

Delft University of Technology

Compiler Assisted Reliability Optimizations

Nazarian, Ghazaleh

DOI
10.4233/uuid:01a602f7-59af-4ee5-a54e-40c536216f58
Publication date
2019
Document Version
Final published version
Citation (APA)
Nazarian, G. (2019). Compiler Assisted Reliability Optimizations. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:01a602f7-59af-4ee5-a54e-40c536216f58

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:01a602f7-59af-4ee5-a54e-40c536216f58
https://doi.org/10.4233/uuid:01a602f7-59af-4ee5-a54e-40c536216f58

Ghazaleh Nazarian

Compiler Assisted Reliability
Optimizations

Compiler Assisted Reliability
Optimizations

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on

Friday 15 February 2019 at 10:00 o’clock

by

Ghazaleh NAZARIAN
Master of Science in Computer Engineering

Delft University of Technology
born in Tehran, Iran

This dissertation has been approved by the promotors:
Prof.dr.ir. G.N. Gaydadjiev
Prof.dr.ir. H.J. Sips

Composition of the doctoral committee:

Rector Magnificus Delft University of Technology, chairperson
Prof.dr.ir. G.N. Gaydadjiev Imperial College London, promotor
Prof.dr.ir. H.J. Sips Delft University of Technology, promotor

Independent members:
Prof.dr. P.J. French Delft University of Technology
Prof.dr.ir. W.A. Serdijn Delft University of Technology
Prof.dr. L. Carro Universidade Federal do Rio Grande do Sul
Prof.dr.ir. J.H.M. Frijns Leiden University Medical Center
Dr. A. Shahbahrami University of Guilan

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Ghazaleh Nazarian

Compiler Assisted Reliability Optimizations

Delft:
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Thesis Delft University of Technology. – With ref. –

Met samenvatting in het Nederlands.

ISBN 978-94-6384-005-7

Subject headings: Reliability, Compiler optimizations, Control flow error detection
and recovery.

Copyright c© 2019 Ghazaleh Nazarian
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

Printed in EU

To Iradj for the beginning and to Michele for the end

Compiler Assisted Reliability Optimizations
Ghazaleh Nazarian

Abstract

Microprocessors are used in an expanding range of applications from small
embedded system devices to supercomputers and mainframes. Moreover, em-
bedded microprocessor based systems became essential in modern societies.
Depending on the application domain, embedded systems have to satisfy dif-
ferent constraints. The major challenges today are cost, performance, energy-
consumption, reliability, real-time (reactive-operation) and silicon area. In tra-
ditional computer systems some of these constraints can be less crucial than
others, while performance, area and power-consumption will always remain
valid constraints for embedded systems. However, in modern systems relia-
bility has emerged as a new, highly important requirement. Among all above
factors performance, power, reactive-operation and reliability can be addressed
by software-only techniques that do not require any hardware modifications
or additions. Such optimization techniques, however, may impact the perfor-
mance and power characteristics of the system. The main goal of this work is
to find novel software based reliability techniques with affordable power and
performance overheads. For this reason the reliability optimization methods
are studied in detail and a diligent categorization of existing software tech-
niques is proposed. The strong and the weak points of each category are care-
fully studied. Using the information obtained from our categorization, two
novel optimization techniques for fault detection and one new optimization
technique for fault recovery are proposed. Our optimization techniques min-
imize the required code instrumentation points while guaranteeing equivalent
reliability as compared to state of the art approaches. Moreover, a generic
methodology is proposed to help with the process of identifying the minimum
set of code instrumentation points. For the evaluation we select a challeng-
ing baseline that consists of the best known techniques for fault detection and
fault recovery found in the public literature. The experimental results on a set
of biomedical benchmarks show that using the proposed design methodology
and fault detection and recovery methods, the performance and power over-
heads are significantly reduced while the fault coverage remains in line with
previously proposed and widely used methods.

i

Acknowledgments

Coming from a country like Iran, where relationships between students and
professor can be quite formal, the first lesson I had to learn from Georgi was to
call him “Georgi”, and not “Professor Gaydadjiev”. Many more lessons had to
come until I could finally achieve this goal and write these lines. I am sincerely
grateful for the guidance of Georgi during all these years. Even when he was
not present at Delft university, his support felt like if he was still in the office
next door. Looking back, I feel amazed by how could always rely on him while
at the same time he would teach me the importance of carrying on my work
independently and self-sufficiently. A special thanks goes to Henk Sips for his
valuable contributions to the review of this thesis and his support to finalize
the thesis.

I thank all the committee members who honored me by accepting this invita-
tion. The contributions of Asad Shahbahrami to the draft of this thesis added
a significant value to this work and I am very grateful for them. A very spe-
cial thanks goes to Luigi Carro, who literally came from the other side of the
world to attend my defense. I am also extremely grateful to him for making
my stay as a Guest Researcher at the University of Porto Alegre possible; it
was a fruitful period for my research.

I am also thankful to Wouter Serdijn, Paddy French, Johan Frijns and Chris-
tos Strydis for making the whole Smart Cochlear Implants project (supported
by STW funding) possible. When I started this project, I was lucky not to be
completely on my own: the friendly company of Nishant Lawand and Wan-
naya Ngamkham made it so much easier to get used to the Ph.D. student life.

The experience in Brazil was very important for my work; I need to thank
Diego Rodrigues, Ronaldo Ferreira and all the other members of the Com-
puter Department for all the support I received there. Prof. Wong also gave
an important contribution to make my visit to Brazil happen, I am sincerely
grateful about that.

For this thesis work I received a great deal of support from people at ACE.
In particular, I must thank Bryan Olivier, for his outstanding technical support

iii

using CoSy throughout my thesis work. As a compiler engineer, I could not
have found a better mentor than he was for me. I am also glad to Hans van
Someren, Joeri van Ruth and all the other compiler engineers for the profes-
sional and personal support I received during my staying at ACE.

I am also grateful to Jaap de Vos at Brightsight who allowed me to dedicate
time to complete my thesis work; without his understanding, this achievement
could not have been possible.

The direct and indirect support I received from everybody at CE was extremely
important to me. I need to thank Koen Bertels who helped me in the difficult
period in between the end of my research period and the beginning of my
professional career. The staff was always very supportive, special thanks to
Lidwina Tromp, Erik de Vries and Shemara van der Zwet who helped me
countless times solving the most diverse problems for me. I am grateful to
Carlo Galuzzi for showing interest to be part of the committee, although he
eventually could not attend; I wish his family all the best for their new life
adventure. Bogdan Spinean, Catalin Ciobanu and Chunyang Gou have been
good office mates; life in office was much more pleasant whenever they were
around. I also need to thank Rezvan Nane and Rob Seepers; working with
them has been a valuable experience.

Moving abroad from my original home town, my friends and colleagues helped
me to have Delft as my second home town. I am thankful to Elham Pahla-
van, Sanaz Saieed, Sadegh Akbarnejad, Shiva Shayegan, Nikoo Delgoshaiee,
Maryam Razavian, Arash Ostadzadeh, Sebastian Isaza, Behnaz Pourebrahimi,
Nasim Rezaiee, Valeria Napoli, Elina Iervolino and all my expat friends. A
very special thanks to Ostad Wijbrand Luth who helped me with the transla-
tion of the Samenvatting.

I thank Michele Squillante, the love of my life for being next to me in the
hardest times, bringing me the joyous and beautiful days of life, and also for his
sincere assistance and contribution on completing of this work, especially for
the design of this dissertation cover. My adorable daughter, Kimia, I would like
to thank her for her presence, sharing her time and letting her mom finalize this
dissertation. I truly thank my brother, Mohammad Nazarian, and his family,
Raheleh Vahidi, Ali and Arta, who have supported me and always been my
companion in ups and downs through life. I shall express my gratitude to my
uncle, Zain Navabi, and his wife, Irma Alvarado, who motivated me during
my bachelor studies and helped me to pursue the master degree in Delft. In
loving memory of my mother, Fami Navabi, who would have been more than
proud, if she was with us now, finally, I express my greatest thank to my father,

iv

Iradj Nazarian, who has devoted his life to his family and is the main reason
I started this journey. I thank him for his presence, for his support and love.
He has always inspired me and I am most grateful to have him attending my
defense.

Ghazaleh Nazarian Delft, The Netherlands, February 2019

v

Table of contents

Abstract . i

Acknowledgments . iii

Table of Contents . vii

List of Tables . xi

List of Figures . xiii

List of Acronyms and Symbols . xv

1 Introduction . 1
1.1 Problem overview and research questions 3
1.2 Thesis contributions . 5
1.3 Thesis organization . 5

2 Background and related research 7
2.1 Introduction . 7
2.2 Impact of hardware faults at the software level 8
2.3 Control-flow checking . 9

2.3.1 Definitions . 9
2.3.2 Control-flow error model 10
2.3.3 Signature monitoring 12
2.3.4 State of the art signature monitoring techniques 14
2.3.5 Control flow error recovery methods 17
2.3.6 Error-capturing instructions (ECI) 18

2.4 Data error detection and recovery 18
2.4.1 Data error model . 18
2.4.2 Data-duplication-with-comparison 19
2.4.3 Data error recovery methods 20

vii

2.4.4 Executable assertions 22
2.5 Data and control flow checking 22
2.6 Conclusions . 23

3 Reliability and power optimization techniques investigation 25
3.1 Introduction . 25
3.2 Signature monitoring categorization and analysis 27

3.2.1 Quantitative analysis 30
3.3 Optimization techniques for power reduction 32

3.3.1 Hardware assisted power reduction techniques 33
3.3.2 Software techniques for power reduction 35

3.4 Compatibility analysis . 36
3.5 Conclusions . 38

4 Low overhead control flow fault detection 41
4.1 Introduction . 42
4.2 Setting up a challenging baseline for comparison 44

4.2.1 Path assertion method with the minimal overhead . . . 45
4.2.2 Predecessor/successor method with the highest relia-

bility . 47
4.3 Fault model . 48
4.4 Selective Control Flow Check (SCFC) method 48

4.4.1 Experimental framework for compile-time optimiza-
tions . 49

4.4.2 Detailed description of the SCFC method 49
4.5 The impact of loop unrolling on SCFC and CCA 53
4.6 Experimental results and analysis 56

4.6.1 Workloads used in our study 56
4.6.2 Experimental setup 58
4.6.3 Experimental results 60

4.7 Conclusions . 66

5 Bit-flip aware control-flow error detection 69
5.1 Introduction . 69
5.2 CFEs detectability observations 71

5.2.1 Targeted faults definition 72
5.3 Instrumenting susceptible basic-blocks 73

5.3.1 Systematic bit-flip analysis 73
5.3.2 Flexible Control Flow Check (FCFC) 75

viii

5.3.3 Instrumentation using SBL information 77
5.4 Experimental setup and results 78

5.4.1 Experimental setup 79
5.4.2 Metric for evaluating error detection methods 81
5.4.3 Experimental results 81

5.5 Conclusions . 84

6 Low-cost Software Control-Flow Error Recovery 87
6.1 Introduction . 87
6.2 Motivation . 88
6.3 Fast recovery with workload specific checkpoints 89

6.3.1 Fast Recovery Scheme 90
6.3.2 Efficient Checkpoints at Identified Susceptible Blocks 93

6.4 Experimental setup and results 96
6.4.1 Experimental results 98

6.5 Conclusions . 100

7 Conclusions . 103
7.1 Thesis summary . 103
7.2 Thesis main contributions . 105
7.3 Directions for future research 106

Bibliography . 109

List of Publications . 115

Samenvatting . 117

Curriculum Vitae . 119

ix

List of Tables

2.1 SGFs, SMFs and additional static parameters of SM methods
for RS generation . 15

3.1 Analysis of reliability optimization methods 31

4.1 Power model of the ISA . 62

5.1 CFEs detectable by operating system 72

5.2 Branch execution order with the corresponding execution
numbers . 80

5.3 CEDA and full-FCFC performance overhead (%), fault cover-
age (%) and DEF efficiency factor 82

5.4 Fault coverage of full/partial FCFC with released locations ra-
tio and susceptible block execution frequency 84

6.1 Categorization of the outputs in 1,001 ACCE instrumented
code runs with random control-flow errors 97

6.2 Categorization of the outputs in 1,001 CSC instrumented code
runs with random control-flow errors 97

xi

List of Figures

1.1 Trade offs between power, performance and reliability 2

2.1 Basic blocks and control flow graph of a code sequence 10

2.2 Different targeted error types in signature monitoring. 12

2.3 Static and dynamic signatures in basic blocks. 13

2.4 Different insertion points for SGF and SMF pair. 16

2.5 (a) source code, (b) modified code based on optimization in [34] 20

2.6 Data duplication (a) at source code, (b) at instruction level . . 21

3.1 Two categories of signature monitoring techniques 27

3.2 Categorization of signature monitoring methods 29

3.3 Predecessor/successor assertions with incremental/local sig-
nature update and path-based assertions 30

3.4 CFG of the used workload for overhead estimation 31

3.5 (a)Loop fusion reduces the number of SGFs and SMFs,
(b)Loop fission adds extra SMF and SGF 37

4.1 Asymmetric CFG and Symmetric CFG with ACFC assertions 45

4.2 Instruction-level CCA assertions 47

4.3 The CoSy framework . 49

4.4 CFG processing and SCFC instrumentation 50

4.5 CFG with proposed hybrid optimization 51

4.6 Impact of for-loop unrolling on the CFG 54

4.7 Control statements structures 57

xiii

4.8 Control flow oriented test programs 58

4.9 Performance overheads . 61

4.10 Static memory overheads . 61

4.11 Power overheads . 63

4.12 Fault coverage comparison between ACFC, CCA and SCFC . 64

4.13 Loop-unrolling impact on fault coverage 65

4.14 Execution cycles in loop-unrolled workloads 65

4.15 Fault coverage in loop-unrolled workloads 66

5.1 Bit-flip analysis scheme . 75

5.2 FCFC and CEDA assertions 76

5.3 Partial-FCFC instrumentation based on SBL 78

5.4 Fault injection mechanism 79

5.5 The comparison between the number of susceptible blocks
and the total number of blocks in the CFG 83

6.1 Recovery flow . 90

6.2 Error recovery code in ACCE 91

6.3 Error recovery flow in ACCE 93

6.4 Bit-flip analysis scheme illustration 94

6.5 Instrumentation and checkpoints in susceptible blocks 95

6.6 CSC and ACCE performance overheads 99

6.7 CEF factors of CSC and ACCE 100

xiv

List of Acronyms and Symbols

ACCE Automatic Correction of Control-flow Erors

ACFC Assertions for Control Flow Checking

ACS Abstract Control Signatures

ARM Advanced RISC Machine

BSSC Block Signature Self-Checking

CCA Control-flow Checking using Assertions

CDG Control Dependency Graph

CEDA Control-flow Error Detection through Assertions

CEF Correction Efficiency Factor

CF Control Flow

CFCSS Control Flow Checking by Software Signatures

CFE Control Flow Error

CFG Control Flow Graph

CSC Code Specific Checkpoints

CSUM Checksum

DDG Data Dependency Graph

DE Data Error

DEF Detection Efficiency Factor

ECC Error-Correcting Code

ECCA Enhanced Control-flow Checking using Assertions

ECI Error Capturing Instructions

xv

EDDI Error Detection by Duplicated Instructions

IR Intermediate Representation

ISA Instruction Set Architecture

LFSR Linear-Feedback Shift Register

LIR Lower Intermediate Representation

MILP Mixed Integer Linear Programming

OS Operating System

PMP Power Management Point

RISC Reduced Instruction Set Computer

RS Runtime Signature

SBL Susceptible Basic block List

SGF Signature Generating Functions

SM Signature Monitoring

SMF Signature Monitoring Functions

SWIFT Software implemented fault tolerance

VVP Variable Voltage Processors

WCET Worst Case Execution Time

YACCA Yet Another Control flow Checking Approach

xvi

1
Introduction

Microprocessors are used in an expanding range of applications from small
embedded systems to supercomputers and mainframes. Embedded systems
are essential for modern societies. We can see these systems helping with var-
ious aspects of our everyday life from transportation, communication, health-
care to entertainment. Depending on the application domain, embedded sys-
tems have quite different requirements. Such systems were always con-
strained by cost, performance, area, real-time (reactive operation) and energy-
consumption. However the behavior of the hardware and software components
is continuously changing. Along with technology down-scaling and the reduc-
tion of the operating voltages, the probability that phenomena such as radiation
or crosstalk impact the state of a transistor and cause a transient fault greatly
increases. Transient hardware faults triggered by such events account as one
of the major reasons for malfunctioning in today’s embedded systems [57].
Therefore, reliability and security are becoming a major concern not only for
safety-critical applications but also for mainstream computing systems such as
laptops, smart-phones and portable media players, to name a few. Among the
aforementioned, performance, power, reliability and reactive-operation are the
factors that can be efficiently addressed by software techniques. At the soft-
ware level the system can be configured to trade-off between different factors
based on the specific application requirements. There are many examples of
systems requiring high performance, low power and rock-solid reliability in
safety critical domains such as health-care, automotive and aviation.

1

2 CHAPTER 1. INTRODUCTION

Power

PerformanceReliability

Trade-off

Method1 Method2 Method3

Figure 1.1: Trade offs between power, performance and reliability

End-of-production testing is used to detect permanent faults, while run-time
fault-detection and fault-recovery methods are required to cope with transient
faults. Conventional software methods aiming at transient fault detection and
recovery rely on instrumenting the code without paying much attention to the
imposed overheads. Such methods cannot be used efficiently in today’s em-
bedded systems which require reliability, low power consumption and high
performance at the same time. The chart in Figure 1.1 visualizes three reliabil-
ity optimizing software methods in terms of power consumption, performance
and reliability. The three axes represent the three important metrics: Reliabil-
ity, Power and Performance. Method 1, depicted in blue line with circle shapes,
adds few assertions to the code, therefore can provide low reliability and has
low power consumption overhead while the overall system performance re-
mains high. Method 2, illustrated in orange line with rectangle shapes, adds
many assertions and additional complex computations to the code, therefore it
can deliver high reliability, however, at the expense of significant power con-
sumption. Having many assertions leads to significant overheads and hence
low performance of the system. Method 3, shown in green with triangle shapes
of the connecting points, adds fewer assertions compared to method 2, there-
fore it can provide lower reliability and has lower power consumption. Since
the number of assertions is lower, overheads are reduced and the system us-
ing this method has higher performance as compared to method 2. As can be
seen from the above discussion, selecting the best method depends on multiple
application specific requirements and is non trivial.

1.1. PROBLEM OVERVIEW AND RESEARCH QUESTIONS 3

1.1 Problem overview and research questions

As stated earlier, one of the major threats for processor’s reliability are tran-
sient faults. Existing methods for detection and recovery of transient faults
exploit some form of redundancy as hardware extensions, parallel threads or
some additional instructions in the executing program able to detect the faults.
Conventional remedy for recovering from a detected fault is to use checkpoints
and roll back the execution to a pre-stored point which is known to be before
the location when the fault has occurred. Several hardware redundancy meth-
ods propose to use a watchdog processor, to compare the watchdog results with
the main processor results [26] [8], others propose to replicate only parts of the
processor such as duplication of the datapath components [14]. These methods
have the main drawback of being costly and not applicable to many systems
built with off-the-shelf-processors. Methods using redundant threads [38] [40]
for reliability optimization also need hardware resources which may not be
available in some small processors used in current systems.

Depending on application criticality and requirements, different reliability op-
timization schemes that are proposed both in hardware and software may be
used, e.g, either a scheme in hardware with special circuit checkers or a method
in software. For example, safety-critical applications on servers use special-
ized protecting hardware such as replicated modules [14] or circuit check-
ers [8] against transient faults. Such computers are, however, typically not
limited to tight power consumption and area budgets. Embedded applica-
tions using processors with limited power and area budgets can not afford
extended hardware techniques for their reliability protection. Hardware so-
lutions such as dual-modular (or triple-modular) redundancy used for example
in IBM Z-series, as well as other vendors, are not applicable for many low-cost
embedded applications often using off-the-shelf processors. Moreover, tradi-
tional hardware techniques for reliability optimization, performance improve-
ments and power reduction may conflict with each other; one factor may have
negative impact on the remaining two. A simple example can be observed
at the transistor level. With advances in semiconductor technology aiming
to increase the performance of the systems, transistors are getting faster and
smaller. With increase in frequency and transistor density on the chips, more
power is consumed leading to an undesirable increase in power dissipation. In
order to compensate for this, the on-chip operating voltage is decreased; yet,
voltage reduction makes the device more susceptible to transient faults.

Alternative techniques for run-time fault detection without special hardware
are compile-time optimizations. In many systems based on off-the-shelf pro-

4 CHAPTER 1. INTRODUCTION

cessors software implemented error recovery is the only option to improve the
reliability of the system. However, software methods may introduce a large
performance overhead on the system.

The result of compiler-aided optimizations is instrumentation of the executable
code with extra instructions for fault detection. The advantage of software so-
lutions over their hardware counterparts is their portability to different hard-
ware platforms without requiring any (or significant) hardware modifications.
Furthermore, by using software optimizations, the instruction flow at run-time
can be adjusted to achieve a desirable trade-off between reliability, power and
performance based on application needs.

Many of the problems discussed above for the hardware methods apply also to
software optimizations. Also in software not all optimization methods are fully
compatible. The compatibility between compiler-optimization techniques for
low power and reliability depends on factors such as level of abstraction in
which the methods are applied, performance and memory overheads among
other issues. Moreover, executing redundant assertions will in general intro-
duce performance and power consumption overheads. Not surprisingly, all
contemporary software techniques with high fault-coverage cause significant
performance overheads, making such techniques unsuitable for many embed-
ded systems with high-performance requirements. For example, some conven-
tional recovery methods use checkpoints at predefined locations in the code
in order to restart the execution in case an error is detected. Due to the high
overhead of checkpoints, some methods rely on using fewer locations to add
checkpoints. However, decreasing the number of checkpoints increases the re-
covery time from the moment an error is detected up to the time the execution
is fully recovered. In applications with real-time requirements, the recovery
time should be kept as low as possible.

Currently available software methods instrument the code with assertions. The
added assertions for fault detection and recovery, cause extra performance and
energy overheads. For example, one of the main categories of fault detection
is aimed at detecting Control Flow Errors (CFE). The performance overhead
of CFE detection methods depends on the characteristics of the CFE detection.
In fields with multiple design constraints such as biomedical implants aiming
at reliability, low power and performance at the same time, deploying such
techniques is not straightforward. Thus the main challenge of compile-time
optimizations for fault detection is to minimize the overheads while providing
adequate fault coverage.

In this thesis, our aim is to improve the existing software reliability optimiza-

1.2. THESIS CONTRIBUTIONS 5

tion methods by answering the following research questions:

• Is there a minimum set of code instrumentation points that guarantee
equivalent reliability as compared to existing techniques;

• What is the additional information needed to minimize code instrumen-
tation for reliability;

• Can the process of finding the minimum set of code instrumentation
points be captured in a generally applicable design methodology.

1.2 Thesis contributions

The main contributions of this thesis can be summarized as follows:

• An improved categorization of modern software-based reliability opti-
mization methods;

• A careful study of the compatibility between software based reliability
optimization methods and conventional power reduction techniques;

• A novel, low-overhead reliability optimization method that is compat-
ible with performance optimization methods, such as loop-unrolling,
using control flow graph analysis and workload specific assertions at
compile time;

• A system aware technique to identify all susceptible locations to CFE to
minimize error detection and recovery assertions.

1.3 Thesis organization

This thesis is organized as follows.

Chapter 2, presents the background concepts in software reliability optimiza-
tion techniques and the related work in this area. Existing methods are divided
into methods that address data errors and those focusing on control flow er-
rors. Moreover, software optimization methods that target control flow errors
are introduced and classified into three groups based on the way the assertions
work and are added into basic blocks.

6 CHAPTER 1. INTRODUCTION

In Chapter 3, the compatibility between reliability optimizations and currently
practiced power reduction optimization techniques is studied. Based on our
analysis, promising combinations are identified that can be used in embedded
systems requiring reliability with limited power budget. Moreover, the reason-
ing behind why some reliability optimization methods and power reduction
techniques that are not suitable to be used together is given.

In Chapter 4, a new technique for customizable control-flow fault detection is
presented. Our technique is a workload-aware hybrid combination of the two
main categories of signature monitoring techniques. Based on the topology of
the control flow graph the code is instrumented with a combination of different
types of assertions. This workload-aware instrumentation of the code, allows
our technique to be used with power reduction optimizations such as loop-
unrolling The impact of loop unrolling on the new control-flow error detection
method is investigated.

In Chapter 5, a framework for identifying susceptible basic blocks is presented.
The introduced framework can be used to omit program instrumentation in ba-
sic blocks that are not susceptible to CFEs. Moreover, a new signature mon-
itoring method is presented to be used with this framework. This signature
monitoring method has suitable assertions for instrumenting only some of the
basic-blocks in the control flow graph (the identified susceptible blocks).

Chapter 6 presents a lightweight, low-latency CFE recovery method with
checkpoints only in the susceptible source basic blocks. Our proposed re-
covery scheme is able to detect the CFE and roll back the execution to the
beginning of the basic block where the CFE has occurred. In order to assess
our recovery method fairly we considered the three metrics of correctability,
performance and recovery time. For this reason, we introduced the recovery
efficiency factor that is calculated based on these three crucial metrics.

Finally, Chapter 7 summarizes the work presented in this thesis and concludes
on the main findings. Moreover, some future research directions are proposed.

2
Background and related research

Errors at software level may be caused by hardware transient faults. Such er-
rors can impact data correctness or the execution flow integrity. There are sev-
eral software methods to improve reliability by instrumenting programs with
additional code to check run-time program execution and data integrity. The
extra code (assertions) are instrumented in the original application to detect
and recover from data or control-flow errors. Various software optimizations,
e.g., during compilation, can provide the means to achieve this goal. In this
Chapter, previous related works in reliability optimizations are presented.

2.1 Introduction

We first introduce the impact of hardware transient faults at software level and
give an overview of the previous works on software reliability optimization
methods. Hardware transient faults may have different impact at the software
level. In what follows the impact of hardware transient faults at software level
is modeled into two error categories, data errors and control-flow errors. There
are different software optimization methods which target one or both of the
above error categories.

The rest of the Chapter is organized as follows: Section 2.2 introduces the
two error models representing the impact of transient hardware faults at soft-
ware level. Section 2.3 presents reliability optimization schemes for hardening
the program execution flow against transient hardware faults and Section 2.4
presents reliability optimization schemes for making the program resilient to
data error manipulation. Section 2.5 presents hybrid optimization schemes
which detect both, execution flow and data integrity errors and Section 2.6
concludes the Chapter.

7

8 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

2.2 Impact of hardware faults at the software level

In recent processor-technology nodes with shrinking transistor sizes, transient
faults rates are increasing. Transient faults cause runtime errors, for example
unintended sequence of instructions. In this thesis, logical errors are defined
as the result of the software bugs. These errors are due to incorrect software
implementation and also manifest at runtime. Unlike runtime errors that are
due to transient faults, logical errors cannot get detected and recovered using
compile time instrumentation. Run time errors at software level occur as con-
sequence of hardware transient faults or Single Event Upset (SEU). SEUs are
typically caused by electro-magnetic radiation or wire crosstalk and may re-
sult in single bit flips. SEUs assume single bit flips in the memory (data or
code segment), buses (data or address), functional units or the control logic.
An SEU may change the instruction’s address, opcode or its operands. As a
consequence, two types of errors may occur during the program execution:

1. Data errors (DE): When a fault changes the opcode or an operand of an
instruction and cause erroneous data storing in the memory or a register;

2. Control-flow errors (CFE): Faults affecting the operand of control-
flow instructions or faults converting a non-control-flow instruction op-
code to a control-flow one or any other fault (such as a fault affecting
program counter content) that causes deviation from the expected exe-
cution flow. The consequence is a change in the expected instruction
sequence of the program [50].

There are cases that although a control-flow instruction is hit by a fault, the
result will be a data error. In these cases the fault will not cause a deviation
from the expected execution-flow path as determined at compile time. In such
cases, a wrong, however entirely valid control-flow path will be taken. One
example of such case is when a fault hits the condition value of a control-flow
instruction and causes an erroneous branch execution at runtime. Another ex-
ample of such cases is when a fault converts a control-flow instruction into a
non-control-flow instruction. In both given examples, even though the fault has
hit the control-flow instruction, the impact is a data error. In these examples,
an erroneous branch gets executed at runtime, but still the executed branch at
runtime matches one of the expected execution-flows at compile time. There-
fore, the impact of such faults cannot be categorized as control-flow errors and
instead it can be considered as data errors.

Related works on reliability focus on one of the two or both types of errors.

2.3. CONTROL-FLOW CHECKING 9

But since the effect of data-errors and CFEs are not the same, optimization
techniques to protect the application against each of the two error types are also
different. Experiments on the influence of heavy-ion fault injection on program
behavior show that more than 50% of the injected faults cause CFE [16]. Other
works indicate that about 75% of injected data errors are masked [21] [12]
[52]. Based on these studies, CFE is a major reason for system breakdown and
safety-critical systems require a dedicated reliability optimization for detecting
and correcting this class of program execution errors.

2.3 Control-flow checking

Software control-flow checking ensures the correct program-execution order.
All proposed methods for detection of only control-flow faults are a version of
the signature monitoring (SM) scheme. After a control-flow error is detected, a
common technique for recovery is to use checkpoints [27]. In this Section, (a)
we explain the definitions used in SM methods, (b) we explain the control flow
error model, (c) we explain the SM technique at length, (d) we show presented
related works on this topic and finally introduce a categorization of currently
available methods.

2.3.1 Definitions

In SM methods, two notions are used; basic blocks and Control-Flow Graph
(CFG) of a program. Basic blocks are branch-free sections of the program [56].
Each basic block is a set of consequent instructions or statements (depending
on the level of abstraction), where only the last instruction (statement) can be
a branch, and only the first instruction (statement) can be a branch destination.
Programs are divided into a number of basic blocks. In order to model the
runtime execution flow, the program is represented as Control-Flow Graph
(CFG). A program’s control flow graph represents the order of basic-block
execution. In the CFG, each node corresponds to a basic block and an edge
between the two nodes denotes a branch from one basic block to another. A
CFG consists of two sets: nodes-set represented by V = {v1, v2, v3, · · · } and
edges-set by E = {E1,E2,E3, · · · }. The list of legal CFG edges defines the
expected execution-flow paths at compile-time. Control-flow errors can be
modeled as illegal edges between CFG nodes. Signature-monitoring methods
check the execution order of basic blocks using the CFG of the program.

Figure 2.1 shows a schematic view of the CFG for an example piece of code.

10 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

B1

B2 B4

B5

B3

If (a<=10)
{
 for(i=1;i<10;i++)
 {

a=a+1;
 }
}
else
{
 a=a-1;
}
...

B1B1

B2B2

B3B3

B4B4

B5B5

B1

B2 B4

B5

B3

If (a<=10)
{
 for(i=1;i<10;i++)
 {

a=a+1;
 }
}
else
{
 a=a-1;
}
...

B1

B2

B3

B4

B5

Figure 2.1: Basic blocks and control flow graph of a code sequence

In this Figure, B1 is the corresponding basic block to the condition state-
ment of the if statement. The if statement body is mapped to B2 and B3

basic blocks, which B2 is the header clause of the for-loop statement and
B3 is the body of the for-loop statement. B4 is the corresponding basic
block to the else body and B5 is the consequent branch free statements in
the code. In this CFG the node-set is V = {B1,B2,B3,B4,B5} and edges-set
is E = {E1To2,E1To4,E2To3,E3To2,E2To5,E4To5}. The depicted CFE in the
Figure with the dashed line is an edge from B1 to B5 which is not present as a
legal edge in the CFG edges-set.

2.3.2 Control-flow error model

The impact of transient hardware faults at software execution flow can be cat-
egorized in four CFE types based on the reason of the occurrence:

• NonBranch-To-Branch: CFEs that occur due to a fault in the opcode
of a non-branch instruction and convert it to a branch instruction are
referred to as NonBranch-To-Branch. The consequence of this type of
CFE is an erroneous branch from the middle of a basic block to an un-
known target. This target can be the end of the same basic block or
another basic block in the CFG. This type of error is depicted in Fig-
ure 2.2(a);

• Branch-Target-Change: CFEs which happen due to a fault in the
operand bits of a branch instruction cause branch target change are
named as Branch-Target-Change. This CFE type causes an erroneous

2.3. CONTROL-FLOW CHECKING 11

branch from the end of a basic block to a random location. This type of
error is depicted in Figure 2.2(b);

• Branch-Condition-Change: Faults affecting the condition argument of
conditional branches and cause branch condition change are named as
Branch-Condition-Change errors. This type of error cause an erroneous
branch execution as depicted in Figure 2.2(c). It is important to note
that when this error occurs, the corresponding erroneous edge exists in
the list of legal CFG edges, but the wrong edge (branch) is taken at
run time due to a faulty conditional argument. The fault affecting the
condition argument causes a data error. Data errors should be detected
with another group of detection methods as discussed in Section 2.4;

• Branch-To-NonBranch: Faults which affect the opcode of branch in-
structions and change it to a non-branch instruction are called Branch-
To-NonBranch. In most systems, the consequent basic blocks are ar-
ranged in-order in the memory. For this reason, at least one of the suc-
cessors of the current basic block1 is located in the next memory loca-
tion after the current basic block. When Branch-To-NonBranch error
converts the branch instruction at the end of the current basic block, it
causes a wrong execution flow to the successor basic block located in
the next memory address. Therefore, Branch-To-NonBranch errors may
behave as Branch-Condition-Change.

Figure 2.2 shows the execution flow as a result of the above mentioned
CFE types on an example CFG. As depicted in this Figure, erroneous branch
1 which is a NonBranch-To-Branch error and erroneous branch 3 which is
Branch-Target-Change error can cause skipping part of the current basic block
execution without a deviation in the expected execution flow of the program.
Such CFE behaviors lead to data errors and depending on the program charac-
teristics can get masked. The corresponding edges to erroneous branch 2 which
is a NonBranch-To-Branch error and erroneous branch 4 which is Branch-
Target-Change error is not included in the list of legal CFG edges. Such er-
roneous branches leads to execution flow deviation and are the errors targeted
by the signature monitoring methods. Erroneous branch 5 can be the result
of a Branch-Condition-Change or Branch-To-NonBranch errors. Since such
erroneous branches does not change the expected execution flow, they will not
be detected by signature monitoring based methods.

1the basic block that contains the instructions being executed

12 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

B1

B2 B3

B4 B5

(1)

(2)

B1

B2 B3

B4 B5

(1)

(2)

B1

B2 B3

B4 B5

B1

B2 B3

B4 B5

(5)

(a) NonBranch-To-
Branch

(c)Branch-Condition-Change
and Branch-To-NonBranch

B1

B2 B3

B4 B5

(3)
(4)

(b)Branch-Target-
Change

B1

B2 B3

B4 B5

(3)
(4)

(b)Branch-Target-
Change

Figure 2.2: Different targeted error types in signature monitoring.

Faults may happen in different hardware components. If a transient fault af-
fects hardware units (such as program counter, address bus and etc) which con-
tain the address of an instruction, the resulting error can be a CFE. However,
the way this CFE affects the execution flow in the CFG depends on the affected
source address and the address it has been converted to. In other words, the ef-
fect of such faults on execution flow can not be known in advance. On the other
hand, if the fault occurs in units which contains the instruction, the behavior is
known and can be categorized into one of the the above four categories.

2.3.3 Signature monitoring

The basic idea of signature-monitoring techniques is to have a static signature
for each basic block of a given program and a global dynamic signature. In
all CFE detection methods a unique static signature is associated to each basic
block. In addition to the basic block signatures, there is one runtime signa-
ture which is calculated and updated at runtime; Runtime Signature (RS). RS
value depends on the program’s execution flow and the basic blocks that are
visited during execution. The content of the static signatures is defined before
runtime, while the dynamic signature (RS) is calculated at runtime. At run-
time, with each execution transfer to a new basic block, the RS is calculated
and updated to the signature of the new block. By comparing the two signa-
tures after control flow transfer, the correct run-time execution order of basic
blocks is checked. Figure 2.3 depicts modified basic blocks for deployment
of signature monitoring.

2.3. CONTROL-FLOW CHECKING 13

Static signature

Check Dynamic

1
st
Instruction

Last Instruction

HW

module

(a) Embedded static signature

with hardware-assisted

dynamic-signature calculation

Set Dynamic=Static

Check Dynamic

1
st
Instruction

Last Instruction

(b) Static signature not embedded

and compiler-assisted

dynamic-signature calculation

Figure 2.3: Static and dynamic signatures in basic blocks.

The static signature of a basic block can be one of two types; assigned sig-
natures or derived signatures [30]. Derived signatures are formed by the
address of each basic block. They are derived by the linker or assembler and
embedded in predefined points of the basic blocks, very often at the very be-
ginning of a basic block. Assigned signatures are unique values given to each
basic block that are also embedded in the predefined points in the basic blocks.
Figure 2.3(a) shows a sample basic block with derived embedded signature
and hardware-assisted run-time signature calculation and Figure 2.3(b) depicts
a basic block with assigned signature (not embedded in the basic block) and
compiler-assisted run-time signature calculation.

RS calculation can be done by extra dedicated hardware (e.g., a watchdog pro-
cessor or a signature generation unit) or implemented in software. Calculating
the run-time signature in software can be done by a watchdog task or by the
assertion code introduced by the compiler. Obviously, using a watchdog task
running in parallel with the main program, will require a multi-tasking system.

At compile time, the code is instrumented with dedicated functions for run-
time signature calculation and monitoring. The dedicated functions for RS
signature calculation are called Signature Generating Functions (SGF) and
the functions for checking the RS are called Signature Monitoring Functions
(SMF). At runtime, SGF calculates RS signature and SMF checks the consis-
tency between the current basic block signature and this calculated signature
at runtime (RS). If the program control flow is fault free, RS content matches
the current basic block signature and the control flow is validated. Since SGF
assertions set the runtime signature, they can also be called set assertions and
similarly SMF assertions can be called test assertions. These functions are
added at predefined points of the basic block. SGF assertions are used in all
basic blocks to update RS along the control flow path. However, depending on

14 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

the optimization method, SMF assertions can be added only to locations where
checking is considered to be critical.

Depending on the implementation, the SGF can be a simple XOR instruction
or a statement executing a complex function, e.g., a CRC computed of the bit-
field of all instructions in the basic block. As result of the specific SGF and
SMF complexity, some methods require storage of additional static parameters
for each basic block at compile time. These parameters hold information about
successors or predecessors of each basic block in the CFG. The amount of
static parameters to be stored is determined at compile time and is one of the
main contributors to memory and performance overhead of each SM scheme.

2.3.4 State of the art signature monitoring techniques

Signature monitoring related works all use SGF (set) and SMF (test) asser-
tions. Some of these methods require to store additional information at com-
pile time; the so called Control Flow parameters (CF-parameters). Currently
available SM schemes are presented in Table 2.1. In the Table, set (SFG) and
test (SMF) assertions and the extra CF-parameters (static parameters) saved
at compile-time are presented. In this Table, RS is presenting the global run-
time signature. The signature of each basic block is denoted by “i“ subscript
(Si). Predecessor signatures are denoted by “pre1“ or “pre2“ subscripts (e.g.,
Spre1), and successors signatures are denoted by “nxt1“ or “nxt2“ subscripts
(e.g., Snxt1). Extra parameters stored at compile time are indicated with “P“.
Parameters may belong locally to each basic block. In this case, they are also
denoted by “l“ subscript (Pl). Parameters that are global for all basic blocks
are denoted by “g“ subscript (Pg). As an example in the Table, Pg2 in the
CFCSS method [30] is a global static parameter. Depending on the method, a
number of static parameters may be required. As an example, YACCA needs
to store three local parameters at compile time as shown in this Table.

These methods differ in a number of aspects: the insertion point of SGF and
SMF; the abstraction level; the type of detected errors. The type of errors
detected by the methods is affected by the place where SGF and SMF are
inserted in the basic blocks. Figure 2.4 shows possible insertion points for each
SGF and SMF pair. Each SGF comes with a corresponding SMF checking the
updated RS by the SGF. They can be in the same block or in two consecutive
blocks. Figures 2.4(a) and 2.4(b) depict methods wherein the SGFi of the basic
block and its corresponding SMFi are in the same basic block (block“i“). On
the contrary in Figure 2.4(c) the SGFi of block“i“ is checked by SMFi+1 in
the successor basic block. In this Figure, the related works that use each type

2.3. CONTROL-FLOW CHECKING 15
SM

M
E

T
H

O
D

S
SG

F
SM

F
A

D
D

IT
IO

N
A

L
ST

A
T

IC
PA

R
A

M
E

T
E

R
S

C
FC

SS
[3

0]
R
S

=
R
S
⊕

P
l1

(1
)

if
R
S

!
=

S
i
br

er
ro
r

P
l1

=
S
i
⊕
S
p
re
1

R
S

=
(R

S
⊕
P
l1

)
⊕
P
g
2

(2
)

P
g
2

=

{ 00
00

in
pr

ed
1

S
p
re
1
⊕
S
p
re
2

in
pr

ed
.2

C
E

D
A

[4
6]

R
S

=
R
S
⊕

P
l1

(1
)

if
R
S

!
=

S
i
br

er
ro
r

P
l1

=
S
p
re
1

R
S

=
R
S
⊕

P
l2

(2
)

P
l2

=
S
n
xt
1

E
C

C
A

[5
]

R
S

=
P
l

+
(R

S
−
S
i)

R
S

=
S
i

R
S
%
S
i·(

R
S
%
2
)

P
l

=
∏ S

n
xt

YA
C

C
A

[3
]

R
S

=
(R

S
&
P
l1

)
⊕
P
l2

If
(P

l3
%
R
S

)
er
ro
r

()
P
l1

=
S
p
re
1
⊕̄
S
p
re
2

P
l2

=
S
p
re
1
&

(S
p
re
1
⊕̄
S
p
re
2
)
⊕
S
i

P
l3

=
∏ S

p
re

3

C
C

A
[1

9]
se
tR

S
1

=
S
1
i

d
eq
u
eu
eR

S
2

en
q
u
eu
eS

2
i

if
R
S
1
!

=
S
1
i

er
ro
r(

)
no

tr
eq

ui
re

d
if
R
S
2
!

=
S
2
i

er
ro
r(

)

[3
5]

se
tR

S
=

S
i

if
R
S

!
=

S
i

er
ro
r(

)
no

tr
eq

ui
re

d
A

C
FC

[5
0]

R
S

=
R
S
⊕

M
A
S
K

if
R
S

!
=

co
n
st

.
er
ro
r

no
tr

eq
ui

re
d

A
C

S
[2

1]
no

tr
eq

ui
re

d
B

SS
C

[2
8]

(S
M

pa
rt

)
ca
ll
en
tr
y
ro
u
ti
n
e

ca
ll
ex
it
ro
u
ti
n
e

no
tr

eq
ui

re
d

[1
1]

an
d

[5
4]

R
S

ca
lc

ul
at

ed
in

ha
rd

w
ar

e
if
R
S

!
=

S
i

er
ro
r(

)
no

tr
eq

ui
re

d

Ta
bl

e
2.

1:
SG

Fs
,S

M
Fs

an
d

ad
di

tio
na

ls
ta

tic
pa

ra
m

et
er

s
of

SM
m

et
ho

ds
fo

rR
S

ge
ne

ra
tio

n

16 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

SGFi
SMFi
SGFi
SMFi

SGFi

SMFi

SMFiSMFi

SGFiSGFi

(a) Consecutive
SGF-SMF pair in

one block

(b) SGF-SMF pair
at begin and end

of one block

(c) SGF-SMF pair in
two consecutive

blocks
Figure 2.4: Different insertion points for SGF and SMF pair.

of insertion points are also given.

In CFCSS [30], the insertion point of the corresponding SGFi and SMFi pair
is shown in plot (a) in Figure 2.4. Thus, faults happening after the SGFi and
SMFi (causing errors of type 2) are not detectable. In ACFC [50] the SGFi is
in the beginning of each basic block and SMF s are added at the end of control
flow paths in the program. CCA and BSSC both have 2 signatures for each
basic block. In BSSC, among the two signatures per basic block, one is a
derived signature and another one is assigned signature. The derived signature
is the beginning address of each basic block. CCA also uses two signatures for
each basic block, however both of them are assigned signatures. YACCA [3]
and ECCA [5] techniques are good examples of having a corresponding SGFi
and SMF i + 1 pair split over two consecutive blocks, as depicted in Figure
2.4(c). In CEDA [46] the signature update is performed in two locations of
the basic block, once at the beginning of the basic block and once at the end.
The SGF function at the beginning of the basic block is an XOR between the
runtime signature and the static parameter Pl1. The SGF at the end of the
basic block is also an XOR operation which is performed between the runtime
signature and Pl2 parameter. If the basic block has multiple predecessors,
and at least one of the predecessors has multiple successors, the SGF at the
beginning of the basic block performs an AND operation between the run time
signature and Pl1 parameter.

The number of assertions in basic blocks and CF-parameters are crucial factors
determining the memory overhead. Moreover, the number of assertions used
per basic block and their complexity determine the introduced performance
and power overheads. CFCSS, ECCA and YACCA save extra CF-parameters
to handle multiple predecessors/successors structures. Thus, they introduce

2.3. CONTROL-FLOW CHECKING 17

additional memory overhead. CCA does not save CF-parameters in expense of
not finding faults in multi-predecessor/successor topologies. ACFC and ACS,
use lower number of assertions and therefore have the lowest overheads.

Recovery methods use a detection mechanism to first detect the fault and use
checkpoints and roll back to recover the execution. Traditional methods place
checkpoints at critical points of the program. Checkpoints impose a high per-
formance overhead and in most systems the performance is traded off for the
recovery time. One of the recently proposed methods is ACCE [47]. It does
not use checkpoints due to the high performance cost. The authors propose
a roll-back mechanism using a global error-handler function and local fault-
recoveries per function. In this method the data is not restored after the roll
back. However it is suggested to extend the method with data duplication and
comparison for data restoration. We believe that the cost of data duplication
and comparison will not be lower than when using checkpoints.

2.3.5 Control flow error recovery methods

Recovery methods use a detection mechanism to first detect the fault and then
use checkpoints to roll back in order to recover the error free execution. Tradi-
tional methods place checkpoints at critical points of the program [27]. How-
ever checkpoints impose a high performance overhead. Previous work have
tried to find optimal locations for adding checkpoints in order to avoid exces-
sive performance overhead while limiting the recovery time [7]. These studies
use a mathematical model to determine the optimal checkpointing intervals. In
the proposed solutions the application level performance is traded off for the
recovery time.

A recently proposed lightweight checkpointing method, uses static analysis of
applications to find idempotent regions2 [13]. These lightweight checkpoints
save only the registers state at the beginning of the idempotent regions. The
starting address of the idempotent region is saved to roll-back the execution in
case an error is detected. This lightweight checkpointing imposes low runtime
performance overhead. However, the recovery time between when an error is
detected until the moment that the execution is recovered to the location where
the error has occurred is dependent on the idempotent regions size. Larger
idempotent regions reduce performance overhead but increase recovery time.

One of the recently proposed methods is ACCE [47]. It does not use check-
points due to its high performance cost. The authors propose a roll-back mech-

2code regions without Write-After-Read dependencies

18 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

anism using a global error-handler and recovery routines for each function.
ACCE provides the fastest recovery mechanism among the previously pro-
posed recovery techniques. The global error-handler is responsible to deter-
mine from which function in the program the error has initiated. After it is
determined which function is the source of the error, the recovery routine of
that function finds the basic block in which the error has occurred and the
execution is rolled-back to the beginning of that basic block. The recovery
time in this mechanism is equal to the total number of cycles for executing the
global error-hander and the corresponding recovery-routine. One shortcom-
ing of ACCE is that the data is not restored after the roll back. In order to
also restore the data after roll-back the authors suggest to use data duplication
mechanism. The overall cost of data duplication and comparison in terms of
performance is expected to not be lower than using checkpoints.

2.3.6 Error-capturing instructions (ECI)

ECIs are special instructions residing in memory locations which are not reach-
able during normal program execution. This technique can detect fair amount
of control flow errors. The control flow errors detected by ECIs are errors caus-
ing execution to diverge permanently from the correct execution and branch to
an erroneous location in the code segment memory. ECIs are inserted in un-
used code and data segments in the main memory. In data segment, they are
inserted among ordinary data and in code segment they are inserted in some
parts of the program that would not be reached during normal execution. ECIs
proposed in [28] are of two types: A software-interrupt instruction or a branch
instruction making an infinite-loop along with a watchdog timer.

2.4 Data error detection and recovery

In the following text we discuss the two types of methods that are proposed for
detecting data errors; data-duplication-with-comparison and executable asser-
tions. Each method can be extended to also recover from the errors.

2.4.1 Data error model

Data-value errors affect the system in three ways:

• Erroneous data stored in memory or registers;

2.4. DATA ERROR DETECTION AND RECOVERY 19

• Erroneous non-branch instruction execution due to change of its opcode
and conversion to another non-branch instruction;

• Errors in conditional branches due to faulty data value of the condition
argument. This data value error causes Branch-Condition-Change type
of control flow error (depicted in Figure 2.2(c)). However, since it is
data value error, it should be detected by data error detecting methods.

Errors as mentioned above should all be handled using data error detection and
recovery methods.

2.4.2 Data-duplication-with-comparison

The basic idea of data redundancy is to copy and save a duplicate version of
the original code at compile time, called shadow [31], and compare the origi-
nal and shadow versions at runtime. The comparison is done at critical points
of the program. Different software methods of this category vary in three as-
pects: First, the level of abstraction where data is duplicated; second, parts
of the system in which data is duplicated- the so called Sphere of Replica-
tion (SoR)3; and third, critical points to compare the original and shadow data.
Critical points to compare the original and shadow data are places where the
program output is written to the memory or the execution flow of the program
is determined. Thus, the three points in the program to insert comparisons are:
Before ”store” instructions; before ”branch” instructions and before system
calls (calls to external libraries).

Data duplication at source code level duplicates variables, assignments and
operations. At this level, variable duplication happens regardless of where the
values of variables are stored: at a memory location, in the register file or in-
ternal cache. At lower levels, e.g., assembly level, assembly instructions are
duplicated. Figure 2.6 shows data duplication at high-level source code (a) and
at assembly instruction level (b). Well-known methods proposed in this cate-
gory are EDDI [31] and SWIFT [36] at instruction level; the methods proposed
in [34] and [35] at source code level. In EDDI [31], comparison instructions
are inserted before store and branch instructions. In source-code level methods
proposed by Rebaudengo [34] and [35], after each read operation on a vari-
able, the contents of the original and shadow variables are compared. Figure
2.5 shows an example piece of code that is instrumented at source code level.

3This parameter reflects the protected parts in the system

20 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

int main(int x)

{ int c=3;

if (x== 5)

x= c+2;

else

x= c-2;

c= x;}

int main(int x0, int x1)

{ int c0=3; int c1=3;

if(x0==5)

if(x0 != x1)

error();

x0= c0+2; x1= c1+2;

if(c0 != c1)

error();

else

x0= c0 - 2; x1= c1 - 2;

if(c0 != c1)

error();

c0= x0; c1= x1;

if(x0 != x1)

error();

return 0;}

(a) (b)

Figure 2.5: (a) source code, (b) modified code based on optimization in [34]

EDDI and generally all methods with data duplication and comparison are able
to detect control-flow errors of type Branch-Condition-Change. If a transient
fault affects an input argument of a conditional branch and an erroneous branch
is executed, it can be detected by checking the value of the input arguments of
the conditional branch.

2.4.3 Data error recovery methods

For recovering from data errors, data-duplication-with-comparison methods
can be extended to recovery methods using triplication or checksum computa-
tion. Methods with data duplication with comparison require to keep a redun-
dant version of the data for recovery purposes. Such methods typically cause
significant memory and performance overheads.

SWIFT-R is an example which uses triplication with a majority-voting mech-
anism [9]. The authors in [34] propose to use data duplication and to store a
checksum over the data for fault recovery. A mismatch between the duplicated
data and the original version identifies a fault. For recovering from this fault
the checksum of the two data versions is computed and compared against the
stored checksum to identify which data version is the fault-free one.

Another, previously proposed technique is algorithm based fault tolerance
[23]. This technique is applicable only for specific workloads which have
matrix operation. In this techniques the matrix transformed into checksum
matrix which has a row checksum and a column checksum. Each element of

2.4. DATA ERROR DETECTION AND RECOVERY 21

Optimized code

()

))!()!((

;

;

1010

111

000

error

ccbbif

cba

cba

=È=

+=

+=

Original code

cba +=

Optimized codeOriginal code

Add
213

,, RRR
213

,, RRRAdd

222123
,, RRRAdd

2123
,RRBNE goto error

Figure 2.6: Data duplication (a) at source code, (b) at instruction level

the column checksum is the sum of the elements in the corresponding column.
In a similar way, each element of row checksum is the sum of the elements
in the corresponding row. In order to check whether there is a faulty data in
the matrix or not, the sum of all elements in the rows are compared to the
row checksum and the sum of the elements in the columns are compared to
the column checksum. A mismatch in these comparisons shows that an error
has occurred. If the error has occurred both in row and column checksums, it
shows that the error is the element at the intersection of the row and column
with mismatch. In this case the error can be recovered by recalculating the
erroneous element value using row checksum and column checksum. If the
error is only in row checksum or only in column checksum, it shows that the
original data is not affected and instead the checksum value is affected. In this
case, no recovery is needed, because the data is error free.

In [22], the authors determined that the majority of transient faults can either be
ignored (because they do not ultimately propagate to user-visible corruptions
at the application level) or are easily masked by lightweight symptom-based
detection. Therefore, they use compiler analysis to find high-value portions
of the application code that are both susceptible to soft errors and statistically

22 CHAPTER 2. BACKGROUND AND RELATED RESEARCH

unlikely to be covered by the timely appearance of symptoms and protect only
these portions of the code with instruction duplication. Their solution offers
an optimized fault recovery for data errors that is trading off performance and
fault coverage.

2.4.4 Executable assertions

By adding extra statements to the program, the validity of specific constraints is
tested. The added test statements are called executable assertions. An example
of this method is discussed in [51]. In this work, outputs and state variables
are checked with executable assertions. Executable assertions can also be used
for masking errors, as the assertions proposed in [9]. In this work, assertions
protect variables with statically known values against faulty change of their
value. This is done by inserting AND/OR operators at compile time.

2.5 Data and control flow checking

There are methods which can be employed for both data and control-flow error
detection. These methods combine data-value and control-flow checking as
a hybrid technique. Examples of hybrid techniques detecting both data and
control-flow errors are [36], [37] and [35]. Hardware support can be used to
reduce performance overhead and code size by reducing the amount of data
duplication. For example, both [36] and [37] use hardware support to reduce
the overhead.

The method in [36] (SWIFT) is based on software optimization, however it is
assumed that the memory hierarchy is protected with some form of error cor-
rection. It applies a modified version of EDDI [31] for data-error checking and
a modified version of CFCSS [30] for control-flow checks. Since it is assumed
that the memory is protected by ECC and parity bits, the need for duplicating
“store“ instructions is eliminated. By having CFCSS for control-flow checks,
the duplicating branch instructions is also not necessary. Moreover, in order
to further limit the imposed overheads, the SMF of control-flow checking is
applied only in basic blocks containing “stores“.

2.6. CONCLUSIONS 23

2.6 Conclusions

In this Chapter we explained different previously proposed compiler opti-
mization methodologies for increasing reliability. The techniques for im-
proving the reliability are categorized into: signature-monitoring schemes,
error-capturing-instructions, data-redundant methods and executable asser-
tions. While signature monitoring and ECI are targeting control-flow errors,
data-redundant and executable-assertion techniques aim to find data-value er-
rors. Some of the proposed methods (SWIFT), consider hardware support for
memory protection and therefore is not completely independent from the hard-
ware. The studied works instrument the program without taking into consid-
eration the information available at compile time and therefore impose a large
performance overhead to the system. In the following Chapters we propose
techniques for instrumenting the code using compile time information to re-
duce the imposed overheads.

3
Reliability and power optimization

techniques investigation

Historically standard built-in compiler optimizations have been used for im-
proving performance in embedded systems. However, for a wide range of to-
day’s battery operated embedded devices with restricted power budgets, power
consumption becomes a crucial problem that is not often addressed by mod-
ern compilers. Biomedical implants are one good example of such systems
with highly limited power budgets. Additionally, as discussed in the previous
Chapter, these devices need to also satisfy high reliability levels. In this Chap-
ter, we elaborate the needs of a cochlear implant as the case study of these sys-
tems. Further, we categorize previous works on compiler optimizations for low
power and fault tolerance. Our study considers differences in instruction count
and memory overheads, fault coverage, abstraction level of optimizations and
requirements for additional hardware support. Finally, the compatibility of
different methods from both optimization classes is assessed. Two optimiza-
tion method pairs from both classes that can be successfully combined with no
limitations have been identified.

3.1 Introduction

The goal of this Chapter is to highlight the compatibility of reliability and
power-optimization techniques. But first a case study of biomedical implants,
a cochlear implant, is elaborated that shows the need of having compatible
reliability,power and performance optimization techniques.

Cochlear implants are commonly accepted as therapeutic devices for clinical
use restoring the hearing of profoundly deaf people. Cochlear implants de-
vices consist of an external part that comprises a speech processor (DSP) and

25

26
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

a microphone which together receive and convert the sound into a digital data
stream using a speech processing strategy. The digital data is then transferred
via an RF link to the internal part. The internal part consists of a receiver-
stimulator package, which receives power and decodes the instructions for
controlling the electrical stimulation via an electrode array placed inside the
cochlea. Users can have normal conversation in a relatively clean sound envi-
ronment, but their hearing performance drops in complex environments, caus-
ing poor appreciation of music and inability to converse in crowded rooms
(cocktail-party effect). The bottleneck is delivering more sound details with
higher performance than is currently possible with the device used today. In or-
der to deliver more sound details from the external to the internal part, software
optimization on the algorithms running in the DSP can be used to generate reli-
able compressed digital data. In addition to this, the device requires the power
consumption to be as small as possible to avoid the need for big batteries or
capacitors. In order to improve cochlear implant devices a multi-disciplinary
approach is required that takes into account reliability, power limitations and
performance requirements all at the same time.

The rest of this Chapter the compatibility of reliability and power optimization
techniques is analyzed. In a nutshell, the following contributions are made:

• Categorization of reliability-related optimizations based on the targeted
errors, level of abstraction and checking method;

• Categorization of optimization methods for power reduction, based on
power-consumption sources;

• Analysis of each technique in terms of performance overhead, memory
overhead, hardware modifications and compilation time;

• Proposing hybrid optimizations tuples for power reduction and reliabil-
ity based on the results of our analysis.

The rest of the Chapter is organized as follows: Section 3.2 categorizes signa-
ture monitoring schemes for CFE detection and gives a numerical analysis of a
method from each category. The methods for optimizing power consumption
are categorized in Section 3.3, Section 3.4 discusses the compatible and con-
tradictory methods between reliability and power reduction optimizations and
Section 3.5 concludes the Chapter.

3.2. SIGNATURE MONITORING CATEGORIZATION AND ANALYSIS 27

3.2 Signature monitoring categorization and analysis

As discussed in the previous Chapter, signature monitoring methods add set
assertions to all basic blocks to update the runtime signature along the control
flow path. However, depending on the optimization method test assertions are
added at specific program locations considered to be crucial. Based on the
locations where the test assertions are added, CFE detection methods can be
divided into two main categories. Figure 3.1 represents this categorization.

B1

B3

B4

Bj

B5

Bk

Bi

B2

P
A

T
H

3

P
A

T
H

2

P
A

T
H

1

B1

B3

B4

Bj

B5

Bk

Bi

B2

SET

TEST

SET

TEST

(a) Path-asserting methods (b) Pred/Succes-asserting methods

B6

SET

TEST

SET

TEST

SET

TEST

SET

TEST

SET

TEST

SET

TEST

Figure 3.1: Two categories of signature monitoring techniques

The two main categories are path-asserting and predecessor/successor-
asserting methods as described below:

1. Predecessor/successor-asserting: methods which assert if the previous
(or next) basic block in the execution flow is the correct predecessor (or
successor) and is in accordance with the control flow graph edge-set;

2. Path-asserting: methods which assert if the control-flow path during
the execution is correct or not. A path is two or more basic blocks which
are executed in a sequence. The path is also defined with a group of
edges. Path asserting methods ensure that this group of edges are in
accordance with control flow graph edge-set.

Predecessor/successor-asserting methods require more than one assertion per

28
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

basic block (at least one set and one test). Moreover, in some cases there is
a need to store information about predecessors/successors (especially for ba-
sic blocks with multiple predecessors/successors); the so called Control Flow
parameters (CF-parameters). However, path-asserting methods decrease the
number of assertions per basic block (since the test assertion is added only to
the last basic block of the path) and in case of multiple predecessors/successors
do not require to save any extra information. On the other hand, path-asserting
methods assume programs have symmetric CFG topology, which is not real-
istic for most of the real programs. Instead, predecessor/successor-asserting
methods are independent of the CFG topology (because they save control-flow
information for each predecessor/successors pair). The main difference be-
tween the two categories is in the number of added test assertions in the pro-
gram. Predecessor/successor-asserting methods add more tests, therefore they
introduce higher overheads and also potentially improve fault-coverage. Path-
asserting methods add lower number of test assertions, introduce less overhead
but somewhat decreased fault-coverage. CFCSS, ECCA, CEDA, YACCA and
CCA represent predecessor/successor-asserting methods with high fault cov-
erage and high overhead. Among this group CCA has the simplest set/test
assertions and it does not have any extra CF-parameters. ACFC and ACS add
one test assertion for group of basic blocks and are categorized as path-based
methods. ACFC is a path-based method that adds tests to the last basic block
of the loops and the exit basic block of the program. ACFC does not add tests
at the end of paths which are formed due to conditional branches. As a con-
sequence, it is efficient only in programs with symmetric CFG topology. If a
program’s CFG is not symmetric due to unbalanced conditional statements (an
if without an else counterpart), ACFC adds dummy elses to balance the CFG
and then instrument it. This causes extra branches and is the major reason of
overhead in ACFC.

ACS is also a path-based method, since it adds one test assertion for group of
basic blocks in single-entry-multiple-exit regions. ACS offers a coarse grain
CFE detection, useful in commodity systems which require high performance
while 100% fault-coverage is not demanded as in safety-critical systems. Both
methods fall in the path-based category and use simple and low-cost assertions.

3.2. SIGNATURE MONITORING CATEGORIZATION AND ANALYSIS 29

Signature
monitoring

Path asserting
Predecessor/Successor

asserting

Incremental
signature update

Local signature
update

ACFC ACS

CEDA CFCSS YACCA ECCA CCA

Figure 3.2: Categorization of signature monitoring methods

Figure3.2, shows the above mentioned categorization. As shown in this Figure,
furthermore we categorize predecessor/successor assertions into two groups:
1) methods with incremental signatures update; 2) methods with local signa-
ture updates. Figure 3.3(a) shows the differences between these two groups
and in Figure3.3(b) the instrumentation with path-based assertions is depicted.
At incremental signature update, the set functions use the global signature con-
tent (S in Figure 3.3(a)) as input. This means that global signature content at
each basic-block is dependent on all set assertions in the predecessor basic-
blocks along the execution path. Methods with incremental signature update
are CEDA, CFCSS and YACCA. On the other hand, local signature updates
set the signature at the current basic-block independent of the global signa-
ture content. ECCA and CCA are illustrative examples of methods with local
signature update. The shortcomings of local signature updates are high over-
heads and low fault-detection capability for basic-blocks with multiple prede-
cessors. Methods such as CFCSS and CEDA that are incremental signature
update methods, have lower overheads than local signature monitoring with
the same fault-coverage.

30
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

B1

Test: S == EV1

B1

Test: S == EV1

B3

Test: S == EV3

B3

Test: S == EV3

Set: S = f(S, d1)

Set: S = f(S, d3)

B2

Test: S == EV2

B2

Test: S == EV2

Set: S = f(S, d2)

B1

Test: S == EV1

B1

Test: S == EV1

B3

Test: S == EV3

B3

Test: S == EV3

Set: S = f(d1)

Set: S = f(d3)

B2

Test: S == EV2

B2

Test: S == EV2

Set: S = f(d2)

Incremental sign update Local sign update

B1B1

B3

Test: S == EV

B3

Test: S == EV

Set: S = f(S, d1)

Set: S = f(S, d3)

B2B2

Set: S = f(S, d2)

(a) Predecessor/Successor Assertions (b) Path-based Assertions

Figure 3.3: Predecessor/successor assertions with incremental/local signature
update and path-based assertions

3.2.1 Quantitative analysis

Each of the methods discussed above differs in terms of the type of detected
faults, instruction count and memory overheads. Table 3.1 shows a numerical
comparison in terms of overhead between the three signature monitoring cat-
egories. In this Table, CFCSS and YACCA belong to incremental signatures
update category, CCA belongs to local signatures update category and ACFC
belongs to path-asserting methods category. To perform this numerical analy-
sis, we have used PowerPC (PPC405) as our target architecture for estimating
the overheads. For this estimation, a synthetic workload is used. This work-
load contains a simple for-loop with an add operation in the body. The CFG of
this workload contains four basic block in total. The simple workload is chosen
for simplicity in order to facilitate instruction count and comparison between
different methods. Figure 3.4 shows the CFG of the used workload. In this
Figure, B1 block contains the initialization statement, B2 has the test opera-
tion of the loop condition, B3 has the addition operation and the increment of
the for-loop and B4 corresponds to the return statement.

In order to compare SM methods, in Table 3.1 the memory overhead of apply-

3.2. SIGNATURE MONITORING CATEGORIZATION AND ANALYSIS 31

Methods Memory Instruction Category Opt.
overhead count phase
(bytes) overhead

CFCSS [30] 2 61 incremental signatures compiler
update

YACCA [3] 8 88 incremental signatures preproc.
update

CCA [19] 4 356 local signatures update preproc.
ACFC [50] 1 5 path-asserting preproc.

Table 3.1: Analysis of reliability optimization methods

B1

B2

B3 B4

a = 0;
for (i=0;i<10;i++)
{
 a = a + 2;
}
return a;

Figure 3.4: CFG of the used workload for overhead estimation

ing different SM methods are estimated. We have used CF static parameters
(as given in Table 2.1 in Chapter 2) to estimate the overheads in the studied
SM methods. The memory overhead of signature-monitoring schemes is de-
pendent on the number of stored static signatures and CF static parameters for
each basic block. The estimation is done based on the number of bits required
to store the static signatures and parameters.

Moreover, in order to have a better view for comparing the methods, instruction
count overhead is calculated. Instruction count is influenced by the complexity
of the SGF and SMF. The workload under study is compiled for the PPC405
architecture and corresponding instructions to SGF and SMF are counted.

The results in Table 3.1 show that the least imposed overheads belong to ACFC
which is path-asserting method. This method requires only one bit per basic
block to store static information about the control flow. As our small synthetic
workload has only four basic blocks, the estimated memory overhead for this
method is four bits (half a byte). However, in practice one memory byte will
be used as given in the Table. In the second place, CFCSS and YACCA, which

32
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

are both incremental signature update methods, have the least imposed over-
heads. Finally, CCA, which is a local signature update method, has the highest
overheads among the two others. This comparison emphasizes the differences
between the imposed overheads by the three signature monitoring categories.

It is important to note that in this Table CFCSS is the only method that uses
the compiler for instrumenting the code at assembly level. All other methods
use preprocessor to instrument the code at source code level. Instrumenting
the assembly code results in lower overheads compared to instrumenting the
source code. The results of YACCA and CFCSS emphasize this fact. YACCA
instruments the source code using the preprocessor while CFCSS instruments
the assembly code using the compiler.

3.3 Optimization techniques for power reduction

In addition to static leakage, another major source of power consumption in
CMOS circuits is due to dynamic power consumption. Dynamic power con-
sumption is given by [49]:

Pdyn = α · C · V 2 · f (3)

The total energy consumption in a system is the product of the consumed
power and the execution time (t) [45]; (Edyn = Pdyn · t = Pdyn · N · T).
N is the number of clock cycles that the device is operating and T is the clock
period. Thus the dynamic energy consumption is calculated as:

Edyn = α · C · V 2 · N , (T = 1/f) (4)

In order to reduce the total energy consumption of the system without redesign-
ing the hardware, three factors in the formula can be reduced; reduction of the
activity factor (α); reduction of the operating voltage (V) and reduction of the
number of cycles device is operating (N). A figure of merit describing the den-
sity of bit transitions in a processor executing a consecutive set of instructions
is the Hamming distance1.

Based on the current measurements performed in [45] and the defined amount
of drawn current in each part of the processor, three main parts are identified
as the source of power consumption in the system: (1) Bus lines driving the
off-chip storage elements; (2) Processing units; (3) Pipeline latches. Differ-
ent power optimization methods target one of the above mentioned sources of

1Hamming distance is the number of bits that have different values in two words

3.3. OPTIMIZATION TECHNIQUES FOR POWER REDUCTION 33

power consumption and decrease the power by minimizing one of the factors
α, V or N.

In the rest of this Section, these methods are explained and are grouped in two
main categories; the ones requiring special hardware support (or modification)
and the ones that are independent of the underlying hardware.

3.3.1 Hardware assisted power reduction techniques

Optimizing methods for power reduction which require hardware support can
be of three types. Each of these methods aims at reducing power by decreasing
one of the α, V or N factors.

3.3.1.1 Memory address coding for power reduction

Transmitted data on the buses can be encoded in order to decrease bus lines
transitions and hence power and energy consumption. Gray-coding is a well-
known technique for keeping the Hamming distance between two consequent
codes constant and always equal to one. Instruction addresses in the memory
are most of the time contiguous and the execution of programs is sequential.
Therefore, Gray-code can be used to address the memory and reduce the Ham-
ming distance between consequent instructions [43]. However in order to use
Gray-code for addressing, there is need for hardware support and a memory
with Decimal to Gray-code decoder and encoder.

To decrease bus transitions two types of coding are used; Gray-coding and
Bus-invert coding. Gray-code is used for Addressing. Hardware and compiler
should be modified in order to use Gray-coding; e.g., the program counter
should be able to increment in Gray-code and compiler should re-arrange the
addresses in branch instructions. An alternative method to Gray-coding is
Bus-invert coding. Bus-invert coding is used in case the Hamming distance
is greater than half of the bus size. This means that with using the Gray-coding
more than half of the bits should be switched in two consecutive accesses. In-
stead, with this technique the bus-encoding is inverted, thus avoiding that more
than half of the bus line switches and saving at least 50% of power consump-
tion. An extra bit line between the memory controller and the memory device
is required in order to indicate if the bus is in the original or in inverted state.

34
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

3.3.1.2 Deactivating modules for power reduction

In order to decrease the number of active clock cycles of the processor or
memory (N factor in equation 4), some methods partially shut down idle parts
of the module ([41] and [18]). However, this scheme is useful only when the
corresponding parts are idle for a long continuous periods. There is a need for
look-ahead algorithms (such as the one in [18]) to predict the periods in which
the processing units or memory are active. In this method, power-management
techniques are used for event-driven applications. The proposed look-ahead
algorithm investigates the history of the previous idle periods and the power
dissipation of the target system.

3.3.1.3 Dynamic voltage scaling

Variable-Voltage Processors (VVP) are processors with controllable levels of
operating voltage. The voltage level can be tuned to high for boosted perfor-
mance and fast execution and to low for idle or low activity periods. The main
challenge is to find a scheduling algorithm exploiting the variable voltage and
clock speed of the CPU for power reduction without significant performance
overhead. Related works in [29], [25], [55] and [53] give scheduling schemes
for solving this issue. In most of these works, in order to schedule the tasks,
the Worst-Case-Execution-Time (WCET) of the tasks is considered. But in
real execution, the tasks are executed faster and the slack time is divided be-
tween other tasks.

A critical challenge in VVP scheduling is to find optimal points in the program
for changing the voltage. In [55] and [29] this is done in two different ways.
In [55] the optimal insertion points for voltage-scaling instructions are investi-
gated by profiling the program and storing the information about the execution
time and amount of energy required by each basic block. By using Mixed-
Integer Linear Programming (MILP) technique, the places to change the volt-
age level without significant performance overhead are defined. The proposed
method in [29] uses the compiler and the operating system for scheduling real-
time applications on VVPs. The compiler annotates the application sections
with timing information (the so-called Power-Management-Points, PMP). At
the PMP in the beginning of a task, current time is stored and, at the last PMP,
execution time of the task is calculated. At run-time, the actual execution time
is compared to WCET (defined at compile time) of the task. Based on the
comparison, the operating system adjusts the speed and voltage of the proces-
sor and allocates the slack time to other tasks. The critical points to insert

3.3. OPTIMIZATION TECHNIQUES FOR POWER REDUCTION 35

PMPs are loop boundaries and procedure calls.

3.3.2 Software techniques for power reduction

Software techniques for power reduction limit the number of memory accesses
or re-schedule instructions in a way that the Hamming distance between them
is decreased. In what follows software power reduction techniques, that are
independent from hardware, are explained in more details.

3.3.2.1 Power reduction by increasing locality

Proper mapping of data into the memory reduces the accesses to the external
memory and bus transitions. Interleaving array elements is one way to increase
locality by mapping multiple arrays in the memory into a single array. The
method proposed in [10] is an example. Multiple arrays in different addresses
in the memory are mapped into a single array in the memory; mapping two
arrays of A and B to D:

For(i = 1, i ≤ N, i + +)
C [i] = A[i] + B[i];

=⇒ For(i = 1, i ≤ N, i + +)
C [i] = D[2i − 1] + D[2i];

After mapping, array references and declarations in the program are modified.
The result is clustered data storage in the memory. Data storage in clusters is
also useful when partial shut-down of in-active parts of the memory is used.

Increasing locality is also possible by making the loops linear [20]. Techniques
for making the loops linear are: (1.) loop unrolling; (2.) loop fusion; and
(3.) loop fission. Loop-fission breaks down a big loop that does not fit in the
cache into smaller loops, in order to increase the locality of the references and
decrease the number of memory accesses.

3.3.2.2 Power reduction by re-scheduling instructions

Instruction re-scheduling performed by the compiler changes the order of in-
struction execution. First, Data Dependency Graph (DDG) and Control Depen-
dency Graph (CDG) of the application source code are obtained. The nodes
of these graphs are data and instructions correspondingly. By using the infor-
mation in the graphs the scheduler reorders the instructions in a way that the

36
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

Hamming distance is reduced. The scheduling introduced in [24] is a sam-
ple work of scheduling VLIW instructions to reduce the hamming distance
between the consecutive instructions.

3.4 Compatibility analysis

Based on the methods characteristics, optimization methods for power reduc-
tion and fault tolerance can be combined to form a hybrid optimization pro-
viding both. Some methods however can be combined only under certain lim-
itations and are not applicable for all cases. Compatible power reduction and
reliability optimization methods are listed below.

• Instruction re-scheduling and duplication Added data-check instruc-
tions (shadow and compare instructions) for data error detection can
be re-scheduled to reduce the Hamming distance. However, compare
instructions should be scheduled before critical points of the program,
such as “store“ and “branch“ instructions.

• Loop flattening (unrolling or fusing) and signature monitoring:
Signature-monitoring schemes add extra SGF and SMF, which has an
overhead in terms of power and performance. By loop-unrolling and
-fusing the number of basic blocks is reduced. Thus, the overhead of
added SGF and SMF will be reduced.

Loop unrolling decreases the number of iterations of a loop, thus the
number of times SGFs and SMFs are executed also decreases. Loop
fusion combines a number of smaller loops in a larger loop, which de-
creases the number of required SGFs and SMFs. This is depicted in
Figure 3.5(a).

Contradictory reliability optimization and power reduction methods are:

• Loop-fission and signature monitoring: In processors with small
cache sizes, loop-fission divides bigger loops than the cache size into
smaller loops. However, by breaking a loop into several smaller loops,
additional SGFs and SMFs are needed for each new loop. If SGFs and
SMFs have memory references, including extra SGFs and SMFs causes
extra memory accesses. This issue plus the execution of SGF and SMF
instructions cause an extra overhead in terms of power consumption.

3.4. COMPATIBILITY ANALYSIS 37

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1}

SMF2

SGF2

 for(i=0; i<4; i++)
{b[i]=b[i]*2}

SMF2

SGF2

 for(i=0; i<4; i++)
{b[i]=b[i]*2}

(a) Loop Fusion and signature
monitoring assertions

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1
[b[i]=b[i]*2}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1}

SMF1

SGF1

 for(i=0; i<4; i++)
{a[i]=a[i]+1}

SMF2

SGF2

 for(i=0; i<4; i++)
{b[i]=b[i]*2}

SMF2

SGF2

 for(i=0; i<4; i++)
{b[i]=b[i]*2}

(b) Loop Fission and signature
monitoring assertions

Figure 3.5: (a)Loop fusion reduces the number of SGFs and SMFs, (b)Loop
fission adds extra SMF and SGF

However, this is not an issue if the cache is larger and loops are not di-
vided. In the discussed related works of signature monitoring, the SGF
in methods such as CFCSS, ECCA and YACCA may have reference
to the memory, depending on whether the additional parameters (Pl) are
stored in memory locations or in the registers. This is an implementation
issue and is decided by the compiler. Figure 3.5(b) depicts an example
of a loop fission and signature monitoring scheme (YACCA) presented
in [3]. In this case after loop fission, extra SGF1 and SMF2 assertions
corresponding to the newly generated basic block cause extra overhead.
Moreover, the static parameters produced at compile time (introduced in
Table 2.1 for YACCA [3]), cause additional overheads.

• Instruction re-scheduling and signature monitoring: Scheduling the
instructions to reduce dynamic power consumption may change the
place of instructions based on the Hamming distance between the con-
secutive binary form of instructions. In signature-monitoring methods,
special instructions for run-time signature generation (in SGF) and run-
time signature monitoring (in SMF) are added in specific points of the
basic blocks and are typically independent from the rest of the basic
block code.

In discussed signature monitoring schemes, SGF and SMF are embed-
ded either into the source code or into the assembly code. However in-
struction re-scheduling for reducing the Hamming distance is done after

38
CHAPTER 3. RELIABILITY AND POWER OPTIMIZATION TECHNIQUES

INVESTIGATION

the assembler and linker when the binary representation of the instruc-
tions has been defined. Thus, if one aims to add control-flow checking
by the presented signature monitoring schemes and reduce power con-
sumption by scheduling the instructions, signature-monitoring schemes
are applied first and scheduling later. However, by instruction re-
scheduling, the added SGF and SMF in earlier phases may move to an
arbitrary point in the basic blocks. Therefore, instruction re-scheduling
can impact the control-flow checking. A possible solution to this limi-
tation is that the signature-monitoring scheme is applied at later phases
such as the proposal in [11]. Another solution is to restrict signature-
monitoring instructions, and prohibit the scheduler to reschedule them.
However, this is still a limitation and rescheduling can not provide the
same power reduction that it should.

• Instruction re-scheduling and masking: The added mask instructions
are placed at specific points in the basic blocks by the compiler, there-
fore for the same reason mentioned for instruction re-scheduling and
signature-monitoring, re-scheduling may corrupt the effect of masking
instructions. This is the same case as instruction re-scheduling and sig-
nature monitoring. It can be solved with some restrictions to the sched-
uler at the expense of power consumption.

3.5 Conclusions

In this Chapter we have categorized power optimization methods and analyzed
their compatibility with reliability optimization methods. Power optimization
methods were divided into scheduling, coding, increasing locality, partial shut-
down of system and dynamic voltage scaling. Among the studied power re-
duction methods, software techniques which include power reduction by in-
creasing locality and power reduction by re-scheduling instructions are most
suitable for embedded systems with no special hardware support. Each of
the optimization techniques from both classes were analyzed in terms of over-
heads, abstraction level and implementation issues. Based on our analysis,
three pairs have also been identified with certain limitations in place: Loop-
fission for power reduction and signature monitoring, Instruction re-scheduling
and signature monitoring and Instruction re-scheduling and masking. On the
other hand, two promising combinations were identified that can be used in
embedded systems requiring reliability with limited power budget. More pre-
cisely they are: instruction re-scheduling with instruction duplication and loop

3.5. CONCLUSIONS 39

flattening (unrolling or fusing) with signature monitoring. These methods can
be implemented both by a specialized compiler and do not require any addi-
tional hardware support. However, in order to benefit from signature monitor-
ing methods and loop flattening techniques in a program, signature monitor-
ing methods require to be flexible and adjust the assertion locations based on
the program’s CFG. Previously proposed signature monitoring methods do not
have this flexibility. In the next Chapter our proposed method is addressing
this problem.

The content of this Chapter is based on the following paper:

Ghazaleh Nazarian, Christos Strydis, Georgi N. Gaydadjiev. Compatibility
Study of Compile-Time Optimizations for Power and Reliability. Pro-
ceedings of the 14th Euromicro Conference on Digital System Design, Ar-
chitectures, Methods and Tools (DSD), pp. 809-813, Oulu, Finland, August-
September, 2011

4
Low overhead control flow fault

detection

The experiments of heavy-ion fault injection to programs by Karlsson et al.
show that more than half of the injected faults cause control-flow faults [16].
Taking this into consideration together with the distractive impact of erroneous
control flow execution, in this Chapter we focus on control flow errors and sig-
nature monitoring schemes to detect such errors. Fault tolerant hardware tech-
niques usage is limited, due to the increased design costs. As an alternative,
Signature Monitoring (SM) schemes using assertions (implemented as com-
piler optimization) are an efficient alternative method for control-flow-error
detection instead of hardware implemented ones. Among the proposed SM
techniques discussed in Chapter 2, no method employs the program-specific
knowledge to reduce the imposed overheads caused by the extra added asser-
tions in the Control-Flow-Graph (CFG). In this Chapter we propose a novel
SM technique based on CFG analysis at compile time aiming at minimizing
the number of assertions by placing those only at optimal locations of the as-
sembly code. Moreover, it is demonstrated how this new technique based on
software instrumentation can benefit from loop-unrolling, with significant im-
pact on control-flow reliability. We show the impact of loop-unrolling on fault-
coverage and performance of this scheme and compare it against the obtained
results from conventional methods. Thanks to the proposed approach, signif-
icant fault-coverage concerning CFE can be obtained with reduced assertion
costs. As a result of having assertions with less overheads, the instrumented
program runs faster than the programs instrumented based on previous meth-
ods. We evaluate our proposal using ImpBench [42] benchmark suit and show
more than 50% reduction of performance, memory and power-consumption
overheads while providing comparable fault coverage as the state-of-the-art
SM methods. In comparison with the most-efficient current SM method, our

41

42 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

technique has an average of 13% fault coverage improvement.

4.1 Introduction

The targets of this work are safety-critical systems with high performance re-
quirements and extremely limited energy budgets. A good example of the
systems with the aforementioned requirements is biomedical implants, such
as Cochlear implants. Cochlear implants are powered by batteries and there-
fore should be able to operate with limited power budget and at the same time
they require to be reliable and meet the necessary performance rate. In such
systems, both optimizations for improving performance and reliability are re-
quired. Moreover, power consumption should be kept low. The challenge
which remains is to understand which error detection/recovery method is ef-
ficient to be used with performance-oriented optimizations, in order to pro-
vide high performance and reliability with minimal increase of energy con-
sumption. From reliability-optimization point of view, this challenge is satis-
fied when employing the reliability optimization together with a performance-
oriented optimization will not degrade the fault-coverage. There are many
compiler-based optimizations for increasing performance in conventional and
HPC processors [6]. Among these techniques loop-unrolling seem applicable
to embedded systems too. In this Chapter we investigate the impact of loop-
unrolling on reliability optimization methods and introduce a novel method
that is compatible with loop-unrolling.

The authors of [33], have investigated the impact of compiler optimizations
such as loop-unrolling on the fault-recovery ability of ACCE [47]. ACCE is a
recovery method which uses CEDA [48] for CFE detection. The result of this
investigation shows that several compiler optimizations can increase the fault
recovery rate. However, it is concluded that there is no specific optimization
that can increase ACCE fault coverage and it is the structure of the workloads
which influences how optimizations impact the recovery rate. As described in
Chapter 2, existing signature monitoring schemes are divided into two main
categories; path-asserting and predecessor/successor-asserting methods. The
conventional methods belonging to these categories (such as CEDA, CCA as
predecessor/successor-asserting methods and ACFC as path-asserting method)
do not instrument the program based on the CFG topology and the program
structure. Therefore, the impact of CFG topology change on the fault coverage
and performance overhead, after optimizations such as loop-unrolling, is not
explored and we would like to look at it in this Chapter.

4.1. INTRODUCTION 43

Loop unrolling may change CFG topology, the number of basic blocks
and their respective sizes. As described above, among existing signature-
monitoring schemes there is no method which employs compile-time informa-
tion CFG in order to eliminate unnecessary assertions and reduce overheads
while preserving a high fault coverage. In this Chapter a novel SM method
for CFE detection is proposed which instruments the assembly code based on
CFG analysis performed at compile time. Our method is named as Selective-
Control-Flow-Check (SCFC). Depending on the particular CFG topology an
optimal assertion is selected for each basic block of the program. SCFC in-
serts minimal number of assertions in only critical points of the code aiming
at low overheads while preserving high fault coverage levels. Since SCFC an-
alyzes the CFG topology to add assertions at the specific program locations,
loop-unrolling can be used before SCFC optimization to additionally improve
performance while preserving high fault coverage.

Among the CFE detection methods we investigate the impact of loop unrolling
on CCA [19] and our proposed method (SCFC). CCA is chosen as the repre-
sentative of high-coverage CFE detection methods in predecessor/successor-
based category due to its simple set and test assertions and higher coverage
compared to other methods in the category. Since methods similar to CCA
do not analyze the CFG topology before adding assertions, most compiler
optimizations (which are mainly loop-related) go after either fault-coverage
or performance. Contrary to these methods, since SCFC instrumentation is
done with the knowledge of the CFG topology, it is expected that using SCFC
together with compiler optimizations that change this topology (like loop-
unrolling) will not degrade the fault coverage. In this Chapter we show that
a traditional compiler technique like loop-unrolling can improve SCFC perfor-
mance while sustaining high fault coverage.

SCFC is evaluated using the ImpBench benchmark suit [42] common to
biomedical implants. In addition, three synthetic control-flow driven work-
loads, each demonstrating a particular CFG topology, are used in our evalua-
tion. Results of the synthetic workloads are presented to emphasize the highest
overheads that each method under study may cause. In our experiments we use
an embedded 32-bit RISC processor, and the CoSy framework [1] for devel-
oping an optimized compiler for this processor. However, since our method is
modifying only the intermediate representation of the source code, without loss
of generality our optimizations can be re-targeted to any arbitrary processor by
simply using its corresponding back-end. Workload binaries generated by our
customized compiler are evaluated using Synopsys Processor Designer sim-
ulator [2]. SCFC results are compared to two state of the art SM techniques,

44 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

one with lowest overheads (ACFC) and one with highest fault coverage (CCA).
While showing a high fault coverage level in pair with CCA, the overheads of
our method are close to those of ACFC. The main contributions of the work
presented in this Chapter are:

• A novel software only method, not requiring extra hardware provisions
and hence widely applicable;

• A workload CFG structure aware method to reduce assertion overhead
for each basic block while keeping the fault coverage high;

• On average 13% fault coverage improvement over ACFC with only
2.5% performance degradation and about 2% power consumption over-
head respectively;

• Study of the impact of loop unrolling on performance-improvements and
fault coverage (additional 9.75% fault coverage on average).

The reminder of this Chapter is organized as follows: Section 4.2 discusses two
methods from each SM category with an illustrative example. In Section 4.3
the targeted fault types and their causes are introduced. Section 4.4 describes
SCFC and details the improvements over the previous works. In Section 4.5 the
impact of loop unrolling on SCFC and CCA is investigated and compared. In
Section 4.6 the workloads used for experiments, framework for fault-injection
and the results of our evaluation are explained and finally the conclusion of the
work is given in Section 4.7.

4.2 Setting up a challenging baseline for comparison

In this Section, we describe and compare two different methods from the
categories presented in Section 3.2 more precisely. ACFC (as the best per-
forming path-asserting method example) and CCA (as a representative for
predecessor/successor-asserting methods) are presented. These methods are
used as building components of the proposed SCFC. We selected the path as-
sertion method with the lowest overhead and the predecessor/successor asser-
tion method with the highest fault coverage to create a worst-case baseline for
comparison against our method proposed in this Chapter.

4.2. SETTING UP A CHALLENGING BASELINE FOR COMPARISON 45

B3

RS=RS^1

B4

RS=RS^8

B5 B6

RS=RS^16 RS=RS^32

if (RS!= 31) error

B1 B2

B0

RS=RS^2RS=RS^2

RS=RS^4

RS= 7
if (RS!= 47) error

B0

B2B1

B3

B4

B6B5

RS=RS^1

RS=RS^2RS=RS^2

RS=RS^4

RS=RS^8

RS=RS^32

if (RS!= 47) error;

RS=RS^16

if (RS!= 31) error;

RS= 7;

(a) Sym. CFG with ACFC assertions

B0

B1

B2

B3

B5B4

(b) Asym. CFG

Figure 4.1: Asymmetric CFG and Symmetric CFG with ACFC assertions

4.2.1 Path assertion method with the minimal overhead

In ACFC [50] one set assertion is used at the beginning of each basic block,
and a test assertion is used at the end of each possible control-flow path. In
general, different control-flow paths are created in the CFG as a consequence
of conditional branches and/or loop statements in the program. Each control-
flow path has its own RS and each basic block in that control-flow path cor-
responds to one bit of the RS. The set assertion in each basic block sets one
bit of the RS which corresponds to the basic block, using bitwise XOR oper-
ation between RS and the MASK of the basic block. The MASK of the basic
block is unsigned integer value representation of RS when the corresponding
bit to the basic block is ”1” and all other bits are ”0”. The test assertion com-
pares the runtime signature value with the corresponding constant value to the
control-flow path. The constant of the control-flow path is unsigned integer
value representation of RS when, all the corresponding bits to basic blocks in
the control-flow path are ”1” and other bits of RS are ”0”. In case an error
is detected, the routine for error handling is called. Since the set assertion in
the beginning of the basic block raises the corresponding RS bit using bitwise
XOR, if the basic block is executed more than once, the corresponding bit of
the basic block in RS is reset. To overcome this problem, ACFC suggests to
test and restore RS in the last basic block of each loop. RS is restored with the
constant of the control flow path before the next iteration of the loop.

46 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

Figure 4.1 shows the ACFC scheme applied on an example simple CFG topol-
ogy. In the depicted CFG, the possible paths, without considering the loop
{B4, B5}, are {B0, B1, B3, B6} and {B0, B2, B3, B6}. ACFC sets the corre-
sponding bits of RS in each basic block. Finally, in the last basic block of the
path, which is B6, RS content is compared with constant of the path which is
47 (101111’b). It should be noted that B1 and B2 are multi-path basic blocks
that show up in the CFG when there is an if-else statement in the program.
ACFC sets the same bit of the RS in multi-path basic blocks (second bit in
Figure 4.1), because at runtime only one of the basic blocks is executed. The
path in the loop is {B4, B5} which correspond to 4th and 5th bits of the RS.
In the last basic block of the loop (B5), RS is compared with 31(11111’b) and
it is restored with the value of control-flow path constant before entering the
loop, which is 7 (111’b) in this example.

ACFC assumes only for symmetric CFG topologies. The resulting inefficiency
of this method for asymmetric topologies (typical for the majority of real-life
workloads) is explained with an example. Figure 4.1.b shows an asymmetric
CFG in which B1 may or may not be executed at runtime. For this reason,
ACFC can not assert B1 execution by setting one bit of RS in B1 and testing
RS content at the end of the path. Therefore, B1 is left without any checks.
For programs with if statements without an else part the resultant topology
does not have symmetric multi-path basic block as depicted in Figure 4.1.a.
To cope with this problem, the authors of ACFC add a dummy else statement
for making the CFG symmetric. It should be noted that, this solution increases
the overheads due to the extra code and branches imposed by the dummy else
CFG nodes. Moreover, ACFC instruments the source code of the program
based on the source-code-level knowledge. However the CFG of the program
is not final at this phase and it may change when the corresponding assembly
code is generated. For majority of the cases the final CFG topology of the code
is determined in the last phases of compilation.

Another shortcoming of ACFC is in loop constructs. At the end of each loop,
RS has to be restored with the constant value of the control-flow path before
entering the loop again. As a consequence a CFE from a basic block before
the loop to the restore statement at the end of the loop can not be detected. As
an example in Figure 4.1.a the faulty jump from B0 to the last statement of B5
(RS = 7) can not be detected using the ACFC test assertion.

4.2. SETTING UP A CHALLENGING BASELINE FOR COMPARISON 47

B3

RS1=0;

B4

RS2=4

B5 B6
RS2=5; RS2=6;

B1 B2

B0

RS2=0

RS2=1;

RS2=3

if (RS2 != 6) error

if (RS2 != 0) error

if (RS2 != 1) error if (RS2 != 2) error

if (RS2 != 3) error

if (RS2 != 4) error

if (RS2 != 5) error

RS2=2;

RS1=4;

if (RS1 != 0) errorif (RS1 != 0) error

if (RS1 != 4) errorif (RS1 != 4) error

B0

B2B1

B3

B4

B6B5

 =0;

 =0

=1;

if (!= 0) error

 =2; if (!= 0) errorif (!= 0) error

 =4

 =5; =6;

 =3

if (!= 6) error

if (!= 1) error if (!= 2) error

if (!= 3) error

if (!= 4) error

if (!= 5) error

 =4;

if (!= 4) errorif (!= 4) error

2RS

2RS

2RS

2RS

2RS

2RS

2RS

2RS

2RS

2RS

2RS 2RS

2RS 2RS

1RS

1RS

1RS

1RS

1RS1RS

Figure 4.2: Instruction-level CCA assertions

4.2.2 Predecessor/successor method with the highest reliability

CCA [19] is a predecessor/successor-asserting method which has the highest
fault coverage as a result of adding the highest number of assertions. It asserts
correct control-flow by checking the predecessor of each basic block. In order
to do so, this method uses a set and test assertion pairs. The set assertion ap-
plies the runtime signature (RS1) at the end of the predecessor block and the
test assertion checks RS1 against the expected value which is the signature of
the predecessor block. Moreover, it guards complete execution of each basic
block in the absence of faulty jumps to/from middle of the block. For this
purpose, a pair of set and test assertions are used which set and test another
runtime signature (RS2). Figure 4.2 depicts the same CFG instrumented with
CCA assertions. A pair of set RS2 (at the beginning of the basic block) and
test RS2 (in the end of the basic block), asserts complete basic block execution
without interruption due to faulty jumps to/from mid of the basic block. A pair
of set RS1 (in the end of the predecessor basic block) and test RS1 (at the be-
ginning of the current basic block) checks if the previous executed basic block
is the valid predecessor of the current block or not. In case inconsistencies are
detected the error recovery routine will be called. CCA inserts four assertions
per basic block which cause a significant overhead in terms of performance
and memory. Another shortcoming of CCA is its limitation in detecting faults
in basic block with multiple predecessors. Basic blocks with multiple prede-
cessors can not be guarded with the first pair of assertion (set/test RS1). In
the depicted CFG, B3 and B4 are not guarded with RS1 checking.

48 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

4.3 Fault model

Targeted errors of the proposed method are NonBranch-To-Branch and
Branch-Target-Change as explained in Section 2.3.2. In NonBranch-To-
Branch faults, a non-branch instruction is converted to a branch instruction.
As a consequence the basic block Section after the faulty jump is not executed
and the execution flow is diverged from its correct sequence. Branch-Target-
Change causes an erroneous jump from one basic block to a faulty destination,
whose corresponding edge to the jump does not exist in the program CFG
(illegal branch).

4.4 Selective Control Flow Check (SCFC) method

The Selective Control Flow Check method presented here is a hybrid
method which uses both path assertions and predecessor/successor assertions.
Compile-time CFG analysis information is used to add low-cost test asser-
tions to the last basic block of the identified control-flow paths, including the
paths resulted from conditional statements. Basic blocks that are not part of a
control-flow path (lonely-blocks) are instrumented by a standard predecessor-
test assertion.

Considering high number of assertions in predecessor/successor-asserting
methods on one hand and the problem of path-asserting methods with asym-
metric CFG topologies, there is a need for a SM technique with reasonable
number of assertions which is applicable to realistic CFG topologies. To
achieve the latter, the optimizations should be applied at the point where (in
terms of compiler passes) the final CFG topology is available. For this reason
our SCFC optimizes the back-end intermediate code which is the closest ver-
sion of the code to its executable binary. SCFC is implemented using the CoSy
framework; a modular framework for compiler development which enables
compiler optimizations at different levels of abstraction. In this Section, first
the development framework is explained followed by the SCFC description
and a motivational example of CFG which is instrumented with the proposed
SCFC assertions.

4.4. SELECTIVE CONTROL FLOW CHECK (SCFC) METHOD 49

4.4.1 Experimental framework for compile-time optimizations

IR
Front-

end

Standard

engines

Reg-alloc,

Code-gen
LIR

App

source

Target

assembly

Back-end:

SCFC engine

Figure 4.3: The CoSy framework
In order to implement and validate the above mentioned optimizations, the
CoSy framework [1] was selected. CoSy is a modular framework specially
developed for simplifying compiler design and optimization. Figure 4.3 is
a block diagram showing this framework. In CoSy, modules (so called en-
gines) are responsible to carry out different tasks of the compilation process,
e.g, register-allocation, scheduling, etc. Each module may carry out only one
task or a reduced set of tasks depending on the compiler-designer preferences.
Additional optimizations can also be implemented as a new engine and eas-
ily included in the compiler. Our SCFC optimization is also implemented
in such a module (engine). In the compiler generated by CoSy, similar to
other compilers, first the front-end generates an Intermediate Representation
(IR) of the program. After IR is processed by group of engines which work
at IR-level, the back-end of the compiler transforms the final IR description
to Lower-Intermediate-Representation (LIR). LIR is the closer version of IR
to the assembly code in which the final CFG topology is final. Also in LIR
more detail information that are not present in IR, such as register allocation,
is known. SCFC engine manipulates LIR which has the final CFG topology.
Moreover, since our SCFC engine is added after the scheduler engine, extra
assertions inserted in the begin/end of basic blocks will not be relocated.

4.4.2 Detailed description of the SCFC method

The SCFC analysis of program’s CFG identifies the paths (sequence of two
or more basic blocks which should be executed sequentially) and the lonely-
blocks1 and stores this information. SCFC processes the CFG of the applica-
tion program and determines all basic blocks in loops, basic blocks in different
control-flow paths and lonely blocks. SCFC then inserts two types of asser-
tions guided by the results of CFG analysis. Basic blocks residing in paths are
augmented with path-assertions and lonely blocks with predecessor/successor-
assertions. Figure 4.4 depicts the flowchart of the proposed algorithm for CFG

1basic blocks that can not be grouped in any path

50 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

CFG

Loop

Analysis

Set of in-loop

bB-sequences

Branch

Analysis

Set of in-branch

bB-sequences

Num. of

bBs >1
Pred/Secces

Assertions

Path

Assertions

YES NO

Figure 4.4: CFG processing and SCFC instrumentation

processing and instrumentation of basic blocks. The algorithm consists of
three steps; (1) loop analysis, (2) branch analysis and (3) adding assertions.
At the first step of CFG processing, basic blocks residing in each loop are ex-
tracted and saved in separate sequences and basic blocks which are not taking
part on any loop are all saved in another sequence. At the second step of CFG
processing, the sequences resulting from the first step are processed to extract
basic blocks which are in different paths of the control flow due to conditional
branches. At the third step, the resulting basic block sequences of the second
step of CFG processing are used to decide which type of assertions should be
added to each basic block. Path-assertion is applied for basic blocks in se-
quences with two or more basic blocks. Predecessor/successor-assertions are
used for all lonely-blocks.

In order to instrument basic blocks in a path using path assertions, corre-
sponding path-set-assertions are added in the beginning of all basic block in
the path and only one path-test-assertion is added at the end of the last basic
block of the control-flow path to check the correct flow of blocks in sequence.
Predecessor/successor-set-assertions are added to the predecessor basic block
of a lonely-block and the corresponding test assertions are added at the lonely-
blocks. The two categories of set/test SCFC assertions are explained below.

4.4. SELECTIVE CONTROL FLOW CHECK (SCFC) METHOD 51

B0

ori , 0, 1;

B1

ori RS1, 0, 2

sw RS1,mem

B2 B3

B4

B5

ori RS1, RS1, 4 ori RS1, RS1, 8

ori RS2, 0, 3

ori RS1, RS1, 16

lw RS1,mem

cmpneq RE, RS1, 6

cmpneq RE, RS2, 3

cmpneq RE, RS1, 25

B1

B3B2

B4

B0

B5

sw ,mem

ori RS1, 0, 1;

ori , 0, 2

ori , , 8lw ,mem;

ori , 0, 3

ori , , 16

cmpneq RE, , 25

ori , , 4

cmpneq RE, , 6

cmpneq RE, , 3

1RS 1RS

1RS

1RS 1RS 1RS

1RS 1RS

1RS

1RS 1RS

1RS 2RS

2RS

Figure 4.5: CFG with proposed hybrid optimization

1. Path-assertions: basic blocks residing in control-flow paths are instru-
mented with low-cost path-based assertions, meaning that each basic
block in the path has a set assertion while the test assertion is added
only to the very last basic block of the path. This set assertion is an
OR instruction with an immediate representing the basic block MASK
(ori RS1, RS1, MASK), which updates path-runtime-signature contents
(RS1). The test assertion is cmpneq instruction to compare the contents
of RS1 with a constant value that is the signature of the path (cmpneq
RE, RS1, CONST). RE is a restricted register that holds the results of
fault detection. If RS1 is not equal to the CONST, RE is written. The
fault recovery routine will be invoked if RE holds a non-zero value;

2. Predecessor/successor-assertions: lonely blocks are guarded with
predecessor-test, meaning that a predecessor-set assertion is added to
the predecessor of the lonely-block and a predecessor-test assertion is
added to the lonely-block. This set assertion is also an OR instruction,
but it updates the contents of the predecessor-runtime-signature (RS2) to
the signature of the predecessor basic block (oriRS2, 0,Sigpre). The test
assertion is an instruction comparing RS2 contents with the predecessor
signature (cmpneqRE ,RS2, Sigpre). If there is an inconsistency RE is
written with a non-zero value.

Path-assertions usage is limited to sequences with at least two basic blocks,
because if they are applied to lonely-blocks, two assertions are used in a single
basic block which has the same code-size overhead as predecessor/successor-

52 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

assertions. While predecessor/successor-assertions use one runtime signature
for all basic blocks of the routine, path-assertions occupy one bit of the run-
time signature per basic block until the end of the routine, therefore depending
on the number of basic blocks we may need more than one runtime signature.
Due to this fact, the usage of path assertions is limited to basic blocks that are
residing in a sequence with the size of at least two basic blocks.

Figure 4.5 shows a subgraph from the checksum benchmark [42] CFG instru-
mented with SCFC assertions. The results of the first step of CFG processing
in this subgraph are the basic block sequences:
{B1, B2}
{B0, B3, B4, B5}
Considering the same sub-graph (Figure 4.5) and the resulting sequences
shown above, the second step of CFG processing generates set of basic block
sequences in different control flow paths as follows:
{B1, B2}
{B0, B3, B5}
{B4}
In the above presented set of basic block sequences of CFG in Figure 4.5 B4
is a lonely-block and is instrumented with intra-block predecessor/successor-
assertions. The intra basic block predecessor/successor-assertions for B4 are a
set assertion (ori RS2, 0, 3) at the end of the predecessor block (B3) and a test
(cmpneq RE, RS2, 3) in the begin of B4. Basic blocks in sequences {B1, B2}
and {B0, B3, B5} are augmented with path-assertions. Path-asserting sets are
added in each basic block of these two paths and path-asserting test is added
only in the last basic blocks of the two paths; B2 and B5. {B0, B3, B5} is
the main control-flow path and {B1, B2} is a loop path inside the main path.
Execution flow at B1 can continue to B3 in the main path or can enter into the
loop-path. Therefore before the execution flow reaches to this point the con-
tent of path-asserting runtime signature (RS1) should be stored and retrieved
in the next basic block after the loop path. The sw RS1,mem instruction in B0
stores RS1 content to memory and lw RS1,mem retrieve RS1 contents after the
loop. RS store and retrieve is needed for while-loop and nested-if-statement
structures. This is due to the fact that these statements can cause paths that
may or may not be accessed during the execution flow.

Advantages: (1) Due to the fact that SCFC instruments the intermediate code
at the point the back-end is ready to generate the program binary, any interfer-
ence with other compiler optimizations is avoided and hence is more precise
than ACFC and CCA which instrument the program high-level source-code.
(2) Compared to CCA, SCFC reduces the total number of assertions in each

4.5. THE IMPACT OF LOOP UNROLLING ON SCFC AND CCA 53

program based on the program-specific CFG. For instance, for the depicted
CFG in Figure 4.5, CCA adds 17 extra statements for assertions while SCFC
uses only 9 extra instructions. (3) Compared to the ACFC method, SCFC has
the advantage of eliminating the need for restoring RS at the end of the loops.
This fact causes higher fault coverage in our method and eliminates some of
the extra overheads. (4) Our method can instrument a wide range of arbitrary
programs with symmetric or asymmetric CFG topologies while ACFC is ef-
ficient only in programs with symmetric topologies. For example in the CFG
presented in Figure 4.5, ACFC adds 8 extra statements (almost equal to SCFC)
for set, test and storing of RS, while it is still not able to check the correct exe-
cution of B4. This is due to the fact that SCFC adds test also to the conditional
paths (as opposed to ACFC).

Compared to ACS, SCFC has two differences: 1) it defines finer grain paths;
and 2) it guards lonely-blocks with predecessor-test assertions. SCFC defines
the paths as conditional branches and the for-loop bodies while ACS defines
regions that are protected with path-assertions. As a result, it provides higher
fault coverage. The high level of fault coverage makes SCFC more suitable for
safety-critical systems.

In the current work, the result of the comparison in test assertion is written
into a restricted register which only the test assertion can access. The fault-
injection/detection framework used in this work checks the value of the re-
stricted register for diagnosing fault occurrence. In real-world implementation
of our SCFC technique, in case of a fault, a dedicated fault-recovery routine
can be invoked. This fault recovery routine can be a conventional fault recov-
ery method using checkpoints.

4.5 The impact of loop unrolling on SCFC and CCA

Loop unrolling may change the CFG topology, the basic blocks overall num-
ber and their corresponding sizes. The effect of unrolling loops on the CFG
depends on the type of the loop that is unrolled: while loop or a for loop; a
nested loop or there is a conditional statement in the loop-body that can ter-
minate the loop earlier. Figure 4.6 shows two different CFGs before and after
unroll. Unrolling simple for-loops, without conditional-statements or other
loop-constructs in the body, does not change the CFG topology as depicted in
Figure 4.6(a). In this case, the unrolled CFG has the same basic blocks num-
bers and only the number of instructions in the unrolled basic block (B2 in the
Figure) is increased. On the other hand, the CFG of for-loops with conditional-

54 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

B1

B2

B0

B3

B1

B0

B3
B2

B1

B0

B5B4

B2

B3

B1

B0

B8B4

B2

B3

B7

B5

B6

L
o

o
p

 u
n

ro
ll

(a) simple

for-loop

(b) for-loop with

if statement

B1

B2

B0

B3

B1

B2

B0

B4

B3

(c) simple

while-loop

B1

B0

B5B4

B2

B3

(d) while-loop

with if statement

B1

B0

B8

B4

B2

B3

B7

B5

B6

Figure 4.6: Impact of for-loop unrolling on the CFG

statements (or a loop-constructs) in the body, changes after unrolling. Figure
4.6(b) shows how the CFG of such a loop changes after unrolling with in-
creased number of basic blocks. Unrolling while-loops requires checking the
loop-condition before loop body repetition and break in case the condition
does not hold. The break statements cause extra branches in the unrolled CFG
(as shown with bold arrows in Figure 4.6). Figure 4.6(c) shows that, opposed
to for-loops, unrolling even a simple while-loop changes the CFG and the total
basic blocks number.

Change of CFG after loop-unrolling affects CFE detection fault coverage. As
discussed above CCA is weak in fault detection of basic blocks with multiple
predecessors. Therefore, if the resultant CFG after unroll has bigger num-
ber of such basic blocks, CCA fault coverage may decrease. In Figure 4.6(b)
and (d), it is shown that unrolling loops with a conditional statement in the
body, adds the number of basic blocks with multiple predecessors in the re-
sultant CFG. This is the case also in nested loops, when the outer-most loop
is unrolled. In these cases CCA fault coverage decreases. However, since
SCFC analyzes the newly formed CFG after unrolling and groups most of the

4.5. THE IMPACT OF LOOP UNROLLING ON SCFC AND CCA 55

multiple-predecessor basic blocks to the new set of control-flow paths, it is ex-
pected that SCFC fault coverage will not decrease after loop unrolling in CFGs
such as the ones given in 4.6(b) and 4.6(d).

SCFC has a higher fault-coverage when CFG has a bigger control-flow path
in the loops than smaller ones. Since SCFC resets the path-runtime-signature
in the first block of the control-flow path (RS1 in Figure 4.5), having a bigger
loop-control-flow path with lower number of loop-iterations helps to detect
bigger number of erroneous branches to the loop-control-flow path. As an
example, the control-flow path of the loop in Figure 4.6(b), before unrolling
is {B1, B2, B4}. After unrolling this control-flow path expands to {B1, B2,
B4, B5, B7}. An erroneous branch to the end of B4 (depicted by an arrow in
Figure 4.6(b)), is not detectable in the loop-control-flow path before unrolling
({B1, B2, B4}). This is due to the fact that the path-runtime-signature (RS1),
is reset at the beginning of B1 and the error is masked. However, SCFC detects
this erroneous branch in the loop-control-flow path after unrolling ({B1, B2,
B4, B5, B7}).
Contrary to for-loops, unrolling while-loops does not result in bigger loop-
control-flow path. SCFC fault coverage in not increased after unrolling while-
loops. In Figure 4.6(d), the loop-control-flow path before unrolling has three
basic blocks. After unrolling, the resultant loop-control-flow paths are {B1,
B2, B4} and {B5, B7}. An erroneous branch similar to the one discussed
above, which targets B4, is not detected by SCFC even after unrolling the
while-loop. In Figure 4.6(d), an erroneous branch to the begin of B2 (depicted
with an arrow) in the second iteration of the loop, is equivalent to an error in
B5 at the first iteration of unrolled-loop. The error before unrolling in B2 is
detected by SCFC, But, SCFC can not detect the erroneous branch to the begin
of B5 after the loop is unrolled.

In our example the loop is unrolled once. Considering fault coverage and per-
formance the number of times loop gets unrolled is not limited and the im-
pact depends on the number of unrolled iterations. On the other hand, loop
unrolling increases the code size and in small embedded devices memory ca-
pacity can be very limited. The number of times the loop should be unrolled
depends on the specific application and the system under consideration, for tiny
embedded systems with limited memory capacities the number of unrolled it-
erations is bounded by the available memory sizes. Therefore, in practice the
loop unrolling technique should be a trade off between fault-coverage and per-
formance against the introduced memory overhead.

56 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

4.6 Experimental results and analysis

In this Section, the proposed optimizations in SCFC, ACFC and CCA are eval-
uated in terms of performance, code-size and power-consumption overheads in
addition to the fault coverage of the method for a set of injected faults. Each of
these metrics is compared to a similar metric obtained for the ACFC and CCA
methods, as well as our baseline architecture (i.e. without optimizations).

Moreover, in order to investigate the impact of loop-unrolling on signature
monitoring schemes, we compare CCA and SCFC fault-coverages and perfor-
mances after loop-unrolling is applied. For this reason, we have executed four
sets of simulations for four versions of the workloads binaries. The different
versions of binaries are generated with four versions of optimized compilers:
1) with SCFC but without loop unrolling; 2) with SCFC and with loop un-
rolling; 3) with CCA but without loop unrolling and 4) with CCA and loop un-
rolling. For the ACFC we expect the loop unrolling to have more or less similar
impact as for CCA and this is why we did not include it in our study below. The
generated workload binaries are evaluated using Synopsys Processor Designer
cycle-accurate simulator [2]. Each set of simulation run, consists of 1,000
runs with one error injected in each run. The error generation is discussed
in detail in the rest of this Section. The obtained fault-coverage results from
running the binaries without loop-unrolling, are used as the baseline to investi-
gate the improvement or degradation of CCA and SCFC fault-coverages after
loop-unrolling. ACFC, the path-based-asserting CFE detection method, adds
low number of assertions and has low fault-coverage. This method does not
analyze CFG control-flow paths, the same way as the SCFC does. Therefore
the CFG topology refinement after loop-unrolling does not solve the problem
of low fault-coverage. Loop unrolling favors both, SCFC and CCA methods
in terms of performance, as the level of instruction-level parallelism increases.
We investigate how loop unrolling influences SCFC and CCA fault-coverages.

In what follows, the workloads, our experimental setup and the simulation
results of our evaluations are presented.

4.6.1 Workloads used in our study

Without loss of generality, our experiments are performed using ImpBench
[42], a benchmark suite targeting low-power application source codes in ad-
dition to a set of control-flow driven synthetic test programs. ImpBench is
a benchmark suite with applications typical for biomedical implants. The

4.6. EXPERIMENTAL RESULTS AND ANALYSIS 57

init

incr

bdy

test

Loop Exit
Blocks

Loop Exit
Blocks

init

test

incr

bdy

Loop Exit
Blocks

Loop Exit
Blocks

Cnd

if else

else
if--

init

(a) Structure of “for-loop” and
“while-do” statements

(b) Structure of “do-while”
statements

(c) Structure of “if-then-
else” statements

Figure 4.7: Control statements structures

control-flow driven test kernels are constructed in a way to emphasize the high-
est overheads which the proposed optimization may cause.

Each program in the set of control-flow driven test kernels shows a special case
of a CFG topology. The control-flow driven test kernels are designed to be ex-
tremely control-flow dominated and to cover a wide set of CFG topologies
which are representative of all possible cases which a real CFG may contain.
In order to build such test kernels, first we have identified programming state-
ments which cause divergence in the program control flow and cause different
topologies in the CFG (so called control statements). We use these statements
as building blocks of our synthetic test kernels.

The control statements used are do-while and while-do loops, for-loops and
if-then-else. To construct CFGs with different topologies, we have to look
into different possible combinations of the above mentioned control state-
ments. First, an overview of the CFG structure of each control-flow statement
is given. Figure 4.7 depicts CFG structure of these statements as discussed
in [4]. As depicted in Figure 4.7, for-loops and while-do loops have the same
CFG-structure. A for-loop is a variant of the while-do loops which has an ini-
tialization statement in the beginning and an increment statement at the end.
Due to the similarity of for-loops and while-do CFG structures, to construct the
test kernels, we take into account only for-loops. Therefore, our test kernels
contain different mixes of for-loop, do-while and if-then-else statements.

The maximum nesting level in our test kernels is three that is considered as rep-
resentative. This level represents enough complexity to evaluate our method

58 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

While (cond1)

{…

 while (cond2)

 {...

while (cond3)

{…}

 }

}

B1

B2

B3 B6

B4 B5

B0

B7

(a) 3nlwhile

for (i=0;i<n;i++)

{…

 for (j=0;j<m;j++)

 {...

for (k=0;k<p;k++)

{…}

 }

}

B2

B3

B4

B1

B5

(b) 3nlfor

B0

if(cond1)

{…

 if(cond2) {...}

 else {...}

}

else

{…

 if(cond3) {...}

 else {...}

}

B0

B1 B2

B3 B4

(c) 2nlif

B5 B6

B7 B8

B9

Figure 4.8: Control flow oriented test programs

while it is still simple enough to run 1,000 instances on the simulator (pre-
sented next). Taking into consideration the three mentioned control statements
of nesting-level of three, a total of 27 combinations (CFG topologies) are pos-
sible. Out of these topologies, we build test programs for the three topologies
that represents the worst-case scenarios (in terms of number of extra required
check assertions), depicted in Figure 4.8. Our test programs are named as 3nl-
for, 3nlwhile and 2nlif. 3nlfor is three nested level of for loops which the body
of the loops has a simple addition or subtraction statement. 3nlwhile is three
nested do-while loops with simple body statements. 2nlif is composed of two
nested level if-then-else statements which each if statement has a correspond-
ing else part. As can be seen the number of non-control flow instructions is
kept at minimum to emphasize the overhead of the studied techniques.

4.6.2 Experimental setup

In this Section, we briefly describe the target architecture and our implemented
fault-injection method which are used for the evaluations.

Target architecture: Our target architecture is a basic, 32-bit, five-stage,
in-order RISC processor. This processor is the template processor avail-
able in Synopsys Processor Designer simulator. It has no advanced micro-
architectural features but has similar load/store-based ISA as any ARM pro-

4.6. EXPERIMENTAL RESULTS AND ANALYSIS 59

cessor. The only significant difference is the higher number of registers of
ARM processors. Due to higher number of registers in such processors the
added instructions for detection and recovery will cause lower register pres-
sure. Therefore, the overhead of our instrumentations in a standard processor
(such as ARMv7m) is expected to be lower than what is presented in our results
using the Synopsys template processor. Given the fact that our optimization
scheme is hardware-agnostic, it is applicable to any target processor.

Fault injection: In our experiments, the fault coverage is measured by, first,
injecting a fault using a fault injector instruction and, afterwards, investigat-
ing whether the fault has been detected or not. Since our target errors are
CFEs, two types of faults which may cause a control-flow error are investi-
gated; NonBranch-To-Branch and Branch-Target-Change faults. In order to
evaluate SCFC fault coverage, we have used an fault-injection mechanism that
injects these two CFE types. We have emulated these two fault types at run-
time using the special fault-injector instruction and a Linear-Feedback-Shift-
Register (LFSR) which are implemented in the Synopsys Processor Designer
simulator. The LFSR is used to generate a random value which is used as the
operand of the targeted instruction.

The fault-injector instruction is designed and included in the processor instruc-
tion set architecture to inject an error at a random execution cycle. It should be
noted that the faults are injected in different executable codes. Even if the fault
was injected at the same execution cycle for the executable binaries under the
test, different instructions would be hit in the corresponding executable bina-
ries because of differences in the codes. This means that the fault can not hit
the same instruction in the executable binaries under the test. Therefore, we
have decided to inject the fault in a random execution cycle. The fault-injector
instruction is added in the beginning of the program-under-test along with a
random value (generated by RANDOM linux command) as its operand. This
random value determines the trigger time of fault injection. It determines the
number of execution cycles that should pass before the occurrence of the error.
A dedicated flag for error injection is set after the given random number of
cycles. When this flag is set, the first branch instruction in the execution path
will be corrupted and a CFE is emulated. The random value that is passed as
the fault-injector instruction operand is also used as the LFSR seed. The char-
acteristic polynomial of the added LFSR is : x32 + x31 + x29 + x + 1 which is
used to generate pseudo random numbers [15]. The result of the LFSR is used
to randomly flip bits and generate NonBranch-To-Branch and Branch-Target-
Change fault types.

60 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

For generating NonBranch-To-Branch, the first fetched non-branch instruction
after the trigger time is converted to a branch instruction with a random value
as its operand. This is done by modifying the corresponding opcode bits of
the register between Fetch and Decode pipeline stages. The random value
of the operand is the LFSR register value at that moment. A Branch-Target-
Change error is introduced, for the first fetched branch-instruction after the
trigger time, by changing the operand bits of the register between Fetch and
Decode to a random value. The random value for branch operand is again
provided by the LFSR. Typically a SEU will probably change a single bit of
the instruction. We know that we over do bit flipping in this fault injection
setup and introduce much more CFEs than reality. In the next Chapter we
improve the fault injection mechanism used in our experiments by limiting the
number of flipped bits.

In order to measure the fault coverage, one of the registers in the register file is
reserved so that only test assertions of our optimizations can write to it.e pur-
pose of fault coverage measurement. In real systems, in case of fault detection
an appropriate fault recovery is triggered and there is no need of reserving a
register. It should be noted that reserving this register is only for th In case
a control-flow error is detected by test assertions, this register is written. We
check the contents of this register in the traces generated by the simulator to
determine if a control-flow error has been detected. For each fault type, we
run 1,000 simulations for each benchmark in order to get a clear estimation of
the fault coverage provided by our optimizations. Note that, for determining
the fault coverage, we only run the benchmarks using the smallest data sets, as
1) it is expected that the contribution of the input size with respect to the fault
coverage is negligible and 2) evaluating larger inputs significantly increases
testing time, which is already quite significant.

4.6.3 Experimental results

The performance, static memory (code-size) and power overheads of the SCFC
technique are measured by running the selected benchmarks and the control-
flow driven synthetic kernels. The performance overhead is measured by run-
ning the benchmark on the simulator and getting the number of cycles re-
quired for program completion. In order to report the worst-case overheads
of our method and compare them against ACFC and CCA results, we use our
control-flow driven test kernels. As explained in Section 4.6.1, each test ker-
nel is a small program in which the body of each control statement contains
only one simple operation (addition/subtraction). With this arrangement, the

4.6. EXPERIMENTAL RESULTS AND ANALYSIS 61

calculated overheads for the test kernels are approximating the worst-case sce-
nario. Normally, in real applications code there are more than one operation in
each control-statement body. Therefore, the overhead of adding the extra test
and set assertions will be lower than the overhead calculated for the control-
flow driven test kernels. Performance and static memory overheads of the test
kernels and benchmarks are plotted in Figure 4.9 and Figure 4.10, respectively.

90 115 81

22

0.15

4.7

1

33
54 53

8

0.07

1.1

68
50 35

13
4.9 2.4

0.46

0.01

0.1

1

10

100

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)
CCA
SCFC
ACFC

Figure 4.9: Performance overheads

112

132 136

52
38

58

31

54
64

75

25 19 30 23

70
61 48

23 17 16

0

20

40

60

80

100

120

140

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)

CCA
SCFC
ACFC

Figure 4.10: Static memory overheads

For power consumption estimation we take the same approach as in [32] which
uses the model for calculating power consumption of programs by Tiwari et al.
in [44]. In [44] for each instruction category a current-value range is specified.
The current value is the measured current drawn from CPU when the corre-
sponding instruction is executed in a loop with a high number of iterations.
Instructions with different operands used in the measurement result in having
the current range for the instruction. The power-value of each instruction cat-

62 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

Instruction Current range Power range Power range
category 0.5-micron (mA) 0.5-micron (mW) 90nm (mW)

Arithmetic and logic 172-179 567.6-590.7 272.8-283.9
Load 185-192 610.5-633.6 293.5-304.6
Store 169-175 557.7-577.5 268.1-277.6

Table 4.1: Power model of the ISA

egory is calculated by multiplying supply-voltage with the current estimates
(P = I ∗V). The numbers reported in [44] are for 0.5-micron technology with
3.3 V supply-voltage. Table 4.1 shows the estimated numbers for 0.5-micron
technology and the scaled down versions for 90-nm technology (with 1.2 V
supply-voltage) which is the used technology by our embedded processor. The
scale-down factor for power numbers from 0.5-micron to 90nm is calculated
based on the dynamic power consumption and transistor capacitance formula
in CMOS technology;

Pdyn = fCV 2

C = (ε)S/d

In the first equation, C is the overall switching capacitance, V is the corre-
sponding supply voltage and f is the operating frequency of the device. In the
second formula, ε is the dielectric constant of the oxide material, S is the oxide
surface (length multiplied by width) and d is the thickness of the oxide. With
the assumption that the oxide material in transistors is the same (SiO2) in the
two technologies (ε is constant) and similar gate widths the power scale-down
factor is simplified as:

α = (V 2)(
L0.5mic

d0.5mic
)(
d90nm
L90nm

)

With the factors in 0.5micron technology as (V=3.3 V, L=0.5micron, d= 8nm)
and in 90nm technology as (V=1.2 V, L=90nm, d=3nm) the scale-down factor
is (2.08), which is used to roughly estimate the numbers in the fourth column
of Table 4.1 from the numbers of the third column. From the total number
of instructions of each category in the program multiplied by the power-value
for that instruction category (in 90nm technology) the total power consumed
during program execution can be estimated. The power consumption overhead
of the three test kernels and benchmarks are plotted in Figure4.11. We are
aware that the estimated power numbers are quite rough, but since we evaluate

4.6. EXPERIMENTAL RESULTS AND ANALYSIS 63

the differences (the trend between the three methods), we expect that the errors
in the estimated numbers cancel each other.

7.3
11.6

1.7

37.4

0.2

11.9

2.4 2.7
1

13.9

0.11

6.4

1.5

5.6
4.9

0.7

14.9
6 7

1.1

0.1

1

10

3nlfor 3nlwhile 2nlif CRC CSUM RC6 Fin

(%)
CCA
SCFC
ACFC

Figure 4.11: Power overheads

With SCFC, overheads are decreased significantly as compared to CCA. When
compared to ACFC, our method, has higher performance and memory over-
heads in 3nlwhile and 2nlif synthetic kernels, however in 3nlfor kernel ACFC
shows higher overheads. The reason behind this fact is that SCFC inserts store
and load instructions to save and restore RS when the control-flow enters part
of CFG which is not in the main path of the execution. This happens only in
nested-while-loops and nested-if-statements. As depicted in Figure 4.8.b the
control-flow does not diverge from the main path in 3nlfor kernel, therefore
Load/Store instructions are not required for this test kernel. Since ACFC also
adds a reset statement to restore the RS value at the end of the loops (in 3nlfor
and 3nlwhile), the overheads of SCFC is lower than ACFC in 3nlfor. However
ACFC does not add any reset statement for nested-if-statements, which is the
reason it has considerable lower overhead than SCFC.

It is important to note that we have designed the 2nlif kernel to have sym-
metric CFG topology to facilitate easier ACFC implementation. However, in
real workloads this is not always true and ACFC will add dummy elses for
making the CFG symmetric. The result of adding dummy elses is extra code-
size, power and performance overheads, with higher effect on performance and
power overheads. Since dummy elses cause extra branches, they have a high
impact on performance and power consumption overheads. Moreover, know-
ing the fact that a high percentage of program’s time is spent inside loops, in
real workloads that have a mix topology the basic control-flow constructs (if-
statement, for-loop and do-while loop), SCFC causes overheads comparable
to ACFC and in some cases even lower. This fact is proved with the results
obtained for the workloads of ImpBench. For all the benchmarks except Fin (a
benchmark for compression), SCFC has lower performance and power over-
heads than ACFC, since no extra else statements for symmetrizing CFG as in

64 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

55

69

78
75

97

58
65

60
67

42

72

39

51

60
66

53 56 54.5

37
41

32

42
47

38

26

37 37.5

0

10

20

30

40

50

60

70

80

90

100

NoBrChng /CRC NoBrChng /CSUM NoBrChng /RC6 NoBrChng /Fin BrTrgChng /CRC BrTrgChng /CSUM BrTrgChng /RC6 BrTrgChng /Fin median

(%)

CCA
SCFC
ACFC

Figure 4.12: Fault coverage comparison between ACFC, CCA and SCFC

ACFC are needed.

Running 1,000 simulations for the two fault types, in the cases of ACFC, CCA
and SCFC produces the fault coverage results as plotted in the chart in Fig-
ure 4.12. In the plot each group of bars shows the results of injecting one of
the fault types for a benchmark. As depicted in this plot, SCFC has a higher
fault coverage for fault type Branch-Target-Change compared to NonBranch-
To-Branch fault type. This is due to the fact that NonBranch-To-Branch faults,
changes a non-branch instruction to a branch instruction with a random desti-
nation. Thus, many of the faults from this type may happen in the beginning
of a basic block with a faulty branch destination to the end of the same basic
block. This leads to skipping some of the instructions and do not cause erro-
neous control-flow in the rest of the program. Bars showing the fault coverage
of the two fault types for the Checksum benchmark show higher coverage for
SCFC as compared to CCA. This is due to the fact that Checksum (CSUM)
contains two loops and a significant portion of the execution time is spent in
these loops. Therefore, a high number of faults are injected in the basic blocks
in the loops. The loops contain basic blocks with multiple predecessors, which
does not have the predecessor-test from CCA. Thus, the number of faults which
cause as erroneous jump to these basic blocks will be undetected by CCA.

The impact of loop unrolling on SCFC and CCA fault-coverage is illustrated in
the diagram of Figure 4.13. This diagram shows fault-coverage improvement
or loss due to loop unrolling for the two error types under study (Branch-
Target-Change and NonBranch-To-Branch). On average, fault-coverage of
SCFC is improved by 9.75%, while CCA fault coverage is decreased by
29.87%. The main reason of fault-coverage improvement in SCFC is due to
CFG analysis prior to instrumentation. Loop unrolling restructures the CFG
topology of the workloads. SCFC takes this restructuring into account, forms
new control-flow paths and adds the necessary number of assertions. However
CCA, can not adapt to the new topology and instruments the code with the

4.6. EXPERIMENTAL RESULTS AND ANALYSIS 65

-80

-60

-40

-20

0

20

40

60

FT1 /CRC FT1 /CSUM FT1 /RC6 FT1 /Fin FT2 /CRC FT2 /CSUM FT2 /RC6 FT2 /Fin

R
e

la
ti

ve
 f

au
lt

-c
o

ve
ra

ge
 c

h
an

ge
 a

ft
e

r
u

n
ro

ll

CCA

SCFC

Avg. CCA

Avg. SCFC

Figure 4.13: Loop-unrolling impact on fault coverage

131574

73724

260945

356793

135036

73511

259476

356169

0

50000

100000

150000

200000

250000

300000

350000

400000

CRC CSUM RC6 Fin

Ex
e

c.
 c

yc
le

s
af

te
r

u
n

ro
ll CCA

SCFC

167998

79330

285392

361410

153914

79112

282649

359364

0

50000

100000

150000

200000

250000

300000

350000

400000

CRC CSUM RC6 Fin

Ex
ec

. c
yc

le
s

b
ef

o
re

 u
n

ro
ll

CCA
SCFC

Figure 4.14: Execution cycles in loop-unrolled workloads

same number of assertions before unrolling. The peculiar case where SCFC
fault-coverage after unrolling has degraded is for CSUM workload. This work-
load has two while-loops, that after unrolling have smaller control-flow paths.
As discussed in Section 4.5, this condition is not favorable for SCFC and de-
grades its fault coverage.

The plot in Figure 4.14 shows the total execution-cycles for SCFC and
CCA before and after loop-unrolling. As the plot of execution-cycles after
loop-unroll shows, in three example workloads SCFC has lower number of
execution-cycles than CCA. The only case which SCFC causes higher number
of execution-cycles than CCA is for CRC. This is due to the fact that a high
percentage of basic blocks of this workload have multiple-predecessors. CCA
does not instrument these blocks with inter-block set/test assertions, while
SCFC does not leave any basic block without being guarded. As a conse-
quence SCFC causes higher execution-cycles, but also higher fault coverage
after loop-unrolling, as illustrated in Figure 4.15. High fault-coverage level of
SCFC, with loop unrolling (for instruction-level parallelism), makes SCFC a
better method for CFE detection than CCA in safety-critical systems with high
performance requirements.

66 CHAPTER 4. LOW OVERHEAD CONTROL FLOW FAULT DETECTION

0

10

20

30

40

50

60

70

80

CRC CSUM RC6 Fin

FC
 p

er
ce

n
t

 a
ft

e
r

 u
n

ro
ll

CCA
SCFC

0

10

20

30

40

50

60

70

80

CRC CSUM RC6 Fin

FC
 p

er
ce

n
t

 b
ef

o
re

 u
n

ro
ll

 CCA
SCFC

Figure 4.15: Fault coverage in loop-unrolled workloads

4.7 Conclusions

In this Chapter we have presented a novel technique for customizable control-
flow fault detection. Our technique (SCFC) is a workload-aware hybrid com-
bination of the two main categories of SM techniques; path-asserting and
predecessor/successor-asserting methods. SCFC instruments the code based
on the information driven from the CFG. SCFC has been validated on a simple
RISC processor for a commonly used biomedical benchmark suite and three
control-flow dominated synthetic workloads. It is important to note that the
reported results for test programs are worst-case scenarios and, for real appli-
cations with larger programs, the overheads will be considerably lower. The
results of our evaluation for the programs in ImpBench showed significant
overhead reduction compared to CCA. Comparing to ACFC, the method with
the lowest overheads, our approach increases fault coverage by 17% with only
2.75% increase in code-size overhead. Meanwhile performance and power-
consumption overheads are reduced by 2.7% and 1.6% respectively.

We also investigated, the impact of loop unrolling on the new control-flow
error detection method, SCFC. The results are compared to CCA which is a
traditional detection scheme with the highest fault-coverage. Comparing re-
sults showed that SCFC, thanks to its control-flow graph analysis, can benefit
from traditional compiler optimizations such as loop unrolling, both in terms of
performance and fault coverage. Previously proposed reliability optimization
techniques with similar fault coverage do not have such flexibility. The average
fault coverage improvement of SCFC with loop-unrolling compared to a ver-
sion without loop-unrolling by 9.75%, shows that SCFC is a suitable control-
flow error detection method for safety-critical systems with high-performance
requirements. Moreover, it shows that this technique can be applied in modern

4.7. CONCLUSIONS 67

processors that can exploit instruction-level parallelism, hence providing high
fault-coverage and performance at the same time.

The content of this Chapter is based on the following papers:

Ghazaleh Nazarian, Robert M. Seepers, Christos Strydis, Georgi N. Gaydad-
jiev. Compiler-aided methodology for low overhead on-line testing. Pro-
ceedings of the International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIII), pp. 219-226, Agios
Konstantinos, Greece, July 2013

Ghazaleh Nazarian, Luigi Carro, Georgi N. Gaydadjiev. Towards Code
Safety with High Performance. Proceedings of the International Conference
on Architecture of Computing Systems (ARCS), pp. 209-220, Lubeck, Ger-
many, February 2014

5
Bit-flip aware control-flow error

detection

Recent increase of transient fault rates has made processor reliability a major
concern in many application domains. Moreover, performance improvements
are required for many of today’s embedded systems. At the same time software
implemented fault detection remains the only option for off-the-shelf proces-
sors. Software methods, however, introduce significant performance overheads
due to the additional instructions required for the detection. A valid observa-
tion is that often code segments not susceptible to faults are unnecessary pro-
tected. In this Chapter we propose a technique for systematic analysis of the
bit-flip effects on the program control-flow in order to identify only those loca-
tions susceptible to control-flow errors and hence minimize the number of fault
detection assertions. We instrument the code with minimal overhead, while
maintaining high fault coverage level. Our experiments show that using the
result of the proposed bit-flip analysis and limiting the code instrumentation to
only the susceptible locations releases 28.9% (on average) of the memory that
can now be used for other types of assertions while the level of fault coverage
remains the same as full instrumentation.

5.1 Introduction

All CFE detection schemes use signature-updates and signature-checks even in
basic-blocks that will be never susceptible to faulty transitions. A susceptible
basic block is a basic block that can be the faulty destination of an erroneous
branch instruction. A non-susceptible basic block is a basic block that can
never be a destination of any potential erroneous branch in a given applica-
tion binary code. The set of susceptible and non-susceptible basic blocks in

69

70 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

a given piece of code can be determined based on the memory layout and the
memory addresses occupied by all basic blocks. Assertions in non-susceptible
blocks will unnecessarily increase performance overhead with no impact on
fault-coverage. The goal of this work is to avoid assertions in non-susceptible
basic-blocks. In order to omit the assertions in non-susceptible basic blocks,
the signature monitoring that is used to instrument the code should belong
to the local-signature-update category, introduced in Chapter 3. The reason
behind this fact is that the other two types of signature monitoring methods,
path-asserting and incremental-signature-update as explained in Chapter 3, add
set assertions in all basic blocks. Therefore, omitting set assertions in non-
susceptible basic blocks would corrupt the signature.

In this Chapter, first we show for a set of benchmarks that high percentage of
faults can be potentially detected by the OS. We also explain the reasoning of
the fact that a high percentage of faults are not detectable using CFE asser-
tions. Afterwards, we explain the proposed systematic approach to analyze the
impact of single bit-flips on the control-flow misbehavior of a given program
binary and identify all susceptible basic-blocks which constitute the potential
destinations of faulty transitions. As explained above, in order to safely omit
the assertions in non-susceptible blocks the assertions should be of type local-
signature-update. Since, previously proposed CFE detection methods in local-
signature-update category have very high performance overheads, we also
propose a novel signature monitoring scheme for CFE detection with local-
signature update and low overhead. Our Flexible Control Flow Check (FCFC)
has lower performance overhead as compared to previously proposed meth-
ods in local-signature-update category while the fault coverage is preserved.
Based on the result of our bit-flip analysis the assertions in non-susceptible ba-
sic blocks are replaced with NOP instruction. Finally, we combine the straight
forward implementation of FCFC and our bit-flip analysis in a technique called
partial-FCFC and study its benefits.

As authors in [48] investigate, CEDA outperforms CFCSS and YACCA ef-
ficiency. Since in this work we are aiming for methods which can provide
both high performance and high fault-coverage, we choose CEDA reported in
the literature as the most efficient method (considering both performance and
fault-coverage) as our reference point for comparison.

The main contributions of this Chapter are:

• Careful study of the effects of single bit-flip faults. The result of our
analysis shows that most of the single bit-flip faults cause an error out-
side the program section boundary. These errors cannot be identified by

5.2. CFES DETECTABILITY OBSERVATIONS 71

the code assertions. However, in systems with an operating system, they
can be potentially captured by the operating system;

• A bit-flip analysis framework to allow systematic elimination of all un-
necessary assertions for a given program binary;

• A novel, software method (FCFC) for control-flow errors detection that
outperforms most efficient state-of-the-art CFE detection methods con-
sidering both fault coverage and performance overhead;

• New partial-FCFC approach, combining the above two techniques, able
to release 28.9% memory space, while maintaining control-flow error
coverage. The released memory can be used for other types of assertions
e.g., for data-error detecting;

• A realistic fault-injection scheme which takes into account the execution
frequency of instructions.

The reminder of the Chapter is organized as follows: First, the result of our
analysis on the impact of single bit-flip fault injection and the targeted fault
model are given. Next, the detailed explanation of bit-flip analysis and our
FCFC are presented in Section 5.3. Section 5.4 demonstrates the experimental
setup, our results and the results analysis. Finally we present the conclusions.

5.2 CFEs detectability observations

A significant percentage of transient faults causing control-flow errors can be
detected by the operating systems. Table 5.1 shows the result of control-flow
error injection due to single bit-flips into a representative subset of workloads
from Mibench [17]. We have selected this subset of Mibench benchmarks
based on their CFG topologies in order to represent the entire suite. A large
number of injected control-flow errors cause illegal instructions and a signif-
icant number of errors transfer the program execution outside the program
boundary causing segmentation faults. Since CFE detection methods instru-
ment only the program within its own memory boundaries, such errors are not
detectable with any existing software CFE detection technique (such as sig-
nature monitoring). These category of faults can be detected by the operating
system. To detect the remaining undetected faults leading to incorrect behav-
ior, CFE detection methods are used. Current CFE detection methods add
assertions to all basic blocks of the program. However, many of the program

72 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

Workloads OS-detected errors (%)
Seg-faults Illegal instructions Total

basicmath 78 10 88
qsort 77 13 90

pbmsrch 71 15 86
patricia 67 15 82

FFT 73 11 84
sha 79 8 87

rijndael 85 4 89
CRC 76 11 87

Table 5.1: CFEs detectable by operating system

basic-blocks are not realistic destinations of the erroneous branches caused by
single bit-flips in the destination of control instructions. These basic-blocks are
non-susceptible blocks and CFE detecting assertions are not needed in these
blocks. Contrary to the non-susceptible basic blocks, the blocks that are the
potential destination of erroneous branches should be instrumented in order to
detect CFEs that result in execution of these basic blocks.

5.2.1 Targeted faults definition

The probability of transforming a non-branch opcode to a branch and vice
versa due to a single bit transformation is extremely low and depends on
the instruction encoding of a given architecture. It is important to note that
branch creation may also happen due to bit-flips in the program counter. How-
ever, the probability of CFE occurrence due to single bit-flip in the program
counter is relatively low as it is a small circuitry compared to all other proces-
sor functional units. For these reasons, in the recent works the main cause of
CFEs is considered to be erroneous branch destinations (or as it is classified
in this work, Branch-Target-Change) [52]. Therefore, we target CFEs caused
by faulty bit-flips in branch instructions destinations causing Branch-Target-
Change errors. Since NonBranch-To-Branch type of CFEs has very low prob-
ability, adding high-overhead software assertions for detecting such errors in
embedded systems with high-performance requirements is not very efficient.

5.3. INSTRUMENTING SUSCEPTIBLE BASIC-BLOCKS 73

5.3 Instrumenting susceptible basic-blocks

Here we present the framework for deriving susceptible basic blocks. The
goal of this framework is to limit the number of set and test assertions signif-
icantly by protecting only the susceptible basic-blocks. For this reason, first
we need a bit-flip analysis framework to identify all susceptible blocks in a
program. Second, considering the problems with all previously proposed CFE
detection methods, we also need a new efficient method with the flexibility
to remove assertions in non-susceptible blocks without corrupting the runtime
signature. In path-based methods with the lowest overheads, we can not re-
move set assertions in non-susceptible basic-blocks. This is due to the fact that
such methods add set assertions to all basic-blocks and the corresponding test
assertion only to the last basic-block of the path. Therefore, in order to check
the execution flow up to the susceptible basic-block, not only the susceptible
block should have the test assertion but all the predecessor basic-blocks in the
path should also have set assertions to update the signature correctly. Prede-
cessor/successor assertions with incremental signature update have the same
problem of removing set assertions in non-susceptible blocks, since the con-
tent of the signature in the susceptible block is calculated based on its previous
value and depends on the set assertions in the previous basic-blocks along the
path. Local signature updates have very high overhead and do not instrument
blocks with multiple predecessors. Therefore, to overcome the aforementioned
problems, we propose a novel efficient CFE detection method (FCFC) with
local-signature update. We use this method to instrument the code and at the
last phase of our framework we replace the assertions in non-susceptible basic
blocks with NOP instructions and leave the assertions only in the identified
susceptible blocks. In the text to follow we call these memory locations re-
leased, but not in the sense that they can be used for normal program code.
Instead they can be used for other assertions, e.g., for data error detection.
By removing assertions in non-susceptible basic blocks the code is partially
instrumented with our proposed assertions, which we call it partial-FCFC in-
strumentation. The implementation of the framework phases is described next.

5.3.1 Systematic bit-flip analysis

Single bit-flips in branch operands are the main target for CFEs in our frame-
work. However, a large number of single bit-flips in branch operands causes
an erroneous branch to a destination outside of the program memory footprint.
Such faults cannot be detected by any assertions added to the program. There-

74 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

fore we will focus only at faulty branch instructions that will hit inside the pro-
gram memory space. The faults that cause erroneous branches to a memory
location outside the program section can be handled by the operating system
in systems that have an operating system. In systems without an operating
system a watchdog timer can be used to detect these errors. In order to iden-
tify the potential locations (basic-blocks) that an erroneous branch can target
within the program memory space we introduce a systematic bit-flip analysis
scheme. The proposed scheme takes the assembly and the binary-dump1 of the
program as inputs. Since we consider program executable with static linking,
all branch target addresses are resolved and are known prior to execution. The
binary-dump file has the program memory footprint and we can extract mem-
ory addresses of the program instructions. The final output of the analysis is
stored in a text file containing all susceptible basic-blocks named Susceptible
Basic-blocks List (SBL). Susceptible basic-blocks are the potential targets of
erroneous branches (caused by single bit-flips in branch destinations) and are
the only locations where test assertions in a particular program are needed.

Figure 5.1 shows the schematic view of the four steps of the proposed bit-flip
analysis scheme. At the first step, all branch instructions operands (the branch
target addresses) are extracted and saved in br-trgt file. At the second step a
set of XORs with MASKs, generate flipped branch target addresses. For in-
stance “addr XOR 0001” flips the first bit of the target address and generates an
erroneous address. This operation is performed for all the bit positions to gen-
erate a list of erroneous addresses. The resulting flipped addresses are saved
in flipped-br-trgt, which is one of the inputs of the third step. This file can be
much larger than the first one and a good optimization could be to just do the
bit-flip generation and check against the program address space at the same
step. However, in systems with multiple programs running simultaneously the
saved potential erroneous addresses can be useful. At the third step we dis-
cover which of the generated erroneous addresses are in the range of the pro-
gram(s) scope. For this reason, the begin and end addresses of the program(s)
are used. A simple script compares each of the erroneous addresses in flipped-
br-trgt file to the extracted instruction addresses within the program scope in
the binary-dump. The result of the comparison at step three is a list of poten-
tial erroneous target addresses (susceptible to be the target of CFEs) within the
program scope and is saved into err-trgts-in-range file. Finally at the fourth
step, the corresponding basic-blocks to the susceptible target addresses (in err-
trgts-in-range file) are extracted. To extract the susceptible basic-blocks, we
compare the susceptible instructions addresses to the corresponding code sec-

1generated from the executable using Linux objdump command

5.3. INSTRUMENTING SUSCEPTIBLE BASIC-BLOCKS 75

bit-flip

analysis

src.s

dump

SBL

binary-

dump

br-trgt flipped-br-

trgt

err-trgts-in-

range

src.s

(assembly)

SBL

Step1

Step

2

Step

3

Step

4

Figure 5.1: Bit-flip analysis scheme

tion in the assembly. With the help of the basic-block labels in the assembly
file, the susceptible basic-block labels are extracted and saved to the SBL file.

5.3.2 Flexible Control Flow Check (FCFC)

We introduce a new flexible CFE detection method (shorthand FCFC) that is
a signature monitoring method with local-signature-update. FCFC has com-
parable fault coverage to existing signature monitoring methods with local-
signature-update but much lower performance overhead. Furthermore, as we
explain next, it can be used in combination with our bit-flip analysis frame-
work to further decrease the performance overhead. In FCFC, similar to other
signature monitoring schemes, we use a global signature2. In Figure 5.2 the
global signature is S and the signature of the basic-blocks B1, B2 and B3 are
correspondingly (01), (10) and (11). FCFC uses predecessor signature check-
ing for basic-blocks with single predecessor. These blocks have test assertions
checking the predecessor basic-block correctness and set assertions setting the
global signature to the current basic-block signature. However this scheme
cannot protect blocks with multiple predecessors. Therefore, for those basic-
blocks, we employ pairs of set and test assertions similar to CEDA.

To elaborate our method, first we explain the details of CEDA set assertions, as
given in Chapter 2, for the single-predecessor block (B2) in Figure 5.2(c). This
explanation helps to understand how the set assertion of a multiple-predecessor
block in our proposed FCFC is arranged. CEDA has multiple set assertions for
updating the global signature to the signature of the current block. There are

2a global variable updated by set assertions and checked with test assertions

76 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

B1

S =1

B2

S != 1 error()

B1

B2

(a) FCFC in single-

predecessor block

(c) CEDA in single-

predecessor block

B3

B1 B2

(b) FCFC in multiple-

predecessor block

S = S XOR 10

S = S XOR 01
S != 10 error()

B1

S =1

B2

S != 1 error()

B1

S = S XOR 01

B2

(a) Our CFC in single-

predecessor block

(b) CEDA in single-

predecessor block

B1

set: S = f(S, d1)

B2

set: S = f(S, d2)

B3

set: S = f(S, d3)

test: S == EV

(c) multiple-predecessor block

 S != 0 error()

S =2

S = S XOR 10

S != 1 error()

S = S XOR 01
S != 2 error()

S = S XOR 11

S = S XOR 11 S = S XOR 00

S = S XOR 01

S = 01 S =10

S != 11 error()

B3

B1 B2

(d) CEDA in multiple-

predecessor block

S = S XOR 11 S = S XOR 00

S = S XOR 01
S != 11 error()

Figure 5.2: FCFC and CEDA assertions

set assertions in each of the predecessor blocks and a set assertion in the current
block. In Figure 5.2(c), in case of error-free control-flow, expected signature
value in B1 is “1” (01). The set assertion at B1 calculates the bitwise XOR be-
tween the global signature (S) and the signature of its successor block which
is “2” (10). At the end of B1, the global signature is then updated to the result
of the bitwise XOR which is (11), 01 XOR 10 = 11. In the beginning of B2
the second part of set calculates the bitwise XOR between S and the signature
of the predecessor which is “1” (01). In case of no error the result of bitwise
XOR in the beginning of B2 and the new value of S is (10), 11 XOR 01 =
10 . The test assertion checks for the consistency between the global signa-
ture content (S) and the signature of the current block which is “2” (10) at
the beginning of B2. Figure 5.2(d) shows CEDA assertions for CFE detection
in the multiple-predecessor block (B3). The pair of set assertions in B3 and
its first predecessor (B1), are similar to the set assertions of B2 and its single
predecessor B1 in Figure 5.2(c). Similar to the set assertions in Figure 5.2(c),
the set assertion in B1 does bitwise XOR with the signature of its successor

5.3. INSTRUMENTING SUSCEPTIBLE BASIC-BLOCKS 77

“3” (11) and the set assertion in B3 does bitwise XOR with the signature of
its first predecessor “1” (01). The set assertion in the second predecessor (B2)
does bitwise XOR of the global signature content with a constant value. This
constant value is the XOR between the signatures of the B2 itself and the sig-
nature of the successor block (B3) and the sibling predecessors (B1), 10 XOR
11 XOR 01 = 00. With this arrangement if the execution reaches B3 via B1
or B2, without encountering CFE along the path, the global signature content
in B3 is equal to the signature of B3, which is “3”. The test assertion checks
the global signature consistency at this point. CEDA assertions are explained
in more details in [48].

Figures 5.2(a) and 5.2(b) show FCFC assertions in single-predecessor and
multiple-predecessor basic-blocks, respectively. In Figure 5.2(a) the test as-
sertion of basic-block (B2) with single predecessor checks the consistency be-
tween the global signature (S) and the predecessor block signature which is
“1”. However, basic-block (B3) in Figure 5.2(b) with multiple-predecessors
can not be tested with the simple set and test pair as B2 in Figure 5.2(a). The
proposed set assertions for basic-blocks with multiple-predecessors are similar
to the ones used in CEDA. The only difference between FCFC set assertions
for multiple-predecessors and CEDA is that FCFC adds statements for assign-
ing the block signatures to the global signature in the predecessor blocks while
this is not needed in CEDA. These assignments are necessary to make the
signature update of the set assertions local and independent of the previous
basic-blocks assertions along the path.

5.3.3 Instrumentation using SBL information

The SBL contains the list of all basic blocks which should be guarded with test
assertions. The basic blocks that are not in SBL are non-susceptible blocks and
hence their assertions can be removed. However, if the assertions are bluntly
removed the program with partial-FCFC instrumentation will change memory
layout as compared to the full-FCFC instrumented program. This means the
branch destination addresses (which are used in the bit-flip analysis step to
generate the SBL file) would change making the SBL file invalid. In order to
keep the memory layout of the instrumented program consistent, instead of re-
moving the assertions in the non-susceptible basic blocks, they are replaced by
“NOP” instructions. FCFC signature monitoring belongs to local-signature-
update category and therefore it allows replacing assertions that are not neces-
sary. It is worth to note that these NOP locations can be seen as empty slots
suitable for data-error detecting assertions or other instructions that can be used

78 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

B3

B1 B2

(b) CFC in multiple-

predecessor block

S = S XOR 11 S = S XOR 00

S = S XOR 01

S = 01 S =10

S != 11 error()

B2

S != 1 error()

(a) CFC in single-

predecessor block

B1

S =1
B1

S =1

B2

S =2

B3
S =3

B4
S =4

B5

S =5

B6

S =6

S != 1 error()

S != 2 error() S != 2 error()

S != 1 error()

S != 5 error()

S = S XOR 11 S = S XOR 11

S = S XOR 11

S != 0 error()

B1

S=1

B2

NOP

B3
S =3

B4
S =4

B5

NOP

B6

NOP

S != 1 error()

NOP NOP

S != 1 error()

NOP

S = S XOR 11 S = S XOR 11

S = S XOR 11

NOP

SBL:

{B2,B5}

Figure 5.3: Partial-FCFC instrumentation based on SBL

to test specific processor units [39]. Figure 5.3 shows a sample CFG instru-
mented with FCFC assertions before and after using the information provided
by the SBL file. The CFG at the left is instrumented with full-FCFC (with
assertions in all blocks) and the one at the right shows partial-FCFC (with
assertions only in the susceptible basic-blocks which are B2 and B5).

5.4 Experimental setup and results

To investigate the proposed FCFC scheme, we compare it to one of the state-
of-the-art schemes in order to show its effectiveness in removing unnecessary
assertions in non-susceptible basic blocks. We have extended the LLVM com-
piler with CEDA and full-FCFC optimization passes. We have used the result
of the SBL file to replace assertions in non-susceptible blocks with NOPs and
get a code with partial-FCFC instrumentation. Full-FCFC assertions protect all
basic-blocks in the CFG, while partial-FCFC has assertions only to the spec-
ified susceptible blocks in SBL file. We use representative workloads from
Mibench [17] in our evaluation. With the help of the optimized compilers,
four different binaries for each workload are generated; the original binary

5.4. EXPERIMENTAL SETUP AND RESULTS 79

without any optimization, binaries with CEDA, full-FCFC and partial-FCFC.
To obtain the error coverage of each optimization scheme we inject CFEs into
the respective binary and account for the number of detected errors.

5.4.1 Experimental setup

Below we provide an overview of the target architecture and our proposed fault
injection mechanism.

Target architecture: For this experiment, we have used a machine with AMD
Turion(tm) II P520 dual-core processor, 4GB memory and Ubuntu GNU/Linux
12.04 LTS x86-64 operational system. However, the proposed approach can
be easily applied to any other target, general purpose, HPC or embedded.

Fault-injection: In order to introduce CFEs to the binaries at runtime, we have
implemented a gdb-based fault-injector (using gdb version 7.4) similar to the
fault injection scheme used for the CEDA evaluation in [48]. In the fault injec-
tor used in [48], the instruction to be influenced by the error is chosen statically
and at runtime an error is injected to the chosen instruction, e.g., by flipping
a single bit in the branch instruction operand. The shortcoming of the fault
injection scheme in [48], is that it selects the instruction where CFE is injected
without taking into account the instruction execution frequency at runtime. As
a consequence, an instruction which is executed only once at runtime will be
selected with the same probability for CFE injection as an instruction execut-
ing hundreds of times. This is not realistic, because instructions with higher
frequencies have higher chance to be impacted by faults. In order to address
this limitation, we use profiling information to obtain the execution frequen-
cies of each branch instruction. Contrary to the previous method, in our fault
injection scheme, we select the instructions for fault injection by considering
their runtime frequency as explained below.

1-) Sum up all branch frequencies in Total_Freq;
2-) Choose a RANDOM between 1 and Total_Freq;
3-) for (i ==1 to N)
 Sum_Freq = Sum_Freq+ FREQ(i);
 if (Sum_Freq < RANDOM)

 go to 3;
 else

 chosen_branch_instruction = i ;

Figure 5.4: Fault injection mechanism

80 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

First, by profiling, all branch instructions and their frequencies are derived into
a list and sorted based on the execution order at runtime. Each entry in the list
has a branch and its corresponding runtime frequency. Afterwards the branch
instruction that is the target of fault injection is chosen by following the steps
as depicted in the pseudo code of Figure 5.4. As the pseudo code shows, at the
first step all frequencies are accumulated into Total Freq. At the second step, a
RANDOM number in the range between “1” and the accumulated Total Freq
is randomly chosen. The third step iterates from the first branch instruction
up to the last branch instruction (N in Figure 5.4 represents the total number
of branch instructions). In each iteration the corresponding frequency to the
branch instruction is summed up to Sum Freq and compared with RANDOM.
Sum Freq in each iteration has the accumulated frequencies of all branch in-
structions before the current branch instruction. If the Sum Freq is lower than
the RANDOM value, the next branch instruction in the list is investigated. If
the resultant Sum Freq is greater than the RANDOM the corresponding branch
instruction is chosen for fault injection.

Branch execution order Execution frequency
Branch1 2
Branch2 100
Branch3 1
Branch4 500
Branch5 73

Table 5.2: Branch execution order with the corresponding execution numbers

Table 5.2 shows a sample list with the sorted branch instructions and their cor-
responding frequencies. As the result of the first step of random instruction
selection, the accumulated sum for all branches is 676. At step two a ran-
dom number in the range 1 to 676 is chosen, which is 234 in our assumed
example. At step three the comparison starts with the execution frequency
of Branch1. Since the frequency of Branch1 is lower than the random num-
ber (234), the comparison continues as explained in step three. Finally, when
repeating the same operation for Branch4, the result of accumulating the fre-
quency of Branch4 to the previous accumulated frequencies (603) becomes
greater than the chosen random number. Therefore, Branch4 is the selected in-
struction for error injection. With this set up, random instruction selection con-
siders the runtime execution frequency and instructions with higher execution
frequency have higher probability to be chosen for error injection. The selected
branch may be executed multiple times at runtime, therefore a random execu-

5.4. EXPERIMENTAL SETUP AND RESULTS 81

tion of the instruction is chosen for the fault injection. This random execution
number is between one and the execution frequency of the branch which is de-
rived during profiling. Finally to inject CFEs as discussed in Section 5.2.1, a
random bit of the selected branch instruction operand at the randomly selected
execution cycle is alternated.

5.4.2 Metric for evaluating error detection methods

Software error detection methods add assertion checks to the program and
the number of assertions directly influences fault-coverage and performance
(typically reduced number of checks lowers overheads but leads to worse
fault-coverage). We propose a new metric to quickly assess such methods
while considering both, fault coverage and performance overhead for a given
method. The proposed Detection Efficiency Factor (DEF) depends on both
performance-overhead3 and fault-coverage4 and is a suitable figure of merit
for evaluating different reliability optimization methods in high-performance
embedded systems:

DEF = Fault.coverage/Performance.overhead

The main usage of DEF is to quickly find the best method for a given pro-
gram of a specific size. DEF allows the selection of the best method among
multiple fault-detection methods while considering both fault-coverage and
performance degradation.

5.4.3 Experimental results

In full-FCFC, all basic blocks are instrumented with assertions, while in
partial-FCFC only susceptible blocks have assertions. As it will be explained
below, full-FCFC and partial-FCFC have the same DEF efficiency factors.
Therefore, first we compare CEDA only with full-FCFC and afterwards we
show what is the benefit of using partial-FCFC over full-FCFC. We investi-
gate the error coverage of these CFE detection techniques using our gdb-based
fault injector described in Section 5.4.1. Table 5.3 shows the result of fault in-
jection for one thousand executions of Mibench workloads instrumented with
full-FCFC and CEDA. The corresponding performance overheads and DEF
efficiency factors are also presented in the Table. This set of Mibench work-
loads is carefully chosen to represent all different topologies and sizes of the

3the percentage of additional clock-cycles in the instrumented program
4the percentage of detected faults among all injected faults

82 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

Workloads CEDA full-FCFC
overhead coverage DEF overhead coverage DEF

[%] [%] [%] [%]
basicmath 15.20 9.8 0.6 6.71 8.2 1.2

qsort 5.66 8.0 1.4 6.81 5.6 0.8
pbmsrch 7.43 9.8 1.3 0.88 7.9 8.9
patricia 10.78 8.8 0.8 6.26 8.9 1.42

FFT 8.37 10.3 1.2 1.64 10.7 6.5
sha 66.92 10.4 0.15 19.72 7.5 0.38

rijndael 20.27 11.1 0.54 7.64 7.6 0.99
CRC 16.21 8.3 0.51 13 3.5 0.27

Table 5.3: CEDA and full-FCFC performance overhead (%), fault coverage
(%) and DEF efficiency factor

benchmarks in the suite. Varying sizes and topologies emphasize both the ad-
vantages and limitations of FCFC. The coverage numbers show slightly higher
fault detection for CEDA. However, for the majority of the workloads, the effi-
ciency factor DEF based on performance overhead numbers shows full-FCFC
as detection scheme with higher efficiency. The exceptional cases are qsort
and CRC. The reason behind this is that CFGs of these two workloads con-
tain many basic blocks with multiple predecessors. Since FCFC set assertions
have an extra statement in multiple predecessor blocks compared to CEDA, in
CFGs with high number of such basic blocks, FCFC has higher performance
overhead than CEDA.

We have analyzed the same set of workloads with the proposed bit-flip analy-
sis scheme. The result of the analysis is presented in the plot of Figure 5.5.
This plot compares the total number of basic-blocks in the workload CFG
and the number of the identified susceptible blocks. This plot shows that in
some workloads such as rijndael and patricia more than half of the total ba-
sic blocks are non-susceptible blocks. Such workloads have potential for im-
provement by removing assertions from the non-susceptible blocks. In other
smaller workloads such as CRC and qsort most of the CFG basic blocks are
susceptible blocks. Therefore, these workloads have less benefit from limiting
the assertions to susceptible blocks compared to rijndael and patricia. By us-
ing the result of this analysis we have replaced assertions in non-susceptible
blocks with NOP instruction and converted full-FCFC instrumented bench-
marks into partial-FCFC instrumented benchmarks. As a result, depending
on the number of non-susceptible blocks in each workload number of mem-
ory locations get available. These memory locations can potentially be used

5.4. EXPERIMENTAL SETUP AND RESULTS 83

0

50

100

150

200

250
Total CFG blocks

Susceptible blocks

Figure 5.5: The comparison between the number of susceptible blocks and the
total number of blocks in the CFG

for other types of assertions , e.g., data error detection. As explained in Sec-
tion 5.3 in the this Chapter we call these memory locations released, but not
in the sense that they can be used for normal program code. Table 5.4 com-
pares the fault coverage of full-FCFC instrumentation and partial-FCFC instru-
mentation. The fault coverage columns show equal or negligible differences
between full-FCFC instrumentation and partial instrumentation based on SBL.
The fourth column shows the percentage of memory locations that are released
using partial-FCFC instrumentation.The released slots are assertion locations
in non-susceptible blocks that are replaced by NOPs. Full-FCFC and partial-
FCFC have identical performance overheads and therefore equal efficiency
factors. The advantage of partial-FCFC over full-FCFC is to have NOP slots in
non-susceptible blocks in place of assertions. These locations can be used for
data-error detecting assertions to protect the program against data-errors with-
out additional performance and memory overheads. The last column of Table
5.4 presents the frequency of susceptible basic-block execution. These values
give the number of times the susceptible blocks are executed compared to the
total number of basic-blocks, showing that on average these blocks are visited
69.8% of the times. This shows that more than half of the program execution
time is spent inside the susceptible basic blocks that confirms the importance
of instrumenting these blocks with reliability assertions.

84 CHAPTER 5. BIT-FLIP AWARE CONTROL-FLOW ERROR DETECTION

Workloads full FCFC partial-FCFC SB execution
coverage [%] coverage [%] released slots [%] frequency [%]

basicmath 8.2 8.0 20.6 71
qsort 5.6 5.6 18.1 54

pbmsrch 7.9 7.9 17.1 97
patricia 8.9 8.7 57.4 47

FFT 10.7 10.7 20.5 20
sha 7.5 7.5 21.2 98

rijndael 7.6 7.3 63.1 95
CRC 3.5 3.5 13.9 77

Average 7.58 7.41 28.9 69.8

Table 5.4: Fault coverage of full/partial FCFC with released locations ratio and
susceptible block execution frequency

5.5 Conclusions

In this Chapter we presented a new CFE detection scheme (FCFC) with local-
signature-update assertion types for instrumenting only the identified suscep-
tible blocks for a given workload binary. FCFC has comparable fault cover-
age to CEDA, however it causes much lower overhead. Comparing the two
methods in terms of DEF efficiency factor, FCFC outperforms CEDA in the
majority of cases. DEF efficiency factor was presented as a metric to consider
both the fault coverage and performance overhead at the same time. Further
we proposed a systematic bit-flip analysis framework. This framework takes
the program binary-dump and assembly as inputs and generates the list of sus-
ceptible basic-blocks to CFEs caused by single bit-flips in branch destination
addresses. We combined the result of our bit-flip analysis together with FCFC.
As a result we presented a workload aware technique to omit program instru-
mentation in basic blocks that are not susceptible to CFEs. With this informa-
tion, we replaced the assertions in non-susceptible blocks with “NOP” instruc-
tions. It is important to mention that our proposed bit-flip analysis framework
can be used with any other signature monitoring schemes with local-signature-
update. In order to evaluate the bit-blip analysis framework we have generated
binaries from Mibench benchmark suite with full-FCFC instrumentation and
with partial-FCFC instrumentation (assertions only in susceptible blocks). The
experiments showed that limiting the instrumentation only to the susceptible
blocks releases (on average) 28.9% instruction memory while the fault cov-
erage remains the same as with full instrumentation. The released locations
can be used for data-error detecting assertions to additionally improve fault

5.5. CONCLUSIONS 85

tolerance of the targeted systems.

The content of this Chapter is based on the following paper:

Ghazaleh Nazarian, Diego G. Rodrigues, Alvaro Moreira, Luigi Carro, Georgi
N. Gaydadjiev. Bit-Flip Aware Control-Flow Error Detection. Proceedings
of the 23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 215-221, Turku, Finland, March 2015

6
Low-cost Software Control-Flow Error

Recovery

In modern safety-critical embedded systems reliability and performance are
two important criteria. When error recovery methods are used an important
factor is the recovery time, especially in systems with real-time requirements.
A key observation that helps improve software recovery methods is that only
a finite number of locations in a given program are susceptible to errors. In
this Chapter we propose a fast software recovery scheme that instruments the
program only at locations vulnerable to control-flow errors. We use the sys-
tematic bit-flip analysis, described in Chapter 5, to identify the exact locations
susceptible to control-flow errors in a given program binary. This helps us to
instrument the code with minimal overheads, while maintaining high-level of
correctability and quick recovery times. Our experiments show that with the
result of our bit-flip analysis we can limit the code instrumentation to only the
susceptible locations and greatly improve the efficiency (taking into account
the fault coverage, recovery time and performance overhead) compared to the
latest control-flow error recovery methods.

6.1 Introduction

In order to satisfy the three requirements (reliability, performance and short
recovery time) in real-time, high performance and safety critical systems, the
ideal case for CFE recovery is to know exactly which basic blocks are the po-
tential source of errors and add checkpoints only at those locations. The target
fault model in our work is single bit flips in branch instructions destinations,
which are due to events such as crosstalk or radiation. As discussed in the
previous Chapter, a significant number of basic blocks are not susceptible to

87

88
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

CFEs. Assertions and checkpoints used to protect the non-susceptible blocks
do not improve reliability, however, increase performance overhead.

In this Chapter, we propose a novel CFE recovery method which adds check-
points only at basic blocks that are susceptible to CFEs. We use the bit-flip
analysis scheme proposed in Chapter 5. We already have explained how our
framework analyzes the impact of single bit-flips on the control-flow misbe-
havior and identifies all potential destinations of faulty transitions. In this work
we extend the previously proposed bit-flip analysis in order to identify the
basic blocks where CFEs are initiated from. These blocks are the suscepti-
ble sources where an erroneous branch can occur. The result of our extended
analysis scheme gives the ordered pairs of susceptible source and destination
blocks. Using this information, we instrument the code with only the necessary
assertions and checkpoints to protect only the susceptible blocks.

The main contributions of this Chapter are:

• A novel fast control-flow error recovery method;

• Extended framework for identifying the potential source basic blocks
where an erroneous branch may stem from;

• Low-cost, highly efficient check-pointing scheme based on placing the
checkpoints only at the identified susceptible source blocks;

• Efficient recovery scheme with short recovery time of only 28 cycles and
low performance overhead compared to state-of-the-art methods.

The rest of the Chapter is organized as follows: Next, the motivation behind
this work is given. The detailed explanation over the extended bit-flip analysis
and our check-pointing scheme is given in Section 6.3. Section 6.4 describes
the experimental setup and results. Finally, we present our conclusions.

6.2 Motivation

As observed in the previous Chapter, recovery from errors outside the pro-
gram boundary, which are caused by bit flips in branch instruction operands,
is only possible with the help of the operating system that can detect the er-
ror as segmentation fault and re-execute the program from the beginning. It
should be noted that only the CFEs which lead the execution into an erroneous
destination inside the program boundary can be detected and recovered from

6.3. FAST RECOVERY WITH WORKLOAD SPECIFIC CHECKPOINTS 89

software methods used to instrument the program. However, the majority of
CFE detection and recovery methods add assertions to all basic blocks of the
program, often not necessary. Recovery methods that use checkpoints to save
the processor’s state at specific program locations, trade-off the recovery time
for performance. Placing less checkpoints and dividing the program in larger
sections reduces the cost of checkpoints, but increases the recovery time in
case an error occurs. Since many of the program basic blocks are not real-
istic destinations of the erroneous branches caused by single bit-flips in the
destination of control instructions, these basic blocks can be excluded from
instrumentation. We have implemented an effective CFE detection and recov-
ery scheme with low performance overheads and short recovery time. In this
scheme, our main motivation is to limit the CFE detection and recovery instru-
mentation only to the susceptible basic blocks. The checkpoints, which are the
main cause of significant performance overheads in CFE recovery schemes,
should only be placed at the sources where a potential faulty jump may occur.

6.3 Fast recovery with workload specific checkpoints

In our proposed recovery method, at compile time, instructions are added to
the program in order to detect and recover from the error. Complete recovery
from CFEs is accomplished using Code Specific Checkpoints (CSC). The er-
ror detecting instructions are executed during the normal flow of the program.
However, the instructions added for error recovery are executed only when an
error is detected and the execution control is transferred to the special function
for error recovery. The goal of our scheme is to have an efficient recovery
scheme with short recovery time, low performance overhead and high fault
coverage. To achieve the lowest possible recovery time, we need to provide an
arrangement that the recovery process is done at the smallest possible granu-
larity, which is at the level of the individual basic blocks. Moreover, to have
low performance overhead, we need to add error detecting and recovery in-
structions only at the necessary locations of the program that are the potential
basic blocks where CFEs can occur. As explained in the previous Chapter, it
is important to note that not all CFE detection methods offer the flexibility to
instrument only a selected number of basic blocks. Therefore, in order to ful-
fill this requirement, we need to use a flexible error detection method such as
FCFC. FCFC has the flexibility to assert the correct execution flow by adding
instructions only to the required subset of basic blocks. Moreover, it provides
a high fault coverage. In what follows, the important aspects of the proposed

90
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

br RS !=S1, recovery

br saveRegs

br RS !=S1, recovery

br saveRegs

B1

br RS !=S4, recovery

br saveRegs

B4

br RS !=S3, recovery

br saveRegs

B3

br RS !=S3, recovery

br saveRegs

B3

br RS !=S2, recovery

br saveRegs

B2

br RS !=S2, recovery

br saveRegs

B2

CFE

(1)

(2)
saveRegs():

sw [R1], #1

sw [R2], #2

.

.

sw [Rn], #n

sw [LR], #rolbckAdr

br [LR]

recovery():

lw [#1], R1

lw [#2], R2

.

.

lw [#n], Rn

lw [#rolbckAdr], LR

br [LR]

(3)

(4)

br RS !=S1, recovery

br saveRegs

B1

br RS !=S1, recovery

br saveRegs

B1

br RS !=S1, recovery

br saveRegs

B1

br RS !=S1, recovery

br saveRegs

B1

br RS !=S1, recovery

br saveRegs

B1

br RS !=S1, recovery

br saveRegs

B1

22660300

Figure 6.1: Recovery flow

recovery method are explained.

6.3.1 Fast Recovery Scheme

In order to decrease the amount of time between the moment a CFE occurs
and the moment the program execution is recovered, we implement the de-
tection and recovery processes at the basic block level. FCFC fault detecting
instructions are able to detect CFEs immediately after their occurrence in the
faulty target block. Moreover, our proposed recovery method guarantees that
the execution control will be transferred right to the basic block that was the
source where the CFE occurred. In this way, contrary to the majority of con-
ventional checkpoint based methods, the error recovery time is limited by the
basic blocks length.

Figure 6.1 shows how the recovery scheme transfers the control immediately
to the block before CFE occurrence. As depicted in the Figure, two statements
are added in the beginning of each basic block to implement recovery. The
first statement in the basic blocks (br RS!=Sig, recovery) is the test assertion
of CFE detection scheme. In this Figure for the sake of readability the state-
ments related to set assertions of detection scheme are not shown. In case the
test assertion finds a mismatch between the runtime signature content and the
expected signature value at the basic block, the recovery function is called.
The second statement is a simple function call that invokes the saveRegs func-
tion. After saveRegs function is invoked the return address (which is the orig-
inal start address of the basic blocks before adding the recovery statements)
is saved into the Linked-Register (LR). In the Figure a CFE occurrence is de-
picted by the dashed edge from B1 to B4. Also the steps of code executions

6.3. FAST RECOVERY WITH WORKLOAD SPECIFIC CHECKPOINTS 91

that leads to recovery from the depicted CFE are shown. The first step, before
the CFE occurs at the beginning of the source basic block where CFE will stem
from, the control transfers to saveRegs function. This function acts as a check-
point and saves the contents of all registers in the register file. Moreover, it
saves the content of the linked register that holds the start address of the basic
block. This address is the location where the execution should roll-back to,
when an error is detected. In the second step, the execution is transferred back
to B1. After CFE occurrence, the test statement in B4 will detect the error and
call the recovery function, shown as step 3. The recovery function restores
the saved contents of the register file from the previous checkpoint (which is
at B1) and loads the roll-back address (which is the start address of B1) into
the linked register. Finally, in the fourth step, the execution rolls back to the
beginning of B1. This recovery scheme works also when there are multiple
predecessors. For example in Figure 6.1, depending on the executed path at
runtime, one of the predecessors of B4 block (which is either B2 or B3) is ex-
ecuted. Accordingly, the saveRegs function in invoked from the beginning of
the executed block and the corresponding return address (the start address of
the executed basic blocks, B2 or B3) is saved. In case an error is initiated from
these blocks, after the error is detected the execution rolls back to the saved
return address.

Since the extra code that is added to transfer the execution control back to the
point before CFE occurrence is minimal and the recovery is designed in a way
that there is no need to search for the source basic block where the CFE was
initiated, our recovery scheme minimizes recovery time. In our approach, there
is no need to search for the source basic block where the CFE was initiated,
the recovery time is a fixed number of execution cycles, which is the number
of cycles required to execute the recovery function as depicted in Figure 6.1.

function-error-handler:

br F != FID(f), global-error-handler;
err-flag = 0;
num-err = num-err + 1;
br num-err > thresh, exit;
for each block in the function
 find the faulty source block;
jmp function-error-handler;

global-error-handler:

err-flag = 1;
for each function f in the program
 br F == FID(f), f;
num-err = num-err + 1;
br num-err > thresh, exit;
jmp global-error-handler;

Figure 6.2: Error recovery code in ACCE

The recovery steps in a similar recovery method (ACCE) [47] consist of four

92
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

function calls that have in total higher number of recovery code compared to
our scheme. For error recovery, ACCE makes use of function-error-handlers
associated to each function in the code and a global error handler. Figure 6.2
shows the code for function-error-handler and the code for the global error
handler. A unique identification number is assigned to each function (FID)
which is used in function-error-handler and the global error handler to identify
the function that the error was initiated from. In ACCE if an error is detected
the steps as depicted in Figure 6.3 are taken to recover from the error. As first
step, when an error is detected, the function-error-handler is invoked. In the
function-error-handler it is checked whether the error was initiated from the
current function or not. If the error was initiated from the current function,
the execution is transferred back to the faulty source basic block. While, if
the error was not initiated from the current function the global error handler is
invoked, depicted as the second step in Figure 6.3. The global error handler
finds the function that causes the error and calls this function, depicted as third
step in the Figure. Again in the function that the error was initiated from, the
corresponding function-error-handler is invoked, depicted as the fourth step in
the Figure. This time the function-error-handler finds the basic block that was
the source of the error and transfers the execution back to this block. Since,
in this scheme after CFE occurs, there is a search to find the source function
and the basic block, the recovery time is variable depending on the time spent
for searching. Compared to ACCE, which works also at basic block level, the
additional amount of recovery code of our method is much lower resulting in
shorter recovery time.

Another disadvantage of ACCE is that it does not support full recovery from
CFEs. This is due to the fact that ACCE does not save and restore the modi-
fied data in the register file due to re-execution of the rolled-back basic block.
To provide data integrity and full recovery from CFEs, the authors propose
ACCE with Duplication (ACCED). In this technique, the computations on the
data and the data container variables are duplicated. ACCED, places the du-
plicated computations in a separate basic block with instrumentation for CFE
detection such as a normal basic block. By comparing the two versions of the
same variable an inconsistency in data, after CFE recovery, can be detected.
Afterwards, ACCED uses a flag err comp to identify the variable containing
the corrupted data. After identifying the corrupted data, the content of the vari-
able with correct data gets copied to the second copy of the variable. This is an
expensive solution for data restoration. Having a duplicated computation and
variables for data leads to significant performance overhead.

6.3. FAST RECOVERY WITH WORKLOAD SPECIFIC CHECKPOINTS 93

If CFE, br f1_err

f1():

F = 1

br err_flag == 1, f1_err

f2():

F = 2

br err_flag == 1, f2_err

If CFE, br f1_err

If CFE, br f2_err

If CFE, br f2_err

br F != 1, error_handler

err_flag = 0

num_err = num_err + 1

br num_err > thresh, exit

...

Br S == Sig(Bi), Bi

…

…

jmp f1_err

br F != 2, error_handler

err_flag = 0

num_err = num_err + 1

br num_err > thresh, exit

...

Br S == Sig(Bj), Bj

…

…

jmp f2_err

Bi:

f1_err:

Bj:

f2_err:

err_flag = 1

br F == 1, f1

br F == 2, f2

num_err = num_err + 1

br (num_err > thresh), exit

jmp error_handler

error_handler():

CFE

(1)

(2)

(3)

(4)

Figure 6.3: Error recovery flow in ACCE

6.3.2 Efficient Checkpoints at Identified Susceptible Blocks

Instrumenting all basic blocks with checkpoints as described above is too
costly. Fortunately, as we have shown in the previous Chapter, our study about
the impact of single bit flips on the control-flow mis-behavior has shown that
not all basic blocks are susceptible to CFEs. In other words, only a number
of basic blocks in the CFG are susceptible to CFEs and require protection by
assertions and checkpoints.

In order to minimize the performance overhead introduced by checkpoints, we
use our bit-flip analysis framework as explained in the previous Chapter. This
framework uses the program binary dump and assembly as input and generates
a list containing all susceptible blocks that are the potential destinations of
CFEs caused by single-bit transitions in branch destinations. In order to use
this information and minimize the number of checkpoints, we also need to

94
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

bit-flip

analysis

src.s

dump

SBL

binary-

dump

br-trgt flipped-br-

trgt

err-trgts-in-

range

src.s

(assembly)

SBL

Step1

Step

2

Step

3

Step

4

binary-

dump

Step

2

Step

3
Step

1

br-trgt flipped

br-trgt

err-dst

in-range
inst.adr inst.adr inst.adr

dstsrc

SBL

Step 4

inst.adr instruction

0x0010

0x0014

0x0018

0x001c

0x0020

0x0024

0x0028

0x002c

0x0030

0x0034

0x0038

0x003c

0x0040

ori r5, r0, 0x0000

addi r5, r5, 0x0001

ori r7, r0, 0x0008

cmpne r7, r5, r7

bne r7, 0x0014

ori r4, r0, 0x0000

cmpne r3, r4, r3

blt r3, 0x0034

subi r3, r3, 0x0001

cmpne r3, r5, r3

blt r3, 0x0040

subi r3, r3, 0x0008

...

0x0020

0x002c

0x0038

0x0014

0x0034

0x0040

0x0020

...

0x0015

...
0x002c

...

0x0035

...

0x0038

...

0x0041

...

0x0020

0x0020

0x0020

0x002c

0x002c

0x002c

0x002c

0x0010

0x001c

0x0034

0x0030

0x003c

0x0024

0x0014

B1

B1

B1

B2

B2

B2

B2

B0

B1

B4

B3

B5

B2

B1

src.s (assembly)

ori r5, r0, 0x0000

addi r5, r5, 0x0001

ori r7, r0, 0x0008

cmpne r7, r5, r7

bne r7, 0x0014

ori r4, r0, 0x0000

cmpne r3, r4, r3

blt r3, 0x0034

subi r3, r3, 0x0001

cmpne r3, r5, r3

blt r3, 0x0040

subi r3, r3, 0x0008

...

B0:

B1:

B2:

B3:

B4:

B5:

B6:

(a) Snapshot of the memory code segment (b) Bit-flip analysis to extract susceptible source and destination blocks

Figure 6.4: Bit-flip analysis scheme illustration

know the susceptible source basic blocks that the CFEs can stem from. We
have extended the framework to include this information in the generated list.

Figure 6.4 shows the working of the extended framework to extract suscepti-
ble source and destination blocks. An example snapshot of the memory code
segment is depicted in Figure 6.4(a) and the steps for extracting the list of
susceptible blocks for this part of the code segment are illustrated in Figure
6.4(b). At the first step, all branch targets (br-trgt) and the branch instruc-
tion addresses (inst.adr) are extracted. In the second step a set of XORs with
MASKs, generates all possible branch target addresses caused by a single bit
flip. For instance “addr XOR 0001” flips the first bit of the target addresses
and generates one possible address. The resulting flipped addresses are saved
as flipped-br-trgt. In the Figure the first bit flipped-target is shown. In the third
step, a simple script compares each of the erroneous addresses in flipped-br-
trgt file to the extracted instruction addresses within the program scope. The
result of the comparison at this step produces all potential erroneous target ad-
dresses (susceptible to be the target of CFEs) within the program scope that are
also saved into err-dstin-range file. Finally in the fourth step, the correspond-
ing source and destination basic blocks of the susceptible target addresses are
identified. To extract the susceptible basic blocks, we compare the suscepti-
ble instructions offset to the corresponding code section in the assembly. With
the help of basic block labels in the assembly file, the susceptible basic block
labels are extracted and saved in the SBL file.

6.3. FAST RECOVERY WITH WORKLOAD SPECIFIC CHECKPOINTS 95

B1

B2 B3

B5B4

B6

B7

CFE

CFE

Susceptib

leBocks

List:

(B1 , B4)

(B3 , B7)

(a) CFG sample with potential CFEs

and the generated susceptible block

list using bit-flip analysis framework

NOP

br saveRegs

B1

NOP

NOP

NOP

B2

set assertions

NOP

br saveRegs

B3

set assertions

NOP

br RS !=S4, recovery

B4

NOP

NOP

NOP

B5

NOP

NOP

NOP

B6

set assertions

NOP

br RS !=S4, recovery

B7

NOP

(b) Instrumentation for CFE

recovery only to protect the

susceptible blocks

NOP

NOP

Bi

NOP

(c) A non-susceptible

block with

rescheduled NOPs

NOP

NOP

Bi

NOP

Figure 6.5: Instrumentation and checkpoints in susceptible blocks

Figure 6.5(a) shows a sample CFG, corresponding to an example code, with
potential erroneous CFE edges and the output list of the bit-flip analysis frame-
work containing pairs of susceptible source and susceptible destination blocks.
In this sample execution flow graph, the potential CFEs are depicted by the
dashed edges from B1 to B4 and from B3 to B7. The result of the bit-flip anal-
ysis is the list containing two pairs of susceptible blocks as depicted in Figure
6.5(a). The first elements in the block pairs are the susceptible source blocks,
B1 and B3, and the second elements represent the susceptible destinations, B4
and B7.

Figure 6.5(b) depicts the same sample CFG, which is instrumented with CFE
detecting assertions and checkpoints only at the necessary locations using the
susceptible blocks list information. Only the susceptible source blocks need
to have a call to the saveRegs function to checkpoint the register file contents.
In the sample graph only B1 and B3 have the call to saveRegs function. Ac-
cordingly, only susceptible destination blocks need to have test assertions to
check if the basic block is reached through a valid control-flow or due to a
CFE occurrence. In the example graph only B4 and B7 contain ”br RS!=Sig,
recovery” statement, which is the test assertion. The predecessors of suscep-
tible destination blocks are the only blocks that should have set assertions to
update the runtime signature to a valid signature. These blocks in the sample

96
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

CFG are B2, B3 and B6.

Assertions and checkpoints in non-susceptible blocks are replaced with NOP
instructions. In order to gain performance, we reschedule the replaced NOPs
after the branch instruction at the end of the basic block. As a result, at runtime
the replaced NOP instructions are not executed. Consequently, the recovery
instrumentations causes no performance overhead in non-susceptible blocks.

6.4 Experimental setup and results

To investigate the proposed recovery scheme, we compare it to a recent state-
of-the-art work to show its effectiveness in removing unnecessary assertions
and checkpoints in non-susceptible blocks. We have implemented and opti-
mized a compiler using the CoSy development framework [1]. The generated
compiler targets a basic, 32-bit, five-stage, in-order RISC processor. We have
implemented compiler passes for our proposed recovery method and ACCE.
We use a representative set of workloads from Mibench [17]. For each work-
load three different binaries are generated; the original binary without any
optimization, binaries compiled with ACCE optimization pass, and binaries
compiled with our recovery pass. To obtain the error coverage of each opti-
mization scheme we inject a single CFE per run (by flipping single bits in the
branch instruction operands) into the respective binary and inspect the number
of detected errors. The error injection mechanism which is used to evaluate the
recovery scheme is identical to the improved mechanism described in Chapter
4.

In order to compare the proposed recovery method to other recovery methods,
we consider all crucial criteria such as correctability (fault coverage), perfor-
mance overhead and recovery time. High number of assertions and check-
points located at short intervals improve the correctability and the recovery
time of software recovery methods. However, this has a negative impact on the
performance. On the other hand, low number of assertions and checkpoints
improves performance but degrades correctability and recovery time. There-
fore, in order to asses a software recovery technique these three metrics should
be considered. For evaluating the method in terms of fault-coverage and per-
formance overhead1, we use a metric similar in spirit to the one proposed in
Chapter 5. The only difference is that here we consider correct output ratio
(correctability2) of the method instead of the fault-coverage. This metric is

1the percentage of additional clock-cycles in the instrumented program
2the percentage of corrected runs against the total number of experiments

6.4. EXPERIMENTAL SETUP AND RESULTS 97

Workloads
ACCE

correct output not recoverable errors
wrong output out of program boundary

qsort 83 47 871
pbmsrch 67 84 850

sha 58 58 885
dijkstra 87 28 886
CRC 76 32 893

Average 76.83 62.33 861.66

Table 6.1: Categorization of the outputs in 1,001 ACCE instrumented code
runs with random control-flow errors

Workloads
Recovery with CSC

correct output not recoverable errors
wrong output out of program boundary

qsort 376 94 531
pbmsrch 333 159 509

sha 318 218 465
dijkstra 409 124 468
CRC 313 102 586

Average 334.66 166.66 498.83

Table 6.2: Categorization of the outputs in 1,001 CSC instrumented code runs
with random control-flow errors

named as Correction Efficiency Factor (CEF) and is calculated as:

CEF =
correct.output.ratio

Performance.overhead

As stated before, another crucial metric is the recovery time, needed to resume
error free operation after a CFE is detected. We have measured this by captur-
ing the number of execution cycles between the moment an error is detected
until it is recovered. Please note that these numbers are specific for the archi-
tecture we used and will differ on another platforms. We however believe that
the relative ratios between the two methods will be preserved. In what follows
the results of the proposed recovery method are discussed in detail.

98
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

6.4.1 Experimental results

Table 6.1 shows the result of fault injection for one thousand and one runs
of the Mibench workloads instrumented with ACCE and Table 6.2 shows the
same result of Mibench workloads instrumented with our recovery scheme
(CSC). In the Tables, the code behavior to the injected CFE is categorized into
three columns: correct output, wrong output and execution out of program
boundary. The errors that are not recoverable are the ones that cause wrong
output and the ones that lead the execution outside the program boundary. In
all the execution runs of the workloads with control-flow error, ACCE recov-
ers on average 76.83 of the cases, while the average recovery number of our
scheme is 334.66. The main reason for the higher recovery number of CSC
compared to ACCE is due to the fact that in the CSC recovery method, the
register file content is saved at the checkpoints only in the necessary blocks
and restored when needed. As explained in Section 6.3.1, ACCE does not save
and restore register file for data integration and instead the authors propose
ACCED with duplication of variables and computations. ACCED imposes
significant performance overhead due to the duplicated statements.

In ACCE recovery method [47], the number of faults causing wrong output
for ACCE is reported, but unfortunately the number of faults causing out-of-
boundary execution is not explicitly reported by the authors. The ACCE re-
sults, show higher number of injected faults leading to jumps outside of the
program boundary as compared to our method. The reason is that the ACCE
recovery code introduces many new branch instructions that become them-
selves the target of the injected faults and cause out of boundary execution.
This effect is amplified in the hot regions of the code that will now have twice
more branches leading to control flow redirection out of the program scope.
Please note that even if those erroneous jumps will be captured by the operat-
ing system, the program execution can not be recovered, leaving the complete
program restart as the only option.

Please note that in general the fault model used in our experiments is character-
ized by higher probability of out of program boundary execution as compared
to other fault models. Especially this is the case when the instrumented pro-
grams are of small size.

The performance overhead imposed by the extra instructions of each recovery
method (ACCE and our method) compared to the baseline program binaries
(which do not have any optimizations) is illustrated in Figure 6.6. The high
performance overhead imposed by both methods for qsort and crc is due to the
fact that both are tiny programs and the extra assertion instructions added by

6.4. EXPERIMENTAL SETUP AND RESULTS 99

0

20

40

60

80

100

120

140

160

qsort crc sha pbmsrch dijkstra

%
Recovery with WSC

ACCE

Figure 6.6: CSC and ACCE performance overheads

the recovery schemes result in significant overheads. We deliberately selected
these two workloads to enforce a worst-case-scenario.

The chart of Figure 6.7 shows the normalized efficiency factors of ACCE and
our method for the same set of workloads. In ACCE instrumentation, the
recovery time depends on the number of basic blocks in the functions and
whether the erroneous branch destination is inside the same function or it tar-
gets a basic block of another function. If it is inside the same function the
recovery time is shorter and if the faulty target block belongs to another func-
tion the latency will be higher. The minimum recovery time in ACCE is when
the CFE initiates in the first basic block of the function and targets a faulty
block in the same function. In ACCE implementation for our target processor,
the recovery time of the examined workloads is between 32 to 35 cycles. It
should be noted that, all the workloads used in our experiments are selected to
have a small size and actually contain only one function. Therefore, the ACCE
recovery times measured are the lowest possible since in workloads with mul-
tiple functions, the recovery time can scale with the number of functions. In
addition, the reported ACCE recovery time includes only the execution roll
back to the correct point and does not consider restoring the correct data of
the modified registers. In contrary, our method has a constant recovery time
of 28 cycles that includes the time needed for restoration of the correct data
content of the register file. As explained in Section 6.3.1, the recovery time of
our scheme is constant and does not depend on the sizes of the workloads. As

100
CHAPTER 6. LOW-COST SOFTWARE CONTROL-FLOW ERROR RECOVERY

0.79

0.095

0

0.5

1

1.5

2

2.5

qsort crc sha pbmsrch dijkstra average

CSC ACCE

Figure 6.7: CEF factors of CSC and ACCE

depicted in Figure 6.7, CEF factor of CSC recovery method is about 8 times
higher than CEF factor of ACCE.

6.5 Conclusions

In this Chapter we introduced a lightweight, low-latency CFE recovery method
with checkpoints only at the susceptible source basic blocks. Our proposed re-
covery scheme is able to detect the CFE and roll back the execution to the
beginning of the basic block where the CFE has occurred with a constant la-
tency of only 28 cycles. We extended the previously proposed bit-flip analysis
framework to identify the susceptible sources of CFE in the program binary.
This information was used to limit the checkpoint locations only to the sus-
ceptible source blocks and greatly decrease the imposed overheads. In order
to assess our recovery method fairly we considered the three metrics of cor-
rectability, performance and recovery time. Comparing our scheme to a well
known and widely used recovery scheme (ACCE), shows our method as more
efficient considering the above mentioned metrics. The main reason behind
the higher efficiency of our proposed method is that the instrumentations for
detection and recovery are added exactly at the identified vulnerable spots of
the program under consideration.

6.5. CONCLUSIONS 101

The content of this Chapter is based on the following paper:

Ghazaleh Nazarian, Razvan Nane, Georgi N. Gaydadjiev. Low-Cost Software
Control-Flow Error Recovery. Proceedings of the Euromicro Conference on
Digital System Design (DSD), pp. 510-517, Madeira, Portugal, August 2015

7
Conclusions

In this thesis, we addressed the problem of significant performance overheads
caused by conventional software reliability improvement techniques. Software
optimizations are the only solution in embedded devices build with off-the-
shelf processors. However, software methods rely on additional assertions into
the code for runtime fault detection and recovery and naturally introduce per-
formance overheads. This work has proposed several compile-time methods
for reliability optimization. The proposed methods are fully independent of the
underlying hardware and are applicable to any arbitrary processor architecture.
In the following the summary and the conclusions of this thesis are presented.
Finally, we propose promising directions for future work.

7.1 Thesis summary

In Chapter 1, we have elaborated the needs of todays embedded systems and
presented the problems related to modern software optimization techniques.
We also formulated the research questions that should be answered in order to
address these problems.

In Chapter 2, we have presented the background concepts in software reliabil-
ity optimization techniques and the relevant related works in this area. Further,
we have categorized these methods into methods that address data errors and
control flow errors. The software optimization methods that target control flow
errors were additionally divided into three groups based on the way the asser-
tions are implemented.

In Chapter 3, the compatibility between reliability optimizations and modern
techniques for power reduction was studied. Power optimization methods were
analyzed and two promising combinations for embedded systems requiring

103

104 CHAPTER 7. CONCLUSIONS

reliability with limited power budget were identified. More precisely, instruc-
tion re-scheduling with instruction duplication and loop flattening (unrolling or
fusing) with signature monitoring were found compatible. Additionally, three
incompatible pairs have been identified along with the specific limitations.

In Chapter 4, we presented a novel technique for customizable control-flow
fault detection. Our technique (SCFC) is a workload-aware hybrid combina-
tion of the two categories of signature monitoring techniques; path-asserting
and predecessor/successor-asserting methods. In SCFC, we use the control
flow graph topology to direct the instrumentation process towards one of the
two methods above. Moreover, the impact of loop unrolling on our control-
flow error detection method was investigated. The results were compared
against CCA which is a widely used detection scheme with the highest fault-
coverage. This result showed that SCFC has 50% less performance, mem-
ory and power-consumption overheads as compared to CCA while delivering
similar fault coverage. Comparing SCFC to ACFC (the best performing path-
asserting method) showed that SCFC increases fault coverage by 17% with
only 2.75% increase in code-size overhead. Our experimental results also
showed that SCFC can benefit from traditional compiler optimizations such
as loop unrolling, both in terms of performance and fault coverage. The aver-
age fault coverage improvement of SCFC with loop-unrolling compared to a
version without loop-unrolling was measured as 9.75%.

In Chapter 5, we introduced a method to omit program instrumentation in ba-
sic blocks that are not susceptible to CFEs. To facilitate this a framework for
systematic bit-flip analysis was developed. This framework takes the program
binary-dump and assembly as inputs and generates the list of susceptible basic-
blocks to CFEs caused by single bit-flips in branch destination addresses. With
this information, we make sure that only susceptible blocks contain CFE de-
tecting assertions by replacing the assertions in non-susceptible blocks with
“NOP” instructions. We have also developed a novel CFE detection scheme
(FCFC) with local-signature-update assertions for instrumenting only the rel-
evant basic blocks in a given CFG (the identified susceptible blocks). It is
important to mention that our proposed bit-flip analysis framework can be
used in combination with any other signature monitoring scheme based on
local-signature-update assertions. The experiments show that limiting the in-
strumentation only to the susceptible blocks releases (on average) 28.9% of
the instruction memory while the fault coverage remains the same as the fully
instrumented version. The released memory locations can be used for, e.g.,
data-error detecting assertions to additionally improve fault tolerance of the
targeted systems.

7.2. THESIS MAIN CONTRIBUTIONS 105

In Chapter 6, we introduced a lightweight, low-latency CFE recovery method
with checkpoints only in the susceptible source basic blocks. Our proposed
recovery scheme is able to detect the CFE and roll back the execution to the
beginning of the basic block where the CFE has occurred with a low constant
latency. We extended our bit-flip analysis framework to identify the suscep-
tible sources of CFE in the program. This information was used to limit the
checkpoint locations only to the susceptible source blocks and decrease the im-
posed overheads. In order to assess our recovery method fairly we considered
the three metrics of correctability, performance and recovery time. When com-
paring our scheme to a well known recovery scheme (ACCE), we show that
our method is more efficient considering (correctability and performance over-
head) by a factor of eight. The main reason behind the improved efficiency is
that the instrumentations for detection and recovery are limited to exactly the
identified vulnerable points of the program. Considering the recovery time,
our method has a constant recovery time of 28 cycles, while ACCE recovery
time in minimum case is 32 cycles and it will get higher in larger workloads
with more than one functions.

7.2 Thesis main contributions

The contributions of this thesis are as follows:

1. An improved categorization of modern software-based reliability
optimization methods. A careful categorization of existing signature
monitoring schemes was performed to emphasize the advantages and
disadvantages of these methods. Section 3.2 introduced the three cate-
gories and classified existing methods under these categories.

2. A careful study of the compatibility between software based relia-
bility optimization methods and conventional power reduction tech-
niques. The result of the this study identified two compatible pairs be-
tween reliability optimizations and power reduction techniques. Section
3.4 explained in detail why these optimizations pairs are compatible.

3. A novel reliability optimization method based on workload specific
assertions at compile time that is also fully compatible with loop un-
rolling. The proposed method uses the results of the compilation process
such as the specific CFG topology to apply workload specific assertions.
Therefore, it is compatible with all performance optimization techniques

106 CHAPTER 7. CONCLUSIONS

that change the CFG topology such as loop-unrolling. The fault cover-
age of the proposed method can be additionally improved on average
by 9.75% when combined with loop-unrolling. Section 4.4 explains the
workload specific reliability optimization assertions in detail and Sec-
tion 4.5 analyzes the impact of loop unrolling on this method.

4. A systematic approach for identification of susceptible locations to
CFE and for limiting the assertions required for error detection and
recovery to only those locations. We identify all locations suscepti-
ble to CFEs using profiling. Having such information a minimum set
of code instrumentation points is defined. Limiting the assertions to
only these instrumentation points, can significantly reduce the overheads
while guaranteeing equivalent reliability as existing techniques. This is
discussed in detail in Chapters 5 and 6.

7.3 Directions for future research

As discussed in the thesis, among all proposed reliability optimization methods
the challenge is to find the best suitable method in terms of provided reliability,
power consumption and performance overheads. In different systems, based on
the specific system requirements, the most suitable method may differ. In one
system performance might be more important that reliability and in another
system the opposite can be the case. Therefore, there is an open research to
tailor the reliability optimization methods for the specific needs of different
systems. More specifically, the possible future directions for improving the
techniques proposed in this work are discussed below.

In Chapter 4 the impact of loop-unrolling on different signature monitor-
ing methods was investigated. As future work, the impact of other loop-
transforming compiler optimizations, e.g., Fission, Skewing, Inversion just to
name a few, on the proposed SCFC method and other signature monitoring
schemes should be investigated.

As the future work of our framework (proposed in Chapter 5) for profiling
and bit-flip analysis of the code we envision two steps. The first step is to
improve the fault-coverage and the second step is to additionally reduce the
performance overhead. In the current work we have not taken into account in-
direct branches. This is due to the fact that this type of branches are used only
for returning from function calls and not for inter basic block jumps. In order
to further improve the fault-coverage and the robustness of our technique the

7.3. DIRECTIONS FOR FUTURE RESEARCH 107

return addresses of function calls can be calculated prior to runtime by know-
ing the offsets and the starting address of each function. Moreover, in order to
improve the fault coverage and detect also data error faults, the released NOP
locations should be used for data error detecting assertions.

The second step of improvement of our bit-flip analysis framework and the
proposed instrumentation of susceptible basic blocks is to additionally reduce
the performance overhead. For this reason, the terminating branch instruction
of the non-susceptible blocks can be re-scheduled before the released NOP lo-
cations at the tail of the corresponding blocks. With this rearrangement we
can additionally improve performance. As a result our partial-FCFC (pro-
posed in Chapter 5) will have lower performance overhead than full-FCFC.
It should, however, be noted that with this arrangement there would be no
room left for data-error detecting assertions as discussed above. This decision
should be taken depending on the systems requirement whether reliability or
performance is more critical. In systems with performance considered more
important than reliability, rescheduling the terminating branch instruction will
be beneficial. While in reliability sensitive systems the proposed framework
in Chapter 5, can be improved by using additional assertions for data error
detection.

As the future work, it should also be investigated how to identify the most
suitable fault model for a given system. SCFC is proposed to cope with both
BranchTrgChange and NonBranchToBranch types of CFEs. However, FCFC
targets only BranchTrgChange error type, An example of the future work for
investigating which fault model and optimization (SCFC or FCFC) is suitable
for which system is given here. NonBranchToBranch error type represents
diverging from the correct control flow path and it can happen due to two
faults: a fault in program-counter or a fault that makes the decoding stage
to invoke a branch incorrectly. However, in many ISAs converting the non-
branch instructions to branch by a single bit-flip is not possible. Moreover,
in many systems the program-counter is protected by redundant circuitry. In
such systems, the probability of having NonBranchToBranch error types is
extremely low. Therefore, in such systems instrumenting the code with FCFC
assertions is preferable. However, in systems that the program-counter is not
protected or non-branch instructions can be converted to branch due to single
bit-flips, SCFC assertions are strongly suggested.

Bibliography

[1] Cosy compiler. 43, 49, 96

[2] Synopsys processor designer. 43, 56

[3] O. Goloubeva ad M. Rebaudengo, M. Sonza Reorda, and M. Violante.
Soft-error detection using control flow assertions. In 18th IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems, pages
581–588. IEEE, November 2003. 15, 16, 31, 37

[4] A.V. Aho and J.D. Ullman. Foundations of Computer Science: C Edition.
Principles of computer science series. W. H. Freeman, 1994. ISBN-10
0716782847. 57

[5] Z. Alkhalifa, V S Nair, N. Krishnamurthy, and J.A. Abraham. Design and
evaluation of system-level checks for on-line control flow error detection.
IEEE Trans. on Parallel and Distributed Systems, 10(6):627–641, June
1999. 15, 16

[6] David F Bacon, Susan L Graham, and Oliver J Sharp. Compiler trans-
formations for high-performance computing. ACM Trans. Computing
Surveys, 26(4):345–420, December 1994. 42

[7] Mohsen Bashiri, Seyed Ghassem Miremadi, and Mahdi Fazeli. A check-
pointing technique for rollback error recovery in embedded systems.
In Proceedings of International Conference on Microelectronics, pages
174–177, December 2006. 17

[8] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A mechanism for on-
line diagnosis of hard faults in microprocessors. In Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO05), pages 197–208, November 2005. 3

[9] Jonathan Chang, George A. Reis, and David I. August. Automatic
instruction-level software-only recovery. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, pages 83–92.
DSN, 2006. 20, 22

[10] V. Delaluz, M.Kandemir, N.Vijaykrishnan, and I. Kolcu. Compiler di-
rected array interleaving for reducing energy in multi-bank memories. In
Proc. of ASP-DAC, pages 288–296, 2002. 35

109

110 BIBLIOGRAPHY

[11] J. B. Eifert and J. P. Shen. Processor monitoring using asynchronous
signatured instruction streams. In Proceedings of the 14th Annual Inter-
national Conference on FaultTolerant Computing, pages 394–399, June
1984. 15, 38

[12] S Feng, S Gupta, A Ansari, and Scott Mahlke. Shoestring: Probabilistic
soft-error reliability on the cheap. In Proceedings of ASPLOS, pages
385–396, 2010. 9

[13] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A. Mahlke, and
David I. August. Encore: Low-cost, fine-grained transient fault recovery.
In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 398 – 409, December 2011. 17

[14] T S Ganesh et al. Seu mitigation techniques for microprocessor con-
trol logic. In Proceedings of the Sixth European Dependable Computing
Conference (EDCC’06), pages 77–86, 2006. 3

[15] Maria George and Peter Alfke. Linear feedback shift registers in virtex
devices. www.xilinx.com, 2007. 59

[16] U Gunneflo, J Karlsson, and J Torin. Evaluation of error detection
schemes using fault injection by heavy-ion radiation. In Proceedings
of Nineteenth International Symposium on Fault-Tolerant Computing,
1989. FTCS-19, pages 340–347, June 1989. 9, 41

[17] M Guthaus, J Ringenberg, D Ernst, T Austin, T Mudge, and R Brown.
Mibench: A free, commercially representative embedded benchmark
suite. In International Workshop on Workload Characterization, pages
3–14, 2001. 71, 78, 96

[18] Chi-Hong Hwang and Allen C.-H. Wu. A predictive system shutdown
method for energy saving of event-driven computation. 5(2):226–241,
April 2000. 34

[19] G. A. Kanawati, V. S. S. Nair, N. Krishnamurthy, and J. A. Abraham.
Evaluation of integrated system-level checks for on-line error detection.
In Proceedings of IEEE International Computer Performance and De-
pendability Symposium, pages 292–301. IEEE, September 1996. 15, 31,
43, 47

[20] Mahmut Kandemir, N. Vijaykrishnan, Mary Jane Irwin, and Wu Ye. In-
fluence of compiler optimizations on system power. IEEE Trans. Very
Large Scale Integr. Syst., 9(6):801–804, December 2001. 35

BIBLIOGRAPHY 111

[21] Daya Shankar Khudia and Scott Mahlke. Low cost control flow protec-
tion using abstract control signatures. In Proceedings of LCTES, pages
3–12, June 2013. 9, 15

[22] Daya Shanker Khudia, Griffin Wright, and Scott Mahlke. Efficient soft
error protection for commodity embedded microprocessors using profile
information. In Proceedings of the 13th ACM SIGPLAN/SIGBED In-
ternational Conference on Languages, Compilers, Tools and Theory for
Embedded Systems, pages 99–108, May 2012. 21

[23] Huang Kuang-Hua and J. A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Trans. Comput., 33(6):518–528, June 1984.
20

[24] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai.
Compiler optimization on vliw instruction scheduling for low power.
8(2):252–268, April 2003. 36

[25] Yann-Hang Lee and C.M. Krishna. Voltage-clock scaling for low en-
ergy consumption in real-time embedded systems. In Sixth International
Conference on Real-Time Computing Systems and Applications, pages
272–279. RTCSA, 1999. 34

[26] A Mahmood and E. J McCluskey. Concurrent error detection using
watchdog processors-a survey. In IEEE Trans. on Computers, pages 160–
174, 1988. 3

[27] Ganesh Marlowe, A. K. Ganesh, and T. J. Marlowe. A compiler-based
approach to fault-tolerance in real-time systems. pages 1–8, 1996. 9, 17

[28] Ghassem Miremadi, Johan Karlsson, Ulf Gunnejlo, and Jan Torin. Two
software techniques for on-line error detection. In 22nd International
Symposium on Fault-Tolerant Computing, pages 328–335. FTCS, July
1992. 15, 18

[29] Daniel Mosse, Hakan Aydin, Bruce Childers, and Rami Melhem.
Compiler-assisted dynamic power-aware scheduling for real-time appli-
cations. In In Workshop on Compilers and Operating Systems for Low
Power, pages 1–9, 2000. 34

[30] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control flow
checking by software signatures. IEEE Trans. on Reliability, 51(1):111–
122, March 2000. 13, 14, 15, 16, 22, 31

112 BIBLIOGRAPHY

[31] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detec-
tion by duplicated instructions in super-scalar processors. IEEE Trans.
on Reliability, 51(1):63–75, March 2002. 19, 22

[32] A Parikh, M Kandemir, N Vijaykrishnan, and M J Irwin. Instruction
scheduling based on energy and performance constraints. In Proceedings
of IEEE Computer Society Workshop on VLSI, pages 37–42, 2000. 61

[33] Rafael B Parizi, Ronaldo R Ferreira, Luigi Carro, and Alvaro F Mor-
eira. Compiler optimizations do impact the reliability of control-flow ra-
diation hardened embedded software. International Embedded Systems
Symposium IESS: Embedded Systems: Design, Analysis and Verification
pp 49-60, pages 49–60, 2013. 42

[34] M. Rebaudengo, M.S. Reorda, and M. Violante. A new software-based
technique for low-cost fault-tolerant application. In Annual Reliability
and Maintainability Symposium, pages 25–28, 2003. xiii, 19, 20

[35] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, and
Massimo Violante. Soft-error detection through software fault-tolerance
techniques. In Proceedings of the 14th International Symposium on De-
fect and Fault-Tolerance in VLSI Systems, pages 210–218. IEEE, 1999.
15, 19, 22

[36] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. Swift: Software implemented fault tolerance. In
Int. Symposium on Code Generation and Optimization, pages 243–254,
March 2005. 19, 22

[37] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
David I. August, and Shubhendu S. Mukherjee. Design and evaluation of
hybrid fault-detection systems. In International Symposium on Computer
Architecture, pages 148–159. ISCA, June 2005. 22

[38] N Saxena and E. J McCluskey. Dependable adaptive computing systems
the roar project. In Proceedings of International Conference on Systems,
Man, and Cybernetics, pages 2172–2177, 1998. 3

[39] Robert Seepers, Christos Strydis, and Georgi Gaydadjiev. Architecture-
level fault-tolerance for biomedical implants. In International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and
Simulation, pages 104–112, 2012. 78

BIBLIOGRAPHY 113

[40] A Shye, T Moseley, V.J Reddi, J Blomstedt, and D.A Connors. Us-
ing process-level redundancy to exploit multiple cores for transient fault
tolerance. In International Conference on Dependable Systems and Net-
works, DSN, pages 297 – 306, June 2007. 3

[41] Mani B. Srivastava, Anantha P. Chandrakasan, and R. W. Brodersen. Pre-
dictive system shutdown and other architectural techniques for energy
efficient programmable computation. 4(1):42–55, March 1996. 34

[42] Christos Strydis, Christoforos Kachris, and Georgi N. Gaydadjiev. Imp-
bench: A novel benchmark suite for biomedical, microelectronic im-
plants. In International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2008. SAMOS 2008., pages 82–
91, July 2008. 41, 43, 52, 56

[43] Ching-Long Su, Chi-Ying Tsui, and A.M. Despain. Low power archi-
tecture design and compilation techniques for high-performance proces-
sors. In Compcon Spring ’94, Digest of Papers., pages 489–498, February
1994. 33

[44] V Tiwari and M Tien-Chien Lee. Power analysis of a 32-bit embedded
microcontroller. In Proceedings of Design Automation Conference, ASP-
DAC ’95/CHDL ’95/VLSI ’95., pages 141–148, September 1995. 61, 62

[45] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee.
Instruction level power analysis and optimization of software. J. VLSI
Signal Process. Syst., 13(2-3):223–238, August 1996. 32

[46] R. Vemu and J.A. Abraham. Ceda: control-flow error detection us-
ing assertions. In IEEE Transactions on Computers, pages 1233–1245,
September 2011. 15, 16

[47] R Vemu, S Gurumurthy, and J Abraham. Acce: Automatic correction of
control-flow errors. In Int. Test Conference, pages 1–10, 2007. 17, 42,
91, 98

[48] Ramtilak Vemu and Jacob Abraham. CEDA: Control-flow error detection
using assertions. IEEE Trans. on Computers, 90(9):1233–1245, Septem-
ber 2011. 42, 70, 77, 79

[49] Vasanth Venkatachalam and Michael Franz. Power reduction techniques
for microprocessor systems. 37(3):195–237, September 2005. 32

114 BIBLIOGRAPHY

[50] Rajesh Venkatasubramanian, John P. Hayes, and Brian T. Murray. Low-
cost on-line fault detection using control flow assertions. In 9th IEEE
On-Line Testing Symposium, pages 137–143. IEEE, July 2003. 8, 15, 16,
31, 45

[51] J Vinter, J Aidemark, P Folkesson, and J Karlsson. Reducing critical
failures for control algorithms using executable assertions and best effort
recovery. In Proceedings of the International Conference on Dependable
Systems and Networks, pages 347–356, 2001. 22

[52] N Wang, J Quek, T Rafacz, and S Patel. Characterizing the effects of
transient faults on a high-performance processor pipeline. In Proceedings
of International Conference on Dependable Systems and Networks, pages
61–70, July 2004. 9, 72

[53] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling
for reduced cpu energy. In Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation, pages 13–23, 1994. 34

[54] Kent Wilken and John Paul Shen. Continuous signature monitoring: effi-
cient concurrent-detection of processor control errors. In Proceedings of
the 1988 international conference on Test: new frontiers in testing, pages
914–925, September 1988. 15

[55] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic
voltage scaling settings: opportunities and limits. In Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 49–62. ACM, 2003. 34

[56] S.S. Yau and Fu-Chung Chen. An approach to concurrent control flow
checking. IEEE Trans. on Software Engineering, SE-6(2):126–137,
March 1980. 9

[57] Dakai Zhu. Energy management for real-time embedded systems with
reliability requirements. In Proceedings of International Conference
Computer-Aided Design, ICCAD, pages 528–534, November 2006. 1

List of Publications

International Conferences

1. Ghazaleh Nazarian, Christos Strydis, Georgi N. Gaydadjiev. Compati-
bility Study of Compile-Time Optimizations for Power and Reliabil-
ity. Proceedings of the 14th Euromicro Conference on Digital System
Design, Architectures, Methods and Tools (DSD), pp. 809-813, Oulu,
Finland, August-September, 2011

2. Ghazaleh Nazarian, Robert M. Seepers, Christos Strydis, Georgi N.
Gaydadjiev. Compiler-aided methodology for low overhead on-line
testing. Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), pp. 219-226, Agios Konstantinos, Greece, July 2013

3. Ghazaleh Nazarian, Luigi Carro, Georgi N. Gaydadjiev. Towards Code
Safety with High Performance. Proceedings of the International Con-
ference on Architecture of Computing Systems (ARCS), pp. 209-220,
Lubeck, Germany, February 2014

4. Ghazaleh Nazarian, Diego G. Rodrigues, Alvaro Moreira, Luigi Carro,
Georgi N. Gaydadjiev. Bit-Flip Aware Control-Flow Error Detection.
Proceedings of the 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pp. 215-221, Turku,
Finland, March 2015

5. Ghazaleh Nazarian, Razvan Nane, Georgi N. Gaydadjiev. Low-Cost
Software Control-Flow Error Recovery. Proceedings of the Euromi-
cro Conference on Digital System Design (DSD), pp. 510-517, Madeira,
Portugal, August 2015

115

Samenvatting

Microprocessors worden gebruikt voor een steeds groter wordende reeks aan
toepassingen, van kleine ingebouwde systeemapparaten tot aan grote comput-
ers en supercomputers. Ingebouwde microprocessor-systemen zijn in de mod-
erne maatschappij steeds essentiler geworden. Afhankelijk van het toepass-
ingsgebied moeten deze ingebouwde systemen aan steeds meer eisen voldoen.
De grootste uitdagingen vandaag de dag zijn kosten, prestaties, het energiege-
bruik, de betrouwbaarheid, snelle en voorspelbare responstijden en het silicium
oppervlak. In alledaagse computersystemen zijn sommige van deze parame-
ters minder belangrijk dan andere, hoewel prestaties, silicium oppervlak en
energiegebruik altijd belangrijk zijn voor ingebouwde systemen. Daarnaast
is in moderne systemen betrouwbaarheid een nieuwe, zeer essentile eis in op-
komst. Van alle bovengenoemde factoren kunnen prestaties, energie, reactie en
betrouwbaarheid worden bewerkstelligd middels softwarematige oplossingen,
er zijn geen hardware-aanpassingen of toevoegingen nodig. Maar dit soort
optimalisatie-technieken kunnen wel de prestaties en de vermogenskarakter-
istiek benvloeden. Het belangrijkste doel van dit werk is dus om nieuwe
software-technieken te vinden die de betrouwbaarheid bevorderen, met klein
invloed op prestaties en energieverbruik. Daarom worden de methodes voor
de optimalisatie van de betrouwbaarheid in detail bestudeerd en wordt er
een zorgvuldige indeling van de bestaande software-technieken gemaakt. De
sterke en zwakke kanten van elke categorie worden zorgvuldig onder de loep
genomen. Uit de verkregen informatie worden twee nieuwe optimalisatie-
technieken voor fout-opsporing en een techniek voor fout-herstel voorgesteld.
Deze optimalisatie-technieken minimaliseren de vereiste code-instrumentatie-
punten, terwijl de betrouwbaarheid behouden blijft, op niveaus vergelijkbaar
met andere state of the art-oplossingen. Daarnaast wordt er een generieke
methodiek voorgesteld, om te helpen met het proces van het identificeren van
het minimum aan code-instrumentatie-punten. Voor de evaluatie kozen we
een uitdagend uitgangspunt, bestaande uit de best bekendstaande technieken
voor fout-opsporing en fout-herstel, gevonden in openbare literatuur. De re-
sultaten uit dit onderzoek voor een reeks biomedische benchmarks laten zien
dat door het gebruik van de voorgestelde ontwerptechniek, fout-opsporing en
-herstelmethodes het prestatie- en energieverbruik drastisch kan worden ver-
beterd, terwijl de foutendekking op een lijn blijft met voorheen voorgestelde
en veelgebruikte methodes.

117

Curriculum Vitae

Ghazaleh Nazarian was born on the first of April 1982
in Tehran, Iran. She obtained her Bachelor of Science in
Computer Engineering at the Azad University Of Central
Branch in Tehran. In 2006 she moved to the Netherlands,
receiving her Master of Science in Computer Engineering
at the Delft University of Technology in 2008. She then
joined the CE department at the same university in the pur-

sue of her PhD, focusing her research on compilers optimizations for reliabil-
ity. In the fall of 2013 she worked as Guest Researcher at the University of
Porto Alegre, Brazil. In 2014 she joined Associated Computer Expert (ACE)
B.V. in Amsterdam, where she worked as Compiler Engineer. Currently she is
with Brightsight B.V. in Delft working as Security Evaluator.

119

120 CURRICULUM VITAE

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms and Symbols
	Introduction
	Problem overview and research questions
	Thesis contributions
	Thesis organization

	Background and related research
	Introduction
	Impact of hardware faults at the software level
	Control-flow checking
	Definitions
	Control-flow error model
	Signature monitoring
	State of the art signature monitoring techniques
	Control flow error recovery methods
	Error-capturing instructions (ECI)

	Data error detection and recovery
	Data error model
	Data-duplication-with-comparison
	Data error recovery methods
	Executable assertions

	Data and control flow checking
	Conclusions

	Reliability and power optimization techniques investigation
	Introduction
	Signature monitoring categorization and analysis
	Quantitative analysis

	Optimization techniques for power reduction
	Hardware assisted power reduction techniques
	Software techniques for power reduction

	Compatibility analysis
	Conclusions

	Low overhead control flow fault detection
	Introduction
	Setting up a challenging baseline for comparison
	Path assertion method with the minimal overhead
	Predecessor/successor method with the highest reliability

	Fault model
	Selective Control Flow Check (SCFC) method
	Experimental framework for compile-time optimizations
	Detailed description of the SCFC method

	The impact of loop unrolling on SCFC and CCA
	Experimental results and analysis
	Workloads used in our study
	Experimental setup
	Experimental results

	Conclusions

	Bit-flip aware control-flow error detection
	Introduction
	CFEs detectability observations
	Targeted faults definition

	Instrumenting susceptible basic-blocks
	Systematic bit-flip analysis
	Flexible Control Flow Check (FCFC)
	Instrumentation using SBL information

	Experimental setup and results
	Experimental setup
	Metric for evaluating error detection methods
	Experimental results

	Conclusions

	Low-cost Software Control-Flow Error Recovery
	Introduction
	Motivation
	Fast recovery with workload specific checkpoints
	Fast Recovery Scheme
	Efficient Checkpoints at Identified Susceptible Blocks

	Experimental setup and results
	Experimental results

	Conclusions

	Conclusions
	Thesis summary
	Thesis main contributions
	Directions for future research

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

