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Abstract

The distribution of multiple entangled pairs plays a vital role in various applications, such as
quantum metrology, blind quantum computing, quantum key distribution, and quantum teleporta-
tion. While qubit-based protocols exist, they are often limited by short coherence times in quantum
memories and the need for individual pair generation, leading to inefficiencies and reduced fidelity.
To address these challenges, this thesis focuses on the development and analysis of a comprehensive
theoretical framework for satellite-based entanglement distribution using high-dimensional qudits.
By employing high-dimensional qudit encoding, which enables the simultaneous entanglement of
multiple pairs, we aim to enhance the capacity and efficiency of entanglement distribution schemes.

The objectives of this research are twofold, first, to compare the performance of the qudit-based
protocol with a similar qubit-based protocol, particularly in a satellite-based context, and second,
to investigate the feasibility and potential advantages of employing high-dimensional qudit encoding
for near-term long-range entanglement distribution. The theoretical framework encompasses various
elements, including a single photon pair source, lossy transmission, mapping of qudit states to qubit
memories, and heralding measurements.

Through various simulations, we evaluate the impact of different parameters on the perform-
ance of the proposed protocol. Our findings reveal that high-dimensional encoding significantly
alleviates memory requirements, making it suitable for current technologies with low memory co-
herence times. Multiplexing techniques further enhance the achievable distances and transmission
rates, highlighting their importance for realistic implementations. However, we note that higher-
dimensional protocols introduce additional experimental challenges and errors, warranting further
research and optimisation. Furthermore, we explore the effect of reducing dark count rates in de-
tectors and analyse its influence on the overall performance. Our investigations underscore the need
for substantial detector improvements, as current dark count probabilities are on the same order of
magnitude as channel losses.

By advancing our understanding of satellite-based entanglement distribution using qudits, this
research contributes to the development of practical and secure quantum communication networks.
The results presented herein lay the groundwork for future advancements in quantum communica-
tion technologies, fostering the realisation of global-scale quantum networks.
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1 Introduction

In recent decades, quantum information science has emerged as a fascinating field with the potential
to revolutionise various aspects of information processing, communication, and computation [1]. One
of the fundamental elements of quantum information is entanglement, a unique property that allows
the creation of non-classical correlations between distant quantum systems. Harnessing entanglement
for practical applications is a key goal in the field of quantum communication [2]. Traditional quantum
communication protocols primarily rely on qubits, which are two-level quantum systems, for encoding
and transmitting information. However, information encoding using high-dimensional quantum systems
called ”qudits” can significantly increase the amount of information that can be encoded and transmitted
per attempt.

The demand for multiple entangled pairs arises across various domains, encompassing quantum metro-
logy for precise sensing ([3]), blind quantum computing ([4, 5]), quantum key distribution ([6],[7]), and
quantum teleportation ([8, 9]), among others. In these applications, the distribution of entangled pairs
plays a pivotal role, aiming to establish a global quantum network [10, 11]. While certain qubit-based
protocols have been developed, they typically rely on a sequential ([12]) or parallel ([13, 14]) approach to
individually generate entangled pairs. However, these methods are significantly impacted by the limited
coherence times of quantum memories, as stored pairs must wait until all desired entangled pairs are
successfully generated. The required coherence time of the quantum memories is therefore dependent
on the transmission probability. To address this challenge, a protocol utilising high-dimensional qudit
encoding to simultaneously entangle multiple pairs was introduced ([15, 16]). This novel approach forms
the foundation of our thesis, where we aim to explore its advantages over qubit-based protocols within
the context of a satellite-based scheme. By harnessing the power of high-dimensional encoding, we seek
to overcome the limitations imposed by short coherence times and enable the distribution of entangled
pairs over long distances. Our chosen encoding scheme is time-bin encoding, which allows for efficient
manipulation and detection of qudits using well-established techniques [17]. This type of encoding offers
inherent resilience against various types of noise during transmission. Moreover, the use of satellites in
entanglement distribution offers an important advantage over terrestrial-based approaches as they can
bypass the limitations imposed by optical fibres, such as high attenuation and loss [18], which leads
to an exponential decrease in rate with distance. Satellites thus provide a platform for long-distance
quantum communication, enabling the distribution of entangled qudits over global distances [19].

The primary objective of this thesis is to develop a comprehensive theoretical framework for satellite-
based entanglement distribution using qudits in order to compare the performance of the protocol to a
similar qubit-based protocol. We aim to investigate the feasibility and performance gain of employing
higher-order information encoding to enhance the capacity of entanglement distribution schemes. To
achieve this, we will delve into the mechanics of creating multiple entangled pairs at two different
ground stations. The model consists of four main components: a single photon pair source, transmission,
mapping the high-dimensional qudit state to a register of qubit memories, and a heralding measurement.
While our goal is to provide a general model without assuming specific hardware, we will consider
the use of a spontaneous parametric down-conversion (SPDC) source, which has shown promising
experimental results. Notably, the experiment by Yin et al., demonstrated entanglement distribution
over a ground distance of 1200 km [20]. For the transmission probability, we will utilise a model
developed by Janice van Dam [21]. To implement the mapping of the qudit state to the memory register
several possible hardware types will be proposed, although the analytical model will assume a perfect
mapping. To ensure a non-invasive heralding measurement that avoids collapsing the entangled state
into a non-entangled product state, we will employ a generalised X-measurement. In our analysis, we
will assume the multi-mode quantum Fourier transform (QFT) interferometer to be perfect, providing
accurate measurements. Incorporating different hardware options and refining the assumptions based
on experimental implementations can lead to a more practical and realistic protocol with potentially
fewer errors.

The simulations verify the anticipated alleviation of memory requirements through the use of high-
dimensional encoding. This substantiates the recommendation to employ high-dimensional encoding
for near-term long-range entanglement distribution, particularly when confronted with the constraints
imposed by low memory coherence times associated with current technologies. By adopting a dimen-
sionality that corresponds to the desired number of entangled pairs, the memories only need to retain
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1 Introduction

the entangled pairs for the duration of classical communication between two ground stations needed for
the heralding step. However, it is important to note that the advantages of qudits diminish in scenarios
with extended coherence times, especially when high-fidelity pairs are required. In our model, this
observation primarily stems from the use of an SPDC source, which introduces additional errors when
higher-dimensional encodings are employed. The simulations moreover demonstrate that the incorpor-
ation of multiplexing techniques enables the attainment of significantly longer distances, and to some
extent, multiplexing becomes essential for practical implementations. It should be acknowledged that
the realisation of a higher-dimensional protocol is likely to entail a more complex experimental setup
and a higher susceptibility to errors due to the increased number of components involved. Furthermore,
we explore the impact of reducing the dark count rate of detectors within our scheme. Our findings
show that achieving significant results necessitates a substantial improvement in detector performance,
as the current achievable dark count rate is still on the same order of magnitude as the channel loss.
Enhancing detectors to achieve lower dark count rates is crucial for reducing errors and improving the
overall fidelity of entanglement distribution.

Through our analysis and comparison with a qubit-based protocol, we aim to demonstrate the su-
periority of high-dimensional qudit protocols for long-range implementations with near-term hardware.
Our study specifically focuses on the satellite-based paradigm, highlighting its immense potential for
establishing robust quantum networks. By leveraging qudits and their inherent capabilities, we aim to
push the boundaries of long-range entanglement distribution and pave the way for the practical im-
plementation of satellite-based quantum networks. These networks hold the promise of revolutionising
secure communication, enabling advanced quantum computing paradigms, and unlocking new frontiers
in various scientific and technological domains. This research contributes to the growing body of know-
ledge in the field of quantum communication and aids in establishing a solid foundation for the practical
implementation of satellite-based quantum networks using qudits. Through our efforts to combat lossy
transmission and short coherence times, we strive to enable the distribution of high-fidelity entangled
pairs at a high rate. By doing so, we aim to accelerate the development of secure and scalable quantum
communication technologies, ultimately shaping the future of global communication and information
exchange.

In the subsequent chapters, this thesis will unfold as follows. In §2 we will present the necessary
theoretical background for modelling entanglement distribution. The model utilised for our simulations
will be explained in detail in §3, while the results obtained will be presented in §4. In §5 we delve into a
comprehensive discussion of our findings, offering insights into potential improvements, implementation
methods, and avenues for future research. Finally, in §6, we will conclude the thesis with a concise
recapitulation of the key findings. For further reference, the appendix includes additional information
such as the pseudo-code (A.2), detailed calculations for a 4-dimensional qudit protocol demonstrating
the creation of two entangled pairs (A.1), and a list of parameters (A.3).

For the interested reader, the full code used for the simulations in this thesis can be found at: https:

//github.com/mcalvind/Master_Thesis_Calvin_Dijksman.
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2 Theory

In this section, the theoretical background for the method used in this thesis is presented. We begin by
introducing the notations used throughout this thesis. Understanding entanglement is a fundamental
part of this work so we will delve into this concept here. Additionally, the spontaneous parametric down-
conversion (SPDC) source will be presented, a key component that enables the implementation of our
entanglement protocol. Notably, previous experiments conducted with similar settings have successfully
demonstrated the utility of this source [20, 22, 23]. The presence of loss in quantum communication
systems necessitates careful consideration of the medium used for transmission. This leads us to consider
the motivation behind the use of satellites over optical fibre while we discuss the modelling of photon
transmission through free space and the atmosphere. Additionally, we discuss the process of mapping
photonic qudits to quantum memories (QM) and the heralding of photon arrival. While we outline
a possible implementation, it is important to note that there are multiple variations and setups that
can be employed in practical applications. We conclude this section by explaining the phenomenon
of decoherence, which significantly impacts the fidelity of our entangled pairs and plays a crucial role
in our theoretical simulations. By providing a comprehensive theoretical foundation, this section sets
the stage for the subsequent chapters, where we go into the simulation model and interpretation of the
results.

2.1 Nomenclature

In quantum physics, we use a wave function to predict how systems behave. These wave functions
depict the state of the system under consideration and provide the probabilities associated with various
measurement outcomes. To describe states, we often utilise vectors, adopting a notation specific to the
field of quantum mechanics known as the ’bra-ket’ or Dirac notation. In this notation, we represent

states using ”kets”, denoted as column vectors. For instance, |0⟩ =

(
1
0

)
represents the state labelled

as ”0”. Conversely, we have ”bras”, which are represented as row vectors. For example, ⟨0| =
(
1 0

)
and can be considered as the complex conjugate of the corresponding ”ket”. This notation allows us
to conveniently work with complex Hilbert spaces, where the vectors represent the different states of
the system. By adopting the ’bra-ket’ notation, we can effectively describe and manipulate quantum
states within this framework. In quantum computation and information, we often use the analogy
of classical computation as a template. Therefore, information is usually encoded in zeros and ones.
This can be done by finding a physical system and constraining the possible states to only two, such
that we have a two-level system. For photons two common realisations of such a two-level system is
to use polarisation or time-bin encoding. In this thesis, we will moreover consider higher dimensional
information encoding in the form of so-called qudits. These can be in more than two states, characterised
by their dimensionality, and our choice of encoding will be time-bin encoding. The state |l⟩ will thus
denote that the photon is in the l-th time-bin. To take care of the fact that the source of entangled
photons employed might send multi-photon pairs instead of single-photon pairs we will write such a
state in the Fock basis as |n⟩l where n tells us the number of photons present and l denotes the time-bin.

If we are talking about a system of multiple individual quantum objects we can describe them using one
’ket’ as follows: |Ψ⟩A,B = |ψA, ψB⟩ = |ψA⟩ ⊗ |ψB⟩, where |ψA⟩ and |ψB⟩ denote the states that objects
A and B are in, respectively. Throughout this thesis, we will sometimes refer to A and B as Alice and
Bob as is the usual convention in quantum physics.

Up till now, we have considered pure states, meaning that we know the precise state of a system. If the
state of a system is in some mixed state determined by a statistical ensemble of various states we will
need a different representation, namely the density matrix. A density matrix is defined by:

ρ =
∑
j

pj |ψj⟩ ⟨ψj | . (2.1)

The diagonal terms of this equation tell us the probabilities to be in any state and the off-diagonal terms
express information about coherence or quantum correlations between different states. These arise when
superpositions exist between basis states or there is entanglement. When a state is in a superposition it
means that a system can coexist in multiple basis states at the same time. The meaning of entanglement
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2 Theory

will be explained further in this section in §2.2. The density matrix is non-unique and depends on the
choice of basis, in one basis a state might be in a superposition while in another it might not. For
instance, if we look at the following state: 1√

2
(|0⟩ + |1⟩), this can be represented in the X-basis as |+⟩

while 1√
2
(|0⟩−|1⟩) can be represented by |−⟩, forming an orthogonal basis to the common computational

basis. A density matrix can be used to describe the general state of any quantum system and allows
for the calculation of the outcomes of any measurement performed on this system. If the state is pure
it is straightforwardly represented by:

ρpure = |ψ⟩ ⟨ψ| . (2.2)

The purity, given by Tr
(
ρ2
)
≤ 1, provides a measure of how pure a state is. If Tr

(
ρ2
)

= Tr(ρ) = 1, we
are dealing with a pure state, while for mixed states this value is less than 1.

In this thesis, we focus on a satellite-based entangled photon source situated at a midpoint. To provide
a visual representation, we show the single satellite downlink setup considered in this thesis in Fig. 2.1.
Some of the parameters that will be used later on in the model are also illustrated. Considering this
isosceles triangle allows for ease of calculations, although different arm lengths could be considered as
well.

Additionally, a list of parameters and their meaning can be found in Appendix 3.

Fig. 2.1: Visual representation of the overall setup considered in this thesis. Note that we consider
a midpoint satellite such that both arms of the transmitted entangled photons are equal in length as
indicated by the equal angles θ. We denote the ground distance between Alice and Bob by L and the
height of the satellite by h.

2.2 Entanglement

If the quantum state of an individual part of a multipartite quantum system becomes correlated in such a
way that it can not be described separately without mentioning the others, we call them entangled. This
correlation is characterised by a mathematical entangled state, where the properties of the individual
particles are intertwined, leading to a non-separable composite system. Let us consider the following

two-qubit state: |Ψ⟩A,B =
|00⟩A,B+|11⟩A,B√

2
. This state has the remarkable property that it cannot be

written in a product state, that is, no individual single qubit states for Alice and Bob can be found such
that |Ψ⟩A,B = |a⟩ ⊗ |b⟩ if this is the case for any two-qubit state we call it entangled [2]. The entangled
state exhibits unique features, such as non-locality and non-classical correlations, which defy classical
intuitions and play a crucial role in various applications, including quantum information processing [24],
quantum communication [6, 7], and quantum computing[25]. Let us consider two entangled qubits. If
we perform measurements on them we will find that we get correlated outcomes. A generally accepted
way to determine entanglement in an experiment is by checking whether the CHSH is violated (as in
the paper by Hensen et al.[26]) or using another variation of a Bell test. In such tests, correlations are
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2 Theory

measured and compared with the maximum possible amount of correlation that a classical theory can
provide. If this is exceeded it can generally be appointed to quantum effects.

Entanglement can be viewed as a real physical resource and as such should be quantifiable. In other
words, entanglement can be stronger or weaker. Multiple entanglement measures exist that can tell us
how strong the entanglement is. If we can transform the pure state of a two-qudit system by only using
local unitary transformations to

∣∣Ψ+
d

〉
=

|0, 0⟩ + |1, 1⟩ + · · · + |d− 1, d− 1⟩√
d

, (2.3)

then the state is maximally entangled [27]. If, on the other hand, a state is separable there is no entan-
glement. Any measure of entanglement for a pure state |ψ⟩⟨ψ| reduces to the entropy of entanglement
E(|ψ⟩ ⟨ψ|) := S(TrA |ψ⟩ ⟨ψ|) = S(TrB |ψ⟩ ⟨ψ|), where S(ρ) = −Tr(ρ log2 ρ). For mixed states, there is
no universal measure of entanglement and it becomes a bit more tricky to compute [27]. The target
state in this thesis will be a pure state however.

When an entangled pair undergoes quantum operations and is exposed to the environment during
transmission and storage, it is expected that the entanglement may undergo changes, particularly if
decoherence occurs due to undesired interactions with the environment. To assess the preservation of
our entangled pair after these operations, we employ fidelity as a metric, defined as:

F = ⟨ψ| ρ |ψ⟩ , (2.4)

where |ψ⟩ denotes the maximally entangled target state and ρ represents the density matrix of our
system after all operations. The fidelity provides a quantification of the similarity between the original
and final states, offering insight into the extent of entanglement preservation. In this thesis, we use a
Bell state as the target state. There are four Bell states which are each maximally entangled and form
the basis of a 4-dimensional Hilbert space of 2 qubits. The Bell states are given by:∣∣Φ+

〉
=

1√
2

(|00⟩ + |11⟩)∣∣Φ−〉 =
1√
2

(|00⟩ − |11⟩)∣∣Ψ+
〉

=
1√
2

(|01⟩ + |10⟩)∣∣Ψ−〉 =
1√
2

(|01⟩ − |10⟩)

(2.5)

We will use |Φ+⟩ as the target state in our protocol, but any of the four Bell states could in principle
be obtained by applying minor changes to the protocol.

2.3 Spontaneous parametric down-conversion

In this thesis, spontaneous parametric down-conversion (SPDC) is used as an entangled photon source.
SPDC sources have gained popularity in experiments as a reliable method for generating entanglement.
Notably, the Micius satellite used by Yin et al. ([20]) in their state-of-the-art experiments employs this
type of source. One of the advantages of SPDC setups is their ability to operate at room temperature,
making them practical and accessible for various applications. Additionally, the components of SPDC
setups can be easily modified to explore different experimental scenarios. Considering these factors, it
seems sensible to incorporate SPDC as the source in our theoretical model, allowing us to align with
previous experiments conducted using similar satellite setups. It must be noted that although we chose
to use the SPDC source alternative entangled photon sources may be employed.

The phenomenon of spontaneous parametric down-conversion arises from the action of a squeezing
operator on vacuum modes. In the context of three-wave mixing, this process generates what is known
as two-mode squeezed vacuum states (TMSV). Such squeezed vacuum states are obtained by pumping
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a nonlinear crystal during the SPDC process. In the photon number basis, the two-mode squeezed
vacuum state resulting from pumping the non-linear crystal can be represented as [28]:

|Ψ⟩ =
√

1 − λ2
∞∑

n=0

λn |n, n⟩ , (2.6)

where λ ∈ (0, 1) denotes the squeezing parameter. The generation of the TMSV state results from the
interaction with the second-order nonlinearity present in certain optical materials, which is described by
the corresponding susceptibility, χ(2). The Hamiltonian governing the down-conversion can be expressed
as [29]:

Ĥ = ℏωaâ
†â+ ℏωbb̂

†b̂+ ℏωpĉ
†ĉ+ iℏχ(2)(âb̂ĉ† − â†b̂†ĉ), (2.7)

where â and b̂ represent the annihilation operators for the signal and idler modes, respectively, ĉ
represents the annihilation operator for the pump field, and ωa, ωb, and ωp denote the correspond-
ing frequencies. We can now make the parametric approximation where we assume the pump field
to be in a strong coherent classical field γeiωpt, which is strong enough to remain undepleted of
photons over the relevant time scale. Neglecting constant terms, we can approximate the operators
ĉ and ĉ† by γe−iωpt and γeiωpt, respectively. Consequently, the Hamiltonian can be expressed as:

Ĥ(PA) = ℏωaâ
†â+ ℏωbb̂

†b̂+ iℏ(η∗eiωptâb̂− ηe−iωptâ†b̂†) (2.8)

where η = χ(2)γ. In this parametric approximation, the interaction term characterises the down-
conversion process, with η representing the effective coupling strength between the signal and idler
modes induced by the second-order nonlinearity and the amplitude of the pump field.

In the interaction picture where we adjust the pump field frequency such that ωp = ωa + ωb obtaining
the time-independent interaction Hamiltonian

ĤI = iℏ(η∗âb̂− ηâ†b̂†). (2.9)

Through this process, a single pump beam photon can be converted into two optical photons in two
spatially separated modes which are historically referred to as the ”signal” and ”idler” beams (although
their names are arbitrary, see Fig.2.2). The initial state of the system, where the pump beam has many
photons and the signal and idler modes are in vacuum states, undergoes the following conversion:

|n⟩p |0⟩s |0⟩i =⇒ |n− 1⟩p |1⟩s |1⟩i . (2.10)

Since the signal and idler modes were initially in vacuum states we call this process ”spontaneous”.

s

i

p

Fig. 2.2: Schematic showing how the pump beam is split into two separate signal and idler beams
with spatial separation.

Some conditions must be satisfied for the down-conversion process to occur, specifically, we must have
a conservation of energy and of momentum.

ℏωp = ℏωs + ℏωi (2.11)

ℏkp = ℏks + ℏki (2.12)

These are called the phase matching requirements. Several techniques exist for obtaining this phase
matching and their implementation depends on the intended application. For our purpose, the exact
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2 Theory

experimental details are not required. Instead, we will focus on the general output of the TMSVS, given
by Eq. 2.6, in our simulations. Mathematically, we can represent the process by allowing the vacuum
signal and idler states to evolve under the influence of the interaction Hamiltonian described in Eq. 2.9.
The state vector evolves according to the well-known evolution

|Ψ((t)⟩ = e−itĤI/ℏ |0⟩s |0⟩i . (2.13)

This can be expanded up to the second order in time to arrive at the approximate state:

|Ψ(t)⟩ ≈
[
1 − itĤI/ℏ +

1

2
(−1tĤI/ℏ)2

]
|0⟩s |0⟩i . (2.14)

After some derivations we arrive at the approximate expression for the two-mode squeezed state:

|Ψ(t)⟩ ≈
√

1 − λ2
[
|0⟩s |0⟩i + λ |1⟩s |1⟩i + λ2 |2⟩s |2⟩i + O(λ3)

]
. (2.15)

Where λ represents the interaction parameter and controls the amount of squeezing. If we consider
λ ∈ (0, 0.1) we know that less than 1% of all emission events will contain more than one photon pair
and it can therefore be considered a good pumping regime for our purposes. The truncation error that
emerges from neglecting higher-order terms will also be bounded by 1 − (1 − λ2)(1 + λ2 + λ4) which is
smaller than 10−6 for λ < 0.1.

Following a similar setup to the paper by Brendel et al. [30] we can produce time-bin entangled photons.
We start with a pump laser to send a short pulse. In their implementation, the pulse is coupled to a
Mach-Zehnder interferometer to create two well-separated individual pulses. A delay loop is then used
to make the two pulses indistinguishable, thus forming a superposition α |E⟩ + β |L⟩ as shown in Fig.
2.3. Here |α| + |β| = 1 and |E⟩ and |L⟩ represent early and late time-bins respectively.

Fig. 2.3: Schematics of how to use a laser source and an unbalanced interferometer to make a coherent
superposition of time-bin encoded qubits.

For our purpose, we could use a more straightforward way to implement time-bin entanglement by
using a pulsed pump laser that sends pulses at a certain frequency defining the different time bins,

1√
2m

∑2m−1
l=0 |ψp⟩l, where l denotes the time bin of the emitted state and 2m represents the dimension

of the qudit. The nonlinear crystal will be pumped with pulses at these different time bins to generate
the time-bin entangled TMSV states that can be guided towards the two ground stations. The ideal
state that we want to produce by using this source is represented by:

1√
2m

2m−1∑
l=0

|1s⟩l |1i⟩l . (2.16)

However, the source is not ideal since it emits nothing with the largest probability and there is also a
small probability of unwanted higher-order emissions as shown in Eq. 2.15. Hence, after pulsing the
nonlinear crystal in different time bins defining the qudit, the full state can be represented by:

|Ψ⟩A,B =

2m−1⊗
l=0

√
1 − λ2

∞∑
n=0

λn |nl, nl⟩A,B

≈ (1 − λ2)2
m−1[

|0, 0⟩A,B + λ

2m−1∑
l=0

|1l, 1l⟩A,B + λ2
2m−1∑
l=0

2m−1∑
j≥l

|1l1j , 1l1j⟩A,B + O(λ3)
]
.

(2.17)
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Here the subscripts l and j denote the time bins that the states are in. The photons that arrive at the
receiver stations will be coupled to a memory register consisting of qubit memories and will then be
measured by a generalised X measurement to herald the successful arrival at both stations as shown in
Fig. 2.4. This will be explained in more detail in §2.5. Of course, more pulses can be sent and more
interferometers and delay loops could be used to interfere a higher dimensional superposition of time
bins. This high-dimensional encoding will be the basis of the time-bin qudit used in our entanglement
distribution protocol. Since we use time bins as our qudit space and their coherence is formed by
carefully controlling the timing of the pump laser pulses to ensure that they are well-separated, there
is no restriction on the coherence of the laser pulse and thus any standard laser can be used [30]. As
one can imagine, the size and weight of the payload on a satellite are very restricted. Compact sources
may present additional challenges to the implementation of the protocol, however, these can be met by
state-of-the-art designs [31].

Fig. 2.4: Schematic of the proposed setup for a 4-dimensional qudit. Four well-separated pulses are
sent by the laser defining the different time-bins. After interaction with the nonlinear crystal the signal
and idler beams are spatially separated and individually sent to the two ground stations. There the
different pulses are coupled to the memory register, made indistinguishable by different delay loops and
measured in the X-basis. This setup can be generalised for higher dimensional qudits by adding more
interferometers.

2.4 Loss

During the transmission of photonic quantum information, the photons are plagued by interactions with
the environment that can lead to the complete loss of photons. In fibre-based transmission, the loss
is so high even that it is considered infeasible to create a global quantum network solely using optical
fibres. The loss of photons in optical fibre scales exponentially with the transmission distance. In a
recent experiment, Wengerowsky et al. reported the optical fibre deployed distribution of polarisation
entanglement over a distance of 192 km [32]. Long-distance fibre-based photonic time-bin entanglement
has also been experimentally shown by Inagaki et al., where they even reported entanglement over
a distance of 300 km [33]. Although, it must be noted that their rate was very low and to reach a
secret key rate of 1 bit/s they could only reach 220 km even though they used a GHz frequency source.
Furthermore, they used a midpoint source and thus each photon only has to travel half the distance.
The lowest loss reported for optical fibres is 0.142 dB/km [18]. In classical communication, this loss is
circumvented by the use of amplifiers, but due to the no-cloning theorem such amplification of quantum
states is impossible using similar technology [34]. Either quantum repeaters can be used or another mode
of transport with lower loss must be considered to obtain entanglement at large terrestrial distances.
Satellite-based communication provides such a low loss medium as demonstrated by the low total loss
of only 0.053 dB/km for the entanglement distribution over 1200 km by Yin et al. [20]. The loss in free
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space is dominated by the divergence of light beams and therefore scales quadratically with distance
instead of exponentially. Once the photons pass through the atmosphere the loss becomes exponential
again [11]. This can be modelled by taking into account factors such as scattering, absorption by
atmospheric constituents and the path length of the light through the atmosphere [35]. Luckily the
atmospheric transmission only constitutes the final 10-20 km of the total transmission distance and is
therefore not very dominant compared to the diffraction in free-space [11, 36]. Additionally, the distance
for transmission through satellites is limited by their line of sight, higher satellites can thus transmit
further, but at a lower rate due to more losses. A good balance must therefore be struck. The complete
modelling of this transmission is very complex and hence we choose to model the loss as a beam splitter
with a certain probability of transmittance. We utilise the model by Janice van Dam [21], to find the
suitable transmission probability, denoted as pT , for the distance between ground stations and the height
of the satellite considered. This model takes into account many of the intricacies of space-based optical
communication, including the effects of beam diffraction, pointing error, atmospheric turbulence, and
absorption.

In modelling the loss using a beam splitter we also take into account the loss that occurs at the detector
due to the detector’s efficiency, we denote this efficiency as η. The basic beam splitter that we use to
model the loss can be expressed in terms of creation and annihilation operators as follows:

a† |0⟩
pT η (√

pT ηa
† +

√
1 − pT ηl

†
)
|0⟩, (2.18)

where the photon is either detected with a probability given by pT η or it is lost during transmission
or detection. The detection efficiency is set to 0.5 which is found to be realistically achievable [37].
Moreover, for efficient collection of the photons transmitted by the satellite at both ground stations, a
setup akin to the one used in Ref.[20] could be adopted. In their experiments, a high-precision acquiring,
pointing and tracking (APT) technology was utilised to enhance the link efficiency. This APT system
involves two beacon lasers of different wavelengths pointing at each other. This configuration enables
precise alignment of the entangled signal beams with their respective receiving telescopes, thereby
significantly boosting the link efficiency.

2.5 Mapping to memory and heralding

For the detection and mapping to the memory, we will use an adaptation to the method outlined in
Ref. [15]. The protocol is based on storing the incoming time bin photons by flipping stationary qubit
memories at both receivers [38]. We will mathematically provide the high-level protocol here. The
time-bin entangled qudit source sends a state ideally represented by:

|Ψ⟩ =
1√
2m

2m−1∑
l=0

|l⟩A |l⟩B , (2.19)

where the two single photons traverse separate paths corresponding to the two arms of the isosceles
triangle that is formed between the two ground stations and the satellite and l again denotes the time
bin. The time-bin qudits are then first collected at the two ground stations and switched to interact with
the qubit memories. The switching occurs according to the binary encoding of the high-dimensional
time bin qudit. The decimal encoding of the single 2m-dimensional qudits will thus be transformed into
the corresponding binary encoding of m qubits to determine the switching pattern. A 2m-dimensional
qudit state represented by |l⟩ (l = 0, 1, . . . , 2m − 1) can be changed to binary encoding by the following
conversion: [l]10 = [lm−1 · · · lk · · · l1l0]. The number 510 will for example be mapped to 1012 in binary
encoding. The m-qubit register will be initialised in the |0⟩⊗m

state and the photon will be switched
to flip the qubits corresponding to the binary encoding as depicted in Fig. 2.5, where the control nodes
represent the switches. Many different types of hardware can be used here as long as the photonic qudit
information can be stored in multiple qubits for a long time and the interface must enable the hybrid
coupling between the photon and the qubit memory of choice. The resulting state after mapping the
photonic qudit state to the memory qubits at both ground stations is given by:

|ψ⟩ =
1√
2m

2m−1∑
l=0

|l⟩A,ph |l⟩B,ph |1l⟩A |1l⟩B , (2.20)
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where |1l⟩ = |lm−1⟩ |lm−2⟩ · · · |l1⟩ |l0⟩, which represents the state of the multi-qubit register in binary
encoding. The memory register should encode the same state as the incoming qudit state.

Fig. 2.5: Quantum circuit illustrating a plausible implementation of the protocol at one ground station.
This implementation is identical at both receiving ends of the entanglement distribution protocol. The
control nodes represent optical switches that route the incoming time-bin pulses to the corresponding
quantum memories based on their binary encoding. These memories store the pulses after undergoing
an entangling gate, such as the CZ-gate shown here. To remain in the computational basis, Hadamard
gates are applied. After interaction at both ground stations, the incoming photons are subjected to
a final X-basis measurement, which serves to herald the arrival of a photonic qudit while erasing the
photonic information. This measurement projects the quantum memories onto multiple Bell pairs.

After mapping the qudit information to the memory register the photonic qudit undergoes the quantum
Fourier transform (QFT) to facilitate a generalised X-basis measurement. In order to perform this QFT
the photonic qudit is first switched towards different optical paths corresponding to each specific time
bin. To align all time bins to the same temporal mode, the length of the delay loop traversed by each
time bin photon is inversely proportional to its time bin number. Earlier time bins, with lower bin
numbers, will thus pass through longer delay loops, while the latest time bin avoids any delay loop
altogether. The time-bin encoding has then been converted into a spatial-mode encoding allowing us to
use a multi-mode interferometer to interfere the various spatial states implementing a quantum Fourier
transform as shown in Fig. 2.6 [39–43]. The multi-mode QFT matrix is defined by:

QFT =
1√
2m


1 1 1 . . . 1
1 ω ω2 . . . ω2m−1

1 ω2 ω4 . . . ω2(2m−1)

...
...

...
. . .

...
1 ω2m−1 ω2(2m−1) . . . ω(2m−1)(2m−1)

 , (2.21)

where ω = e2iπ/2
m

.

After this, they are detected in an X-basis measurement, deleting the photonic information and sub-
sequently projecting the spin states to the Bell state (up to some correctable phases). This measurement
technique serves to confirm the arrival of the photon without extracting its specific time-bin informa-
tion, thereby avoiding the collapse of the state of the two m-qubit registers into a non-entangled product
state. The X-measurement basis resulting from the QFT can be described as:

|Xk⟩ =
1√
2m

2m−1∑
l=0

ωkl |l⟩ . (2.22)

The set |Xk⟩ for k ∈ {0, 1, . . . , 2m − 1} forms a complete, orthogonal basis with respect to the original
time-bin encoding. To perform the measurement after applying the QFT to the photon at both ground
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Fig. 2.6: The scheme showing a proposed implementation of the X-basis measurement on the time-bin
photonic qudit. Switches route the time-bins to different spatial modes where they are subjected to
a number of fibre laps inversely proportional to their time-bin number. This converts the temporal
mode qudit into a spatial mode qudit allowing us to apply a multi-mode interferometer to interfere
the different spatial states, hence implementing a quantum Fourier transform (QFT). Note that this
requires the use of 2m − 1 optical switches, while the QFT will even require m2m−1 beam splitters in
the most straightforward setup.

stations, we write the qudit state in this orthogonal basis:

|ψ′⟩ =
1

23m/2

2m−1∑
l=0

2m−1∑
k=0

2m−1∑
m=0

ω−klm |Xk⟩A,ph |Xm⟩B,ph |1l⟩A |1l⟩B . (2.23)

The photonic qudits are then measured in this basis on both sides. If the measurement outcome is
|Xk⟩A ⊗ |Xm⟩B we have successfully erased the photonic information and the memory registers will be
projected onto:

|ψk,m⟩ =

2m−1∑
l=0

ω−klm |1l⟩A |1l⟩B

=

2m−1∑
l=0

ω−klm |lm−1 · · · lk · · · l1l0⟩A |lm−1 · · · lk · · · l1l0⟩B

(2.24)

Which can be reordered to:

|ψk,m⟩ =
1√
2m

(
|0⟩A |0⟩B + ω−km |1⟩A |1⟩B

)
⊗

(
|0⟩A |0⟩B + ω−2km |1⟩A |1⟩B

)
⊗(

|0⟩A |0⟩B + ω−4km |1⟩A |1⟩B
)
⊗ · · · ⊗

(
|0⟩A |0⟩B + ω−2m−1km |1⟩A |1⟩B

)
.

(2.25)

The additional phases can be corrected at both stations by applying single-qubit RZ-gates on the
corresponding memory qubits. After applying these phase corrections we retrieve the Bell states that
we set out to distribute:

|ψ⟩ =
1√
2

(
|0⟩A |0⟩B + |1⟩A |1⟩B

)⊗m

. (2.26)

The fidelity of the entangled pairs that we will find when using our erroneous SPDC source and after the
lossy transmission and detection will not be perfect. How we model this to find the fidelity is explained
in §3.

To implement the protocol described above many different types of hardware might be used that possess
the required functionalities. Some memory candidates include using trapped atoms [44–46], spin qubits
in a quantum dot [47] or solid-state qubits [48] which can even be used to couple to a long-lived neutron

11



2 Theory

spin allowing coherence times of up to a minute [49]. These memory candidates can all be trapped
inside a cavity system to enable the optical interactions needed to perform the spin-photon entangling
gates [50–52]. The entangling gate between the memory qubits and the photonic qudits can be done
inside one-sided optical cavities, where a controlled phase gate can flip the state |+⟩ → |−⟩. We could
therefore alternatively initialise our quantum memories in the |+⟩ state and create Bell states in the
X-basis, thereby requiring fewer gates. Or we apply the Hadamard gates as shown in Fig. 2.5 to
stay in the computational basis. Additionally, a multitude of detectors can be used in principle, we
will consider the general case of non-number resolving detectors. However, if photon number resolving
detectors are utilised a post-selection process can be used to decrease the error caused by multi-photon
pairs emitted from our imperfect source. Our primary aim is, however, to evaluate the performance
of the qudit protocol in comparison to the qubit protocol. Therefore, the eventual hardware choice is
considered to be of minor importance in our simulations, as long as it does not introduce an unfair
advantage to either protocol.

2.6 Decoherence

Decoherence is a fundamental concept in quantum physics, referring to the loss of coherence and
quantum properties over time as a system interacts with the environment. In the quantum realm,
particles can exist in multiple states simultaneously, thanks to the phenomenon of superposition. Co-
herence refers to the ability of these states to maintain their integrity and evolve in a predictable and
undisturbed manner. However, when a quantum system interacts with its environment, such as through
random interactions with other particles or electromagnetic fields, the delicate quantum nature becomes
entangled with the environment, leading to decoherence. The stored quantum states in the quantum
memories also suffer from such unwanted interactions with the environment. Therefore, they degrade
over time, making it challenging to maintain the quantum information accurately.

Since the decoherence in the quantum memory leads to a degradation of entanglement it is important
to model this effect when calculating the fidelity of our entangled pairs. Many models exist to describe
decoherence, some common models include the depolarising channel, amplitude damping channel and
the phase damping channel [2]. Each of these models captures different aspects of decoherence and
types of noise. The phase damping channel describes a loss of quantum information without loss of
energy, for example by random scattering or interaction with distant electrical charges that result in
an accumulation of a phase. The amplitude damping channel, on the other hand, might be used to
describe energy dissipation due to for instance spontaneous emissions or attenuation of photons in a
cavity. Considering both amplitude and phase damping channels it is possible to accurately describe
specific decoherence processes. A more general form of noise or decoherence affecting all aspects of the
quantum state can be represented by a depolarising channel. This channel is commonly used to capture
the overall loss of coherence without the knowledge of the specific underlying cause. The depolarising
channel encompasses a broad range of noise sources and describes an extreme form of decoherence
where all coherence is destroyed and the system becomes completely mixed. The actual decoherence of
the model could be more complex and nuanced, but assuming a depolarising channel can represent a
worst-case scenario.

In our case, the hardware used is not specifically known, let alone the specific details of the decoherence
mechanism that will affect the stored quantum information. Therefore, the choice of a more general
and robust description of decoherence seems in place. The depolarising channel will thus be the model
of choice, simultaneously providing a more general and computationally simpler implementation of the
noise model. In the description of the decoherence of stored qubits, we are after the fidelity of our
entangled pairs compared to the target state. We thus need to apply the depolarising channel to both
of the memory qubits to capture their decoherence. A general decoherence channel for two qubits can
be described as follows:
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ρ̄ = p1p2ρ+ p2(1 − p1)[ϵx(X ⊗ 1)ρ(X ⊗ 1) + ϵy(Y ⊗ 1)ρ(Y ⊗ 1) + ϵz(Z ⊗ 1)ρ(Z ⊗ 1) + ϵ1ρ]

+ p1(1 − p2)[ϵx(1 ⊗ X)ρ(1 ⊗ X) + ϵy(1 ⊗ Y)ρ(1 ⊗ Y) + ϵz(1 ⊗ Z)ρ(1 ⊗ Z) + ϵ1ρ]

+ (1 − p1)(1 − p2)[ϵ2x(X ⊗ X)ρ(X ⊗ X) + ϵxϵy(Y ⊗ X)ρ(Y ⊗ X) + ϵxϵz(Z ⊗ X)ρ(Z ⊗ X)

+ ϵ1ϵx(1 ⊗ X)ρ(1 ⊗ X) + ϵyϵx(X ⊗ Y)ρ(X ⊗ Y) + ϵ2y(Y ⊗ Y)ρ(Y ⊗ Y) + ϵyϵz(Z ⊗ Y)ρ(Z ⊗ Y)

+ ϵ1ϵy(1 ⊗ Y)ρ(1 ⊗ Y) + ϵzϵx(X ⊗ Z)ρ(X ⊗ Z) + ϵzϵy(Y ⊗ Z)ρ(Y ⊗ Z) + ϵ2z(Z ⊗ Z)ρ(Z ⊗ Z)

+ ϵzϵ1(1 ⊗ Z)ρ(1 ⊗ Z) + ϵ1ϵx(X ⊗ 1)ρ(X ⊗ 1) + ϵ1ϵy(Y ⊗ 1)ρ(Y ⊗ 1) + ϵ1ϵz(Z ⊗ 1)ρ(Z ⊗ 1) + ϵ21ρ].
(2.27)

Here p1 = e−t/TA and p2 = e−t/TB and ϵx + ϵy + ϵz + ϵ1 = 1, these give the probabilities for each unitary
operation to happen. Depending on the choice of these probabilities we can apply various decoherence
models. Setting each unitary operation probability to ϵx = ϵy = ϵz = ϵ1 = 1

4 models the depolarising
channel that we will use in our simulations, while setting ϵz = ϵ1 = 1

2 yields the dephasing channel. The
decoherence times given by TA and TB can be considered equal since we will use one type of hardware
for our quantum memories, we will refer to it as Td.

We are interested in the decoherence of the stored state after the X-measurement has projected the
state onto the multiple Bell states and the phases are corrected, given by:

|ψ⟩ =
1√
2m

(
|0⟩A |0⟩B + |1⟩A |1⟩B

)⊗m

. (2.28)

If we write this as a density matrix and trace out all pairs except for one, we can find the density matrix
of one Bell pair from which we can derive the time-dependent evolution under decoherence by applying
the channel as given in Eq. 2.27. This density matrix is straightforwardly represented by:

Tr{Ai,Bi}i̸=1
(|ψ⟩ ⟨ψ|) =

1

2

(
|0, 0⟩A,B ⟨0, 0|A,B + |0, 0⟩A,B ⟨1, 1|A,B

+ |1, 1⟩A,B ⟨0, 0|A,B + |1, 1⟩A,B ⟨1, 1|A,B

)
.

(2.29)

Passing this state through the depolarising channel and calculating the fidelity with respect to the
target Bell state we find that only the terms with the same error on both qubits will result in a non-zero
contribution. After some linear algebra, we will find that the fidelity is given by:〈

Φ+
∣∣ ρ̄ ∣∣Φ+

〉
=

1

2

(
(p1 + (1 − p1)ϵ1)(p2 + (1 − p2)ϵ1) + (1 − p1)(1 − p2)(ϵ2x + ϵ2y + ϵ2z)

)
=

1

2

(
(e−t/TA + (1 − e−t/TA)ϵ1)(e−t/TB + (1 − e−t/TB )ϵ1)

+ (1 − e−t/TA)(1 − e−t/TB )(ϵ2x + ϵ2y + ϵ2z)
)
.

(2.30)

In §3, you will find that there is another factor in front since the states were not normalised in order to
retain their probability amplitudes. In that context, we will normalise the calculated fidelity by dividing
it by the success probability associated with the heralded pair.
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In this section, we will provide a description of our model for simulating entanglement distribution
using a satellite-based high-dimensional protocol. We will begin by reviewing the protocol itself and
then delve into the calculation of the entanglement distribution rate, which becomes non-trivial when
multiple entangled pairs are desired and there is a limited amount of memory modes. We will initially
focus on the calculation for the simplest case of entangling a single pair and subsequently expand
our analysis to incorporate a parallel scheme involving multiple entangled pairs. Additionally, we will
explore the incorporation of multiplexing techniques to increase the rate and improve the overall fidelity
of the protocol. Lastly, we will outline a method for calculating the average fidelity of all entangled
pairs, accounting for the potential decoherence of successful pairs when stored in quantum memories.

3.1 Entanglement distribution protocol

In our model, we aim to maintain a high level of generality by not focusing on a specific type of
hardware or setup for the protocol’s operations. However, it is important to note that we do consider
the use of an SPDC source in our model. This choice is motivated by the successful implementation
of SPDC-based setups in state-of-the-art experiments, such as the Micius satellite experiment, which
achieved entanglement between ground stations over significant distances [20]. SPDC sources offer
several advantages, including their accessibility, suitability for room temperature operation, and their
flexibility for customisation in various implementation scenarios. By incorporating an SPDC source
into our model, we align with the capabilities demonstrated in previous experiments while maintaining
a broader scope for the rest of the hardware and operations in our protocol. The protocol starts
with the SPDC source as our probabilistic source of entangled photonic qudits. We have a laser
and a non-centrosymmetric medium that utilises its second order (χ(2)) non-linearity to enable three
electromagnetic fields to interact (three-wave mixing) as explained in the theory section, §2. In the case
of spontaneous parametric down-conversion, the two lower energy fields are initially in vacuum modes
and the medium obeys the conservation of energy and momentum. After one laser pulse is used to
pump the nonlinear crystal, the state emitted can be written as follows:

|Ψ⟩A,B =
√

1 − λ2
∞∑

n=0

λn |n, n⟩A,B ≈
√

1 − λ2
[
|0, 0⟩A,B + λ |1, 1⟩A,B + λ2 |2, 2⟩A,B + O(λ3)

]
. (3.1)

Here the left and right parts of the ’ket’ correspond to two different spatial modes directed toward
the ground stations of Alice and Bob respectively and the states are written in the number state basis
(|n⟩) where n denotes the number of photons present. This is a two-mode squeezed vacuum state and
it can be seen as a probabilistic source of photon pairs. We assume that the source has been tuned
appropriately in order to reduce the probability of higher-order excitations, we thus assume λ ≪ 1.
The multi-pair events happen with a strong dependency on the pump power and as such they can be
tuned down to low probabilities by considering a weak-pump regime [53]. The most probable term will
be the vacuum state, |0, 0⟩A,B , with a probability of 1−λ2. Meanwhile, the desired single photon pairs,

|1, 1⟩A,B , are only emitted with a probability of λ2 − λ4. It is therefore difficult to find a regime in
which the rate of single photon pairs is large enough without getting too many higher-order emissions
that will result in an error.

Consider the scenario where we incorporate multiple pulses into well-defined time bins from the source.
This enables us to generate time-bin encoded states. By using 2m pulses, we can create 2m-dimensional
qudit states, where the information is encoded in time bins of duration τrep, corresponding to a single
pulse set by the pump laser’s frequency. The state can be expressed as:

|Ψ⟩A,B =

2m−1⊗
l=0

√
1 − λ2

∞∑
n=0

λn |nl, nl⟩A,B

≈ (1 − λ2)2
m−1[

|0, 0⟩A,B + λ

2m−1∑
l=0

|1l, 1l⟩A,B + λ2
2m−1∑
l=0

2m−1∑
j≥l

|1l1j , 1l1j⟩A,B + O(λ3)
]
.

(3.2)
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Here, the subscripts denote the time bins of the respective photons. For example, the state |1l1j , 1l1j⟩A,B ,
indicates that Alice and Bob both have one photon in time bin l and one in time bin j. Considering
the 2m time bins, the rate of qudit generation is τc = 2mτrep. The emitted photon pairs exhibit strong
correlations in the temporal mode, indicating entanglement. As higher-order emissions occur with low
probability, we can assume that detected photons are part of a single photon pair most of the time. If
we observe a photon in a particular time bin, we can infer that the other photon is also in the same
time bin. Therefore, we have a probabilistic entangled photon source, where the squeezing parameter
determines the probability of obtaining an entangled photon pair.

As explained in §2, the state emitted from the satellite is affected by loss during transmission through
space to the two ground stations. The state is effectively passed through a beam splitter with one
output mode being the loss mode and the other being the transmitted mode. Upon arrival at a detector
the state again effectively passes through a beam splitter with one loss mode and a successfully detected
mode. Together this equates to an effective transmittance of

√
pT η, where η represents the detector

efficiency and pT denotes the probability of transmission for which the value is determined using a
theoretical model developed by Janice van Dam [21]. Here, the parameters used have been heuristically
tuned to match our transmission probability with the reported transmission loss at 1200 km in Ref. [20].
We apply the beam splitter equation to Eq. 3.2 which is truncated at O(λ3) to make the calculations
more manageable. Additionally, the detectors can suffer from dark counts. With some probability
(pdark) the detector will measure a photon even though the state is in vacuum, thus resulting in the
mapping |0⟩ → √

pdark |click⟩. For the purpose of finding the fidelity, we don’t care about the exact
mapping but just the probabilities corresponding to all the possible states. In the end, the desired state
is the following:

|Ψ⟩ =
1√
2m

2m−1∑
l=0

|l⟩A |l⟩B , (3.3)

where we want to have only one photon in each of the time bins denoted by l. Upon arrival at the ground
stations, the incoming state is mapped to a (multi-)qubit state in two m-qubit registers. To preserve
the entanglement and avoid collapsing the state into a product state, a measurement is performed in
the generalised X-basis. This measurement, which prevents the extraction of time-bin information,
is implemented by applying a quantum Fourier transform. Successful detection in any of the Fourier
basis states signifies the occurrence of the entangling operation and is utilised to prepare the two-qubit
registers in the |Φ+⟩ state:

1√
2

(|0, 0⟩A,B + |1, 1⟩A,B)⊗m, (3.4)

as was described in depth in §2. There are different types of detectors that can be employed, namely
photon-number-resolving and non-number-resolving detectors. Photon-number-resolving detectors have
the capability to determine the number of photons incident on the detector upon successful detection.
This information can be used to enhance the fidelity of the detected state by post-selecting based on
the detection of only one photon on either side. On the other hand, non-number-resolving detectors
are more commonly used but do not allow for such post-selection. In our model, we consider the use
of non-number-resolving detectors to maintain generality. However, it should be noted that employing
number-resolving detectors could potentially offer a greater advantage for the qudit protocol as it could
mitigate the primary drawback of increased higher-order errors. In the high-loss regime, this advantage
might fade since the detection of multiple pairs will not happen frequently. In order to confirm the
success of both sides, the measurement outcomes must be communicated between Alice and Bob. Any
form of classical communication can be employed for this purpose, and we assume it to be error-
free. However, during the communication process, the stored qubits experience decoherence due to
interactions with the environment. This heralding time will be referred to as τh. If, in addition, the
goal is to entangle more than m pairs the heralded pairs also need to wait until all desired pairs have
been successfully entangled. We will denote the number of desired pairs as np. During this waiting
time, the stored pairs also decohere. Taking into account the effects of decoherence and considering the
use of non-number-resolving detectors, the average fidelity of a transmitted state can be expressed as
follows:
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FA,B =
⟨Φ+| ρpair |Φ+⟩

Tr(ρtotal)

=

2mp2T η
2λ2((e−t/TA + (1 − e−t/TA)ϵ1)(e−t/TB + (1 − e−t/TB )ϵ1)

+ (1 − e−t/TA)(1 − e−t/TB )(ϵ2x + ϵ2y + ϵ2z))

2mp2T η
2λ2 + 2m−1(2m + 1)p4Tλ

4η4 + 2m+1pT η(1 − pT η)λ2pdark

+ 2m(2m + 1)p2T η
2(1 − pT η)2λ4

(
pdark + 2

)
+ 2m+1(2m + 1)

(
p3T η

3(1 − pT η)λ4 + pT η(1 − pT η)3λ4pdark

)
+ p2dark

(
2m−1(2m + 1)(1 − pT η)4λ4 + 2m(1 − pT η)2λ2 + 1

)
+ O(λ6).

(3.5)

Here, ρpair is the reduced density matrix of a single pair of entangled quantum memories after the
X-measurement, obtained by tracing out all other pairs. The denominator represents the trace over
the total density matrix and is applied to normalise the fidelity. This gives us the success probability
for detecting a photon at both ground stations and hence we are calculating the fidelity of a heralded
pair. Furthermore, pT represents the transmission probability, η denotes the detection efficiency, λ is
the squeezing parameter, t represents the waiting time for successful entanglement of all desired pairs,
TA and TB denote the coherence times of both memory registers, and ϵ1,ϵx, ϵy, and ϵz represent the
error rates for Pauli errors in the I, X, Y, and Z bases, respectively. In our simulations, we set both
decoherence times to TA = TB = Td. The factor 2mp2T η

2λ2 in the numerator stems from the combined
effect of different aspects of the protocol. The term λ2 corresponds to the probability of the creation
of a single pair from the SPDC source. The factor 2m arises from the encoding of a 2m-dimensional
qudit. Lastly, p2T η

2 accounts for the successful transmission and detection of the entangled pairs. An
illustration of the full mathematical state propagation throughout the protocol is provided in Appendix
1 for the case of entangling two pairs with a 4-dimensional qudit.

We will now initiate our analysis by focusing on the rate calculation of the protocol. First, we will
examine the scenario where a single source transmits photonic qudits to a pair of receivers. Once
we grasp the fundamentals of this setup, we will proceed to investigate the case involving multiple
sources attempting to entangle the desired number of pairs. Moreover, we will explore the concept of
multiplexing, wherein a surplus of qubit memories is available, enabling multiple sources to concurrently
attempt the entanglement of np memory pairs. Once we establish a clear understanding of the rate
calculation, we will follow a similar approach to determine the average fidelity across the various schemes.

3.2 Rate

In this section, the method for calculating the rate of the protocol in different schemes is explained in
depth. We begin by deriving the theoretical value for the rate in a non-parallel scheme. To do this we
follow the method used in Ref. [54]. For the case where we have only one source, the total probability of
successfully preserving the qudit, accounting for all inefficiencies at both receivers and the channel loss,
is denoted as psuc, which is given by the denominator of the fidelity calculation (Eq. 3.5). We start by
considering the instance where we attempt to entangle a single pair using a single source. The timing
diagram in Fig. 3.2 illustrates how this scheme works in practice. A photonic qudit is transmitted to
both ground stations with a repetition time of τc, this also denotes the period of attempting to generate
entanglement. This cycle time is calculated by taking into account the rate of the pump laser and the
number of time bins needed to form a qudit, as depicted schematically in Fig. 3.1. The cycle time is
given by τc = 2mτrep, where τrep equals the repetition rate of the pump laser that defines the duration
of the time bins.

Each time a qudit is sent the receivers can either detect the qudit or not, due to atmospheric loss or a
faulty detection. If a qudit is detected the receiver will close its detector and send a heralding signal to
the other ground station. During this time it will keep its detector closed and therefore will not be able
to detect any new qudits. Suppose no signal has been received from the other side after the heralding
time τh has elapsed. In that case, the memory will immediately reset itself and the detector will be
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Fig. 3.1: Cycle time diagram depicting the total time per repetition cycle for a 22-dimensional photonic
qudit, each time-bin takes τrep, so the cycle time for a general qudit is τc = 2mτrep. Here τrep denotes
the repetition rate of the source.

opened simultaneously to receive new qudits again. If during this heralding time, the other receiver
had a successful detection, it will also reset its memory and open its detector once the heralding signal
corresponding to an earlier time bin arrives from the other side. A successful entanglement will only
happen when both receivers are open and detect a qudit at the same instance so that they both receive
a heralding signal simultaneously, shown in Fig. 3.2b.

Now, along the same lines as Ref. [54], we can model this detection scheme using a Markov chain as
shown in Fig. 3.3. To determine the average rate of entanglement we assume everything that happens
in both arms to be symmetric in our simulations. To calculate how many cycles can maximally pass by
during the heralding step we define n = ⌈τh/τc⌉. In the Markov chain, a notation is used where there
are a total of 3n+ 1 different states to be in. These are represented by a notation (i, j), where i and j
denote how many remaining cycles the left and right sides will be closed. Both receivers are open is thus
indicated by (0, 0); {(i, 0)}ni=1, represents that the left had a successful detection and will be closed for i
more attempts; {(0, i)}ni=1, analogously this represents a successful detection at the right and it will be
closed for i more cycles; lastly {(i, i)}ni=1 represents both detectors had a successful detection at some
point (although they need not be simultaneous) and they will both be closed for i more entanglement
attempts. We further assume our classical communication to be error-free and at the speed of light
so that τh = L/c, where L is the distance between the two ground stations. The control protocol
is as follows: a detector is closed by a controller whenever we have a successful detection and will
automatically reopen after n cycles or whenever it receives a heralding signal from the other ground
station. In the case where a successful detection took place and the station subsequently receives a
heralding signal from the other station corresponding to a different time bin, we know that the protocol
was unsuccessful and the memory is reset and the detectors are both opened again. This control scheme
together with the probability of transmitting and receiving a photon, determines the probability of
transitions in a Markov chain as shown in Fig. 3.3a. We denote the steady-state probability of being in
state (0, 0) as π(0,0). To calculate the rate, we want to find the probability of a successful entanglement
which happens when both detectors are open and have a successful detection, given by psucπ(0,0). The
rate will then be

R1 = psucπ(0,0)/τc. (3.6)

Here, psuc is again given by the denominator of Eq. 3.5. We will now define the probability of a
successful detection by pent = psucπ(0,0). From Fig. 3.3b we can derive the steady state equation for
the probability distribution by substituting p with

√
psuc and calculating the probability to be in the

steady state, which yields:
π(0,0) = 1/(1 + n(2

√
psuc − psuc)). (3.7)

3.2.1 Parallel scheme

In a parallel scheme, we consider multiple sources that try to entangle pairs at multiple receivers in
parallel. If the goal is to generate np pairs, a qubit-based protocol would necessitate np sources, each
paired with its corresponding receiver stations. Each source would transmit to two distinct ground
stations, forming what we can refer to as an ”entanglement generation unit”, as illustrated in Fig. 2.1.
When high-dimensional qudits are used, however, a ground station maps the received state onto multiple
qubit memories, reducing the number of detections needed to entangle multiple pairs. To determine the
number of entanglement generation units required in this parallel scheme, we calculate N = ⌈np/m⌉,
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(a) (b)

Fig. 3.2: Timing diagrams showing the entanglement generation protocol with a satellite (S) send-
ing photonic qudit pairs to Alice (A) and Bob (B). (a) A number of trials are shown which are all
unsuccessful since the qubit registers at Alice’s side are all closed due to a successful detection at the
beginning. Bob’s successful detection is thrown away when he receives the heralding signal from Alice
corresponding to a different time. At the timeout, all registers at both sides are immediately reset and
opened in order to receive new oncoming qudits. (b) The timing diagram for a successful entanglement
generation, here both receivers need to have a successful detection at the same time. They then send
their heralding signal and both receive the signal at the same time which tells them they have a suc-
cessful entanglement generation. They can then choose to keep the stored qubits in their register or
reset and run the protocol again.

where m again corresponds to the number of pairs that can be entangled using one 2m-dimensional
qudit. To calculate the rate in this instance we therefore need to consider all possible scenarios in which
different entanglement generation units can be successful. Each pair can in principle take infinitely
many trials before succeeding and they could succeed in many orders. To capture this we should find
the rate by calculating:

R = 1/⟨n⟩τc, (3.8)

where ⟨n⟩ is the average number of trials needed to get all pairs successfully entangled and τc denotes
the time per attempt again. The average number of attempts needed for the completion of the protocol
can be calculated along the lines of Ref. [55, 56]. There, a function, Zl,N (p), is defined which calculates
the average number of attempts needed to get at least l successes if we have access to N entanglement
generation units which all make their attempts simultaneously. If one is successful it is saved until all
l receivers are successful, meaning that we have found m entangled pairs. In our parallel scheme, the
average number of attempts would thus be ZN,N (p) which is given as [56]:

ZN,N (p) =

N∑
k=1

(
N

k

)
(−1)k+1

1 − (1 − p)k
. (3.9)

Such a compact solution for arbitrary l, N does not exist for the function Zl,N (p). Therefore, in
the upcoming calculations for the multiplexing scheme, we need to approximate this function in the
limit where each success always happens at a different time to make the calculations computationally
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(a) (b)

Fig. 3.3: (a) The Markov chain connected to the entanglement distribution protocol for one source and
one pair of receivers, as shown in Fig. 3.2. The probability p in this figure denotes the probability of
success for an individual arm of the protocol. Since we assume symmetric loss, p =

√
psuc. (b) Diagram

illustrating the reduced Markov chain that is derived from (a). Figure taken from Ref. [54].

tractable. Additionally, the same approximation is needed to make our fidelity calculations feasible.
We will employ the same approximation for our calculation here (instead of Eq. 3.9) to maintain
consistency throughout our analysis. In the approximation where each success is consecutive, we end
up with a product of infinite sums where the amount of sums corresponds to the number of entanglement
generation units needed to entangle np pairs. Note that in principle we are now calculating a conditional
expectation value, the expected number of trials needed under the condition that all successes are at
different times. We want to approximate the expected value for the number of trials needed, E(X) = ⟨n⟩.
By the law of total expectation, we have E(X) = E(X|A)P (A)+E(X|Ac)P (Ac) [57]. Here A represents
some condition, for our purpose, it will be the condition that all successes occur at different trials.

We can use the definition of conditional expectations to write E(X|A) =
∑

x
xP (X=x∩A)

P (A) and find

E(X) =
∑

x P (X = x ∩A) + P (X = x ∩Ac). The probability of simultaneous success can be assumed
to be very low in the case of a small success probability, pent. We can therefore neglect the terms with
simultaneous successes (P (X = x ∩ Ac)) and bound the error that we make by considering the sum of
probabilities that we are taking into account. We end up calculating:

E(X|A) =
N !pNent
papprox

∞∑
i1=0

· · ·
∞∑

iN>iN−1

(
i1 + 1 +

N∑
k=2

(ik − ik−1)
)
(1 − pent)

∑N
k=1 ik

=
N !pNent(1 − pent)

∑N−1
k=1 k

papprox

∞∑
i1=0

· · ·
∞∑

iN=0

( N∑
k=1

(ik + 1)

)(
1 − pent

)∑N
k=1(N+1−k)ik

= N +

N∑
k=1

(1 − pent)
N+1−k

1 − (1 − pent)N+1−k
≈ ⟨n⟩p.

(3.10)

Here papprox is given by:

papprox = N !pNent(1 − pent)
∑N−1

k=1 k
∞∑

i1=0

· · ·
∞∑

iN=0

(
1 − pent

)∑N
k=1(N+1−k)ik , (3.11)

which represents the sum of probabilities for each combination to happen. This can be seen as the weight
of our approximation and in case the probability of simultaneous successes is small this sum will tend
to one. The variable ik represents the number of attempts required for pair k ∈ 1, . . . , N to achieve
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successful entanglement. To account for all possible combinations where there are no simultaneous
successes, we sum over these combinations with the condition ik > ik−1 to make sure that each pair
needs a different number of attempts. The subscript for ⟨n⟩p is used to denote that we are using the
parallel scheme. We convert all sums to start from zero so we can apply the geometric series solution
to all of them. The approximation in Eq. 3.10 can be justified for small pent and small numbers for
N since then we can be sure that with only a very slight probability simultaneous entanglements will
occur as given by the error probability:

perror = 1 − papprox. (3.12)

Since we are neglecting terms with simultaneous successes we know that our calculated average number
of trials will be slightly higher than the true average (since on average fewer trials will be needed if
simultaneous successes are allowed). The error in our approximation of ⟨n⟩ will therefore be upper
bounded by perror · ⟨n⟩p. The equation used to calculate the rate in the parallel scheme is given by:

R = 1/⟨n⟩pτc (3.13)

Note that the error made in our approximation propagates through the rate calculation. An upper
bound on the absolute error can be estimated by using the functional approach for error propagation
[58].

αR = |R(⟨n⟩p − perror⟨n⟩p) −R(⟨n⟩p)|
= perror/

(
⟨n⟩pτc(1 − perror)

)
,

(3.14)

where we write the rate as a function of our approximated number of trials. To get the relative error
we could calculate

αR/R(⟨n⟩p) =
perror

1 − perror
. (3.15)

In our simulations, we can set a certain precision that we want to achieve and check whether we are
always operating within that precision.

To compare this scheme utilising multiple sources with a scheme that employs only one source, it is
essential to devise an effective strategy for generating multiple entangled pairs with a single source that
sends to numerous receiver pairs. Considering that the heralding time should be significantly larger than
the repetition time of each qudit (τc < τh < Td), an efficient approach would be to entangle each pair in
a cyclic manner, leveraging the heralding time to initiate the generation of new pairs. In this strategy,
the source would transmit the photonic qudit to each pair of receivers sequentially, cycling through
each pair. This cyclic scheme is akin to the parallel scheme, but with an extended cycle period of Nτc,
as each detector can receive a qudit only after completing a full cycle. Modelling the scenario with
only one available source can thus be accomplished using the same model as the parallel source model
described above by modifying the cycle period accordingly. It is important to note that in this scheme,
which involves only one source, we do not make the approximation that no pairs are simultaneously
successful. Instead, the nature of the scheme inherently leads to non-simultaneous successes.

3.2.2 Multiplexing scheme

To calculate the rate in the case of multiplexing we need to take into account that there will be more
entanglement generation units present than there are needed. We introduce a new variable, M , that
indicates how many times we multiplex. To calculate how many entanglement generation units there
are in the multiplexing scheme we then multiply M and N to get the total amount of generation units
present, D = M ·N . The interpretation of multiplexing in our context is illustrated in Figure 3.4, where
the concept of combining and processing multiple extra signals to find a small set of entangled pairs is
shown. The total number of qubit memories present will then be equal to D ·m. In the qubit protocol,
more entanglement generation units are required since only one pair can be generated per successful
attempt (Fig. 3.4b). On the other hand, the qudit protocol can simultaneously entangle multiple pairs
with just one successful attempt, resulting in fewer entanglement generation units needed (Fig. 3.4a).
In our simulations, we will consider a qudit protocol with a dimensionality such that the number of
desired pairs is divisible by m (np mod m = 0). This ensures that both the qubit and qudit protocols
have an equal number of memory modes, as illustrated in Fig. 3.4. Now to calculate the rate, we again
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(a) (b)

Fig. 3.4: Diagrams illustrating the incorporation of multiplexing in our simulations. The entanglement
generation units comprise a source emitting photonic qudit or qubit pairs, along with two receivers.
The diagram showcases the generation of two entangled pairs (np = 2) using two-times multiplexing
(M = 2). (a) The diagram for illustrating multiplexing in the qudit scheme with a 4-dimensional qudit
(m = 2). Each receiver maps the incoming qudit state to a register of 2 memory qubits, corresponding
to the qudit dimensionality m. To achieve two times multiplexing, two high-dimensional entanglement
generation units are employed which will attempt to generate entangled pairs in parallel. (b) The
diagram for illustrating multiplexing in the qubit scheme. Each entanglement generation unit maps the
received state to one memory qubit and generates one entangled pair. To match the memory resources
of the qudit scheme and enable the generation of 2 pairs in the parallel scheme, a minimum of two units
is needed (given by N). As we are multiplexing two times, a total of 4 entanglement generation units
are required.

need to calculate the approximate number of attempts needed in this scheme as we did for the parallel
scheme.

⟨n⟩M ≈ D!

(D −N)! papprox
pNent

∞∑
i1=0

· · ·
∞∑

iN>iN−1

(
i1 + 1 +

N∑
k=2

(ik − ik−1)
)
(1 − pent)

(D−N+1)iN+D−N+
∑N−1

k=1 ik

=
D!

(D −N)! papprox
pNent(1 − pent)

∑N−1
k=0 (D−N+k)

∞∑
i1=0

· · ·
∞∑

iN=0

( N∑
k=1

(ik + 1)

)
(1 − pent)

∑N
k=1(D+1−k)ik

= N +

N∑
k=1

(1 − pent)
D+1−k

1 − (1 − pent)D+1−k

(3.16)

Here the subscript M is used to denote that we are in the multiplexing scheme. The error made can
again be estimated by considering how much of the total probabilities this expression covers.

perror = 1 − D!

(D −N)!
pNent(1 − pent)

∑N−1
k=0 (D−N+k)

∞∑
i1=0

· · ·
∞∑

iN=0

(1 − pent)
∑N

k=1(D+1−k)ik (3.17)

As long as this error is sufficiently small we can justify our approximation and we can accept the
outcome within a small error margin. The rate in this multiplexing scheme can similarly be written as

R = 1/⟨n⟩Mτc. (3.18)

3.3 Fidelity

In this section, we present the derived equations for the average fidelity of entangling multiple pairs, tak-
ing into account the effects of decoherence during the waiting period for all pairs to become successfully
entangled. For the fidelity of the parallel and multiplexing scheme, we employ the same approximation
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as before, assuming that each success occurs at different times. This allows us to apply a similar error
analysis of our approximation.

3.3.1 Non-parallel scheme

In the non-parallel scheme, we know that since we have one source, simultaneous successes are im-
possible. After each success, the entangled pair needs to be stored until the last pair has successfully
been heralded. In this context, successful attempts naturally occur at different times, allowing us to
calculate them accurately without resorting to any approximations. As mentioned earlier, we adjust
the cycle period (τc) of our source to Nτc to accommodate the strategy of sequentially sending photonic
qudits to the available receiver pairs.

⟨F (t)⟩non−parallel ≈
pNent

N papprox

∞∑
i1=0

· · ·
∞∑

iN=0

(1−pent)
∑N

k=1 ik

(
F (τh)+F (τh+iNNτc)+· · ·+F (τh+Nτc

N∑
k=2

ik)

)
(3.19)

Here, we assume iN to be the last pair that gets entangled, consequently, it only decoheres for the
heralding time τh. In the sum of fidelities that we average over you see that the first pair (i1) has to wait

the longest, namely for τh +
∑N

k=2 ij attempts. Where each ik represents the number of entanglement
attempts that were needed for the kth pair to be successfully entangled. The parameter, papprox, is still
given by Eq. 3.11.

The entangled qudits are emitted by the source at a rate of τc and are directed cyclically towards
different receiver pairs. This ensures that each receiver pair can receive the qudits at intervals of Nτc.
Every time these qudits arrive an attempt is made to entangle the ground stations. A successful attempt,
however, can only be achieved if both receivers are open and free to detect a qudit this is represented
in pent by the probability π(0,0). The fidelities in Eq. 3.19 are calculated by taking into account the
corresponding waiting times for which the stored qubit pairs decohere for each pair. In principle, a
complicated Markov chain computation should be used to find the various times that certain pairs need
to wait in all the different scenarios governed by whether a detector is open or not. Considering that
at each cycle of τc the probability that the detector is open is given by π(0,0) the above gives us a very
good approximation of the actual waiting times without the need to calculate the Markov chain. For
very high dimensional qudits the cycle time can even become larger than the heralding time so that the
detectors are always open.

3.3.2 Parallel scheme

In the parallel scheme, a slight adjustment has to be made to Eq. 3.19. Now we have N = ⌈np/2m⌉
sources individually trying to entangle the qubit memories coupled to an equal number of detectors
in parallel. Therefore there are now myriad combinations for the order in which the memories are
entangled. So we need to take into account these orders. Additionally, each of the sources is firing
continuously in parallel and this needs to be reflected in the infinite sums. In principle there can be
simultaneous successes, however, taking all these combinations into account for arbitrary N becomes
computationally infeasible since the number of combinations scales like 2N−1. We, therefore, choose
to consider only the biggest contribution, which is the case where each entanglement is successful
independently and at different times. By doing so, we maintain consistency with our approximations.
The average fidelity in this scheme can be represented by:

⟨F (t)⟩parallel ≈
(N − 1)!pNent
papprox

∞∑
i1=0

· · ·
∞∑

iN>iN−1

[
(1 − pent)

∑N
k=1 ik

(
F (τh) + F (τh + (iN − iN−1)τc) + · · · + F (τh + (iN − i1)τc)

)]
=

(N − 1)!pent(1 − pent)
∑N−1

k=1 k

papprox

∞∑
i1=0

· · ·
∞∑

iN=0

[
(1 − pent)

∑N
k=1(N+1−k)ik

(
F (τh) + F (τh + (iN + 1)τc) + · · · + F (τh + τc

N∑
j=2

(ij + 1))
)]
. (3.20)
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3.3.3 Multiplexing scheme

In the multiplexing scheme, we employ an abundance of entanglement generation units, given by D =
M ·N , surpassing the required number in the parallel scheme. This surplus of units contributes to an
enhanced success probability in entangling the desired number of pairs. To accommodate the surplus of
entanglement generation units in the multiplexing scheme, we make a slight adjustment to the equation
derived for the parallel scheme (Eq. 3.20). This adjustment takes into account the fact that we now
have more units than the number of successful attempts needed to entangle all desired pairs. Again we
apply the approximation that each successful entanglement happens at different times in order to make
the calculation computationally feasible. We arrive at:

⟨F (t)⟩multi ≈
D!

N · (D −N)! papprox
pNent

∞∑
i1=0

· · ·
∞∑

iN>iN−1

[
(1 − pent)

(D−N+1)iN+D−N+
∑N−1

k=1 ik

(
F (τh) + F (τh + (iN − iN−1)τc) + · · · + F (τh + (iN − i1)τc)

)]
=

D!

N · (D −N)! papprox
pNent(1 − pent)

∑N−1
k=0 D−N+k

∞∑
i1=0

· · ·
∞∑

iN=0

[
(1 − pent)

∑N
k=1(D+1−k)ik

(
F (τh) + F (τh + (iN + 1)τc) + · · · + F (τh + τc

N∑
j=2

(ij + 1))
)]
.

(3.21)

This equation gives the most general form since we can retrieve the parallel scheme expression by setting
M = 1.
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4 Results

In this section, we present the results obtained from our simulations, providing insights into the perform-
ance gain achievable by utilising qudits instead of qubits in our entanglement scheme. It is important
to note that our model offers flexibility in selecting various parameters, and the chosen parameters in
this analysis serve as indicative examples rather than definitive values. While it is possible to explore
different dimensions for the qudits, it is worth considering that employing extremely high-dimensional
qudits may have associated trade-offs, such as increased higher-order excitations and a lower cycle rate.
It is worth noting that a qubit can be regarded as a 21-dimensional qudit, with m equal to 1.

We expect less stringent memory requirements for higher-dimensional qudits, therefore it seems inter-
esting to examine the impact of varying the memory coherence times. To investigate this effect, we
analyse the rate of heralded entanglement (as discussed in §3.2) at different distances. Due to losses
and information leakage to the environment, the entanglement can be of very bad quality leading to
imperfect fidelity. To address this, we focus on the rate at which the fidelity exceeds a specified min-
imum value. For our initial plots, we take this minimal fidelity threshold to be 0.8. As the distance
increases, the transmission probability decreases, and the heralding time lengthens, both contributing
to a decline in fidelity.

The fidelity of our entanglement scheme is influenced by various parameters associated with the envir-
onment and hardware employed. One significant parameter is the squeezing parameter λ, which can
be easily adjusted, allowing us to fix other governing parameters at realistic values corresponding to
common hardware types. We can then find for which λ we get a fidelity greater than 0.8 and since we
know that the rate increases with λ due to larger pump power, we select the greatest value for which
this holds. Utilising these parameters, we calculate the rate at different distances, generating the rate-
distance plots displayed below. Each plot includes the transmission probability pT for various distances,
as specified in Table A1, considering a Low Earth Orbit (LEO) satellite positioned at a height of 400
km. As anticipated, the transmission probability decreases as the distance between ground stations
increases, underlining its importance when interpreting the plots. We proceed to investigate different
input parameters, such as varying memory coherence times, adjusting the minimum fidelity threshold,
reducing the dark count probability pdark, and considering memory multiplexing (or no multiplexing).
Additionally, some plots are included to aid with interpreting the results. Finally, a plot showing the
transmission probability as a function of distance is given for different satellite heights emphasising the
significance of selecting a compatible height with the ground station distances that are considered. The
bound on the error of the approximations made concerning simultaneous successes, as discussed in §3,
is set to 1%.

In Fig. 4.1, we present the entanglement rate as a function of distance, considering a memory coherence
time of 1 second and a minimum fidelity of 0.8. We compare the rates for generating 5 entangled
pairs and 10 entangled pairs using both qubits (m = 1) and qudits (m = 5). With a coherence time
of 1 second, the entanglement of 5 pairs demonstrates excellent results for the qudit protocol, as the
minimum fidelity of 0.8 is surpassed across a wide range of squeezing parameters for any amount of
multiplexing. The qudit protocol doesn’t gain anything concerning the fidelity from multiplexing for
entangling 5 qubits with m = 5 since only one successful generation is required so multiplexing will
not affect the fidelity. However, multiplexing does increase the rate, as it allows for a higher number
of entanglement generation units to be simultaneously used, thereby increasing the success probability.
On the other hand, the qubit protocol benefits significantly from multiplexing for fidelity. Without
multiplexing, the fidelity is too low to entangle 5 pairs even at a distance of 200 km. However, with
higher levels of multiplexing, it becomes feasible to achieve the desired fidelity, enabling entanglement
over larger distances. The qubit protocol will be hit most by the waiting time, since it will need to wait
until 5 successful generations have taken place, the heralding time will become negligible. On the other
hand, the qudit is affected mostly by the higher order terms resulting in more errors.

At a distance of 1250 km, the heralding time is approximately 4 ms, which ensures that heralding does
not significantly contribute to decoherence with this coherence time of 1 s. Therefore, the rate and
fidelity are primarily affected by the decrease in transmission probability resulting from the distance.
The plots in Fig. 4.1 shows very encouraging results in favour of the qudit protocol. In both cases, the
qudit protocol outperforms the qubit protocol in terms of rate. Additionally, the qudit protocol allows
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Fig. 4.1: Plots to compare the qubit protocol (circles) to the 25-dimensional qudit protocol (crosses)
for the entanglement rate vs distance. The rates are plotted for a squeezing parameter (λ) that gives a
fidelity greater than 0.8. Each plot uses four different numbers of multiplexing: 1, 10, 25 and 50. Here
the other variables are fixed with the following values: Td = 1 s, pdark = 1.6·10−5, η = 0.5, trep = 10−7 s.
(a) The plot illustrates the entanglement of 5 pairs using both the qubit and qudit protocols. The inset
provides a closer view of the results at the longest distances, showcasing the successful entanglement of
5 pairs in the qudit protocol, regardless of the level of multiplexing employed. To enhance clarity, the
inset adopts a symmetrical log scale on the y-axis and maintains the same scaling for the x-axis as the
main plot. (b) The plot depicts the entanglement of 10 pairs using both the qubit and qudit protocols.
In this case, the use of multiplexing becomes essential for the qudit protocol as well. Notably, the qudit
protocol exhibits an enhanced capability to achieve entanglement at greater distances, regardless of the
level of multiplexing employed.

for entanglement generation with a minimum fidelity of 0.8 over further distances, showing the capability
to reach 1250 km with any number of multiplexing for entangling 5 pairs. In the case of entangling 10
pairs the qudit also shows a significant increase in the capability to reach further distances than the
qubit protocol although not being able to reach 1250 km even with 50 times multiplexing. Note that for
entangling 10 pairs the 25-dimensional qudit will also gain from multiplexing for increasing the fidelity
since now two successful generations are needed and multiplexing will thus decrease the storage time
needed for the completion of the protocol. The qudit protocol will now also be impacted by the waiting
time to get multiple successes as shown by the inability to succeed without multiplexing.

It is interesting to understand where the advantage of the qudit comes from. To find out, we will need to
have a look at the average fidelity as a function of the squeezing parameter λ. From similar plots to Fig.
4.2a and b, we first find the λ for which the fidelity is greater than some minimum value. This is done
for every distance we consider. Looking at the average fidelity as a function of the squeezing parameter
we can see that for higher values of m (telling us the dimension of the 2m-dimensional qudit) the peak
fidelity increases and shifts towards smaller values for the squeezing parameter. This is because higher-
dimensional qudits are impacted more by higher-order excitations, since more time bins can cause this
type of error. Therefore, using a higher order requires the use of a smaller squeezing parameter to offset
the effect of additional errors that decay the fidelity. The rate can then be derived from Fig. 4.2c or d
by taking the maximum value of λ for which the fidelity is greater than some desired value and checking
what the corresponding rate is. For m = 5, the fidelity gets very close to unity since all 5 pairs are
entangled simultaneously at one successful detection. In case of a successful entanglement, the pairs
therefore don’t need to wait until additional pairs are successful which is the case for m ≤ 5. This is
also reflected in the rate in Fig. 4.2c where there is a larger jump in rate between m = 5 and m = 4
than between the other values of m. This is because for lower dimensional qudits the protocol needs
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Fig. 4.2: Fidelity and rate for generating 5 entangled pairs as a function of the squeezing parameter λ
for 2m-dimensional qudits with m ∈ {1, 2, 3, 4, 5} with and without multiplexing. The other parameters
are given by: Td = 1 s, pdark = 1.6 · 10−5, η = 0.5, trep = 1 · 10−7 s, distance = 727 km. (a) Fidelity
without multiplexing. (b) Fidelity with 25 times multiplexing. (c) Rate without multiplexing. (d) Rate
with 25 times multiplexing.

to have more than 1 successful attempt to find at least the 5 desired entangled pairs. In Fig. 4.2b and
d the fidelity and the rate are shown respectively with a multiplexing of 25 times. This increases the
success probability since there are 25 times as many source and detector pairs trying to get a successful
detection in parallel. Due to this higher probability, the pairs get successful entanglements with a higher
rate and consequently need to wait for shorter times before all pairs are successfully entangled, thus
mitigating the decoherence effect present without multiplexing. Interestingly, the rate for the m = 5
qudit is increased by 25 times by multiplexing 25 times while the rate for m ≤ 4 is increased by more
than 25 times which is because these pairs need multiple successful detections for the termination of
the protocol and are therefore affected nonlinearly by the multiplexing.

We now continue our quest for understanding the dynamics of the high dimensional entanglement
protocol by trying to find out the effect of memory decoherence times on the rate. We, therefore, plot
Fig. 4.3 and Fig. 4.4 which show the rate as a function of distance for a decoherence time of 0.1 s
and 10 s, respectively. These plots are in contrast to Figure 4.1, which showcases a decoherence time
of 1 s, while keeping all other parameters constant. It is worth noting that the heralding time, even
for a memory coherence time of 0.1 s, has a negligible effect on the decoherence of the stored states,
as it remains on the order of milliseconds. Only a slight decay can be seen as represented by a slight
overall decrease in rate for the qudit protocol in Fig. 4.3a, when compared to Fig. 4.1a and Fig. 4.4a,
due to a smaller squeezing parameter needed to obtain the fidelity threshold. Therefore, the waiting
time for stored entangled pairs until all desired pairs are entangled, continues to be the most significant
contributing factor for any of the coherence times considered here. As depicted in Figure 4.3a, the qudit
protocol experiences minimal impact when attempting to entangle a number of pairs (np) equal to the
qudit dimension (m), regardless of the coherence time of the memory, as long as it remains significantly
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larger than the heralding time. However, for scenarios where np > m, we can expect the coherence
time to play a more prominent role. This is because the waiting time for successful pairs will be much
longer than the heralding time alone. In such cases, the stored pairs will be subjected to decoherence
for an extended duration, leading to a significant decrease in fidelity. This behaviour is evident in
Figure 4.3, where the qudit protocol manages to entangle 5 pairs across varying distances. However, for
entangling 10 pairs, the waiting time becomes more pronounced relative to the short coherence time of
the memory. Consequently, the fidelity fails to surpass the threshold, even with 50 times multiplexing
for distances beyond 350 km. The qubit protocol, in contrast, experiences a significant impact from
a decreased coherence time for both entangling 5 pairs and 10 pairs. When comparing the maximum
distance achieved by the qubit protocol for generating 10 pairs with 50 times multiplexing to that of
generating 5 pairs, we observe a decrease of only 50 km in Fig. 4.3. This relatively diminished effect
of increasing the desired number of pairs on the qubit protocol when compared to the large impact of
increasing the number of desired pairs on the qudit protocol, is attributed to the fact that the protocol
was already influenced by the waiting time in both cases.

In Fig. 4.4, the coherence time is sufficient for both the qubit and qudit protocols to operate effectively,
although some multiplexing is required for the qubit protocol. In this scenario, the qudit protocol
offers a slight advantage in terms of the entanglement rate. However, it is important to note that
the setup for the qudit protocol is significantly more complex and challenging compared to the qubit
protocol. Therefore, the marginal increase in rate may not justify opting for the qudit protocol when
the coherence times are already excellent. The true advantage of the qudit protocol emerges when
memory capabilities are inadequate to coherently store pairs during the waiting time of the protocol. If
larger distances were considered, the qudit protocol can potentially outperform the qubit protocol even
in such cases. However, it is crucial to acknowledge that the rate would become extremely low due to
the reduced transmission probability.

Fig. 4.3: Plots to compare the qubit protocol (circles) to the 25-dimensional qudit protocol (crosses)
for the entanglement rate versus distance with a memory coherence time of Td = 0.1 s. The rates are
plotted for a squeezing parameter (λ) that ensures a fidelity greater than 0.8. Four different levels of
multiplexing are considered: 1, 10, 25, and 50. The other variables are kept fixed with the following
values: pdark = 1.6 · 10−5, η = 0.5, trep = 10−7 s. (a) The plot for the rate of entangling 5 pairs. (b)
The plot for the rate of entangling 10 pairs.

We turn our attention to comprehending the impact of dark count probability, an aspect that can
be mitigated through hardware upgrades and the use of superior detectors. In the experiment of
entangling two ground stations at an unprecedented distance of 1200 km, Yin et al. reported a dark
count probability of 1.6 ·10−5 [20], which aligns with the value employed in our previous simulations. In
Ref. [37] Wallnöfer et al. indicated that a dark count probability of 10−6 corresponds to a realistic range
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Fig. 4.4: Plots to compare the qubit protocol (circles) to the 25-dimensional qudit protocol (crosses)
for the entanglement rate versus distance with a memory coherence time of Td = 10 s. The rates are
plotted for a squeezing parameter (λ) that ensures a fidelity greater than 0.8. Four different levels of
multiplexing are considered: 1, 10, 25, and 50. The other variables are kept fixed with the following
values: pdark = 1.6 · 10−5, η = 0.5, trep = 10−7 s. (a) The plot for the rate of entangling 5 pairs. (b)
The plot for the rate of entangling 10 pairs.

for current or near-term implementations. Thus, we also adopt this value in our simulation to explore
the effect of lowering the dark count probability. The fidelity of the entanglement protocol is influenced
by the dark count probability, and its significance becomes more pronounced as the dimensionality
increases. With higher-dimensional protocols, the number of possible error terms and noise sources
increases, amplifying the weight of dark counts in the fidelity equation. As the dark count probability
approaches or becomes comparable to the transmission probability, the effect of dark counts becomes
more significant and potentially disruptive. This is particularly noticeable at larger distances, where
dark counts carry more weight in the fidelity calculation and can have a greater impact on the overall
performance of the protocol. To mitigate the influence of dark counts, it is crucial to minimise their
probability through experimental design and the use of high-quality detectors with low dark count rates.
By reducing the dark count probability, we can enhance the fidelity and improve the reliability of the
entanglement protocol.

From an intuitive standpoint, the reduction in dark count rate is expected to yield a higher fidelity,
enabling the protocol to extend its reach to greater distances. However, it should be noted that this
reduction may also lead to a slightly lower overall success rate, primarily due to the decreased frequency
of dark count clicks. The intricate interplay between fidelity, distance and success rate highlights the
significance of minimising dark count rates to optimise the protocol’s performance. This is particularly
evident in Fig. 4.5c and d, which compares the performance for entangling 10 qubit pairs under the
two different dark count probabilities, 1.6 ·10−5 and 10−6 for the qubit and qudit protocol, respectively.
In this regime, the lower dark count probability slightly increases the possible entanglement distance
allowed by the protocol. For the other regimes considered in Fig. 4.5a and b, upgrading the detectors
to achieve an order of magnitude lower dark count probability presents little to no advantage.

While it is conceivable that achieving an even lower dark count rate could offer further advantages, we
will not explore that scenario in this context. Instead, we focus on the existing realistic range for dark
count rates, such as the considered value of 10−6, which is already challenging to attain in current or
near-term implementations. By considering this realistic dark count rate, we can gain insight into the
behaviour and performance of the entanglement protocol within practical constraints. It allows us to
evaluate the protocol’s feasibility and potential advantages under realistic conditions, without delving
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Fig. 4.5: Plots to compare the effect of a lower dark count probability on the rate. These plots are
thus overlaying the plots for pdark = 1.6 · 10−5 (crosses) and pdark = 10−6 (circles). Furthermore, four
levels of multiplexing are considered: 1, 10, 25 and 50. Plots (a) and (b) show the plots for entangling
5 pairs using the qubit (m = 1) and qudit (m = 5) protocol, respectively. Plots (c) and (d) show the
plots for entangling 10 pairs using the qubit and qudit protocol, respectively. The other parameters are
again given by: Td = 1 s, η = 0.5, trep = 10−7 s.

into the realm of significantly lower dark count rates that may currently be beyond the reach of available
technologies. This allows us to identify areas for improvement and optimisation within the context of
current experimental capabilities.

In certain applications where entangled pairs with higher fidelity are required, it is indeed possible to
achieve such a goal. However, it comes at the expense of both the rate of entanglement generation
(due to a smaller squeezing parameter required) and the achievable distance. This trade-off is clearly
demonstrated in Fig. 4.6, where the rate versus distance is simulated for a minimum fidelity of 0.95. The
simulations are conducted with memory coherence times of 1 s and 10 s, highlighting the importance
of better memory performance in such cases. Interestingly, for the plots with 10 s coherence times,
the qubit protocol now outperforms the qudit protocol in terms of rate for a large range of distances.
When entangling 5 pairs, the qubit protocol falls short of reaching the 1250 km distance achieved by
the qudit protocol. However, in the plot for entangling 10 pairs, the marginal increase in distance by
opting for the qudit protocol suggests that it may be more practical to choose the easier-to-implement
qubit protocol. On the other hand, when considering entangling 5 pairs with short coherence times, the
high-dimensional qudit protocol remains the preferred choice. The qubit protocol can then only surpass
the fidelity threshold with 50 times multiplexing and at a distance of up to around 200 km. In the case
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Fig. 4.6: Plots showing the effect of increasing the fidelity threshold to 0.95 and how increasing the
coherence time of the memories can enable us to reach this fidelity. We plot the generation of 5 entangled
pairs (top row) and 10 (bottom row) pairs using a coherence time of 1 s (left) and 10 s (right). We
again compare the qubit protocol (circles) to the m = 5 qudit protocol (crosses). The other variables
are kept fixed with the following values: pdark = 1.6 · 10−5, η = 0.5, trep = 10−7 s. (a) Entangling 5
pairs using a qubit and qudit protocol with Td = 1 s. (b) Entangling 5 pairs using a qudit with Td = 10
s. (c) Entangling 10 pairs with Td = 1 s. (d) Entangling 10 pairs with Td = 10 s.
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Fig. 4.7: Transmission probability as a function of the distance between ground stations for satellites
at three different orbital heights: 400 km, 500 km and 600 km.

of entangling 10 pairs with high fidelity using memories with 1 s coherence time, both protocols are
shown to be infeasible.

These observations emphasise the significance of considering the specific requirements of the applica-
tion, including fidelity, rate, and memory coherence time, when choosing between the qubit and high-
dimensional qudit protocols. While the qudit protocol may offer advantages in terms of distance and
fidelity under certain conditions, the qubit protocol can be more suitable for scenarios where higher
rates and fidelities are required at shorter distances. When faced with limitations in memory coherence
time, the high-dimensional qudit protocol will be preferred especially when np = m, as shown in Fig.
4.3.

The significance of choosing the optimal height for the satellite orbit is demonstrated in Fig. 4.7, which
explores different heights for the satellite orbit. The choice of satellite orbit height is crucial as it
directly impacts the distances that can be effectively covered. The model takes into account factors
such as line of sight and the distance travelled through the atmosphere, where loss due to absorption
and reflection is higher. The plot reveals that for distances exceeding 1500 km, an orbit in the range
of 600 km high would provide better transmission. This insight is derived from the model developed
by Janice van Dam, whose calculations of realistic transmission probabilities have been instrumental
in the simulations conducted in this thesis [21]. By considering the optimal satellite orbit height, we
can optimise the transmission capabilities of the entanglement protocols. This knowledge is essential
in practical implementations where efficient and reliable entanglement generation over long distances is
required. Since a satellite height of 400 km provides a superior transmission probability for up to 900
km, we have chosen this orbital height for our simulations.

By carefully considering the optimal satellite orbital height and leveraging the insights from our simu-
lations, we can pave the way for efficient and reliable entanglement generation over long distances by
employing high-dimensional encoding. The findings presented in this section not only contribute to the
practical implementation of high-dimensional entanglement protocols but also hold great promise for
the development of robust and scalable quantum networks in the future.
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The primary objective of this thesis was to investigate the advantages of utilising high-dimensional
encoding for entanglement generation in terms of its potential to entangle multiple pairs effectively.
The focus was on achieving high-quality entanglement characterised by a high fidelity with the target
Bell state, while also striving for a high rate of entanglement. The primary focus of the hardware
analysis revolved around the coherence time of the quantum memories and the dark count probability
of the detectors. Understanding and minimising the impact of dark counts is crucial for achieving
high-quality entanglement. Additionally, a long coherence time for the quantum memory was examined
as a critical hardware requirement although exhibiting much less importance for the high-dimensional
qudit protocol when the amount of desired pairs corresponds to the dimensionality. The coherence time
determines the duration during which the quantum states can be preserved and manipulated, directly
affecting the quality and longevity of entanglement. By analysing the coherence time, the study aimed
to identify the optimal conditions for generating and maintaining high-fidelity entangled pairs. While
the hardware analysis primarily focused on dark count probability and coherence time, it is important
to note that these parameters play fundamental roles in determining the feasibility and performance
of entanglement protocols. By investigating these specific hardware requirements, this study provides
valuable insights into the practical considerations and limitations of implementing high-dimensional
entanglement schemes.

Significant progress has been made in achieving long storage times for quantum memories with an optical
interface, enabling promising prospects for quantum network applications. For instance, the utilisation
of long-lived nuclear spins in diamond has enabled storage times of up to a minute [49]. By leveraging
high cooperativity in optical cavities, nearly deterministic photon-spin interfaces have been created,
facilitating efficient interaction between photons and spin systems within defect centres [59]. Other
recent advancements include the demonstration of coherent light storage for over 1 hour with a fidelity
of 96.4% using atomic frequency combs, although with very low efficiency [60]. However, the authors
have proposed various techniques to enhance efficiency in such systems. These achievements highlight
the potential of quantum memories with long coherence times in the development of efficient quantum
networks. To facilitate efficient entanglement distribution, optical memories should possess both long
coherence times and high efficiency. Notably, cold atoms confined within a cavity have demonstrated
both a retrieval efficiency of 76±5% and a 1/e lifetime of 0.22 seconds [61]. The coherence times ranging
from 0.1 to 10 seconds in this thesis, can therefore be justified, but careful consideration of the hardware
is necessary. The progress in achieving long storage times and efficient quantum memories paves the
way for the realisation of quantum networks with enhanced capabilities.

A much-researched potential solution for mitigating the impact of transmission loss is the use of quantum
repeaters. These repeaters, analogous to classical network amplifiers, enable entanglement distribution
over extended distances and at higher rates [37, 62]. Rather than amplification, quantum repeaters
leverage entanglement swapping to connect short segments of transmission lines, effectively extending
entanglement to the destination node. Introducing quantum repeaters in space-based systems holds
great potential for achieving global-scale entanglement distribution, particularly considering the expo-
nential increase in loss in optical fibres. In fact, quantum repeaters are considered essential for the
realisation of a quantum internet [1].

The key findings discussed in §4 shed light on several important aspects of the entanglement protocol.
Firstly, utilising a 2m-dimensional qudit, where the dimensionality corresponds to the desired number
of entangled pairs (m = np), enables entanglement over remarkably long distances of up to 1250 km,
as demonstrated by our parameterised simulations. Such an advantage of using high dimensionality for
reaching larger distances above a certain fidelity threshold was also shown in the simulations by Zheng
et al. [15]. In contrast, lower-dimensional qudits would suffer from decoherence while waiting for all
desired pairs to be successfully generated. If the decoherence time approaches the time interval between
successful entanglement generations (Td ≫ τc/pent), the stored pairs experience minimal decoherence
during the waiting period. In such cases, the advantage offered by the qudit protocol over the qubit
protocol becomes negligible. Another key aspect of the qudit protocol is that errors are correlated across
all of the m pairs entangled by one 2m-dimensional qudit. In contrast, when using the qudit protocol
errors will only affect individual entangled pairs. An intriguing observation is that opting for the qubit
protocol can significantly increase the rate of the protocol, compared to using the qudit protocol, when
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the fidelity threshold is raised and in case good coherence times (10 s) are achievable as shown in Fig.
4.6. This is caused by the lower amount of squeezing necessary to suppress errors resulting from higher-
order emissions when using a photonic qubit. However, this increase in rate comes at the expense of a
slightly shorter achievable distance, as the qubit protocol still experiences more decoherence due to the
long waiting time for stored pairs until all desired pairs are successfully generated.

It is important to note that certain approximations were employed in the simulations to ensure compu-
tational feasibility on a laptop. In the calculation of fidelity and rate, only non-simultaneous successes
were considered, assuming that they carry the highest probability weight. While this approximation
introduces an error in the overall probability weight of all possible combinations, the error was limited to
1%. Although considering all possible combinations would eliminate this error, it was not feasible given
the aim of the thesis to be applicable for general dimensionality m and the amount of desired pairs np.
Another approximation was made in the fidelity calculation, where the computation of waiting times
was simplified by using the steady-state equation that represents the scenario when the detectors are
open (π(0,0)). This approximation allowed for the estimation of expected waiting times for each possible
scenario without the need for a complex Markov chain analysis. Although the exact error associated
with this approximation is difficult to predict, it is anticipated to be negligible. These approximations
were necessary to strike a balance between computational feasibility and the generality of the model.
While they introduce some degree of error, their impact on the overall results is expected to be minimal.

To enhance the fidelity of generated pairs in scenarios where the dimensionality is smaller than the
number of desired entangled pairs (m < np), one approach is to impose a storage cutoff time that
aligns with the coherence time of the utilised memories. This strategy improves the overall average
fidelity of the entangled pairs at the expense of a reduced rate. Additionally, the inclusion of number-
resolving detectors can significantly contribute to fidelity improvement in the entanglement protocol
examined in this thesis. By post-selecting instances where only one photon is detected, errors arising
from higher-order emissions can be mitigated. However, it is important to note that in the high loss
regime certain errors associated with higher-order emissions may persist. For example, in cases of
second-order emissions, if one photon is lost in both transmission arms, the detectors will erroneously
register it as a combined successful detection of a single photon pair.

Additionally, we investigated the impact of decreasing the dark count probability from 1.6×10−5 to
10−6. The gain obtained from this reduction is minimal, manifesting as a very slight increase in the
achievable distance due to improved fidelity resulting from fewer errors caused by dark counts. To
have a more significant impact on the protocol, further reduction in the errors attributed to dark
counts is necessary, as the transmission probability at 1250 km is already on the order of 10−6 when
considering both transmission arms (as shown in Table A1). Given that the dark count probability and
the transmission probability are of the same order of magnitude in this regime, dark counts continue to
exert substantial influence. Thus, to reach even greater distances with an acceptable fidelity, detector
performance needs to be further enhanced when employing the proposed protocol. As the number
of pairs to be entangled increases, the impact of reducing the dark count probability becomes more
pronounced. This can be attributed to the requirement of a greater number of successful detections,
making the fidelity more susceptible to errors arising from dark counts. Therefore, minimising dark
count errors becomes increasingly important as the entanglement of multiple pairs is pursued.

The simulations conducted in this study involved different levels of multiplexing, ranging from 1 (no
multiplexing) to 50 times. These simulations demonstrate the potential of multiplexing to enhance the
rate and extend the achievable distances beyond a certain fidelity threshold. By implementing mul-
tiplexing, the success probability of the protocol is increased, leading to higher rates. Consequently,
the average fidelity improves as well, as the stored pairs experience shorter waiting times. This effect-
ive strategy is clearly illustrated in Fig. 4.1b, where longer distances are obtained by increasing the
amount of multiplexing. The simulations indicate that multiplexing may even be necessary to establish
entanglement over long distances with a usable rate, particularly when aiming for a fidelity threshold of
0.8 or higher. It is important to acknowledge that multiplexing requires more resources and introduces
greater complexity. In our analysis, we ensured that both the qudit and qubit protocols utilised the
same total amount of memory resources. However, the qubit protocol would necessitate more photon
pair sources to simultaneously transmit photonic qubits to multiple receivers in parallel. On the other
hand, the high-dimensional qudit protocol achieves the entanglement of multiple pairs from a single
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qudit emission, requiring fewer sources.

Although the hardware analysis did not encompass a comprehensive exploration of all possible hard-
ware aspects, it significantly contributes to our understanding of the key factors influencing the gen-
eration of high-quality entanglement. Future research can build upon these findings and expand the
analysis to include additional hardware considerations, such as noise sources, photon detection effi-
ciency, and quantum memory storage capacity, to further refine and optimise the implementation of
high-dimensional entanglement protocols. To begin with, the effect of photon detection efficiency can
already be explored with the model set in place in this thesis. A photon detection efficiency of 50% was
used in our analysis, which is already attainable using existing technology. As a result, the potential gain
achieved by further improving photon detection efficiency is limited, offering only a two-fold increase in
performance. In contrast, other hardware parameters have the potential to yield much more significant
improvements. Although the immediate gains in performance by increased detector efficiency may be
relatively modest, technological advancements in this area can still play a valuable role in enhancing
the overall efficiency and reliability of entanglement protocols.

One important aspect to consider is that we have not explored the effect of changing the repetition rate
of the source, which was fixed at a period of 10−7 s. Increasing the source rate directly translates to an
enhanced rate for the protocol. However, there is an additional, less obvious benefit associated with a
higher repetition rate, namely an increase in the overall fidelity and a larger achievable distance. This
phenomenon arises because stored pairs would have to wait for shorter periods when pairs are created
at a higher rate, leading to reduced decoherence effects. As a result, the entangled pairs would experi-
ence fewer errors and exhibit higher fidelities on average. Consequently, this improved fidelity enables
entanglement over greater distances, making the protocol more robust and reliable. While the effect of
the repetition rate was not explicitly investigated in this thesis, it thus also represents an important
tool for the optimisation of the entanglement protocol. By adjusting the source rate, it is possible
to achieve the desired rate of entanglement generation and consequently the average fidelity required
for specific applications. This could lead to significant advancements in the overall performance and
efficiency of the protocol. Increasing the rate alone cannot guarantee better performance, however, and
its impact should be thoroughly investigated. While it is reasonable to expect that a higher rate would
theoretically improve the system, there are several important considerations to keep in mind. As the
rate increases, the time bin resolution decreases, which poses challenges for the detection mechanism.
In order to handle the higher rate effectively, the detection system needs to become more efficient and
capable of handling the increased data throughput. This may involve optimising the detector design,
enhancing the signal-to-noise ratio, and improving timing synchronisation. Additionally, increasing the
rate may also require more intricate operations, such as implementing advanced switching patterns to
manage the data flow. These additional complexities introduce their own set of challenges, including the
need for precise control and synchronisation of multiple components within the system. Therefore, while
increasing the rate holds potential benefits, it is essential to consider the overall system requirements
and ensure that the detection mechanism, timing resolution, and operational aspects are adequately
addressed to fully capitalise on the advantages offered by a higher rate. A comprehensive analysis and
thorough optimisation of all relevant factors are crucial to achieving the desired performance improve-
ments when increasing the rate of the source.

Another intriguing aspect to consider is the number of memory modes connected to the receivers. This
becomes particularly interesting when addressing the challenge of closed detectors. By employing a
sufficient number of memory modes, it becomes possible to overcome this limitation effectively. How-
ever, it is important to note that implementing such a solution would require a more intricate detection
scheme, possibly involving the utilisation of switches to map detected photons to unoccupied memories.
In order for this scheme to function optimally in scenarios where the heralding time exceeds the time
interval between successive photons reaching the receivers, a minimum of Nmem ≥ ⌈τhpsuc/τc⌉ memory
modes per receiver is necessary. This criterion ensures that there are enough memory modes available
to accommodate the temporal gaps between the arrival of successive photons, allowing for efficient map-
ping and utilisation of the memory resources. Implementing a detection scheme with multiple memory
modes per receiver presents new opportunities for enhancing the scalability and flexibility of the entan-
glement generation process. By carefully designing the detection and memory allocation mechanisms,
it becomes feasible to overcome the challenges associated with closed detectors and improve the overall
efficiency of the entanglement protocol. It is worth noting that the consideration of memory modes
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per receiver and the development of an appropriate detection scheme are areas that warrant further
investigation and development. Future research can explore advanced techniques, such as employing
optical switches or other strategies, to efficiently allocate and utilise memory resources for maximising
the entanglement generation capabilities. By addressing the issue of closed detectors through the in-
tegration of multiple memory modes and implementing a sophisticated detection scheme, the potential
for generating entangled pairs with higher rates and improved fidelity can be significantly enhanced.

Furthermore, the model employed in this study relies on certain assumptions to manage the computa-
tional complexity, which may not fully capture the intricacies of real-life experiments. It is important
to acknowledge that different errors can potentially affect the qubit and qudit protocols differently,
potentially counteracting the anticipated advantages of the qudit protocol observed in our simulations.
For instance, errors arising from incorrect switching and asymmetric loss for different time bins are
notable factors to consider. To enhance the accuracy of the current model, it is crucial to incorporate
these errors and explore hardware improvements. By addressing these factors, we can strive towards a
more precise representation of the experimental conditions and further evaluate the practical viability
of the protocols.

The asymmetric loss for different time bins arises from the varying lengths of delay loops. Each earlier
time bin passes through delay loops corresponding to its time bin number, while the latest time bin
does not pass through any delay loop. As a result, the transmission loss through the delay loops can
be expressed as ηl, and if a photon traverses k delay loops, the total loss is given by ηkl . To address
the asymmetric loss for different time bins, a straightforward approach is to introduce beam splitters
for the later time bins. By increasing the loss introduced by the beam splitter as the time bin becomes
later, the combined loss from the delay loops and beam splitters can be made equal for each time bin.
This ensures symmetry in the loss experienced by photons across different time bins. Adjusting the
beam splitter’s properties for each time bin allows for compensation of the asymmetric loss, providing
a more balanced performance in the protocol. Alternatively, the amplitude of different time bins can
be adjusted at the source to counterbalance the asymmetric loss caused by the delay loops before the
X-measurement. However, for SPDC sources, this solution may be challenging as increasing the pump
laser intensity would also affect the squeezing parameter. Consequently, this approach may be more
suitable when employing a different source.

The wrong switching error and switch transmission are also potential sources of errors in both the qubit
and high-dimensional qudit protocols. However, the high-dimensional qudit protocol is particularly
susceptible to this error due to the increased number of switches involved. In the case of high-dimensional
qudits, a larger number of switches is required for tasks such as mapping photonic qudits to quantum
memories and performing the QFT for X-measurement. Consequently, the impact of switch-related
errors, including wrong switching and switch transmission, becomes more pronounced. To accurately
model the protocol, it is crucial to consider the transmission efficiency of switches (denoted as ηsw) and
the occurrence of wrong switching. Wrong switching represents the possibility of light being routed to
an incorrect output port of the switch. We can quantify this error as esw. For instance, if a switch is
intended to direct an incoming photon to output port 1, the realistic scenario can be expressed as:

|in⟩ →
√

1 − esw |out⟩ 1 +
√
esw |out⟩2 . (5.1)

Each switch in the protocol will have an effective transmission of ηsw(1 − esw), accounting for both
transmission loss and errors due to wrong switching. These errors can be heralded, since the absence
of detection indicates loss, and the occurrence of wrong switching leads to incorrectly timed detections.
Therefore, the wrong switching error can be considered within the transmission loss, as wrong switching
events result in heralded errors that are subsequently discarded, contributing to overall loss.

To map the photonic qudit to the qubit memories, m switches are used corresponding to the number
of quantum memories. If a photon needs to interact with a cavity, it is switched to the cavity and then
reflected back. This process requires the photon to pass through the switch an additional time. The
number of times this interaction occurs, denoted by b1, depends on the specific binary encoding of the
time-bin. Each interaction with the cavity introduces further opportunities for errors in the protocol.
The total number of switches passed during the process of mapping the photonic qudit to the quantum
memories is therefore given by m+ b1. Additionally, the resources required for the detection step, such
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as switches, beam splitters, and detectors, scale linearly with the dimensionality of the photonic qudit
[15]. The temporal modes can thus be mapped to spatial modes by utilising 2m − 1 switches before the
QFT operation. The total transmission loss resulting from the 2m+1+2m+2b1−2 switches (accounting

for both sides of the protocol) can be expressed as (ηsw(1 − esw))
2m+1+2m+2b1−2

. However, it is possible
to mitigate the need for switches by employing probabilistic implementations using linear optics. One
approach is to use a single fibre loop combined with beam splitters to interfere multiple time bins, as
demonstrated in Xiaoyu Liu’s master thesis (Ref. [63]). Another strategy involves interfering the qudit
photon with local single photons to erase the arrival time, as outlined in Ref. [3]. Employing both
path and polarisation modes it has also been shown that the resources needed to construct a QFT
interferometer can be reduced by 75% [39]. These alternative techniques provide potential solutions
for reducing the reliance on switches while maintaining the functionality of the entanglement detection
process. Furthermore, the QFT operation may experience additional phase errors depending on the
dimension m. Although a detailed investigation is beyond the scope of this thesis, these errors could
be modelled by introducing a dephasing channel with a decay factor of e−σ2

X/2, where σX = αm. This
formulation accounts for the increase in error with the dimension m [15]. It is worth mentioning that the
modelling of decoherence in stored qubits can be significantly enhanced when the hardware details are
known, particularly when the dephasing and relaxation times of a memory can be taken into account.

It would also be intriguing to explore methods for mitigating the increased error terms associated with
the use of an SPDC source in generating high-dimensional time-bin qudits. A compelling approach
was demonstrated in the context of wavelength-multiplexed time-bin entangled pairs, enabling the
distribution of pair-wise entanglement across multiple network users using a single SPDC source [64].
This wavelength division multiplexing technique could potentially be used for entangling multiple qubit
pairs in our scenario. Another avenue to enhance the quality of quantum entanglement is through the
distillation of the two-mode squeezed state emitted by the SPDC source through photon subtraction
techniques [28, 65]. This thesis primarily focused on the use of the SPDC source due to its convenience
and the successful experimental demonstrations using this setup like in Ref. [20]. However, it is
important to note that there are alternative sources of entangled photon pairs that could be employed.
One such alternative is the utilisation of Rydberg atoms in cavity quantum electrodynamics (cQED)
[66]. This approach allows for the creation of heralded hyper-entangled photon pairs, which could
potentially enhance the fidelity of entangled pairs in our protocol. Semiconductor quantum dots are also
a viable candidate for generating entangled photon pairs. These quantum dots can produce polarisation-
entangled pairs by exciting a quantum dot that subsequently decays to a lower-energy state, emitting
two photons. By employing a pulsed laser excitation, it is possible to create time-bin entangled pairs
[67]. Additionally, four-wave mixing is an attractive method that can be integrated on-chip, reducing
the size and weight of the satellite payload in our protocol [68, 69]. These examples serve to illustrate
the diversity of sources and technologies available for generating entangled photon pairs, and many more
techniques exist. By exploring these alternative sources, it may be possible to enhance the performance
and capabilities of the entanglement protocol considered in this thesis, providing opportunities for
further improvements in terms of fidelity, efficiency, and scalability.

This thesis aimed to bridge the gap between theoretical possibilities and experimental feasibility by in-
vestigating the potential advantages of high-dimensional encoding in entanglement generation. The find-
ings shed light on the regimes where qudit-based approaches excel, particularly in enabling long-range
entanglement distribution. The implications of these findings are significant, as they offer opportun-
ities for various quantum network operations that require the simultaneous entanglement of multiple
pairs with low coherence times. For instance, high-dimensional entanglement can enhance quantum
metrology, allowing for more precise measurements and improved sensing capabilities [3]. Furthermore,
it can be leveraged in blind quantum computing protocols, ensuring privacy and security in computa-
tion tasks [4, 5]. Entanglement-based quantum key distribution (QKD) protocols can also benefit from
high-dimensional entanglement, enabling secure communication channels resistant to eavesdropping at-
tacks [6, 7]. Moreover, the use of qudit-based entanglement opens up possibilities for teleportation
protocols, enabling the transfer of quantum states between distant locations [8, 9].These are just a few
examples of the potential applications of high-dimensional entanglement in various quantum network
tasks. Overall, this thesis provides valuable insights into the advantages of qudit-based approaches for
entanglement generation, paving the way for advancements in quantum communication, computation,
and information processing.
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In this thesis, we have embarked on an exploration of satellite-based entanglement distribution, focus-
ing on the requirement of generating multiple entangled qubit pairs needed for various functionalities
within a quantum network. Existing schemes for generating multiple entangled pairs have employed
both parallel ([13, 14]) and sequential ([12]) protocols. These protocols typically rely on a register of
quantum memories for the storage of successful pairs until all desired pairs are entangled. However,
this storage phase poses stringent demands on the coherence time of the quantum memories employed.
The challenges are further exacerbated by high transmission and switch loss, coupled with low detection
efficiencies, which can lead to prolonged coherence times required for storing successful pairs until the
protocol’s completion. To address this issue a high-dimensional qudit protocol was proposed in Ref.
[15] to enable the simultaneous entanglement of multiple pairs and effectively mitigate the waiting time,
during which significant decoherence can occur. Inspired by this proposal, our objective was to model a
similar protocol that utilises high-dimensional information encoding and simulate its operation within
the context of satellite-based entanglement distribution. The protocol involves a single-photon-pair
source that emits pairs of photons in different time bins defining the high-dimensional qudit. The two
photons in each pair are then transmitted to two different ground stations. At the ground stations,
the incoming photons are mapped to a qubit memory register based on their respective time bins.
Subsequently, a generalised X-measurement of the photonic time-bin state is performed, heralding the
success of the protocol and resulting in the projection of the memory registers onto multiple Bell pairs.
By employing a parameterised model, we were able to compare the performance of the high-dimensional
protocol with a comparable qubit-based protocol. Our goal was to identify the specific parameter re-
gimes in which each protocol excels and outperforms the other. This comparative analysis has provided
valuable insights into the strengths and limitations of high-dimensional protocols in satellite-based
entanglement distribution scenarios.

In our analysis, we focused on two key metrics to compare the two protocols: the distance at which
a desired number of entangled pairs could be generated above a specified fidelity threshold, and the
rate at which this desired number of entangled pairs could be achieved. By setting a minimum fidelity
threshold, we evaluated the protocol’s performance at varying distances to determine the maximum
achievable range while maintaining the desired fidelity. We then investigated how changing parameters
such as the memory coherence time, detector dark count rate, and fidelity threshold influenced these
metrics for each protocol. This analysis allows us to identify the parameter regimes in which either
protocol demonstrated superior performance in generating the desired number of entangled pairs.

It is important to note that while our model aimed to be as general as possible, we assumed the use
of a spontaneous parametric down-conversion (SPDC) source. The use of an SPDC source introduces
significant errors in the form of unwanted higher-order emissions, which affect the high-dimensional
protocol more severely since more emissions are used to form the high-dimensional time-bin encoding.
The key findings of our study reveal that employing a 2m-dimensional qudit protocol, with a dimension-
ality corresponding to the desired number of entangled pairs (m = np), yields the best overall results.
This advantage stems from the high-dimensional encoding, which enables the generation of multiple
entangled pairs simultaneously, eliminating the need to wait for additional successful pairs. The en-
tangled pairs thus only decoherence during the heralding time. Such high-dimensional encoding allows
for long-range entanglement distribution when lower-dimensional encoding proves insufficient. How-
ever, it is important to ensure that the coherence time remains longer than the heralding time. With
heralding times reaching up to milliseconds for ranges up to 1250 km, achieving the required coherence
time seems realistically possible [49]. In cases where longer coherence times are attainable, employing
a lower dimensionality may become more attractive due to its easier implementation and the potential
for higher rates, albeit at slightly shorter distances as shown in Fig. 4.6. This scenario holds true when
the fidelity threshold is set to a high value since the high-dimensional protocol would require a very
low squeezing parameter (λ) to minimise higher-order emissions and achieve high fidelities, thereby
reducing the rate. Conversely, in scenarios with long coherence times and a lower fidelity threshold,
the high-dimensional protocol may still outperform lower-dimensional alternatives. This is because it
then does not necessitate an extremely low squeezing parameter to suppress errors, allowing for higher
rates. Additionally, we investigated the impact of suppressing dark counts. While higher fidelities
can be achieved by reducing dark count probabilities, the expected near-term achievable dark count
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probability on the order of 10−6 is comparable to the transmission probability, resulting in minimal
effects. Further reductions in dark count probabilities are required to observe significant improvements,
although for entangling many pairs the reduction in dark counts from 1.6 ·10−5 to 10−6 showed a slight
increase in achievable distance in our simulations. Overall, these findings provide valuable insights into
the performance and considerations of high-dimensional qudit protocols in satellite-based entanglement
distribution.

An important aspect to note is that our simulations incorporated varying degrees of multiplexing. This
investigation revealed that in scenarios where the protocol appeared challenging or infeasible, multi-
plexing emerged as a valuable technique to enhance both the transmission rate and achievable distance.
It was observed that when dealing with lower memory coherence times or a higher desired number
of entangled pairs, multiplexing offered a highly effective solution. However, it is worth noting that
implementing multiplexing requires a more extensive setup, involving additional sources and receivers.

The analysis conducted in this study relied on certain computational approximations to ensure the
tractability of the computations. Although these approximations are expected to introduce minimal
errors, there is room for further enhancements to increase the accuracy of the model. Furthermore,
the model assumed a perfect mapping of the qudit state to the memory register, as well as perfect
execution of the generalised X-measurement. However, it is important to acknowledge that real-world
implementations may encounter additional errors such as switching errors and asymmetrical loss due to
potential delay loops needed to convert the temporal modes to spatial modes. These errors will depend
on the specific hardware choices and the experimental setup and could thus be considered when the
hardware choices are made. By addressing these considerations and refining the model, future studies
can provide a more accurate depiction of the performance and feasibility of high-dimensional qudit
protocols in practical satellite-based entanglement distribution scenarios.

The search for solutions to achieve entanglement distribution over global distances has encompassed
various domains, particularly due to the impracticality of fibre-based transmission for both high-fidelity
and high-rate communication over long distances. The exponential loss inherent in fibre-based systems
severely restricts the achievable transmission rates. Satellite-based approaches have emerged as a viable
solution to mitigate transmission losses, although they may still face challenges in covering extremely
large distances. To address this, the concept of quantum repeaters has been introduced. Quantum
repeaters break down the transmission path into smaller segments, allowing for enhanced fidelity and
improved transmission rates. In this context, our proposed protocol contributes to the existing solutions,
offering a promising pathway towards efficient entanglement distribution. By combining satellite-based
approaches with quantum repeaters, we envision a future that holds great potential for the develop-
ment of quantum networks and a quantum internet. These advancements pave the way for realising
widespread entanglement distribution and fostering the growth of quantum technologies on a global
scale.

Consideration of the numerous governing parameters poses a significant challenge, making it difficult
to account for each one comprehensively. In future research, it would be beneficial to explore altern-
ative approaches by incorporating various different sources, receiver setups, quantum memories, and
alternative heralding measurements. Such investigations, involving different hardware configurations,
have the potential to yield a more practical protocol with reduced error rates. By exploring these
avenues, researchers can further optimise the entanglement distribution process and pave the way for
more efficient and reliable implementations.

In conclusion, using a qudit with dimensionality corresponding to the desired amount of pairs (m = np)
consistently yields the largest achievable distances. However, if higher fidelities are required, and the
memory coherence times are good enough it may be advisable to consider lower-dimensional protocols.
Improving the coherence time will have the most significant impact on the qubit protocol while decreas-
ing the dark count probability of the detectors will slightly improve performance for both qubit and
qudit protocols in terms of achievable distance. Lastly, one must consider the optimal orbital height
of the satellite, as it depends on the desired entanglement distance. Selecting the appropriate orbital
height is crucial for optimising the entanglement capabilities of the system. Overall, these findings
provide valuable insights for the practical implementation of high-dimensional entanglement protocols
and pave the way for future advancements in quantum networks.
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The remarkable progress made in the quest for entanglement distribution over global distances, coupled
with the integration of satellite-based approaches and quantum repeaters, presents a promising future
for the realisation of a quantum internet. The advancements achieved through this study contribute
to the ongoing pursuit of a robust and scalable infrastructure for quantum communication and pave
the way for transformative applications in secure communication, quantum computing, and beyond.
As the field of satellite-based entanglement distribution continues to evolve, we anticipate that further
breakthroughs and innovative solutions will arise, bringing us closer to the seamless integration of
quantum technologies into our everyday lives.
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quantum phase switch with a single atom. Nature, 508(7495):241–244, 4 2014. ISSN 14764687.
doi: 10.1038/nature13188. URL https://www.nature.com/articles/nature13188.

[46] Norbert Kalb, Andreas Reiserer, Stephan Ritter, and Gerhard Rempe. Heralded storage of
a photonic quantum bit in a single atom. Physical Review Letters, 114(22):220501, 6 2015.
ISSN 10797114. doi: 10.1103/PhysRevLett.114.220501. URL https://journals.aps.org/prl/

abstract/10.1103/PhysRevLett.114.220501.

[47] Shuo Sun, Hyochul Kim, Zhouchen Luo, Glenn S. Solomon, and Edo Waks. A single-photon
switch and transistor enabled by a solid-state quantum memory. Science, 361(6397):57–60, 7 2018.
ISSN 10959203. doi: 10.1126/science.aat3581. URL https://www.science.org/doi/10.1126/

science.aat3581.

[48] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V.G. Dutt, A. S. Sørensen,
P. R. Hemmer, A. S. Zibrov, and M. D. Lukin. Quantum entanglement between an optical photon
and a solid-state spin qubit. Nature, 466(7307):730–734, 8 2010. ISSN 00280836. doi: 10.1038/
nature09256. URL https://www.nature.com/articles/nature09256.

[49] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker,
M. Markham, D. J. Twitchen, and T. H. Taminiau. A Ten-Qubit Solid-State Spin Register with
Quantum Memory up to One Minute. Physical Review X, 9(3), 5 2019. ISSN 21603308. doi:
10.1103/PhysRevX.9.031045. URL http://arxiv.org/abs/1905.02094http://dx.doi.org/10.

1103/PhysRevX.9.031045.

[50] C T Nguyen, D D Sukachev, M K Bhaskar, B. MacHielse, D S Levonian, E N Knall, P Stroganov,
C Chia, M J Burek, R Riedinger, H Park, M Lončar, and M D Lukin. An integrated nanophotonic
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Appendices

Appendix 1 Calculations for m = 2

In this appendix, we will show the calculation of the fidelity with a concrete example for the 4-
dimensional qudit case. We begin at the SPDC source that we use to emit at different time bins,
we will find the following state:

|Ψ⟩A,B =(1 − λ2)2
∞∑

n=0

λn |n, n⟩1 ⊗
∞∑

n=0

λn |n, n⟩2 ⊗
∞∑

n=0

λn |n, n⟩3 ⊗
∞∑

n=0

λn |n, n⟩4

≈(1 − λ2)2
[
|0, 0⟩ + λ(|1, 1⟩1 + |1, 1⟩2 + |1, 1⟩3 + |1, 1⟩4)

+ λ2 (|2, 2⟩1 + |2, 2⟩2 + |2, 2⟩3 + |2, 2⟩4
+ |1112, 1112⟩ + |1113, 1113⟩ + |1114, 1114⟩ + |1213, 1213⟩ + |1214, 1214⟩ + |1314, 1314⟩)
+ O(λ3)

]
(A1)

By incorporating a beam splitter with a transmittance of
√
pT η we can find the state after transmission

while including the detection efficiency for the final heralding detection. This give us Eq. A2:

|Ψ⟩A,B,lA,lB
=(1 − λ2)2

{
pT ηλ

[
|1, 1, 0, 0⟩1 + |1, 1, 0, 0⟩2 + |1, 1, 0, 0⟩3 + |1, 1, 0, 0⟩4

]
+ p2T η

2λ2
[
|2, 2, 0, 0⟩1 + |2, 2, 0, 0⟩2 + |2, 2, 0, 0⟩3 + |2, 2, 0, 0⟩4

+ |1112, 1112, 0, 0⟩ + |1113, 1113, 0, 0⟩ + |1114, 1114, 0, 0⟩

+ |1213, 1213, 0, 0⟩ + |1214, 1214, 0, 0⟩ + |1314, 1314, 0, 0⟩
]

+
√
pT η(1 − pT η)λ

[
|1, 0, 0, 1⟩1 + |1, 0, 0, 1⟩2 + |1, 0, 0, 1⟩3 + |1, 0, 0, 1⟩4

+ |0, 1, 1, 0⟩1 + |0, 1, 1, 0⟩2 + |0, 1, 1, 0⟩3 + |0, 1, 1, 0⟩4
]

+ pT η(1 − pT η)λ2
[
|2, 0, 0, 2⟩1 + |0, 2, 2, 0⟩1 + |2, 0, 0, 2⟩2 + |0, 2, 2, 0⟩2

+ |2, 0, 0, 2⟩3 + |0, 2, 2, 0⟩3 + |2, 0, 0, 2⟩4 + |0, 2, 2, 0⟩4
+ 2

(
|1, 1, 1, 1⟩1 + |1, 1, 1, 1⟩2 + |1, 1, 1, 1⟩3 + |1, 1, 1, 1⟩4

)
+ |1112, 0, 0, 1112⟩ + |0, 1112, 1112, 0⟩ + |11, 11, 12, 12⟩
+ |11, 12, 12, 11⟩ + |12, 11, 11, 12⟩ + |12, 12, 11, 11⟩
+ |1113, 0, 0, 1113⟩ + |0, 1113, 1113, 0⟩ + |11, 11, 13, 13⟩
+ |11, 13, 13, 11⟩ + |13, 11, 11, 13⟩ + |13, 13, 11, 11⟩
+ |1114, 0, 0, 1114⟩ + |0, 1114, 1114, 0⟩ + |11, 11, 14, 14⟩
+ |11, 14, 14, 11⟩ + |14, 11, 11, 14⟩ + |14, 14, 11, 11⟩
+ |1213, 0, 0, 1213⟩ + |0, 1213, 1213, 0⟩ + |12, 12, 13, 13⟩
+ |12, 13, 13, 12⟩ + |13, 12, 12, 13⟩ + |13, 13, 12, 12⟩
+ |1214, 0, 0, 1214⟩ + |0, 1214, 1214, 0⟩ + |12, 12, 14, 14⟩
+ |12, 14, 14, 12⟩ + |14, 12, 12, 14⟩ + |14, 14, 12, 12⟩
+ |1314, 0, 0, 1314⟩ + |0, 1314, 1314, 0⟩ + |13, 13, 14, 14⟩

+ |13, 14, 14, 13⟩ + |14, 13, 13, 14⟩ + |14, 14, 13, 13⟩
]

+ pT η
√
pT η(1 − pT η)λ2

[√
2(|2, 1, 0, 1⟩1 + |1, 2, 1, 0⟩1 + |2, 1, 0, 1⟩2 + |1, 2, 1, 0⟩2

+ |2, 1, 0, 1⟩3 + |1, 2, 1, 0⟩3 + |2, 1, 0, 1⟩4 + |1, 2, 1, 0⟩4)
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+ |1112, 11, 0, 12⟩ + |1112, 12, 0, 11⟩ + |11, 1112, 12, 0⟩ + |12, 1112, 11, 0⟩
+ |1113, 11, 0, 13⟩ + |1113, 13, 0, 11⟩ + |11, 1113, 13, 0⟩ + |13, 1113, 11, 0⟩
+ |1114, 11, 0, 14⟩ + |1114, 14, 0, 11⟩ + |11, 1114, 14, 0⟩ + |14, 1114, 11, 0⟩
+ |1213, 12, 0, 13⟩ + |1213, 13, 0, 12⟩ + |12, 1213, 13, 0⟩ + |13, 1213, 12, 0⟩
+ |1214, 12, 0, 14⟩ + |1214, 14, 0, 12⟩ + |12, 1214, 14, 0⟩ + |14, 1214, 12, 0⟩

+ |1314, 13, 0, 14⟩ + |1314, 14, 0, 13⟩ + |13, 1314, 14, 0⟩ + |14, 1314, 13, 0⟩
]

+
√
pT η(1 − pT η(1 − pT η)λ2

[√
2
(
|1, 0, 1, 2⟩1 + |0, 1, 2, 1⟩1 + |1, 0, 1, 2⟩2 + |0, 1, 2, 1⟩2

+ |1, 0, 1, 2⟩3 + |0, 1, 2, 1⟩3 + |1, 0, 1, 2⟩4 + |0, 1, 2, 1⟩4
)

+ |11, 0, 12, 1112⟩ + |12, 0, 11, 1112⟩ + |0, 12, 1112, 12⟩ + |0, 12, 1112, 11⟩
+ |11, 0, 13, 1113⟩ + |13, 0, 11, 1113⟩ + |0, 11, 1113, 13⟩ + |0, 13, 1113, 11⟩
+ |11, 0, 14, 1114⟩ + |14, 0, 11, 1114⟩ + |0, 11, 1114, 14⟩ + |0, 14, 1114, 14⟩
+ |12, 0, 13, 1213⟩ + |13, 0, 12, 1213⟩ + |0, 12, 1213, 13⟩ + |0, 13, 1213, 12⟩
+ |12, 0, 14, 1214⟩ + |14, 0, 12, 1214⟩ + |0, 12, 1214, 14⟩ + |0, 14, 1214, 12⟩

+ |13, 0, 14, 1314⟩ + |14, 0, 1314, 13⟩ + |0, 13, 1314, 14⟩ + |0, 14, 1314, 14⟩
]

+ (1 − pT η)2λ2
[
|0, 0, 2, 2⟩1 + |0, 0, 2, 2⟩2 + |0, 0, 2, 2⟩3 + |0, 0, 2, 2⟩4

+ |0, 0, 1112, 1112⟩ + |0, 0, 1113, 1113⟩ + |0, 0, 1114, 1114⟩

+ |0, 0, 1213, 1213⟩ + |0, 0, 1214, 1214⟩ + |0, 0, 1314, 1314⟩
]

+ (1 − pT η)λ
[
|0, 0, 1, 1⟩1 + |0, 0, 1, 1⟩2 + |0, 0, 1, 1⟩3 + |0, 0, 1, 1⟩4

]
+ |0, 0, 0, 0⟩ + O(λ3)

}
(A2)

This state is still normalised up to the truncation. We will now include the dark count probability
via the mapping |0⟩ → √

pdark |click⟩ and we will subsequently post-select the cases in which at least
one photon is detected at both sides. We model the use of non-number-resolving detectors and as
such they cannot distinguish between single or multiple photon detections. We thus throw away the
terms in which at least one side did not receive any photons, the heralding step can recognise that as an
unsuccessful attempt. The state should be written as a density matrix as it involves a mixed state based
on successful detection probabilities if we include this post-selection. We will nonetheless use the state
ket notation for the convenience of writing such a large state. After the dark count probability has been
added and the post-selection is done the state can be written as Eq. A3. After post-selection this state
is no longer normalised, we will however, not care to do so since the normalisation will not be important
for the fidelity calculation that we wish to perform (as it will be divided out when normalising). We will
leave the states where a dark count provides the probability for a false successful detection unchanged
since the real mapping is of no importance in our calculations. All erroneous terms together will later
be viewed as one garbage state.

|Ψ⟩A,B,lA,lB
=(1 − λ2)2

{
pT ηλ

[
|1, 1, 0, 0⟩1 + |1, 1, 0, 0⟩2 + |1, 1, 0, 0⟩3 + |1, 1, 0, 0⟩4

]
+ p2T η

2λ2
[
|2, 2, 0, 0⟩1 + |2, 2, 0, 0⟩2 + |2, 2, 0, 0⟩3 + |2, 2, 0, 0⟩4

+ |1112, 1112, 0, 0⟩ + |1113, 1113, 0, 0⟩ + |1114, 1114, 0, 0⟩

+ |1213, 1213, 0, 0⟩ + |1214, 1214, 0, 0⟩ + |1314, 1314, 0, 0⟩
]

+
√
pT η(1 − pT η)λ

√
pdark

[
|1, 0, 0, 1⟩1 + |1, 0, 0, 1⟩2 + |1, 0, 0, 1⟩3 + |1, 0, 0, 1⟩4
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1 Calculations for m = 2

+ |0, 1, 1, 0⟩1 + |0, 1, 1, 0⟩2 + |0, 1, 1, 0⟩3 + |0, 1, 1, 0⟩4
]

+ pT η(1 − pT η)λ2
[√

pdark(|2, 0, 0, 2⟩1 + |0, 2, 2, 0⟩1 + |2, 0, 0, 2⟩2 + |0, 2, 2, 0⟩2
+ |2, 0, 0, 2⟩3 + |0, 2, 2, 0⟩3 + |2, 0, 0, 2⟩4 + |0, 2, 2, 0⟩4
+ |1112, 0, 0, 1112⟩ + |0, 1112, 1112, 0⟩ + |1113, 0, 0, 1113⟩ + |0, 1113, 1113, 0⟩
+ |1114, 0, 0, 1114⟩ + |0, 1114, 1114, 0⟩ + |1213, 0, 0, 1213⟩ + |0, 1213, 1213, 0⟩
+ |1214, 0, 0, 1214⟩ + |0, 1214, 1214, 0⟩ + |1314, 0, 0, 1314⟩ + |0, 1314, 1314, 0⟩)
+ 2

(
|1, 1, 1, 1⟩1 + |1, 1, 1, 1⟩2 + |1, 1, 1, 1⟩3 + |1, 1, 1, 1⟩4

)
+ |11, 11, 12, 12⟩ + |11, 12, 12, 11⟩ + |12, 11, 11, 12⟩ + |12, 12, 11, 11⟩
+ |11, 11, 13, 13⟩ + |11, 13, 13, 11⟩ + |13, 11, 11, 13⟩ + |13, 13, 11, 11⟩
+ |11, 11, 14, 14⟩ + |11, 14, 14, 11⟩ + |14, 11, 11, 14⟩ + |14, 14, 11, 11⟩
+ |12, 12, 13, 13⟩ + |12, 13, 13, 12⟩ + |13, 12, 12, 13⟩ + |13, 13, 12, 12⟩
+ |12, 12, 14, 14⟩ + |12, 14, 14, 12⟩ + |14, 12, 12, 14⟩ + |14, 14, 12, 12⟩

+ |13, 13, 14, 14⟩ + |13, 14, 14, 13⟩ + |14, 13, 13, 14⟩ + |14, 14, 13, 13⟩
]

+ pT η
√
pT η(1 − pT η)λ2

[√
2(|2, 1, 0, 1⟩1 + |1, 2, 1, 0⟩1 + |2, 1, 0, 1⟩2 + |1, 2, 1, 0⟩2

+ |2, 1, 0, 1⟩3 + |1, 2, 1, 0⟩3 + |2, 1, 0, 1⟩4 + |1, 2, 1, 0⟩4)

+ |1112, 11, 0, 12⟩ + |1112, 12, 0, 11⟩ + |11, 1112, 12, 0⟩ + |12, 1112, 11, 0⟩
+ |1113, 11, 0, 13⟩ + |1113, 13, 0, 11⟩ + |11, 1113, 13, 0⟩ + |13, 1113, 11, 0⟩
+ |1114, 11, 0, 14⟩ + |1114, 14, 0, 11⟩ + |11, 1114, 14, 0⟩ + |14, 1114, 11, 0⟩
+ |1213, 12, 0, 13⟩ + |1213, 13, 0, 12⟩ + |12, 1213, 13, 0⟩ + |13, 1213, 12, 0⟩
+ |1214, 12, 0, 14⟩ + |1214, 14, 0, 12⟩ + |12, 1214, 14, 0⟩ + |14, 1214, 12, 0⟩

+ |1314, 13, 0, 14⟩ + |1314, 14, 0, 13⟩ + |13, 1314, 14, 0⟩ + |14, 1314, 13, 0⟩
]

+
√
pT η(1 − pT η(1 − pT η)λ2

√
pdark

[√
2
(
|1, 0, 1, 2⟩1 + |0, 1, 2, 1⟩1 + |1, 0, 1, 2⟩2

+ |0, 1, 2, 1⟩2 + |1, 0, 1, 2⟩3 + |0, 1, 2, 1⟩3 + |1, 0, 1, 2⟩4 + |0, 1, 2, 1⟩4
)

+ |11, 0, 12, 1112⟩ + |12, 0, 11, 1112⟩ + |0, 12, 1112, 12⟩ + |0, 12, 1112, 11⟩
+ |11, 0, 13, 1113⟩ + |13, 0, 11, 1113⟩ + |0, 11, 1113, 13⟩ + |0, 13, 1113, 11⟩
+ |11, 0, 14, 1114⟩ + |14, 0, 11, 1114⟩ + |0, 11, 1114, 14⟩ + |0, 14, 1114, 14⟩
+ |12, 0, 13, 1213⟩ + |13, 0, 12, 1213⟩ + |0, 12, 1213, 13⟩ + |0, 13, 1213, 12⟩
+ |12, 0, 14, 1214⟩ + |14, 0, 12, 1214⟩ + |0, 12, 1214, 14⟩ + |0, 14, 1214, 12⟩

+ |13, 0, 14, 1314⟩ + |14, 0, 1314, 13⟩ + |0, 13, 1314, 14⟩ + |0, 14, 1314, 14⟩
]

+ (1 − pT η)2λ2pdark

[
|0, 0, 2, 2⟩1 + |0, 0, 2, 2⟩2 + |0, 0, 2, 2⟩3 + |0, 0, 2, 2⟩4

+ |0, 0, 1112, 1112⟩ + |0, 0, 1113, 1113⟩ + |0, 0, 1114, 1114⟩

+ |0, 0, 1213, 1213⟩ + |0, 0, 1214, 1214⟩ + |0, 0, 1314, 1314⟩
]

+ (1 − pT η)λpdark

[
|0, 0, 1, 1⟩1 + |0, 0, 1, 1⟩2 + |0, 0, 1, 1⟩3 + |0, 0, 1, 1⟩4

]
+ pdark |0, 0, 0, 0⟩ + O(λ3)

}
(A3)

Now we have modelled the state that we could expect to receive at the detectors without incorporating
the mapping to the qubit memory register and the QFT. To address this we will trace out the loss
channels and extract the part of the state that represents the desired Bell state together with its
probability amplitude. We can do this since for calculating the fidelity we only care about the desired
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1 Calculations for m = 2

state and we can view everything else as an erroneous state. For our fidelity calculation, we can thus
use only the desired part to map it to the qubit memory register and subsequently perform the QFT
and the X-measurement. We start with the part of the state that we want to receive:

|Ψ⟩0 = ηpTλ(1 − λ2)2(|1, 1⟩1 + |1, 1⟩2 + |1, 1⟩3 + |1, 1⟩4). (A4)

Now we can map this qudit state to the qubit memories, using the following mapping:

|1⟩ −→ |00⟩
|2⟩ −→ |01⟩
|3⟩ −→ |10⟩
|4⟩ −→ |11⟩

(A5)

We will find the following state:

|Ψ⟩0 −→ ηpTλ(1 − λ2)2[ |1, 1⟩1 |00, 00⟩ + |1, 1⟩2 |01, 01⟩ + |1, 1⟩3 |10, 10⟩ + |1, 1⟩4 |11, 11⟩ ] (A6)

Both sides of the protocol receive we same state, so we can compute the QFT for one side and derive
the full state from there. The QFT will result in the following mapping:

|1⟩ → 1√
4

(|X1⟩ + |X2⟩ + |X3⟩ + |X4⟩)

|2⟩ → 1√
4

(|X1⟩ + e−2πi/4 |X2⟩ + e−4πi/4 |X3⟩ + e−6πi/4 |X4⟩)

|3⟩ → 1√
4

(|X1⟩ + e−4πi/4 |X2⟩ + e−8πi/4 |X3⟩ + e−12πi/4 |X4⟩)

|4⟩ → 1√
4

(|X1⟩ + e−6πi/4 |X2⟩ + e−12πi/4 |X3⟩ + e−18πi/4 |X4⟩)

(A7)

By applying this mapping we can find the state after the QFT to be given as:

ηpTλ(1 − λ2)2[ |1, 1⟩1 |00, 00⟩ + |1, 1⟩2 |01, 01⟩ + |1, 1⟩3 |10, 10⟩ + |1, 1⟩4 |11, 11⟩ ] →
ηpTλ(1 − λ2)2

4
[(|X1⟩ + |X2⟩ + |X3⟩ + |X4⟩) ⊗ (|X1⟩ + |X2⟩ + |X3⟩ + |X4⟩) |00, 00⟩

+ (|X1⟩ + e−iπ/2 |X2⟩ + e−2iπ/2 |X3⟩ + e−3iπ/2 |X4⟩) ⊗ (|X1⟩ + e−iπ/2 |X2⟩ + e−2iπ/2 |X3⟩
+ e−3iπ/2 |X4⟩) |01, 01⟩ + (|X1⟩ + e−2iπ/2 |X2⟩ + e−4iπ/2 |X3⟩ + e−6iπ/2 |X4⟩) ⊗ (|X1⟩ + e−2iπ/2 |X2⟩
+ e−4iπ/2 |X3⟩ + e−6iπ/2 |X4⟩) |10, 10⟩ + (|X1⟩ + e−3iπ/2 |X2⟩ + e−6iπ/2 |X3⟩ + e−9iπ/2 |X4⟩) ⊗ (|X1⟩
+ e−3iπ/2 |X2⟩ + e−6iπ/2 |X3⟩ + e−9iπ/2 |X4⟩) |11, 11⟩ ]

(A8)

We will now measure in the generalised X-basis on both sides to herald the arrival of a photon. If we
then measure |Xk⟩A ⊗ |Xl⟩B we will find that the desired state has collapsed to the following state:

|Ψ⟩0 = ηpTλ(1 − λ2)2(|00, 00⟩ + e−ikπ/2e−ilπ/2 |01, 01⟩
+e−2ikπ/2e−2ilπ/2 |10, 10⟩ + e−3ikπ/2e−3ilπ/2 |11, 11⟩)

(A9)

If we know k and l we can then correct for the phases with single qubit RZ-gates.

If we thus measure the qudit at Alice and Bob after the QFT and correct for the phases we find.

ηpTλ(1 − λ2)2(|00⟩A |00⟩B + |01⟩A |01⟩B + |10⟩A |10⟩B + |11⟩A |11⟩B) (A10)
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1 Calculations for m = 2

This can be rewritten to:

ηpTλ(1 − λ2)2(|0⟩A1 |0⟩B1 + |1⟩A1 |1⟩B1) ⊗ (|0⟩A2 |0⟩B2 + |1⟩A2 |1⟩B2) (A11)

To calculate the average fidelity of the two entangled pairs we can trace out one of the pairs and calculate
the fidelity of a single pair due to the symmetry. We can use Eq. 2.4 to calculate the fidelity but we will
need to normalise the equation by dividing by the total weight of probability amplitudes considered in
the calculation.

FA1,B1
=

⟨ϕ+|TrA2,B2(ρfinal) |ϕ+⟩
Tr(ρtotal)

(A12)

We use the density matrix of the state that we found, which is given by:

ρA1A2B1B2,final =η2p2Tλ
2(1 − λ2)4

{
|0000⟩ ⟨0000|) + |0000⟩ ⟨0101|

+ |0000⟩ ⟨1010| + |0000⟩ ⟨1111|
+ |0101⟩ ⟨0000| + |0101⟩ ⟨0101|
+ |0101⟩ ⟨1010| + |0101⟩ ⟨1111|
+ |1010⟩ ⟨0000| + |1010⟩ ⟨0101|
+ |1010⟩ ⟨1010| + |1010⟩ ⟨1111|
+ |1111⟩ ⟨0000| + |1111⟩ ⟨0101|
+ |1111⟩ ⟨1010| + |1111⟩ ⟨1111|

}
(A13)

TrA2,B2
(ρ) = ρA1,B1

=
∑
i,j

(IA1
⊗ IB1

⊗ ⟨i|A2
⟨j|B2

)ρ(IA1
⊗ IB1

|i⟩A2
|j⟩B2

)

=η2p2Tλ
2(1 − λ2)4(2 |00⟩ ⟨00| + 2 |00⟩ ⟨11| + 2 |11⟩ ⟨00| + 2 |11⟩ ⟨11|)

(A14)

Up till now, we have not considered decoherence yet in our calculation. Since we only consider deco-
herence in the memories we can apply the depolarising channel given by Eq. 2.27 to our state to arrive
at the following equation:〈

ϕ+
∣∣ ρ̄ ∣∣ϕ+〉 = 2α[(p1 + (1 − p1)ϵ1)(p2 + (1 − p2)ϵ1) + (1 − p1)(1 − p2)(ϵ2x + ϵ2y + ϵ2z)] (A15)

Since the depolarising channel is trace preserving the trace over the full density matrix considered will
remain the same. From equation A3 we can find the normalisation of the fidelity, representing the
success probability.

Tr(ρtotal) =(1 − λ2)4
{

4p2T η
2λ2 + 10p4T η

4λ4 + 8λ2pT η(1 − pT η)pdark

+ p2T η
2(1 − pT η)2λ4

(
20pdark + 40

)
+ 40p3T η

3(1 − pT η)λ4 + 40pT η(1 − pT η)3λ4pdark

+ p2dark

(
10(1 − pT η)4λ4 + 4(1 − pT η)2λ2 + 1

)
+ O(λ6)

}
(A16)
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From equation 1.8 we can now find the fidelity as the fraction of the previous two equations.

FA1,B1 =4η2p2λ2((p1 + (1 − p1)ϵ1)(p2 + (1 − p2)ϵ1) + (1 − p1)(1 − p2)(ϵ2x + ϵ2y + ϵ2z))/{
4p2λ2η2 + 10p4λ4η4 + 8λ2pη(1 − pη)pdark

+ p2η2(1 − pη)2λ4
(

20pdark + 40
)

+ 40p3η3(1 − pη)λ4 + 40pη(1 − pη)3λ4pdark

+ p2dark

(
10(1 − pη)4λ4 + 4(1 − pη)2λ2 + 1

)
+ O(λ6)

}
=4η2p2λ2((e−t/T1 + (1 − e−t/T1)ϵ1)(e−t/T2 + (1 − e−t/T2)ϵ1)

+ (1 − e−t/T1)(1 − e−t/T2)(ϵ2x + ϵ2y + ϵ2z))/{
4p2λ2η2 + 10p4λ4η4 + 8λ2pη(1 − pη)pdark

+ p2η2(1 − pη)2λ4
(

20pdark + 40
)

+ 40p3η3(1 − pη)λ4 + 40pη(1 − pη)3λ4pdark

+ p2dark

(
10(1 − pη)4λ4 + 4(1 − pη)2λ2 + 1

)
+ O(λ6)

}

(A17)
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Appendix 2 Pseudo-code

Here, a pseudo-code used for modelling the high-dimensional entanglement protocol is presented. This
serves as a quick guide to how the code works and as an overview of the protocol.

Algorithm 1 Rate versus Distance

Input: m,np, η, pdark, trep,M, Td, distances, pT at each distance, fidelity threshold, precision
Initialise list of rates at each distance all set to 0
for every distance do

Find corresponding heralding time
Calculate the average fidelity for each λ ∈ (0, 0.1)
if fidelity > threshold then

Find the greatest value of λ that satisfies the condition
Calculate rate for this λ and replace corresponding value in rate list

else
Leave rate value set to 0

end if
end for
Return List of rates corresponding to each distance

For the full code including all functions describing how to calculate the average fidelity and rate see:
https://github.com/mcalvind/Master_Thesis_Calvin_Dijksman.
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Appendix 3 List of parameters

Finally we present the table of distances with their corresponding transmission probabilities used in our
simulations in Table A1. These can all be recovered by running the full code that can be found online.

Table A1: Table with the values of pT corresponding to the distances used in the simulations. These
values were calculated using the analytical model from Ref. [21] with a Low Earth Orbit satellite at a
height of 400 km.

Distance (km) pT

202.3748 0.019197
246.0651 0.018753
289.7554 0.018258
333.4458 0.017714
377.1361 0.017131
420.8265 0.016504
464.5168 0.015842
508.2071 0.015143
551.8975 0.014405
595.5878 0.013642
639.2782 0.012849
682.9685 0.012039
726.6588 0.011209
770.3492 0.010373
814.0395 0.009534
857.7299 0.008707
901.4202 0.007895
945.1105 0.007117
988.8009 0.006372
1032.491 0.005682
1076.182 0.00504
1119.872 0.004442
1163.562 0.003894
1207.253 0.003388
1250.943 0.00293

Furthermore, we provide an unordered list of important parameters encountered in this thesis, which is
presented in Table A2.
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3 List of parameters

Table A2: Non-ordered list of many of the important recurring parameters in this thesis.

Parameter Description

m Dimensionality of 2m-dimensional qudit
np Number of desired entangled pairs
M Number of times that we multiplex
N Number of entanglement generation units in parallel scheme
D Number of entanglement generation units after applying multiplexing
psuc Success probability of the heralded pair
pent Success probability including the steady-state probability of the detectors
papprox Sum of probability weights considered in our approximations
π(0,0) Probability for the detectors to be open
τc Period of qudit formation (2mτrep)
τh Heralding time between the two ground stations
τrep Repetition period of the source
L Distance between the two ground stations
c Speed of light (2.998 · 108 m/s)
pT Transmission probability
η Detector efficiency
pdark Dark count probability
λ Squeezing parameter of the SPDC source
Td Coherence time of the qubit memories
⟨n⟩ Average number of trials needed for culmination of the protocol
ϵ1 Pauli error rate in I basis
ϵX Pauli error rate in X basis
ϵY Pauli error rate in Y basis
ϵZ Pauli error rate in Z basis
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