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ABSTRACT 

Helicopters are currently used in important applications providing a valuable contribution to society and economic 
growth. Thanks to the operational flexibility of helicopters it is possible to accomplish complex missions. If the 
expansion of the usage of rotorcraft is to follow the pace of growth achieved by the fixed-wing public transport in 
the last years, several issues need to be urgently addressed to increase the use and the public acceptance of 
rotorcraft. Aspects related to complexity of the operations and safety are of primary importance, due to the fact that 
in the last 20 years helicopter accident rates, worldwide, remained unacceptably high, when compared to fixed-wing 
aircraft. The complexity of the phenomena involved in rotorcraft flight calls for the training of engineers with a 
genuine multidisciplinary background. This paper presents the doctoral research and training program set up under 
the Marie Skłodowska-Curie Action of the European Union to address complex solutions to rotorcraft safety. 

 

INTRODUCTION  

Helicopter accident and fatal helicopter accident rates have a 
clear decreasing trend, as shown in the report of the 
International Helicopter Safety Team (IHST) presented at 
HAI Heli-Expo this year1 (Ref. 1). However, the current rate 
is still too high. Unfortunately, it is very difficult to retrieve 
data on accident per flight hours that is the typical safety rate 
used in aviation, because it is still problematic to collect 
flight hours for the global helicopter fleet (Ref. 2). The 
current rate for commercial airplane is of about 22 non-fatal 
(and 4 fatal) accidents per 10 Million movements (source2 
Ref. 3), and given the fact that the average flight time is 
close to 2 hours, this corresponds to about 11 accidents per 
10 million flights. In 2000 Harris et al (Ref. 4) estimated that 
it is ten times more likely to be involved in an accident if 
flying in a helicopter than in turbojet fixed-wing aircraft. 
However, in 2004 Fox (Ref. 2) estimated an accident rate for 
Bell helicopters of 3.9 per 100,000 hours. So, it is reasonable 
to say that even today the rate of accident per flight hours of 
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1 Retrieved at http://www.ihst.org/Portals/54/IHST 
Worldwide Partners2018.pdf April 2018     

2  Retrieved at https://www.easa.europa.eu/document-
library/general-publications/annual-safety-review-2017 
April 2018 

rotorcraft is between one and two orders of magnitude 
higher that for commercial airplanes. 

The concern about helicopter accidents is so high that in 
2005 the IHST was formed to address the factors leading to 
the unacceptable high rate in helicopter accidents. Since then 
IHST has achieved substantial reductions -- 18.6% for 
accidents between 2006-2011 and 32% between 2013-2017 -
- concentrating on training, pilots’ awareness and operators 
through the dissemination of very effective key 
recommended best practices (Ref. 1). However, we are still 
short with respect to the target of an 80% reduction in the 
accident rate that was sought in the 10-years goal set by 
IHST in 2005.  

Given the strategic role played by rotorcraft in many critical 
community services, flight hours are expected to grow in the 
future. The Federal Aviation Administration (FAA) in its 20-
year Annual Forecast anticipated a grow rate of 2.2% per 
year for rotorcraft hours flown3 . Additionally, the future of 
rotorcraft is linked to new designs for on-demand and 
personal aviation, based strongly on multi-rotor Vertical 
Take-Off and Landing (VTOL) air vehicles for urban 
mobility (Ref. 5). At present, several key research programs, 
some of them financed by the European Union (EU), are 
exploring innovative VTOL that may start the transport 
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safety for twin-engined airplanes which was consistent with 
that of the three and four-engined airplanes the only ones 
allowed to fly transoceanic routes at that time, to which no 
restrictions were applied (Ref. 8). In reality, this introduction 
“improved the safety of commercial aviation: no ETOPS 
flight has been lost because of a danger that ETOPS was 
meant to address” (Ref. 8). So, definitely a fresher look on 
how to deal with safety issues could be what is needed in a 
consolidated sector such as rotorcraft.   

Part failure represents a very small fraction of accidents, so 
airworthiness problems contributes little to the causes that 
must be primarily sought in the interaction of the vehicle 
with the other element of the system (Ref. 2,3).  In an 
analysis of accident statistics between 1995-2010 performed 
in Ref. 10, only 5% of accidents belong to airworthiness 
failures, while 40% are related to pilot awareness, skills and 

judgement, 10% are related also to the risk associated with 
environmental conditions and another 5% to mission risk 
associated with hostile areas of operations. In fact, 
borrowing Padfield’s (Ref. 9) description of the key factor 
that influence a mission, it is possible to state that the safety 
of a mission performed by a helicopter derives from  
analysis of the interactions amongst three key pillars – the 
vehicle, the pilot and the operational environment (see 
Figure 1). A significant number of accidents are the result of 
the unforeseen interactions between those elements. The 
training approach chosen in NITROS is founded on those 
three pillars.  

THE MSCA PROJECT FOR RESEARCH 
AND TRAINING 

Exploiting the analysis undertaken by the European branch 
of the IHST (Ref. 10), three main threats to rotorcraft safety 
have been identified. This analysis led to the following three 
NITROS specific research objectives: 

1.Develop a detailed framework for rotorcraft modelling 
integrating rigid-body and aero-servo-elastic modelling 
features, capable of dealing with structural or propulsion or 
mechanical system failures; 

2.Understand how humans can safely and efficiently use and 
be interfaced with rotorcraft technology; 

3.Enhance the understanding of the unique and complex 

aerodynamic environment in which rotorcraft are working, 
often in hostile conditions of wake encounter threats, 
undesirable interactions with obstacles, icing and, brownout 
conditions. 

The methodological approach developed within the NITROS 
training program will be focused on the id entification of the 
interconnections that exist among these three pillars that are 
often overlooked during the design.  A unique cross-
disciplinary research and training program is set up 
encompassing Control Engineering, Computational Fluid 
Dynamics (CFD), Modelling and Simulation, Structural 
Dynamics and Human perception cognition and action. The 

Figure 2. The twelve research projects of NITROS 
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project is aligned with the European Union endeavor to 
reduce the rate of aviation accidents by tackling all critical 
aspects of rotorcraft technology. Twelve young researches 
will take part in a dynamic network composed by 
engineering schools (Politecnico di Milano, University of 
Liverpool, University of Glasgow and Technical University 
of Delft), and industrial partners that include Leonardo, a 
rotorcraft manufacturer, Bristow, an important operator, 
CAA Civil Aviation Authority in UK, a certification body,  
EUROCONTROL, a regulatory bodies, and two important 
research centers: NLR The Netherlands Aerospace Centre, 
specializing in aviation research and Max Plank Institute for 
Biological Cybernetics which specializes in all aspects 
related to the human machine interface. 

Many research projects have been undertaken in EU in the 
area of Ensuring Customer Satisfaction and safety (as for 
example in the 7th Framework Programme (2007-2013): 
ADDSAFE -Advanced Fault Diagnosis for Safer Flight 
Guidance and Control, ON-WINGS ONWing Ice DetectioN 
and MonitorinG System, HUMAN Model-Based Analysis of 
Human Errors During Aircraft Cockpit System Design, 
ODICIS One DIsplay for a Cockpit Interactive Solution, 
SUPRA Simulation of UPset Recovery in Aviation, MISSA 
More Integrated System Safety Assessment, ALEF 
Aerodynamic Load Estimation at Extremes of the Flight 
Envelope, ARISTOTEL -Aircraft and Rotorcraft Pilot 
Couplings – Tools and Techniques for Alleviation and 
Detection. However,  there has never been a project 
especially dedicated to treat in a multidisciplinary way the 
complex subject of rotorcraft bringing together various 
aspects of different technical fields in order to create an 
holistic approach to the critical area of rotorcraft safety. The 
goal of NITROS is to “break out” towards a new stage of 
aircraft safety giving the necessary freedom to the engineer 
to rethink the solutions used in their multi-disciplinary 
approach 

The network is focusing on twelve research programs 
focusing on the three main subjects identified that are 
conducted by highly skilled Early Stage Researchers (ESRs), 
see Figure 2. Each research program is focused on a problem 
that affects the safety of the current or innovative rotorcraft 
configurations. The possible implications of the problem in 
terms of manufacturing, operations and certification 
procedures will be thoroughly discussed with the industrial 
partners. Projects number 1, 5, 6 and 8 will be mainly 
focused on the analysis of the interaction of the helicopter 
with the environment. Projects number 2, 4, 9 and 12 will 
investigate aspects that are more related to aircraft design. 
Projects 3, 6, 10, and 11 will focus more on aspects related 
to the human vehicle interaction 

INDIVIDUAL PROJECTS 

In this section the twelve research projects are described in 
more in more detail. 

Simulation and Prevention of Ice Formation and 
Shedding on Rotorcraft 

The requirement for aircraft to be able to fly in any flight 
condition, every second of the day and every day of the year 
has never been more prominent than it is now with the 
increasing demand for fast and reliable transport. With this, 
the industry faces major dilemmas, that to this day, have yet 
to be resolved. Such a requirement means that aircraft are 
being asked to fly in the utmost extremities of the earth, 
whilst pushing flight boundaries to new levels. These limits 
are of no greater importance than when it comes to 
helicopters; aircraft which are designed to operate in high-
risk conditions where conventional fixed-wing aircraft 
cannot and typically where life-saving missions are 
paramount. Conditions particularly in winter near the poles 
of the earth, or at significant altitude pose serious problems 
for helicopters due to the formation of ice on vulnerable 
regions such as the main rotor. 

the presence of ice on the blades of the main rotor can lead 
to severely damaging consequences to helicopter 
performance capabilities, becoming a serious threat to flight 
safety (Re. 11) and are the cause of several aircraft-icing 
accidents (Ref. 12). It can prompt drastic alterations to the 
geometry and increase the surface roughness thus, resulting 
in the increase of drag, reduction of lift and premature onset 
stall. These aerodynamic changes invariably have 
implications on the helicopter stability, flight condition, 
power and torque characteristics and component loading 
(Refs. 13,14). The build-up of ice on the rotor blades can 
also alter the rotor trim conditions as well as modifying the 
inertia and aeroelastic properties of the blades themselves 
(Ref. 15). 

This work will look to take the next step towards providing a 
deeper understanding into simulating fully three-dimensional 
unsteady ice accretion on rotorcraft, whilst incorporating the 
effects of ice shedding before finally developing prevention 
mechanism and optimizing design to decrease the likelihood 
of icing accidents. It will seek to understand how the 
handling qualities and performance of rotorcraft are affected 
during typical icing environments as well as facilitating aid 
to pilots to raise their awareness during icing conditions. 

In Service Health Monitoring for Rotorcraft Structures 

In recent years, high-performance composite materials have 
been widely used in industries such as aviation, aerospace, 
automobile and civil engineering. The unique properties of 
composite materials such as their high strength-to weight 
ratio, high creep resistance, high tensile strength at elevated 
temperatures, and high toughness have been attracting 
increasing interest in numerous applications in different 
industries such as the automotive and aerospace industries. 

However, there are also many problems with the exploitation 
of composite materials due to their common disadvantages. 
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the incidence of unfavourable events such as Adverse 
Rotorcraft-Pilot Couplings (RPC); anomalous interactions 
between the pilot and the rotorcraft (Ref.29). RPC events 
may result in both oscillatory and non-oscillatory from 
deficiencies in the Flight Control System (FCS), or 
interactional elements of the vehicle airframe. One form of 
these RPCs is captured under Pilot Induced Oscillations 
(PIO). PIOs occur when the pilot inadvertently excites 
divergent vehicle oscillation by applying control inputs that 
have phase lags with respect to the vehicle response. PIO 
phenomena have historically been classified into three 
categories with reference to the characteristics of the pilot 
and vehicle dynamics: Cat I linear pilot-vehicle system 
oscillations (as a result of excessive time delays and control 
phase lags), Cat. II quasi-linear events with some non-linear 
contribution, (such as rate or position limiting) and Cat. III 
non-linear oscillations with transients; such events are 
usually difficult to recognize and rarely occur, but when they 
do, they are always severe. It is therefore necessary to design 
rotorcraft such that they do not exhibit tendencies to PIOs, 
whatever the triggers and the pilot control actions are. 

Real-time metrics have been developed e.g. Phase-
Aggression Criterion (PAC) (Ref. 30), to predict and detect 
these unwanted events. The aim of this research is to build 
on previous research in this area to produce an effective 
toolset that can be used during aircraft design and 
development to reduce the incidence of adverse RPC events; 
particularly those related to rigid body and aero-servo-elastic 
RPC events. The planned project will address: 

• the prediction and detection of RPCs for response 
types typical of more advanced helicopter 
configurations using PAC 

• the development and assessment of a cockpit warning 
system to provide the pilot with useful cueing that an 
RPC is about to occur 

• the development and assessment of a means for 
alleviating RPC events either before or as they occur. 

The benefit to the rotorcraft community will be an 
improvement in safety by being able to detect an alert the 
pilot the onset of an RPC resulting, when properly cued, to a 
potential reduction in pilot workload. 

Mitigation of Airwake Hazards 

Helicopters are utilized in a wide range of operational 
environments especially when flown in support of Search 
and Rescue (SAR), Emergency Medical Service (EMS) and 
offshore roles. When flying these types of missions, there 
are several environmental hazards which can be present that 
may impact the safety of mission; particularly an inadvertent 
encounter with an airwake. Whilst there has been a 
significant effort in the fixed wing community to develop 

tools and strategies to reduce the threat posed by wake 
encounters, there has not been a significant corresponding 
activity in the helicopter community to address this problem. 
In terms of safety guidance from the regulatory authorities, 
the UK’s Civil Aviation Publication (CAP) 764 (Ref. 31), 
reports the following “Although research on wind turbine 
wakes has been carried out, the effects of these wakes on 
aircraft are not yet known”; this project will undertake 
research to identify the effects and hazards posed by these 
encounters.  

The project is a collaboration between the University of 
Liverpool (UoL) and the University of Glasgow (UoG) and 
seeks to obtain an improved understanding of rotorcraft and 
pilot behaviour during helicopter encounters with wind 
turbine wakes. Previous research has been conducted by the 
team examining the risk posed by rotor and wind turbine 
wakes on light aircraft, (Refs. 32, 24) but further research is 
required.  

Using the HELIFLIGHT-R flight simulator at UoL (Ref. 
33), and the CFD expertise at UoG (Ref. 34), the research 
will endeavour to identify hazards resulting from helicopters 
encounters with wind turbine airwakes and develop metrics 
to assess the resulting risks. The work will define the fidelity 
requirements for airwake modelling techniques for use in 
real-time flight simulators and investigate new flight training 
programmes to improved pilot awareness of hazards. An 
assessment of the use of on board warning systems to 
increase situational awareness will be undertaken and it is 
anticipated that the research will produce safety 
enhancements through changes in operational procedures, 
improvements in training and updating of current CAA 
regulations. 

Enhanced Helicopter Handling Qualities Through 
Vibratory Loads Exploration 

Despite extensive off-line simulations, and numerous pilot-
in-the-loop flight simulator trials, handling problems 
continue to emerge in the very last stage of many helicopter 
designs, i.e., as “unpleasant surprises” during the flight tests 
of the prototype (Ref. 35). These problems are dealt with by 
applying eleventh-hour, ad-hoc flight control system 
adaptations that, paradoxically, often lead to new, this time 
highly non-linear pilot/helicopter couplings that may prove 
to be even more difficult to predict and eliminate than the 
original ones (Ref. 36). In some cases, it is advised that these 
systems are not to be used in certain phases of flight, as they 
may hinder pilots more than they help them. In many cases, 
the flight envelope is simply reduced, keeping the newly-
designed helicopter from meeting its original requirements. 
Unmistakably, high-performance helicopter design has 
become an arduous process, regularly leading to surprises, 
involving “patches” to safety-critical systems, and frequently 
requiring many more iterations than expected, all 
contributing to very high costs (Ref. 37). 
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The question is then how can one tackle at the same time the 
aircraft performance and the vibratory loading problem? 
Using optimization techniques seems not the appropriate 
way to answer this question since the models used are 
increasing in complexity and add more difficulties and time 
to be solved. The goal of this project is to develop new tools 
to help the designer to integrate in an early stage to optimize 
the vibratory loads, noise and flying qualities. Therefore, we 

propose to develop new complementary 
performance/vibratory criteria assessing concomitantly the 
helicopter performance, vibratory activity and pilot 
workload necessary when executing specific missions. 
Figure 6 illustrates a road map for the research conducted by 
the researcher in NITROS for defining complementary HQs-
vibratory criteria. First, a database of representative 
helicopter and tilt-rotor configurations (such as UH-60A 
Black Hawk, Bo-105, Puma SA-330, Lynx, Bell XV-15) 
will be collected in cooperation with the industry, 

Figure 6. Defining new handling qualities/vibratory criteria for the designer 
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universities and research institutes. For these configurations 
a database of specific maneuvers, missions and 
environments covering the full range of cases expected in 
operation will be defined. The missions are designed from 
small tasks (maneuver samples) such as climbout, cruise, 
descent, turn, landing, hover, etc. that feature essential 
aspects of pilot skills, task difficulty and workload. Using 
these simulation models in the next step the research will 
simulate the defined maneuvers and missions and measure 
on the one side the performance achieved according to ADS-
33 metrics and criteria and on the other side the critical 
vibratory loads (for example as the loads achieving the 
highest amplitude). Sometimes it can appear that ADS-33 
does not possess the proper metrics to characterize the 
maneuver performance. In this case, new metrics will be 
searched that are more appropriate to the maneuver 
performed. Having defined the proper metrics to 
characterize performance for every maneuver, researcher A 
will then connect them to equivalent vibratory metrics 
defined as complementary to the performance metrics. The 
vibratory metrics are characterizing thus the vibratory 
activity on every maneuver performed. At the end of this 
step, the researcher has at his/her disposal sets of 
complementary performance/vibratory metrics reflecting the 
couplings existing between performance achieved/ structural 
loads/ task complexity when executing different maneuvers. 
These new performance/vibratory metrics can be plotted in 
charts characterizing the rotorcraft response from pilot point 
of view. Then, to become useful criteria, boundaries for 
Levels 1,2 and 3 of HQs need to be assigned to these charts.  

Revealing adverse Rotorcraft Pilot Couplings induced by 
Flight Control Systems 

When designing flying qualities, one interesting field that 
needs attention is that of prevention of the so-called pilot-
induced oscillations phenomena (lately renamed as “pilot-
aircraft couplings” to indicate that the pilot is not the 
responsible part in such cases). A pilot induced oscillation is 
defined as “an inadvertent, sustained aircraft oscillation as a 
consequence of an abnormal joint enterprise between the 
aircraft and the pilot” (Ref. 44). It actually happens when, 
due to a trigger event, a vicious circle is formed between the 
pilot and the aircraft, the response of the rotorcraft being 
reinforced by the pilot input. PIO’s have occurred during the 
development process for almost every new airplane. The 
oscillations developed may vary from a very temporary, 
easily corrected mild oscillation to a terrifying large 
amplitude oscillation with catastrophic consequences. 
Frequently the severity of the oscillations is sufficiently low 
so that the PIO can be detected and eliminated with little or 
no public acknowledgement of the event. These PIO’s are 
the so-called “Category I linear PIO’s” and are associated 
with a linear and time-stationary behavior of the pilot and 
control system. They are eliminated without difficulty by 
loosening control. However, occasionally the consequences 
of the PIO’s are such that they become headline news. These 
PIO’s correspond to “Category II Quasi-linear” and 

“Category III Non-linear” and are mostly associated with 
non-linear effects in control system. Usually, in such cases, 
the active flight controllers, although including actuators to 
damp any undesirable motion, could not cope anymore with 
the intensity of the motion and get saturated – the so-called 
“actuator saturation” phenomenon. For good literature on 
non-linear PIO’s one can consult Refs. 45-51. Category II 
and III PIO’s are difficult to predict and eliminate during 
design. Famous categories II PIO encountered with 
helicopters in the mid 80’s was with Sikorsky CH-53 heavy 
lift helicopter (Ref. 44). This PIO created a high-level 
attention in the US Navy and showed as several dramatic 
incidents which occurred over a period of years (1978-
1985), including some high-visibility events in which 
catastrophe was avoided only by dropping the load. The PIO 
manifested as severe oscillations when the helicopter was 
executing precision hover tasks with large sling loads 
suspended on it and was caused by the pilot interaction with 
the lower frequency flexible modes. The extra dynamics due 
to the sling load were not the trigger factor, it was the much 
higher sensitivity to cyclic control associated with the 
increased collective needed to support the load. 

While much work has been performed for unmasking Cat I 
and II PIO, predicting Cat III PIO is still a challenge (see 
review papers of Pavel et. al. Refs. 52, 53, 54) A researcher 
in NITROS will investigate precisely this area. The most 
significant nonlinearities considered in terms of PIO relate to 
rate limits and saturations that occur naturally on control 
actuators and those that are intentionally designed into the 
control system, in the form of command or software rate 
limits. The effect of these nonlinearities changes with 
several factors, ex. pilot input bandwidth, the amount of rate 
limiting experienced, and the consequences of reaching the 
rate limit. There are also other nonlinear elements in the 
control system (such as breakout and hysteresis or in the 
command shaping, effects of gain scheduling, mode 
switching, and aerodynamic nonlinearities) that may 
contribute to PIO; many of these are yet not well-
documented and the goal is to enrich this area. The 
researcher may consider also model based nonlinear control 
systems, such as nonlinear dynamic inversion (NDI) or 
backstepping methods. In such methods, the inner loops of 
the control system plus aircraft are made linear (or with only 
stabilizing nonlinear terms in the case of backstepping), with 
the aim of making the aircraft easier to control for the pilot 
in the outer loop. This linearization is performed by 
multiplying the system with an inverse of the modelled 
system dynamics. However, when there is a mismatch 
between the on-board model and the real aircraft dynamics, 
or when there are time delays in the system, then the 
inversion is not perfect and nonlinear terms in the original 
dynamics are not fully cancelled. On top of that, additional 
possibly unstable dynamics can be introduced by the model 
mismatch. In the proposed research the influence of these 
model mismatches on A/RPC’s will be investigated. 
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Understanding the use of automation in helicopters 

Next to the flight control system effects, one researcher in 
NITROS will concentrate on the automatic flight control 
systems for helicopters. While vast improvements in basic 
helicopter design and avionics have greatly increased the 
safety of helicopters, there are still many catastrophic 
incidents due to automation in the cockpit. The paradigm of 
automation is that it functions best when the workload is 
light and the task routine; when the task requires assistance 
or workload is high, the automatic equipment seems of least 
assistance. This is why, one researcher of NITROS will take 
the task of improving automation in the helicopter cockpit. 
Particularly, the aim is to apply the so-called concept of 
“Ecological Interface Design” (EID) to helicopters. EID is a 
framework for the design of interfaces of (complex) 
technical systems. It focusses on the work domain of the 
system, aiming to visualize its specific constraints. These 
constraints are independent from specific control strategies 
and their implementation, e.g. via manual control or 
automation. In EID the idea is that eliminating totally the 
humans from the system is wrong: humans were and 
continue to be an essential component in every technical 
system, as they can bring adaptivity and creativity that can 
enhance the system resilience. Therefore, rather than striving 
exclusively to replace human weaknesses with technical 
systems, the goal should be at exploring ways in which 
technology can facilitate human adaptivity and flexibility to 
cope with unforeseen events (i.e, to enhance resilience). 
Recognizing this role of pilot in the cockpit, the concept of 
EID was introduced by Rasmussen and Vicente Refs. 55,56. 

In contrast with user- and technology-centered approaches 
that put the emphasis on either the human or on the 
technology, EID starts by focusing on the work domain (i.e., 
“ecology”). The goal of EID is then to facilitate coordination 
between humans and automatic systems by making interface 
representations that reflect the structure of the work domain 
in ways that support human skill-, rule-, and knowledge-
based problem-solving activities. However, the main 
question in an EID system is still how much “freedom” 
should be given to the human and how much to the 
automatic system. In other words, the question is what 
should be the interrelation between the human and the 
technology for optimum safety (Ref. 57, 58). Starting from 
the theoretical background and the understanding of the 
application of EID in fixed-wing aircraft, the goal of the 
researcher in NITROS will be to apply the EID concept 
when the helicopter is flying a range of missions such as: 1) 
autorotation after partial or total engine failure and 2) 
operations on an oil deck in the sea in nominal and off-
nominal weather conditions.  

Alleviating flight simulator negative transference for 
helicopter operations 

Going from automation in the cockpit to flight simulators is 
the last step that NITROS will take in its research. One 

researcher in NITROS will consider the transfer of training 
from the simulator to the real world. In general, transfer of 
training is “the combined result of input factors 
(characteristics of the trainee, training design, and work 
environment), the amount learned in training, and the 
conditions surrounding the transfer setting.” Transfer of 
training is negative when a training situation hinders the 
pilot performance in the real world. In the past, several 
research studies indicated that successful transfer did not 
require specifically high-fidelity simulators or whole-task 
training, thus reducing simulator development costs (Refs. 
59, 60).  However, up to the present, researchers failed to 
report sufficient detail regarding research methods, training 
characteristics, and simulator fidelity. The goal of this 
researcher will be to understand the relation between the 
pilot transfer of training in the simulator and the 
mathematical model of the simulator. In other words, the 
aim will be to understand the impact of mathematical model 
variables on transfer of training. Linking the physical cause 
and effect of model variables to the transfer of training will 
be the key for the development of this relation.  

For example, to characterize the helicopter Dutch roll 
behavior, usually the simulator developers perform a special 
a test designed to demonstrate that the Dutch roll period and 
damping in the simulator are close to the flight data 
according to CS FSTD-H simulator standard. For the 
SuperPuma helicopter tests, pilots did not especially 
complain about this unstable mode by flying in Visual 
Meteorological Conditions (VMC) and concluded that the 
simulator was handling like the real helicopter. However, 
when conducting the same test in Instrument Meteorological 
Conditions (IMC), the pilots complained that the model was 
too unstable and too difficult to manage. For both tests the 
flight loop model was unchanged and only the external 
environment was modified. When flying in VMC, the pilot 
is helped by good visual cues whereas he has to rely on the 
instruments information only when flying in IMC. Even if 
the pilot was taught not to take care of the accelerations, 
different feelings in the simulator and in the real aircraft 
made his task more difficult. He reported he was unable to 
stop the Dutch roll oscillations and asked for a higher 
damping to reproduce the helicopter behavior (Ref. 61). 
Therefore, the damping of the Dutch roll mode had been 
intentionally set at the very upper limit of the simulator level 
D requirement (the simulator was set to more unstable than 
in flight), even if it was possible to achieve a better match 
with the flight data. This example shows that although a 
pilot is unlikely to be able to distinguish between the 
different physical contribution of the model to the overall 
Dutch roll characteristics, he may be aware of the mismatch 
in the lateral acceleration and therefore sideslip and these 
characteristics are important for transfer of training. This is 
an example of the compromise that one needs to do in the 
simulator in order to ensure positive transfer of training. 
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CONCLUSIONS 

Safety of rotorcraft flights improved significantly over the 
last few years, however there is sill a gap to be filled to 
reach the level required to expand the usage of this types of 
vehicle. 

The NITROS project through the twelve presented projects 
will try to reach several goals: first to obtain a significant 
reduction of the accident rate up to especially for future 
rotorcraft designs through the definition of new technologies 
but also new design methodologies and testing 
methodologies and operational standards; secondly, to train 
the next generation engineers to avoid overlooking the 
impact that their design choices may have on flight safety, 
fostering the investigation of safety issues on innovative 
vertical take-off configurations that may assume an 
important role in the future European transport network.  
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