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Preface
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can lead to new insights. It gives proof of how valuable it can be to think outside of the box.

I would like to thank my supervisor Anurag Bishnoi for introducing me to the world of combinatorics
and his guidance during the project. I also want to thank the Discrete Mathematics & Optimisation
group for giving me the opportunity to present my findings during the seminar and mostly for actually
coming to my talks. This journey would have been a lot more difficult if I would not have had my
friends to study together with and share the ups and downs with that writing a thesis gives. Being one
of the last two to finish, has made me appreciate the moments we were with a bigger group even more.
Thank you especially to Zoë for being (not always) there all the way through. Another special thanks
goes to Jasmijn, for all the breakfasts and great morning conversations. I want to thank my mother too,
for taking care of me (read: feed me) during my Easter-writing-retreat. Lex, thank you for putting up
with my (dis)ability of creating an overflowing schedule which often fails to include free time. Lastly, I
want to take this opportunity to thank all the other people who have made my time as a student an
unforgettable period of my life.

Giulia Montagna
Delft, June 2023
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Abstract

A set of lines passing through the origin in Rd is called equiangular if the angle between any two lines is
the same. The question of finding the maximum number of such lines, N(d) in any dimension d is an
extensively studied problem. Closely related, is the problem of finding the maximum number of lines,
N�(d), such that the common angle between the lines is arccos�. In recent years, many progress has
been made on this problem. We review some of these breakthrough results and the techniques they use
to approach this problem. The first main result is a linear upper bound on N�(d) which is found using a
completely novel approach with respect to techniques used in previous works. Another main result that
we discuss solves the problem of finding N�(d) for high enough dimensions. Some classic results from
some of the first studies on equiangular lines are also discussed. Finally, some suggestions are given for
possible further research.
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1
Introduction

A set of lines L passing through the origin in Rd is called equiangular if the angle between any two lines
l1; l2 2 L is the same. The very �rst results on equiangular lines date back to Haantjes [1] who showed
the maximum number of equiangular lines inR2 is 3, in R3 is 6 and in R4 is also6. The problem of
�nding the maximum number of equiangular lines in any dimension d was formally stated for the �rst
time by Van Lint and Seidel in [2]. They connect the problem to discrete mathematics by reformulating
it in terms of matrices and constructing graphs from these matrices, making it a graph-theoretical
problem. Godsil and Royle consider this problem a founding problem of algebraic graph theory [3, p.
249]. For any integerd, we will let N (d) denote the maximum number of equiangular lines inRd. A
closely related problem introduced by Lemmens and Seidel in [4] is that of �nding the maximum number
N � (d) of equiangular lines inRd with a �xed common angle arccos� .

Equiangular lines were �rst considered in terms of elliptic geometry [1], [2]. They are also connected
to frame theory, in particular Grassmannian frames which are optimal if they are equiangular [5].
These frames in turn have applications in coding theory. Another important application of equiangular
lines occurs in quantum theory. Maximal sets of complex equiangular lines are known in this �eld as
Symmetric Informationally Complete Positive-Operator-Valued Measures, better known as SIC-POVM
[6], [7].

For many years the results on the asymptotic behaviour ofN (d) and N � (d) from Lemmens and Seidel
in [4] were the best known. The results from this paper are still highly relevant to this day. A theorem
due to Gerzon gives a general upper bound onN (d) of

� d+1
2

�
. This upper bound can only be reached in

speci�c cases and is known to be attained only for a few dimensions. Another result in this paper is due
to Neumann, which states that N � (d) can only be larger than2d if 1=� is an odd integer. Since this
result shows that large values ofN � (d) can only be reached in this speci�c case, there has been special
interest in �nding the maximum number of equiangular lines with �xed common angle arccos� , where
1=� an odd integer. Lemmens and Seidel themselves already studied the �rst two cases,� = 1=3; 1=5,
and solved the problem for� = 1=3. Neumaier later con�rmed a conjecture of them concerning� = 1=5
and said that the next interesting case,� = 1=7, would require considerably stronger techniques [8].

In the past decade signi�cant progress has been made regarding the problem of �nding the maximum
number of real equiangular lines in any dimension. The �rst breakthrough came from Bukh [9] who
showed that N � (d) grows linearly for every � . Since then, many more improvements have followed and
new contributions continue to be published. First of all, Balla, Dräxler, Keevash and Sudakov showed
that N � (d) reaches its maximum at2d � 2 when � = 1=3 and is at most 1:93d otherwise [10]. Jiang and
Polyanskii further improve on this bound and give more evidence supporting a conjecture which states
that N1=(2k � 1) = k

k � 1 d + O(1) [11]. This last conjecture has subsequently been proven to be true for
large enough dimensions by Jiang, Tidor, Yao, Zhang and Zhao in [12]. All these results heavily rely on
Ramsey theory which is why they are limited to large enough dimensions. Balla �nds a way around this
by using projections of matrices [13]. With this novel approach he shows a linear upper bound onN � (d).

This thesis contains an overview of the most noteworthy recent contributions that have been made
on the subject of equiangular lines. It can be used as an introduction into the current state of research
concerning this topic. It covers some classic results on the subject and the most innovative recent results

1



2 Chapter 1. Introduction

and techniques. These last results all have potential for further improvements, which will be suggested
at the end of this thesis.

We start with a chapter containing the necessary linear algebraic an graph theoretical preliminaries.
At the end of the chapter we show one of the �rst recent results connected to equiangular lines. This
regards a theorem which bounds the multiplicities of eigenvalues of a bounded degree graph. It is a
purely graph-theoretical theorem which will be of great importance later to prove one of the other
main results discussed in this thesis. In Chapter 3 some classic results on equiangular lines will be
treated. This chapter gives a good introduction into some techniques that can be used to analyse the
behaviour of equiangular lines through the dimensions. Next, in Chapter 4 we give a linear upper bound
on N � (d) which holds for all dimensions. The results from this chapter are due to Balla in [13] and use
a completely new approach which overcomes some limitations of previous works. Lastly, in Chapter 5
we discuss a result by Jiang, Tidor, Yao, Zhang and Zhao from [12] which solves the question of �nding
the maximum number of lines with a �xed angle in Rd for high enough dimensions. Chapter 4 is more
technical and complex than Chapter 5. The two chapters can be read independently of each other. We
conclude the thesis with multiple suggestions of further research that can be done related to the topic of
equiangular lines.



2
Preliminaries

In studying equiangular lines we will use linear algebraic and graph theoretical tools. In this chapter all
concepts of these two subjects are introduced that will be needed throughout this thesis. We will start
with a section on linear algebra, covering the basic notions, eigenvalues and some results on positive
semide�nite matrices. The next section will go over all the necessary graph theory and spectral graph
theory. We will conclude this section with a recent result on the multiplicity of the j -th eigenvalue of
any connected graph, forj > 1.

2.1 Linear algebra

In this section some basic notions of linear algebra are discussed which will be needed throughout the
whole thesis. Since the linear algebra will mostly be applied on adjacency matrices of graphs, our interest
lies primarily in real symmetric matrices with non-negative entries. After covering the basic notions we
introduce eigenvalues and some useful results on eigenvalues. Lastly we will review some properties of
positive semide�nite matrices which will be needed later on. For an extensive introduction into linear
algebra we refer to [14].

2.1.1 Basic notions

Let V be a vector space over a �eldF, where F is either the �eld of real numbers R or complex �eld C.
A function h�; �i : V ! F is an inner product if for any u ; v; w 2 V and scalars�; � 2 F the following
properties hold:

(i) hu ; u i � 0 (Non-negativity)

(ii) hu ; u i = 0 if and only if u = 0 (Non-degeneracy)

(iii) h� u + � v; w i = � hu ; w i + � hv; w i (Linearity)

(iv) hu ; v i = hv; u i : (Conjugate symmetry)

Note that if F = R, the conjugate symmetry is equivalent to normal symmetry, i.e.hu ; v i = hv; u i .
Let v = ( v1; v2; : : : ; vn )T ; u = ( u1; u2; : : : ; un )T be any vectors inRn . The standard inner product

hv; u i is de�ned by
hv; u i = vT u = v1u1 + v2u2 + � � � + vn un :

It is easily veri�ed that this function indeed satis�es the properties above and thus de�nes an inner
product on Rn . The norm kvk of v is given by kvk =

p
hv; v i . The following widely used inequality

gives a relation between the inner product and norms of two vectors.

Theorem 2.1 (Cauchy-Schwarz inequality). Let v; u be two vectors inRn , then

jhu ; v ij � k ukkvk:

3



4 Chapter 2. Preliminaries

An immediate consequence of the Cauchy-Schwarz inequality is thetriangle inequality given by
ku + vk � k uk + kvk. The two vectors v; u are said to beorthogonal if their inner product is zero. A set
of vectorsV = f v1; v2; : : : ; vm g in Rn is linearly independent if the equation c1v1 + c2v2 + � � � + cm vm = 0 ,
for c1; c2; : : : ; cm 2 R only has trivial solution, i.e. c1 = c2 = � � � = cm = 0 is the only solution. If the set
of vectors is not linearly independent, it is calledlinearly dependent. Any linearly independent set V of
n vectors in any n-dimensional spacespans the whole space. This means that any vector in the space
can be written as a linear combination of vectors inV .

For any m � n matrix A there are two important subspaces associated to it. The �rst is thekernel
of the matrix, which is also called its null space, de�ned as

Ker A = f v 2 Rn : Av = 0g:

The other space is therange of the matrix

RanA = f Av : v 2 Rn g:

The dimensions of these two spaces are known as thenullity and the rank, rk A, of the matrix respectively.
We say that an m � n matrix has full rank if its rank equals min(m; n). A fundamental result in linear
algebra states that the rank of a matrix equals the rank of its transpose, i.e. rk A = rk AT . The
rank-nullity theorem gives a useful relation between the rank and the nullity of am � n matrix A. The
theorem states that

dim Ker A + rk A = n: (2.1)

The following lemma gives an example of an application of this theorem.

Lemma 2.2. Let A be a realm � n matrix. Then rk AA T = rk AT A = rk A.

Proof. To prove the lemma we show that the null spaces ofAT A and A are equal. Then from the
rank-nullity theorem it follows that rk AT A = rk A, sincedim Ker A + rk A = dim Ker AT A + rk AT A = n.
Furthermore, from rk A = rk AT it then follows that rk AA T = rk AT A = rk AT = rk A.

To show equality of the null spaces, �rst of all notice that for any v such that Av = 0 we have
AT Av = AT 0 = 0. Thus Ker A � Ker AT A. Conversely, let u be such that AT Au = 0 . Then
kAuk2 = u T AT Au = 0 . So we must haveAu = 0 . This gives Ker AT A � ker A which concludes the
proof.

Another useful property of the rank is its subadditivity. Let A and B be any two matrices of
the same dimensions, thenrk(A + B ) � rk(A) + rk(B ). Notice that from this it also follows that
rk(A) � rk(B ) � rk(A � B ). Indeed, write rk(A) = rk(A � B + B ), then from the subadditivity we �nd

rk( A) = rk( A � B + B ) � rk( A � B ) + rk( B );

which after rearranging givesrk( A) � rk( B ) � rk( A � B ) as desired.
An n � n matrix is called a square matrix. The trace of a square matrix A, denoted Tr (A), is the

sum of its diagonal entries. The trace is a linear mapping which means that for any two square matrices
A and B and scalars� and �

Tr( �A + �B ) = � Tr( A) + � Tr( B ):

Furthermore, for an m � n matrix A and n � m matrix B

Tr( AB ) =
mX

i =1

(AB ) ii =
mX

i =1

nX

j =1

A ij B ji =
nX

j =1

mX

i =1

B ji A ij =
nX

j =1

(BA ) jj = Tr( BA ):

By substituting the matrix A by a multiplication of any number of matrices in the equation above, we
can deduce the cyclic property of the trace, which for any integern and matrices A1; A2; : : : ; An is given
by

Tr( A1A2 : : : An ) = Tr( An A1A2 : : : An � 1) = � � � = Tr( A2A3 : : : An A1):

In particular, this shows that for any two vectors u ; v 2 Rn , which we can view asn � 1 matrices, we
have

Tr( uv T ) = Tr( vT u) = vT u = hv; u i : (2.2)
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Using the trace, we can de�ne an inner product on the space ofm � n matrices, M m � n , by

hA; B i F = Tr
�

B
T

A
�

=
X

i;j

B ij A ij

known as the Frobenius inner product. If the matrices are real, the inner product equalshA; B i F =
Tr

�
B T A

�
=

P
i;j B ij A ij , and is also called thetrace inner product. The subscript F will be left out

when it is clear from context that we are talking about the Frobenius inner product. Observe that if we
view the matrices A and B as vectors inRmn , then we see that the trace inner product is actually equal
to the standard inner product in Rmn . Hence, it indeed satis�es the properties needed to be an inner
product. The Frobenius inner product also has a corresponding norm, theFrobenius norm, de�ned as
kAkF =

p
hA; A i F , for any matrix A 2 M m � n .

From this point on all matrices considered will be square matrices. Asymmetric matrix A is a
square matrix for which AT = A. For symmetric matrices A and B the trace inner product simpli�es to
hA; B i F = Tr (BA ). Furthermore, by the non-negativity and non-degeneracy of an inner product for
any symmetric matrix A, Tr (AT A) = Tr (A2) � 0, with equality if and only if A = 0. We also note the
following useful property of a symmetric matrix A and vector v 2 Rn :

kAvk2 = hAv; Avi = vT AT Av = vT A2v = hv; A2vi : (2.3)

A square matrix A is invertible if there exists a matrix denoted by A � 1 such that A � 1A = AA � 1 = I ,
where I is the identity matrix. The matrix A � 1 is called the inverse of A. Invertible matrices can be
de�ned by multiple other properties. For any square matrix A, the following are equivalent:

(i) A is invertible;
(ii) for any vector b, Av = b has a unique solution forv 2 Rn ;
(iii) the kernel of A is trivial, i.e. Ker(A) = f 0g;
(iv) A has full rank;
(v) det A 6= 0 ;
(vi) 0 is not an eigenvalue ofA (see Section 2.1.2).

2.1.2 Eigenvalues

Let A be a square matrix and let � be a scalar such that there exists a non-zero vectorv satisfying

Av = � v:

A scalar � and vector v satisfying this property are respectively called aneigenvalueand eigenvector of
the matrix A. Note that the de�nition states that an eigenvector can never be the zero vector, but the
scalar 0 can be an eigenvalue. To �nd all eigenvectors corresponding to an eigenvalue� it su�ces to
solve the equationAv = � v, which is equivalent to solving

(�I � A)v = 0 :

This shows that �nding all eigenvectors of a matrix A corresponding to the eigenvalue� is equivalent to
�nding the nullspace of the matrix �I � A. The nullspaceKer(�I � A) is called the eigenspaceof A
associated to the eigenvalue� . The set of all eigenvalues ofA is called the spectrum of A and denoted
by � (A).

Since an eigenvector is a non-zero vector, a scalar� is an eigenvalue if and only if the nullspace
of �I � A is non-trivial, i.e. it contains a non-zero vector. This means that the matrix �I � A is not
invertible and thus det(�I � A) = 0 . In the previous section we saw that a matrix is invertible if and
only if it has a trivial kernel. The eigenspace of the eigenvalue0 equalsKer(0 � I � A) = Ker A, and so
we see that a matrix is invertible if and only if 0 is not an eigenvalue.

The determinant of �I � A is a polynomial of degreen of the variable � and is called thecharacteristic
polynomial of A. The eigenvalues of the matrixA thus coincide with all the roots of its characteristic
polynomial. Let p(x) = det(xI � A) be the characteristic polynomial of the matrix A. The multiplicity
of � as a root of p(x) is called the algebraic multiplicity of the eigenvalue� . The eigenvalue� also has a
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geometric multiplicity which is de�ned as the dimension of the eigenspaceKer(�I � A). The algebraic
multiplicity is used more often, this is why we will simply say `multiplicity' when talking about the
algebraic multiplicity of an eigenvalue. If � 1; � 2; : : : ; � r are the distinct eigenvalues of a matrixA with
corresponding multiplicities m1; m2; : : : ; mr , we write � (A) = f � m 1

1 ; � m 2
2 ; : : : ; � m r

r g.
The algebraic and geometric multiplicity of an eigenvalue can di�er, but the geometric multiplicity

never exceeds the algebraic multiplicity. The two multiplicities are equal for symmetric matrices. In
particular, this leads to the following useful lemma concerning the nullity of a symmetric matrix. The
lemma immediately follows from the observation that the kernel of any matrix equals the eigenspace of
the eigenvalue0.

Lemma 2.3. The nullity of any symmetric matrix A is equal to the multiplicity of the eigenvalue0.

From this lemma and the rank-nullity theorem it follows that any symmetric matrix A has exactly
r = rk A non-zero eigenvalues. Sincerk AT A = rk AA T = rk A, this implies that the matrices AT A
and AA T also haver non-zero eigenvalues. In particular, the two matrices even have the same non-
zero eigenvalues with the same multiplicities. To see this, let� be a non-zero eigenvalue ofAA T

with corresponding eigenvectorv. Then, AT AA T u = AT � v = �A T v. So, � is an eigenvalue ofAT A
with corresponding eigenvectorAT v. Similarly, we �nd that a non-zero eigenvalue � of AT A with
corresponding eigenvectoru is also an eigenvalue ofAA T with eigenvector Au .

The eigenvalues of a matrix can be used to calculate it trace and determinant. LetA be an n � n
matrix and let � 1; � 2; : : : ; � n be its eigenvalues counting multiplicities, then

ˆ Tr A = � 1 + � 2 + � � � + � n , and
ˆ det A = � 1 � � 2 � � � � � � n .

This equation for the trace can be used to prove a lower bound on the rank of a symmetric matrix
A in terms of its trace and the trace of the squared matrix. The result follows immediately from the
Cauchy-Schwarz inequality applied to its non-zero eigenvalues, of which there are exactlyrk A by the
previous lemma.

Lemma 2.4. Let A be a real symmetric matrix. Then

rk A �
Tr( A)2

Tr ( A2)
:

Proof. Let r = rk A and notice that, by Lemma 2.3, A has exactly r non-zero eigenvalues, denoted by
� 1; � 2; : : : ; � r . So, we haveTr A =

P r
i =1 � i and Tr

�
A2

�
=

P r
i =1 � 2

i . Denote by � the vector with entries
� 1; : : : ; � r . Then, by taking the inner product with the all-ones vector 1, the Cauchy-Schwarz inequality
yields

rX

i =1

� i = h1; � i � k 1kk� k =
p

r �

vu
u
t

rX

i =1

� 2
i :

Taking the square of both sides givesTr (A)2 � rk A � Tr (A2). Dividing both sides by Tr (A2) gives the
required inequality.

Two matrices that will come up a lot are the n � n identity matrix, denoted I n , and the n � n
all-ones matrix, denoted Jn . When the dimensions are clear from context we will simply writeI and J .
The identity matrix has eigenvalue � = 1 with multiplicity n. The eigenvalues of the all-ones matrix
are � 1 = n with multiplicity 1 and � 2 = 0 with multiplicity n � 1. For a matrix A with eigenvalues
� 1; : : : ; � n and a polynomial p, the eigenvalues ofp(A) are f p(� 1); : : : ; p(� n )g.

The eigenvalues of symmetric matrix are always real. Furthermore, symmetric matrices have the
useful property that they can always be decomposed using their eigenvalues and eigenvectors. These
eigenvectors are also all orthogonal. These properties are given by the spectral decomposition theorem.

Theorem 2.5 (Spectral decomposition theorem). Any real symmetric matrix A with eigenvalues
� 1; : : : ; � n and corresponding eigenvectorsv1; : : : ; vn can be decomposed as

A =
nX

i =1

� i v i vT
i : (2.4)

These eigenvectors form an orthonormal basis ofRn .
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The decomposition of the matrix in the theorem above can also be written asA = PDP T , where D
is a diagonal matrix with the eigenvalues� 1; : : : ; � n on the diagonal andP is an orthogonal matrix with
the eigenvectorsv1; : : : ; vn as columns. If for any two symmetric matricesA and B there exists one
orthogonal matrix P such that A = PDA PT and B = PDB PT , where DA and DB are both diagonal,
we say that A and B are simultaneously diagonalisable. In this case, the eigenvalues of the sumA + B
are sums of the eigenvalues ofA and B , sinceA + B = PDA PT + PDB PT = P(DA + DB )PT .

For a symmetric matrix A and a non-zero vectorv we de�ne the Rayleigh quotient as

R(A; v) =
vT Av
vT v

=
hAv; v i
hv; v i

:

The Rayleigh quotient gives a lower bound on the maximum eigenvalue,� max , of the matrix A and an
upper bound on its minimum eigenvalue,� min , as the following theorem shows.

Theorem 2.6. For any symmetric n � n matrix A and non-zero vectoru , � min � R (A; u ) � � max .

Proof. By the spectral decomposition theorem, there is an orthonormal basis ofRn consisting of
eigenvectors ofA. So, let f v1; : : : ; vn g be an orthonormal basis ofRn consisting of eigenvectorsv i of A
with corresponding eigenvalues� i for i = 1 ; : : : ; n.

The vector u can then be written as

u =
nX

i =1

ci v i

for some constantsci . Now we can write the inner product hu ; u i as

hu ; u i =

*
nX

i =1

ci v i ;
nX

i =1

ci v i

+

=
nX

i =1

nX

j =1

ci cj hv i ; v j i =
nX

i =1

c2
i ;

where the last step follows fromhv i ; v j i = 0 if i 6= j and hv i ; v i i = 1 . For the inner product hAu; u i we
�nd

hAu; u i =

*

A
nX

i =1

ci v i ;
nX

i =1

ci v i

+

=

*
nX

i =1

ci � i v i ;
nX

i =1

ci v i

+

=
nX

i =1

� i c2
i :

So the Rayleigh quotient is now given by

R(A; u ) =
hAu; u i
hu ; u i

=
P n

i =1 � i c2
iP n

i =1 c2
i

:

Since� min � � i � � max for all i , we conclude

� min =
P n

i =1 � min c2
iP n

i =1 c2
i

�
P n

i =1 � i c2
iP n

i =1 c2
i

�
P n

i =1 � max c2
iP n

i =1 c2
i

= � max :

Only a speci�c type of real number can be an eigenvalue of a symmetric matrix. These numbers are
the so called totally real algebraic integers. Analgebraic integer � is the root of a monic polynomial
with coe�cients in Z. The minimal polynomial of � is the lowest degree monic polynomial with� as its
root. The conjugatesof an algebraic integer� are the other roots of its minimal polynomial. Lastly, we
say that � is totally real if all its conjugates are real.

Lemma 2.7. If � is an eigenvalue of a symmetric matrixA with integer entries, then it is a totally real
algebraic integer.

Proof. Let A be a matrix with integer entries and � as an eigenvalue. Consider the characteristic
polynomial p(x) = det(xI � A). The polynomial p(x) is a monic polynomial with integer coe�cients.
This implies that all its roots are algebraic integers, from which follows that � is an algebraic integer.
Furthermore, since the minimal polynomial of any root of p(x) divides p(x), all the conjugates of any
root of p(x) are also roots ofp(x). These conjugates are thus also eigenvalues ofA. SinceA is symmetric,
all its eigenvalues are real. So it follows, that all the conjugates of� are real, i.e. � is totally real.
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The converse of the lemma has also been shown to hold by Estes [15], meaning that every totally
real algebraic integer occurs as the eigenvalue of a symmetric integer matrix.

Remark 2.8. The proof of the lemma shows us that all algebraic conjugates of any eigenvalue of the
matrix A are also eigenvalues ofA. Let p(x) be the characteristic polynomial of A and let � be any
eigenvalue ofA. Then the multiplicity of its conjugates as a root of p(x) equals the multiplicity of � as
a root of p(x). In other words, the algebraic conjugates of� have the same algebraic multiplicity as� .

The maximum eigenvalue of a matrix is known as thespectral radius of the matrix. We will always
write the eigenvalues of a matrix A in non-increasing order � 1(A) � � 2(A) � � � � � � n (A), so that
� 1(A) = � max (A). In graph theory we mostly work with matrices that have no negative entries. We call
such a matrix A non-negative and write A � 0. For two matrices A and B we write A � B if A � B � 0.
The Perron-Frobenius theorem gives valuable results on the spectral radius of non-negative matrices.
We will only state the theorem here and refer to [3] for more details. Before giving the theorem, we need
to de�ne the concept of an irreducible matrix. A real n � n matrix A is irreducible if (I + jAj)n � 1 has
all positive entries. An equivalent de�nition can be given in terms of graphs (see Section 2.2 for the
necessary de�nitions). To the matrix A we can associate a directed graph with vertex set[n] and an arc
from i to j if A ij 6= 0 . If this directed graph is strongly connected, thenA is irreducible. In particular
this means that the adjacency matrix of any connected graph is irreducible.

Theorem 2.9 (Perron-Frobenius). Let A be an irreducible non-negativen � n matrix with spectral
radius � 1, then

(i) � 1 has multiplicity one;
(ii) for any other eigenvalue� of A, j� j � � 1;
(iii) A has an eigenvectorv corresponding to � 1 with positive entries;
(iv) if B is a non-negativen � n matrix such that A � B is non-negative, then� 1(B ) � � 1.

The second and last property of the theorem actually also hold whenA is non-negative but not
irreducible. In this case the spectral radius ofA can have a multiplicity larger than one. For example,
the n � n identity matrix I is non-negative, but not irreducible. It has spectral radius � 1 = 1 with
multiplicity n. For a non-negative matrix A a less strict version of the third property holds, namely that
A has an eigenvector corresponding to� 1 with all non-negative entries.

When working with graphs, the concept of interlacing will help us to analyse the eigenvalues of
subgraphs. Let A be a symmetric n � n matrix, and B a symmetric m � m matrix, where m � n.
Denote the eigenvalues ofA by � 1; : : : ; � n and the eigenvalues ofB by � 1; : : : ; � m . The eigenvalues ofB
interlace those of A if, for i = 1 ; : : : ; m,

� i � � i � � n � m + i :

The following theorem states that the eigenvalues of principal submatrix of a symmetric matrix always
interlace those of the matrix. A principal submatrix is obtained from a n � n matrix by removing the
rows and columns indexed by a subset of[n].

Theorem 2.10. Let B be a principal submatrix of a symmetric matrix A, then the eigenvalues ofB
interlace the eigenvalues ofA.

2.1.3 Positive semide�nite matrices

A real symmetric n � n matrix A is called positive semide�nite, denoted A � 0, if for all v 2 Rn ,
vT Av � 0. Positive semide�nite matrices can be characterised in many other equivalent ways. The
following theorem gives the characterisations that are most often used.

Theorem 2.11. For a real symmetric n � n matrix A, the following are equivalent:

(i) A is positive semide�nite;
(ii) all eigenvalues ofA are non-negative;
(iii) there exists a matrixL 2 Rn � k , k � 1, such thatA = LL T , this is called theCholesky decomposition

of A;
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(iv) there exist vectorsv1; : : : ; vn 2 Rk , where k � 1, such that A ij = hv i ; v j i for all i; j 2 [n].

The theorem shows that from any set of vectorsV = f v1; : : : ; vn g in Rk a positive semide�nite
matrix M V can be constructed by taking as entries(M V ) ij = hv i ; v j i for all i; j 2 [n]. We call this
matrix the Gram matrix of V . If A is the matrix with the vectors of V as columns then notice that
M V = AT A. From Lemma 2.2 we can now easily deduce the rank ofM V from the rank of A. SinceV is
a set of vectors inRk , the matrix A has rank at most k and thus so doesM V .

Conversely, from a positive semide�nite matrix A, we can always �nd vectors as in (iv). These
vectors can be easily be retrieved from its Cholesky decomposition. Denote the rows ofL by v i 2 Rk ,
i 2 [n]. Then from the equality A = LL T it immediately follows that the entries of A are A ij = hv i ; v j i .
Algorithms exist to �nd the Cholesky decomposition of a matrix [16, Section 3.2]. Alternatively, it is
possible to �nd the vectors through the spectral decomposition of the matrix [14, Theorem 7.2.7].

Positive semide�nite matrices have various useful properties. We will only discuss a few results here
that we will need later on. For more details we refer to Chapter 7 of Horn and Johnson [14].

Lemma 2.12. Let A be a symmetric non-negative matrix such thatA + rJ is positive semide�nite for
somer 2 R. Then A has at most one negative eigenvalue.

Proof. Denote the eigenvalues of the matricesA; rJ and A+ rJ in non-decreasing order� 1(�) � � � � � � n (�).
We want to show that A has at most one negative eigenvalue, which is equal to showing that� n � 1(A) � 0.
To show that this holds, we will use the following Weyl inequalities [14, Theorem 4.3.1]:

� i (A + rJ ) � � i � j +1 (A) + � j (rJ ); j � i:

Note that the eigenvalues ofrJ are � 1(rJ ) = rn and � i (rJ ) = 0 , for all i > 1. Furthermore, sinceA + rJ
is positive semide�nite all its eigenvalues are non-negative and thus� n (A + rJ ) � 0. Now take i = n
and j = 2 in the inequality above. Then we �nd

0 � � n (A + rJ ) � � n � 1(A) + � 2(rJ ) = � n � 1(A) = 0 ;

and thus we conclude that indeed� n � 1(A) � 0 as desired.

The sum of any two positive semide�nite matrices is again positive semide�nite. The kernel of the
sum is equal to the intersection of the kernels of the two matrices. To prove this, we �rst need the
following lemma.

Lemma 2.13. Let A be a positive semide�nite matrix and let u be a vector. Then

Au = 0 , u T Au = 0 :

Proof. First suppose that Au = 0. Then u T Au = u T 0 = 0 .
Conversely, suppose thatu T Au = 0. SinceA is a symmetric matrix there is an orthonormal basis

f v1; : : : ; vn g of eigenvectors ofA. Let � 1; : : : ; � n be the corresponding eigenvectors. Now we can write
u =

P n
i =1 ci v i for some constantsci . Then we have

Au = A
nX

i =1

ci v i =
nX

i =1

� i ci v i

and

u T Au =

 
nX

i =1

ci v i

! T nX

i =1

� i ci v i =
nX

i =1

� i c2
i = 0 ;

sinceA is positive semide�nite � i � 0 for all i . So for the last equality to hold we must haveci = 0 for
all i for which � i > 0. This means that in the sum

P n
i =1 � i ci v i either ci = 0 or � i = 0 and thus we �nd

Au = A
nX

i =1

ci v i =
nX

i =1

� i ci v i = 0
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Lemma 2.14. Let A and B be two positive semide�nite matrices. Then

Ker(A + B ) = Ker A \ Ker B:

Proof. First we show Ker A \ Ker B � Ker(A + B ). In order to do this let v 2 Ker A \ Ker B . Then
Av = B v = 0 and thus

(A + B )v = Av + B v = 0 + 0 = 0:

This implies that v 2 Ker(A + B ).
Now let v 2 Ker(A + B ). Then using the previous lemma we have

0 = vT (A + B )v = vT Av + vT B v;

sinceA and B are both positive semide�nite vT Av � 0 and vT B v � 0. So for the sum of both of them
to be zero we must havevT Av = vT B v = 0 . By the previous lemma we �nd Av = B v = 0 and thus
v 2 Ker A \ Ker B .

2.2 Graph theory

Graphs are incredibly useful structures to model relations between objects. They will play a major role
in our study of equiangular lines. In this section we will introduce all the graph-theoretical concepts that
will be used throughout the thesis. We will start with some basic notions and then give an introduction
into spectral graph theory. For more background material into these topics we refer to [17] and [18].
Lastly we will discuss a recent theorem on the multiplicity of the j -th eigenvalue of a graph, which will
be of great importance in proving one of the main results on equiangular lines reviewed in this thesis.

2.2.1 Basic notions

A graph G is an ordered pair of sets(V; E) such that each element ofE is an unordered two-element
subset ofV . The elements ofV are calledvertices and the elements ofE are callededges. An edge
f u; vg is written as uv. Note that if uv is an edge,vu de�nes the same edge. We say that two vertices
u; v are adjacent, or neighbours, if there exists an edgeuv. In this case, the edgeuv is incident to u
and v. If all vertices of G are pairwise adjacent, the graphG is complete. All considered graphs will be
simple, loopless graphs. This means that the graph has no edges from a vertex to itself and there can
only be one edge between any two vertices.

A subgraphof G is a graph G0 = ( V 0; E 0) such that V 0 � V and E 0 � E . If V 0 = V we say that G0 is
a spanning subgraph of G. For a subsetU � V , the graph G[U] is the graph with vertex set U whose
edges are precisely the edges ofG with both endpoints in U. We call G[U] an induced subgraphof G. A
clique is a complete subgraph, in other words, a clique is a subgraph such that there is an edge between
any two vertices in the subgraph. A subgraph with no edges is anindependent set. This can be seen as
the opposite of a clique.

The degreed(v) of a vertex v is the number of edges incident to that vertex. This is also equal
to its number of neighbours. The set of neighbours of a vertexv is called its neighbourhood and
denoted by N (v). A vertex with no neighbours is called isolated. The maximum and minimum degree
of the graph are denoted by�( G) and � (G) respectively. The average degree ofG is the number
D(G) = 1

jV j

P
v2 V d(v). The number of edges of a graph is related to the degrees of the vertices by the

equality jE j = 1
2

P
v2 V d(v).

Proposition 2.15. Let G be a graph with average degreed = d(G) > 0. Then G has a subgraphH with
minimum degree at leastd=2.

Proof. Notice that d
2 = jE j

jV j denotes the ratio of edges per vertex in the graph, sincejE j = 1
2

P
v2 V d(v) =

1
2 jV jd.

Construct a sequence of induced subgraphsG = G0 � G1 � G2 � : : : where Gi +1 = Gi � vi for a
vertex vi 2 Gi with d(vi ) � d=2. If such a vertex vi does not exist, setGi = H . Let Vi and E i denote
the vertex and edge set ofGi respectively. For all i we havejVi +1 j = jVi j � 1 and jE i +1 j � j E i j � d

2 .
This gives

jE1j
jV1j

�
jE0j � d

2

jv0j � 1
=

jE0j � jE 0 j
jV0 j

jV0j � 1
=

(jV0j � 1)jE0j
jV0j(jV0j � 1)

=
jE0j
jV0j
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and hence
jE2j
jV2j

�
jE1j � jE 0 j

jV0 j

jV1j � 1
�

jE1j � jE 1 j
jV1 j

jV1j � 1
=

jE1j
jV1j

:

Repeating this argument we �nd jE i +1 j
jVi +1 j � jE i j

jVi j � jE 0 j
jV0 j , which implies that the ratio of edges per vertex

does not decrease.
Now, since jE 0 j

jV0 j = d
2 > 0 and jE H j

jVH j � jE 0 j
jV0 j , it follows that H 6= ? . Furthermore, by construction H

does not have a vertexv such that d(v) � d=2 and thus � (H ) � d=2.

To any graph G several matrices can be associated. The most widely used matrix, is theadjacency
matrix , denoted A = AG . It is a square matrix indexed by V(G) with entries

Auv =

(
1; if uv 2 E(G);
0; otherwise:

Notice that A is a symmetric matrix with zeros on the diagonal since there can be no edge from a vertex
to itself and for any edgeuv, vu denotes the same edge. Furthermore, the row and column indexed byv
sum up to the degree ofv, for any v 2 V(G). So the diagonal entries of the matrixA2 give the degrees
of each vertex and hence,Tr A2 = 2 jE j. In fact, the entries of A2 denote the number of walks of length
two from one vertex to another.

A walk in a graph G = ( V; E) is an ordered list of vertices(v0; v1; : : : ; vk ) where vi � 1vi 2 E for all
1 � i � k. The number of walks of lengthk from one vertex to another are indicated by the entries of
the matrix Ak . The walk is closed if v0 = vk . If all vi are distinct the walk becomes apath. A closed
walk with distinct vertices except for the �rst and last is called a cycle. The graph is connected if for
each pair of verticesu; v 2 V there is a path in G from u to v. A tree is a connected graph with no cycles.
A (connected) component of a graph is a maximal connected subgraph, i.e. a connected subgraph that
is not contained in a larger connected subgraph. Thedistance dG (u; v) in G between any two vertices
u; v 2 V is the length of the shortest path between the two vertices. If this path does not exist we set
dG (u; v) = 1 .

A di�erent notion of a graph which we have already used in Section 2.1.2 to de�ne an irreducible
matrix, is that of a directed graph. In a directed graph � = ( V; E) the set E is an ordered two element
subset ofV . The elements ofE are now calledarcs. The de�nition of a path is analogous in a directed
graph, in this case we speak of adirected path. Now we say that � is strongly connectedif for each pair
of vertices u; v 2 V there is a directed path in � from u to v.

2.2.2 Spectral graph theory

When talking about the eigenvalues of the graph we mean the eigenvalues of its adjacency matrix. In
the previous section we saw that the diagonal entries of the adjacency matrix are all zero implying that
the trace of the matrix is also zero. Since the trace equals the sum of the eigenvalues, this means that
the eigenvalues of any graph always sum to zero.

Example 2.16. Let K 1;m be the star graph onm + 1 vertices. This is the graph consisting of one vertex
connected tom other vertices. Let v1 be the centre of the star. The adjacency matrix ofK 1;m is

A =

0

B
B
B
@

0 1 � � � 1
1 0 � � � 0
...

...
. . .

...
1 0 : : : 0

1

C
C
C
A

;

with spectrum � (A) =
np

m1; 0m � 1; �
p

m1
o

. We can easily see that these eigenvalues indeed sum to
zero.

The eigenvalues of a graph can be used to analyse certain properties of the graph. For example, a
graph is bipartite if and only if it has a symmetric spectrum, which means that for each eigenvalue� of
the graph � � is also an eigenvalue. A simple argument shows that the spectral radius of any graph can
not exceed its maximum degree.
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Lemma 2.17. The spectral radius of a graph is bounded from above by its maximum degree.

Proof. Let G be a graph with maximum degree� , adjacency matrix A and spectral radius � 1. Let v
be an eigenvector associated to� 1 and let x be the vertex for which vx has maximum value over all
vertices. We may assume thatvx is positive since otherwise we can simply take� v as our associated
eigenvector. Now we have

� 1vx = ( Av)x =
X

y � x

vy �
X

y � x

vx = d(x)vx :

So we see that� 1 � d(x) � � .

As seen in Section 2.1.2, the adjacency matrix of any connected graph is irreducible. So by
Perron-Frobenius (Theorem 2.9) it immediately follows that the spectral radius of a connected graph
has multiplicity one. The spectrum of a graph that is not connected, depends on the spectra of its
components.

Lemma 2.18. The spectrum of a graph is the union of the spectra of its components.

Proof. Let G be a graph ofn vertices with m components denoted byG1; : : : ; Gm . For each i 2 [m],
the component Gi has ni vertices and adjacency matrixA i . By de�nition of a component, there are no
edges between any twoGi and Gj for i 6= j . The adjacency matrix of the graph G can thus be written as

AG =

0

B
B
B
B
@

A1 0 � � � 0

0 A2
. . .

...
...

. . .
. . . 0

0 � � � 0 Am

1

C
C
C
C
A

;

where0 denotes the zero matrix. The eigenvalues ofG are all � such that det(�I � AG ) = 0 . Furthermore,
sinceAG is a block diagonal matrix its determinant equals

det(�I � AG ) = det( �I n 1 � A1) � det(�I n 2 � A2) � � � � � det(�I n m � Am ):

It follows that for any eigenvalue � of G, there must be somei 2 [m] such that det(�I n i � A i ) = 0 ,
implying that � is an eigenvalue ofGi . Conversely, if � is an eigenvalue ofGi for somei 2 [m], then the
right hand side of the equation is zero and thusdet(�I � AG ) = 0 . So � is also an eigenvalue ofG and
the lemma follows.

The proof of the lemma in fact shows that the characteristic polynomial ofAG is the product of the
characteristic polynomials of A1; : : : ; Am . Two useful properties follow from this lemma. The �rst is
that adding isolated vertices to a graph only adds zeroes to its spectrum and thus doesn't change its
non-zero eigenvalues. Secondly, letH be a connected graph and letG be the union of taking n copies of
H . SinceH is connected it has spectral radius� 1(H ) with multiplicity one. By the above lemma the
graph G then has spectral radius� 1(G) = � 1(H ) with multiplicity n.

Knowing the spectrum of graph, we can deduce certain properties of its subgraphs by interlacing.
Let H be an induced subgraph of a graphG. Notice that the adjacency matrix of H is a principal
submatrix of G. It thus follows immediately from Theorem 2.10 that the eigenvalues ofH interlace
those of G. In particular this leads to the following property.

Lemma 2.19. Let H be an induced subgraph of a graphG. Then

� 1(G) � � 1(H ) � � min (H ) � � min (G):

The inequality � 1(H ) � � 1(G) actually also holds if H is a subgraph that is not induced. To see
this notice that if an edge of the graph is removed, the new adjacency matrixA0 is a non-negative
matrix such that AG � A0 is non-negative. So by Perron-Frobenius,� 1(A0) � � 1(AG ). This shows that
the removal of edges can only decrease the spectral radius of the graph. Interlacing shows us that the
removal of a vertex also cannot increase the spectral radius.
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2.3 Graph eigenvalue multiplicities

If we denote the eigenvalues of a graphG as � 1 � � 2 � � � � � � jG j , we call � j the j -th eigenvalueof G.
One of the main results of Jiang, Tidor, Yao, Zhang and Zhao in [12] is a theorem that states that the
j -th eigenvalue of a connected graph with bounded maximum degree has bounded multiplicity.

Theorem 2.20 ([12]). For every integer j and � , there is a constant C = C(j; �) so that every
connected n-vertex graph with maximum degree at most� has j -th eigenvalue multiplicity at most

Cn
log log n .

Note that in the theorem, � is a constant that is independent of the number of vertices of the graph.
The casej = 2 will be one of the main tools in proving their result on equiangular lines with a �xed
angle. The proof is however analogous for any �xedj . The result is proven by using interlacing of the
eigenvalues of a subgraph on a strategically constructed subgraph.

The theorem is a general graph theoretical result, which is why we state and prove it in this chapter.
It will be used in Chapter 5 to prove a tight bound on the number of equiangular lines with a �xed angle.
In this section we will give the proof of the theorem. First we will need to de�ne a speci�c subgraph and
subset of a graph. Then we discuss some lemmas that will be necessary to prove the theorem before
turning to the full proof.

Let G be a graph andv be a vertex in the graphs. Ther -neighbourhoodof v is the subgraph induced
by all vertices that are at distance at most r from v. We denote this graph by Gr (v). By de�nition,
Gr (v) is a connected graph. For a subsetW � V we will write Gr (W ) =

S
w2 W Gr (w). We call a subset

U of the vertices of G an r -net if all vertices of G are within distance r of some vertex inU. Note that
the r -net is a subset ofV (G) and hence not a graph itself. An upper bound exists on the minimum size
of an r -net that can be found in a connected graph.

Lemma 2.21. Every n-vertex connected graph has anr -net with size at most
l

n
r +1

m
, where n and r are

positive integers.

Proof. Let n and r be positive integers. First of all we note that it su�ces to prove the lemma in the
case that G is a tree. To see this, notice that anyr -net of a spanning treeT of a graph G is also an
r -net of G since the distance between any two vertices inG is always smaller or equal to their distance
in T. We now prove the lemma by constructing anr -net of size at most

l
n

r +1

m
in a tree.

So supposeG is an n-vertex tree and pick an arbitrary vertex v of G. Let u be a vertex at maximum
distance d from v. If d � r , then all other vertices of the graph are also at a distance of at mostr from
v and thus f vg is an r -net of G.

Otherwise, if d > r , we will add vertices to the net U until it is indeed an r -net. We start with
U = f vg. Let w be the vertex at distancer from u lying on the path from v to u. Add w to the net U
and remove it from the graph G. SinceG is a tree, the graphG � w now has at least two components,
including one containing u and one containingv. Note that the vertices in the components that do not
contain v are at distance at most r from w in G. Indeed, if this would not be the case, there would be a
vertex u0 at distance at least r + 1 from w. This would imply that u0 is at distance at leastd + 1 from v
which is not possible sinced is the maximum distance from v to any other vertex in G. Sinceu is at
distance r from w, the component containing u has at least r elements.

So now we only need to look at the component ofv in G � w, which has at most n � (r + 1) vertices.
We repeat the above argument inside this component, adding a new vertex to the net and again removing
at least r + 1 vertices from the graph. This can be repeated at most n

r +1 times and thus the r -net will

have no more than
l

n
r +1

m
vertices.

Figure 2.1 shows the �rst step of the proof of the lemma for a tree in which we want to �nd a 2-net.
The left graph shows the tree with vertex u at maximum distance from v and the vertex w at distance
2 from u on the path to v. By removing vertex w we obtain the graph on the right, which has three
components. The vertices of the components not containingv all lie at distance at most 2 from w in the
original graph.

The r -nets and r -neighbourhoods can give better insights into the spectrum of the graph as the
following two lemmas will show. The �rst result tells us that removing an r -net from the graph decreases
the spectral radius. Furthermore, the spectral radii of the r -neighbourhoods of a graphG can be used
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Figure 2.1: A tree before and after removing vertex w to �nd a 2-net in it.

to bound its spectrum. This result follows by counting closed walks of length2r in G and the use of the
Rayleigh quotient as a lower bound on the spectral radius.

Lemma 2.22. Let r be a positive integer andG a graph. Let H be the graph obtained fromG by
removing an r -net of G. Then

� 1(H )2r � � 1(G)2r � 1:

Proof. By Lemma 2.18 adding isolated vertices to a graph only adds zeroes to its spectrum. This implies
that it su�ces to show that the lemma holds for an n-vertex graph G with no isolated vertices.

So let G be a graph with no isolated vertices and letH be the graph obtained fromG by removing
an r -net. Add zeroes to the adjacency matrixAH of H to extend it to an n � n matrix. We �rst show
that A2r

H � A2r
G � I entry-wise. Notice that the entries of A2r

H and A2r
G denote the number of walks of

length 2r from one vertex to the other in H and G respectively. So, to show this inequality holds we
will count the di�erent types of walks in the graphs.

Note that since H is a subgraph ofG, all walks of length 2r in H also exist in G. From this it
immediately follows that

�
A2r

H

�
uv �

�
A2r

G

�
uv for all distinct u; v 2 G. We thus only need to show that

for any vertex v in G there is at least one more walk of length2r in G than in H . Observe that in the
graph G there is a path from v to a vertex in the r -net at distance at most r from v. If this vertex is
exactly at distance r , we can walk back along this path to �nd a walk of length 2r . Otherwise, we can
walk up and down between two vertices of this path a required number of times before turning back tov
to �nd a walk of length 2r . This gives a walk of length2r which is not available in the graph H , and
thus

�
A2r

H

�
vv �

�
A2r

G

�
vv � 1. This shows that A2r

H � A2r
G � I indeed holds.

The matrices A2r
H and A2r

G � I are both non-negative. By Perron-Frobenius it thus follows that

� 1
�
A2r

H

�
� � 1

�
A2r

G � I
�

;

which implies the desired result� 1(H )2r � � 1(G)2r � 1.

Lemma 2.23. For every n-vertex graphG and positive integer r ,

nX

i =1

� i (G)2r �
X

v2 V (G)

� 1 (Gr (v))2r :

Proof. Let G be an n-vertex graph and r a positive integer. Recall that the sum of the eigenvalues of a
matrix is equal to the trace of the matrix, so

P n
i =1 � i (G)2r = Tr

�
A2r

G

�
. The trace of A2r

G counts the
number of closed walks of length2r in G. For any v 2 V (G) all closed walks lie in ther -neighbourhood
Gr (v) of v, since a closed walk of length2r can reach at most a vertex at distancer from v before
returning. Let ev be the vector with a 1 at entry v at all other entries zero. The number of closed
walks from v are counted byeT

v A2r
G r (v) ev , so Tr

�
A2r

G

�
=

P
v2 V (G) eT

v A2r
G r (v) ev . Sincehev ; ev i = 1 , this

quantity is equal to the Rayleigh quotient R
�

A2r
G r (v) ; ev

�
. By Theorem 2.6 it follows that

eT
v A2r

G r (v) ev � � 1 (Gr (v))2r :

This yields
P n

i =1 � i (G)2r �
P

v2 V (G) � 1 (Gr (v))2r as required.
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To show the upper bound on the multiplicity of � j we will create a subgraph by removing some
strategically chosen vertices and then use interlacing of the eigenvalues. The �rst type of vertices we
remove are all those whoser -neighbourhood have a large spectral radius, for some positive integerr .
The size of the subset of these vertices is upper bounded.

Lemma 2.24. Let G be ann-vertex graph with maximum the degree� and denote by� = � j (G) the
j -th eigenvalue ofG. For any positive integer r , the set W = f v 2 V(G) : � 1(Gr (v)) > � g has at most
j � 2( r +1) elements.

Proof. Let W0 be a maximal subset ofW such that the distance in G between any two vertices ofW0 is
at least 2(r + 1) . By the maximality of W0, its 2(r + 1) -neighbourhoodG2( r +1) (W0) contains W . Indeed,
suppose that this is not the case. Then there is aw 2 W which is not in G2( r +1) (W0). This means that
for all u 2 W0 the distance betweenu and w in G is greater than 2(r + 1) . But then, W0 [ f wg is a
subset ofW larger than W0 satisfying the same condition. This is not possible by the maximality ofW0.
We thus have W � G2( r +1) (W0). The 2(r + 1) neighbourhood of anyw 2 W0 has no more than� 2( r +1)

vertices. This gives
jW j � j G2( r +1) (W0)j � j W0j� 2( r +1) :

So bounding the size ofW0 will give an upper bound on the size ofW .
The r -neighbourhoods of any two vertices inW0 are disjoint, so Gr (W0) has jW0j components. Since

W0 is a subset ofW , each component ofGr (W0) has spectral radius larger than� , by de�nition of W .
This means that the jW0j �rst eigenvalues of Gr (W0) are all larger than � , i.e.

� 1 (Gr (W0)) ; : : : ; � jW 0 j (Gr (W0)) > � = � j (G):

SinceGr (W0) is an induced subgraph ofG its eigenvalues interlace those ofG, so the inequality

� i (G) � � i (Gr (W0))

holds for all 1 � i � j Gr (W0)j. It follows from the two inequalities that we must have jW0j < j , which
implies the upper bound j � 2( r +1) for W .

Next to the vertices from the above lemma, we will also remove anr 1-net from the graph for a
certain positive integer r 1 < r . In the resulting graph we will �rst bound the multiplicity of � j as an
eigenvalue of this graph using the lemmas above. We then use interlacing to bound the multiplicity
of the eigenvalue in the original graph. Recall that for a graphG we write the eigenvalues ofG in
non-increasing order� 1(G) � � 2(G) � � � � � � n (G).

Proof of Theorem 2.20. Let G be a connectedn-vertex graph with vertex set V and maximum degree
� . Let � 1; : : : ; � n be the eigenvalues ofG and let � = � j (G) be the j -th eigenvalue. We want to show
that the multiplicity mG (� ) of � in G is of order O(n= log logn). We will �rst prove the theorem in the
case that � � 0 and then prove it for � > 0.

Suppose� � 0 and let q be the number of distinct eigenvalues ofG. The sum of the squared
eigenvalues ofG satis�es

nX

i =1

� 2
i = mG (� 1)� 2

1 + � � � + mG (� )� 2 + � � � + mG (� q)� 2
q � mG (� )� 2;

since � 2
i � 0 for all i 2 [q]. It thus su�ces to bound the value of the sum. Since � � 0, for all i � j the

eigenvalue� i is also at most zero. This implies
0

@
nX

i = j

� i

1

A

2

=
nX

i = j

� 2
i +

X

i 6= k
i;k � j

� i � k �
nX

i = j

� 2
i (2.5)

Furthermore, we note that since 0 =
P n

i =1 � i =
P j � 1

i =1 � i +
P n

i = j � i the equality

j � 1X

i =1

� i = �
nX

i = j

� i (2.6)
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must hold. Now using these two identities and the fact that 0 � � i � � for all 1 � i � j , we �nd

nX

i =1

� 2
i

(2 :5)
�

j � 1X

i =1

� 2
i +

0

@
nX

i = j

� i

1

A

2

(2 :6)
=

j � 1X

i =1

� 2
i +

 
j � 1X

i =1

� i

! 2

� (j � 1)� 2 + ( j � 1)2� 2

� j 2� 2:

It thus follows that mG (� ) �
�

j �
�

� 2
which is of order O(n= log logn) proving the theorem for � � 0.

Now we turn to the case where� = � j > 0. Let c(� ; j ) be a small enough constant and de�ne
r 1 = bclog lognc and r 2 = bclognc. Denote the sum of these two constants asr = r 1 + r 2.

We start by constructing a subgraph H of size at leastn � O j; � (n= log logn) by removing speci�c
vertices from the graph. De�ne the set W = f v 2 V : � 1(Gr (v)) > � g, which by Lemma 2.24 has at
most j � 2( r +1) elements. LetU be an r 1-net in G of size at mostdn=(r 1 + 1) e, which exists by Lemma
2.21 sinceG is connected. We de�neH as the subgraph induced byG n(W [ U). The two upper bounds
on the setsW and U give

jW [ Uj � j W j + jUj �
�

n
r 1 + 1

�
+ j � 2( r +1) = Oj; �

�
n

log logn

�
:

This leads to jH j � n � O j; �

�
n

log log n

�
as necessary.

The next step in the proof is to upper bound the multiplicity of � in H , denoted by mH (� ). We will
�rst use Lemma 2.23 to bound mH (� ) using the spectral radii of the 2r -neighbourhoods of vertices ofH .
Next, we will show that for any v 2 H , the graph H2r (v) is obtained from Gr (v) by removing an r 1-net.
This will allow us to use Lemma 2.23 to further bound the multiplicity mH (� ).

SupposeH has k distinct eigenvalues denoted by� i and note that � 2r 2
i � 0 for all i 2 [k]. We have

jH jX

i =1

� 2r 2
i = mH (� 1) � � 2r 2

1 + � � � + mH (� ) � � 2r 2 + � � � + mH (� k ) � � 2r 2
k

� mH (� ) � � 2r 2 ;

and by Lemma 2.23
jH jX

i =1

� 2r 2
i �

X

v2 V (H )

� 1(H r 2 (v))2r 2 :

Hence, we �nd
mH (� ) � � 2r 2 �

X

v2 V (H )

� 1(H r 2 (v))2r 2 : (2.7)

It follows that to �nd an upper bound on mH (� ) we need to bound the spectral radius ofH r 2 (v) for any
v 2 V(H ).

To bound � 1(H r 2 (v)) for any v 2 V (H ) we will show that H r 2 (v) is obtained from Gr (v) by removing
an r 1-net. Then we apply Lemma 2.22 to further boundmH (� ). First of all we show that H r 2 (v) is a
subset ofGr (v). Then we prove that Gr (v) nH r 2 (v) is indeed anr 1-net of Gr (v) by showing that for any
u 2 Gr (v) there is a w 2 Gr (v) n H r 2 (v) such that the distance in Gr (v) betweenu and w is at most r 1.

Let v be an arbitrarily chosen vertex of V (H ). Note that H r 2 (v) is a subgraph ofH and hence
contains no vertices from the setsW and U. The graph H r 2 (v) contains all vertices at distance at most
r 2 from v in H . SinceH � G, this means that any vertex u 2 H r 2 (v) is also within distance r 2 of v in G.
In particular, it now follows from r 2 � r that u is within distance r of v in G, implying that u 2 Gr (v).
This shows that H r 2 (v) � Gr (v).

Figure 2.2 shows a sketch of the graphG with the subsets U and W and the subgraphsH r 2 (v) and
Gr (v) for somev 2 V(H ). The red vertices in the picture represent the setW. The area outside ofU
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Figure 2.2: Sketch of the graph and subgraphs from the proof of Theorem 2.20

excluding W is the graph H . For any vertex in G there is a vertex in U at distance at most r 1. The
graph H r 2 (v) is a subgraph ofH and hence contains no vertices fromU nor from W , i.e. no red vertices.
The distance from v to any other vertex in H r 2 (v) is at most r 2 and its distance to any vertex in Gr (v)
is at most r . We now show that the marked area, i.e.Gr (v) n H r 2 (v), is ansr 1-net of Gr (v).

Take u 2 Gr (v) arbitrarily. To show that Gr (v) n H r 2 (v) is an r 1-net of Gr (v) we will prove that
a vertex x 2 Gr (v) n H r 2 (v) exists at distance at mostr 1 from u. Note that if u =2 H r 2 (v) the case is
trivial, since we can take x = u. Hence, we only need to show such anx exists if u 2 H r 2 (v). Since
H r 2 (v) � Gr (v) the distance ofu to v in Gr (v) is at most r 2. Let x be a vertex in U at distance at most
r 1 from u in G. Then

dG (v; x) � dG (v; u) + dG (u; x) � r 1 + r 2 = r:

This implies that x 2 Gr (v). Furthermore, since x is an element ofU it can not be an element of
H r 2 (v). This proves the existence of a vertex inGr (v) n H r 2 (v) at distance at most r 1 from u and thus
Gr (v) n H r 2 (v) is indeed anr 1-net of Gr (v).

We have now shown thatH r 2 (v) is obtained from Gr (v) by removing an r 1-net, for any v 2 V(H ).
Applying Lemma 2.22 thus yields

� 1(H r 2 (v))2r 1 � � 1 (Gr (v))2r 1 � 1 � � 2r 1 � 1;

where the last step follows sincev =2 W . Using this result and inequality (2.7) we now �nd

mH (� ) � � 2r 2 �
X

v2 V (H )

� 1(H r 2 (v))2r 2

=
X

v2 V (H )

�
� 1(H r 2 (v))2r 1

� r 2
r 1

�
X

v2 V (H )

�
� 2r 1 � 1

� r 2
r 1

� n
�
� 2r 1 � 1

� r 2
r 1 :

Dividing both sides by � 2r 2 yields mH (� ) �
�
1 � � � 2r 1

� r 2
r 1 � e� � � 2 r 1 r 2

r 1 . For c small enough this is at
most m := e�

p
log n , which is of order Oj; � (n= log logn). To see this, note that whenc becomes smaller,
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