor air using a refrigerant cycle and transfer it indoors to provide space heating. They can also be reversed to provide cooling during warmer seasons.	Heat
	Air-to-Water heat pump	 Air-source heat pumps: Extract heat from the outdoor air and transfer it indoors for space heating. Water heating: Utilize heat from the outdoor air to heat water for domestic use. Defrosting mechanisms: Implement systems to prevent frost buildup on outdoor coils during cold weather. 	Heat

<u>Collective</u> Sustainable Energy Technologies (SETS)

Energy source	Technology	Techniques	Energy carrier
Solar energy	Concentrated Solar Power (CSP)	Parabolic troughs: Use parabolic mirrors to focus sun Ight on a receiver tube. Solar power towers: Use a field of mirrors that track the sun and focus light on a central receiver. Dish Stirling systems: Use parabolic dish mirrors to focus light on a Stirling engine for power generation.	Electricity
	Community solar projects/ Photo voltaics (PV)	 Net metering: Allows community members to feed excess energy into the grid and receive credit. Virtual net metering: Participants receive bill credits for their share of the power produced. 	Electricity
Wind energy	Community wind farms/Horizontal- axis wind turbines (HAWTs)	Pitch control: Adjusting the angle of the blades to control the rotor speed.	Electricity
	Community wind farms/ Vertical-axis wind turbines (VAWTs)	Yaw control: Rotating the turbine around a vertical axis to align with the wind direction. Active stall control: Adjusting the blade pitch to reduce the aerodynamic force on the blade.	Electricity
Geothermal	Geother mal power plants	 Dry steamplants: Directly use steam from geothermal reservoirs to turn turbines. Flash steam plants: Lower the pressure of hot water to create steam for turbines. Brany cycle power plants: Use the heat from geothermal water to vaporize a secondary fluid with a lower boiling point to turn turbines. 	Electricity
	Open-loop WKO systems	Direct use systems: Use the geothermal water directly for heating without a heat pump.	Heat
	Closed-loop WKO systems	 Ground source heat pumps: Use the stable ground temperature to heat in winter and cool in summer. 	Heat
Biomass	Biomass power plants	Pyrolysis: Heating biomass in the absence of oxy gen to produce bio-oil for energy.	Electricity
Water	Conventional hydropower	Kaplan turbines: Adjustable blades for variable flow conditions, often used in run-of-river installations.	Electricity
	Run-of-river hydropower	Francis turbines: Used in a wide range of head and flow conditions, common in conventional hydropower.	Electricity
	Wave energy	Oscillating water columns: Use air displacement by wave-driven water in a column to drive turbines. Point absorbers: Float on the surface and absorb energy from all directions.	Electricity
	Ocean thermal energy conversion (OTEC)	Cbsed-cycle OTEC: Uses warmsurface water to vaporize a working fluid, which drives a turbine to generate electricity. Open-cycle OTEC: Vaporizes seawater itself to drive the turbine. Hybrid systems: Combine both closed and open cycles for increased efficiency.	Electricity
	Tidal power	Barrage systems: Use dams to capture the potential energy from the rise and fall of tides. Tidal stream generators: Underwater turbines that capture kinetic energy from tidal currents.	Electricity
Other	District heating (stadverwarming) (Sustainability depends on the source of heat)	Combined heat and power (CHP): Simultaneous production of electricity and useful heat, improving overall efficiency. Heat networks: Distribute heat generated from various sources to multiple buildings.	Heat

Sub question 1

SQ 1: What sustainable energy technologies (SETS) can be used in the housing sector for individual and collective purposes?

Deepening the technology	Energy source \rightarrow technologies \rightarrow Techniques
	Energy carrier: Saving vs generating
Versatility	SETs offer diverse avenues for energy production, catering to different needs and contexts within the housing sector.
Integration	Combining multiple SETs in hybrid energy systems enhances reliability, efficiency, and resilience.
Innovation	Ongoing advancements in technology continue to enrich the sustainable energy landscape, offering novel solutions for future housing projects.

Evaluation criteria for sustainable energy planning

SQ2: What factors determine whether individual or collective Sustainable Energy Technologies (SETS) should be implemented in housing?

Indicator	Criteria
	Energy Production Capacity
Technical	Technological Maturity
Technical	Reliability
	Safety
	Investment Cost
Feenomical	Operation and Maintenance Cost
Economical	Service Life
	Payback Period
Environmental	Impact on Ecosystem
Environmentar	CO ₂ Emission
Social	Social Benefits
Social	Social Acceptability
Legal &	
regulations	

Technical Limitations:

- Integration of SETs into existing buildings
- Diverse building structures orentitation

Economic Considerations:

- Upfront costs vs long-term benefits (and ownership)
- Uncertainties in energy prices

Environmental Implications:

- SET production and transportation
- End-of-life management
- Land use considerations

Social and Cultural Factors:

- Resistance to change
- aesthetic, noise concerns

Regulation and Legal Factors:

- Regulatory frameworks
- Contractual agreements for collective approach

Source: Ellabban et al., 2014; Piacentino et al., 2019; Turkenburg et al., 2000; Wang et al., 2009

Technical Limitations:

- Integration of SETs into existing buildings
- Diverse building structures orentitation

	Compass Bearing													
		-90	-75	-60	-45	-30	-15	0	15	30	45	60	75	90
		East						South						West
cal	90	56	60	64	67	69	71	71	71	71	69	65	62	58
s) erti	80	63	68	72	75	77	79	80	80	79	77	74	69	65
ee >	70	69	74	78	82	85	86	87	87	86	84	80	76	70
egi	60	74	79	84	87	90	91	93	93	92	89	86	81	76
9	50	78	84	88	92	95	96	97	97	96	93	89	85	80
itcl	40	82	86	90	95	97	99	100	99	98	96	92	88	84
f P	30	86	89	93	96	98	99	100	100	98	96	94	90	86
Ro	20	87	90	93	96	97	98	98	98	97	96	94	91	88
	10	89	91	92	94	95	95	96	95	95	94	93	91	90
Flat	0	90	90	90	90	90	90	90	90	90	90	90	90	90

SOLAR ENERGY'	WIND ENERGY2	BIOMASSA ³	GEOTHERMIE
PV on roof	Wind at sea	0.02 PJ/km ^a	Deep geothermal energy
195 MW/km ²	6-10 MW/km ²	at 40% efficiency, depending on biomass type .	9 MW/per doublet*
PV on fields	Wind on land	afficiency 60%	*1 ha per drilling above ground d 5 km² are drilling understand
48-156 MW/km ²	4-8 MW/km ²	Mono-fermentation	A 2 Your the noticed during forms
PV on water	Wind on land (water)	efficiency 60%	
49-138 MW/km ²	6-8 MW/km ²	Gasification (normal)	
PV on facade		efficiency 70%	
15 MW/km ²		Supercritical water gasification	

Consumenten

bond

Economic Considerations:

- Upfront costs vs long-term benefits (and ownership)
- Uncertainties in energy prices

Consumenten dreigen door kabinetsplannen massaal af te haken van zonneenergie

Q

Juridisch Advies

Nieuws | Het wetsvoorstel 'beëindiging van de salderingsregeling' dat het kabinet op Prinsjesdag presenteerde, zit vol onzekerheden voor zonnepaneelhouders. Het zorgt er bovendien voor dat consumenten massaal afhaken van zonne-energie. De Consumentenbond roept Kamerleden op om bij behandeling van het voorstel, tegen te stemmen.

Joyce Donat Woordvoerder Gepubliceerd op: 17 september 2024

Waar ben je naar op zoek?

Geldzaker

Producttests 🗸

Consumers at risk of dropping out of solar power due to cabinet plans

Door Thijs Rösken

25 apr 2024 om 13:11 Update: 5 maanden geleden

Het demissionaire kabinet en netbeheerders komen met maatregelen om overbelasting van het stroomnet in de provincie Utrecht tegen te gaan. Opvallend is dat het gebruik van gas niet wordt geschuwd. Verder moeten slimme laadpalen uitschakelen tijdens piekmomenten.

Major intervention against power grid overload: more gas and pause charging stations

Source: https://www.consumentenbond.nl/nieuws/2024/consumenten-dreigen-door-kabinetsplannen-massaal-af-te-haken-van-zonne-energie

https://www.nu.nl/economie/6310462/grote-ingreep-tegen-overbelasting-stroomnet-meer-gas-en-pauzeren-laadpalen.html

Environmental Implications:

- SET production and transportation
- End-of-life management
- Land use considerations

Figure 1.27 Demand for critical minerals for selected clean electricity supply and electrification technologies in the APS, 2022 and 2030

Table 1.1 > Primary risks associated with key clean electrification technologies

	Wind	Solar PV	Nuclear	Battery storage	Demand response	Grids	Electric vehicles	Heat pumps
Regulatory and policy risks								
Regulatory frameworks	Medium	Low	Medium	Medium	High	Medium	Medium	Medium
Policy support	Low	Low	Medium	Low	High	High Low		Low
Permitting and certification	Medium	Medium	High	Low	Low	High	Medium	Low
Supply chain risks								
Critical minerals	High	Medium	Low	High	Low	Medium	High	Low
Manufacturing	High	Low	Medium	Medium	Low	Low	Low	Medium
Skilled labour	Medium	Medium	High	Low	Low	High	Low	Medium
Financial risks								
Costs of financing	High	Medium	High	Medium	Low	High	Medium	Medium
Revenue and savings predictability	Medium	Low	Low	Medium	Medium	Low	Low	Low
Overall risks	High	Low	Medium	Medium	Medium	High	Low	Medium

Note: Grids refers to electricity networks, including transmission and distribution.

IEA, CC BY 4.0.

ABONNEREN INLOGGEN

JE BENT NIET (MEER) INGELOGD

toeristen: opvallend genoeg zijn het niet d...

orum voor Democratie is vooral in de...

11:00 Jonge gamers zijn er wild van: een

lokkeren ingang Universiteit Utrecht,

chtsportevenement met Nederland

BEKIJK MEER ARTIKELEN

Speel hier gratis puzzels,

quizzen en spelletjes

MEEST GELEZEN

ouderwetse' papieren krant maken

09:41 Duitse politie grijpt in bij

Social and **Cultural Factors:**

- Resistance to change
- aesthetic, noise concerns

Warmtepompen leiden tot burenruzies: 'Die goedkope uit Aziatische landen maken meestal meer herrie'

Het geluid van warmtepompen leidt regelmatig tot ernstige burenruzies. De afgelopen jaren zijn er al tientallen rechtszaken over gevoerd. Slechte installaties blijken de boosdoener. "Een warmtepomp is geen dingetje dat je bij AliExpress koopt en door Beun de Haas laat installeren.

Heat pumps lead to neighbour quarrels: 'Those cheap ones from Asian countries usually make more noise'

ABONNEREN INLOGGEN NIEUWS REGIO SPORT SHOW PLAY PODCAST PUZZEL Q AD Wijzig Nieuwkoop ► Net Binnen 112 nieuws Van de lezer Uit-tips Eten en drinken Regiosport Aanbiedingen Vacatures LOG IN OF MAAK BINNEN 1 MINUUT EEN ACCOUNT AAN NET BINNEN 10:59 Bladkorven moeten overlast van erfstbladeren voorkomen in Wo 09:00 PREMIUM Zwammerdam nog ongeslagen in derde klasse na gelijkspe 07:02 Weektips: dit is er te doen in Woerde (7 - 10 oktober 06-10 PREMIUM Zuid-Afrikaanse natchwinner, tijdelijke staking en dit. 06-10 Dit is hoe de eerste teams uit Nieuwkoop dit weekeinde speelden **BEKIJK MEER ARTIKELEN** Angst voor brandgevaar en horizonvervuiling: omwonenden tegen zonnepark op voormalige stort instagram! 'Geen windpark op de voormalige vuilnisbelt aan de Lange Meentweg in AD WEBWINKEL Woerdense Verlaat', dat vinden omwonenden van het stuk land dat is aangewezen als mogelijke locatie voor het opwekken van zonne-energie. De buurt is tegen en heeft de gemeente een petitie aangeboden. 628 50 yoor 625 95

Fears of fire danger and horizon pollution: Local residents against solar farm on former landfill

Source: https://www.ad.nl/binnenland/warmtepompen-leiden-tot-burenruzies-die-goedkope-uitaziatische-landen-maken-meestal-meer-herrie~a7e5f3c74/

Regulation and Legal Factors:

- Regulatory frameworks
- Contractual agreements for collective approach

Table 1.1 > Primary risks associated with key clean electrification technologies

	Wind	Solar PV	Nuclear	Battery storage	Demand response	Grids	Electric vehicles	Heat pumps
Regulatory and policy risks								
Regulatory frameworks	Medium	Low	Medium	Medium	High	Medium	Medium	Medium
Policy support	Low	Low	Medium	Low	High	Low	Low	Low
Permitting and certification	Medium	Medium	High	Low	Low	High	Medium	Low

Factors influencing individual vs. collective

From longlist to shortlist

From longlist to shortlist

But still for the case is this short list not so short....

Narrowed the scope

So for the UT Enschede

TCO

000

T

		GPD individual combined		GHP collective
Energy charges incl. (incl. VAT)	€	153.310	€	172.020
Total maintenance and replacement (incl. VAT)	€	144.600	€	145.350
Total investment costs (1/15th part) (incl. VAT)	€	786.850	€	316.040
Total investment cost (incl. BTW)	€	9.754.270	€	3.917.840
Total TCO costs per vear	€	1.084.760	€	633.420

GHP

Renter: Prefer individual lower maintain cost and energy prices

Investor: Prefer collective lower investment cost

Overall: Prefer collective lower total cost of ownership

But what will happen if we added PV panels?

TCO

		GPD individual combined		GHP collective
Energy charges incl. (incl. VAT)	€	153.310	€	172.020
Total maintenance and replacement (incl. VAT)	€	144.600	€	145.350
Total investment costs (1/15th part) (incl. VAT)	€	786.850	€	316.040
Total investment cost (incl. BTW)	€	9.754.270	€	3.917.840
Total TCO costs per year	€	1.084.760	€	633.420

GHP

Renter: Prefer <u>individual</u> GHP + PV lower energy prices and just bid higher maintain cost

Investor: Prefer <u>collective</u> GHP lower investment cost

Overall: Prefer <u>collective</u> <u>GHP + PV</u> lower total cost of ownership

TCO – per units

GHP per unit

GHP + PV per unit

		GPD individual combined		GHP collective
Energy charges incl. (incl. VAT)	€	345	€	387
Total maintenance and replacement (incl.		0.10		207
VAT)	€	325	€	327
Total investment costs (1/15th part) (incl.				
VAT)	€	1.768	€	710
Total investment cost (incl. BTW)	€	21.920	€	8.804
Total TCO costs per year	€	2.438	€	1.423

GPD ind + PV	CONTINUED	GHP collective + PV	
€	2€	134	ŧ
€ 3.	3€	342	1
€ 1.90	2€	945	1
€ 24.3	7€	11.718	
€ 2.3	6 €	1.421	

Monte Carlo Simulation

GHP

GPD individual **GHP** collective combined Energy charges incl. (incl. VAT) € 153.310 € 172.020 Total maintenance and replacement (incl. € 144.600 € 145.350 VAT) Total investment costs (1/15th part) (incl. € 786.850 316.040 € VAT) Total investment cost (incl. BTW) 9.754.270 € 3.917.840 € € 1.084.760 € **Total TCO costs per year** 633.420

- Monte Carlo simulation added to TCO calculation to model uncertainties in cost parameters.
- 1,000 trials
 - *Energy costs:* Normally distributed, 10% standard deviation, based on model and fixed contract.
 - *Operational costs:* Triangular distribution, variations due to maintenance, service contracts, and unforeseen issues.
 - *Investment costs:* Normally distributed, 10% standard deviation, based on RFO and Arcadis data.
- Outcome: Distribution of potential TCO estimates, providing insight into the probability of different cost projections.

Monte Carlo Simulation

[män-tē 'kär-'lō sim-yə-'lā-shən]

A model used to predict the probability of a variety of outcomes when the potential for random variables is present.

Monte Carlo Simulation

Monte Carlo-simulatie

			Invidu eel GHP						Collective GHP			
Trial number	Total e	nergy cost Total inv	estment cost Total oper	ational cost TCO	Rou	inded	Total e	nergy cost Total inve	estment cost Total ope	erational cost TCO	Rou	nded
1	€	122.787 €	333.381 €	133.572 € 589.740	€	590.000	€	172.656 €	182.449 €	143.847 € 498.952	€	499.000
2	€	170.869 €	440.580 €	147.026 € 758.475	€	758.000	€	158.666 €	142.270 €	135.229 € 436.165	€	436.000
3	€	163.518 €	384.469 €	150.744 € 698.731	€	699.000	€	148.483 €	136.542 €	149.402 € 434.426	€	434.000
4	€	135.103 €	421.578 €	145.175 € 701.856	€	702.000	€	180.505 €	166.184 €	140.847 € 487.536	€	488.000
5	e	148.647 €	359.849 €	134.605 € 643.101	€	643.000	€	145.375 €	149.982 €	147.251 € 442.608	€	443.000
6	e	138.309 €	463.535 €	135.560 € 737.404	€	737.000	€	154.792 €	159.728 €	149.862 € 464.382	€	464.000
7	€	200.444 €	412.718 €	135.939 € 749.101	€	749.000	€	163.185 €	137.621 €	148.450 € 449.25 7	€	449.000
8	€	131.780 €	360.480 €	152.851 € 645.111	€	645.000	€	168.104 €	148.769 €	146.473 € 463.346	€	463.000
9	€	160.900 €	346.251 €	149.923 € 657.073	€	657.000	€	167.173 €	148.804 €	148.958 € 464.935	€	465.000
10	€	187.238 €	359.466 €	139.350 € 686.053	€	686.000	€	155.490 €	182.578 €	151.390 € 489.458	€	489.000
11	€	184.383 €	377.097 €	153.207 € 714.686	€	715.000	€	174.781 €	163.153 €	134.859 € 472.793	€	473.000
12	€	155.942 €	438.323 €	147.660 € 741.925	€	742.000	€	168.453 €	171.166 €	144.480 € 484.099	€	484.000
13	€	130.784 €	419.766 €	149.225 € 699.775	€	700.000	€	185.640 €	143.348 €	143.424 € 472.413	€	472.000
14	€	159.644 €	361.955 €	125.394 € 646.993	€	647.000	€	156.732 €	196.178 €	144.948 € 497.85 7	€	498.000
15	€	121.666 €	355.498 €	148.521 € 625.685	€	626.000	€	199.636 €	143.540 €	150.482 € 493.658	€	494.000
16	€	152.221 €	378.512 €	144.037 € 674.770	€	675.000	€	194.821 €	141.154 €	143.850 € 479.825	€	480.000
17	€	130.679 €	372.443 €	136.174 € 639.296	€	639.000	€	151.580 €	138.081 €	145.233 € 434.894	€	435.000
18	€	170.259 €	386.021 €	149.467 € 705.74 7	€	706.000	€	152.469 €	171.007 €	139.151 € 462.62 7	€	463.000
19	e	121.129 €	329.923 €	149.672 € 600.724	€	601.000	€	193.240 €	145.026 €	139.077 € 477.343	€	477.000
20	€	141.708 €	448.737 €	144.171 € 734.616	€	735.000	€	154.851 €	147.180 €	142.118 € 444.148	€	444.000
21	€	160.102 €	308.064 €	145.796 € 613.961	€	614.000	€	197.183 €	164.061 €	141.382 € 502.62 7	€	503.000
22	€	153.502 €	368.210 €	138.140 € 659.852	€	660.000	€	180.951 €	143.124 €	144.681 € 468.755	€	469.000
23	€	133.216 €	416.385 €	140.771 € 690.372	€	690.000	€	206.642 €	148.578 €	149.124 € 504.344	€	504.000
24	€	148.799 €	502.511 €	133.887 € 785.197	€	785.000	€	196.037 €	142.832 €	139.937 € 478.807	€	479.000
25	€	140.636 €	433.746 €	139.717 € 714.099	€	714.000	€	170.174 €	131.370 €	145.365 € 446.909	€	447.000
26	€	184.878 €	378.317 €	144.519 € 707.714	€	708.000	€	142.646 €	134.832 €	151.262 € 428.740	€	429.000
27	€	170.556 €	426.784 €	126.732 € 724.073	€	724.000	€	176.686 €	149.642 €	145.142 € 471.470	€	471.000
28	€	139.538 €	388.928 €	135.526 € 663.992	€	664.000	€	144.878 €	143.637 €	149.998 € 438.513	€	439.000
29	€	180.004 €	403.985 €	151.706 € 735.695	€	736.000	€	175.598 €	158.832 €	143.074 € 477.504	€	478.000
30	€	160.816 €	456.384 €	136.725 € 753.925	€	754.000	€	151.595 €	151.836 €	145.456 € 448.887	€	449.000
31	€	151.134 €	332.306 €	157.385 € 640.825	€	641.000	€	192.437 €	152.686 €	147.877 € 493.001	€	493.000
32	€	163.409 €	326.676 €	139.420 € 629.505	€	630.000	€	137.126 €	175.231 €	138.567 € 450.924	€	451.000
33	€	150.615 €	428.545 €	142.649 € 721.809	€	722.000	€	178.390 €	183.833 €	138.191 € 500.415	€	500.000
34	€	161.353 €	399.159 €	147.396 € 707.907	€	708.000	€	171.816 €	175.883 €	134.281 € 481.980	€	482.000
35	€	152.355 €	410.482 €	138.583 € 701.420	€	701.000	€	175.657 €	191.190 €	141.594 € 508.441	€	508.000

Monte Carlo Simulation

Based on the TCO sensitivity analyses have been made *For the individual VS collective closed loop GHP*

So what if we add more or less housing?

Impact of housing units on the Total Cost of Ownership (TCO)

---GHP collective Energy Loads

TCO vs units – Investment cost

Investment cost - per unit

Average GHP individual Investment costs 1/15 GHP collective Investment costs 1/15

------ Average GHP individual Investment costs 1/15 ------ GHP collective Investment costs 1/15

TCO vs units – Energy cost

Data transparency:

* Including 10% train loss surcharge with collective (Vink, personal communication, April 14, 2024)

TCO vs units – Operational cost

Data transparency:

The maintenance costs are based on device power (Vink, personal communication, April 14, 2024)

Operational cost - per unit

Average GHP individual Maintenance

GHP collective Maintenance

TCO vs units – TCO

Recommendations for investors, end-users, and policymakers

SQ 5: Based on the evaluation, what are the recommendations for achieving optimal financial value?

Discussion, conclusion and limitations

Discussion

Prior research Sustainable technologies increase building value (Choi, 2009; Shan et al., 2017). SETs integration proves financially viable in TCO.

However, smaller complexes adopt collective systems early (60 units).

And in contrast of previous studies, High initial costs hinder quick returns and constituted a significant obstacle to immediate financial gain.

Discussion: Recent development

Recent development of scope 3

- Looking into the lifecycle of building
- Becoming important to take in account the use

The study can contribute to scope 3:

- SETs integration reduces Scope 3 emissions, aligning with sustainability goals.
- Variability in reduction based on technology and scale.

Conclusion

For the UT Enschede				GHP					GHP + PV		
 Best choose collective closed-loop ground s pump with pv panels 	ource heat		PD individual ombined		HP collective			PD ind + PV ombined		HP collective + V	
	Energy charges incl. (incl. VAT)	€	<u>8</u> 153.310	€	ئ 172.020	1	€	40.770	€	59.470	
	Total maintenance and replacement (incl. VAT)	€	144.600	€	145.350	(€	148.030	€	152.350	
	Total investment costs (1/15th part) (incl. VAT)	€	786.850	€	316.040	4	€	872.920	€	420.650	
	Total investment cost (incl. BTW) Total TCO costs per year	€	9.754.270 1.084.760	€	3.917.840 633.420	1	€ €	10.821.160 1.061.720	€ 4 €	632.490	
						1	-				

Conclusion

Individual vs. Collective SETs:

- Individual
- offer customization;
- more resilient to energy price fluctuations.

• Collective

- cost-efficient beyond 60 units due to economies of scale.
- less space and material use

Financial value

Initial investement cost gets higer $\uparrow \rightarrow$ Operatioanl cost gets higer $\uparrow \rightarrow$ energy cost will be lower \downarrow = long term benefit

- Average GHP individual TCO

"Collective systems become more cost-effective beyond ~60 units, highlighting the importance of scale and policy support in SETs implementation."

Limitations

Data Data _{Data} Data Dataa....

Data and Methodological	Reliance on VIAC and Vabi models; may not align with future needs. Due to climate change								
Constraints	Use of fixed rates; market dynamics and location can cause volatility.								
	Derived from reference projects; may not reflect case variations.								
Stakeholders and	Complex Financial Dynamics; Initial investments by who? (private, government, social housing).								
Responsibility _	Lower energy costs for users but higher investor cost.								
Broader Contextual	Price Fluctuations; Sensitivity to changes in electricity and gas prices.								
Limitations	Material Scarcity and Scalability (IEA, 2021); Limited availability of critical materials may increase costs.								
	Environmental Impacts (Farghali et al., 2023); Production processes of SETs may have negative environmental effects.								
	Technological Obsolescence (IEA, 2021); Rapid advancements may render current technologies obsolete.								
	Adaptation to Changing Conditions; Climate change and evolving energy demands may require design adjustments.								

Closing statement

There is <u>no</u> one-size-fits-all solution. The potential of the technology and its operational specifics are highly **context-dependent**. Consequently, the financial value is also contingent upon this factor.

Furthermore, a significant proportion of costs are contingent upon future events, and as evidenced by recent instances of war and pandemics, **the future can be highly unpredictable**.

Finally, it is important to consider the **financial picture in conjunction with other factors**. However, it is also necessary to consider the broader context in which we live, as described by the Triple Bottom Line (*people, planet, profit*) in its theoretical framework. Although the focus is on renewable energy sources, it is also important to consider the materials used in technology. "Switching to renewable energy is like eating your vegetables – it's good for you and the planet, even if it wasn't your first choice."

Thank you for listing